WO2006070691A1 - 電流測定装置及び電流測定方法 - Google Patents
電流測定装置及び電流測定方法 Download PDFInfo
- Publication number
- WO2006070691A1 WO2006070691A1 PCT/JP2005/023626 JP2005023626W WO2006070691A1 WO 2006070691 A1 WO2006070691 A1 WO 2006070691A1 JP 2005023626 W JP2005023626 W JP 2005023626W WO 2006070691 A1 WO2006070691 A1 WO 2006070691A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electron beam
- current
- measurement sample
- voltage
- current measuring
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/302—Contactless testing
- G01R31/305—Contactless testing using electron beams
- G01R31/307—Contactless testing using electron beams of integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/14—Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/245—Detection characterised by the variable being measured
- H01J2237/24564—Measurements of electric or magnetic variables, e.g. voltage, current, frequency
Definitions
- the present invention relates to a current measuring device and a current measuring method.
- the present invention also relates to a current measuring apparatus and a current measuring method suitable for performing a process evaluation during a semiconductor device manufacturing process using an electron beam, an ion beam, an electromagnetic wave, a sound wave, vibration, or the like.
- a substrate current method is known as a method for evaluating the process quality of a semiconductor device using a substrate current that flows during electron beam irradiation. This method is disclosed in, for example, Patent Document 1, Patent Document 2, and Patent Document 3.
- a wafer after etching is irradiated with an electron beam having a constant energy for several seconds, and the state of the process is known from the magnitude or polarity of the substrate current generated at that time.
- Is the method For example utilized electron beam energy one about IKeV is utilized the amount of current of the order of picoamps (P A).
- a method of applying a bias voltage Vb to a measurement sample 4 which is a semiconductor substrate as shown in FIG. 15 is also known.
- the substrate current necessary for measurement flows to the ground via the power source 20. For this reason, the current flowing through the ammeter 5 is substantially “0” and cannot be measured.
- the voltage Vb of several kilovolts is applied to the measurement sample 4 by the power source 20, the ammeter 5 will be destroyed and it will not be practically usable. was there.
- Patent Document 1 Japanese Patent No. 3334750
- Patent Document 2 Japanese Patent No. 3292159
- Patent Document 3 Japanese Patent No. 3175765
- a main object of the present invention is to provide a current measuring device in which the above-described problems are reduced.
- a further object of the present invention is to provide a current measuring device capable of improving the sensitivity and accuracy in measuring the current flowing in the measurement sample without damaging the measurement sample.
- Another object of the present invention is to provide a current measurement method in which the above-mentioned problems are alleviated.
- a further object of the present invention is to provide a current measurement method capable of improving the sensitivity and accuracy in measuring the current flowing in the measurement sample without damaging the measurement sample. .
- a probe irradiation unit that irradiates the measurement sample with the probe, and the measurement sample when the measurement sample is irradiated with the probe that is electrically coupled to the measurement sample.
- a current measurement device including at least a current measurement circuit that measures a flowing current and a voltage application unit that is electrically coupled to the current measurement circuit and applies a voltage to the current measurement circuit.
- a bias voltage can be applied to the current measurement circuit by the voltage application unit.
- the potential of the measurement sample can be controlled.
- the effective energy received by the measurement sample by electron beam irradiation is the value obtained by subtracting the potential of the electron beam energy force measurement sample. Therefore, the present invention can reduce the effective energy received by the measurement sample even when a high-energy electron beam is emitted from the electron beam emission source. Therefore, the present invention can improve the sensitivity and accuracy in measuring the current flowing through the measurement sample without causing damage to the measurement sample.
- the current measuring device of the present invention may further include a capacitive electrode that is electrically coupled to the current measuring circuit and capacitively coupled to the measurement sample.
- the current measuring circuit measures the current flowing through the capacitor electrode.
- the potential of the measurement sample can be changed by the voltage applied to the current measurement circuit without directly applying the bias voltage to the measurement sample.
- the effective energy received by the measurement sample is the value obtained by subtracting the potential of the measurement sample from the energy of the irradiated electron beam. Therefore, the present invention provides a measurement sample. As a result, the sensitivity and accuracy of measuring the current flowing through the measurement sample without causing damage can be improved. Further, the present invention facilitates installation and removal of a measurement sample at a measurement position or the like that does not require wiring connection between the measurement sample and the current measurement circuit (or electrode), and can increase the practicality.
- the current measuring device of the present invention further includes a collection electrode for collecting at least one of scattered electrons and secondary electrons generated in the measurement sample by the probe irradiation unit irradiating the measurement sample with the probe. be able to.
- the current measurement circuit is connected to the recovery electrode and measures a current flowing through the current measurement circuit.
- the present invention can improve the sensitivity and accuracy of measuring the current generated by the electron beam irradiation to the measurement sample without damaging the measurement sample.
- the probe irradiating unit of the current measuring device of the present invention includes an electron beam source that generates an electron beam that functions as the probe, and an aperture that allows a part of the electron beam emitted from the electron beam source to pass therethrough. And an aperture section having the same. According to this configuration, by passing the electron beam through the aperture, it is possible to irradiate the measurement sample with a uniform energy beam. Therefore, the present invention can irradiate a desired portion of the measurement sample with a highly focused electron beam, and can detect a measurement sample with high resolution.
- the probe irradiating unit of the current measuring device of the present invention includes an electron beam source that generates an electron beam serving as the probe, and an electron beam having a first energy level generated by the electron beam source.
- a first energy conversion unit for converting to a second energy level higher than the first energy level; and the second energy level.
- an aperture portion having an aperture that allows a portion of the accelerated electron beam to pass therethrough.
- the probe irradiation unit may include a second energy conversion unit that converts a second energy level of the electron beam that has passed through the aperture into a third energy level lower than the second energy level. Good.
- the first energy conversion unit may include an acceleration electrode that accelerates the electron beam and an acceleration power source that is electrically coupled to the acceleration electrode and applies a voltage to the acceleration electrode.
- the second energy conversion unit may include a deceleration electrode that decelerates the electron beam, and a deceleration power source that is electrically coupled to the deceleration electrode and applies a voltage to the deceleration electrode.
- the electron beam can be converted from the first energy level to the second energy level by the deceleration electrode. Therefore, no matter how much the energy of the electron beam is increased by the acceleration electrode, the energy of the electron beam reaching the measurement sample can be controlled by the deceleration electrode. Therefore, the present invention can irradiate a desired portion of the measurement sample with a highly focused electron beam while avoiding damage to the measurement sample, and can inspect the measurement sample with high resolution. .
- the voltage application unit of the current measurement device of the present invention may include a variable power source that is electrically coupled to the current measurement circuit and applies a variable voltage to the current measurement circuit.
- the effective energy level of the electron beam irradiated to the measurement sample can be changed only by changing the output of the variable power source without changing the setting on the electron beam emission source side. . Therefore, the effective energy level can be changed very simply and quickly. Further, according to the present invention, it is possible to quickly irradiate the same location in the measurement sample with electron beams having different effective energy levels, thereby improving measurement accuracy and improving measurement throughput.
- the current measuring device of the present invention may further include a voltage control unit that is electrically coupled to the variable power source and controls a level of the variable voltage.
- the control unit is further electrically coupled to the current measurement circuit and controls current measurement timing of the current measurement circuit.
- the timing of voltage application to the current measurement circuit by the variable power source may be controlled in synchronization with the current measurement timing.
- the current measurement circuit of the current measurement device of the present invention includes a first input terminal electrically coupled to the measurement sample and a second input terminal electrically coupled to the voltage application unit. And an operational amplifier for amplifying the current flowing through the measurement sample.
- the measurement sample is electrically connected to the negative input terminal of the operational amplifier, the bias voltage is applied to the positive input terminal of the operational amplifier, and the output of the operational amplifier and the negative input terminal are It can be set as the structure which has arrange
- a bias voltage is applied to the measurement sampler via the negative input terminal of the operational amplifier. Therefore, the present invention can reduce the effective energy received by the measurement sample even when a high-energy electron beam is emitted from the electron beam emission source, and the current flowing through the measurement sample without causing damage to the measurement sample. Sensitivity and accuracy can be improved for measurement.
- the voltage application unit of the current measuring device of the present invention includes a variable power source that is electrically coupled to the second input terminal of the operational amplifier and applies a variable voltage to the second input terminal. May be included.
- the current measuring device of the present invention may further include a voltage control unit that is electrically coupled to the variable power source and controls the level of the variable voltage.
- the control unit is further electrically connected to the probe irradiation unit to control the probe irradiation timing of the probe irradiation unit, and the voltage to the operational amplifier by the variable power source is synchronized with the probe irradiation timing. Application timing may be controlled.
- the potential of the measurement sampler can be controlled by the signal output from the control signal generator.
- the variable voltage output from the variable power supply for the operational amplifier may be a periodic waveform such as a sine wave, rectangular wave, or sawtooth wave, or a trigger waveform.
- the current can be measured by selecting an optimum variable voltage according to the attribute of the measurement sample, and process evaluation can be performed with higher accuracy.
- a step of irradiating a measurement sample with a probe to generate a current flowing through the measurement sample a step of applying a bias voltage to the current measurement circuit, and the current measurement circuit
- a step of amplifying and measuring a current flowing through the measurement sample with the current measurement circuit in a state where a voltage is applied to the current sample a step of amplifying and measuring a current flowing through the measurement sample with the current measurement circuit in a state where a voltage is applied to the current sample.
- the potential of the measurement sample can be controlled by applying a voltage between the amplifier circuit and the ground potential. Therefore, the effective energy received by the measurement sample by electron beam irradiation can be reduced by the voltage. Therefore, the present invention can improve the sensitivity and accuracy of measuring the current flowing through the measurement sample without causing damage to the measurement sample.
- the present invention can improve the sensitivity and accuracy of measuring the current flowing through a measurement sample while reducing the effective energy level of an electron beam as a probe that irradiates the measurement sample such as a semiconductor substrate. it can. Therefore, it is possible to improve the sensitivity and accuracy in measuring the attributes of the measurement sample without damaging the measurement sample.
- the effective energy level in the measurement sampler which is irradiated with the electron beam as the probe can be lowered, the secondary electron emission probability can be improved and the measurement sensitivity can be increased.
- the effective energy level in the measurement sample can be largely varied without changing the setting of the electron beam source as a probe, the energy level can be changed very quickly. Therefore, for example, it is possible to quickly irradiate the same location on the measurement sample with an electron beam having a different energy level, and it is possible to improve the measurement throughput while greatly improving the measurement accuracy.
- the present invention is an embodiment in which the measurement sample is irradiated with an electron beam as a probe.
- various settings can be made on each of the electron beam source side and the bias power source side. Therefore, even if the effective energy level in the measurement sample is the same, various combinations of electron beam irradiation and bias voltage can be made. As a result, it becomes possible to adjust the energy dispersion state and spatial distribution of electron beams having the same energy on average, and it is possible to perform highly accurate measurement by selecting the optimal combination according to the application.
- FIG. 1 is a diagram showing a current measuring device according to a first embodiment of the present invention.
- FIG. 2 is a diagram showing a current measuring device according to a second embodiment of the present invention.
- FIG. 3 is a diagram showing a current measuring device according to a third embodiment of the present invention.
- FIG. 4 is a diagram showing a current measuring device according to a fourth embodiment of the present invention.
- FIG. 5 is a diagram showing a current measuring device according to a fifth embodiment of the present invention.
- FIG. 6 is a diagram showing a current measuring device according to a sixth embodiment of the present invention.
- FIG. 7 is a diagram showing a current measuring device according to a seventh embodiment of the present invention.
- FIG. 8 is a diagram showing a current measuring device according to an eighth embodiment of the present invention.
