CN1680215A - 生产结构陶瓷的共晶复合粉末烧结助剂及其制备方法 - Google Patents

生产结构陶瓷的共晶复合粉末烧结助剂及其制备方法 Download PDF

Info

Publication number
CN1680215A
CN1680215A CN 200510023350 CN200510023350A CN1680215A CN 1680215 A CN1680215 A CN 1680215A CN 200510023350 CN200510023350 CN 200510023350 CN 200510023350 A CN200510023350 A CN 200510023350A CN 1680215 A CN1680215 A CN 1680215A
Authority
CN
China
Prior art keywords
sic
tmb
meb
eutectic composite
eutectic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200510023350
Other languages
English (en)
Inventor
李根法
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN 200510023350 priority Critical patent/CN1680215A/zh
Publication of CN1680215A publication Critical patent/CN1680215A/zh
Priority to CN200680002263XA priority patent/CN101102977B/zh
Priority to PCT/CN2006/000002 priority patent/WO2006074595A1/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Abstract

本发明涉及共晶复合陶瓷粉末烧结助剂及其制备方法,由高温熔融固化法制得的TMB2/SiC、TMB2/SiC/B4C、C/TMB2/SiC、TMB2/TMC/SiC、TMB2/SiC/MeB6、SiC/MeB6 /B4C、TiB2/SiC/MeB6、C/TMB2/SiC/B4C、TiB2/SiC/ MeB6/B4C、TMB2/SiC/MeB6/B4C共晶复合陶瓷,分别经压碎研磨而成的粉末。用本发明烧结B4C或SiC等结构陶瓷,可相对降低烧结温度和烧结压力,提高陶瓷的密度、强度和硬度。

