WO2006069397A2 - Prevision de numero de niveau fondee sur la capacite pour une conception mimo - Google Patents

Prevision de numero de niveau fondee sur la capacite pour une conception mimo Download PDF

Info

Publication number
WO2006069397A2
WO2006069397A2 PCT/US2005/047643 US2005047643W WO2006069397A2 WO 2006069397 A2 WO2006069397 A2 WO 2006069397A2 US 2005047643 W US2005047643 W US 2005047643W WO 2006069397 A2 WO2006069397 A2 WO 2006069397A2
Authority
WO
WIPO (PCT)
Prior art keywords
cap
tone
rank
snrs
calculating
Prior art date
Application number
PCT/US2005/047643
Other languages
English (en)
Inventor
Hemanth Sampath
Tamer Kadous
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to JP2007548617A priority Critical patent/JP2008526137A/ja
Priority to EP05856106A priority patent/EP1832032A2/fr
Priority to NZ556045A priority patent/NZ556045A/en
Priority to MX2007007757A priority patent/MX2007007757A/es
Priority to CA002591609A priority patent/CA2591609A1/fr
Priority to BRPI0519539-0A priority patent/BRPI0519539A2/pt
Priority to AU2005318993A priority patent/AU2005318993B2/en
Publication of WO2006069397A2 publication Critical patent/WO2006069397A2/fr
Priority to IL183999A priority patent/IL183999A0/en
Priority to ZA200805129A priority patent/ZA200705129B/xx
Priority to NO20073178A priority patent/NO20073178L/no

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/065Properties of the code by means of convolutional encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0656Cyclotomic systems, e.g. Bell Labs Layered Space-Time [BLAST]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/26265Arrangements for sidelobes suppression specially adapted to multicarrier systems, e.g. spectral precoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/023Multiplexing of multicarrier modulation signals

