WO2006074595A1 - Poudres eutectiques pour production et soudure de ceramiques et leur procede de production - Google Patents

Poudres eutectiques pour production et soudure de ceramiques et leur procede de production Download PDF

Info

Publication number
WO2006074595A1
WO2006074595A1 PCT/CN2006/000002 CN2006000002W WO2006074595A1 WO 2006074595 A1 WO2006074595 A1 WO 2006074595A1 CN 2006000002 W CN2006000002 W CN 2006000002W WO 2006074595 A1 WO2006074595 A1 WO 2006074595A1
Authority
WO
WIPO (PCT)
Prior art keywords
sic
tmb
meb
eutectic
powder
Prior art date
Application number
PCT/CN2006/000002
Other languages
English (en)
French (fr)
Inventor
Genfa Li
Wenjun Li
Original Assignee
Genfa Li
Wenjun Li
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 200510023350 external-priority patent/CN1680215A/zh
Priority claimed from CN 200510023349 external-priority patent/CN1654429A/zh
Priority claimed from CN 200510060344 external-priority patent/CN1907906A/zh
Application filed by Genfa Li, Wenjun Li filed Critical Genfa Li
Priority to CN200680002263XA priority Critical patent/CN101102977B/zh
Publication of WO2006074595A1 publication Critical patent/WO2006074595A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]