Description

生产结构陶瓷的共晶复合粉末烧结助剂及其制备方法
技术领域
本发明涉及陶瓷生产技术,特别是共晶复合陶瓷粉末烧结助剂及其制备方法,如TMB2/MeB6,TMB2/MeB6/B4C,VB2/SiC/B4C,C/VB2/SiC/B4C,VB2/SiC/VC,VB2/SiC/LaB6或VB2/SiC/B4,C/LaB6等共晶复合陶瓷粉末,此类烧结助剂用于B4C或SiC等结构陶瓷的烧结。
背景技术
B4C和SiC具有许多优良特性.如Thevenot,F.J.Eur.Ceram.Soc.1990,6,205所述,B4C有极高硬度和强度,低密度,可以阻挡子弹射击.热压烧结的B4C陶瓷已被用于制备防弹衣,直升机和坦克的轻质装甲板以及工具等,如Mingwei Chen,Iames W.McCauley,Kevin J.Hemker,SCIENCE,2003,299,1563所述。SiC具有高强度,高硬度,耐磨损,耐腐蚀,耐热冲击、耐高温氧化等特性,适用于1200℃以上的高温应用,如Telle,R.and Petzow,G..Mater.Sci.Eng.1988,A105/106,97所述,但是由于B4C和SiC具有很高的共价键含量,烧结时颗粒之间的体积扩散速度很慢,在无烧结助剂条件下很难使陶瓷致密化.B4C和SiC陶瓷烧结一般在高温高压和烧结助剂存在下进行.目前B4C陶瓷的热压烧结主要以Al,Mg,Si,Ti,V,Cr,Fe,Ni,B,C为烧结助剂在1750-1900℃,5-40MPa条件下进行,如Gursoy Arslan,Ferhat Kara,Servet Turan,Journal of the European CeramicSociety 2003,23,1243-1255所述,烧结体密度为95%。SiC的热压烧结一般采用Fe,Al,B,Be,Al2O3,BeO,AlN,BN,B4C为烧结助剂在2000℃,50MPa下进行.然而,在这些烧结助剂中,熔化温度较低的烧结助剂如Fe,Al,Ti等由于其硬度和强度较差,影响B4C和SiC陶瓷烧结体的总体性能,而机械强度较高的烧结助剂如Al2O3,Fe2O3,和AlN的熔化温度较高,很难在较低的温度下烧结出致密B4C和SiC陶瓷.元素周期表中三,四,五和六副族的过渡金属元素(如Sc,La,Cr,V,Ti,Zr,Nb,Ta,Hf,Mo,W)硼化物,氮化物和碳化物以及SiC,B4C,Si3N4等结构材料具有许多优良的机械性能.但是由于这些材料本身熔点较高(>2200℃),而且目前在B4C和SiC等陶瓷烧结中,一般采用单相粉末或多相混合粉末作为烧结助剂,很难更有效地降低B4C和SiC陶瓷的烧结温度,如D.D.Radev andZ.T.Zakhariev,Journal of Alloys and Compounds,196(1993)93-96所述。因此寻找一利具有较低熔化温度和较高机械性能的烧结助剂是改善陶瓷烧结条件制备高性能B4C和SiC等陶瓷的关键。而采用共晶复合陶瓷粉术烧结助剂用于B4C或SiC等结构陶瓷的烧结,目前尚未见报道。
发明内容
本发明的目的是提供一种用于制备高性能B4C和SiC等结构陶瓷所具有较低熔化温度和较高机械性能的烧结助剂及其制备方法。
本发明的技术方案是:一种生产结构陶瓷的共晶复合粉末烧结助剂,其特征在于:该陶瓷烧结助剂由C、TMN、TMC、TMB2、SiC、MeB6、B4C中任一组合为开始材料,用高温熔融固化法制得的组成为C、TMC、TMB2、SiC、MeB6、B4C中对应组合的共晶复合陶瓷,分别经压碎研磨而成的粒度为0.5-50μm的粉末。
上述的任一开始材料组合经高温熔融固化对应形成包括以下10种共晶复合陶瓷,其配方如下,以摩尔百分比计:
共晶复合陶瓷                        开始材料
TMB2/SiC            SiC    24-38%         TMB2   62-76%
C/TMB2/SiC          SiC    17-29%         TMN     46-56%
                                             B4C    22-30%
C/TMB2/B4C/SiC     SiC    24-35%         TMN     12-28%
                                             B4C    42-58%
TMB2/B4C/SiC       SiC    25-41%         TMB2   8-35%
                                             B4C    33-52%
B4C/SiC/MeB6       SiC    31-47%         MeB6   8-28%
                                             B4C    36-53%
TMB2/SiC/MeB6      SiC    18-38%         TMB2   36-66%
                                             MeB6   8-36%
TMB2/SiC/MeB6/B4C SiC    10-33%         TMB2   18-45%