Definitions

  • the present invention relates generally to communications, and more specifically to techniques for determining a distribution of a data stream to be transmitted via a multi-channel, e.g., a multiple-input multiple-output (MIMO), orthogonal frequency division multiplexing (OFDM) communication system.
  • MIMO multiple-input multiple-output
  • OFDM orthogonal frequency division multiplexing
  • an RF modulated signal from a transmitter may reach a receiver via a number of propagation paths.
  • the characteristics of the propagation paths typically vary over time due to a number of factors such as fading and multipath.
  • multiple transmit and receive antennas may be used. If the propagation paths between the transmit and receive antennas are linearly independent (i.e., a transmission on one path is not formed as a linear combination of the transmissions on the other paths), which is generally true to at least an extent, then the likelihood of correctly receiving a data transmission increases as the number of antennas increases. Generally, diversity increases and performance improves as the number of transmit and receive antennas increases.
  • a multiple-input multiple-output (MIMO) communication system employs multiple (N T ) transmit antennas and multiple (N R ) receive antennas for data transmission.
  • a MIMO channel formed by the N T transmit and N R receive antennas may be decomposed into Ns independent channels, with N s ⁇ min ⁇ N ⁇ , N R ⁇ .
  • Each of the Ns independent channels may also be referred to as a spatial subchannel (or a transmission channel) of the MIMO channel and corresponds to a dimension.
  • the MIMO system can provide improved performance (e.g., increased transmission capacity) if the additional dimensionalities created by the multiple transmit and receive antennas are utilized.
  • an independent data stream may be transmitted from each of the Nr transmit antennas.
  • the transmitted data streams may experience different channel conditions (e.g., different fading and multipath effects) and may achieve different signal-to-noise-and-interference ratios (SNRs) for a given amount of transmit power.
  • SNRs signal-to-noise-and-interference ratios
  • successive interference cancellation processing is used at the receiver to recover the transmitted data streams (described below)
  • SNRs may be achieved for the data streams depending on the specific order in which the data streams are recovered. Consequently, different data rates may be supported by different data streams, depending on their achieved SNRs. Since the channel conditions typically vary with time, the data rate supported by each data stream also varies with time.
  • the MIMO design has two modes of operation - the single code word (SCW) and multiple-code word (MCW).
  • SCW single code word
  • MCW multiple-code word
  • the transmitter can encode the data transmitted on each spatial layer independently, possibly with different rates.
  • the receiver employs a successive interference cancellation (SIC) algorithm which works as follows: Decode the first layer, and then subtract its contribution from the received signal after re- encoding and multiplying the encoded first layer with an "estimated channel,” then decode the second layer and so on.
  • SIC successive interference cancellation
  • This "onion-peeling" approach means that each successively decoded layer sees increasing signal-to-noise (SNR) and hence can support higher rates.
  • SNR signal-to-noise
  • MCW design with SIC achieves capacity.
  • the transmitter encodes the data transmitted on each spatial layer with "identical data rates.”
  • the receiver can employ a low complexity linear receiver such as a Minimum Mean Square Solution (MMSE) or Zero Frequency (ZF) receiver, or non-linear receivers such as QRM, for each tone.
  • MMSE Minimum Mean Square Solution
  • ZF Zero Frequency
  • QRM non-linear receivers
  • the SCW design overcomes the above mentioned implementation hassles of the MCW design.
  • the drawback is that the SCW mode cannot support the MCW rates in spatially correlated channels or line-of-sight (LOS) channels with a high K-factor. Both of these scenarios lead to a loss in channel rank or increase in channel condition number and increased inter-layer interference. This dramatically lowers the effective SNR for each spatial layer. Hence, the data rate supported by each layer is lowered, which lowers the overall data rate.
  • LOS line-of-sight
  • K-factor is the ratio of the LOS channel power to the non-LOS channel power.
  • Rank is the number of eigen-modes in the channel with non-zero energy.
  • Condition Number is the ratio of the largest eigenvalue to the smallest eigen-value of the MIMO channel.
  • a method of rank prediction comprises calculating MIMO channel matrices corresponding to layer transmissions for each tone, calculating signal-to-noise ratios (SNRs) for each tone based on the MIMO channel matrices, mapping the SNR for each tone to generate effective SNRs for each layer transmission, calculating additive white Gaussian noise (AWGN) capacities corresponding to the effective SNRs and denoted as C ⁇ [Pl ' CaPl ' Caf>3 ' Cap ⁇ selecting an absolute highest Cap of the highest Caps, and selecting a rank based on the selected absolute highest Cap.
  • SNRs signal-to-noise ratios
  • a wireless communications device comprises means for calculating MIMO channel matrices corresponding to layer transmissions for each tone, means for calculating signal-to-noise ratios (SNRs) for each tone based on the MIMO channel matrices, means for mapping the SNR for each tone to generate effective SNRs for each layer transmission, means for calculating additive white Gaussian noise (AWGN) capacities corresponding to the effective SNRs and denoted as CaPx ' CaPl ' CaPi ' Cap * , means for selecting an absolute highest Cap of the highest Caps, and means for selecting a rank based on the selected absolute highest Cap.
  • SNRs signal-to-noise ratios
  • a processor is programmed to execute a method of rank prediction, the method comprising calculating MBVIO channel matrices corresponding to layer transmissions for each tone, calculating signal-to-noise ratios (SNRs) for each tone based on the MIMO channel matrices, mapping the SNR for each tone to generate effective SNRs for each layer transmission, calculating additive white Gaussian noise (AWGN) capacities corresponding to the effective SNRs and denoted as Cap ⁇ , Cap 2 , Cap - 3 , Cap, ⁇ selecting m absolute highest Cap of the highest Caps; and selecting a rank based on the selected absolute highest Cap.
  • SNRs signal-to-noise ratios
  • a computer readable media embodying a method of rank prediction comprises calculating MHvIO channel matrices corresponding to layer transmissions for each tone, calculating signal-to-noise ratios (SNRs) for each tone based on the MEvIO channel matrices, mapping the SNR for each tone to generate effective SNRs for each layer transmission, calculating additive white Gaussian noise (AWGN) capacities corresponding to the effective SNRs and denoted as Ca P ⁇ » Ca P2> Ca Pi' Ca P ⁇ selecting an absolute highest Cap of the highest Caps, and selecting a rank based on the selected absolute highest Cap.
  • SNRs signal-to-noise ratios
  • FIG. 1 shows a conventional SCW transmitter
  • FIG. 2 shows an SCW transmitter with rank prediction in accordance with an embodiment
  • FIG. 5 shows a block diagram for capacity based rank prediction in accordance with an embodiment.
  • the techniques described herein for performance based rank prediction may be used for various communication systems such as a Code Division Multiple Access (CDMA) system, a Wideband CDMA (WCDMA) system, a direct sequence CDMA (DS-CDMA) system, a Time Division Multiple Access (TDMA) system, a Frequency Division Multiple Access (FDMA) system, a High Speed Downlink Packet Access (HSDPA) system, an orthogonal frequency division multiplexing (OFDM)-based system, an Orthogonal Frequency Division Multiple Access (OFDMA) system, a single- input single-output (SISO) system, a multiple-input multiple-output (MIMO) system, and so on.
  • CDMA Code Division Multiple Access
  • WCDMA Wideband CDMA
  • DS-CDMA direct sequence CDMA
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • HSDPA High Speed Downlink Packet Access
  • OFDM orthogonal frequency division multiplexing
  • OFDMA Orthogonal Fre
  • OFDM is a multi-carrier modulation technique that effectively partitions the overall system bandwidth into multiple (NF) orthogonal subbands. These subbands are also referred to as tones, subca ⁇ ers, bins, and frequency channels. With OFDM, each subband is associated with a respective subcarrier that may be modulated with data. Up to NF modulation symbols may be transmitted on the NF subbands in each OFDM symbol period. Prior to transmission, these modulation symbols are transformed to the time-domain using an NF-point inverse fast Fourier transform (IFFT) to obtain a "transformed" symbol that contains NF chips.
  • IFFT inverse fast Fourier transform
  • the SCW design overcomes the drawbacks of MCW design.
  • SCW mode cannot support the MCW rates in spatially correlated channels or line-of- sight (LOS) channels with a high K-factor. Both of these scenarios lead to a loss in channel rank or increase in channel condition number and increased inter-layer interference. This dramatically lowers the effective SNR for each spatial layer. Hence, the data rate supported by each layer is lowered, which lowers the overall data rate.