Definitions

  • Eutectic powder additive for producing ceramic or ceramic welding and preparation method thereof
  • the invention relates to a ceramic production technology, in particular to a eutectic powder additive and a preparation method thereof, such as VB 2 /LaB 6 , VB 2 /LaB 6 /B 4 C, VB 2 /SiC/B 4 C, VN/SiC/B 4 C, VB 2 /SiC/VC, VB 2 /SiC/LaB 6 or VB 2 /SiC/B 4 C/LaB 6 and other eutectic powders, such additives are mainly used for TiB 2 , Si 3 N 4 , SiC, cubic Sintering of single-phase ceramics, composite ceramics, gradient ceramics and ceramic films such as BN or B 4 C, as well as the preparation of ceramic coatings, welding of ceramics and ceramics, ceramics and metals.
  • a eutectic powder additive such as VB 2 /LaB 6 , VB 2 /LaB 6 /B 4 C, VB 2 /SiC/B 4
  • Structural materials such as TiB 2 , Si 3 N 4 , SiC, cubic BN, and B 4 C have many excellent properties. As described by Thevenot, FJ Eur. Ceram. Soc. 1990, 6, 205, cubic BN, TiB 2 and B 4 C have lower density, extremely high hardness and strength, which can block bullet shooting. Hot-pressed sintered cubic BN, TiB 2 and B 4 C ceramics have been used to make body armor, lightweight armor plates for helicopters and tanks, and tools such as Mingwei Chen, lames W. McCauley, Kevin J. Hemker, SCIENCE, 2003, 299, 1563.
  • Si 3 N 4 , SiC has high strength, high hardness, wear resistance, corrosion resistance, thermal shock resistance, high temperature oxidation resistance, etc. It is suitable for high temperature applications above 1200 °C, such as turbine engine parts and aerospace materials. As described by Telle, R. and Petzow, G. Mater. Sci. Eng. 1988, A105/106, 97, but due to the high totality of TiB 2 , Si 3 N 4 , SiC, cubic BN and B 4 C The valence bond content, in the ceramic preparation, due to the slow diffusion rate between the particles, it is difficult to densify the ceramic without additives.
  • the sintering of TiB 2 , Si 3 N 4 , SiC, cubic BN and B 4 C ceramics is generally carried out in the presence of high temperature and high pressure and additives.
  • the hot press sintering of B 4 C ceramics is mainly carried out with Al, Mg, Si, Ti, V, Cr, Fe, Ni, B, C as additives at 1750-1900 ° C, 5-40 MPa, such as Gursoy Arslan.
  • the density of the sintered body was 95% as described by Ferhat Kara, Servet Turan, Journal of the European Ceramic Society 2003, 23, 1243-1255.
  • the hot press sintering of SiC is generally carried out at 2000 ° C, 50 MPa using Fe, Al, B, Be, A1 2 3 3 , BeO, A1N, BN, B 4 C as additives.
  • additives having a lower melting temperature such as Fe, Al, Ti, etc.
  • have poor hardness and strength affecting the overall properties of B 4 C and SiC ceramic sintered bodies
  • additives having higher mechanical strength such as A1. 2 0 3 and A1N have higher melting temperatures, making it difficult to sinter dense B 4 C and SiC ceramics at lower temperatures.
  • Transition metals of the third, fourth, fifth and sixth subgroups of the periodic table such as Sc, La, Cr, V, Ti, Zr, Nb, Ta, Hf, Mo, W
  • Structural materials such as nitrides and carbides have many excellent machinery Performance.
  • the eutectic powder can form a eutectic reaction with the sintered body during the sintering process, the sintering temperature of the sintered body can be lowered, and the eutectic powder having a eutectic composite structure formed by the eutectic reaction is low because of its low melting temperature.
  • the powder is an additive and the sintered body can be sintered and densified at a low temperature.
  • the object of the present invention is to provide a ceramic single-phase material, a ceramic composite material, a ceramic coating layer, a gradient material, a film material and the like for producing niobium properties such as TiB 2 , Si 3 N 4 , SiC, cubic BN and B 4 C.
  • a eutectic powder additive having a lower melting temperature and a higher mechanical property for the welding of ceramics and ceramics, ceramics and metals, and a preparation method thereof.
  • the method for reducing the sintering temperature of a ceramic using the eutectic powder additive according to the present invention comprises the following steps -
  • the eutectic powder additive described therein comprises a eutectic powder, a eutectic composite powder or a combination thereof; other conventional additives include C, B, Si, Si 3 N 4 , A1N or metal;
  • step (b) sintering the mixture obtained in the step (a) by a normal pressure sintering, a gas pressure sintering, or a hot press sintering, or a hot isostatic pressing or a sintering method such as SPS to obtain a ceramic;
  • the eutectic reaction generated during sintering can cause the sintered body to be sintered in the vicinity of the eutectic melting temperature of the additive (1650-2000 ° C) by liquid phase sintering to form dense TiB 2 , Si 3 N 4 , SiC, cubic BN and B. 4 C and other ceramics and composite ceramics.
  • the sintering temperature of the step (b) is lower than that of the ceramic having the same density when the eutectic powder sintering agent is not used under the same conditions, and the sintering temperature is reduced by 50-1000 ° C, and the sintering process is shown in FIG. 1 .
  • the ceramic eutectic powder additive is characterized in that: the ceramic additive is composed of C, B, Si, Me, TM, MgO, TM0 2 , M 0 3 , MgAl 2 0 4 , MeAl0 3 , Me 3 A combination of Al 5 0i 2 , MeN TMN, TMC, TM 2 C, TMB, TMB 2 , MeB 6 , A1 2 0 3 , Si 3 N 4 , SiC, B 4 C capable of forming a eutectic reaction Eutectic powder and eutectic composite powder.
  • the eutectic powder is a mixed powder obtained by uniformly mixing the components in the above combination; the eutectic composite powder is obtained by melt solidification using the eutectic powder as a raw material, and the phase is C, Si, B, MgO, TM0 2 , Me 2 0 3 , MgAl 2 0 4 , a combination of MeA10 3 , Me 3 Al 5 0 12 , Si 3 N 4 , TMN, TM 2 C, TMC, TMB, TMB 2 , MeB 6 , A1 2 0 3 , SiC, B 4 C having a eutectic structure composite ceramic material, were treated with crushed finely ground particle size of 0.1-50 ⁇ ⁇ mixed powder having a eutectic composite structure, the preparation process 2 shown in FIG.
  • the combination of the above materials capable of forming a eutectic reaction includes:
  • Binary eutectic combination MeB 6 /SiC, C/TMC/TMB 2 , TMB 2 /SiC, TMB 2 /MeB 6 , TMB/SiC, TMB/TM 2 C, etc.
  • TM/SiC/MeB 6 /B 4 C TM0 2 /SiC/MeB 6 /B 4 C/C, TM0 2 /C/MeB 6 /B 4 C, TMB/TMB 2 /TMC/SiC, TMB 2 /SiC /MeB 6 B 4 C/C, Al 2 0 3 /MeA10 3 /MgAl 2 0 4 /TM0 2 , MgO/Al 2 0 3 /MeA10 3 /TM0 2 , MgO/Al 2 0 3 /Me 3 Al50 12 / TM0 2 , Al 2 0 3 /Me 2 0 3 /MgAl 2 0 4 /TM0 2 ,
  • TM represents Sc, Ce, Al, Si, V, Cr, Ti, Zr, W, Mo, Nb, Ta, Hf
  • Me represents Sc, Ca, Al, Cr, Y, La, and a rare earth element (RE).
  • various eutectic powder additives formed by uniformly mixing the components or the eutectic powders as raw materials are prepared by melt-solidification to prepare the following eutectic composite powder additives as follows: The molar percentage of the total amount of the substance - the eutectic composite powder eutectic powder preparation formula
  • TMB/TM 2 C TMB/TM 2 C TMB 50-70% TM 2 C 30-50% TMB 2 /SiC/C TMN/SiC/B 4 C SiC 15-30% TMN 45-60%
  • TMB 2 /SiC/C TMC (or TM 2 C)/SiC/B 4 C SiC 15-30% TMC (or TM 2 C) 45-60%
  • TMB2/B4C/S1C TMB 2 /B 4 C/SiC SiC 25-41%
  • TMB 2 /MeB 6 /B 4 C TMB 2 /MeB 6 /B 4 C MeB 6 5-35% TMB 2 5-35%
  • TMB/SiC/TMB TMB/SiC/TMB.
  • TMB/SiC/TMB 2 TMB 15-30% SiC 40-60%
  • TMB 2 /B 4 C/SiC/C TMC (or TM 2 C)/B 4 C/SiC SiC 20-35% TMC (or TM 2 C) 10-30% B 4 C 40-60%
  • TMB 2 /SiC/MeB 6 /BC TMB 2 /SiC/MeB 6 /B 4 C SiC 30-50% TMB 2 5-25%
  • TMB 2 /MeB 6 /B 4 C/C TMC (or TM 2 C)/MeB6/B 4 C MeB 6 5-25% TMC (or TM 2 C) 10-30% B 4 C 45-70%
  • TM Sc, Ce, Si, Al, V, Cr, Ti, Zr, W, Mo, Nb, Ta, Hf
  • Me Sc, Al, Ca , Cr, Y, La, RE (RE stands for rare earth element).
  • Me 2 0 3 may be selected from Sc 2 0 3 or A1 2 0 3 or Cr 2 0 3 or Y 2 0 3 or La 2 0 3 or RE 2 0 3 or Sc 2 0 3 , A1 2 0 3 , Cr 2 0 3 a solid solution formed by melt solidification of each component in any combination of Y 2 0 3 , La 2 0 3 , and RE 2 0 3 , such as (Al,Cr) 2 3 3 solid solution; MeA10 3 may be selected from YA10 3 or LaA10 3 or REA10 3 or YA10 3, LaA10 3, REA10 3 any solid solution formed by a combination of melting and solidification of each component; Me 3 Al 5 0 12 3 optional Ah or eight 15012 1 ⁇ 3 into 1 5 0 12 or 3 into 1 5 0 12 or Y 3 A1 5 0 12 , La 3 Al 5 0 12 , RE 3 A1 5 0 12 The solidification of each component formed by melt solidification MeB 6 may be selected from the solid
  • TMB 2 may be selected from ScB 2 or CrB 2 or VB 2 or TiB 2 or WB 2 or each of MoB 2 or NbB 2 or ZrB 2 or Ta 3 ⁇ 4 or Hf 3 ⁇ 4 or ScB 2 , CrB 2 s VB 2 , TiB 2 , WB 2 , MoB 2 , NbB 2 , ZrB 2 , TaB 2 , Hffl 2
  • the solid formed by melt solidification such as (V x Zr I ⁇ i )B 2 solid solution
  • TMB can be selected from CrB or VB or ⁇ or WB or MoB or NbB or ZrB or TaB or Hffi or CrB, VB a solid solution formed by melt solidification of each component in any combination of TiB, WB, MoB, NbB, ZBB, TaB, Hffi, such as a
  • the preparation method of the above eutectic powder additive comprises: preparing a eutectic powder by using the above-mentioned formula as a raw material, uniformly mixing in a drum to obtain a eutectic powder as an additive, or using the mixed powder as a raw material by a melt solidification method
  • the eutectic composite ceramic material is crushed and ground in a mortar or a star-shaped pulverizer into a eutectic mixed powder additive having a eutectic composite structure having a size of 0.5 to 50 ⁇ m (which preferably ranges from 1 to 10 ⁇ m) (or It is called eutectic composite powder additive).
  • the above formulation adopts two different preparation processes, the former (first process) preparation process is simple, but the latter (second process) composite powder has a eutectic composite structure which has better material properties and is favorable for reduction. Sintering temperature.
