WO2006074942A1 - Inertisierun sverfahren zur brandvermeidun - Google Patents

Inertisierun sverfahren zur brandvermeidun Download PDF

Info

Publication number
WO2006074942A1
WO2006074942A1 PCT/EP2006/000267 EP2006000267W WO2006074942A1 WO 2006074942 A1 WO2006074942 A1 WO 2006074942A1 EP 2006000267 W EP2006000267 W EP 2006000267W WO 2006074942 A1 WO2006074942 A1 WO 2006074942A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
oxygen
inflammation
shelter
gases
Prior art date
Application number
PCT/EP2006/000267
Other languages
English (en)
French (fr)
Inventor
Ernst-Werner Wagner
Original Assignee
Amrona Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BRPI0606315-2A priority Critical patent/BRPI0606315A2/pt
Priority to UAA200709384A priority patent/UA90126C2/uk
Priority to US11/795,385 priority patent/US20100012334A1/en
Priority to DE502006004914T priority patent/DE502006004914D1/de
Priority to CN2006800021139A priority patent/CN101119772B/zh
Priority to MX2007008408A priority patent/MX2007008408A/es
Priority to AU2006205895A priority patent/AU2006205895B2/en
Priority to AT06700499T priority patent/ATE443543T1/de
Application filed by Amrona Ag filed Critical Amrona Ag
Priority to PL06700499T priority patent/PL1838396T3/pl
Priority to DK06700499.4T priority patent/DK1838396T3/da
Priority to CA2594796A priority patent/CA2594796C/en
Priority to KR1020077015898A priority patent/KR101255387B1/ko
Priority to JP2007550761A priority patent/JP4654249B2/ja
Priority to EP06700499A priority patent/EP1838396B1/de
Publication of WO2006074942A1 publication Critical patent/WO2006074942A1/de
Priority to NO20074209A priority patent/NO339355B1/no
Priority to HK07113746.3A priority patent/HK1108399A1/xx

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C99/00Subject matter not provided for in other groups of this subclass
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C99/00Subject matter not provided for in other groups of this subclass
    • A62C99/0009Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames
    • A62C99/0018Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames using gases or vapours that do not support combustion, e.g. steam, carbon dioxide
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C2/00Fire prevention or containment
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C2/00Fire prevention or containment
    • A62C2/04Removing or cutting-off the supply of inflammable material
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C99/00Subject matter not provided for in other groups of this subclass
    • A62C99/0009Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames
    • A62C99/0063Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames with simultaneous removal of inflammable materials