  • Effective SNR is (approximately) proportional to the geometric mean of the SNRs averaged over all tones.
  • One way to reduce interlayer interference is to lower the number of spatial layers transmitted in low-rank channels, and trade-off inter-layer interference and MIMO gains. For example, lowering the number of layers transmitted from four to three, i.e., decreasing the rank from four to three, can dramatically increase the effective SNRs for the three layers and hence the data rate supported by each layer. The net- effect is that a three-layer transmission can in-fact have a higher spectral efficiency compared to a four-layer transmission.
  • the SCW design effectively trades off the interlayer interference and MMO gains to maximize overall spectral efficiency. This is achieved via rank prediction, where the receiver feeds back an optimal number of layers for transmission in addition to a Carrier-Quality-to-Interference (CQI) to match the channel rank.
  • CQI Carrier-Quality-to-Interference
  • FIG. 1 shows a conventional SCW transmitter 100.
  • the bits 102 are turbo- encoded 104 and QAM mapped 106 depending on the packet format (PF) 108, 110, specified by a rate prediction algorithm 112.
  • the encoding is identical to a single-in- single-out (SISO) design.
  • the coded symbols are then de-multiplexed 114 to ⁇ layers 116, which are then spatially mapped 118 to ⁇ OFDM modulators 120 and antennas 122.
  • the OFDM processing for each transmit antenna proceeds then in an identical fashion as the SISO, after which the signals are launched into a MIMO wireless channel.
  • the rate prediction algorithm uses a 4-bit CQI feedback 124 from receiver 126 every 5 msec.
  • the CQI is a measure of the effective SNR /spatial layer, measured at the receiver.
  • the spatial mapping is done in manner to ensure that the SNR for each layer are similar. As explained before, the performance of this design suffers in low rank channels.
  • SCW single code word
  • MCW Multiple Code Word
  • SIC Multiple Code Word
  • SCW is better than MCW since MCQ is more sensitive to channel estimation errors.
  • the performance degradation at high SNRs is lowered to 1-2 dB, by employing dual polarized antennas.
  • the SCW design is within two dB of MCW design even at high SNRs.
  • the performance of MCW is worse than SCW at SNR ⁇ 15 dB, due to increased sensitivity of SIC to channel estimation errors.
  • Figure 2 shows an SCW transmitter with rank prediction in accordance with an embodiment.
  • the bits 202 are turbo-encoded 204 and QAM mapped 206 depending on the packet format (PF) 208, 210, specified by a rate prediction algorithm 212.
  • PF packet format
  • the coded symbols are then de-multiplexed 214 to
  • M streams 216 or layers ( ⁇ ⁇ M ⁇ M r), where M 228 is a 2-bit integer l ⁇ M ⁇ M ⁇ specified by the receiver 226 feedback every 5 m-sec, in addition to a 5 -bit CQI 224.
  • the M streams 216 are then spatially mapped 218 to M ⁇ OFDM modulators 220 and M ⁇ antennas 222.
  • the spatial mapper (precoder) 218 is a M t x M matrix ⁇ *) that maps M symbols on to ⁇ antennas, for each OFDM tone, * ⁇
  • the precoder matrices can be chosen so that the equivalent channel matrix " W ' " ⁇ k) has improved frequency selectivity compared to ⁇ ' . The increased frequency selectivity can be exploited by the decoder to obtain frequency diversity gains.
  • a precoder matrix is the following permutation matrix:
  • M ⁇ ⁇ ⁇ ⁇ g ⁇ B ⁇ s a parameter to control the frequency selectivity of the equivalent channel.
  • the vertical axis 406 represents antennas.
  • the horizontal axis 408 represents tones.
  • Circular multiplexing improves frequency diversity regardless of the channel delay spread.
  • the performance of CM (with
  • STTD Space-Time transmit diversity
  • a precoder matrix is the following generalized delay diversity matrix:
  • the parameter ⁇ i s the delay-parameter, which also controls the frequency selectivity of the channel, and N is the number of OFDM tones.
  • the performance of delay diversity is strictly worse than circular multiplexing (and STTD), and has poor performance in LOS channel conditions for high PF.
  • the only advantage of using delay diversity is that it benefits from improved SISO channel estimation gains at very low SNRs (SNR ⁇ -5 dB) and for high mobility (> 120 kmph). In these channel scenarios, circular multiplexing cannot benefit from SISO channel estimation gains.
  • a current SISO design uses 7 PFs with spectral efficiencies [0.5, 1, 1.5, 2.0, 2.5, 3.0, 4.0] bps/Hz.
  • this granularity in spectral efficiency (SE) should be sufficient.
  • SE spectral efficiency
  • all four layers are used for transmission, this translates to spectral efficiencies of [2,4,6,8,10,12,16] bps/Hz, with a SE granularity on the order of 2-4 bps/Hz.
  • a consequence of this coarse granularity is a loss in data rate, since these users are constrained to transmit at a much lower data rate than their attainable SE.
  • MCW design with SIC does not have this granularity problem, since the rate in each layer can be adjusted independently, resulting in an overall finer spectral efficiency granularity.
  • Table 1 Packet Format for SCW Design with Rank Prediction
  • Table 1 shows the packet format for SCW design with rank prediction in accordance with an embodiment.
  • Table 1 shows the PFs with SEs targeting the first to sixth transmission. 16 PFs are provisioned with SE-per-layer ranging from 0.5 bps/Hz/layer to 4.25 bps/Hz/layer with 0.25 bps/Hz/layer increments targeting the first transmission.
  • the maximum attainable SE-per- layer is 1.42 bps/Hz/layer.
  • the SE between 1.42 bps/Hz/layer and 2.13 bps/Hz/layer can be achieved by targeting the second transmission and SE greater than 2.13 bps/Hz/layer can be achieved by targeting the first transmission, where HARQ benefits diminish.
  • more PF#s may be added with SE/layer > 4.25 bps/Hz so that higher SE can be achieved by targeting the third transmission, and benefit from HARQ gains, hi such a case, a 6-bit CQI may be needed to ensure that the PF granularity is captured.
  • FIG. 5 shows a block diagram for a capacity based rank prediction in accordance with an embodiment.
  • H(k)P 4 (k) 502 through HCk)P 1 Ck) 508 are input into MMSE 512 through MMSE 518, respectively.
  • MMSE 512 through MMSE 518 produce SNR 4 Ck) 522 through SNR 1 Ck) 528, respectively.
  • SNR 4 Ck) 522 through SNR 1 Ck) 528 are input into Cap Mapper 532 through Cap Mapper 538, respectively.
  • Cap Mapper 532 through Cap Mapper 538 produces Ef-SNR 4 542 through Ef-SNR 1 548, respectively, and Cap 4 552 through Cap ! 558, respectively.
  • Cap 4 552 through Cap ! 558 are input into a decision unit 570.
  • Decision unit 570 produces a rank 572.
  • EfCSNR 1 542 through Ef[SNR 4 548 and the rank 572 are input into a select & quantize unit 574.
  • the select & quantize unit 574 produces a five-bit CQI 576.
  • the capacity based rank prediction algorithm works as follows:
  • AWGN additive white Gaussian noise
  • the processing units used to perform interference control may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, other electronic units designed to perform the functions described herein, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, micro-controllers, microprocessors, other electronic units designed to perform the functions described herein, or a combination thereof.
  • the interference control techniques may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein.
  • the software codes may be stored in a memory unit and executed by a processor.
  • the memory unit may be implemented within the processor or external to the processor, in which case it can be communicatively coupled to the processor via various means as is known in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Electromagnetism (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
PCT/US2005/047643 2004-12-22 2005-12-22 Prevision de numero de niveau fondee sur la capacite pour une conception mimo WO2006069397A2 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2007548617A JP2008526137A (ja) 2004-12-22 2005-12-22 Mimo設計用の容量ベースのランク予測
EP05856106A EP1832032A2 (fr) 2004-12-22 2005-12-22 Prevision de numero de niveau fondee sur la capacite pour une conception mimo
NZ556045A NZ556045A (en) 2004-12-22 2005-12-22 Capacity based rank prediction for MIMO design
MX2007007757A MX2007007757A (es) 2004-12-22 2005-12-22 Pronostico de clasificacion basado en capacidad para diseno de mimo.
CA002591609A CA2591609A1 (fr) 2004-12-22 2005-12-22 Prevision de numero de niveau fondee sur la capacite pour une conception mimo
BRPI0519539-0A BRPI0519539A2 (pt) 2004-12-22 2005-12-22 prediÇço de classificaÇço com base em capacidade para projeto mimo
AU2005318993A AU2005318993B2 (en) 2004-12-22 2005-12-22 Capacity based rank prediction for MIMO design
IL183999A IL183999A0 (en) 2004-12-22 2007-06-17 Capacity based rank prediction for mimo design
ZA200805129A ZA200705129B (en) 2004-12-22 2007-06-20 Capacity based rank prediction for mimo design
NO20073178A NO20073178L (no) 2004-12-22 2007-06-21 Kapasitetsbasert rangordningsprediksjon for MIMO-design

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/022,347 2004-12-22
US11/022,347 US7567621B2 (en) 2004-07-21 2004-12-22 Capacity based rank prediction for MIMO design

Publications (1)

Publication Number Publication Date
WO2006069397A2 true WO2006069397A2 (fr) 2006-06-29

Family

ID=36127500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/047643 WO2006069397A2 (fr) 2004-12-22 2005-12-22 Prevision de numero de niveau fondee sur la capacite pour une conception mimo

Country Status (16)

Country Link
US (1) US7567621B2 (fr)
EP (1) EP1832032A2 (fr)
JP (1) JP2008526137A (fr)
KR (1) KR100940466B1 (fr)
CN (1) CN101124759A (fr)
AU (1) AU2005318993B2 (fr)
BR (1) BRPI0519539A2 (fr)
CA (1) CA2591609A1 (fr)
IL (1) IL183999A0 (fr)
MX (1) MX2007007757A (fr)
NO (1) NO20073178L (fr)
NZ (1) NZ556045A (fr)
RU (1) RU2378767C2 (fr)
UA (1) UA90495C2 (fr)
WO (1) WO2006069397A2 (fr)
ZA (1) ZA200705129B (fr)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006130541A2 (fr) * 2005-05-31 2006-12-07 Qualcomm Incorporated Retrogadation d'un modele scw mimo utilisant harq
JP2008526122A (ja) * 2004-12-22 2008-07-17 クゥアルコム・インコーポレイテッド Mimo構成のための性能ベースのランク予測方法および装置
JP2010502110A (ja) * 2006-08-24 2010-01-21 インターデイジタル テクノロジー コーポレーション 単一チャネルコードワードのダウンリンク通信をサポートするためのmimo送信機および受信機
EP2234315A1 (fr) * 2009-03-27 2010-09-29 Sony Corporation Division de flux de bits sur chemins spatiaux pour la transmission multiporteuse
WO2011121458A1 (fr) * 2010-04-01 2011-10-06 Telefonaktiebolaget L M Ericsson (Publ) Estimation de la qualité du canal pour récepteur mlse
WO2011132105A1 (fr) * 2010-04-21 2011-10-27 Telefonaktiebolaget L M Ericsson (Publ) Estimation de qualité de canal pour récepteur mimo mlse
CN101594223B (zh) * 2008-05-29 2012-03-14 展讯通信(上海)有限公司 无线收发方法及其设备
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
JP5340377B2 (ja) * 2009-02-24 2013-11-13 パナソニック株式会社 無線送信装置およびプレコーディング方法
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US8842619B2 (en) 2005-10-27 2014-09-23 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8861628B2 (en) 2007-01-05 2014-10-14 Lg Electronics Inc. Layer mapping method and data transmission method for MIMO system
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US8917654B2 (en) 2005-04-19 2014-12-23 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9307544B2 (en) 2005-04-19 2016-04-05 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9660776B2 (en) 2005-08-22 2017-05-23 Qualcomm Incorporated Method and apparatus for providing antenna diversity in a wireless communication system
US10313069B2 (en) 2000-09-13 2019-06-04 Qualcomm Incorporated Signaling method in an OFDM multiple access system