- FIG. 9 is a diagram showing a current measuring device according to a ninth embodiment of the present invention.
- FIG. 10 shows a current measuring apparatus according to a tenth embodiment of the present invention.
- FIG. 11 shows a current measuring apparatus according to an eleventh embodiment of the present invention.
- FIG. 12 is a diagram showing a current measuring device according to an eleventh embodiment of the present invention.
- FIG. 13 shows a current measuring apparatus according to an eleventh embodiment of the present invention.
- FIG. 14 is an explanatory diagram of current measurement.
- FIG. 15 is a diagram showing an example of a conventional current measuring device.
- FIG. 1 is a diagram showing an overall configuration of a current measuring apparatus according to the first embodiment of the present invention.
- the current measuring device of the present embodiment includes a chamber 11, an electron beam source 2, an ammeter 5 that forms a current measuring circuit, a bias power source 6 that forms a voltage application unit, and an XY stage 9.
- a measurement sample 4 is a measurement target of the current measuring apparatus, and the measurement sample 4 is irradiated with an electron beam 3.
- the measurement sample 4 is not particularly limited as long as it can be a measurement target, and corresponds to a semiconductor substrate in the process of manufacturing a semiconductor device.
- the chamber 11 is for controlling the atmosphere so that the electron beam 3 can be emitted.
- an electron beam source 2 In the chamber 11, an electron beam source 2, a measurement sample 4, an ammeter 5, a bias power source 6 and an XY stage 9 are arranged.
- the electron beam source 2 emits the electron beam 3 with a set constant energy.
- the electron beam 3 emitted by the electron beam source 2 This energy can be changed by changing the voltage (acceleration voltage) Vh of the high-voltage power supply.
- the voltage of the high-voltage power supply can be changed by switching a plurality of preset voltage levels. In this case, each set voltage of the high-voltage power supply may be stored in the voltage value storage device.
- the XY stage 9 is a positioning mechanism for irradiating a desired location on the measurement sample 4 with the electron beam 3 emitted from the electron beam source 2.
- the XY stage 9 makes it possible to irradiate a specific location of the measurement sample 4 with the electron beam 3.
- the XY stage 9 is a typical example of a mechanism that enables the electron beam 3 to be irradiated to a specific position of the measurement sample 4, and is not necessarily limited to this configuration.
- the position where the electron beam is irradiated may be stored in the storage device described above.
- the ammeter 5 is an example of a current measurement circuit included in the current measurement device according to the present invention.
- the ammeter 5 includes a circuit that amplifies at least the current flowing through the measurement sample 4.
- the ammeter 5 is electrically coupled with the measurement sample 4 and measures the current generated when the measurement sample 4 is irradiated with the electron beam.
- the ammeter 5 is actually composed of a current measurement circuit using an operational amplifier that converts and amplifies a minute current that is not obtained by a mechanical needle ammeter into a voltage signal. Details of the current measurement circuit will be described later.
- the bias power source 6 is an example of a voltage application unit included in the current measurement device according to the present invention.
- the bias power source 6 applies a voltage Vm between the ammeter 5 and a reference potential, for example, a ground potential.
- a reference potential for example, a ground potential.
- the impedance of the ammeter 5 is very small and can be regarded as virtually zero. Therefore, although the measurement sample 4 is not directly biased, the potential of the measurement sample 4 can be changed by the bias voltage Vm applied to the ammeter 5. Therefore, according to the present embodiment, the measurement sample 4 is irradiated with the electron beam 3 having an effective energy obtained by subtracting the bias voltage Vm applied to the ammeter 5 from the irradiation energy Eir of the electron beam. .
- a bias voltage is applied to the ammeter 5 constituting the current measurement circuit by the bias power source 6 constituting the voltage application unit to control the potential of the measurement sample 4.
- the effective energy that measurement sample 4 receives by irradiation with electron beam 3 is the energy of electron beam 3.
- the energy level of the electron beam 3 in the measurement sampler 4 can be instantaneously changed by changing the bias voltage Vm.
- the change in the path of the electron beam 3 due to the change in the energy level of the electron beam 3 is very small. Therefore, for example, after positioning is performed on the order of several nm by positioning using the pattern matching method, the same position of the measurement sample 4, specifically, several nm is changed while changing the effective energy level of the electron beam 3. It is possible to repeatedly irradiate an electron beam at the same position with order alignment accuracy.
- the current flowing through the measurement sample 4 is directly input to the ammeter 5, so that a power source is connected in parallel to the ammeter 5 as in the prior art shown in FIG. Compared to the case where it is inserted, the minute current generated in the measurement sample 4 can be measured very accurately.
- FIG. 2 is a diagram showing an overall configuration of a current measuring apparatus according to the second embodiment of the present invention.
- the same components as those in FIG. 1 are denoted by the same reference numerals.
- the difference between this embodiment and the first embodiment is that the current measuring device further includes an electrode 10 in this embodiment.
- a plate-like electrode 10 that is capacitively coupled to the measurement sample 4 is provided on the surface of the measurement sample 4 or at a position close thereto.
- the measurement sample 4 and the electrode 10 are electrically connected so that a direct current or an alternating current can flow.
- the electrode 10 may be on the back surface, top surface or side surface of the measurement sample 4 or on a position close to this surface.
- the electrode 10 When the electrode 10 is arranged on the back surface of the measurement sample 4, the electrode 10 has almost the same size as the measurement sample 4, so that the electrode 10 can form a very large capacity.
- very large capacity means, for example, a very large capacity compared to the parasitic capacity between the measurement sample 4 and the casing of the current measurement device.
- an ammeter 5 is directly connected to an electrode 10 provided under the measurement sample 4.
- a bias power source 6 is provided in order to store voltage in series with the ammeter 5.
- the main components of the capacitance component present in the measurement system are the capacitance formed between the electrode 10 and the measurement sample 4 and the parasitic capacitance generated between the measurement sample 4 and the measurement device casing.
- the capacitance generated between the measurement sample 4 and the electrode 10 is overwhelmingly larger than other capacitances. Therefore, it is possible to change the potential of the measurement sample 4 by the bias voltage Vm applied to the ammeter 5 even though the measurement sample 4 is not directly biased. Therefore, the current measuring apparatus can add effective energy obtained by subtracting the bias voltage Vm applied to the ammeter 5 from the irradiation energy Eir of the electron beam 3 to the measurement sample 4 to be measured.
- FIG. 3 is a diagram showing an overall configuration of a current measuring apparatus according to the third embodiment of the present invention.
- the current measuring device further includes an acceleration electrode 11, an acceleration power source 11a, and an aperture 12 in the present embodiment.
- the acceleration electrode 11 is for accelerating the electron beam emitted from the electron beam source 2.
- the acceleration power supply 11a applies an acceleration voltage Va to the acceleration electrode 11, and variably controls the degree of acceleration at the acceleration electrode 11.
- the aperture 12 allows a part of the electron beam emitted from the electron beam source 2 and accelerated by the acceleration electrode 11 to pass therethrough.
- the resolution serving as an index for identifying an object is approximately the same as the wavelength of light to be used.
- the electron beam has a very short wavelength. For example, even a 100 eV electron beam has a wavelength smaller than 1 angstrom. However, the electron beam that can actually be generated has a large energy dispersion, and the resolution is much lower than expected from the wavelength.
- the electron beam 3 that has jumped out of the electron beam source 2 using the acceleration electrode 11 and the acceleration power source 11a is applied to the car speed voltage Va and has very high energy. Enter the level state. For example, the energy of the electron beam 3 is increased to about 5 kV by the acceleration electrode 11. In this state, it passes through a very small cylindrical aperture 12 and only the part with the same energy level is taken out. Thereafter, the effective electron beam irradiation energy in the measurement sample 4 is lowered by the same configuration as that of the first embodiment shown in FIG.
- the aperture 12 has a size of several microns, for example, and constitutes a kind of energy filter.
- the electron beam emitted from the electron beam source 2 is emitted from a wide range of electron beam emitting electrodes called chips.
- the emitted region is in the range of several hundred angstroms and the force S is a small region, and the energy of the electron beam varies depending on where it is emitted.
- the electron beam 3 in such a state can realize a focus even if the electron beam energy is low. After that, due to the bias voltage Vm applied to the ammeter 5 such as 4.5 kV, the electron beam energy actually received by the measurement sample 4 is as small as 500 eV. However, this electron beam 3 has very high energy levels, and the beam comes to focus sharply.
- FIG. 4 is a diagram showing an overall configuration of a current measuring apparatus according to the fourth embodiment of the present invention.
- the same components as those in FIGS. 1 to 3 are denoted by the same reference numerals.
- the difference between this embodiment and the third embodiment is that the current measuring device further includes an electrode 10 in this embodiment.
- a plate-like electrode 10 that is capacitively coupled to the measurement sample 4 is attached below the measurement sample 4. Therefore, the electrode 10 and the measurement sample 4 are connected in an alternating manner.
- the electrode 10 has approximately the same size as the measurement sample 4 and forms a very large capacitance compared to other parasitic capacitances.
- An ammeter 5 is directly connected to the electrode 10 provided under the measurement sample 4.
- a bias voltage Vm is applied to the ammeter 5 by a bias power source 6.
- the potential of the measurement sample 4 can be changed by the bias voltage Vm applied to the ammeter 5 even though the measurement sample 4 is not directly biased. Therefore, this current measuring device can measure the effective energy obtained by subtracting the bias voltage Vm applied to the ammeter 5 from the irradiation energy Eir of the electron beam 3 for the measurement sample 4 to be measured. In addition, according to the current measuring device of the present embodiment, it is possible to improve the practicality because it is not necessary to directly connect the ammeter 5 to the measurement sample 4.
- the energy filter for reducing the energy dispersion of the electron beam 3 is configured by the acceleration electrode 11 and the aperture 12. Therefore, it is possible to irradiate the electron beam 3 that is highly focused on a desired portion of the measurement sample 4 and to inspect the measurement sample 4 with high resolution.
- FIG. 5 is a diagram showing an overall configuration of a current measuring apparatus according to the fifth embodiment of the present invention.
- the current measurement device further includes a deceleration electrode 13 and a deceleration power source 13a.
- the deceleration electrode 13 converts the energy level of the electron beam 3 that has passed through the aperture 12.
- the deceleration power source 13a applies a voltage to the deceleration electrode 13. That is, in the current measuring device of the present embodiment, the electron beam is accelerated by the acceleration electrode 11 and the energy rises. The electron beam 3 passes through the aperture 12 and is filtered. The electron beam 3 is decelerated by the deceleration electrode 13 and the energy level is lowered before irradiating the measurement sample 4.
- the acceleration voltage Va applied to the acceleration electrode 11 is set to lOOkV
- the deceleration voltage Vd applied to the deceleration electrode 13 is set to 99 kV. Then, an electron beam having an energy of IkeV is effectively obtained on the surface of the measurement sample 4. Further, by applying a bias voltage Vm of 900 V, for example, to the ammeter 5 in this state, an electron beam having an energy of lOOeV can be realized effectively. In order to realize energy of several hundred eV suddenly from a high acceleration state exceeding 5 kV, it has been conventionally difficult to apply a very large bias voltage Vm to the ammeter 5.
- the energy level of the electron beam 3 can be controlled using the deceleration electrode 13 no matter how high the energy level of the electron beam 3 is caused by the acceleration electrode 11 or the like. . Therefore, it is possible to set the bias voltage Vm applied to the ammeter 5 small.
- FIG. 6 is a diagram showing an overall configuration of a current measuring apparatus according to the sixth embodiment of the present invention.
- the same components as those in FIGS. 1 to 5 are denoted by the same reference numerals.
- the difference between this embodiment and the fifth embodiment is that the current measuring device further includes an electrode 10 in this embodiment.