  • the above melt-solidification method may employ an arc melting method or a floating zone method or a down-draw method or a lead-in method or a spray method or a drum melt rotary quenching method or a casting method.
  • the raw materials are weighed according to the formulation described in any of the above groups, and uniformly mixed in a drum to obtain a eutectic powder additive.
  • the mixed powder as a raw material, and pressing into a cylindrical body having a diameter of 5-20 mm under a pressure of 10-20 MPa, and then preparing a corresponding combined eutectic in an Ar atmosphere of 10-30 cinHg in a small DC arc melting furnace.
  • the composite ceramic material is crushed into a eutectic composite powder having a eutectic composite structure with a particle size of 0.5 to 50 ⁇ m in a mortar or a star-shaped pulverizer.
  • the eutectic powder of the present invention can form a liquid phase with a sintered body as an additive, and dense TiB 2 , Si 3 N 4 , SiC, cubic BN and B 4 are sintered near the eutectic melting temperature (1650-2000 ° C). C and other ceramics and composite ceramics.
  • the sintering conditions and performance experimental data of a set of SiC and B 4 C ceramics are shown in Tables I, II and III: It can be seen that the eutectic powder provided by the present invention produces high-performance TiB 2 , Si 3 N 4 , SiC, cubic BN and Structural ceramics such as B 4 C have excellent technical properties and a wider application range. In addition, the sintering temperature and sintering pressure are reduced, and the production cost and investment cost are significantly reduced. BRIEF abstract
  • Figure 1 is a process flow diagram of preparing a ceramic by using a eutectic powder as a sintering aid.
  • Figure 2 is a flow chart for the preparation of eutectic powder.
  • Figure 3 is a phase diagram of Al 2 0 3 /NdA10 3 /Zr0 2 .
  • Figure 4 is a phase diagram of Al 2 0 3 /Y 3 A1 5 0 12 /Zr0 2 .
  • Figure 5 is a VB 2 /SiC/B 4 C phase diagram.
  • Figure 6 is a VN/SiC/B 4 C phase diagram.
  • FIG. 7 (a) and (b) are SEM photographs Al 2 0 3 / NdA10 3 / Zr0 2 and Al 2 0 3 / Y 3 A1 5 0 12 / Zr0 2 ceramic composite of the eutectic.
  • FIG. 8 (a) and (b) of Fig. 8 are SEM photographs of VB 2 /SiC/B 4 C and C/VB 2 /SiC/B 4 C eutectic composite ceramics, respectively.
  • Fig. 9 is a Si 3 N prepared by pressureless sintering of an Al 2 0 3 /Y 3 A1 5 0 12 /Zr0 2 eutectic composite powder having a concentration of 5% by weight as a sintering aid at 1750 ° C in a N 2 atmosphere. 4 SEM photos of ceramics.
  • Figure 10 is a 10 vol% Al 2 O 3 /Y 3 A1 5 0 12 /Zr0 2 eutectic composite powder as a sintering aid at 1750 ° C,
  • Fig. 11 is a SEM photograph of a TiB 2 ceramic prepared by sintering a VN/SiC/B 4 C eutectic powder having a concentration of 8 vol% as a sintering aid at 1900 ° C and 80 MPa for 10 minutes.
  • Fig. 12 is a SEM photograph of a B 4 C ceramic prepared by sintering at a concentration of 10 vol% of a VB 2 /SiC/B 4 C eutectic powder as a sintering aid at 1930 ° C and 50 MPa for 10 minutes.
  • Fig. 13 is a SEM photograph of a B 4 C ceramic prepared by sintering a VB 2 /SiC/B 4 C eutectic composite powder at a concentration of 10 vol% as a sintering aid at 1900 ° C, 50 MPa for 10 minutes.
  • Preparation 20 Al 3 / NdA10 3 / Zr0 2 eutectic powder additive of example, in FIG. 3, Al 2 0 Preparation 3 / NdA10 3 / Zr0 2 powder formulation of eutectic composite 55-65mol% A1 2 0 3 , 15-25mol% Nd 2 0 3 , 15-30mol% Zr0 2 , melting temperature is 1700 ⁇ 30°C, using Nd 2 0 3 , Zr0 2 and A1 2 3 3 powder as raw materials, according to 55-65mol% A1 2 0 3 , 15-25 mol% Nd 2 0 3 , 15-30 mol% ZrO 2 , the ratio is mixed, and after stirring uniformly, a eutectic powder is obtained.
  • the eutectic powder is pressed into a cylindrical body having a diameter of 5-20 mm under a pressure of 10-20 MPa, and then melted in a small DC arc furnace with a rated voltage of 100 V and a current of 600 A in an Ar gas of 20 cmHg. system.
  • the phase of the obtained eutectic composite ceramic is A1 2 0 3 , NdA10 3 and Zr0 2
  • the microstructure is a columnar structure, as shown in Fig.
  • the white circular small particles are NdA10 3 , white triangle or strip
  • the particles are Zr0 2
  • the black phase is A1 2 0 3
  • the diameter is 300 nm NdA) 3 particles
  • the 500 nm Zr ( 3 ⁇ 4 particles are uniformly dispersed in the A1 2 0 3 matrix.
  • the Zr0 2 eutectic composite ceramic is crushed into a powder with a particle size of 0.5-50 ⁇ m in a mortar to obtain a eutectic composite powder.
  • the uniform microstructure of the Al 2 0 3 /NdA10 3 /Zr0 2 eutectic composite makes the crushing and grinding
  • the eutectic composite powder having a particle size of 1 to 20 ⁇ m has a composition and a microstructure consistent with the bulk material, thereby ensuring a low melting temperature of the eutectic composite powder.
  • the sintering temperature of Si 3 N 4 and SiC ceramics is exemplified by the Al 2 0 3 /Y 3 A1 5 0 12 /Zr0 2 eutectic powder additive as a sintering aid. It can be seen from FIG. 4 that the preparation formula of the Al 2 0 3 /Y3A1 5 0 12 /Zr0 2 eutectic composite ceramic powder is 60-70 mol% A1 2 0 3 , 10-20 mol% Y 2 O 3 , 15-25 mol% Zr0 2 .
  • the eutectic composite ceramic phase prepared by the same method as in Example 1 using Y 2 0 3 , Zr0 2 and ⁇ 1 2 0 3 powder as raw materials is ⁇ 1 2 0 3 , ⁇ 3 ⁇ 1 5 0 12 and Zr0 2 , microstructure layered structure, the layered particles ⁇ 3 ⁇ 5 ⁇ 12, the thickness ⁇ 1 2 0 3 and Zr0 2, respectively 600nm, 200nm and of 600 nm, see FIG. 7 (b).
  • the Al 2 0 3 /Y 3 A1 5 0 12 /Zr0 2 eutectic composite ceramic prepared above was crushed into a eutectic composite powder having a particle size of 0.5-50 ⁇ in a mortar.
  • the melting temperature of the Al 2 0 3 /Y 3 A1 5 0 12 /Zr0 2 eutectic composite was 1720 ⁇ 30 °C. 5 wt% of Al 2 O 3 /Y 3 A1 5 0 12 /Zr0 2 eutectic composite powder and 95 wt% of Si 3 N 4 powder were uniformly mixed, and sintered at 1750 ° C for 2 hours without pressure to obtain Si 3 N 4 .
  • the ceramic density is above 99.7%, and the SEM photograph thereof is shown in Fig. 9. From Fig.
  • SiC ceramic powder to be sintered 90 vol% of the SiC ceramic powder to be sintered and 10 vol% of Al 2 O 3 /Y 2 O 3 /ZrO 2 eutectic powder additive were mixed, uniformly mixed, and then hot pressed and sintered at 1800 ° C, 50 MPa for 10 minutes.
  • the obtained SiC ceramic has a density of 99.5% or more.
  • the sintering temperature is lower than the sintering temperature required for sintering ceramics with Fe, Al, B, Be, Al 2 O 3 or BeO as sintering agent.
  • the sintering conditions of a group of SiC ceramics are shown in Table 2. : Table 2 Comparison of sintering conditions and properties of SiC ceramics
  • VN/SiC/B 4 C eutectic powder additive as a sintering aid.
  • VN/SiC/B 4 C is a eutectic system
  • SiC, VN and B 4 C components can form a eutectic reaction
  • the preparation formula of VN/SiC/B4C eutectic powder is 18_22raol%VN, 46- 54 mol% B4C, 26-34 mol% SiC.
  • VN, SiC and B4C powders are in the range of 18-22 mol% VN, 46-54 mol%.
  • eutectic powder is used as a raw material, and is pressed into a cylindrical body having a diameter of 5 to 20 dishes under a pressure of 10 to 20 MPa. Then, it was melted in a 20 cmHg Ar atmosphere in a small DC arc furnace having a rated voltage of 100 V and a current of 600 A.
  • the obtained eutectic composite ceramic phases are C, VB 2 , SiC and B 4 C, the eutectic melting temperature is 1870 ⁇ 20 ° C, the microstructure is a rod-like structure, the diameter of 600 nm VB 2 and the diameter of 600 nm SiC The particles are evenly distributed in the B 4 C matrix, as shown in Figure 8(b).
  • the C/VB 2 /SiC/B 4 C eutectic material is crushed into a eutectic mixed powder having a eutectic composite structure with a particle size of 1-20 ⁇ m in a mortar or a star-shaped pulverizer, and the powder is eutectic.
  • Composite powder is crushed into a eutectic mixed powder having a eutectic composite structure with a particle size of 1-20 ⁇ m in a mortar or a star-shaped pulverizer, and the powder is eutectic.
  • the density of the TiB 2 ceramic obtained by hot pressing at 1900 ° C and 80 MPa for 10 minutes is close to 99.0-100%.
  • the SEM photograph thereof is shown in Fig. 11.
  • the sintering temperature is lowered by 100 °C compared to the sintering temperature of TiB 2 ceramic sintered with Fe, Al, Si, Ti as a sintering aid.
  • the sintering temperature of the B 4 C ceramic is reduced by using the VB 2 /SiC/B 4 C eutectic powder as a sintering aid.
  • VB 2 /SiC/B 4 C is a eutectic system, and SiC, VB 2 and B 4 C components can form a eutectic reaction.
  • the preparation formula of VB 2 /SiC/B 4 C eutectic powder is 20-24mol%, VB 2 , 40-48mol% B 4 C, 30-36mol% SiC, and the melting temperature of the eutectic composite is 1870 ⁇ 30°C. .
  • the VB 2 , SiC and B 4 C powders are mixed with 20-24 mol% VB 2 , 40-48 mol% B 4 C, 30-36 mol% SiC, and stirred uniformly to obtain a eutectic powder additive.
  • the eutectic powder is a raw material at 10-20 MPa
  • the pressure is pressed into a cylindrical body of 5-20 mm in diameter, and then melted in a 20 HzHg Ar atmosphere in a small DC arc furnace with a rated voltage of 100 V and a current of 600 A to obtain a eutectic composite ceramic.
  • the phases are VB 2 , SiC and B 4 C, and the eutectic melting temperature is 1870 ⁇ 20.
  • the microstructure is a rod-like structure, and VB 2 having a diameter of 600 nra and SiC particles having a diameter of 600 nm are uniformly distributed in the B 4 C matrix, as shown in Fig. 8(a).
  • the VB 2 /SiC/B 4 C eutectic composite prepared above is crushed into a eutectic mixed powder having a eutectic composite structure with a particle size of 1-20 ⁇ m in a mortar or a star-shaped pulverizer, and the powder is eutectic.
  • Composite powder additive is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