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8023589B2 (en) * 2004-08-09 2011-09-20 Texas Instruments Incorporated Wireless MIMO transmitter with antenna and tone precoding blocks
US7515644B2 (en) * 2004-08-17 2009-04-07 Samsung Electronics Co., Ltd Apparatus and method for space-time-frequency block coding for increasing performance
US20080260053A1 (en) * 2004-11-04 2008-10-23 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving data using space-time block coding
US20060093061A1 (en) * 2004-11-04 2006-05-04 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving data using space-time block coding
KR100909539B1 (ko) * 2004-11-09 2009-07-27 삼성전자주식회사 다중 안테나를 사용하는 광대역 무선 접속 시스템에서 다양한 다중안테나 기술을 지원하기 위한 장치 및 방법
US8446892B2 (en) * 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US20090213950A1 (en) * 2005-03-17 2009-08-27 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
KR101124932B1 (ko) * 2005-05-30 2012-03-28 삼성전자주식회사 어레이 안테나를 이용하는 이동 통신 시스템에서의 데이터송/수신 장치 및 방법
US8611284B2 (en) * 2005-05-31 2013-12-17 Qualcomm Incorporated Use of supplemental assignments to decrement resources
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
US8126066B2 (en) * 2005-06-09 2012-02-28 Telefonaktiebolaget Lm Ericsson (Publ) Time and frequency channel estimation
US8599945B2 (en) * 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US8644292B2 (en) * 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US20070047495A1 (en) * 2005-08-29 2007-03-01 Qualcomm Incorporated Reverse link soft handoff in a wireless multiple-access communication system
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US8582509B2 (en) * 2005-10-27 2013-11-12 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US7917176B2 (en) * 2006-02-14 2011-03-29 Nec Laboratories America, Inc. Structured codebook and successive beamforming for multiple-antenna systems
EP1780924A1 (fr) * 2005-10-31 2007-05-02 Siemens Aktiengesellschaft Procédé de détermination du nombre de flot de données employées dans uns système MIMO
US8831607B2 (en) * 2006-01-05 2014-09-09 Qualcomm Incorporated Reverse link other sector communication
US8116267B2 (en) * 2006-02-09 2012-02-14 Samsung Electronics Co., Ltd. Method and system for scheduling users based on user-determined ranks in a MIMO system
US9461736B2 (en) * 2006-02-21 2016-10-04 Qualcomm Incorporated Method and apparatus for sub-slot packets in wireless communication
US8077595B2 (en) * 2006-02-21 2011-12-13 Qualcomm Incorporated Flexible time-frequency multiplexing structure for wireless communication
US8689025B2 (en) * 2006-02-21 2014-04-01 Qualcomm Incorporated Reduced terminal power consumption via use of active hold state
JP2009527997A (ja) * 2006-02-21 2009-07-30 クゥアルコム・インコーポレイテッド マルチアンテナ無線通信のための空間パイロット構造
TW200824378A (en) * 2006-08-17 2008-06-01 Interdigital Tech Corp Method and apparatus for reducing a peak-to-average power ratio in a multiple-input multiple-output system
DK2052468T3 (en) * 2006-08-18 2015-11-09 Qualcomm Inc BACKUP OF CODING CONTROL INDICATION (PCI) AND CHANNEL QUALITY INDICATION (CQI) IN A WIRELESS COMMUNICATION SYSTEM
US8271043B2 (en) * 2006-08-21 2012-09-18 Qualcomm Incorporated Approach to a unified SU-MIMO/MU-MIMO operation
US7839835B2 (en) * 2006-08-22 2010-11-23 Nec Laboratories America, Inc. Quantized precoding over a set of parallel channels
US20080069074A1 (en) * 2006-09-18 2008-03-20 Interdigital Technology Corporation Successive interference cancellation for multi-codeword transmissions
TWI337462B (en) * 2006-09-26 2011-02-11 Realtek Semiconductor Corp Receiver of mimo multi-carrier system and associated apparatus and method for receive antenna selection
US7661038B2 (en) * 2006-10-09 2010-02-09 Intel Corporation Link adaptation for retransmission error-control technique transmissions
WO2008086239A1 (fr) * 2007-01-04 2008-07-17 Texas Instruments Incorporated Livre de code de précodage pour systèmes mimo
ES2551312T3 (es) * 2007-02-14 2015-11-18 Optis Wireless Technology, Llc Procedimientos y sistemas para el mapeo entre palabras codificadas y capas
KR100944994B1 (ko) * 2007-07-04 2010-03-05 삼성전자주식회사 다중 입출력 무선통신 시스템에서 스트림별 유효 신호대잡음비 생성 장치 및 방법
US8630184B2 (en) * 2007-08-15 2014-01-14 Qualcomm Incorporated Uplink control channel format
JP5109707B2 (ja) * 2008-02-19 2012-12-26 コニカミノルタビジネステクノロジーズ株式会社 定着装置及び画像形成装置
US8077802B2 (en) * 2008-03-17 2011-12-13 Intel Corporation Device, system, and method of resource allocation in a wireless network
CN102067475B (zh) * 2008-07-01 2017-04-05 上海贝尔股份有限公司 利用预编码解相关进行开环空间复用的方法
KR101565417B1 (ko) * 2008-08-08 2015-11-03 엘지전자 주식회사 다중 주파수 대역 시스템에서의 자원 할당하는 방법 및 장치
JP5500165B2 (ja) 2009-03-09 2014-05-21 日本電気株式会社 ランク推定装置、受信機、通信システム、ランク推定方法及びプログラム記録媒体
US20100232384A1 (en) * 2009-03-13 2010-09-16 Qualcomm Incorporated Channel estimation based upon user specific and common reference signals
EP2422542B1 (fr) * 2009-04-21 2017-09-13 Apple Inc. Procédé et appareil pour déterminer un indice de qualité de canal dans des réseaux de communication à multiples entrées multiples sorties et à multiples utilisateurs
KR101683115B1 (ko) * 2009-06-15 2016-12-06 엘지전자 주식회사 무선 통신 시스템에서 상향링크 전력 제어 방법 및 장치
WO2011085581A1 (fr) * 2010-01-12 2011-07-21 中兴通讯股份有限公司 Procédé de retour d'information sur un état de canal et équipement utilisateur
US8213873B2 (en) * 2010-04-09 2012-07-03 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for channel quality reporting in a wireless communication system
WO2012003061A1 (fr) 2010-06-29 2012-01-05 Rambus Inc. Procédés et systèmes de communication mimo en champ proche
KR101752824B1 (ko) 2010-09-29 2017-06-30 삼성전자주식회사 다중 입출력 통신 시스템에서의 피드백 방법 및 장치
CN102752082B (zh) * 2011-04-22 2015-09-16 中兴通讯股份有限公司 一种多天线数据的发送方法及系统
CN102882657B (zh) * 2011-07-15 2018-01-23 瑞典爱立信有限公司 用于上行链路秩自适应的方法、设备和系统
US8743988B2 (en) 2011-07-29 2014-06-03 Telefonaktiebolaget Lm Ericsson (Publ) Transmission mode adaptation in a wireless network
US9450658B1 (en) * 2015-08-06 2016-09-20 Mediatek Inc. Method for transmitting extra spatial layers over the wireless channel
US10659112B1 (en) 2018-11-05 2020-05-19 XCOM Labs, Inc. User equipment assisted multiple-input multiple-output downlink configuration
US10432272B1 (en) 2018-11-05 2019-10-01 XCOM Labs, Inc. Variable multiple-input multiple-output downlink user equipment
US10756860B2 (en) 2018-11-05 2020-08-25 XCOM Labs, Inc. Distributed multiple-input multiple-output downlink configuration
US10812216B2 (en) 2018-11-05 2020-10-20 XCOM Labs, Inc. Cooperative multiple-input multiple-output downlink scheduling
CN113169764A (zh) 2018-11-27 2021-07-23 艾斯康实验室公司 非相干协作式多输入多输出通信
US11063645B2 (en) 2018-12-18 2021-07-13 XCOM Labs, Inc. Methods of wirelessly communicating with a group of devices
US10756795B2 (en) 2018-12-18 2020-08-25 XCOM Labs, Inc. User equipment with cellular link and peer-to-peer link
US11330649B2 (en) 2019-01-25 2022-05-10 XCOM Labs, Inc. Methods and systems of multi-link peer-to-peer communications
US10756767B1 (en) 2019-02-05 2020-08-25 XCOM Labs, Inc. User equipment for wirelessly communicating cellular signal with another user equipment
US11032841B2 (en) 2019-04-26 2021-06-08 XCOM Labs, Inc. Downlink active set management for multiple-input multiple-output communications
US10756782B1 (en) 2019-04-26 2020-08-25 XCOM Labs, Inc. Uplink active set management for multiple-input multiple-output communications
US10686502B1 (en) 2019-04-29 2020-06-16 XCOM Labs, Inc. Downlink user equipment selection
US10735057B1 (en) 2019-04-29 2020-08-04 XCOM Labs, Inc. Uplink user equipment selection
US11411778B2 (en) 2019-07-12 2022-08-09 XCOM Labs, Inc. Time-division duplex multiple input multiple output calibration
US11411779B2 (en) 2020-03-31 2022-08-09 XCOM Labs, Inc. Reference signal channel estimation
CN115699605A (zh) 2020-05-26 2023-02-03 艾斯康实验室公司 干扰感知波束成形
CA3195885A1 (fr) 2020-10-19 2022-04-28 XCOM Labs, Inc. Signal de reference pour systemes de communication sans fil
WO2022093988A1 (fr) 2020-10-30 2022-05-05 XCOM Labs, Inc. Groupement et/ou sélection de débit dans des systèmes de communication à entrées et sorties multiples