- a plate-like electrode 10 that is capacitively coupled to the measurement sample 4 is attached below the measurement sample 4. Therefore, the electrode 10 and the measurement sample 4 are connected in an alternating manner.
- the electrode 10 has approximately the same size as the measurement sample 4 and forms a very large capacitance compared to other parasitic capacitances.
- An ammeter 5 is directly connected to the electrode 10 provided under the measurement sample 4.
- a bias voltage Vm is applied to the ammeter 5 by a bias power source 6.
- the measurement sample 4 is reduced even though it is not directly biased.
- the potential of the measurement sample 4 can be changed by the bias voltage Vm applied to the fast electrode 13 and the ammeter 5. Therefore, effective energy obtained by subtracting the deceleration voltage Vd and the bias voltage Vm from the irradiation energy Eir of the electron beam 3 can be added to the measurement sample 4.
- the current measuring device of the present embodiment it is possible to improve the practicality because it is not necessary to directly connect the ammeter 5 to the measurement sample 4.
- FIG. 7 is a diagram showing an overall configuration of a current measuring apparatus according to the seventh embodiment of the present invention.
- the same components as those in FIGS. 1 to 6 are denoted by the same reference numerals.
- the difference between the present embodiment and the fifth embodiment is that, in this embodiment, the current measuring device does not include the bias power source 6 and further includes a variable power source 7 and a control signal generator 8.
- the variable power source 7 applies a variable voltage between the ammeter 5 and the ground potential.
- the control signal generator 8 outputs a voltage control signal for controlling the operation of the variable power source 7.
- the bias voltage Vm applied to the ammeter 5 can be variably controlled by the voltage control signal output from the control signal generator 8.
- the control signal generator 8 may be a self-oscillating AC signal generator or a device that generates a voltage control signal based on a digital or analog signal from an external computer (not shown).
- an external computer has a program for automatically controlling the current measuring device of the present invention, and the current flowing through the measurement sample 4 is measured based on a certain sequence.
- the measurement target wafer force forming the measurement sample 4 is first taken out from the wafer cassette one by one and loaded into the current measurement device by a robot. The loaded wafer is accurately positioned by the alignment mechanism and transferred to a chamber 11 having a more precise mechanical stage.
- the wafer transferred to the chamber 11 is accurately positioned by optical and electron beam means. Since the part of the wafer to be measured is recorded in advance in the sequence, the machine stage operates according to the sequence, and the position where the electron beam 3 is irradiated is determined.
- the first electron beam irradiation is performed with a bias voltage Vml.
- the second electron beam irradiation is performed with a bias voltage Vm2. Measure and save the currents obtained at these two bias voltages. The measured current value is appropriately corrected and then substituted into a predetermined equation to convert it to the thickness of the material.
- FIG. 8 is a diagram showing an overall configuration of a current measuring apparatus according to the eighth embodiment of the present invention.
- the same components as those in FIGS. 1 to 7 are denoted by the same reference numerals.
- the difference between this embodiment and the seventh embodiment is that the current measuring device further includes an electrode 10 in this embodiment.
- a plate-like electrode 10 that is capacitively coupled to the measurement sample 4 is attached below the measurement sample 4. Therefore, the electrode 10 and the measurement sampler 4 are connected in an alternating manner.
- the electrode 10 has approximately the same size as the measurement sample 4 and forms a very large capacitance compared to other parasitic capacitances.
- An ammeter 5 is directly connected to the electrode 10 provided under the measurement sample 4.
- a bias voltage Vm is applied to the ammeter 5 by the variable power source 7.
- the electron beam source 2, the acceleration electrode 11, the aperture 12, and the deceleration electrode 13 are provided. Is provided.
- the electron beam 3 emitted from the electron beam source 2 is detected by the acceleration voltage Va applied to the acceleration electrode 11. It is speeded up.
- the accelerated electron beam 3 passes through the aperture 12 and only the electron beam 3 forming the electron beam axis center is taken out.
- the energy of the electron beam 3 that forms the axial center is much more uniform than the energy dispersion of the electron beam 3 when it is emitted from the electron beam source 2.
- the electron beam 3 having the same energy is decelerated according to the deceleration voltage Vd applied to the deceleration electrode 13 and has a low energy level before the measurement sample 4.
- the potential of the surface of measurement sample 4 is controlled by bias voltage Vm applied to ammeter 5. Therefore, on the surface of measurement sample 4, deceleration It is converted into an electron beam 3 having an energy lower than that obtained at the electrode 13.
- the measurement sample 4 is capacitively connected to the ammeter 5.
- the capacitance generated between the measurement sample 4 and the electrode 10 is very large compared to the capacitance generated between the measurement sample 4 and the electron beam source 2. Therefore, most of the bias voltage Vm applied to the ammeter 5 is substantially applied between the electron beam source 2 and the measurement sample 4.
- FIG. 9 is a diagram showing an overall configuration of a current measuring apparatus according to the ninth embodiment of the present invention.
- the same components as those in FIGS. 1 to 8 are denoted by the same reference numerals.
- the difference between this embodiment and the seventh embodiment is that the control signal generator 8 outputs a measurement timing signal. That is, the control signal generator 8 serves as a control means for controlling the application timing of the bias voltage Vm by the variable power source 7 in synchronization with the current measurement timing of the ammeter 5.
- the timing at which the bias voltage Vm is applied to the ammeter 5 from the variable power source 7 is synchronized with the timing at which the ammeter 5 measures current.
- the bias voltage Vm is not applied or is maintained at a globally set voltage. Then, the bias voltage Vm is applied to the ammeter 5 in synchronization with the timing when the ammeter 5 actually performs the measurement.
- the timing at which the bias voltage Vm is applied may be an alternating signal with a very short period or a relatively long on-off signal.
- the application timing of the bias voltage Vm to the measurement sample 4 via the ammeter 5 can be synchronized with the current measurement timing.
- white noise or the like which is a problem in current measurement, can be easily removed, and the sensitivity and accuracy of the measurement of the current flowing through the measurement sample 4 can be further improved.
- FIG. 10 is a diagram showing an overall configuration of a current measuring device according to the tenth embodiment of the present invention. .
- the same components as those in FIGS. 1 to 9 are denoted by the same reference numerals.
- the difference between the present embodiment and the eighth embodiment is that the present embodiment has an electrode 10.
- a plate-like electrode 10 that is capacitively coupled to the measurement sample 4 is attached below the measurement sample 4. Therefore, the electrode 10 and the measurement sample 4 are connected in an alternating manner.
- the electrode 10 has approximately the same size as the measurement sample 4 and forms a very large capacitance compared to other parasitic capacitances.
- An ammeter 5 is directly connected to the electrode 10 provided under the measurement sample 4.
- Other components and operations are the same as those of the current measurement device of the ninth embodiment shown in FIG.
- FIG. 11 is a diagram showing a main configuration of a current measuring apparatus according to the eleventh embodiment of the present invention.
- the same components as those in FIGS. 1 to 10 are denoted by the same reference numerals.
- This embodiment shows a current measurement circuit 5a as a specific example of the ammeter 5 in the current measurement device of each of the above embodiments.
- the current measurement circuit 5a is disposed between the operational amplifier 14, the bias power source 6 that applies the bias voltage Vm to the positive input terminal of the operational amplifier 14, and the output terminal and the negative input terminal of the operational amplifier 14. And a high resistor R1.
- the measurement sample 4 is electrically connected to the negative input terminal of the operational amplifier 14.
- the current measurement circuit 5a constitutes a current-voltage conversion circuit using the operational amplifier 14.
- the current to be measured is introduced into the negative input terminal of the operational amplifier 14.
- the negative input terminal is internally connected to the gate of the FET transistor that constitutes the operational amplifier 14, and becomes the original signal for operational amplification.
- the operational amplifier 14 operates so that the voltage difference between the two input terminals is zero volts. For this reason, the high resistor R1 is biased so that it has the same magnitude as the current input to the negative input terminal. The voltage necessary for this bias becomes the output of the operational amplifier 14.
- the operational amplifier 14 when the operational amplifier 14 is operating normally, the voltage between the positive input terminal and the negative input terminal of the operational amplifier 14 is controlled to be zero volts. Therefore, operational amplifier When a bias voltage Vm is applied to the 14 positive input terminals, the bias voltage Vm and the negative input terminal voltage are the same. Therefore, even if a voltage is not directly applied to the measurement sample 4, the potential of the measurement sample 4 can be substantially changed by collecting the voltage at the positive input terminal of the operational amplifier 14. Therefore, the measurement sample 4 is irradiated with an electron beam corresponding to energy obtained by subtracting the bias voltage Vm applied to the positive input terminal of the operational amplifier 14 from the electron beam irradiation energy Eir.
- the current measuring device of this embodiment can reduce the effective energy received by the measurement sample 4 even when the electron beam source 2 emits a high-energy electron beam. Sensitivity and accuracy can be improved for measuring the current flowing through the measurement sample 4 without causing damage.
- FIG. 12 is a diagram showing a main configuration of a current measuring apparatus according to the twelfth embodiment of the present invention.
- the same components as those in FIGS. 1 to 11 are denoted by the same reference numerals.
- the difference between the present embodiment and the eleventh embodiment is that the present embodiment does not include the bias power source 6 but includes the variable power source 7 and the control signal generator 8.
- the variable power source 7 constitutes a variable power source for an operational amplifier that applies a variable voltage to the positive input terminal of the operational amplifier 14.
- the control signal generator 8 outputs a voltage control signal for controlling the output voltage of the variable power source 7.
- the bias voltage Vm applied to the operational amplifier 14 is made variable by the voltage control signal from the control signal generator 8.
- the control signal generator 8 can vary the substantial energy level of the electron beam in the measurement sample 4 by outputting a voltage control signal.
- the bias voltage Vm variably controlled by the voltage control signal may be a periodic signal such as a sine wave, a rectangular wave, or a sawtooth wave, or may be a trigger one-shot signal.
- the current measurement apparatus of the present embodiment can perform current measurement and the like by selecting an optimum application form of the bias voltage Vm according to the attribute of the measurement sample 4 and the like, and can perform process with higher accuracy. Can be evaluated.
- FIG. 13 is a diagram showing a main configuration of a current measuring apparatus according to the thirteenth embodiment of the present invention.
- the same components as those in FIGS. 1 to 12 are denoted by the same reference numerals.
- the control signal generator 8 outputs an irradiation timing control signal to the aperture 12. More specifically, the electron beam irradiation timing is determined by applying a voltage to the blanking electrode located above the aperture so that the electron beam does not pass through the aperture. Alternatively, you can use a mechanism in which the size of the paper itself changes according to the electrical signal.
- the current measuring device of the present embodiment synchronizes the bias voltage V m applied to the operational amplifier 14 with the electron beam irradiation timing.
- the control signal generator 8 controls the intermittent electron beam at the aperture 12 and the bias voltage Vm at the variable power source 7 in synchronization with the timing of measuring the current flowing through the measurement sample 4.
- asynchronous noise white that enters the measurement system from the outside by synchronizing the on / off timing of the electron beam with the measurement timing of the current measurement circuit 5a. Noise, etc.) can be easily removed.
- measurement can be performed using an electron beam having very low energy.
- An electron beam having a low energy can improve the secondary electron emission probability and increase the measurement sensitivity. Also, the electron beam having low energy does not damage the measurement sample.
- the energy level of the electron beam can be changed greatly without changing the setting of the electron beam source, so that the energy level of the electron beam can be changed at high speed.
- a combination of a check, a check, and a check condition can be made on each of the electron beam source side and the current measurement circuit side.
- the waveforms of the high-voltage power supply Vh, acceleration voltage Va, deceleration voltage Vd, noise voltage Vm, and bias voltage Vm applied to the electron beam source can be combined.
- the current flowing through the measurement sample is measured by irradiating the measurement sample with the electron beam.
- the present invention is not limited to this, and the electron beam applied to the measurement sample. It is also possible to provide a recovery electrode that recovers scattered electrons or secondary electrons generated by the irradiation of and to measure the current flowing through the recovery electrode in the same manner as in the above embodiment.
- the embodiments of the present invention have been described.
- the current measuring device and the current measuring method of the present invention are not limited to the above-described embodiments, and do not depart from the gist of the present invention. Of course, various changes can be made within the range.
- the present invention improves the sensitivity and accuracy of the measurement without causing damage to the measurement sample when measuring the current flowing through the measurement sample, such as a semiconductor substrate, by irradiation with an electron beam.
- the present invention is useful for various current measuring devices and current measuring methods.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Tests Of Electronic Circuits (AREA)
Abstract
半導体基板などの測定サンプルに対して照射する電子ビームのエネルギーレベルを容易に設定できる電流測定装置及び電流測定方法を提供する。電子ビームが照射された測定サンプルに生じる電流を測定する電流測定装置は、電子ビームの放出が可能なように雰囲気制御されたチャンバーと、電子ビームを設定されたエネルギーで放出する電子ビーム源と、電子ビーム源から放出された電子ビームを測定サンプルの特定場所に照射する照射部と、測定サンプルに流れる電流について少なくとも増幅する電流測定回路を構成する電流計と、前記電流測定回路と基準電位としての接地電位との間にバイアス電圧を印加する電圧印加部とを含む。
Description
明 細 書
電流測定装置及び電流測定方法
技術分野
[0001] 本発明は、電流測定装置及び電流測定方法に関する。また、本発明は、電子ビー ム、イオンビーム、電磁波、音波、振動などを利用して、半導体デバイス製造工程途 中のプロセス評価を行うのに好適な電流測定装置及び電流測定方法に関する。 本願 ίま、 2004年 12月 27曰 ίこ、 曰本 (こ出願された特願 2004— 378122号 (こ基づ き優先権を主張し、その内容をここに援用する。
背景技術
[0002] 電子ビーム照射時に流れる基板電流を用いて半導体デバイスのプロセス良否を評 価する方法として基板電流法が知られている。この方法は、例えば、特許文献 1、特 許文献 2、及び特許文献 3に開示される。
[0003] この方法は、例えばエッチングを終えた状態のウェハに対して、一定のエネルギー を持つ電子ビームを数秒の間、照射し、その時に生じる基板電流の大小あるいは極 性からプロセスの状態を知る方法である。例えば IKeV程度の電子ビームエネルギ 一が利用され、ピコアンペア (PA)のオーダーの電流量を利用する。
[0004] この方法では、プロセス結果が同じである場合、同じ基板電流が生じ、プロセス結 果が異なる場合、異なった電流が生じる。このことを利用してプロセス状態を把握す ること力 Sできる。
[0005] 以上のようにプロセスの相対的な変化を検知する場合、単一のエネルギーレベル を有する照射電子ビームを利用することができる。一方、絶対的なプロセス状態を調 ベるためには、種々の加速電圧を組み合わせて利用することが必要である。また、測 定感度は電子ビームエネルギーに依存するので、最適な電子ビームエネルギーを測 定対象毎に見つける必要がある。このためには、図 14に示すように、電子ビーム源 2 から放出される電子ビーム 3に加えられる加速電圧、即ち高圧電源の電圧 Vhを調整 して使用していた。
[0006] 基板電流に基づき精密な電流測定を行うためには、複数のエネルギーレベルを有
した電子ビームを利用することが必要である。つまり、全く同じ測定点に対して電子ビ ームのエネルギーレベルだけが異なる状態で測定を行うことが必要である。しかし、 従来は、電子ビームのエネルギーレベルを変えるために電子ビーム発生装置の電源 の電圧を変更していた。電源の電圧を変更すると、電子ビームの軸が大きく変化する ため、全く同じ場所に正確に電子ビームを照射することが困難であった。そのため、 従来の基板電流測定方法では、測定精度が低下するという課題があった。
[0007] また、測定感度を変化させるために非常に低いエネルギーレベルを有した電子ビ ームを使用する必要があるが、従来における高圧電源の電圧の変更だけでは、非常 に低いエネルギーレベルの電子ビームを実現することは困難であった。
[0008] また、従来方法としては、図 15に示すように半導体基板である測定サンプル 4にバ ィァス電圧 Vbを印加する方法も知られていた。し力、し、この方法では、電流計 5と並 列に電源 20が入るため、測定に必要な基板電流が電源 20を介してグランドに流れ てしまう。このため実質的に電流計 5に流れる電流が「0」となってしまい測定できない 。そればかりか、電子ビーム 3のエネルギーレベルを変えるために、電源 20により数 キロボルトという電圧 Vbを測定サンプル 4に加えると電流計 5が破壊するなど、実用 的には使えないとレ、う大きな課題があった。
特許文献 1 :日本国特許第 3334750号公報
特許文献 2 :日本国特許第 3292159号公報
特許文献 3 :日本国特許第 3175765号公報
発明の開示
発明が解決しょうとする課題
[0009] 本発明の主たる目的は、前述した問題が軽減された電流測定装置を提供すること にある。
本発明の更なる目的は、測定サンプノレに対して照射する電子ビーム等のプローブ のエネルギーレベルを容易に設定できる電流測定装置を提供することにある。
また、本発明の更なる目的は、測定サンプルして対してダメージを与えることなぐこ の測定サンプルに流れる電流の測定における感度と精度とを向上させことができる 電流測定装置を提供することにある。
本発明の別の目的は、前述した問題が軽減された電流測定方法を提供することに ある。
本発明の更なる目的は、測定サンプノレに対して照射する電子ビーム等のプローブ のエネルギーレベルを容易に設定できる電流測定方法を提供することにある。
また、本発明の更なる目的は、測定サンプルして対してダメージを与えることなぐこ の測定サンプルに流れる電流の測定における感度と精度とを向上させことができる 電流測定方法を提供することにある。
課題を解決するための手段
[0010] 本発明の第一の側面によれば、プローブを測定サンプルに照射するプローブ照射 部と、前記測定サンプルと電気的に結合され前記測定サンプルにプローブを照射し たときに前記測定サンプルに流れる電流を測定する電流測定回路と、前記電流測定 回路と電気的に結合され前記電流測定回路に電圧を印加する電圧印加部と、を少 なくとも含む電流測定装置を提供する。
[0011] 本発明によれば、電圧印加部によって電流測定回路にバイアス電圧を印加するこ とができる。これにより、測定サンプルの電位を制御することができる。そして、測定サ ンプルが電子ビーム照射で受ける実効エネルギーは、その電子ビームのエネルギー 力 測定サンプルの電位を引いた値となる。したがって、本発明は、電子ビーム放出 源から高エネルギーの電子ビームを放出しても、測定サンプルが受ける実効エネル ギーを小さくすることができる。そこで、本発明は、測定サンプルして対してダメージを 与えることなぐ測定サンプルに流れる電流の測定について感度と精度を向上させる こと力 sできる。
[0012] また、本発明の電流測定装置は、前記電流測定回路と電気的に結合すると共に前 記測定サンプルに容量結合する容量電極を更に含んでもよい。そして、前記電流測 定回路は前記容量電極に流れる電流を測定する。
[0013] 本発明によれば、測定サンプノレに対して直接バイアス電圧を印加せずに、電流測 定回路に印加した電圧により測定サンプノレの電位を変化させることができる。そして、 測定サンプノレが受ける実効エネルギーは、照射された電子ビームのエネルギーから 測定サンプノレの電位を引いた値となる。したがって、本発明は、測定サンプルして対
してダメージを与えることなぐ測定サンプルに流れる電流の測定について感度と精 度を向上させることができる。また、本発明は、測定サンプノレと電流測定回路(又は電 極)とを配線接続する必要がなぐ測定サンプルの測定位置などへの設置及び取り 外しが容易となり、実用性を高くすることができる。
[0014] また、本発明の電流測定装置は、前記プローブ照射部による前記測定サンプノレへ のプローブの照射によって前記測定サンプノレに発生した散乱電子及び二次電子の 少なくとも一方を回収する回収電極を更に含むことができる。そして、前記電流測定 回路は、前記回収電極と接続されて前記電流測定回路に流れる電流を測定する
[0015] この構成によれば、電圧印加手段によって電流測定回路にバイアス電圧を印加す ること力 Sできる。これにより、測定サンプノレの電位を制御することができる。そして、測 定サンプルが電子ビーム照射で受ける実効エネルギーは、その電子ビームのェネル ギ一から測定サンプルの電位を引いた値となる。したがって、本発明は、電子ビーム 放出源から高エネルギーの電子ビームを放出しても、測定サンプルが受ける実効ェ ネルギーを小さくすることができる。ここで、低いエネルギーを有する電子ビームは、 二次電子放出確率を向上させることができる。そこで、本発明は、測定サンプルへの 電子ビーム照射により生じる電流の測定にぉレ、て、測定サンプルして対してダメージ を与えることなぐ感度と精度を向上させることができる。
[0016] また、本発明の電流測定装置の前記プローブ照射部は、前記プローブとして働く 電子ビームを発生する電子ビーム源と、前記電子ビーム源から放出された電子ビー ムの一部分を通過させるアパーチャを有するアパーチャ部と、を含んでもよい。 この構成によれば、電子ビームについてアパーチャを通過させることにより、ェネル ギ一の揃った電子ビームを測定サンプノレへ照射することができる。そこで、本発明は 、測定サンプノレの所望部位に高度に焦点の合った電子ビームを照射でき、高解像度 に測定サンプルを検查することができる。
[0017] また、本発明の電流測定装置の前記プローブ照射部は、前記プローブとして働く 電子ビームを発生する電子ビーム源と、前記電子ビーム源により発生した第 1のエネ ノレギーレベルを有する電子ビームを前記第 1のエネルギーレベルより高い第 2のエネ ノレギーレベルに変換する第 1のエネルギー変換部と、前記第 2のエネルギーレベル
に加速された電子ビームの一部分を通過させるアパーチャを有するアパーチャ部と、 を含んでもよい。更に、前記プローブ照射部は、前記アパーチャを通過した電子ビー ムの第 2のエネルギーレベルを前記第 2のエネルギーレベルより低い第 3のエネルギ 一レベルに変換する第 2のエネルギー変換部を、含んでもよい。ここで、前記第 1の エネルギー変換部は、前記電子ビームを加速する加速電極と、前記加速電極と電気 的に結合され前記加速電極に電圧を印加する加速電源と、を含んでもよい。更に、 前記第 2のエネルギー変換部は、前記電子ビームを減速する減速電極と、前記減速 電極と電気的に結合され前記減速電極に電圧を印加する減速電源とを含んでもよい
[0018] この構成によれば、電子ビームについてアパーチャを通過させることにより、ェネル ギ一の揃った電子ビームを測定サンプノレへ照射することができる。さらに、本発明は 、減速電極により、電子ビームを第 1のエネルギーレベルから第 2のエネルギーレべ ノレに変換することができる。そこで、加速電極などで電子ビームのエネルギーをいくら 高くしても、測定サンプノレに到達する電子ビームのエネルギーは減速電極によって 制御可能である。そこで、本発明は、測定サンプルへダメージを与えることを回避しな がら、測定サンプノレの所望部位に高度に焦点の合った電子ビームを照射でき、高解 像度に測定サンプルを検査することができる。
[0019] また、本発明の電流測定装置の前記電圧印加部は、前記電流測定回路と電気的 に結合され前記電流測定回路に可変電圧を印加する可変電源を含んでもよい。
[0020] この構成によれば、電子ビーム放出源側の設定を変更せずに、可変電源の出力を 変更することのみで、測定サンプノレに照射する電子ビームの実効エネルギーレベル を変更することができる。したがって、非常に簡便且つ迅速に実効エネルギーレベル を変更することができる。また、本発明によれば、測定サンプルにおける同一箇所に 異なる実効エネルギーレベルの電子ビームを迅速に照射でき、測定精度の向上を図 れるとともに、測定のスループットを向上させることができる。
[0021] また、本発明の電流測定装置は、前記可変電源と電気的に結合され前記可変電 圧のレベルを制御する電圧制御部を更に含んでもよレ、。前記制御部は、更に、前記 電流測定回路と電気的に結合され前記電流測定回路の電流測定タイミングを制御
すると共に、前記電流測定タイミングと同期して前記可変電源による前記電流測定回 路への電圧印加のタイミングを制御してもよレ、。
[0022] この構成によれば、電流測定回路を介しての測定サンプルへのバイアス電圧印加 のタイミングと、電流測定タイミングとを同期させることができる。これにより、電流測定 において問題となるホワイトノイズなどを簡便に除去することができ、測定サンプルに 流れる電流などの測定について感度及び精度をさらに向上させることができる。
[0023] また、本発明の電流測定装置の前記電流測定回路は、前記測定サンプルと電気 的に結合された第 1の入力端子と前記電圧印加部と電気的に結合された第 2の入力 端子と出力信号を出力する出力端子とを有し前記測定サンプルに流れる電流を増 幅する演算増幅器を含んでもよい。
[0024] この構成によれば、例えば、演算増幅器の負入力端子に測定サンプルを電気的に 接続し、演算増幅器の正入力端子にバイアス電圧を印加し、演算増幅器の出力と負 入力端子との間に抵抗器を配置した構成とすることができる。このようにすると、バイ ァス電圧が演算増幅器の負入力端子を介して測定サンプノレに印加される。そこで、 本発明は、電子ビーム放出源から高エネルギーの電子ビームを放出しても、測定サ ンプルが受ける実効エネルギーを小さくでき、測定サンプルに対してダメージを与え ることなぐ測定サンプノレに流れる電流の測定について感度と精度を向上させること ができる。
[0025] また、本発明の電流測定装置の前記電圧印加部は、前記演算増幅器の前記第 2 の入力端子と電気的に結合され前記第 2の入力端子に可変電圧を印加する可変電 源を含んでもよい。そして、本発明の電流測定装置は、更に、前記可変電源と電気 的に結合され前記可変電圧のレベルを制御する電圧制御部を含んでもょレ、。そして 、前記制御部は、更に、前記プローブ照射部と電気的に結合され前記プローブ照射 部のプローブ照射タイミングを制御すると共に、前記プローブ照射タイミングと同期し て前記可変電源による前記演算増幅器への電圧印加のタイミングを制御してもよい。
[0026] この構成によれば、制御信号発生部が出力する信号により、測定サンプノレの電位 を制御することができる。ここで、演算増幅器用可変電源が出力する可変電圧として は、サイン波、矩形波、ノコギリ波などの周期的な波形でもよぐトリガー的な波形でも
よい。これらにより、本発明は、測定サンプルの属性などに応じて、最適な可変電圧 を選んで電流測定などをすることができ、より高精度にプロセス評価などをすることが できる。
[0027] 本発明の第二の側面によれば、プローブを測定サンプルに照射し前記測定サンプ ルに流れる電流を発生させる工程と、電流測定回路にバイアス電圧を印加する工程 と、前記電流測定回路に電圧を印加した状態で前記測定サンプルに流れる電流を 前記電流測定回路により増幅し測定する工程と、を少なくとも含む電流測定方法を 提供する。
[0028] 本発明によれば、増幅回路と接地電位との間に電圧を印加することにより、測定サ ンプルの電位を制御することができる。したがって、測定サンプルが電子ビーム照射 で受ける実効エネルギーを、前記電圧によって小さくすることができる。そこで、本発 明は、測定サンプルして対してダメージを与えることなぐ測定サンプルに流れる電流 の測定について感度と精度を向上させることができる。
発明の効果
[0029] 本発明は、半導体基板などの測定サンプルに対して照射するプローブとしての電 子ビームの実効エネルギーレベルを低くしながら、測定サンプルに流れる電流などの 測定について感度及び精度を向上させることができる。したがって、測定サンプルに 対してダメージを与えることなぐ測定サンプルの属性等の測定について感度と精度 を向上させることができる。
[0030] また、本発明は、プローブとしての電子ビームが照射された測定サンプノレにおける 実効エネルギーレベルを低くすることができるので、二次電子放出確率を向上でき、 測定感度を高くすることができる。
[0031] また、本発明は、プローブとしての電子ビーム源などの設定を変えないで、測定サ ンプルにおける実効エネルギーレベルを大きく可変できるので、非常に早くエネルギ 一レベルを変更できる。したがって、例えば、測定サンプルにおける同じ箇所に異な るエネルギーレベルの電子ビームを迅速に照射することができ、測定精度を大幅に 高めながら、測定のスループットを向上させることができる。
[0032] また、本発明は、測定サンプルにプローブとしての電子ビームを照射する態様とし
て、電子ビーム源側及びバイアス電源側のそれぞれで各種設定をすることができる。 したがって、測定サンプルにおける実効エネルギーレベルが同一であっても、電子ビ ーム照射及びバイアス電圧の態様として、レ、ろいろな組み合わせをすることができる 。その結果、平均的には同じエネルギーを持つ電子ビームのエネルギー分散状態及 び空間分布についての調節が可能となり、用途に応じて最適な組み合わせを選んで 、高精度な測定をすることができる。
図面の簡単な説明
[0033] [図 1]本発明の第 1実施形態に係る電流測定装置を示す図である。
[図 2]本発明の第 2実施形態に係る電流測定装置を示す図である。
[図 3]本発明の第 3実施形態に係る電流測定装置を示す図である。
[図 4]本発明の第 4実施形態に係る電流測定装置を示す図である。
[図 5]本発明の第 5実施形態に係る電流測定装置を示す図である。
[図 6]本発明の第 6実施形態に係る電流測定装置を示す図である。
[図 7]本発明の第 7実施形態に係る電流測定装置を示す図である。
[図 8]本発明の第 8実施形態に係る電流測定装置を示す図である。
[図 9]本発明の第 9実施形態に係る電流測定装置を示す図である。
[図 10]本発明の第 10実施形態に係る電流測定装置を示す図である。
[図 11]本発明の第 11実施形態に係る電流測定装置を示す図である。
[図 12]本発明の第 11実施形態に係る電流測定装置を示す図である。
[図 13]本発明の第 11実施形態に係る電流測定装置を示す図である。
[図 14]電流測定についての説明図である。
[図 15]従来の電流測定装置の一例を示す図である。
符号の説明
[0034] 1 チャンバ一
2 電子ビーム源
3 電子ビーム
4 測定サンプル
5 電流計
5a 電流測定回路
6 バイアス電源
7 可変電源
8 制御信号発生部
9 XYステージ
10 電極
11 加速電極
11a 加速電源
12 アパーチャ
13 減速電極
13a 減速電源
14 演算増幅器
20 高圧電源
発明を実施するための最良の形態
[0035] 次に本発明を実施するための最良の形態について図面を参照して説明する。
[第 1実施形態]
図 1は、本発明の第 1実施形態に係る電流測定装置の全体構成を示す図である。 本実施形態の電流測定装置は、チャンバ一 1と、電子ビーム源 2と、電流測定回路を 構成する電流計 5と、電圧印加部を構成するバイアス電源 6と、 XYステージ 9とを含 む。
また、図 1において、測定サンプル 4は本電流測定装置の測定対象となるものであ り、測定サンプル 4には電子ビーム 3が照射される。測定サンプノレ 4は、測定対象とな り得るものであれば特に限定するものではなぐ一典型例として、半導体デバイス製 造工程の途中における半導体基板が該当する。
[0036] チャンバ一 1は、電子ビーム 3が放出できるように雰囲気制御するためのものである 。チャンバ一 1内には、電子ビーム源 2、測定サンプル 4、電流計 5、バイアス電源 6及 び XYステージ 9が配置される。電子ビーム源 2は、設定された一定のエネルギーで 電子ビーム 3を放出するものである。ここで、電子ビーム源 2が放出する電子ビーム 3
のエネルギーは、高圧電源の電圧 (加速電圧) Vhを可変することで変更可能となつ ている。高圧電源の電圧は、予め設定された複数の電圧レベルを切り替えることで、 変化させることができる。この場合、高圧電源のそれぞれの設定電圧は、電圧値記憶 装置に、記憶させてもよレ、。 XYステージ 9は、電子ビーム源 2から放出された電子ビ ーム 3を測定サンプル 4における所望の場所に照射するための位置決め機構である 。 XYステージ 9は、電子ビーム 3を測定サンプル 4の特定場所に照射することを可能 にする。この XYステージ 9は、電子ビーム 3を測定サンプル 4の特定位置に照射する ことを可能にする機構の一典型例であり、必ずしもこの構成に限定するものではない 。電子ビームを照射する位置は、前述の記憶装置に記憶させてもよい。
[0037] 電流計 5は、本発明に係る電流測定装置に含まれる電流測定回路の一例である。
すなわち、電流計 5は、測定サンプル 4に流れる電流について少なくとも増幅する回 路を含む。電流計 5は、電気的に測定サンプル 4と結合して、測定サンプル 4への電 子ビーム照射時に生じる電流を測定する。また、電流計 5は、実際には、機械的な指 針による電流計ではなぐ微小な電流を電圧信号などに変換して増幅する演算増幅 器などを用いた電流測定回路で構成される。なお、電流測定回路の詳細については 後述する。
バイアス電源 6は、本発明に係る電流測定装置に含まれる電圧印加部の一例であ る。バイアス電源 6は、電流計 5と基準電位、例えば、接地電位との間に電圧 Vmを印 加するものである。測定サンプル 4に直列に、電流計 5及び電流計 5バイアス用のバ ィァス電源 6を接続する。ここで、電流計 5のインピーダンスは非常に小さぐ事実上 ゼロとみなせる。したがって、測定サンプル 4を直接バイアスしていないにも関わらず 、電流計 5に加えたバイアス電圧 Vmによって、測定サンプノレ 4の電位を変化させるこ とが可能となる。そこで、本実施形態によれば、測定サンプル 4に対して、電子ビーム の照射エネルギー Eirから電流計 5に加えるバイアス電圧 Vmを引いた実効エネルギ 一を有する電子ビーム 3を、測定サンプル 4に照射する。
[0038] 電圧印加部を構成するバイアス電源 6により、電流測定回路を構成する電流計 5に バイアス電圧を印加して、測定サンプル 4の電位を制御する。そして、測定サンプル 4 が電子ビーム 3の照射で受ける実効エネルギーは、その電子ビーム 3のエネルギー
力ら測定サンプル 4の電位を引いた値となる。したがって、電子ビーム源 2から高エネ ルギ一の電子ビームを放出しても、測定サンプノレ 4が受ける実効エネルギーを小さく すること力 Sできる。よって、測定サンプル 4に対してダメージを与えることなぐ測定サ ンプル 4に流れる電流の測定について感度と精度を向上させることができる。
[0039] また、バイアス電圧 Vmを変化させることで、瞬時に、測定サンプノレ 4における電子 ビーム 3のエネルギーレベルを変更することができる。また、ウェハ等の測定サンプル 4の表面近傍で電子ビーム 3のエネルギーの変換が行われるため、電子ビーム 3のェ ネルギ一のレベル変更による電子ビーム 3の経路の変化が非常に小さい。従って、 例えば、パターンマッチング法を使用した位置決めによって、数 nmオーダーの位置 合わせを行った後に、電子ビーム 3の実効エネルギーレベルを変えながら、測定サン プル 4の同一位置、具体的には、数 nmオーダーの位置合わせ精度での同一位置に 繰り返し電子ビームを照射することが可能となる。
[0040] また、本実施形態の電流測定装置によれば、測定サンプル 4を流れる電流が直接 電流計 5に入力されるので、図 15に示す従来技術のように電流計 5に並列に電源を 入れてレ、た場合と比較して、測定サンプル 4で生じた微少な電流を非常に正確に測 定できる。
[0041] [第 2実施形態]
図 2は、本発明の第 2実施形態に係る電流測定装置の全体構成を示す図である。 図 2において図 1の構成要素と同一のものには同一符号を付けている。本実施形態 と第 1実施形態との相違点は、本実施形態では電流測定装置が電極 10を更に含む 点である。
[0042] すなわち、本実施形態の電流測定装置では、測定サンプル 4の表面上あるいは近 接する位置に、この測定サンプル 4と容量結合するプレート状の電極 10が設けられ ている。そして、測定サンプル 4と電極 10とは、直流電流又は交流電流が流れること が可能なように電気的に接続されている。この電極 10は、測定サンプル 4の裏面、上 面又は側面、あるいはこの面に近接する位置にあってもかまわなレ、。電極 10を測定 サンプノレ 4の裏面に配置した場合、電極 10は測定サンプル 4とほぼ同じ大きさを有 することで、電極 10は非常に大きな容量を形成することができる。ここで、非常に大き
な容量とは、例えば、測定サンプル 4と電流測定装置の筐体との寄生容量等に比較 して、非常に大きな容量という意味である。
[0043] 本実施形態の電流測定装置は、測定サンプル 4の下に設けられた電極 10に電流 計 5が直接接続されている。更に、その電流計 5に直列に電圧をカ卩えるためのバイァ ス電源 6が設けられている。測定系に存在する容量成分は、電極 10と測定サンプノレ 4との間にできた容量と、測定サンプル 4と測定装置筐体間に生じる寄生容量が主な 成分となる。この中で、測定サンプル 4と電極 10の間に生じる容量は圧倒的にほかの 容量と比較して大きい。したがって、測定サンプル 4を直接バイアスしていないにも関 わらず、電流計 5に加えたバイアス電圧 Vmによって測定サンプル 4の電位を変化さ せること力 Sできる。そこで、本電流測定装置は、測定対象の測定サンプル 4に対して、 電子ビーム 3の照射エネルギー Eirから電流計 5に加えるバイアス電圧 Vmを引いた 実効エネルギーを加えることができる。
また、本実施形態の電流測定装置によれば、測定サンプル 4に電流計 5を直接接 続する必要がなぐ実用性を高めることができる。
[0044] [第 3実施形態]
図 3は、本発明の第 3実施形態に係る電流測定装置の全体構成を示す図である。 図 3において図 1の構成要素と同一のものには同一符号を付けている。本実施形態 と第 1実施形態との相違点は、本実施形態では電流測定装置が加速電極 11と加速 電源 11aとアパーチャ 12とを更に含む点である。加速電極 11は、電子ビーム源 2か ら放出された電子ビームを加速するものである。加速電源 11aは、加速電極 11に加 速電圧 Vaを印加するものであり、加速電極 11におけるその加速の度合レ、を可変制 御するものである。アパーチャ 12は、電子ビーム源 2から放出されて加速電極 11で 加速された電子ビームの一部分を通過させるものである。
[0045] 光学の原理によれば、物体を見分ける指標となる分解能は利用する光の波長と同 等程度であることが分かっている。電子ビームは波長が非常に短い。例えば、 100e Vの電子ビームでさえ波長は 1オングストロームよりも小さい。し力、しながら、実際に発 生し得る電子ビームは大きなエネルギーの分散があり、波長から想定されるよりもはる かに低レ、分解能しか得ることができなレ、。
[0046] 図 3に示す本実施形態の電流測定装置では、加速電極 11及び加速電源 11aを用 いて電子ビーム源 2から飛び出た電子ビーム 3をカ卩速電圧 Vaによりー且非常に高い エネルギーレベルの状態にする。例えば、電子ビーム 3を加速電極 11により 5kV程 度までエネルギーを増加させる。この状態で非常に小さな円筒形のアパーチャ 12を 通過させ、エネルギーレベルの揃っている部分だけを取り出す。その後、図 1に示す 第 1実施形態の場合と同様な構成により、測定サンプル 4における実効的な電子ビ ーム照射エネルギーを下げる。
[0047] アパーチャ 12は、例えば数ミクロンの大きさを有しており、一種のエネルギーフィル ターを構成する。電子ビーム源 2から放出される電子ビームはチップと呼ばれる電子 ビーム放出電極の広い範囲から放出される。放出される領域は数百オングストローム の範囲と小さな領域ではある力 S、放出される場所によって電子ビームのエネルギーに 差が生じる。
この差が生じると、電子ビーム 3をフォーカスした際に、収差が生じて異なった場所 に焦点を結ぶため、像がぼけてしまう原因となる。これらは、測定精度を下げる原因 になるので、できるだけ等しいエネルギーを持った電子ビーム 3のみを測定に使用し たいという要望がある。
[0048] 本実施形態によれば、アパーチャ 12において、電子ビームにおけるエネルギーレ ベルが揃っている中心部のみが通過する。これにより、電子ビーム源 2から電子ビー ムが放出された時のエネルギー分散に比べ非常に小さな分散を持つようになる。こ のような状態の電子ビーム 3は電子ビームエネルギーが低くても良いフォーカスを実 現できる。その後、電流計 5に加えられた例えば 4. 5kVというようなバイアス電圧 Vm により、測定サンプノレ 4が実際に受ける電子ビームエネルギーは 500eVと小さなもの になる。しかしながら、この電子ビーム 3は非常にエネルギーレベルが揃っており、ビ ームがシャープにフォーカスするようになる。
[0049] これらにより、本実施形態の電流測定装置によれば、測定サンプル 4の所望部位に 高度に焦点の合った電子ビーム 3を照射でき、高解像度に測定サンプル 4を検査す ること力 Sできる。
[0050] [第 4実施形態]
図 4は、本発明の第 4実施形態に係る電流測定装置の全体構成を示す図である。 図 4において図 1から図 3の構成要素と同一のものには同一符号を付けている。本実 施形態と第 3実施形態との相違点は、本実施形態では電流測定装置が電極 10を更 に含む点である。
[0051] すなわち、本実施形態の電流測定装置では、測定サンプル 4の下に、その測定サ ンプル 4との間で容量結合するプレート状の電極 10が付設されている。したがって、 電極 10と測定サンプル 4との間は交流的に接続されている。電極 10は、測定サンプ ノレ 4とほぼ同じ大きさを有しており、他の寄生容量と比較して非常に大きな容量を形 成している。そして、測定サンプル 4の下に設けられた電極 10には電流計 5が直接接 続されている。電流計 5には、バイアス電源 6によってバイアス電圧 Vmが印加されて いる。
[0052] このような構成により、測定サンプル 4を直接バイアスしていないにも関わらず、電 流計 5に加えたバイアス電圧 Vmによって測定サンプル 4の電位を変化させることが できる。そこで、本電流測定装置は、測定対象の測定サンプル 4に対して、電子ビー ム 3の照射エネルギー Eirから電流計 5に加えるバイアス電圧 Vmを引いた実効エネ ルギーをカ卩えることができる。また、本実施形態の電流測定装置によれば、測定サン プル 4に電流計 5を直接接続する必要がなぐ実用性を高めることができる。
[0053] また、本実施形態の電流測定装置によれば、電子ビーム 3のエネルギー分散を小 さくするためのエネルギーフィルターを加速電極 11及びアパーチャ 12で構成してい る。したがって、測定サンプル 4の所望部位に高度に焦点の合った電子ビーム 3を照 射でき、高解像度に測定サンプル 4を検査することができる。
[0054] [第 5実施形態]
図 5は、本発明の第 5実施形態に係る電流測定装置の全体構成を示す図である。 図 5において図 1から図 4の構成要素と同一のものには同一符号を付けている。本実 施形態と第 3実施形態との相違点は、本実施形態では電流測定装置が減速電極 13 と減速電源 13aとを更に含む点である。減速電極 13は、アパーチャ 12を通過した電 子ビーム 3のエネルギーレベルを変換するものである。減速電源 13aは、減速電極 1 3に電圧を印加するものである。
[0055] すなわち、本実施形態の電流測定装置では、加速電極 11によって電子ビームが 加速されてエネルギー上昇する。その電子ビーム 3はアパーチャ 12を通過してフィル タリングされる。その電子ビーム 3は、減速電極 13によって減速され、測定サンプル 4 に照射する手前でエネルギーレベルが下げられる。
[0056] 例えば、加速電極 11に印可する加速電圧 Vaを lOOkVに設定し、減速電極 13に 印加する減速電圧 Vdを 99kVに設定する。すると、測定サンプル 4の表面では実効 的に IkeVのエネルギーを持つ電子ビームが得られる。さらに、この状態で電流計 5 に例えば 900Vのバイアス電圧 Vmを印加することにより、実効的に lOOeVのェネル ギーを有する電子ビームを実現できる。 5kVを超える高加速状態からいきなり数百 e Vのエネルギーを実現するためには、従来は非常に大きなバイアス電圧 Vmを電流 計 5に加えることが必要となり、実用上困難であった。
[0057] 本実施形態の電流測定装置によれば、加速電極 11などにより電子ビーム 3のエネ ルギーレベルがどのように高くなつても、減速電極 13を用いてそのエネルギーレベル を制御することができる。そのため、電流計 5に加えるバイアス電圧 Vmを小さく設定 すること力 Sできる。
[0058] [第 6実施形態]
図 6は、本発明の第 6実施形態に係る電流測定装置の全体構成を示す図である。 図 6において図 1から図 5の構成要素と同一のものには同一符号を付けている。本実 施形態と第 5実施形態との相違点は、本実施形態では電流測定装置が電極 10を更 に含む点である。
[0059] すなわち、本実施形態の電流測定装置では、測定サンプル 4の下に、その測定サ ンプル 4との間で容量結合するプレート状の電極 10が付設されている。したがって、 電極 10と測定サンプル 4との間は交流的に接続されている。電極 10は、測定サンプ ノレ 4とほぼ同じ大きさを有しており、他の寄生容量と比較して非常に大きな容量を形 成している。そして、測定サンプル 4の下に設けられた電極 10には電流計 5が直接接 続されている。電流計 5には、バイアス電源 6によってバイアス電圧 Vmが印加されて いる。
[0060] このような構成により、測定サンプル 4を直接バイアスしていないにも関わらず、減
速電極 13と電流計 5に加えたバイアス電圧 Vmによって測定サンプル 4の電位を変 化させることができる。そこで、測定サンプノレ 4に対して、電子ビーム 3の照射エネル ギー Eirから減速電圧 Vd及びバイアス電圧 Vmを引いた実効エネルギーを加えること ができる。また、本実施形態の電流測定装置によれば、測定サンプル 4に電流計 5を 直接接続する必要がなぐ実用性を高めることができる。
[0061] [第 7実施形態]
図 7は、本発明の第 7実施形態に係る電流測定装置の全体構成を示す図である。 図 7において図 1から図 6の構成要素と同一のものには同一符号を付けている。本実 施形態と第 5実施形態との相違点は、本実施形態では電流測定装置がバイアス電源 6を備えず、可変電源 7と制御信号発生部 8とを更に含む点である。可変電源 7は、 電流計 5と接地電位との間に可変電圧を印加するものである。制御信号発生部 8は、 可変電源 7の動作を制御する電圧制御信号を出力するものである。
[0062] すなわち、本実施形態の電流測定装置では、制御信号発生部 8が出力する電圧 制御信号によって、電流計 5に印加するバイアス電圧 Vmを可変制御できる。制御信 号発生部 8は、 自立発振的な交流信号発生装置でもよいし、外部のコンピュータ(図 示せず)からのデジタルあるいはアナログ信号を基に電圧制御信号を生成する装置 でもよい。
[0063] 例えば、外部のコンピュータには本発明の電流測定装置を自動制御するためのプ ログラムが存在し、ある一定のシーケンスに基づいて、測定サンプル 4に流れる電流 の測定がなされる。例えば、測定サンプル 4をなす測定対象ウェハ力 先ず、ウェハ カセットから 1枚ずつ取り出されて、本電流測定装置にロボットによって搬入される。 搬入されたウェハはァライメント機構により、正確な位置だしをされ、さらに精密な機 械ステージを有するチャンバ一 1に搬送される。
[0064] チャンバ一 1に搬送されたウェハは光学的及び電子ビーム的手段により正確な位 置だしが行われる。シーケンスには予めウェハのどの部分を測定するのか記録して あるので、そのシーケンスに従って機械ステージが動作し、電子ビーム 3を照射する 位置が定められる。
必要により電子ビームを利用したパターンマッチングなどを行レ、、正確に測定対象
位置を決定する。
[0065] 決定された位置に対して、 1回目の電子ビーム照射をバイアス電圧 Vmlで行う。次 いで、 2回目の電子ビーム照射をバイアス電圧 Vm2で行う。この 2つのバイアス電圧 時に得られる電流をそれぞれ測定して保存する。測定された電流値は適当に補正を 掛けた後、所定の方程式に代入をして材料の厚みなどへ変換する。
[0066] [第 8実施形態]
図 8は、本発明の第 8実施形態に係る電流測定装置の全体構成を示す図である。 図 8において図 1から図 7の構成要素と同一のものには同一符号を付けている。本実 施形態と第 7実施形態との相違点は、本実施形態では電流測定装置が電極 10を更 に含む点である。
[0067] すなわち、本実施形態の電流測定装置では、測定サンプル 4の下に、その測定サ ンプル 4との間で容量結合するプレート状の電極 10が付設されている。したがって、 電極 10と測定サンプノレ 4との間は交流的に接続されている。電極 10は、測定サンプ ノレ 4とほぼ同じ大きさを有しており、他の寄生容量と比較して非常に大きな容量を形 成している。そして、測定サンプル 4の下に設けられた電極 10には電流計 5が直接接 続されている。電流計 5には、可変電源 7によってバイアス電圧 Vmが印加されている また、第 7実施形態の電流測定装置と同じように、電子ビーム源 2、加速電極 11、ァ パーチヤ 12、減速電極 13が設けられている。
[0068] 本実施形態の電流測定装置では、第 7実施形態の電流測定装置と同じように、電 子ビーム源 2から放出された電子ビーム 3が加速電極 11に加えられた加速電圧 Va によってカ卩速される。加速された電子ビーム 3はアパーチャ 12を通過し、電子ビーム 軸中心を形成する電子ビーム 3のみが取り出される。軸中心を形成する電子ビーム 3 のエネルギーは、電子ビーム源 2から放出された時に電子ビーム 3が有するエネルギ 一分散に比べて格段に揃っている。エネルギーが揃った電子ビーム 3は減速電極 1 3に加えられた減速電圧 Vdに応じて減速し、測定サンプル 4の手前で低いエネルギ 一を有する状態となる。測定サンプル 4の表面の電位は電流計 5に印加されたバイァ ス電圧 Vmによって制御される。したがって、測定サンプル 4の表面においては、減速
電極 13で得られるエネルギーよりもさらに低いエネルギーを持つ電子ビーム 3に変換 される。
[0069] 測定サンプノレ 4は容量的に電流計 5と接続されている。しかし、測定サンプル 4と電 極 10の間に生じる容量は、測定サンプル 4と電子ビーム源 2との間に生じる容量と比 較して非常に大きレ、。そこで、電流計 5に加えられたバイアス電圧 Vmはほとんど電子 ビーム源 2と測定サンプル 4との間に実質的に加えられる。
[0070] [第 9実施形態]
図 9は、本発明の第 9実施形態に係る電流測定装置の全体構成を示す図である。 図 9において図 1から図 8の構成要素と同一のものには同一符号を付けている。本実 施形態と第 7実施形態との相違点は、制御信号発生部 8が測定タイミング信号を出力 する点である。すなわち、制御信号発生部 8は、電流計 5の電流測定タイミングと同期 して、可変電源 7によるバイアス電圧 Vmの印加のタイミングを制御する制御手段をな している。
[0071] 換言すれば、本実施形態の電流測定装置では、電流計 5に可変電源 7によりバイ ァス電圧 Vmを印加するタイミングと、電流計 5が電流を測定するタイミングとを同期さ せる。
[0072] 測定を行わない通常状態ではバイアス電圧 Vmは非印加又はあるグローバルに設 定された電圧に維持されている。そして、電流計 5で測定が実際に行われるタイミン グに同期して、電流計 5にバイアス電圧 Vmが印加される。バイアス電圧 Vmが印加さ れるタイミングは、非常に短い周期の交流信号であっても良いし、比較的長いオンォ フ信号であってもかまわない。
[0073] 本実施形態の電流測定装置によれば、電流計 5を介しての測定サンプル 4へのバ ィァス電圧 Vmの印加のタイミングと、電流測定タイミングとを同期させることができる。 これにより、電流測定において問題となるホワイトノイズなどを簡便に除去することが でき、測定サンプル 4に流れる電流などの測定について感度及び精度をさらに向上 させること力できる。
[0074] [第 10実施形態]
図 10は、本発明の第 10実施形態に係る電流測定装置の全体構成を示す図である
。図 10において図 1から図 9の構成要素と同一のものには同一符号を付けている。 本実施形態と第 8実施形態との相違点は、本実施形態では電極 10を有している点 である。
[0075] すなわち、本実施形態の電流測定装置では、測定サンプル 4の下に、その測定サ ンプル 4との間で容量結合するプレート状の電極 10が付設されている。したがって、 電極 10と測定サンプル 4との間は交流的に接続されている。電極 10は、測定サンプ ノレ 4とほぼ同じ大きさを有しており、他の寄生容量と比較して非常に大きな容量を形 成している。そして、測定サンプル 4の下に設けられた電極 10には電流計 5が直接接 続されている。その他の構成部分と動作は、図 9に示した第 9実施形態の電流測定 装置と同様である。
[0076] [第 11実施形態]
図 11は、本発明の第 11実施形態に係る電流測定装置の要部構成を示す図である 。図 11において図 1から図 10の構成要素と同一のものには同一符号を付けている。 本実施形態は上記の各実施形態の電流測定装置における電流計 5の具体例として の電流測定回路 5aを示してレ、る。
[0077] 電流測定回路 5aは、演算増幅器 14と、演算増幅器 14の正入力端子にバイアス電 圧 Vmを印加するバイアス電源 6と、演算増幅器 14の出力端子と負入力端子との間 に配置された高抵抗器 R1とを有してなる。演算増幅器 14の負入力端子には測定サ ンプル 4が電気的に接続されている。
[0078] これらにより、電流測定回路 5aは演算増幅器 14を用いた電流電圧変換回路を構 成している。測定すべき電流は演算増幅器 14の負入力端子に導入される。負入力 端子は演算増幅器 14を構成する FETトランジスタのゲートに内部的には接続されて おり、演算増幅のための元信号となる。演算増幅器 14は 2つの入力端子の電圧差が ゼロボルトになるように動作する。そのため、負入力端子に入力された電流と同じ大き さになるように高抵抗器 R1をバイアスする。このバイアスに必要な電圧が演算増幅器 14の出力となる。
[0079] 一方、演算増幅器 14が正常に動作しているときは、演算増幅器 14の正入力端子と 負入力端子間の電圧がゼロボルトになるように制御されている。従って、演算増幅器
14の正入力端子にバイアス電圧 Vmを加えると、そのバイアス電圧 Vmと負入力端子 の電圧は同じになる。したがって、測定サンプル 4に直接電圧を加えなくても、演算 増幅器 14の正入力端子に電圧をカ卩えることで、実質的に測定サンプル 4の電位を変 化させることができる。そこで、電子ビーム照射エネルギー Eirから演算増幅器 14の 正入力端子に印加されたバイアス電圧 Vmを引いたエネルギーに相当する電子ビー ムが測定サンプル 4に照射される。
[0080] そこで、本実施形態の電流測定装置は、電子ビーム源 2から高工ネルギ一の電子 ビームを放出しても、測定サンプル 4が受ける実効エネルギーを小さくでき、測定サン プル 4に対してダメージを与えることなぐ測定サンプル 4に流れる電流の測定につい て感度と精度を向上させることができる。
[0081] [第 12実施形態]
図 12は、本発明の第 12実施形態に係る電流測定装置の要部構成を示す図である 。図 12において図 1から図 11の構成要素と同一のものには同一符号を付けている。 本実施形態と第 11実施形態との相違点は、本実施形態ではバイアス電源 6を備え ず、可変電源 7と制御信号発生部 8とを有している点である。可変電源 7は、演算増 幅器 14における正入力端子に可変電圧を印加する演算増幅器用可変電源をなす ものである。制御信号発生部 8は可変電源 7の出力電圧を制御する電圧制御信号を 出力するものである。
[0082] すなわち、本実施形態の電流測定装置では、演算増幅器 14に加えるバイアス電圧 Vmを制御信号発生部 8からの電圧制御信号により可変とする。制御信号発生部 8は 、電圧制御信号を出力することで、測定サンプル 4における電子ビームの実質的なェ ネルギーレベルを可変することができる。ここで、電圧制御信号によって可変制御さ れるバイアス電圧 Vmは、サイン波、矩形波又はノコギリ波などの周期的な信号でもよ いし、トリガー的なワンショット信号でもよい。
[0083] これらにより、本実施形態の電流測定装置は、測定サンプル 4の属性などに応じて 、最適なバイアス電圧 Vmの印加形態を選んで電流測定などをすることができ、より 高精度にプロセス評価などをすることができる。
[0084] [第 13実施形態]
図 13は、本発明の第 13実施形態に係る電流測定装置の要部構成を示す図である 。図 13において図 1から図 12の構成要素と同一のものには同一符号を付けている。 本実施形態と第 12実施形態との相違点は、制御信号発生部 8がアパーチャ 12に対 して照射タイミング制御信号を出力する点である。より具体的に述べると、アパーチャ 上部に存在するブランキング電極に電圧を印加して電子ビームがアパーチャを通り 抜けないようにすることで、電子ビームの照射タイミングを決定する。あるいは、ァパ 一チヤ自身の大きさが電気信号によって変化する機構をもちいてもよレ、。
[0085] すなわち、本実施形態の電流測定装置は、演算増幅器 14に加えるバイアス電圧 V mを電子ビーム照射タイミングと同期させる。制御信号発生部 8は、測定サンプル 4に 流れる電流の測定を行うタイミングと同期して、アパーチャ 12における電子ビームの 断続と可変電源 7でのバイアス電圧 Vmとを制御する。
[0086] 本実施形態の電流測定装置によれば、電子ビームのオンオフタイミングと、電流測 定回路 5aでの測定タイミングとを同期させることによって、外部から測定系に入り込 む非同期なノイズ (ホワイトノイズなど)を簡便に除去することが可能となる。
[0087] 以上説明したように、本発明の電流測定装置においては、非常に低いエネルギー を持つ電子ビームを利用して測定することができる。低いエネルギーを有する電子ビ ームは、二次電子放出確率を向上させ、測定感度を高くすることができる。また、低 いエネルギーを有する電子ビームは、測定サンプルに対してダメージを与えない。
[0088] また、本発明によれば、電子ビーム源の設定を変えることなぐ電子ビームのェネル ギーレベルを大きく変えられるので、高速で電子ビームのエネルギーレベルを変更で きる。
このため、電子ビームのエネルギーレベルを変更した後に同じ場所に電子ビーム 照射できるので、複数のエネルギーレベルの電子ビームを用いて測定する場合、測 定精度を著しく向上させることができ、またスループットを向上させることができる。
[0089] また、本発明によれば、 1つの電子ビームエネルギーを設定するときに、電子ビーム 源側及び電流測定回路側のそれぞれで、レ、ろレ、ろな条件の組み合わせができる。 例えば、電子ビーム源に印加する高圧電源 Vh、加速電圧 Va、減速電圧 Vd、ノ ァ ス電圧 Vm、バイアス電圧 Vmの波形などを組み合わせることができる。その結果、平
均的には同じエネルギーを持つ電子ビームのエネルギー分散状態や空間分布につ いての調節が可能なので用途に応じて最適な組み合わせの電子ビーム照射形態を 選んで使用できる。
[0090] 例えば、上述の実施形態では、測定サンプルへの電子ビームの照射によりその測 定サンプノレに流れる電流を測定することとしたが、本発明はこれに限定されず、測定 サンプノレへの電子ビームの照射によって発生した散乱電子又は二次電子を回収す る回収電極を設け、その回収電極に流れる電流について、上記実施形態と同様にし て測定することとしてもよレ、。
また、本発明の実施形態においては、電子ビームをプローブとして測定サンプルに 照射する例のみ示したが、同様の測定を行うために、光などの電磁波、イオンビーム 、音波、振動などを電子ビームの代わりにプローブとして適用することも可能である。
[0091] 以上、本発明の実施の形態について説明したが、本発明の電流測定装置及び電 流測定方法は、上述の実施形態に限定されるものではなぐ本発明の要旨を逸脱し なレ、範囲内におレ、て種々変更をカ卩ぇ得ることは勿論である。
産業上の利用可能性
[0092] 本発明は、電子ビームの照射により半導体基板などの測定サンプノレに流れる電流 などを測定する際に、測定サンプノレして対してダメージを与えることなぐその測定に ついて感度と精度を向上させるので、本発明は、各種の電流測定装置及び電流測 定方法等に有用である。
Claims
[1] プローブを測定サンプルに照射するプローブ照射部と、
前記測定サンプルと電気的に結合され、前記測定サンプルにプローブを照射した ときに前記測定サンプルに流れる電流を測定する、電流測定回路と、
前記電流測定回路と電気的に結合され、前記電流測定回路に電圧を印加する電 圧印加部と、
を少なくとも含む電流測定装置。
[2] 前記電流測定回路と電気的に結合すると共に、前記測定サンプノレに容量結合する 容量電極を、更に含み、
前記電流測定回路は、前記容量電極に流れる電流を測定する請求項 1に記載の 電流測定装置。
[3] 前記プローブ照射部による前記測定サンプノレへのプローブの照射によって、前記 測定サンプルに発生した散乱電子及び二次電子の少なくとも一方を回収する回収 電極を、更に含み、
前記電流測定回路は、前記回収電極と接続され、前記電流測定回路に流れる電 流を測定する請求項 1に記載の電流測定装置。
[4] 前記プローブ照射部は、
前記プローブとして働く電子ビームを発生する電子ビーム源と、
前記電子ビーム源から放出された電子ビームの一部分を通過させるアパーチャを 有するアパーチャ部と、
を少なくとも含む請求項 1に記載の電流測定装置。
[5] 前記プローブ照射部は、
前記プローブとして働く電子ビームを発生する電子ビーム源と、
前記電子ビーム源により発生した第 1のエネルギーレベルを有する電子ビームを、 前記第 1のエネルギーレベルより高い第 2のエネルギーレベルに変換する第 1のエネ ノレギー変換部と、
前記第 2のエネルギーレベルに加速された電子ビームの一部分を通過させるァパ 一チヤを有するアパーチャ部と、
を少なくとも含む請求項 1に記載の電流測定装置。
[6] 前記第 1のエネルギー変換部は、
前記電子ビームを加速する加速電極と、
前記加速電極と電気的に結合され、前記加速電極に電圧を印加する加速電源と、 を含む請求項 5に記載の電流測定装置。
[7] 前記プローブ照射部は、更に、
前記アパーチャを通過した電子ビームの第 2のエネルギーレベルを、前記第 2のェ ネルギーレベルより低い第 3のエネルギーレベルに変換する第 2のエネルギー変換 部を、
含む請求項 5に記載の電流測定装置。
[8] 前記第 2のエネルギー変換部は、
前記電子ビームを減速する減速電極と、
前記減速電極と電気的に結合され、前記減速電極に電圧を印加する減速電源と、 を含む請求項 7に記載の電流測定装置。
[9] 前記電圧印加部は、
前記電流測定回路と電気的に結合され、前記電流測定回路に可変電圧を印加す る可変電源を、
含む請求項 1に記載の電流測定装置。
[10] 前記可変電源と電気的に結合され、前記可変電圧のレベルを制御する電圧制御 部を、
更に含む請求項 9に記載の電流測定装置。
[11] 前記制御部は、更に、前記電流測定回路と電気的に結合され、前記電流測定回 路の電流測定タイミングを制御すると共に、前記電流測定タイミングと同期して前記 可変電源による前記電流測定回路への電圧印加のタイミングを制御する請求項 10 に記載の電流測定装置。
[12] 前記電流測定回路は、
前記測定サンプルと電気的に結合された第 1の入力端子と、前記電圧印加部と電 気的に結合された第 2の入力端子と、出力信号を出力する出力端子とを有し、前記
測定サンプルに流れる電流を増幅する前記演算増幅器を、
含む請求項 1に記載の電流測定装置。
[13] 前記電圧印加部は、
前記演算増幅器の前記第 2の入力端子と電気的に結合され、前記第 2の入力端子 に可変電圧を印加する可変電源を、
含む請求項 12に記載の電流測定装置。
[14] 前記可変電源と電気的に結合され、前記可変電圧のレベルを制御する電圧制御 部を、
更に含む請求項 13に記載の電流測定装置。
[15] 前記制御部は、更に、前記プローブ照射部と電気的に結合され、前記プローブ照 射部のプローブ照射タイミングを制御すると共に、前記プローブ照射タイミングと同期 して前記可変電源による前記演算増幅器への電圧印加のタイミングを制御する請求 項 14に記載の電流測定装置。
[16] 前記プローブ照射部は、電子ビーム、イオンビーム、電磁波、音波、振動のうちの 少なくとも 1つを前記測定サンプノレに照射する請求項 1に記載の電流測定装置。
[17] プローブを測定サンプルに照射し、前記測定サンプルに流れる電流を発生させる 工程と、
電流測定回路にバイアス電圧を印加する工程と、
前記電流測定回路に電圧を印加した状態で、前記測定サンプルに流れる電流を 前記電流測定回路により増幅し測定する工程と、
を少なくとも含む電流測定方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004378122A JP4954470B2 (ja) | 2004-12-27 | 2004-12-27 | 電流測定装置 |
JP2004-378122 | 2004-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006070691A1 true WO2006070691A1 (ja) | 2006-07-06 |
Family
ID=36614808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/023626 WO2006070691A1 (ja) | 2004-12-27 | 2005-12-22 | 電流測定装置及び電流測定方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4954470B2 (ja) |
TW (1) | TW200628808A (ja) |
WO (1) | WO2006070691A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0778855A (ja) * | 1994-09-05 | 1995-03-20 | Hitachi Ltd | 電子ビーム検査装置 |
JPH10125271A (ja) * | 1996-10-16 | 1998-05-15 | Hitachi Ltd | 走査型電子顕微鏡 |
JP2004064006A (ja) * | 2002-07-31 | 2004-02-26 | Fab Solution Kk | 非破壊測定装置および半導体装置製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3334750B2 (ja) * | 1998-10-21 | 2002-10-15 | 日本電気株式会社 | 試料検査装置および方法 |
JP4229783B2 (ja) * | 2002-10-02 | 2009-02-25 | 日本電子株式会社 | 半導体ウェハ試料の検査方法および装置 |
-
2004
- 2004-12-27 JP JP2004378122A patent/JP4954470B2/ja not_active Expired - Fee Related
-
2005
- 2005-12-22 WO PCT/JP2005/023626 patent/WO2006070691A1/ja active Application Filing
- 2005-12-23 TW TW094146012A patent/TW200628808A/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0778855A (ja) * | 1994-09-05 | 1995-03-20 | Hitachi Ltd | 電子ビーム検査装置 |
JPH10125271A (ja) * | 1996-10-16 | 1998-05-15 | Hitachi Ltd | 走査型電子顕微鏡 |
JP2004064006A (ja) * | 2002-07-31 | 2004-02-26 | Fab Solution Kk | 非破壊測定装置および半導体装置製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP4954470B2 (ja) | 2012-06-13 |
JP2006186103A (ja) | 2006-07-13 |
TW200628808A (en) | 2006-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4637684B2 (ja) | 荷電粒子線応用装置 | |
JP4828162B2 (ja) | 電子顕微鏡応用装置および試料検査方法 | |
JP7335389B2 (ja) | 二次イオン質量分析を用いた半導体測定および表面分析のためのシステムならびに手法 | |
US9324540B2 (en) | Charged particle beam device | |
US20170294291A1 (en) | APPLICATION OF eBIP TO INSPECTION, TEST, DEBUG AND SURFACE MODIFICATIONS | |
JP6826637B2 (ja) | 高性能検査走査電子顕微鏡装置およびその動作方法 | |
WO2001033603A1 (fr) | Appareil a faisceau electronique | |
JP6782795B2 (ja) | 走査電子顕微鏡および走査電子顕微鏡による試料観察方法 | |
KR101010338B1 (ko) | 전자칼럼의 전자빔 에너지 변환 방법 | |
JP4616180B2 (ja) | 走査電子顕微鏡 | |
May et al. | Picosecond photoelectron scanning electron microscope for noncontact testing of integrated circuits | |
CN1228809C (zh) | 带电束装置、图形测定方法和图形描绘方法 | |
EP0189498B1 (en) | Field-emission scanning auger electron microscope | |
JP3377101B2 (ja) | 集束イオンビームによる集積回路の動作解析方法とその装置 | |
JPH05121030A (ja) | イオンビームを用いて電位測定を行うイオンビーム装置及び方法 | |
JP4954470B2 (ja) | 電流測定装置 | |
JP2010140688A (ja) | 電子線装置及び電子線装置の動作方法 | |
JP2007273401A (ja) | 分析装置及び分析方法 | |
JP3671687B2 (ja) | 走査型プローブ顕微鏡に用いる超短パルス高電圧発生装置 | |
WO2024029060A1 (ja) | 試料測定装置 | |
JP3231639B2 (ja) | イオンビーム加工解析方法 | |
May et al. | Photoelectron Scanning Electron Microscope (PSEM) for High Speed Noncontact Testing | |
WO2006070697A1 (ja) | 電流測定装置及び電流測定方法 | |
JP4545284B2 (ja) | 高圧電源回路 | |
JP2007078537A (ja) | 電子ビーム寸法測定装置及び電子ビーム寸法測定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05819503 Country of ref document: EP Kind code of ref document: A1 |