生产陶瓷或陶瓷焊接用的共晶粉末添加剂及其制备方法 技术领域
本发明涉及陶瓷生产技术, 特别是共晶粉末添加剂及其制备方法, 如 VB2/LaB6、 VB2/LaB6/B4C、 VB2/SiC/B4C、 VN/SiC/B4C、 VB2/SiC/VC、 VB2/SiC/LaB6或 VB2/SiC/B4C/LaB6 等共晶粉末, 此类添加剂主要用于 TiB2、 Si3N4、 SiC、 立方 BN或 B4C等单相陶瓷、 复合 陶瓷、梯度陶瓷和陶瓷薄膜的烧结, 以及陶瓷涂层的制备, 陶瓷和陶瓷、 陶瓷和金属的焊 接等领域。 背景技术
TiB2、 Si3N4、 SiC、立方 BN和 B4C等结构材料具有许多优良特性。如 Thevenot, F. J. Eur. Ceram. Soc. 1990, 6, 205所述, 立方 BN、 TiB2和 B4C有较低密度,极高硬度和强度, 可以 阻挡子弹射击。 热压烧结的立方 BN, TiB2和 B4C陶瓷已被用于制备防弹衣, 直升机和坦 克的轻质装甲板以及工具等, 如 Mingwei Chen, lames W. McCauley, Kevin J. Hemker, SCIENCE, 2003, 299, 1563所述。 Si3N4、 SiC具有高强度、 高硬度、 耐磨损、 耐腐蚀、 耐热冲击、 耐高温氧化等特性, 适用于 1200°C以上的高温应用, 如涡轮发动机部件和宇 航材料。 如 Telle, R. and Petzow, G. Mater. Sci. Eng. 1988, A105/106, 97所述, 但是由于 TiB2、 Si3N4、 SiC、 立方 BN和 B4C等具有很高的共价键含量, 在陶瓷制备中由于颗粒之 间的体积扩散速度很慢, 在无添加剂条件下很难使陶瓷致密化。 TiB2、 Si3N4、 SiC、 立方 BN和 B4C陶瓷烧结一般在高温高压和添加剂存在下进行。如目前 B4C陶瓷的热压烧结主 要以 Al、 Mg、 Si、 Ti、 V、 Cr、 Fe、 Ni、 B、 C为添加剂在 1750-1900°C, 5-40MPa条件下 进行, 如 Gursoy Arslan, Ferhat Kara, Servet Turan, Journal of the European Ceramic Society 2003 , 23, 1243-1255所述, 烧结体密度为 95%。 SiC的热压烧结一般采用 Fe、 Al、 B、 Be、 A1203、 BeO、 A1N、 BN、 B4C为添加剂在 2000°C, 50MPa下进行。 然而, 在这些添加 剂中,熔化温度较低的添加剂如 Fe、 Al、 Ti等由于其硬度和强度较差, 影响 B4C和 SiC陶 瓷烧结体的总体性能, 而机械强度较高的添加剂如 A1203和 A1N熔化温度较高, 很难在较 低温度下烧结出致密 B4C和 SiC陶瓷。因此寻找一种具有较低熔化温度和较高机械性能的 添加剂是改善陶瓷烧结条件制备高性能 TiB2、 Si3N4、 SiC、立方 BN和 B4C等陶瓷的关键。 元素周期表中三、 四、 五和六副族的过渡金属 (如 Sc、 La、 Cr、 V、 Ti、 Zr、 Nb、 Ta、 Hf、 Mo、 W), 及其对应的氧化物、 硼化物、 氮化物和碳化物等结构材料具有许多优良的机械 性能。 但是由于这些材料本身熔点较高 (>2000°C), 而且在 TiB2、 Si3N4、 SiC、立方. BN和 B4C等陶瓷烧结中, 一般采用单相粉末作为烧结助剂, 很难更有效地降低 TiB2、 Si3N4、 SiC、立方 BN和 B4C等陶瓷的烧结温度,如 D. D. Radev and Z. T. Zakhariev, Journal of Alloys and Compounds, 196(1993) 93-96所述。 共晶粉末由于在烧结过程中能与烧结体形成共晶 反应, 可以降低烧结体的烧结温度, 此外由共晶反应形成的具有共晶复合结构的共晶粉末 由于其熔化温度较低, 采用此粉末为添加剂也可以在低温下使烧结体烧结致密。而采用含 三、 四、 五和六副族的过渡金属 (如 Sc、 La、 Cr、 V、 Ti、 Zr、 Nb、 Ta、 Hf、 Mo、 W)化合 物的共晶组合中各组元的混合粉末或由此混合粉末为原料通过共晶反应形成的具有共晶 复合结构的混合粉末为添加剂用于 TiB2、 Si3N4、 SiC、 立方 BN和 B4C等结构陶瓷的烧结 或焊接, 目前尚未见报道。 发明内容
本发明的目的是提供一种用于生产髙性能 TiB2、 Si3N4、 SiC、 立方 BN和 B4C等陶瓷 单相材料、 陶瓷复合材料、 陶瓷涂层、 梯度材料、 薄膜材料以及用于陶瓷和陶瓷、 陶瓷和 金属的焊接用的具有较低熔化温度和较高机械性能的共晶粉末添加剂及其制备方法。
本发明所述一种采用共晶粉末添加剂降低陶瓷烧结温度的方法包括以下步骤-
(a)将待烧结的陶瓷粉末如 TiB2, Si3N4, SiC, 立方 BN或 B4C粉末、 0.1-20mol%共 晶粉末添加剂和其它常规添加剂进行混合, 得到混合物,
其中所述的共晶粉末添加剂包括共晶粉末、 共晶复合粉末或其组合; 其它常规添加剂 包括 C、 B、 Si、 Si3N4、 A1N或金属等;
(b)采用常压烧结, 气压烧结, 或热压烧结, 或热等静压烧结或 SPS等烧结方法将 步骤(a)得到的混合物进行烧结得到陶瓷;
烧结时产生的共晶反应可以使烧结体在添加剂的共晶熔化温度附近 (1650-2000°C)通 过液相烧结法, 烧结出致密的 TiB2、 Si3N4、 SiC、 立方 BN和 B4C等陶瓷及复合陶瓷。 其 中步骤 (b )烧结温度比在相同条件下, 无共晶粉末烧结剂时烧结出致密度相同的陶瓷所 需要的烧结温度降低 50-1000°C, 烧结工艺如图 1。 所述生产陶瓷的共晶粉末添加剂, 其 特征在于: 该陶瓷添加助剂是由 C、 B、 Si、 Me、 TM、 MgO、 TM02、 M 03、 MgAl204、 MeAl03、 Me3Al50i2、 MeN TMN、 TMC、 TM2C、 TMB、 TMB2、 MeB6、 A1203、 Si3N4、 SiC, B4C中任一能形成共晶反应的组合中制得的共晶粉末和共晶复合粉末。
其中共晶粉末是上述组合中各组元均匀混合制得的混合粉末;共晶复合粉末是以此共 晶粉末为原料通过熔融固化制得的物相为 C、 Si、 B、 MgO、 TM02、 Me203、 MgAl204、 MeA103、 Me3Al5012、 Si3N4、 TMN、 TM2C、 TMC、 TMB、 TMB2、 MeB6、 A1203、 SiC、 B4C中对应组合的具有共晶结构的复合陶瓷材料,分别经压碎研磨而成的粒度为 0.1-50μπι 的具有共晶复合结构的混合粉末, 其制备过程如图 2。
上述原料中能形成共晶反应的组合包括:
二元共晶组合: MeB6/SiC、 C/TMC/TMB2、 TMB2/SiC、 TMB2/MeB6 , TMB/SiC、 TMB/TM2C等;
三元共晶组合: TMN/B4C/SiC、 TM/B4C/SiC、 TMC(或 TM2C)/B4C/SiC、 TM02/B4C/SiC/C、 TMB2/B4C/SiC、 B4C/SiC/MeB6、 B4C/SiC/Me、 B4C/SiC/Me203、 B4C/SiC/MeN、 TMB2/SiC/MeB6、 TMC/TMB2/SiC、 TMB2/MeB6/B4C、 TMB2/Me/B4C、 TMB2/Me203/B4C、 TMB2/MeN/B4C、 TM/MeB6/B4C、 TMC(或 TM2C)/MeB6/B4C、 TMN/MeB6/B4C 、 TMB/TMB2/SiC 、 TMC/TMB/SiC 、 Al203/Me3Al5012/TM02 、 Al203/MgAl204/TM02、 Al203/MeA103/TM02、 Al203/Me203/TM02、 MgO/Al203/TM02等; 四、五、六元共晶组合: TMB2/SiC/MeB6/B4C、 TMB2/SiC/Me/B4C、 TMB2/SiC/MeN/B4C TMB2/SiC/Me203/B4C、 TMN/SiC/MeB6/B4C、 TMC (或 TM2C)/SiC/MeB6/B4C、
TM/SiC/MeB6/B4C、 TM02/SiC/MeB6/B4C/C、 TM02/C/MeB6/B4C、 TMB/TMB2/TMC/SiC、 TMB2/SiC/MeB6 B4C/C、 Al203/MeA103/MgAl204/TM02、 MgO/Al203/MeA103/TM02、 MgO/Al203/Me3Al5012/TM02、 Al203/Me203/MgAl204/TM02
Al203/Me3Al5012/MgAl204/TM02、 MgO/Al203/Me203/TM02等,其中 TM表示 Sc、 Ce、 Al、 Si、 V、 Cr、 Ti、 Zr、 W、 Mo、 Nb、 Ta、 Hf; Me表示 Sc、 Ca、 Al、 Cr、 Y、 La、 稀土元 素 (RE)。
上述共晶组合中由各组元均匀混合形成的各种共晶粉末添加剂或以此共晶粉末为原 料通过熔融固化制得以下多种共晶复合粉末添加剂的制备配方如下, 以共晶粉末的总的物 质的量的摩尔百分比计- 共晶复合粉末 共晶粉末 制备配方
MeB6/SiC MeB6/SiC MeB6 20-50% SiC 50-80%
C/TMC/TMB2 C/TMC/TMB2 C 10-30% TMC 40-60%
TMB2 25-50%
TMB2/SiC TMB2/SiC SiC 24-38% TMB2 62-76%
TMB2/MeB6 TMB2/MeB6 TMB2 35-65% MeB6 35-65%
TMB/SiC TMB/SiC TMB 50-70% SiC 30-50%
TMB/TM2C TMB/TM2C TMB 50-70% TM2C 30-50% TMB2/SiC/C TMN/SiC/B4C SiC 15-30% TMN 45-60%
B4C 20-30%
TMB2/SiC/C TMC (或 TM2C)/SiC/B4C SiC 15-30% TMC (或 TM2C) 45-60%
B4C 20-30%
TMB2/SiC/C TM/SiC/B4C SiC 15-30% TM 45-60%
B4C 20-30%
TMB2/SiC/C TM02/SiC/B4C/C SiC 5-25% TM02 20-40%
B4C 10-30% C 35-50%