                      MeB6  6-29%          B4C    20-37%
TMC/TMB2/SiC         SiC    10-25%         TMB2   31-44%
                                             TMC     39-52%
TMB2/MeB6          TMB2  45-65%         MeB6   35-55%
TMB2/MeB6/B4C     MeB6  8-37%          TMB2   23-47%
                                             B4C    28-57%
上述配方中,TM=V,Cr,Ti,Zr,W,Mo,Nb,Ta,Hf,Me=La,RE,RE表示稀土元素。MeB6可选用LaB6或REB6,TMN可选用VN或TiN或ZrN或NbN或TaN或HfN,TMC可选用VC或TiC或WC或MoC或ZrC或NbC或TaC或HfC,TMB2可选用CrB2或VB2或TiB2或WB2或MoB2或NbB2或ZrB2或TaB2或HfB2
按上述任一组共晶复合粉末烧结助剂的制备方法,其特征在于:
以所述配方为开始材料,通过熔融固化法分别制得以下对应组合TMB2/MeB6,TMB2/MeB6/B4C,TMB2/SiC,C/TMB2/SiC,TMB2/SiC/B4C,TMB2/VC/SiC,TMB2/SiC/MeB6,SiC/MeB6/B4C,C/TMB2/SiC/B4C、TMB2/SiC/MeB6/B4C(TM=V,Cr,Ti,Zr,W,Mo,Nb,Ta,Hf,Me=La,RE)共晶复合陶瓷,然后分别在研钵或游星型粉碎机中压碎并研磨成大小为0.5~50μm的共晶复合粉末。
详细地说,上述熔融固化法可采用电弧熔炼法或浮区法或下拉法或引上法
更详细地说,按上述制备配方称取开始材料,混合搅拌均匀后,在10-20MPa压力下压制成直径为5-20mm的圆柱状坯体。然后在小型直流电弧熔炼炉中,在10-30cmHg的Ar气氛中熔制,制得的对应组合共晶复合陶瓷材料分别在研钵或游星型粉碎机中压碎成粒度为0.5-50μm的共晶复合陶瓷粉末。
本发明共晶复合陶瓷粉末作为烧结助剂可以在其共晶熔化温度附近(1650-2000℃)通过液相烧结,烧结出致密的B4C或SiC陶瓷。一组B4C陶瓷的烧结条件和性能实验对比数据如下表所示:
    B4C陶瓷     商业B4C陶瓷
    烧结方法     热压     热压
    烧结助剂 本发明共晶复合粉末     Fe,Al,Si,Ti
    烧结温度     1900℃     2000℃
    烧结压力     50MPa     500MPa
烧结体密度(%理论密度)     99.5-100     98.5
    断裂韧性(MPa/m1/2)     3.0     3.0
    硬度(GPa)     38     32
    抗弯强度(MPa)     600     450
其微结构如附图中所示。可见,本发明所提供的共晶复合陶瓷粉末制备高性能B4C和SiC等结构陶瓷具有优良的技术性能,应用范围更为广阔。加之烧结温度和烧结压力降低,生产成本和投资成本都会显著降低。
附图说明
图1是VB2/SiC/B4C的相图。
图2是VN/SiC/B4C的相图。
图3中(a)和(b)分别是VB2/SiC和VB2/SiC/B4C共晶复合陶瓷的XRD谱。
图4中(a)和(b)分别是C/VB2/SiC和C/VB2/SiC/B4C共晶复合陶瓷的XRD谱。
图5中(a)和(b)分别是VB2/SiC和VB2/SiC/B4C共晶复合陶瓷的SEM照片。
图6中(a)和(b)分别是C/VB2/SiC和C/VB2/SiC/B4C共晶复合陶瓷的SEM照片。
图7是以浓度为10vol%的VB2/SiC/B4C共晶复合粉末为烧结助剂在1900℃,80MPa下热压烧结10分钟制得的B4C陶瓷的SEM照片。
图8是本发明共晶复合陶瓷粉末制备流程图。
图9是本发明共晶复合陶瓷粉末作为烧结助剂制备陶瓷的工艺流程图。
具体实施方式
实施例1
在图1中SiC,VB2和B4C相形成共晶复合陶瓷,VB2/SiC共晶复合陶瓷粉末的制备配方为67-71mol%VB2与29-33mol%SiC,熔化温度为2150±30℃。VB2/SiC/B4C共晶复合陶瓷粉末的制备配方为20-24mol%VB2、40-48mol%B4C、30-36mol%SiC,熔化温度为1870±30℃。
实施例2
在图2中SiC,VB2,B4C和C相形成共晶复合陶瓷.C/VB2/SiC共晶复合陶瓷粉末的制备配方为47-51mol%VN、23-26mol%B4C、24-28mol%SiC,熔化温度为2120±30℃。C/VB2/SiC/B4C共晶复合陶瓷粉末的制备配方为18-22mol%VN、46-54mol%B4C、26-34mol%SiC,熔化温度为1850±30℃。从实施例1,2可以看出,由于VB2/SiC,VB2/SiC/B4C,C/VB2/SiC和C/VB2/SiC/B4C等共晶复合陶瓷的熔化温度比VB2或SiC或B4C低很多。因此采用共晶复合粉术为烧结助剂可以在低温下通过液相烧结制备SiC或B4C等难烧结的陶瓷。
实施例3