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6363568B1 (en) * 1991-11-25 2002-04-02 Zooth, Inc. Child's utensil
US5603096A (en) * 1994-07-11 1997-02-11 Qualcomm Incorporated Reverse link, closed loop power control in a code division multiple access system
JP3437291B2 (ja) * 1994-11-14 2003-08-18 キヤノン株式会社 再生装置および再生方法
US6154484A (en) * 1995-09-06 2000-11-28 Solana Technology Development Corporation Method and apparatus for embedding auxiliary data in a primary data signal using frequency and time domain processing
US5790537A (en) * 1996-05-15 1998-08-04 Mcgill University Interference suppression in DS-CDMA systems
US6141317A (en) * 1996-08-22 2000-10-31 Tellabs Operations, Inc. Apparatus and method for bandwidth management in a multi-point OFDM/DMT digital communications system
US6175550B1 (en) * 1997-04-01 2001-01-16 Lucent Technologies, Inc. Orthogonal frequency division multiplexing system with dynamically scalable operating parameters and method thereof
US6075797A (en) * 1997-10-17 2000-06-13 3Com Corporation Method and system for detecting mobility of a wireless-capable modem to minimize data transfer rate renegotiations
US6067315A (en) * 1997-12-04 2000-05-23 Telefonaktiebolaget Lm Ericsson Method and apparatus for coherently-averaged power estimation
US6654429B1 (en) * 1998-12-31 2003-11-25 At&T Corp. Pilot-aided channel estimation for OFDM in wireless systems
US6233075B1 (en) * 1999-01-25 2001-05-15 Telcordia Technologies, Inc. Optical layer survivability and security system
US6487243B1 (en) * 1999-03-08 2002-11-26 International Business Machines Corporation Modems, methods, and computer program products for recovering from errors in a tone reversal sequence between two modems
US6249683B1 (en) * 1999-04-08 2001-06-19 Qualcomm Incorporated Forward link power control of multiple data streams transmitted to a mobile station using a common power control channel
US6539213B1 (en) * 1999-06-14 2003-03-25 Time Domain Corporation System and method for impulse radio power control
US6654431B1 (en) * 1999-09-15 2003-11-25 Telcordia Technologies, Inc. Multicarrier personal access communication system
FI117465B (fi) * 2000-02-03 2006-10-31 Danisco Sweeteners Oy Menetelmä pureskeltavien ytimien kovapinnoittamiseksi
US6985434B2 (en) * 2000-09-01 2006-01-10 Nortel Networks Limited Adaptive time diversity and spatial diversity for OFDM
US6829293B2 (en) * 2001-01-16 2004-12-07 Mindspeed Technologies, Inc. Method and apparatus for line probe signal processing
US6478422B1 (en) * 2001-03-19 2002-11-12 Richard A. Hansen Single bifocal custom shooters glasses
US6771706B2 (en) * 2001-03-23 2004-08-03 Qualcomm Incorporated Method and apparatus for utilizing channel state information in a wireless communication system
US6785341B2 (en) * 2001-05-11 2004-08-31 Qualcomm Incorporated Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information
US20030112745A1 (en) * 2001-12-17 2003-06-19 Xiangyang Zhuang Method and system of operating a coded OFDM communication system
US6636568B2 (en) * 2002-03-01 2003-10-21 Qualcomm Data transmission with non-uniform distribution of data rates for a multiple-input multiple-output (MIMO) system
US7184713B2 (en) * 2002-06-20 2007-02-27 Qualcomm, Incorporated Rate control for multi-channel communication systems
DE10254384B4 (de) 2002-11-17 2005-11-17 Siemens Ag Bidirektionales Signalverarbeitungsverfahren für ein MIMO-System mit einer rangadaptiven Anpassung der Datenübertragungsrate
US6917821B2 (en) * 2003-09-23 2005-07-12 Qualcomm, Incorporated Successive interference cancellation receiver processing with selection diversity
US7508748B2 (en) * 2003-10-24 2009-03-24 Qualcomm Incorporated Rate selection for a multi-carrier MIMO system
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US8179876B2 (en) * 2004-12-22 2012-05-15 Qualcomm Incorporated Multiple modulation technique for use in a communication system
US7543197B2 (en) * 2004-12-22 2009-06-02 Qualcomm Incorporated Pruned bit-reversal interleaver
US7940710B2 (en) * 2004-12-22 2011-05-10 Qualcomm Incorporated Methods and apparatus for efficient paging in a wireless communication system

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10313069B2 (en) 2000-09-13 2019-06-04 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US11032035B2 (en) 2000-09-13 2021-06-08 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US11039468B2 (en) 2004-07-21 2021-06-15 Qualcomm Incorporated Efficient signaling over access channel
US10849156B2 (en) 2004-07-21 2020-11-24 Qualcomm Incorporated Efficient signaling over access channel
US10517114B2 (en) 2004-07-21 2019-12-24 Qualcomm Incorporated Efficient signaling over access channel
US10237892B2 (en) 2004-07-21 2019-03-19 Qualcomm Incorporated Efficient signaling over access channel
US10194463B2 (en) 2004-07-21 2019-01-29 Qualcomm Incorporated Efficient signaling over access channel
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
JP2008526122A (ja) * 2004-12-22 2008-07-17 クゥアルコム・インコーポレイテッド Mimo構成のための性能ベースのランク予測方法および装置
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US9408220B2 (en) 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US9307544B2 (en) 2005-04-19 2016-04-05 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US9036538B2 (en) 2005-04-19 2015-05-19 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US8917654B2 (en) 2005-04-19 2014-12-23 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
WO2006130541A2 (fr) * 2005-05-31 2006-12-07 Qualcomm Incorporated Retrogadation d'un modele scw mimo utilisant harq
US8842693B2 (en) 2005-05-31 2014-09-23 Qualcomm Incorporated Rank step-down for MIMO SCW design employing HARQ
WO2006130541A3 (fr) * 2005-05-31 2007-02-08 Qualcomm Inc Retrogadation d'un modele scw mimo utilisant harq
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US9693339B2 (en) 2005-08-08 2017-06-27 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US9660776B2 (en) 2005-08-22 2017-05-23 Qualcomm Incorporated Method and apparatus for providing antenna diversity in a wireless communication system
US9860033B2 (en) 2005-08-22 2018-01-02 Qualcomm Incorporated Method and apparatus for antenna diversity in multi-input multi-output communication systems
US9246659B2 (en) 2005-08-22 2016-01-26 Qualcomm Incorporated Segment sensitive scheduling
US9240877B2 (en) 2005-08-22 2016-01-19 Qualcomm Incorporated Segment sensitive scheduling
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US8842619B2 (en) 2005-10-27 2014-09-23 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
JP2010502110A (ja) * 2006-08-24 2010-01-21 インターデイジタル テクノロジー コーポレーション 単一チャネルコードワードのダウンリンク通信をサポートするためのmimo送信機および受信機
US9496986B2 (en) 2007-01-05 2016-11-15 Lg Electronics Inc. Layer mapping method and data transmission method for MIMO system
US10693539B2 (en) 2007-01-05 2020-06-23 Lg Electronics Inc. Layer mapping method and data transmission method for MIMO system
US8861628B2 (en) 2007-01-05 2014-10-14 Lg Electronics Inc. Layer mapping method and data transmission method for MIMO system
US10263676B2 (en) 2007-01-05 2019-04-16 Lg Electronics Inc. Layer mapping method and data transmission method for MIMO system
CN101594223B (zh) * 2008-05-29 2012-03-14 展讯通信(上海)有限公司 无线收发方法及其设备
JP5340377B2 (ja) * 2009-02-24 2013-11-13 パナソニック株式会社 無線送信装置およびプレコーディング方法
US8743929B2 (en) 2009-03-27 2014-06-03 Sony Corporation Division of bit streams to produce spatial paths for multicarrier transmission
US8885686B2 (en) 2009-03-27 2014-11-11 Sony Corporation Division of bit streams to produce spatial paths for multicarrier transmission
US9531511B2 (en) 2009-03-27 2016-12-27 Sony Corporation Division of bit streams to produce spatial paths for multicarrier transmission
US9197382B2 (en) 2009-03-27 2015-11-24 Sony Corporation Division of bit streams to produce spatial paths for multicarrier transmission
WO2010108707A1 (fr) * 2009-03-27 2010-09-30 Sony Corporation Division de flux de bits pour produire des trajets spatiaux pour transmission multiporteuse
EP2234315A1 (fr) * 2009-03-27 2010-09-29 Sony Corporation Division de flux de bits sur chemins spatiaux pour la transmission multiporteuse
WO2011121458A1 (fr) * 2010-04-01 2011-10-06 Telefonaktiebolaget L M Ericsson (Publ) Estimation de la qualité du canal pour récepteur mlse
US8737496B2 (en) 2010-04-01 2014-05-27 Telefonaktiebolaget L M Ericsson (Publ) Channel quality estimation for MLSE receiver
US8446939B2 (en) 2010-04-21 2013-05-21 Telefonaktiebolaget L M Ericsson (Publ) Channel quality estimation for MLSE MIMO receiver
WO2011132105A1 (fr) * 2010-04-21 2011-10-27 Telefonaktiebolaget L M Ericsson (Publ) Estimation de qualité de canal pour récepteur mimo mlse

Also Published As

Publication number Publication date
CA2591609A1 (fr) 2006-06-29
AU2005318993A1 (en) 2006-06-29
UA90495C2 (ru) 2010-05-11
CN101124759A (zh) 2008-02-13
US20060018397A1 (en) 2006-01-26
KR100940466B1 (ko) 2010-02-04
NZ556045A (en) 2010-12-24
BRPI0519539A2 (pt) 2009-02-17
RU2378767C2 (ru) 2010-01-10
NO20073178L (no) 2007-09-18
IL183999A0 (en) 2007-10-31
JP2008526137A (ja) 2008-07-17
MX2007007757A (es) 2007-11-09
AU2005318993B2 (en) 2009-10-29
ZA200705129B (en) 2009-09-30
US7567621B2 (en) 2009-07-28
RU2007128046A (ru) 2009-01-27
KR20070094006A (ko) 2007-09-19
EP1832032A2 (fr) 2007-09-12

Similar Documents

Publication Publication Date Title
AU2005318993B2 (en) Capacity based rank prediction for MIMO design
US9148256B2 (en) Performance based rank prediction for MIMO design
US10476560B2 (en) Spatial spreading in a multi-antenna communication system
US9154211B2 (en) Systems and methods for beamforming feedback in multi antenna communication systems
US7167684B2 (en) Rate control for multi-channel communications systems
US20060203891A1 (en) Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
KR20080078813A (ko) Mimo 시스템에 사용될 데이터 스트림들의 개수를결정하는 방법
Torabi et al. Adaptive bit allocation for space-time block coded OFDM system
Tsai et al. Novel codeword selection strategy for MIMO precoding with limited channel state information feedback
Camargo et al. Bandwidth efficiency of practical mimo-ofdm systems with adaptive mimo schemes

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580048406.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 183999

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2591609

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12007501293

Country of ref document: PH

Ref document number: 556045

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/007757

Country of ref document: MX

Ref document number: 2007548617

Country of ref document: JP

Ref document number: 2005318993

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 5211/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2005856106

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2005318993

Country of ref document: AU

Date of ref document: 20051222

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020077016799

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007128046

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0519539

Country of ref document: BR