TMB2/B4C/S1C TMB2/B4C/SiC SiC 25-41% TMB2 8-35%
B4C 33-52%
B4C/SiC/MeB6 B4C/SiC/MeB6 SiC 30-50% MeB6 10-30%
B4C 30-50%
TMC/TMB2/SiC TMC/ TMB2/SiC SiC 10-25% TMB2 31-44%
TMC 39-52%
TMB2/MeB6/B4C TMB2/MeB6/B4C MeB6 5-35% TMB2 5-35%
B4C 40-70%
TMB2/SiC/MeB6 TMB2/SiC/MeB6 SiC 40-65% TMB2 5-30%
MeB6 20-40%
TMB/SiC/TMB. TMB/SiC/TMB2 TMB 15-30% SiC 40-60%
TMB2 15-35%
TMB/TMC/SiC TMB/TMC/SiC TMB 15-35% SiC 35-55%
TMC 15-35%
Al203/Me3Al5012/TM02 Al203/Me203/TM02 Me203 10-25% A1203 55-75%
TM02 10-30%
Al203/MeA103/TM02 Al203/Me203/TM02 Me203 10-30% AI2O3 50-70%
TM02 10-35%
Al203/MgAl204/TM02 Al203/MgO/TM02 A1203 35-50% TM02 25-45%
MgO 15-40%
TMB2/B4C/SiC/C TMN/B4C/SiC SiC 20-35% TMN 10-30%
B4C 40-60%
TMB2/B4C/SiC/C TMC (或 TM2C)/B4C/SiC SiC 20-35% TMC (或 TM2C) 10-30% B4C 40-60%
TMB2/B4C/SiC/C TM/B4C/SiC SiC 20-35% TM 10-30%
B4C 40-60%
TMB2/B4C/SiC/C TM02/B4C/SiC/C SiC 20-35% TM02 10-30%
B4C 30-50% C 10-40%
B4C/SiC/MeB6/C B4C/SiC/MeN SiC 30-50% MeN 5-25%
B4C 40-60%
B4C/SiC/MeB6/C B4C/SiC/Me SiC 30-50% Me 5-25%
B4C 40-60%
B4C/SiC/MeB6/C B4C/SiC/Me203 SiC 25-45% Me203 5-20%
B4C 45-65%
TMB2/SiC/MeB6/B C TMB2/SiC/MeB6/B4C SiC 30-50% TMB2 5-25%
MeB6 5-20% B4C 35-55% TMB2/SiC/MeB6/B4C/C TMN/SiC/MeB6/B4C SiC 30-55% TMN 5-25%
MeB6 5-20% B4C 35-60% TMB2/SiC/MeB6/B4C/C TMC (或 TM2C)/SiC/MeB6/B4C SiC 30-55% TMC (或 TM2C) 5-25%
MeB6 5-20% B4C 35-60% TMB2/SiC/MeB6/B4C/C TM/SiC/MeB6/B4C SiC 30-55% TM 5-25%
MeB6 5-20% B4C 35-60% TMB2/SiC/MeB6/B4C/C TM02/SiC/MeB6/B4C/C SiC 20-35% TM02 5-25%
MeB6 5-20% B4C 10-35%
C 5-30%
TMB2/SiC/MeB6/B4C/C TMB2/SiC/MeN/B4C SiC 25-50% MeN 5-20%
TMB2 5-25% B4C 35-60% TMB2/SiC/MeB6/B4C/C TMB2/SiC/Me/B C SiC 25-50% Me 5-20%
TMB25-25% B4C 35-60% TMB2/SiC/MeB6/B4C/C TMB2/SiC/Me203/B4C SiC 20-45% Me203 5-20%
TMB2 5-25% B4C 30-55% TMB2/MeB6/B4C/C TMN/MeB6/B4C MeB6 5-25% TMN 10-30%
B4C 45-70%
TMB2/MeB6/B4C/C TMC (或 TM2C)/MeB6/B4C MeB6 5-25% TMC (或 TM2C) 10-30% B4C 45-70%
TMB2/MeB6/B4C/C TM/MeB6/B4C MeB6 5-25% TM 10-30%
B4C 45-70%
TMB2/MeB6/B4C/C TM02/MeB6/B C/C MeB6 5-15% TM02 10-30%
B4C 30-55% C 20-45%
TMB2/MeB6/B4C/C TMB2/MeN/B4C TMB2 10-30% MeN 5-25%
B4C 45-70%
TMB2/MeB6/B4C/C TMB2/Me/B4C TMB2 10-30% Me 5-25%
B4C 45-70%
TMB2/MeB6/B4C/C TMB2/Me203/B4C TMB25-30% Me203 2-15%
B4C 45-70%
Al203/MeA103/MgAl204/TM02 Al203/Me203/TM02/MgO Me203 5-30% A1203 35-50%
TM02 15-35% MgO 5-25% Al203/Me3Al5012/MgAl204/TM02 Al203/Me203/TM02/MgO Me203 5-25% A120335-55%
TM02 15-35% MgO 5-25% 上述配方中, TM=Sc、 Ce、 Si、 Al、 V、 Cr、 Ti、 Zr、 W、 Mo、 Nb、 Ta、 Hf、 Me=Sc、 Al、 Ca、 Cr、 Y、 La、 RE(RE表示稀土元素)。 Me203可选用 Sc203或 A1203或 Cr203或 Y203 或 La203或 RE203或 Sc203、 A1203、 Cr203、 Y203、 La203、 RE203中任一组合中各组元通 过熔融固化形成的固熔体,如 (Al,Cr)203固熔体; MeA103可选用 YA103或 LaA103或 REA103 或 YA103、 LaA103、 REA103中任一组合中各组元通过熔融固化形成的固熔体; Me3Al5012 可选用丫3八15012或 1^3入150123入15012或 Y3A15012, La3Al5012, RE3A15012中任一组合 中各组元通过熔融固化形成的固熔体; MeB6可选用 CaB6或 CrB6或 YB6或 LaB6或 REB6 或 CaB6, CrB6) YB6, LaB6, REB6中任一组合中各组元通过熔融固化形成的固熔体, 如 (La,Ca)B6固熔体; TM02可选用 Si02或 Ce02或 V02或 Ti02或 W02或 Mo02或 Nb02或 Zr02 或 Ta02或 Hf02或 Si02, Ce02, V02, Ti02, W02, Mo02, Nb02, Zr02, Ta02, Hf02中任一组 合中各组元通过熔融固化形成的固熔体, 如 (ZrxHf1-x)02固熔体; TMN可选用 A1N或 VN 或 ΉΝ或 ZrN或 NbN或 TaN或 Hf 或 A1N, VN, TiN, ZrN, NbN, TaN,HfN中任一组 合中各组元通过熔融固化形成的固熔体, 如 (VxZr1-x)N固熔体; TMC可选用 VC或 TiC或 WC或 MoC或 ZrC或 NbC或 TaC或 HfC或 VC, TiC, WC, MoC, ZrC, NbC, TaC, HfC中任 一组合中各组元通过熔融固化形成的固熔体, 如 (VxZ _x)C固熔体; TM2C可选用 V2C或 Ti2C或 W2C或 Mo2C或 Zr2C或 Nb2C或 Ta2C或 Hf2C或 V2C, Ti2C, W2C, Mo2C, Zr2C, Nb2C, 丁&2。,1¾^中任一组合中各组元通过熔融固化形成的固熔体, 如 (VxZn_x)2C固熔体; TMB2 可选用 ScB2或 CrB2或 VB2或 TiB2或 WB2或 MoB2或 NbB2或 ZrB2或 Ta¾或 Hf¾或 ScB2、 CrB2s VB2、 TiB2、 WB2、 MoB2、 NbB2、 ZrB2、 TaB2、 Hffl2中任一组合中各组元通过熔融 固化形成的固熔体, 如 (VxZrI→i)B2固熔体; TMB可选用 CrB或 VB或 ΉΒ或 WB或 MoB 或 NbB或 ZrB或 TaB或 Hffi或 CrB、 VB、 TiB、 WB, MoB、 NbB、 ZrB、 TaB、 Hffi中任 一组合中各组元通过熔融固化形成的固熔体, 如 (vxZ -x)B固熔体。
上述共晶粉末添加剂的制备方法, 包括: 将以上述任一组所述配方为原料,在滚筒中 均匀混合制得共晶粉末作为添加剂,或以此混合粉末为原料通过熔融固化法制得的对应组 合共晶复合陶瓷材料,在研钵或游星型粉碎机中压碎并研磨成大小为 0.5~50μηι (其优选范 围为 1-10μιη)的具有共晶复合结构的共晶混合粉末添加剂 (或称共晶复合粉末添加剂)。 上 述由同一配方采用两种不同制备工艺, 前者(第一工艺)制备工艺简单, 但后者(第二工 艺) 制得的复合粉末具有的共晶复合结构更具良好的材料性能并有利于降低烧结温度。
详细地说,上述熔融固化法可釆用电弧熔炼法或浮区法或下拉法或引上法或喷雾法或 滚筒熔体旋转急冷法或铸造法。
更详细地说, 按上述任一组所述配方称取原料, 在滚筒中混合均匀制得共晶粉末添加 剂,
或以此混合粉末为原料, 在 10-20MPa压力下压制成直径为 5-20mm的圆柱状坯体, 然后在小型直流电弧熔炼炉中, 在 10-30cinHg的 Ar气氛中制得对应组合共晶复合陶瓷材 料, 在研钵或游星型粉碎机中压碎成粒度为 0.5-50μιη具有共晶复合结构的共晶复合粉末。
本发明的共晶粉末作为添加剂可以通过与烧结体形成液相, 在其共晶熔化温度附近 (1650-2000°C)烧结出致密的 TiB2、 Si3N4、 SiC、 立方 BN和 B4C等陶瓷及复合陶瓷。 一组 SiC和 B4C陶瓷的烧结条件和性能实验对比数据如表一、 二和三: 可见, 本发明所提供的 共晶粉末制备高性能 TiB2, Si3N4, SiC,立方 BN和 B4C等结构陶瓷具有优良的技术性能, 应用范围更为广阔。 加之烧结温度和烧结压力降低, 生产成本和投资成本都会显著降低。 附图概述
图 1是共晶粉末为烧结助剂制备陶瓷的工艺流程图。
图 2是共晶粉末制备流程图。
图 3是 Al203/NdA103/Zr02相图。
图 4是 Al203/Y3A15012/Zr02相图。
图 5是 VB2/SiC/B4C相图。 图 6是 VN/SiC/B4C相图。
图 7 (a) 和 (b) 分别是 Al203/NdA103/Zr02和 Al203/Y3A15012/Zr02共晶复合陶瓷的 SEM照片。
图 8中(a)和(b)分别是 VB2/SiC/B4C和 C/VB2/SiC/B4C共晶复合陶瓷的 SEM照片。 图 9是以浓度为 5^%的 Al203/Y3A15012/Zr02共晶复合粉末为烧结助剂在 1750°C, N2 气氛中无压烧结制得的 Si3N4陶瓷的 SEM照片。
图 10是以浓度为 10vol%的 Al203/Y3A15012/Zr02共晶复合粉末为烧结助剂在 1750°C,
50MPa下在 Ar气中热压烧结制得的 SiC陶瓷的 SEM照片。
图 11是以浓度为 8vol%的 VN/SiC/B4C共晶粉末为烧结助剂在 1900°C, 80MPa下热压 烧结 10分钟制得的 TiB2陶瓷的 SEM照片。
图 12是以浓度为 10vol%的 VB2/SiC/B4C共晶粉末为烧结助剂在 1930°C, 50MPa下热 压烧结 10分钟制得的 B4C陶瓷的 SEM照片。
图 13是以浓度为 10vol%的 VB2/SiC/B4C共晶复合粉末为烧结助剂在 1900°C, 50MPa 下热压烧结 10分钟制得的 B4C陶瓷的 SEM照片。 本发明的最佳实施方案
下列实施例中未注明具体条件的实验方法, 通常按照常规条件, 或按照制造厂商所 建议的条件。 比例和百分比基于物质的量, 除非特别说明。
实施例 1
以 Al203/NdA103/Zr02共晶粉末添加剂的制备举例, 在图 3中, Al203/NdA103/Zr02共 晶复合粉末的制备配方为 55-65mol% A1203、 15-25mol% Nd203、 15-30mol% Zr02,熔化温 度为 1700±30°C, 以 Nd203, Zr02和 A1203粉末为原料,按 55-65mol% A1203、 15-25mol% Nd203、 15-30mol% ZrO2,比例混合,搅拌均匀后,即得共晶粉末。所述共晶粉末在 10-20MPa 的压力下压制成直径为 5-20毫米的圆柱状坯体,然后在额定电压为 100V,电流为 600A的 小型直流电弧炉中,在 20cmHg的 Ar气中熔制。 制得的共晶复合陶瓷的物相为 A1203, NdA103和 Zr02,微结构为柱状结构,见图 7(a), 其中白色圆形小颗粒为 NdA103,白色三角 形或条状颗粒为 Zr02,黑色物相为 A1203,直径为 300纳米 NdA )3颗粒和 500纳米的 Zr(¾ 颗粒均匀分散在 A1203基体中。 所述 Al203/NdA103/Zr02共晶复合陶瓷在研钵中压碎成粒 度为 0.5-50μπι的粉末,即得共晶复合粉末。 由于 Al203/NdA103/Zr02共晶复合均匀的微结 构使压碎研磨成的粒度为 1-20μηι的共晶复合粉末具有与体材料一致的组分和微结构,从 而确保共晶复合粉末具有低的熔化温度。 实施例 2
以 Al203/Y3A15012/Zr02共晶粉末添加剂为烧结助剂降低 Si3N4和 SiC陶瓷的烧结温度 举例。 在图 4中可知 Al203/Y3A15012/Zr02共晶复合陶瓷粉末的制备配方为 60-70mol% A1203、 10-20mol% Y2O3, 15-25mol% Zr02。 以 Y203, Zr02和 Α1203粉末为原料,按实施例 1相同方法制得的共晶复合陶瓷物相为 Α1203, Υ3Α15012和 Zr02,微结构为层状结构,层状颗 粒 Υ3Αΐ5θ12, Α1203和 Zr02的厚度分别为 600nm, 200nm和 600nm, 见图 7 (b)。 上述制得 的 Al203/Y3A15012/Zr02共晶复合陶瓷在研钵中压碎成粒度为 0.5-50μηι的共晶复合粉末。
在图 4中可知, Al203/Y3A15012/Zr02共晶复合材料的熔化温度为 1720±30°C。将 5wt% 的 Al203/Y3A15012/Zr02共晶复合粉末和 95wt% Si3N4粉末混合均匀,在 1750°C下无压烧结 2小时,得到的 Si3N4陶瓷密度在 99.7%以上,其 SEM照片如图 9所示。 从图 9, Si3N4陶瓷 微结构中几乎无明显孔洞,说明以 Al203/Y3A15012/Zr02共晶复合粉末为烧结助剂可以在较 低温度 压力下烧结出非常致密的 Si3N4陶瓷。 烧结温度比以 A1203,Y203为烧结助剂所需 要的烧结温度降低 150°C,烧结压力降低 10MPa。一组 Si3N4陶瓷的烧结条件和性能实验对 比数据如表一所示- 表一 Si3N4陶瓷的烧结条件和性能
Figure imgf000010_0001
将 10vol%的 Al203/Y3Al5Oi2/Zr02共晶复合粉末添加剂和 90vol%SiC粉末混合均匀,在 1750°C, 50MPa下热压烧结 10分钟,得到的 SiC陶瓷密度在 99.7%以上,其 SEM照片如图 10所示。 从图 10的 SiC陶瓷微结构中几乎看不出孔洞。 说明以 Al203/Y3A15012/Zr02共 晶复合粉末为烧结助剂可以在较低的温度和压力下烧结出致密的 SiC陶瓷。 烧结温度比 以 Fe, Al, B, Be,Al203或 BeO为烧结助剂所需要的烧结温度降低 250°C。
此外,将 90vol %的待烧结的 SiC陶瓷粉末和 10vol%Al2O3/Y2O3/ZrO2共晶粉末添加剂 进行混合,混合均匀后,在 1800°C, 50MPa下热压烧结 10分钟,得到的 SiC陶瓷密度在 99.5% 以上。 烧结温度比以 Fe, Al, B, Be,Al203或 BeO为烧结剂烧结陶瓷所需要的烧结温度降低 200°C,一组 SiC陶瓷的烧结条件和性能实验对比数据如表二所示: 表二 SiC陶瓷的烧结条件和性能对比
Figure imgf000011_0001
实施例 3
以 VN/SiC/B4C共晶粉末添加剂为烧结助剂降低 TiB2陶瓷的烧结温度举例。在图 6中 VN/SiC/B4C是一个共晶体系, SiC, VN和 B4C组元能形成共晶反应, VN/SiC/B4C共晶粉 末的制备配方为 18_22raol%VN、 46-54mol%B4C、 26-34mol%SiC. VN、 SiC和 B4C粉末按组 份 18- 22mol%VN、 46- 54mol°/。B4C、 26- 34mol%SiC混合, 搅拌均匀后即得共晶粉末。 所述 共晶粉末为原料, 在 10- 20MPa的压力下压制成直径为 5- 20皿的圆柱状坯体。 然后在额 定电压为 100V,电流为 600A的小型直流电弧炉中,在 20cmHg的 Ar气氛中熔制。 制得的 共晶复合陶瓷物相为 C, VB2, SiC和 B4C,共晶熔化温度为 1870±20°C, 微结构为棒状结构, 直径为 600nm的 VB2和直径为 600nm的 SiC颗粒均匀分布在 B4C基体中, 见图 8中 (b)。 所述 C/VB2/SiC/B4C共晶材料在研钵或游星型粉碎机中压碎成粒度为 1-20μιη的具有共晶 复合结构的共晶混合粉末,此粉末为共晶复合粉末。
将 8vol%的 VN/SiC/B4C共晶粉体添加剂和 ΉΒ2粉末混合均匀后,在 1900°C、 80MPa 下热压烧结 10分钟制得的 TiB2陶瓷的密度接近 99.0-100%,其 SEM照片见图 11.其烧结温 度比采用 Fe, Al, Si, Ti为烧结助剂烧结的 TiB2陶瓷的烧结温度降低 100°C。 实施例 4
以 VB2/SiC/B4C共晶粉末为烧结助剂降低 B4C陶瓷的烧结温度举例。 在图 5 中 VB2/SiC/B4C是一个共晶体系, SiC, VB2和 B4C组元能形成共晶反应。 VB2/SiC/B4C共晶 粉末的制备配方为 20-24mol%, VB2、 40-48mol%B4C、 30-36mol% SiC,共晶复合材料的熔 化温度为 1870±30°C。 VB2, SiC和 B4C粉末按组份 20-24mol% VB2、 40-48mol%B4C、 30-36mol% SiC混合,搅拌均匀后制得共晶粉末添加剂。所述共晶粉末为原料,在 10-20MPa 的压力下压制成直径为 5-20mm的圆柱状坯体,然后在额定电压为 100V,电流为 600A的小 型直流电弧炉中,在 20cinHg的 Ar气氛中熔制,制得的共晶复合陶瓷物相为 VB2, SiC和 B4C, 共晶熔化温度为 1870±20。C,微结构为棒状结构, 直径为 600nra的 VB2和直径为 600nm的 SiC颗粒均匀分布在 B4C基体中, 见图 8(a)。 上述制备的 VB2/SiC/B4C共晶复合材料在研 钵或游星型粉碎机中压碎成粒度为 1-20μπι的具有共晶复合结构的共晶混合粉末,此粉末 为共晶复合粉末添加剂。
将 10vol%的 VB2/SiC/B4C共晶粉体和 B4C粉末混合均匀后,在 1930°C、 50MPa下热 压烧结 10分钟制得的 B4C陶瓷的密度接近 99.5-100%,其 SEM照片见图 12。 其烧结温度 比采用 Fe, Al, Si, Ti为烧结助剂,烧结的 B4C陶瓷的烧结温度降低 70°C,压力降低 450GPa。
此外, 10vol%的 VB2/SiC/B4C共晶复合粉体和 B4C粉末混合均匀后,在 1900°C、50MPa 下热压烧结 10分钟制得的 B4C陶瓷的密度都接近 99.9-100%,其 SEM照片见图 13。 其烧 结温度比釆用 Fe, Al, Si, Ti为烧结助剂,烧结的 B4C陶瓷的烧结温度降低 100°C,压力降低 450GPao 一组 B4C陶瓷的烧结条件和性能实验对比数据如表三所示:
表三 B4C陶瓷的烧结条件和性能对比
Figure imgf000012_0001
从实施例 1,2,3,4 可以看出, 由于 Al203/Y3A15012/Zr02, Al203/Y203/Zr02, VB2/SiC, VB2/SiC/B4C, C/VB2/SiC和 C/VB2/SiC/B4C等共晶复合陶瓷的熔化温度比 A1203或 Y203或 Zr02或 VB2或 SiC或 B4C低很多。 因此采用共晶粉末烧结助剂可以在低温下通过液相烧 结制备 TiB2, Si3N4, SiC和 B4C等难烧结的陶瓷。

Claims

权 利 要 求
1、 一种降低陶瓷烧结温度的方法, 其特征在于, 包括以下步骤:
(a)将待烧结的陶瓷粉末和占待烧结的陶瓷粉末的物质的量的 0.1-20mol%的共晶粉 末添加剂进行混合, 得到混合物,
其中所述的共晶粉末添加剂包括共晶粉末、 共晶复合粉末或其组合;
(b)将步骤 (a) 得到的混合物在共晶粉末添加剂熔化温度附近进行烧结得到陶瓷; 其中步骤 (b) 烧结温度比在相同条件下, 无烧结剂时烧结出致密度相同陶瓷所需要 的烧结温度降低 50-1000°C。
2、 一种降低陶瓷烧结温度的共晶粉末添加剂, 其特征在于, 所述生产陶瓷的添加剂 选自 C、 Me、 TM、 MgO、 TM02、 Me203、 MgAl204、 MeA103、 Me3Al5012、 T顧、 MeN、 TMC、 TM2C、 TMB2、 TMB、 MeB6、 A1203、 SiC、 B4C中任一能产生共晶反应的二元、 三元、 四元、 五元或六元组合中的共晶粉末或共晶复合粉末;
其中所述共晶粉末为一种或多种组元均匀混合制得的混合粉末,
所述共晶复合粉末为以共晶粉末为原料用高温熔融固化法制得复合材料, 所述复合材 料经压碎、 研磨而形成的具有共晶复合结构的混合粉末,
其中 TM表示 Sc, Ce, Si, Al, V, Cr, Ti, Zr, W, Mo, Nb, Ta或 Hf;
Me表示 Sc, Al, Ca, Cr, Y或稀土元素。
3、根据权利要求 2所述的添加剂,其特征在于,该生产陶瓷的添加剂选自 MgO、TM02、 Me203、 MgAl204、 MeA103、 Me3Al5012、 A1203中任一能产生共晶反应的三元或三元以上 组合中各组元的共晶粉末或共晶复合粉末。
4、 根据权利要求 2所述的添加剂, 其特征在于, 该生产陶瓷的添加剂选自 C、 Me、 TM、 TM02、 Me203、 TMN、 MeN、 TMC、 TM2C、 TMB2、 MeB6、 SiC、 B4C中任一能产 生共晶反应的二元或二元以上组合中各组元的共晶粉末或共晶复合粉末。
5、 根据权利要求 2所述的添加剂, 其特征在于, 该生产陶瓷的添加剂选自 C、 Me、 TM、 TM02、 Me203、 T画、 MeN、 TMC、 TM2C、 TMB2、 MeB6、 SiC、 B4C中任一能产 生共晶反应的三元或三元以上组合中各组元的共晶粉末或共晶复合粉末。
6、 根据权利要求 2、 3、 4、 5中任一项所述的添加剂, 其特征在于: 所述的能产生共 晶反应的二元、 三元、 四元、 五元或六元组合中, 其中:
二元组合包括: TMB2/SiC、 TMB2/MeB6、 MeB6/SiC、 TMB/SiC、 TMB/TM2C等; 三元组合包括: C/TMC/TMB2、 TMN/B4C/SiC、 TM/B4C/SiC、 TMC (或 TM2C)/B4C/SiC、 TMB2/B4C/SiC、 B4C/SiC/MeB6、 B4C/SiC/Me、 B4C/SiC/Me203 、 B4C/SiC/MeN、 TMB2/SiC/MeB6、 TMC/TMB2/SiC、 TMB2/MeB6/B4C、 TMB2/Me/B4C、 TMB2/MeN/B4C、 TMB2/Me203/B4C、 TM MeB6/B4C、 TMC(或 TM2C)/MeB6/B4C、 TMN/MeB6/B4C、 TMB/TMB2/SiC、 TMC/TMB/SiC、 Al203Me3Al5Oi2/TM02、 Al203/MeA103/TM02、 Al203/MgAl204/TM02、 Al203 Me203/TM02、 MgO/Al203/TM02等;
四、五、六元组合包括: TM02/B4C/SiC/C、 TMB2/SiC/MeB6/B4C、 TMN/SiC/MeB6/B4C、 TMC( 或 TM2C)/SiC/MeB6 B4C 、 TM/SiC/MeB6 B4C 、 TM02/SiC/MeB6/B4C/C 、 TMB2/SiC/Me/B4C、 TMB2/SiC/MeN/B4C、 TMB2/SiC/Me203/B4C、 TM02/C/MeB6/B4C、 TMB/TMB2/TMC/SiC 、 TMB2/SiC/MeB6/B4C/C 、 Al203/MeA103/MgAl204/TM02 、 MgO/Al203/MeA103/TM02、 MgO/Al203/Me3Al5012/TM02、 Al203/Me203/MgAl204/TM02、 Al203/Me3Al5012/MgAl204/TM02、 MgO/Al203/Me203/TM02等。
其中, TM表示 Sc, Ce, Si, Al, V, Cr, Ti, Zr, W, Mo, Nb, Ta或 Hf;
Me表示 Sc, Al, Ca, Cr, Y, La或稀土元素 (RE),
Me203可选用 Sc203或 A1203或 Cr203或 Y203或 La203或 RE203或 Sc203、 A1203、 Cr203、 Y203、 La203、 RE203中任一组合中各组元通过熔融固化形成的固熔体, 如 (Al,Cr)203固熔 体;
MeA103可选用 YA103或 LaA103或 REA103或 YA103、 LaA103、 REA103中任一组合中 各组元通过熔融固化形成的固熔体;
Me3Al5012可选用 Y3A15012或 La3Al5012或 RE3A15012或 Y3Al5012、La3Al5012、RE3Al5012 中任一组合中各组元通过熔融固化形成的固熔体;
MeB6可选用 CaB6或 CrB6或 YB6或 LaB6或 REB6或 CaB6、 CrB6、 YB6、 LaB6、 REB6 中任一组合中各组元通过瑢融固化形成的固熔体, 如 (La,Ca)B6固熔体;
TM02可选用 Si02或 Ce02或 Cr02或 V02或 Ti02或 W02或 Mo02或 Nb02或 Zr02或 Ta02或 Hf02或 Si02,Ce02、 Cr02、 V02、 Ti02、 W02、 Mo02、 Nb02> Zr02、 Ta02、 Hf02 中任一组合中各组元通过熔融固化形成的固熔体, 如 (ZrxHfU)02固熔体;
TMN可选用 A1N或 VN或 TiN或 ZrN或 NbN或 TaN或 HfN或 A1N、 VN、 TiN、 ZrN、 NbN、 TaN. HfN中任一组合中各组元通过熔融固化形成的固熔体, 如 (VxZriX)N固熔体;
TMC可选用 VC或 TiC或 WC或 MoC或 ZrC或 NbC或 TaC或 HfC或 VC、 TiC、 WC、 MoC、 ZrC, NbC、 TaC, HfC中任一组合中各组元通过熔融固化形成的固熔体,如 (VxZr1-x)C 固熔体; TM2C可选用 V2C或 Ti2C或 W2C或 Mo2C或 Zr2C或 Nb2C或 Ta2C或 Hf2C或 V2C、Ti2C、 W2C、 Mo2C、 Zr2C、 Nb2C、 Ta2C、 Hf2C中任一组合中各组元通过熔融固化形成的固熔体, 如 (VxZri.^C固熔体;
TMB2可选用 ScB2或 CrB2或 VB2或 TiB2或 WB2或 MoB2或 NbB2或 ZrB2或 TaB2或 Hffi2 或 ScB2、 CrB2、 VB2、 TiB2、 WB2、 MoB2、 NbB2、 ZrB2、 TaB2、 HfB2中任一组合中各组 元通过熔融固化形成的固熔体, 如 (VxZr1→c)B2固熔体;
TMB可选用 CrB或 VB或 ΉΒ或 WB或 MoB或 NbB或 ZrB或 TaB或 Hffi或 CrB、 VB、 TiB、 WB、 MoB, NbB、 ZrB、 TaB, Hffi中任一组合中各组元通过熔融固化形成的固熔 体, 如 (VxZr1→c)B固熔体;
上述共晶组合中由共晶组元均匀混合制得的各种共晶粉末添加剂的配方, 或以此混合 粉末为原料经高温熔融固化对应制得的各种共晶复合粉末添加剂的配方如下,以共晶粉末 的总的物质的』 的摩尔百分比计:
共晶复合粉末 共晶粉末 制备配方
MeB6/SiC MeB6/SiC MeB6 20-50% SiC 50-80%
TMB2/SiC TMB2/SiC SiC 20-40% TMB2 60-80%
TMB2/MeB6 TMB2/MeB6 TMB2 35-65% MeB6 35-65%
TMB/SiC TMB/SiC TMB 50-70% SiC 30-50%
TMB/TM2C TMB/TM2C TMB 50-70% TM2C 30-50%
C/TMC/TMB2 C/TMC/TMB2 C 10-30% TMC 40-60%
TMB2 25-50%
TMB2/SiC/C TMN/SiC/B4C SiC 15-30% TMN 45-60%
B4C 20-30%
TMB2/SiC/C TMC (或 TM2C)/SiC/B4C SiC 15-30% TMC (或 TM2C)
B4C 20-30%
TMB2/SiC/C TM/SiC/B4C SiC 15-30% TM 45-60%
B4C 20-30%
TMB2/SiC/C TM02/SiC/B4C/C SiC 5-25% TM02 20-40%
B4C 10-30% C 35-50%
TMB2/B4C/SiC TMB2/B4C/SiC SiC 25-45% TMB2 5-35%
B4C 30-55%
B4C/SiC/MeB6 B4C/SiC/MeB6 SiC 30-50% MeB6 10-30% B4C 30-50%
TMC/TMB2/SiC TMC/TMB2/SiC SiC 10-25% TMB2 30-45%
TMC 35-55%
TMB2/MeB6/B4C TMB2/MeB6/B4C MeB6 5-35% TMB2 5-35%
B4C 40-70%
TMB2/SiC/MeB6 TMB2/SiC/MeB6 SiC 40-65% TMB2 5-30%
MeB6 20-40%
TMB/SiC/TMB2 TMB/SiC/TMB2 TMB 15-30% SiC 40-60%
TMB2 15-35%
TMB/TMC/SiC TMB/TMC/SiC TMB 15-35% SiC 35-55%
TMC 15-35%
Al203/Me3Al5012/TM02 Al203/Me203/TM02 Me203 10-25% A1203 55-75%
TM02 10-30%
Al203/MeA103/TM02 Al203/Me203/TM02 Me203 10-30% A1203 50-70%
TM02 10-35%
Al203 MgAl204/TM02 Al203/MgO/TM02 AI2O3 35-50% TM02 25-45%
MgO 15-40%
TMB2/B4C/SiC/C TMN/B4C/SiC SiC 20-35% TMN 10-30%
B4C 40-60%
TMB2/B4C/SiC/C TMC (或 TM2C) B4C/SiC SiC 20-35% TMC (或 TM2C) 10-30%
B4C 40-60%
TMB2/B4C/SiC/C TM/B4C/SiC SiC 20-35% TM 10-30%
B4C 40-60%
TMB2/B4C/SiC/C TM02/B4C/SiC/C SiC 20-35% TM02 10-30%
B4C 30-50% C 10-40%
B4C/SiC/MeB6/C B4C/SiC/MeN SiC 30-50% MeN 5-25%
B4C 40-60%
B4C/SiC/MeB6/C B4C/SiC/Me SiC 30-50% Me 5-25%
B4C 40-60%
B4C/SiC/MeB6/C B4C/SiC/Me203 SiC 25-45% Me203 5-20%
B4C 45-65% TMB2/SiC/MeB6/B4C TMB2/SiC/MeB6/B4C SiC 30-50% TMB2 5-25%
MeB6 5-20% B4C 35-55%
TMB2/SiC/MeB6/B4C/C TMN/SiC/MeB6/B4C SiC 30-55% TMN 5-25%
MeB6 5-20% B4C 35-60%
TMB2/SiC/MeB6/B4C/C TMC (或 TM2C)/SiC/MeB6/B4C SiC 30-55% TMC (或 TM2C) 5-25%
MeB6 5-20% B4C 35-60% TMB2/SiC/MeB6/B4C/C TM/SiC/MeB6/B4C SiC 30-55% TM 5-25%
MeB6 5-20% B4C 35-60%
TMB2/SiC/MeB6/B4C/C TM02/SiC/MeB6/B4C/C SiC 20-35% TM02 5-25%
MeB6 5-20% B4C 10-35% C 5-30% TMB2/SiC/MeB6/B4C/C TMB2/SiC/MeN/B4C SiC 25-50% MeN 5-20%
TMB2 5-25% B4C 35-60%
TMB2/SiC/MeB6/B4C/C TMB2/SiC/Me/B4C SiC 25-50% Me 5-20%
TMB2 5-25% B4C 35-60%
TMB2/SiC/MeB6/B4C/C TMB2/SiC/Me203/B4C SiC 20-45% Me203 5-20%
TMB2 5-25% B4C 30-55%
TMB2/MeB6/B4C/C TMN/MeB6/B4C MeB6 5-25% TMN 10-30%
B4C 45-70%
TMB2/MeB6 B4C/C TMC (或 TM2C)/MeB6/B4C MeB6 5-25% TMC (或 TM2C) 10-30%
B4C 45-70%
TMB2/MeB6/B4C/C TM/MeB6/B4C MeB6 5-25% TM 10-30%
B C 45-70%
TMB2 MeB6/B4C/C TM02/MeB6/B4C/C MeB6 5-15% TM02 10-30%
B4C 30-55% C 20-45%
TMB2/MeB6/B4C/C TMB2/MeN/B4C TMB2 10-30% MeN 5-25%
B4C 45-70%
TMB2/MeB6/B4C/C TMB2/Me/B4C TMB2 10-30% Me 5-25%
B C 45-70%
TMB2/MeB6/B4C/C TMB2/Me203/B4C TMB25-30% Me203 2-15%
B4C 45-70% Al203/MeA103/MgAl204/TM02 Al203/Me203/MgO/TM02 Me203 5-30% A1203 35-50%
TM02 15-35% MgO 5-25% Al203/Me3Al5012/MgAl204/TM02 Al203/Me203/MgO/TM02 Me203 5-25% A1203 35-55%
TM02 15-35% MgO 5-25%。
7、 根据权利要求 2所述的共晶粉末添加剂的制备方法, 其特征在于: 包括以下步骤 (i)或步骤 (ii), 其中:
(i) 由原料中的各组元均匀混合制得混合粉末, 得到共晶粉末,
其中所述原料为 C、 Me、 TM、 MgO、 TM02、 Me203、 MgAI204、 MeA ¾、 Me3Al5012、 TMN、 MeN、 TMC、 TM2C、 TMB2、 TMB、 MeB6、 A1203、 SiC、 B4C;
(ii)将步骤 (i) 中得到的共晶粉末为原料用高温熔融固化法制得复合材料, 所述复 合材料在研钵或游星型粉碎机中压碎并研磨成大小为 0.1~50μιη的粉末, 即制得共晶复合 粉末添加剂。
8、 根据权利要求 7所述的共晶粉末添加剂的制备方法, 其特征在于: 步骤 (ii)中的熔 融固化法可采用电弧熔炼法或浮区法或下拉法或引上法或喷雾法或滚筒熔体旋转急冷法 或铸造法。
9、 根据权利要求 7所述共晶粉末添加剂的制备方法, 其特征在于:
步骤 (i)按上述任一组所述配方称取原料,分别在塑料滚筒中均匀混合制得共晶粉末添 加剂,
或步骤 (i i) : 以步骤 (i)得到的混合粉末添加剂为原料,在 10-20MPa压力下压制成直 径为 5-20mm的圆柱状坯体, 然后在小型直流电弧熔炼炉中, 在 10-30cmHg的 Ar气氛中 制得 TMB2/MeB6, TMB2/SiC , C/TMB2/SiC , TMB2/SiC/B4C , TMB2/MeB6/B4C , TMB2/TMC/SiC, SiC/MeB6/B4C, TMB2/SiC/MeB6) TMB2/SiC/B4C/C, B4C/SiC/MeB6/C, TMB2/MeB6/B4C/C, TMB2/SiC/MeB6/B4C/C , TMB2/SiC/MeB6/B4C等共晶复合陶瓷材料, 分别在研钵或游星型粉碎机中压碎成粒度为 0.1-50μιη的具有共晶复合结构的共晶复合粉 末添加剂。
10、 根据权利要求 1所述,共晶粉末添加剂包括不同共晶粉末的组合、 不同共晶复合 粉末的组合、 共晶粉末和共晶复合粉末的组合。
PCT/CN2006/000002 2005-01-14 2006-01-04 Poudres eutectiques pour production et soudure de ceramiques et leur procede de production WO2006074595A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200680002263XA CN101102977B (zh) 2005-01-14 2006-01-04 生产陶瓷或陶瓷焊接用的共晶粉末添加剂及其制备方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN 200510023350 CN1680215A (zh) 2005-01-14 2005-01-14 生产结构陶瓷的共晶复合粉末烧结助剂及其制备方法
CN200510023349.8 2005-01-14
CN 200510023349 CN1654429A (zh) 2005-01-14 2005-01-14 用于生产结构陶瓷的氧化物共晶复合粉末烧结助剂及其制备方法
CN200510023350.0 2005-01-14
CN200510060344.2 2005-08-05
CN 200510060344 CN1907906A (zh) 2005-08-05 2005-08-05 生产陶瓷或陶瓷类焊剂所用的共晶粉末添加剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2006074595A1 true WO2006074595A1 (fr) 2006-07-20

Family

ID=36677356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/000002 WO2006074595A1 (fr) 2005-01-14 2006-01-04 Poudres eutectiques pour production et soudure de ceramiques et leur procede de production

Country Status (2)

Country Link
CN (1) CN101102977B (zh)
WO (1) WO2006074595A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109516811A (zh) * 2018-10-15 2019-03-26 广东工业大学 一种具有多元高熵的陶瓷及其制备方法和应用
CN109516812A (zh) * 2018-10-15 2019-03-26 广东工业大学 一种超细高熵固熔体粉末及其制备方法和应用
CN109678523A (zh) * 2019-01-16 2019-04-26 广东工业大学 一种具有高温强度和硬度的高熵陶瓷及其制备方法和应用
CN109879669A (zh) * 2019-03-11 2019-06-14 广东工业大学 一种具有高强度的高熵陶瓷复合材料及其制备方法和应用
CN109987941A (zh) * 2019-03-11 2019-07-09 广东工业大学 一种具有抗氧化性的高熵陶瓷复合材料及其制备方法和应用
CN110002879A (zh) * 2019-03-22 2019-07-12 广东工业大学 一种致密超硬的高熵硼化物陶瓷及其制备方法和应用
CN111825463A (zh) * 2020-06-29 2020-10-27 井冈山大学 一种LaB6-CrB2复合阴极材料及其制备方法
CN112830789A (zh) * 2020-12-31 2021-05-25 南京理工大学 一种高熵硼化物粉末及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102173807B (zh) * 2009-05-08 2013-12-04 李汶军 B4C/SiC功能梯度陶瓷及其制作方法
CN108516808B (zh) * 2018-07-10 2021-03-02 哈尔滨工业大学 高温熔体气雾法制备氧化铝基纳米共晶复合微粉的方法
CN113718216A (zh) * 2021-08-19 2021-11-30 中山市气相科技有限公司 一种三元共晶靶材及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86100425A (zh) * 1986-01-24 1987-08-12 国家建筑材料工业局山东工业陶瓷研究设计院 无压烧结高韧性氮化硅基陶瓷材料及其制造方法
CN1230531A (zh) * 1998-12-22 1999-10-06 武汉工业大学 添加氧化镁及稀土氧化物的烧结氮化硅陶瓷

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4824847B2 (ja) * 1999-03-29 2011-11-30 大森 守 セラミックス共晶体の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86100425A (zh) * 1986-01-24 1987-08-12 国家建筑材料工业局山东工业陶瓷研究设计院 无压烧结高韧性氮化硅基陶瓷材料及其制造方法
CN1230531A (zh) * 1998-12-22 1999-10-06 武汉工业大学 添加氧化镁及稀土氧化物的烧结氮化硅陶瓷

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HUANG Z. ET AL.: "Activated sintering and sintering additives for silicon carbide ceramics", MATERIALS AND SCIENCE & TECHNOLOGY, vol. 12, no. 1, February 2004 (2004-02-01), pages 103 - 107 *
HUANG Z. ET AL.: "Pressless sintering of silicon nitride ceramics with Mg-Al-Si system additives as fluxing agent", J. THE CHINESE CERAMIC SOCIETY, vol. 32, no. 2, February 2004 (2004-02-01), pages 139 - 143 *
LU L. ET AL.: "Liquid-phase sintering of SiC with Al-B4C-C as sintering aids", J. INORGANIC MATERIALS, vol. 17, no. 2, March 2002 (2002-03-01), pages 265 - 270 *
ZHENG R. ET AL.: "Development of low-temperature sintered aids for AlN ceramics", REAR METAL MATERIALS AND ENGINEERING, vol. 30, no. 5, October 2001 (2001-10-01), pages 396 - 398 *
ZOU Q. ET AL.: "Study on sintering additives for silicon nitride ceramics", SILICATE REVIEWS, no. 1, 2004, pages 81 - 84 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109516812A (zh) * 2018-10-15 2019-03-26 广东工业大学 一种超细高熵固熔体粉末及其制备方法和应用
CN109516811A (zh) * 2018-10-15 2019-03-26 广东工业大学 一种具有多元高熵的陶瓷及其制备方法和应用
CN109516811B (zh) * 2018-10-15 2021-04-06 广东工业大学 一种具有多元高熵的陶瓷及其制备方法和应用
CN109516812B (zh) * 2018-10-15 2022-01-28 广东工业大学 一种超细高熵固熔体粉末及其制备方法和应用
CN109678523A (zh) * 2019-01-16 2019-04-26 广东工业大学 一种具有高温强度和硬度的高熵陶瓷及其制备方法和应用
CN109678523B (zh) * 2019-01-16 2021-04-06 广东工业大学 一种具有高温强度和硬度的高熵陶瓷及其制备方法和应用
CN109987941B (zh) * 2019-03-11 2021-07-09 广东工业大学 一种具有抗氧化性的高熵陶瓷复合材料及其制备方法和应用
CN109879669A (zh) * 2019-03-11 2019-06-14 广东工业大学 一种具有高强度的高熵陶瓷复合材料及其制备方法和应用
CN109987941A (zh) * 2019-03-11 2019-07-09 广东工业大学 一种具有抗氧化性的高熵陶瓷复合材料及其制备方法和应用
CN109879669B (zh) * 2019-03-11 2021-07-09 广东工业大学 一种具有高强度的高熵陶瓷复合材料及其制备方法和应用
CN110002879A (zh) * 2019-03-22 2019-07-12 广东工业大学 一种致密超硬的高熵硼化物陶瓷及其制备方法和应用
CN110002879B (zh) * 2019-03-22 2021-07-09 广东工业大学 一种致密超硬的高熵硼化物陶瓷及其制备方法和应用
CN111825463A (zh) * 2020-06-29 2020-10-27 井冈山大学 一种LaB6-CrB2复合阴极材料及其制备方法
CN112830789A (zh) * 2020-12-31 2021-05-25 南京理工大学 一种高熵硼化物粉末及其制备方法

Also Published As

Publication number Publication date
CN101102977A (zh) 2008-01-09
CN101102977B (zh) 2010-10-27

Similar Documents

Publication Publication Date Title
WO2006074595A1 (fr) Poudres eutectiques pour production et soudure de ceramiques et leur procede de production
Krinitcyn et al. Laminated Object Manufacturing of in-situ synthesized MAX-phase composites
WO2020077770A1 (zh) 一种具有多元高熵的陶瓷及其制备方法和应用
Yu et al. Pressureless sintering and properties of (Hf0. 2Zr0. 2Ta0. 2Nb0. 2Ti0. 2) C high-entropy ceramics: The effect of pyrolytic carbon
CN114315359B (zh) 一种利用固溶耦合法制备高强韧复相高熵陶瓷的方法和应用
JPS5924751B2 (ja) 焼結成形体
Haggerty et al. Reaction‐Based Processing Methods for Ceramics and Composites
Ghadami et al. Novel HfB2-SiC-MoSi2 composites by reactive spark plasma sintering
CN1907906A (zh) 生产陶瓷或陶瓷类焊剂所用的共晶粉末添加剂及其制备方法
CN112500178B (zh) 一种原位生成ZrB2-SiC增韧PcBN刀具及其制备方法
CN1680215A (zh) 生产结构陶瓷的共晶复合粉末烧结助剂及其制备方法
JP6908248B2 (ja) 被覆SiCナノ粒子を用いたSiCセラミックス及びその製造方法
Zou et al. In-situ ZrB2-hBN ceramics with high strength and low elasticity
Zhang et al. Pressureless densification, microstructure tailoring and properties of Ta0. 8Hf0. 2C-based composites
JP2013500226A (ja) 高靱性セラミック複合材料
US20070105706A1 (en) Ceramic Armor
Zhu et al. Selection principle of the synthetic route for fabrication of HfB2 and HfB2‐SiC ceramics
US8673794B1 (en) Multiphase eutectic ceramics
Hu et al. Sintering mechanism and microstructure of TaC/SiC composites consolidated by plasma-activated sintering
Zhang et al. In situ Si3N4–SiC–BN composites: preparation, microstructures and properties
Wu et al. Joining of the Cf/SiC composites by a one-step Si infiltration reaction bonding
KR101186456B1 (ko) 금속 복합분말, 소결체 및 이의 제조 방법
Wang et al. Pressureless densification and properties of high-entropy boride ceramics with B4C additions
JPS63225579A (ja) 高靱性を有するセラミック焼結体及びセラミック工具と焼結体の製造方法
Hmelov Development of oxide-free oxide materials under spark-plasma sintering conditions of a mixture of oxide-free components and various metal powder additives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680002263.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06705430

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6705430

Country of ref document: EP