在图3中,以VB2和SiC或VB2,SiC和B4C为开始材料,可以形成VB2/SiC或VB2/SiC/B4C共晶复合陶瓷。
实施例4
在图4中,以B4C,VN和SiC为开始材料,可以形成C/VB2/SiC或C/VB2/SiC/B4C共晶复合陶瓷。
实施例5
在图5(a)中灰白色的物相为VB2,黑色的物相为SiC,厚度为600纳米的VB2颗粒均匀分散在SiC基体中。在图5(b)中白色物相为VB2,灰色物相为SiC,黑色物相为B4C.镶嵌着厚度为600纳米VB2柱状颗粒的SiC颗粒均匀分散在B4C基体中。
实施例6
在图6中C/VB2/SiC和C/VB2/SiC/B4C共晶复合陶瓷的微结构分别与VB2/SiC和VB2/SiC/B4C共晶复合陶瓷的微结构相似。从实施例5,6可以看出由于VB2/SiC,VB2/SiC/B4C,C/VB2/SiC和C/VB2/SiC/B4C共晶复合陶瓷均匀的微结构使压碎研磨成的粒度为1-20μm的共晶复合陶瓷粉末具有与体材料一致的组分和微结构,从而确保研磨形成的共晶复合陶瓷粉末具有低的熔化温度。
实施例7
从图7中B4C陶瓷微结构中几乎看不出孔洞。说明以VB2/SiC/B4C共晶复合粉末为烧结助剂可以在较低温度和压力下烧结出非常致密的B4C陶瓷。
实施例8
图9是利用本发明所提供的烧结助剂生产B4C或SiC结构陶瓷的工艺。首先将待烧结材料粉末如SiC或B4C粉末、共晶复合粉末烧结助剂和其它常规添加剂按常规比例均匀混合,然后成形形成素坯,再在共晶熔化温度附近采用常压烧结,气压烧结,或热压烧结,或热等静压烧结或SPS等烧结方法烧结成B4C或SiC陶瓷产品。
实施例9
对图8共晶复合陶瓷粉术的制备流程举例1:VB2/SiC共晶复合陶瓷粉末的制备流程包括VB2/SiC共晶复合陶瓷制备和VB2/SiC共晶复合陶瓷压碎成粉末。VB2和SiC粉末按组成67-71mol%VB2导29-33mol%SiC混合,搅拌均匀后,在10-20MPa的压力下压制成直径为5-20mm的圆柱状坯体。然后在额定电压为100V,电流为600A的小型直流电弧炉中,在20cmHg的Ar气氛中熔制,制得共晶复合陶瓷的物相为VB2和SiC,见图3中(a)。微结构为层状结构,层状VB2和SiC颗粒的厚度分别为600nm,见图5中(a)。上述制备的VB2/SiC共晶材料在研钵或游星型粉碎机中压碎成粒度为1-20μm的粉末。此粉末被用于B4C或SiC陶瓷的烧结助剂。
对图8共晶复合陶瓷粉末的制备流程举例2:C/VB2/SiC共晶复合陶瓷粉末的制备流程包括C/VB2/SiC共晶复合陶瓷制备和C/VB2/SiC共晶复合陶瓷压碎成粉末。VN,SiC和B4C粉末按组成47-51mol%VN、23-26mol%B4C、24-28mol%SiC混合,搅拌均匀后,在10-20MPa的压力下压制成直径为5-20mm的圆柱状坯体。然后在额定电压为100V,电流为600A的小型直流电弧炉中,在20cmHg的Ar气氛中熔制,制得的共晶复合陶瓷物相为C,VB2和SiC,见图4中(a)。微结构为层状结构,层状VB2和SiC颗粒的厚度分别为600nm,见图6中(a)。上述制备的C/VB2/SiC共晶陶瓷在研钵或游星型粉碎机中压碎成粒度为1-20μm的粉末。此粉末被用于B4C或SiC陶瓷的烧结助剂。
对图8共晶复合陶瓷粉末的制备流程举例3:VB2/SiC/B4C共晶复合陶瓷粉末的制备流程包括VB2/SiC/B4C共晶复合陶瓷制备和VB2/SiC/B4C共晶复合陶瓷压碎成粉末。具体实施方式为:VB2,SiC和B4C粉末按组份20-24mol% VB2、40-48mol%B4C、30-36mol%SiC混合,搅拌均匀后,在10-20MPa的压力下压制成直径为5-20mm的圆柱状坯体。然后在额定电压为100V,电流为600A的小型直流电弧炉中,在20cmHg的Ar气氛中熔制。制得的共晶复合陶瓷物相为VB2,SiC和B4C,见图3中(b)),共晶熔化温度为1870±20℃,微结构为棒状结构,直径为600nm的VB2和直径为600nm的SiC颗粒均匀分布在B4C基体中,见图5(b)。上述制备的VB2/SiC/B4C共晶复合材料在研钵或游星型粉碎机中压碎成粒度为1-20μm的粉末。此粉末被用于B4C或SiC陶瓷的烧结助剂。研究发现由浓度为10vol%的VB2/SiC/B4C共晶复合粉体为烧结助剂在1850-1900℃、20-80MPa下热压烧结10分钟后得到的B4C陶瓷的密度接近99.5-100%,其SEM照片见图7。
对图8共晶复合陶瓷粉末的制备流程举例4:C/VB2/SiC/B4C共晶复合陶瓷粉末的制备流程包括C/VB2/SiC/B4C共晶复合陶瓷制备和C/VB2/SiC/B4C共晶复合陶瓷压碎成粉末。具体实施方式为VN、SiC和B4C粉末按组份18-22mol%VN、46-54mol%B4C、26-34mol%SiC混合,搅拌均匀后,在10-20MPa的压力下压制成直径为5-20mm的圆柱状坯体。然后在额定电压为100V,电流为600A的小型直流电弧炉中,在20cmHg的Ar气氛中熔制。制得的共晶复合陶瓷的物相为C,VB2,SiC和B4C,见图4中(b)。共晶熔化温度为1870±20℃,微结构为棒状结构,直径为600nm的VB2和直径为600nm的SiC颗粒均匀分布在B4C基体中,见图6中(b)。上述制备的C/VB2/SiC/B4C共晶材料在研钵或游星型粉碎机中压碎成粒度为1-20μm的粉末。此粉末被用于B4C或SiC陶瓷的烧结助剂。