Definitions

  • the present invention relates to a. Inerting process to avoid fire or explosion in an enclosed protection area, in which the oxygen content in the protection area is reduced compared to the ambient air in the protection area.
  • Inerting methods for fire prevention and extinguishing in closed rooms are known from fire extinguishing technology.
  • the extinguishing effect resulting from these processes is based on the principle of oxygen displacement.
  • the normal ambient air consists of 21% by volume of oxygen, 78% by volume of nitrogen and 1% by volume of other gases.
  • initiate e.g. pure or 90% nitrogen as inert gas further increases the nitrogen concentration in the room in question and thus reduces the oxygen content.
  • an extinguishing effect sets in when the oxygen content drops below about 15% by volume.
  • a further decrease in the oxygen content to, for example, 12% by volume may be necessary. At this oxygen concentration, most flammable materials can no longer burn.
  • the oxygen-displacing gases used in this “inert gas extinguishing technology” are generally stored compressed in steel tanks in special adjoining rooms, or a device is used to generate an oxygen-displacing gas Inert gas-air mixtures with a proportion of, for example, 90%, 95% or 99% nitrogen (or another inert gas) can also be used.
  • the steel bottles or this device for generating the oxygen-displacing gas constitute the so-called primary source of the inert gas extinguishing system. If necessary, the gas is then fed from this source via piping systems and corresponding outlet nozzles into the room in question. In order to keep the fire risk as low as possible even if the source fails, secondary inert gas sources are sometimes used.
  • Patent specification DE 102 35 718 B3 describes a method for inerting one or more closed rooms to reduce the risk of fire and explosion, in which the oxygen content in the closed room is reduced to an oxygen setpoint relative to the ambient air. A temperature value for a gas temperature in the closed space is also recorded and the oxygen setpoint for the oxygen content is determined as a function of the temperature values, the oxygen setpoint being increased as the temperature value falls.
  • this method has the disadvantage that the nominal values can fluctuate greatly with the physical characteristics, the geometry, the special composition or coverage by other surface materials of the materials stored in the shelter. One would have to determine a separate parameter for each physical form and arrangement of the stored goods in the shelter, which is impossible in practice.
  • the present invention is based on the object of further developing the inerting method known from the prior art and explained above that it is independent of the The type of substances or goods stored in the protected area works reliably.
  • This object is achieved according to the invention in an inerting method of the type mentioned at the outset by regulating the setpoint value for the oxygen concentration as a function of the concentration of inflammation-promoting gases in the shelter.
  • the advantages of the invention are, in particular, that an easy to implement and at the same time very effective inerting method for reducing the risk of fire or explosion can be achieved in an enclosed protective area, even if increased concentrations of inflammation-promoting substances are present in the protected area due to outgassing.
  • concentration of the inflammation-promoting gases is regularly determined by measurements.
  • the disadvantages of the inert gas concentration or oxygen concentration in the shelter controlled by parameters are avoided and scatter of characteristic values of stored materials are compensated for by a timely measurement and reaction to increased concentrations of inflammation-promoting gases due to outgassing.
  • the above-mentioned object is further achieved in that the concentration of inflammation-promoting gases in the protective space or protective area is measured at least at one point, each with one or more sensors. Measurements at several points are necessary, for example, if the objects or packaging stored in the enclosed shelter are arranged unevenly.
  • the outgassing of inflammation-promoting gases can vary widely in this case or even if the geometry of the goods stored in the shelter is unfavorable.
  • the oxygen concentration in the shelter can also be measured at several points and with one or more sensors.
  • the measurement at several points offers an additional safety aspect with regard to uneven gas distributions in the enclosed shelter.
  • the measurement of the oxygen concentration can be carried out with one or more sensors in each case. Failure safety can be increased by measuring with at least two sensors.
  • the above-mentioned measured values of the concentration of inflammation-promoting gases in the shelter as well as the concentration of oxygen in the shelter are fed to at least one control unit.
  • the multiple measured values supplied to the control unit can be evaluated within the control unit based on a selectable algorithm.
  • One or more control units can be provided.
  • the advantage of a multiple design of the control unit lies in the increased security of the overall system. In this way it can be ensured that the entire system remains functional even if one control unit fails. If an increasing concentration of inflammation-promoting gases is detected in the control unit via the sensors for inflammation-promoting gases, the setpoint value of the oxygen concentration is further reduced in order to ensure that fires and explosions are reliably prevented even in the presence of inflammation-promoting gases (e.g. hydrocarbons) .
  • inflammation-promoting gases e.g. hydrocarbons
  • the target value of the oxygen concentration is increased as the concentration of inflammation-promoting gases decreases.
  • a lowering of the concentration of inflammation-promoting gases, which arise due to outgassing of the goods stored in the storage room, can be reduced by providing a gas exchange or a fresh air supply in the protective room. In this way, it can be reliably prevented that the concentration of inflammation-promoting gases does not increase continuously due to outgassing, thus increasing the risk of fire or explosion.
  • the signals from the sensors in the shelter can be transmitted wirelessly if necessary. In this way, changing storage material and / or goods geometries in the shelter can be taken into account.
  • Fig. 1 A schematic arrangement of the shelter with the associated inert gas sources and the valve, measuring and control devices.
  • Fig. 2 An exemplary change in the oxygen concentration is influenced by the concentration of fire-promoting substances in the shelter.
  • the basic function of the method is described by way of example in FIG. 1.
  • the inert gas can be let into the protective space 1 from the inert gas source 2 via a valve 3 and one or more outlet nozzles 7.
  • the concentration of the inert gas in the barrage 1 is regulated by the control unit 4, which in turn influences the valve 3.
  • the control unit 4 is set in such a way that a basic level of inertization in the shelter 1 is reached. This basic level of inertization reliably prevents fires in shelter 1 under normal conditions. Under normal conditions it is understood that there are no increased concentrations of fire-promoting substances Kx in the shelter 1.
  • control unit 4 measures the oxygen concentration in the protective space 1 via an oxygen sensor 5 and controls the inflow of inert gas accordingly.
  • the presence and concentration of gases resulting from material outgassing are determined by means of at least one further sensor 6. If the concentration of fire or explosion-promoting gases in the ambient air of the shelter 1 now increases (for example due to an increased concentration of hydrocarbons), this is measured via the sensor 6. This measured value is fed to the control unit 4.
  • the inert gas concentration in the protective space 1 is then increased via a corresponding map function in the control unit 4 and the valve 3. The inflow of inert gas continues until the desired lower oxygen concentration in the protective space, measured via the oxygen sensor 5, has been reached and reliable fire protection is provided even under these difficult conditions.
  • Kx concentration of oxidizing gases.

Abstract

Es wird ein Inertisierungsverfahren zur Vermeidung eines Brandes oder einer Explosion in einem geschlossenen Schutzbereich angegeben, bei dem der Sauerstoffgehalt im Schutzbereich gegenüber der Umgebungsluft abgesenkt wird. Mit dem Ziel, eine effektive Brandvermeidung auch bei auftretenden Ausgasungen aus Feststoffen oder Flüssigkeiten im umschlossenen Schutzraum zu ermöglichen, sieht das Verfahren erfindungsgemäß vor, dass bei auftretenden endzündungsfördemden Substanzen und/oder Gasen im umschlossenen Schutzraum (zum Beispiel Kohlenwasserstoffe) der Sauerstoffgehalt im umschlossenen Schutzraum abhängig von der Konzentration der entzündungs fördernden Gase ere elt wird.