Claims (6)

1、一种生产结构陶瓷的共晶复合粉末烧结助剂,其特征在于:该陶瓷烧结助剂由C、TMN、TMC、TMB2、SiC、MeB6、B4C中任一组合为开始材料,用高温熔融固化法制得的组成为C、TMC、TMB2、SiC、MeB6、B4C中对应组合的共晶复合陶瓷,分别经压碎研磨而成的粒度为0.5-50μm的共晶复合粉末。
2、根据权利要求1所述的共晶复合粉末烧结助剂,其特征在于:所述的任一开始材料组合经高温熔融固化对应形成包括以下10种共晶复合陶瓷,其配方如下,以摩尔百分比计:
共晶复合陶瓷                        开始材料
TMB2/SiC              SiC  24-38%           TMB2 62-76%
C/TMB2/SiC            SiC  17-29%           TMN    46-56%
                                               B4C  22-30%
C/TMB2/B4C/SiC       SiC  24-35%           TMN    12-28%
                                               B4C  42-58%
TMB2/B4C/SiC         SiC  25-41%           TMB2  8-35%
                                               B4C   33-52%
B4C/SiC/MeB6         SiC  31-47%           MeB6  8-28%
                                               B4C   36-53%
TMB2/SiC/MeB6        SiC  18-38%           TMB2  36-66%
                                               MeB6  8-36%
TMB2/SiC/MeB6/B4C   SiC  10-33%           TMB2  18-45%
                        MeB66-29%            B4C   20-37%
TMC/TMB2/SiC           SiC  10-25%           TMB2  31-44%
                                               TMC    39-52%
TMB2/MeB6            TMB2 45-65%          MeB6  35-55%
TMB2/MeB6/B4C       MeB6 8-37%           TMB2  23-47%
                                                B4C  28-57%
上述配方中,TM=V,Cr,Ti,Zr,W,Mo,Nb,Ta,Hf,Me=La,RE,RE表示稀土元素。
3、根据权利要求2所述的共晶复合粉末烧结助剂,其特征在于:MeB6可选用LaB6或REB6,TMN可选用VN或TiN或ZrN或NbN或TaN或HfN,TMC可选用VC或TiC或WC或MoC或ZrC或NbC或TaC或HfC,TMB2可选用CrB2或VB2或TiB2或WB2或MoB2或NbB2或ZrB2或TaB2或HfB2
4、按权利要求3所述的任一组共晶复合粉末烧结助剂的制备方法,其特征在于:
以所述配方为开始材料,通过熔融固化法分别制得对应组合共晶复合陶瓷,然后分别在研钵或游星型粉碎机中压碎并研磨成大小为0.5~50μm的共晶复合粉末。
5、根据权利要求4所述的任一组共晶复合粉末烧结助剂的制备方法,其特征在于:熔融固化法可采用电弧熔炼法或浮区法或下拉法或引上法
6、根据权利要求4所述的任一组共晶复合粉末烧结助剂的制备方法,其特征在于:
按上述制备配方称取开始材料,混合搅拌均匀后,在10-20MPa压力下压制成直径为5-20mm的圆柱状坯体。然后在小型直流电弧熔炼炉中,在10-30cmHg的Ar气氛中熔制。制得的TMB2/MeB6,TMB2/MeB6/B4C,TMB2/SiC,C/TMB2/SiC,TMB2/SiC/B4C,TMB2/VC/SiC,SiC/MeB6/B4C,TMB2/SiC/MeB6,C/TMB2/SiC/B4C、TMB2/SiC/MeB6/B4C(TM=V,Cr,Ti,Zr,W,Mo,Nb,Ta,Hf,Me=La,RE)共晶复合陶瓷材料分别在研钵或游星型粉碎机中压碎成粒度为0.5-50μm的共晶复合陶瓷粉末。
CN 200510023350 2005-01-14 2005-01-14 生产结构陶瓷的共晶复合粉末烧结助剂及其制备方法 Pending CN1680215A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN 200510023350 CN1680215A (zh) 2005-01-14 2005-01-14 生产结构陶瓷的共晶复合粉末烧结助剂及其制备方法
CN200680002263XA CN101102977B (zh) 2005-01-14 2006-01-04 生产陶瓷或陶瓷焊接用的共晶粉末添加剂及其制备方法
PCT/CN2006/000002 WO2006074595A1 (fr) 2005-01-14 2006-01-04 Poudres eutectiques pour production et soudure de ceramiques et leur procede de production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200510023350 CN1680215A (zh) 2005-01-14 2005-01-14 生产结构陶瓷的共晶复合粉末烧结助剂及其制备方法

Publications (1)

Publication Number Publication Date
CN1680215A true CN1680215A (zh) 2005-10-12

Family

ID=35067102

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200510023350 Pending CN1680215A (zh) 2005-01-14 2005-01-14 生产结构陶瓷的共晶复合粉末烧结助剂及其制备方法

Country Status (1)

Country Link
CN (1) CN1680215A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100424039C (zh) * 2006-03-10 2008-10-08 中国科学院金属研究所 一种原位反应热压合成TiB2-NbC-SiC高温陶瓷复合材料的制备方法
CN101823882A (zh) * 2010-03-30 2010-09-08 河南新大新材料股份有限公司 碳化硅/碳化钨复合材料及其制备方法
CN104529456A (zh) * 2014-12-03 2015-04-22 武汉理工大学 一种B4C-HfB2高温共晶自生复合陶瓷的制备方法
CN104692807A (zh) * 2015-03-06 2015-06-10 吴江华诚复合材料科技有限公司 一种工程陶瓷材料及其制备方法
CN105755540A (zh) * 2016-05-11 2016-07-13 合肥工业大学 一种采用光学区熔技术制备LaB6-VB2共晶复合材料的方法
CN105884359A (zh) * 2016-04-12 2016-08-24 河北工程大学 一种以复合结构作为增韧相的b4c复合陶瓷及其制备方法
CN108017409A (zh) * 2016-11-04 2018-05-11 云南菲尔特环保科技股份有限公司 一种低温烧结的碳化硅蜂窝陶瓷材料及制备方法
CN109467446A (zh) * 2018-10-17 2019-03-15 中国兵器科学研究院宁波分院 一种热压烧结碳化硼陶瓷用的增韧烧结助剂及其制备方法
CN112236403A (zh) * 2018-04-20 2021-01-15 普兰西复合材料有限公司 靶和用于制造靶的方法
CN113718216A (zh) * 2021-08-19 2021-11-30 中山市气相科技有限公司 一种三元共晶靶材及其制备方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100424039C (zh) * 2006-03-10 2008-10-08 中国科学院金属研究所 一种原位反应热压合成TiB2-NbC-SiC高温陶瓷复合材料的制备方法
CN101823882A (zh) * 2010-03-30 2010-09-08 河南新大新材料股份有限公司 碳化硅/碳化钨复合材料及其制备方法
CN101823882B (zh) * 2010-03-30 2011-06-15 河南新大新材料股份有限公司 碳化硅/碳化钨复合材料及其制备方法
CN104529456A (zh) * 2014-12-03 2015-04-22 武汉理工大学 一种B4C-HfB2高温共晶自生复合陶瓷的制备方法
CN104692807A (zh) * 2015-03-06 2015-06-10 吴江华诚复合材料科技有限公司 一种工程陶瓷材料及其制备方法
CN105884359A (zh) * 2016-04-12 2016-08-24 河北工程大学 一种以复合结构作为增韧相的b4c复合陶瓷及其制备方法
CN105884359B (zh) * 2016-04-12 2019-02-12 河北工程大学 一种以复合结构作为增韧相的b4c复合陶瓷及其制备方法
CN105755540A (zh) * 2016-05-11 2016-07-13 合肥工业大学 一种采用光学区熔技术制备LaB6-VB2共晶复合材料的方法
CN108017409A (zh) * 2016-11-04 2018-05-11 云南菲尔特环保科技股份有限公司 一种低温烧结的碳化硅蜂窝陶瓷材料及制备方法
CN108017409B (zh) * 2016-11-04 2020-09-15 云南菲尔特环保科技股份有限公司 一种低温烧结的碳化硅蜂窝陶瓷材料及制备方法
CN112236403A (zh) * 2018-04-20 2021-01-15 普兰西复合材料有限公司 靶和用于制造靶的方法
CN112236403B (zh) * 2018-04-20 2023-04-14 普兰西复合材料有限公司 靶和用于制造靶的方法
CN109467446A (zh) * 2018-10-17 2019-03-15 中国兵器科学研究院宁波分院 一种热压烧结碳化硼陶瓷用的增韧烧结助剂及其制备方法
CN113718216A (zh) * 2021-08-19 2021-11-30 中山市气相科技有限公司 一种三元共晶靶材及其制备方法