Description

"Inertisierungsverfahren zur Brandvermeidung"
Beschreibung
Die vorliegende Erfindung betrifft ein. Inertisierungsverfahren zur Vermeidung eines Brandes oder einer Explosion in einem umschlossenen Schutzbereich, bei dem der Sauerstoffgehalt im Schutzbereich gegenüber der Umgebungsluft im Schutzbereich abgesenkt wird.
Inertisierungsverfahren zur Brandverhütung und- Löschung in geschlossenen Räumen sind aus der Feuerlöschtechnik bekannt. Die bei diesen Verfahren resultierende Löschwirkung beruht auf dem Prinzip der Sauerstoffverdrängung. Die normale Umgebungsluft besteht bekanntlich zu 21 Vol.-% aus Sauerstoff, zu 78 Vol.-% aus Stickstoff und zu 1 Vol.-% aus sonstigen Gasen. Zum Löschen bzw. zur Brandvermeidung wird durch Einleiten von z.B. reinem oder 90% Stickstoff als Inertgas die Stickstoffkonzentration in dem betreffenden Raum weiter erhöht und damit der Sauerstoffanteil verringert. Es ist bekannt, das eine Löschwirkung einsetzt, wenn der Sauerstoffanteil unter etwa 15 Vol.-% absinkt. Abhängig von den in dem betreffenden Raum vorhandenen brennbaren Materialien kann ferner ein weiteres Absinken des Sauerstoffanteils auf beispielsweise 12 Vol.-% erforderlich sei. Bei dieser Sauerstoffkonzentration können die meisten brennbaren Materialien nicht mehr brennen.
Die bei dieser „Inertgaslöschtechnik" verwendeten, sauerstoffverdrängenden Gase werden in der Regel in speziellen Nebenräumen in Stahlflaschen komprimiert gelagert, oder es wird ein Gerät zur Erzeugung eines sauerstoffverdrängenden Gases eingesetzt. Dabei können auch Inertgas-Luftgemische mit einem Anteil von beispielsweise 90%, 95% oder 99% Stickstoff (oder eines anderen Inertgases) zur Anwendung kommen. Die Stahlflaschen bzw. dieses Gerät zur Erzeugung des sauerstoffverdrängenden Gases begründen die sogenannte Primärquelle der Inertgaslöschanlage. Im Bedarfsfall wird dann das Gas von dieser Quelle über Rohrleitungssysteme und entsprechende Austrittsdüsen in den betreffenden Raum geleitet. Um das Brandrisiko auch bei Ausfall der Quelle so niedrig wie möglich zu halten, wird gelegentlich auch auf sekundäre Inertgasquellen zurückgegriffen.
Die Patentschrift DE 102 35 718 B3 beschreibt ein Verfahren zur Inertisierung eines oder mehrerer geschlossener Räume zur Herabsetzung der Brand- und Explosionsgefahr, bei dem der Sauerstoffgehalt in dem geschlossenen Raum auf einen Sauerstoffsollwert gegenüber der Umgebungsluft abgesenkt wird. Dabei wird auch ein Temperaturwert für eine Gastemperatur in dem geschlossenen Raum erfasst und der Sauerstoffsollwert für den Sauerstoffgehalt abhängig von den Temperaturwerten bestimmt, wobei mit fallendem Temperaturwert der Sauerstoffsollwert angehoben wird. Diese Methode hat allerdings den Nachteil, dass die Nennwerte stark mit der physikalischen Ausprägung, der Geometrie, der speziellen Zusammensetzung oder Abdeckung durch andere Oberflächenmaterialien der im Schutzraum gelagerten Materialien, schwanken können. Man müsste also für jede physische Ausprägung und Anordnung der gelagerten Güter im Schutzraum eine eigene Kenngröße ermitteln, was in der praktischen Durchführung unmöglich ist. Aus diesem Grunde wird man aus Sicherheitsgründen immer höhere Inertgaskonzentration wählen, um auch bei ungünstigen physikalischen Gegebenheiten einen optimalen Brandschutz zu gewährleisten. Damit nimmt man automatisch einen höheren Inertgasverbrauch in Kauf, der zusätzliche Kosten verursacht und darüber hinaus das Betreten durch Menschen erschweren kann.
Allerdings ist bekannt, dass Temperaturen im Bereich -40° bis +60°C keinen nennenswerten Einfluss auf die Endzündungsgrenze von festen und flüssigen Stoffen haben. Demgegenüber kann es bei modernen Materialien — sowohl bei Feststoffen, insbesondere bei Kleinladungsträgern oder Verpackungsmaterial, als auch bei Flüssigkeiten — zu Ausgasungen kommen. Diese Materialausgasungen können trotz reduziertem Sauerstoffgehalt eine erhöhte Brand- oder Explosionsgefahr darstellen. Als Beispiel der genannten end- zündungs fördernden Substanzen, das die Brand- und/oder Explosionsgefahr erhöhen, seien Kohlenwasserstoffe genannt. Ausgehend von den zuvor geschilderten Problemen hinsichtlich der sicherheits technischen Anforderungen an eine Inertgas f euer löschanlage bzw. an ein Inertisierungsverfah- ren liegt der vorliegenden Erfindung die Aufgabe zugrunde, das aus dem Stand der Technik bekannte und vorstehend erläuterte Inertisierungsverfahren weiterzuentwickeln, dass es unabhängig von der Art der im Schutzbereich gelagerten Stoffe beziehungsweise Waren zuverlässig funktioniert.
Diese Aufgabe wird bei einem Inertisierungsverfahren der eingangs genannten Art erfindungsgemäß dadurch gelöst, dass der Sollwert der Sauerstoffkonzentration in Abhängigkeit von der Konzentration von entzündungs fördernden Gasen im Schutzraum geregelt wird.
Die Vorteile der Erfindung liegen insbesondere darin, dass ein einfach zu realisierendes und dabei sehr effektives Inertisierungsverfahren zur Minderung des Risikos eines Brandes oder einer Explosion in einem umschlossenen Schutzbereich erzielbar ist, auch wenn durch Ausgasungen erhöhte Konzentrationen von endzündungs fördernden Stoffen im Schutzraum vorhanden sind. Dabei wird die Konzentration der endzündungs fördernden Gase regelmäßig durch Messungen festgestellt. Die Nachteile der durch Kenngrößen kontrollierten Inertgaskonzentration bzw. Sauerstoffkonzentration im Schutzraum werden vermieden und Streuungen von Kennwerten von gelagerten Materialien werden durch eine zeitnahe Messung und Reaktion auf erhöhte Konzentrationen von endzündungsför- dernden Gasen aufgrund von Ausgasungen ausgeglichen.
Weitere Aus führungs formen der Erfindung ergeben sich aus den Unteransprüchen.
Die vorstehend genannte Aufgabe wird ferner dadurch gelöst, dass die Konzentration von endzündungs fördernden Gasen im Schutzraum bzw. Schutzbereich an mindestens einer Stelle mit jeweils einem oder mehreren Sensoren gemessen wird. Messungen an mehreren Stellen sind zum Beispiel dann erforderlich, wenn die im umschlossenen Schutzraum gelagerten Gegenstände bzw. Verpackungen ungleichmäßig angeordnet sind. Die Ausgasung von endzündungsfördernden Gasen kann in diesem Fall oder auch bei ungünstiger Geometrie der im Schutzraum gelagerten Waren stark variieren.
Ebenso kann die Sauerstoffkonzentration im Schutzraum an mehreren Stellen und mit einem oder mehreren Sensoren gemessen werden. Die Messung an mehreren Stellen bietet einen zusätzlichen Sicherheitsaspekt hinsichtlich ungleichmäßiger Gasverteilungen im umschlossenen Schutzraum. Weiterhin kann die Messung der Sauerstoffkonzentration mit jeweils einem oder mehreren Sensoren durchgeführt werden. Durch die Messung mit mindestens zwei Sensoren kann die Ausfallsicherheit erhöht werden.
Darüber hinaus werden die genannten Messwerte der Konzentration von endzündungs- fördernden Gasen im Schutzraum genauso wie die Konzentration von Sauerstoff im Schutzraum mindestens einer Steuereinheit zugeleitet. Die der Steuereinheit zugeführten mehreren Messwerte können innerhalb der Steuereinheit basierend auf einem wählbaren Algorithmus ausgewertet werden. Es können eine oder mehrere Steuereinheiten vorgesehen werden. Der Vorteil bei einer mehrfachen Auslegung der Steuereinheit hegt in der erhöhten Sicherheit des Gesamtsystems. Auf diese Weise kann sichergestellt werden, dass auch bei Ausfall einer Steuereinheit das Gesamtsystem funktionsfähig bleibt. Wird in der Steuereinheit über die Sensoren für endzündungs fördernde Gase eine steigende Konzentration endzündungs fördernder Gase festgestellt, so wird der Sollwert der Sauerstoffkonzentration weiter gesenkt, um so sicherzustellen, dass auch bei der Anwesenheit von endzündungsfördernden Gasen (z.B. Kohlenwasserstoffe) Brände und Explosionen sicher verhindert werden.
Alternativ oder ergänzend kann in vorteilhafter Weise vorgesehen sein, dass der Sollwert der Sauerstoffkonzentration mit fallender Konzentration von entzündungs fördernden Gasen erhöht wird. Diese Weiterbildung der Erfindung kann beispielsweise eine Begehbarkeit des Schutzbereichs durch Personen oder andere Lebewesen rasch ermöglichen.
In vorteilhafter Weise kann die Sauerstoffkonzentration anhand einer in der Steuereinheit abgelegten Kennlinie, zum Beispiel Fn = f(Kx), geregelt werden.
Ferner kann eine Absenkung der Konzentration von endzündungsfördernden Gasen, die durch Ausgasungen des im Lagerraum aufbewahrten Gutes entstehen, dadurch reduziert werden, dass ein Gasaustausch beziehungsweise eine Frischluftzufuhr im Schutzraum vorgesehen wird. Auf diese Weise lässt sich zuverlässig verhindern, dass die Konzentration von endzündungsfördernden Gasen nicht durch Ausgasung kontinuierlich zunimmt und sich so das Brand- beziehungsweise Explosionsrisiko erhöht.
Außerdem können im Bedarffall die Signale der Sensoren im Schutzraum drahtlos übertragen werden. Man kann auf diese Weise sich verändernden Lagermaterial- und/oder Warengeometrien im Schutzraum Rechnung tragen. Im folgendem wird ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens anhand der Figuren näher erläutert.
Es zeigen:
Fig. 1 Eine schematische Anordnung des Schutzraumes mit den dazugehörigen Inertgasquellen sowie den Ventil, Mess- und Steuereinrichtungen.
Fig.2 Eine beispielhafte Veränderung der Sauerstoffkonzentration beeinflusst durch die Konzentration von brandfördernden Substanzen im Schutzraum.
In Fig. 1 ist exemplarisch die grundsätzliche Funktion des Verfahrens inklusive der dazugehörigen Kontroll- und Messinstrumente beschrieben. Das Inertgas kann aus der Inertgasquelle 2 über ein Ventil 3 und eine oder mehrere Auslassdüsen 7 in den Schutzraum 1 gelassen werden. Dabei wird die Konzentration des Inertgases in dem Schuteraum 1 über die Steuereinheit 4, die wiederum Einfluss auf das Ventil 3 nimmt, geregelt. Die Steuereinheit 4 wird so eingestellt, dass ein Grundinertisierungsniveau im Schutzraum 1 erreicht wird. Dieses Grundinertisierungsniveau verhindert zuverlässig Brände im Schutzraum 1 unter normalen Bedingungen. Unter normalen Bedingungen wird verstanden, dass sich keine erhöhten Konzentrationen von brandfördernden Substanzen Kx im Schutzraum 1 befinden. Die Steuereinheit 4 misst dazu über einen Sauerstoffsensor 5 die Sauerstoffkonzentration im Schutzraum 1 und steuert den Zustrom von Inertgas entsprechend. Mittels mindestens eines weiteren Sensors 6 wird die Anwesenheit und Konzentration von Gasen festgestellt, die von Materialausgasungen herrühren. Erhöht sich nun die Konzentration von brand- oder explosionsfördernden Gasen in der Umgebungsluft des Schutzraumes 1 (zum Beispiel durch eine erhöhte Konzentration von Kohlenwasserstoffen) so wird diese über den Sensor 6 gemessen. Dieser Messwert wird der Steuereinheit 4 zugeführt. Über eine entsprechende Kennfeldfunktion in der Steuereinheit 4 und das Ventil 3 wird die Inertgaskonzentration im Schutzraum 1 daraufhin erhöht. Der Zustrom von Inertgas wird solange fortgesetzt, bis die gewünschte niedrigere Sauerstoffkonzentration im Schutzraum, gemessen über den Sauerstoffsensor 5, erreicht ist, und ein zuverlässiger Brandschutz auch unter diesen erschwerten Bedingungen gegeben ist.
Die Fig. 2 zeigt exemplarisch einen möglichen Verlauf der Sauerstoffkonzentration im Schutzraum 1 in Abhängigkeit von der Konzentration brandfördernder Gase Kx im Schutzraum 1. Dabei gibt das Grundinertisierungsniveau der Sauerstoffkonzentration den Level an Inertgas vor, der erforderlich ist, um unter normalen Umständen das Brand- oder Explosionsrisiko zu vermindern. Die Konzentration von Inertgas und die davon abhängige Sauerstoffkonzentration wird gemäß einer Funktion Kn=f(Kx), die in der Steuereinheit abgelegt sein kann, kontrolliert. In dieser Gleichung bedeutet
Kn = Konzentration des Inertgases
Kx = Konzentration brandfördernder Gase.
Bezugszeichenliste
1 Schutzbereich
2 Inertgasquelle
3 Ventil
4 Steuereinheit
5 Sauerstoff sensor
6 Kohlenwasserstoffsensor
7 Inertgaseintritt

Claims

Ansprüche
1. Inertisierungsverfahren zur Vermeidung eines Brandes oder einer Explosion in einem umschlossenen Schutzbereich (1), bei dem der Sauerstoffgehalt im Schutzbereich gegenüber der Umgebungsluft im Schutzbereich (1) abgesenkt wird, dadurch gekennzeichnet, dass der Sollwert der Sauerstoffkonzentration abhängig von der Konzentration von entzündungsfördernden Gasen im Schutzraum verändert wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeich net, dass die Konzentration von entzündungsfördernden Gasen im Schutzraum an einer oder mehreren Stellen mit jeweils einem oder mehreren Sensoren (6) gemessen wird.
3. Verfahren nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass die Konzentration von Sauerstoff in dem Schutzraum an einer oder mehreren Stellen mit jeweils einem oder mehreren Sensoren (5) gemessen wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Messwerte der Konzentrationen von entzündungsfördernden Gasen und/oder
Sauerstoff an mindestens eine Steuereinheit (4) weitergeleitet werden.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der Sollwert der Sauerstoffkonzentration mit steigender Konzentration von ent- zündungs fördernden Gasen gesenkt wird.
6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass der Sollwert der Sauerstoffkonzentration mit fallender Konzentration von ent- zündungs fördernden Gasen erhöht wird.
7. Verfahren nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass die Steuereinheit (4) den Sollwert der Sauerstoffkonzentration entsprechend einer in der Steuereinheit (4) abgelegten Kennlinie regelt.
8. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Konzentration von entzündungsfördernden Gasen durch Gasaustausch und/oder Frischluftzufuhr im Schutzraum (1) reduziert wird.
PCT/EP2006/000267 2005-01-17 2006-01-13 Inertisierun sverfahren zur brandvermeidun WO2006074942A1 (de)

Priority Applications (16)

Application Number Priority Date Filing Date Title
PL06700499T PL1838396T3 (pl) 2005-01-17 2006-01-13 Sposób inertyzacji w celu unikania pożaru
UAA200709384A UA90126C2 (uk) 2005-01-17 2006-01-13 Спосіб інертизації для запобігання пожежам
DK06700499.4T DK1838396T3 (da) 2005-01-17 2006-01-13 Inaktiveringsmetode til hindring zf brand
CN2006800021139A CN101119772B (zh) 2005-01-17 2006-01-13 用于防火的惰性化方法
MX2007008408A MX2007008408A (es) 2005-01-17 2006-01-13 Metodo inercial para prevenir incendios.
AU2006205895A AU2006205895B2 (en) 2005-01-17 2006-01-13 Inerting method for preventing fires
AT06700499T ATE443543T1 (de) 2005-01-17 2006-01-13 Inertisierungsverfahren zur brandvermeidung
BRPI0606315-2A BRPI0606315A2 (pt) 2005-01-17 2006-01-13 método de inertização para impedir incêndios
US11/795,385 US20100012334A1 (en) 2005-01-17 2006-01-13 Inertization Method for Preventing Fires
DE502006004914T DE502006004914D1 (de) 2005-01-17 2006-01-13 Inertisierungsverfahren zur brandvermeidung
CA2594796A CA2594796C (en) 2005-01-17 2006-01-13 Inerting method for preventing fires
KR1020077015898A KR101255387B1 (ko) 2005-01-17 2006-01-13 화재를 방지하는 불활성화 방법
JP2007550761A JP4654249B2 (ja) 2005-01-17 2006-01-13 火災防止のための不活性化方法
EP06700499A EP1838396B1 (de) 2005-01-17 2006-01-13 Inertisierungsverfahren zur brandvermeidung
NO20074209A NO339355B1 (no) 2005-01-17 2007-08-16 Inertgjørende fremgangsmåte for å forebygge brann
HK07113746.3A HK1108399A1 (en) 2005-01-17 2007-12-18 Inerting method for preventing fires

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005002172A DE102005002172A1 (de) 2005-01-17 2005-01-17 Inertisierungsverfahren zur Brandvermeidung
DE102005002172.7 2005-01-17

Publications (1)

Publication Number Publication Date
WO2006074942A1 true WO2006074942A1 (de) 2006-07-20

Family

ID=36072234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/000267 WO2006074942A1 (de) 2005-01-17 2006-01-13 Inertisierun sverfahren zur brandvermeidun

Country Status (21)

Country Link
US (1) US20100012334A1 (de)
EP (1) EP1838396B1 (de)
JP (1) JP4654249B2 (de)
KR (1) KR101255387B1 (de)
CN (1) CN101119772B (de)
AT (1) ATE443543T1 (de)
AU (1) AU2006205895B2 (de)
BR (1) BRPI0606315A2 (de)
CA (1) CA2594796C (de)
DE (2) DE102005002172A1 (de)
DK (1) DK1838396T3 (de)
ES (1) ES2333813T3 (de)
HK (1) HK1108399A1 (de)
MX (1) MX2007008408A (de)
NO (1) NO339355B1 (de)
PL (1) PL1838396T3 (de)
PT (1) PT1838396E (de)
RU (1) RU2362600C2 (de)
TW (1) TW200702015A (de)
UA (1) UA90126C2 (de)
WO (1) WO2006074942A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2465512C1 (ru) * 2011-04-19 2012-10-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Устройство для поддержания состава воздушной среды в герметичном контейнере

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011112741B4 (de) * 2011-09-07 2015-09-03 Werner Hofmann Inertgasgedeckte geschlossene Mahl-und Siebanlage
KR101244426B1 (ko) * 2012-12-03 2013-03-18 (유)성문 화재예방 및 억제장치
EP2881149B1 (de) * 2013-12-04 2018-02-28 Amrona AG Sauerstoffreduzierungsanlage sowie Verfahren zum Betreiben einer Sauerstoffreduzierungsanlage
WO2018119098A1 (en) 2016-12-20 2018-06-28 Carrier Corporation Fire protection system for an enclosure and method of fire protection for an enclosure
RU2748912C1 (ru) * 2020-07-14 2021-06-01 Александр Вениаминович Куликов Способ безопасного обращения с энергетическими материалами
KR102239961B1 (ko) 2020-08-19 2021-04-14 포이스주식회사 자연발화성 화학물질의 초기 화재 억제장치 및 화재 억제방법
RU2766144C1 (ru) * 2021-05-27 2022-02-08 Александр Вениаминович Куликов Контейнер для безопасного обращения с энергетическими материалами
CN114306977B (zh) * 2021-12-24 2022-08-09 南京昭凌精密机械有限公司 一种防爆系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4846410A (en) * 1986-04-26 1989-07-11 The Babcock & Wilcox Company Apparatus for monitoring low-level combustibles
WO2000052293A2 (en) * 1999-03-03 2000-09-08 Fmc Corporation Explosion prevention system for internal turret mooring system
US20030094288A1 (en) * 1998-03-18 2003-05-22 Wagner Ernst Werner Inerting method and apparatus for preventing and extinguishing fires in enclosed spaces
DE10235718B3 (de) 2002-07-31 2004-04-08 Htk Hamburg Gmbh Verfahren zur Inertisierung von geschlossenen Räumen zur Herabsenkung von Brand- und Explosionsgefahr sowie eine Vorrichtung zur Durchführung des Verfahrens

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3770059A (en) * 1971-02-08 1973-11-06 Badger Co Explosion & fire suppression system for catalytic reactors
US3709302A (en) * 1971-07-08 1973-01-09 H Stults Self-contained foam fire extinguishing system
US4081039A (en) * 1976-10-28 1978-03-28 Brown Oil Tools, Inc. Connecting assembly and method
DE2737228A1 (de) * 1977-08-18 1979-03-01 Lga Gas & Marine Consult Gmbh Vorrichtung zur unterwasserverbindung einer festliegenden fluessigkeitsfoerderleitung mit einer bewegten anschlussleitung an einer boje
FR2544688B1 (fr) * 1983-04-21 1986-01-17 Arles Const Metalliques Systeme modulaire de production, de stockage et de chargement d'hydrocarbures au large des cotes
US4763731A (en) * 1983-09-28 1988-08-16 The Boeing Company Fire suppression system for aircraft
US4899827A (en) * 1988-08-01 1990-02-13 Douglas Poole Oil well fire control system
US5437332A (en) * 1991-04-10 1995-08-01 Pfeffer; John L. Control system for wild oil and gas wells and other uncontrolled dangerous discharges
US5425886A (en) * 1993-06-23 1995-06-20 The United States Of America As Represented By The Secretary Of The Navy On demand, non-halon, fire extinguishing systems
DE4432346C1 (de) * 1994-09-12 1995-11-16 Messer Griesheim Gmbh Verfahren und Vorrichtung zum Inertisieren von Speicherräumen
US5718293A (en) * 1995-01-20 1998-02-17 Minnesota Mining And Manufacturing Company Fire extinguishing process and composition
JPH09276428A (ja) * 1996-04-08 1997-10-28 Sekiko Ryo 火災の予防と消火方法及びシステム
US5904190A (en) * 1997-06-17 1999-05-18 The Regents Of The University Of California Method to prevent explosions in fuel tanks
DE10051662B4 (de) * 2000-10-18 2004-04-01 Airbus Deutschland Gmbh Verfahren zur Löschung eines innerhalb eines geschlossenen Raumes ausgebrochenen Feuers
JP2003102858A (ja) * 2001-09-28 2003-04-08 Nohmi Bosai Ltd 閉鎖空間の防火システム
DE10152964C1 (de) * 2001-10-26 2003-08-21 Airbus Gmbh Löschsystem zur Löschung eines innerhalb der Kabine oder eines Frachtraumes eines Passagierflugzeuges ausgebrochenen Feuers
DE10164293A1 (de) * 2001-12-28 2003-07-10 Wagner Alarm Sicherung Verfahren und Vorrichtung zum Messen des Sauerstoffgehaltes
DE10310439B3 (de) * 2003-03-11 2004-12-09 Basf Coatings Ag Verfahren zum Brand- und Explosionsschutz in einem Hochregallager für chemische Gefahrstoffe und brand- und explosionsgeschütztes Hochregallager
CN1533814A (zh) * 2003-03-27 2004-10-06 廖赤虹 一种用于封闭空间的火灾预防及灭火设备
CN100509088C (zh) * 2003-05-26 2009-07-08 萧志福 一种可支持人体呼吸的防火供氮系统
EP1683548B1 (de) * 2005-01-21 2012-12-12 Amrona AG Inertisierungsverfahren zur Brandvermeidung
PL1911498T3 (pl) * 2006-10-11 2009-07-31 Amrona Ag Wielostopniowy sposób inertyzacji do zapobiegania pożarom i gaszenia pożarów w zamkniętych pomieszczeniach
ATE460210T1 (de) * 2007-07-13 2010-03-15 Amrona Ag Verfahren und vorrichtung zur brandverhütung und/oder brandlöschung in geschlossenen räumen
EP2046459B1 (de) * 2007-08-01 2011-11-23 Amrona AG Inertisierungsverfahren zur minderung des risikos einer brandentstehung in einem umschlossenen raum sowie vorrichtung zur durchführung des verfahrens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4846410A (en) * 1986-04-26 1989-07-11 The Babcock & Wilcox Company Apparatus for monitoring low-level combustibles
US20030094288A1 (en) * 1998-03-18 2003-05-22 Wagner Ernst Werner Inerting method and apparatus for preventing and extinguishing fires in enclosed spaces
WO2000052293A2 (en) * 1999-03-03 2000-09-08 Fmc Corporation Explosion prevention system for internal turret mooring system
DE10235718B3 (de) 2002-07-31 2004-04-08 Htk Hamburg Gmbh Verfahren zur Inertisierung von geschlossenen Räumen zur Herabsenkung von Brand- und Explosionsgefahr sowie eine Vorrichtung zur Durchführung des Verfahrens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2465512C1 (ru) * 2011-04-19 2012-10-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Устройство для поддержания состава воздушной среды в герметичном контейнере

Also Published As

Publication number Publication date
RU2007131271A (ru) 2009-02-27
BRPI0606315A2 (pt) 2009-06-16
ATE443543T1 (de) 2009-10-15
CN101119772B (zh) 2011-11-30
RU2362600C2 (ru) 2009-07-27
CA2594796A1 (en) 2006-07-20
UA90126C2 (uk) 2010-04-12
DE102005002172A1 (de) 2006-07-27
EP1838396A1 (de) 2007-10-03
ES2333813T3 (es) 2010-03-01
EP1838396B1 (de) 2009-09-23
AU2006205895B2 (en) 2011-03-31
NO339355B1 (no) 2016-12-05
TW200702015A (en) 2007-01-16
US20100012334A1 (en) 2010-01-21
PT1838396E (pt) 2009-11-30
KR20070102512A (ko) 2007-10-18
CN101119772A (zh) 2008-02-06
DK1838396T3 (da) 2010-02-01
PL1838396T3 (pl) 2010-02-26
MX2007008408A (es) 2007-11-21
HK1108399A1 (en) 2008-05-09
NO20074209L (no) 2007-10-09
DE502006004914D1 (de) 2009-11-05
AU2006205895A1 (en) 2006-07-20
CA2594796C (en) 2013-07-16
KR101255387B1 (ko) 2013-04-17
JP2008526409A (ja) 2008-07-24
JP4654249B2 (ja) 2011-03-16

Similar Documents

Publication Publication Date Title
WO2006074942A1 (de) Inertisierun sverfahren zur brandvermeidun
EP1683548B1 (de) Inertisierungsverfahren zur Brandvermeidung
EP1062005B2 (de) Inertisierungsverfahren zur brandverhütung und -löschung in geschlossenen räumen
EP2173440B1 (de) Vorrichtung und verfahren zur brandverhütung und zur löschung eines in einem umschlossenen raum ausgebrochenen brandes
EP1261396B1 (de) Inertisierungsverfahren mit stickstoffpuffer
DE60306321T2 (de) Systeme, Steuerungen und Verfahren zum Erfassen gefährlichen Zuständen innerhalb eines Gehäuses, welches eine Belüftungsanlage aufweist
EP2046459A1 (de) Inertisierungsverfahren zur minderung des risikos einer brandentstehung in einem umschlossenen raum sowie vorrichtung zur durchführung des verfahrens
EP2186546A1 (de) Inertgasfeuerlöschanlage zur Minderung des Risikos und zum Löschen von Bränden in einem Schutzraum
WO2008043586A1 (de) Mehrstufiges inertisierungsverfahren zur brandverhütung und brandlöschung in geschlossenen räumen
EP2881149B1 (de) Sauerstoffreduzierungsanlage sowie Verfahren zum Betreiben einer Sauerstoffreduzierungsanlage
EP1550482B1 (de) Inertisierungsverfahren zum Löschen eines Brandes
DE60021766T2 (de) Verfahren und vorrichtung zur bereitstellung einer gasmischung
DE102005023101B4 (de) Verfahren zum Einbringen eines Inertgases und Anlage zum Inertisieren
DE102009053602B4 (de) Verfahren und Vorrichtung zum Betrieb einer Feuerlöschanlage
DE2902125A1 (de) Verfahren und einrichtung zur ermittlung der anwesenheit von gasen oder daempfen in luft oder anderen gasfoermigen medien
DE10235718B3 (de) Verfahren zur Inertisierung von geschlossenen Räumen zur Herabsenkung von Brand- und Explosionsgefahr sowie eine Vorrichtung zur Durchführung des Verfahrens
DE102013003128B4 (de) Gefechtsfahrzeug mit einer Brandunterdrückungsanlage
DE10121550B4 (de) Inertisierungsverfahren mit Stickstoffpuffer
DE102006026539A1 (de) Verfahren zur Restgasentsorgung bei einem Brennstoffzellensystem sowie Brennstoffzellensystem mit verbesserter Restgasentsorgung
WO2016045979A1 (de) Inertgaslöschanlage
DE202010013749U1 (de) Warngerät zum Aufspüren von Gas
DE3318896A1 (de) Gasdruckregler
Behr Controlling chemical hazards
DE102013004198A1 (de) Verfahren und Vorrichtung zur Ermittlung der Zündgrenzen von Gasgemischen

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006700499

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006205895

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/008408

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 200680002113.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077015898

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2594796

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007550761

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2006205895

Country of ref document: AU

Date of ref document: 20060113

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006205895

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007131271

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006700499

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11795385

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0606315

Country of ref document: BR

Kind code of ref document: A2