Similar Documents

Publication Publication Date Title
CN1680215A (zh) 生产结构陶瓷的共晶复合粉末烧结助剂及其制备方法
CN110483085B (zh) 一种晶须增强氧化铝复合陶瓷及其制备方法与应用
Heydari et al. Comparing the effects of different sintering methods for ceramics on the physical and mechanical properties of B4C–TiB2 nanocomposites
CN101555137B (zh) (TiB2+TiC)/Ti3SiC2复相陶瓷材料及其制备方法
CN102260814B (zh) 一种原位纳米TiC陶瓷颗粒增强铝基复合材料及其制备方法
CN101102977B (zh) 生产陶瓷或陶瓷焊接用的共晶粉末添加剂及其制备方法
CN101456737B (zh) 一种碳化硼基复合陶瓷及其制备方法
CN102703742B (zh) 一种基体为纳米叠层结构的金属基复合材料及其制备方法
CN1907906A (zh) 生产陶瓷或陶瓷类焊剂所用的共晶粉末添加剂及其制备方法
US7799715B2 (en) Boron carbide ceramic and manufacturing method thereof
WO2012165208A1 (ja) 金属材とセラミックス-炭素複合材との接合体、その製造方法、炭素材接合体、炭素材接合体用接合材及び炭素材接合体の製造方法
JP6358110B2 (ja) セラミックス複合材料およびその製造方法
Limeng et al. Microstructure and mechanical properties of spark plasma sintered TaC0. 7 ceramics
JP2013500226A (ja) 高靱性セラミック複合材料
He et al. In situ synthesis and mechanical properties of bulk Ti3SiC2/TiC composites by SHS/PHIP
CN1793042A (zh) 一种原位增韧氮化硅基陶瓷及其超快速烧结方法
CN105018818B (zh) 一种采用Ni3Al为粘结剂的TiC基金属陶瓷及其制备方法
CN102173802A (zh) 一种原位(TiB2+SiC)/Ti3SiC2复相陶瓷材料及其制备方法
Wu et al. Joining of the Cf/SiC composites by a one-step Si infiltration reaction bonding
CN101037334A (zh) 一种致密Ti2AlC-TiB2复合材料及其制备方法
Abdul Karim et al. Hexagonal boron nitride-based composites: an overview of processing approaches and mechanical properties
Wang et al. Pressureless densification and properties of high-entropy boride ceramics with B4C additions
CN101555136B (zh) 一种钛硅化碳/二硼化钛-碳化钛复合材料及其制备方法
CN108149096A (zh) 一种纳米碳化硅粒子增强镁基复合材料的制备方法
CN115677351A (zh) 一种强结合界面的多叠层碳化硼复合陶瓷及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication