WO2006068017A2 - 空調システム - Google Patents

空調システム Download PDF

Info

Publication number
WO2006068017A2
WO2006068017A2 PCT/JP2005/022967 JP2005022967W WO2006068017A2 WO 2006068017 A2 WO2006068017 A2 WO 2006068017A2 JP 2005022967 W JP2005022967 W JP 2005022967W WO 2006068017 A2 WO2006068017 A2 WO 2006068017A2
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
supply line
heating coil
water supply
air
Prior art date
Application number
PCT/JP2005/022967
Other languages
English (en)
French (fr)
Other versions
WO2006068017A3 (ja
Inventor
Takeshi Ebine
Original Assignee
Wetmaster Co., Ltd.
Techno Ryowa Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wetmaster Co., Ltd., Techno Ryowa Ltd. filed Critical Wetmaster Co., Ltd.
Priority to CN2005800438852A priority Critical patent/CN101107481B/zh
Priority to KR1020077016511A priority patent/KR101182064B1/ko
Publication of WO2006068017A2 publication Critical patent/WO2006068017A2/ja
Publication of WO2006068017A3 publication Critical patent/WO2006068017A3/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/153Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/08Air-humidification, e.g. cooling by humidification by evaporation of water in the air using heated wet elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity

Definitions

  • the present invention relates to an air conditioning system that adjusts the temperature and humidity of air to be processed, and in particular, an air conditioning system that has been improved to achieve stable temperature and humidity control, reduction of refrigerator capacity, and energy saving. About.
  • Examples of such an air conditioning system include those shown in Patent Document 1 or Patent Document 2.
  • the invention described in Patent Document 1 or Patent Document 2 uses the cooling capacity of the outside air in winter, it is introduced into the room just by slightly raising the temperature of the outside air, and water is humidified in the room! , To process the indoor cooling load.
  • Patent Document 1 JP 2002-156137 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-156148
  • the present invention has been proposed to solve the above-described problems of the prior art, and its purpose is to enable stable temperature and humidity control, reduction of refrigerator capacity, and energy saving. It is to provide an air conditioning system. Means for solving the problem
  • the present invention comprises an air conditioner for treating outside air having at least a water circulation type cooling and heating coil, and a refrigerator that cools cold water circulated and supplied to the cooling and heating coil.
  • the cooling and heating coil includes a chilled water supply line that supplies chilled water from the refrigerator and a return chilled water that is used for cooling in other parts of the same piping system and then returned to the refrigerator.
  • Return chilled water supply line for supplying a part of the cooling air is connected to the cooling air supply line or the return chilled water supply line so that the temperature of the processed air by the outside air processing air conditioner becomes a desired set temperature. It is configured to control the amount of water supplied to the heating coil.
  • the temperature of the processing air by the outside air processing air conditioner is supplied to the cooling and heating coil from the cold water supply line or the return cold water supply line so that the temperature becomes a desired set temperature.
  • the return chilled water supply line is used for heating
  • the cooling and heating coil is used for heating.
  • the chilled water supply line is used.
  • At least a water circulation type cooling and heating coil, an outdoor air treatment air conditioner having a vaporizing humidifier provided downstream thereof, and cold water circulated and supplied to the cooling and heating coil In the air conditioning system equipped with a refrigerator that cools the cooling and heating coil, the cooling and heating coil is used for cooling in the cold water supply line that supplies the cold water from the refrigerator and in other parts of the same piping system. Then, a return chilled water supply line for supplying a part of the returned chilled water returned to the refrigerator is connected, and the chilled water supply is performed such that the humidity of the processing air by the outside air processing air conditioner becomes a desired set humidity.
  • Line or return cold water supply line force It is configured to control the amount of water supplied to the cooling and heating coil.
  • the humidity of the processing air by the air conditioner for treating the outside air is set to the set humidity of the processing air supply destination. Can do.
  • the cooling / heating coil is used with the return cold water supply line. Heated, this energy is humidified by a vaporizing humidifier provided on the downstream side, and in summer, cooling and dehumidification are performed by a cooling and heating coil using a chilled water supply line. Energy saving effect can be obtained.
  • At least a water circulation type cooling and heating coil and an outdoor air treatment air conditioner having a plurality of combinations of vaporization type humidifiers provided downstream thereof, and circulation to the cooling and heating coil
  • the cooling and heating coil provided on the most downstream side of the air flow is the same as the cold water supply line that supplies the cold water from the refrigerator.
  • a cooling water supply line for supplying a part of the cooling water returned to the refrigerator after being used for cooling in other parts of the piping system is connected to the cooling and heating coil power discharge on the most downstream side.
  • the chilled water or return chilled water is sequentially supplied to a cooling and heating coil installed on the upstream side so that the humidity of the processing air by the outside air processing air conditioner becomes a desired set humidity. And said The amount of water supplied to the cooling and heating coil from the cold water supply line or the return cold water supply line is controlled.
  • the humidification ability can be further improved by arranging a plurality of combinations of the water circulation type cooling and heating coil and the vaporizing humidifier provided on the downstream side thereof. it can.
  • the cooling and heating coil includes a chilled water supply line that supplies the chilled water from the refrigerator, and the same piping system.
  • a return chilled water supply line is connected to supply a part of the returned chilled water that is returned to the refrigerator after being used for cooling, and a hot water supply line is connected to the reheating coil, so that the air conditioning for the outside air treatment is performed.
  • the amount of water supplied from the cold water supply line or the return cold water supply line to the cooling and heating coil is controlled so that the humidity of the processing air by the machine becomes a desired set humidity.
  • the temperature and humidity of the processing air by the outside air processing air conditioner can be adjusted with high accuracy so that the desired setting humidity and setting temperature are obtained.
  • the cooling and heating coil includes: Connected with the chilled water supply line that supplies the chilled water from the refrigerator and the return chilled water supply line that supplies a part of the returned chilled water that is used for cooling in other parts of the same piping system and then returned to the refrigerator.
  • a hot water supply line is connected to the humidifying heating coil and the reheating coil, and the cold water supply line or the cooling water is set so that the humidity of the processing air by the outside air processing air conditioner becomes a desired set humidity.
  • Return cold water supply line power The amount of water supplied to the cooling and heating coil and the amount of water supplied to the humidifying heating coil from the hot water supply line are controlled, and the temperature of the processing air by the outside air processing air conditioner is controlled.
  • the amount of water supplied from the cold water supply line to the cooling and heating coil and the amount of water supplied from the hot water supply line to the reheating coil are controlled so that a desired set temperature is obtained. It is a feature.
  • the humidifying ability is further improved.
  • a plurality of combinations of the cooling and heating coil and a vaporizing humidifier provided on the downstream side thereof are arranged, and the cold water that supplies the cold water from the refrigerator Return cooling water supply line that supplies a part of the return chilled water returned to the refrigerator after being used for cooling in the supply line and other parts of the same piping system.
  • the cooling and heating coil force at the most downstream side is connected to the heating coil, and the discharged cold water or return cold water is sequentially supplied to the cooling and heating coil installed on the upstream side. It is characterized by this.
  • the humidification capability can be further improved by arranging a plurality of combinations of the water circulation type cooling and heating coil and the vaporizing humidifier provided downstream thereof. it can.
  • the air conditioning system after the hot water supplied to the hot water supply line connected to the reheating coil is used for cooling in other parts of the same piping system, It is characterized by being returned cold water.
  • the return cold water can be used effectively, so that the energy saving effect can be further improved.
  • the air conditioning system is characterized in that a vaporizing humidifier is further installed upstream of a cooling and heating coil provided on the most upstream side of the air flow.
  • the humidification capacity can be further improved by further installing a vaporizing humidifier on the upstream side of the cooling and heating coil provided on the most upstream side.
  • a vaporizing humidifier on the upstream side of the cooling and heating coil provided on the most upstream side.
  • the air conditioning system is characterized in that heating means is incorporated in a return cold water supply line connected to the cooling and heating coil.
  • the air conditioning system is characterized in that a heating means is incorporated in a return cold water supply line connected to the reheating coil.
  • the air conditioning system is characterized in that the heating source of the heating means is cooling water for cooling the refrigerator.
  • the heating source of the heating means is steam.
  • the heating source of the heating means is 50
  • It is characterized by being cooling water at a temperature not higher than ° C.
  • the heating source of the heating means provided in the return cold water supply line connected to the cooling and heating coil or the return cold water supply line connected to the heating coil is exemplified. Any of these can be used to improve the energy saving effect.
  • makeup water to the vaporizing humidifier is pure water.
  • the removal of gas components in the processing air becomes larger compared to tap water or the like.
  • FIG. 1 is a schematic diagram showing a configuration of a first embodiment of an air conditioning system according to the present invention.
  • FIG. 2 is an air diagram (winter season 1) for explaining the operation of the air conditioning system of the first embodiment.
  • FIG. 3 is an air diagram (winter 2) for explaining the operation of the air conditioning system of the first embodiment.
  • FIG. 4 is an air diagram (summer season) for explaining the operation of the air conditioning system of the first embodiment.
  • FIG. 5 is a schematic diagram showing a configuration of a modification of the first embodiment of the air conditioning system according to the present invention.
  • FIG. 6 is a schematic diagram showing a configuration of a second embodiment of an air conditioning system according to the present invention.
  • FIG. 7 is a schematic diagram showing a use line of the air conditioning system shown in Fig. 6 in a severe cold season
  • FIG. 8 is an air diagram (winter season 1) illustrating the operation of the air conditioning system of the second embodiment.
  • FIG. 9 is a schematic diagram showing a use line of the air conditioning system shown in FIG. 6 in winter.
  • FIG. 10 is an air line diagram (winter 2) for explaining the operation of the air conditioning system of the second embodiment.
  • FIG. 11 is a schematic diagram showing a use line of the air conditioning system shown in FIG. 6 in summer.
  • FIG. 12 is an air line diagram (summer season) for explaining the operation of the air conditioning system of the second embodiment.
  • FIG. 13 is a diagram showing an example of a method of supplying cold water and return cold water to a cooling and heating coil configured in multiple stages.
  • FIG. 14 is a diagram showing an example of a method for supplying cold water and return cold water to a cooling and heating coil configured in multiple stages.
  • FIG. 15 is a schematic view showing a configuration of a third embodiment of the air-conditioning apparatus according to the present invention. Explanation of symbols
  • the return of cold water to the refrigerator (CRS, hereinafter referred to as return cold water) is introduced into the cooling / heating coil when the wet air temperature of the outside air is less than the set dew point temperature, and is also used for reheating. This reduces the load on the refrigerator.
  • the shortage is heated by HS (34 ° C).
  • FIG. 1 is a schematic diagram showing a configuration of a first embodiment of an air conditioning system according to the present invention. That is, inside the air conditioner housing (not shown) constituting the air conditioning system of the present embodiment, from the air intake side, the pre-filter 1, the medium performance filter 2, the cooling and heating coil 3, and this cooling and heating First vaporizing humidifier 4a, heating coil 5, second vaporizing humidifier 4b, reheating coil 6, second reheating coil 7, installed on the downstream side of coil 3, A temperature and humidity sensor 9 is sequentially arranged at the blower 8 that discharges to the outside of the hood and the supply port of the processing air.
  • the cooling and heating coil 3 has the same piping system as the chilled water supply line 11 for supplying chilled water from a refrigerator (not shown), and is used for cooling in other parts to increase the temperature. Return to the refrigerator (for example, from a dry coil provided for sensible heat treatment in a clean room such as semiconductor manufacturing where conditioned air is supplied) Return that supplies a part of the chilled water to the cooling and heating coil 3
  • the cold water supply line 12 is connected, the cold water supply line 11 is provided with a first valve 21, and the return cold water supply line 12 is provided with a second valve 22. Further, the cold water or return cold water discharged from the cooling and heating coil 3 is returned to the refrigerator by the cold water or return cold water return line 13! RU
  • hot water supply lines 14 and 16 are connected to the heating coil 5 and the second reheating coil 7, respectively.
  • the hot water supply lines 14 and 16 are respectively connected to the third valve 24 and the fourth reheat coil 7.
  • a valve 26 is provided.
  • the hot water discharged from the heating coil 5 and the second reheating coil 7 is configured to be returned to a predetermined heating source by the hot water discharge lines 15 and 17.
  • the heating source cooling water for a refrigerator, heat generated from production equipment, a boiler, or the like is used.
  • the reheating coil 6 has the same piping system as the chilled water supply line 11 for supplying chilled water from a refrigerator (not shown), and is used for cooling in other portions to increase the temperature. Return to the reheating coil side (for example, from the dry coil provided for sensible heat treatment in clean rooms such as semiconductor manufacturing where conditioned air is supplied). A supply line 18 is provided, and a fifth valve 28 is provided in the reheating coil side return cold water supply line 18. Further, the return cold water discharged from the reheating coil 6 can be returned to the refrigerator through the return cold water return line 19.
  • the vaporizing humidifiers 4a and 4b are made of a water-absorbing or hydrophilic vaporizing humidifying material.
  • pure water is used as the humidifying water supply, and constant water replenishment, drainage, dehumidification and cooling are performed in the summer season, which can cause problems with odors and water solubility that may be a problem in the talin room for semiconductor manufacturing.
  • water is supplied to the vaporizing humidifier.
  • the operation of the air conditioning system of the present embodiment having the above-described configuration is as follows: indoor temperature / humidity is 23 ° C, 45%, air conditioner outlet / humidity is 16 ° C, 69%, and cold water is 7 ° C. Return the cold water 18.
  • a to G shown in FIGS. 2 to 4 correspond to air states at the positions A to G shown in FIG. Further, specific values such as temperature and humidity are examples, and the present invention is not limited to these numerical values. Also, the temperature rise by the fan and the relative humidity drop due to this will not be considered here for the sake of easy understanding.
  • the dry bulb temperature and relative humidity change (C point, 6 ° C) .o
  • the air heated by the heating coil 5 is humidified by the second vaporizing humidifier 4b (point E, 11.5 ° C) and then introduced into the reheating coil 6.
  • the dry bulb temperature and relative humidity change (11.5 ° C, approximately 95% RH) as shown by the solid line connecting D and E in Fig. 2.
  • it is heated to 16 ° C. by the reheating coil 6 and the second reheating coil 7 and supplied to the room. This changes the temperature and humidity of the air, as shown by the solid line connecting A and G in Fig. 2.
  • the reheating coil 6 has the same return chilled water as the CRS supplied to the cooling and heating coil 3, that is, the same piping system, is used for cooling in other parts, and the temperature rises.
  • Returning cold water (18 ° C) (for example, from a dry coil provided for sensible heat treatment in a clean room such as a semiconductor manufacturing company supplied with conditioned air) is returned to the refrigerator. Then, the processing air is heated, further heated by the second reheating coil 7, and supplied to the room.
  • the fan 8 and the first vaporizer-type humidifier 4a and the second vaporizer-type humidifier 4b are activated and cooled and heated.
  • the fifth valve 28 of the reheating coil side return cold water supply line 18 connected to the reheating coil 6 and the fourth valve 26 of the hot water supply line 16 connected to the second reheating coil 7 are connected. Is open.
  • the reheating coil 6 has the same return chilled water as the CRS supplied to the cooling and heating coil 3, that is, the same piping system is used for cooling in other parts, and the temperature rises.
  • Returning cold water (18 ° C) (for example, from a dry coil provided for sensible heat treatment in a clean room such as a semiconductor manufacturing company supplied with conditioned air) is returned to the refrigerator. Then, the processing air is heated, further heated by the second reheating coil 7, and supplied to the room.
  • the blower 8 When it is necessary to dehumidify the air in summer or the like, the blower 8 is activated and the noble 21 of the cold water supply line 11 connected to the cooling / heating coil 3 is opened. Further, the fifth valve 28 of the reheating coil side return chilled water supply line 18 connected to the reheating coil 6 and the fourth valve 26 of the hot water supply line 16 connected to the second reheating coil 7 are connected. Is open.
  • outside air (33 ° C, 62% RH) flows from the air intake port of the housing.
  • the air that has flowed in is filtered through the filters 1 and 2 and then cooled by the cooling and heating coil 3 (point B, 11.2 ° C). (C point, 10.3 ° C, E point, 10.5 ° C), then introduced into reheating coil 6 and heated.
  • the reheating coil 6 has the same return chilled water as that of the CRS supplied to the cooling and heating coil 3b, that is, the same piping system, is used for cooling in other parts, and the temperature rises.
  • Returned cold water (18 ° C) (for example, from a dry coil provided for sensible heat treatment in clean rooms such as semiconductor manufacturing to which conditioned air is supplied) is supplied to the machine.
  • the treated air is heated (F point, 15 ° C) o and further heated by the second reheating coil 7 (G point, 16 ° C) and supplied to the room M .
  • the solid line connecting A and G in Fig. 4 the temperature and humidity state of the air changes.
  • the cooling and heating coil is configured to supply the cooling water and the return cold water at a necessary flow rate so as to obtain a desired humidity, and the return cold water is used as a heat source for the reheating coil. By doing so, an excellent energy saving effect can be obtained.
  • the combination of the cooling and heating coil and the vaporizing humidifier can be configured in multiple stages to further improve the humidifying capacity. This combination is shown in FIG. Shown in
  • the housing of the air conditioner Inside, from the air intake side, the pre-filter 1, the medium performance filter 2, the first cooling / heating coil 3a and the second cooling / heating coil 3b configured in multiple stages, the first cooling 1st vaporizer / humidifier 4a installed between the combination heating / coil 3a and the second cooling / heating coil 3b, and the second vaporization / humidification installed downstream of the second cooling / heating coil 3b
  • a heater 4b, a heating coil 5, a third vaporizing humidifier 4c, a reheating coil 6, a second reheating coil 7, and a blower 8 that discharges processing air to the outside of the housing are sequentially arranged.
  • the second cooling and heating coil 3b has the same piping system as the chilled water supply line 11 for supplying chilled water from a refrigerator (not shown), and is used for cooling in other portions. Rises and returns to the refrigerator (for example, from a dry coil provided for sensible heat treatment in a clean room such as semiconductor manufacturing to which air-conditioned air is supplied).
  • the cold water supply line 11 is provided with a first valve 21, and the cold water supply line 12 is provided with a second valve 22.
  • the cold water or return cold water discharged from the second cooling and heating coil 3b is supplied to the first cooling and heating coil 3a installed on the upstream side.
  • the cold water or return chilled water discharged from the cooling / calorizing heat coil 3a is returned to the refrigerator by the chilled water or return chilled water return line 13.
  • Other configurations are the same as those of the first embodiment shown in FIG.
  • the combination of the cooling and heating coil and the vaporizing humidifier is configured in two stages, and cold water and return cold water are selectively supplied to the downstream cooling and heating coil.
  • the return cold water is configured to be supplied to the cooling and heating coil installed on the upstream side, and a vaporizing humidifier is installed in the middle and downstream to lower the temperature of the return cold water. Therefore, the refrigeration load can be further reduced, and the humidification ability can be further improved.
  • FIG. 6 is a schematic diagram showing a configuration of an air conditioning system according to the present invention. That is, inside the housing (not shown) of the air conditioner constituting the air conditioning system of the present embodiment, the pre-filter 1, the medium performance filter 2, and the first cooling / multi-stage configured from the air intake side are arranged.
  • Second evaporative humidifier 4b installed between cooling and heating coil 3b, third evaporative humidifier 4c installed downstream of second cooling and heating coil 3b, heating coil 5, 4 vaporizing humidifier 4d, reheating coil 6, second reheating coil 7, and blower 8 for discharging the processing air to the outside of the housing are arranged one by one.
  • the second cooling and heating coil 3b has the same piping system as the chilled water supply line 11 for supplying chilled water from a refrigerator (not shown), and is used for cooling in other parts.
  • the temperature rises and returns to the refrigerator (for example, from the dry coil provided for sensible heat treatment in clean rooms such as semiconductor manufacturing where conditioned air is supplied).
  • a return chilled water supply line 12 for supplying to the water 3b is connected.
  • the chilled water supply line 11 is provided with a first valve 21, and the return chilled water supply line 12 is provided with a second valve 22.
  • the cold water or return cold water discharged from the second cooling and heating coil 3b is supplied to the first cooling and heating coil 3a installed on the upstream side.
  • the chilled water or return chilled water discharged from the cooling and heating coil 3 a is configured to be returned to the refrigerator by the chilled water or return chilled water return line 13.
  • the hot water supply lines 14 and 16 are connected to the heating coil 5 and the second reheating coil 7, respectively.
  • the hot water supply lines 14 and 16 are respectively connected to the third valve 24 and the fourth reheat coil 7.
  • a valve 26 is provided.
  • the hot water discharged from the heating coil 5 and the second reheating coil 7 is configured to be returned to a predetermined heating source by the hot water discharge lines 15 and 17.
  • the heating source cooling water for a refrigerator, heat generated from production equipment, a boiler, or the like is used.
  • the reheating coil 6 has the same piping system as the chilled water supply line 11 for supplying chilled water from a refrigerator (not shown), and is used for cooling in other portions to increase the temperature. (For example, it is provided for sensible heat treatment in clean rooms such as semiconductor manufacturing where conditioned air is supplied.
  • the reheat coil side return chilled water supply line 18 for supplying a part of the return chilled water (from the dry coil) to the reheat coil 6 is provided.
  • the reheat coil side return chilled water supply line 18 includes a fifth valve. 28 is provided. Further, the return cold water discharged from the reheating coil 6 can be returned to the refrigerator through the return cold water return line 19.
  • the vaporizing humidifiers 4a to 4d are made of a water-absorbing or hydrophilic vaporizing humidifying material, and water tanks 9a to 9d are arranged below the water humidifiers 4a to 4d, respectively.
  • the humidifying water supply power collected in ⁇ 9d is circulated and supplied to the upper part of the re-vaporizing humidifiers 4a-4d by the first pump 10a to the third pump 10c.
  • pure water is used as the humidifying water supply, and even if it is in the summer when depletion and cooling are always performed with constant replenishment and drainage, odors or problems in clean rooms such as semiconductor manufacturing Supply water to the vaporizing humidifier to remove volatile gas components! / Speak.
  • the operation of the air conditioning system of the present embodiment having the above-described configuration is as follows: indoor temperature / humidity is 23 ° C, 45%, air conditioner outlet / humidity is 16 ° C, 69%, and cold water is 7 ° C. Return the cold water 18.
  • a to J shown in FIGS. 8, 10, and 12 correspond to the air states at the positions A to J shown in FIG. Further, specific values such as temperature and humidity are examples, and the present invention is not limited to these numerical values. Also, the temperature rise by the fan and the relative humidity drop due to this are not considered here for the sake of easy understanding.
  • the air that has flowed in passes through the first cooling and heating coil 3a to which the return cold water (18 ° C) is circulated after the dust is filtered through the filters 1 and 2 (point C, 10. 2 ° C), after passing through the second vaporizing humidifier 4b (point D, 4 ° C), it is introduced into the second cooling and heating coil 3b.
  • the air heated by the heating coil 5 is introduced into the reheating coil 6 after being humidified by the fourth vaporizing humidifier 4d (point H, 11.6 ° C).
  • point H 11.6 ° C
  • the dry bulb temperature and relative humidity change H point, 11.6 ° C, approx. 90% RH.
  • it is heated up to 16 ° C. by the reheating coil 6 and the second reheating coil 7 and supplied indoors.
  • the temperature and humidity state of the air changes as shown by the solid line connecting points A and A in FIG.
  • the reheating coil 6 is used in the same return chilled water as the CRS supplied to the cooling and heating coil 3b, that is, in the same piping system, is used for cooling in other parts, and the temperature rises.
  • Returning cold water from a dry coil provided for sensible heat treatment in clean rooms such as semiconductor manufacturing where air-conditioned air is supplied
  • the machine (18 ° C). Is heated, further heated by the second reheating coil 7, and supplied to the room.
  • the first pump 10a is not stopped and the blower 8 and the first vaporization type humidification are stopped.
  • 4a to 3rd vaporizing humidifier 4c are operated, and return cooling connected to the second cooling and heating coil 3b is performed.
  • the fifth valve 28 of the reheating coil side return chilled water supply line 18 connected to the reheating coil 6 and the fourth valve 26 of the hot water supply line 16 connected to the second reheating coil 7 are connected. Is open.
  • the reheat coil 6 ⁇ is the same return chilled water as the CRS supplied to the cooling and heating coil 3b, that is, the same piping system is used for cooling in other parts and the temperature rises, and the refrigeration Returning cold water (from a dry coil provided for sensible heat treatment in clean rooms such as semiconductor manufacturing where air-conditioned air is supplied) is supplied to the machine (18 ° C). Is heated, further heated by the second reheating coil 7, and supplied to the room.
  • the blower 8 When it is necessary to dehumidify the air in summer, etc., as shown in FIG. 11, the blower 8 is operated and the valve 2 1 of the cold water supply line 11 connected to the second cooling and heating coil 3b is connected. Open. Sarakuko, the fifth valve 28 in the reheating coil side return chilled water supply line 18 connected to the reheating coil 6 and the fourth valve in the hot water supply line 16 connected to the second reheating coil 7 Open 26.
  • outside air (33 ° C, 60% RH) flows from the air intake port of the housing.
  • the air that has flowed in is filtered through the filters 1 and 2 and then humidified by the first vaporizing humidifier 4a (A to B in FIG. 12), and then by the first cooling and heating coil 3a. Cooled (B ⁇ C 15.2 ° C.) and further humidified by the second vaporizing humidifier 4b (C to D;). Subsequently, after being further cooled by the second cooling and heating coil 3b (D to E), humidified by the third vaporizing humidifier 4c and the fourth vaporizing humidifier 4d (E to H), the Introduced into thermal coil 6.
  • the reheating coil 6 has the same return chilled water as that of the CRS supplied to the cooling and heating coil 3b, that is, the same piping system is used for cooling in other parts and the temperature rises, and the refrigeration coil 6 Returned cold water (18 ° C) (for example, from a dry coil provided for sensible heat treatment in clean rooms such as semiconductor manufacturing to which conditioned air is supplied) is supplied to the machine.
  • Process air is heated (F to I, 14.5 ° C) o and further heated by the second reheating coil 7 (I to J, 16 ° C) and supplied to the room M Is done.
  • the temperature / humidity state of the air changes as indicated by the solid line connecting points A and ⁇ [in FIG.
  • the vaporizing humidifier on the upstream side of the cooling and heating coil, the temperature of the return cold water can be lowered and returned to the refrigerator.
  • the dew condensation water generated by cooling and dehumidification and the waste water for continuous removal of odor and water-soluble gas components are at a low temperature. Since it can be used effectively as pre-cooling to the air side, a further excellent energy saving effect can be obtained.
  • the cold water and return cold water as shown in FIG.
  • the “simultaneous supply method” to flow in parallel to multiple coils, or use the “optimum selection method” as shown in Fig. 14 in which cold water and return cold water are in parallel in opposite flow and control is divided.
  • a heating device is incorporated in the CRS system that supplies the cooling and heating coil and the reheating coil.
  • the second cooling and heating coil Heating means 30 are provided in each of the return chilled water supply line 12 for supplying chilled water to 3b and the reheat coil side return chilled water supply line 18 for supplying chilled water to the reheat coil 6.
  • the air conditioning system of the present embodiment having the above-described configuration, even when the temperature of the return cold water is low or the amount of the return cold water is small, even if the cooling and heating coils are provided in multiple stages, the humidification amount It is effective when there is a shortage.
  • the present invention is not limited to the above-described embodiments, and the vaporizing humidifier is not limited to a hydrophilic or water-absorbing film.
  • the vaporizing humidifier is formed by the latent heat of vaporization accompanying humidification, such as a water spray. As long as the dry-bulb temperature of the target air decreases, it is sufficient. Further, the presence or absence of the fan and filter is not particularly limited as long as it is not an essential constituent element of the present invention.
  • the water supply method for the vaporizing humidifier can be either a circulating dripping method or a one-pass method (excess drainage).
  • the quality of the water supply can be either brine or pure water.
  • the water spray system is adopted as the most upstream side vaporizing humidifier, so that it is possible to operate even in winter-1 (severe cold season). . If only the temperature and humidity are targeted, the humidifier unit may be operated only during the winter humidification period.
  • the heating device may be shared, and the return chilled water supply line 12 and the reheating coil side return chilled water supply line 18 system may have the same temperature.
  • the capacity of the heating device may be increased and the heating coil 5 and the second reheating coil 7 may be unnecessary.

Abstract

 安定した温湿度制御、冷凍機容量の削減及び省エネルギー化を可能とした空調システムを提供する。  冷却兼加熱コイル3には、冷水供給ライン11と返り冷水供給ライン12が接続され、加熱コイル5には温水供給ライン14が接続され、処理空気の湿度が所望の設定湿度となるように、冷水供給ライン11又は返り冷水供給ライン12から冷却兼加熱コイル3に供給される水量を制御するように構成し、加湿量が不足する場合に、温水供給ライン14から加熱コイル5に供給される温水量を制御するように構成する。また、処理空気の温度が、所望の設定温度となるように、冷水供給ライン11から冷却兼加熱コイル3に供給される水量、及び返り冷水供給ライン18から再熱コイル6に供給される返り冷水量を制御するように構成し、再熱量が不足する場合に、温水供給ライン16から第2の再熱コイル7に供給される温水量を制御するように構成する。

Description

技術分野
[0001] 本発明は、処理対象となる空気の温湿度調整を行う空調システムに係り、特に、安 定した温湿度制御、冷凍機容量の削減及び省エネルギー化を実現すべく改良を施 した空調システムに関する。
背景技術
[0002] 電子工業や精密機械工業の工場、食品保存用の貯蔵庫、実験用動物飼育室、バ ィォロジカルクリーンルームなどにおいては、温度 '湿度などの室内環境を一定に保 つ必要があるため、適時、温湿度調整を行うことができる空調システムが用いられて いる。
[0003] このような空調システムとしては、例えば、特許文献 1又は特許文献 2に示すようなも のがある。すなわち、特許文献 1又は特許文献 2に記載された発明は、冬季に外気 の持つ冷却能力を利用するため、外気の温度を少し上げただけで室内に導入し、室 内で水加湿を行!、、室内冷却負荷を処理するものである。
特許文献 1 :特開 2002— 156137号公報
特許文献 2 :特開 2002— 156148号公報
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、特許文献 1又は特許文献 2に記載された発明では、室内へ供給する 外気の分布を均一にして、これに見合った場所に水加湿装置を設置する必要がある ため、空気を搬送するダクト施工のコストが増大するといつた問題点があった。また、 室内での水の分散とこれによる事故の恐れ、設置スペースが必要となる、温湿度の 均一化が困難であるといった問題点があった。
[0005] 本発明は、上述したような従来技術の問題点を解決するために提案されたものであ り、その目的は、安定した温湿度制御、冷凍機容量の削減及び省エネルギー化を可 能とした空調システムを提供することにある。 課題を解決するための手段
[0006] 上記の目的を達成するため、本発明は、少なくとも水循環式の冷却兼加熱コイルを 有する外気処理用空気調和機と、前記冷却兼加熱コイルに循環供給される冷水を 冷却する冷凍機を備えた空調システムにおいて、前記冷却兼加熱コイルには、前記 冷凍機からの冷水を供給する冷水供給ラインと、同一の配管系統の他部分で冷却に 使用された後、冷凍機へ戻される返り冷水の一部を供給する返り冷水供給ラインが 接続され、前記外気処理用空気調和機による処理空気の温度が、所望の設定温度 となるように、前記冷水供給ライン又は返り冷水供給ラインから前記冷却兼加熱コィ ルに供給される水量を制御するように構成したことを特徴とするものである。
[0007] 上記のような本発明においては、外気処理用空気調和機による処理空気の温度が 、所望の設定温度となるように、冷水供給ライン又は返り冷水供給ラインから冷却兼 加熱コイルに供給される水量を制御するように構成されて ヽるため、冬季にお!ヽては 、返り冷水供給ラインを用いて、冷却兼加熱コイルにより加温がなされ、夏季におい ては、冷水供給ラインを用いて、冷却兼加熱コイルにより冷却がなされるので、優れ た省エネ効果を得ることができる。
[0008] 他の態様では、少なくとも水循環式の冷却兼加熱コイルと、その下流側に設けられ た気化式加湿器を有する外気処理用空気調和機と、前記冷却兼加熱コイルに循環 供給される冷水を冷却する冷凍機を備えた空調システムにお!ヽて、前記冷却兼加熱 コイルには、前記冷凍機からの冷水を供給する冷水供給ラインと、同一の配管系統 の他部分で冷却に使用された後、冷凍機へ戻される返り冷水の一部を供給する返り 冷水供給ラインが接続され、前記外気処理用空気調和機による処理空気の湿度が、 所望の設定湿度となるように、前記冷水供給ライン又は返り冷水供給ライン力 前記 冷却兼加熱コイルに供給される水量を制御するように構成したことを特徴とするもの である。
[0009] 上記のような態様では、加湿用の気化式加湿器を配設することにより、外気処理用 空気調和機による処理空気の湿度が処理空気供給先の設定湿度となるように前記 することができる。
この場合、冬季においては、返り冷水供給ラインを用いて、冷却兼加熱コイルにより 加温され、このエネルギーにより、下流側に設けられた気化式加湿器により加湿がな され、夏季においては、冷水供給ラインを用いて、冷却兼加熱コイルにより冷却及び 除湿がなされるので、より優れた省エネ効果を得ることができる。
[0010] 他の態様では、少なくとも水循環式の冷却兼加熱コイルと、その下流側に設けられ た気化式加湿器の組み合わせを複数組有する外気処理用空気調和機と、前記冷却 兼加熱コイルに循環供給される冷水を冷却する冷凍機を備えた空調システムにおい て、空気の流れの最下流側に設けられた冷却兼加熱コイルには、前記冷凍機からの 冷水を供給する冷水供給ラインと、同一の配管系統の他部分で冷却に使用された後 、冷凍機へ戻される返り冷水の一部を供給する返り冷水供給ラインが接続されると共 に、前記最下流側の冷却兼加熱コイル力 排出された冷水又は返り冷水は、順次上 流側に設置された冷却兼加熱コイルに供給されるように構成され、前記外気処理用 空気調和機による処理空気の湿度が、所望の設定湿度となるように、前記冷水供給 ライン又は返り冷水供給ラインから前記冷却兼加熱コイルに供給される水量を制御 するように構成したことを特徴とするものである。
[0011] 上記のような態様では、水循環式の冷却兼加熱コイルと、その下流側に設けられた 気化式加湿器の組み合わせを複数組配設したことにより、加湿能力をさらに向上さ せることができる。
[0012] 他の態様では、少なくとも水循環式の冷却兼加熱コイルと、その下流側に設けられ た気化式加湿器と、再熱コイルを有する外気処理用空気調和機と、前記冷却兼加熱 コイルに循環供給される冷水を冷却する冷凍機を備えた空調システムにお 、て、前 記冷却兼加熱コイルには、前記冷凍機からの冷水を供給する冷水供給ラインと、同 一の配管系統の他部分で冷却に使用された後、冷凍機へ戻される返り冷水の一部 を供給する返り冷水供給ラインが接続され、前記再熱コイルには、温水供給ラインが 接続され、前記外気処理用空気調和機による処理空気の湿度が、所望の設定湿度 となるように、前記冷水供給ライン又は返り冷水供給ラインから前記冷却兼加熱コィ ルに供給される水量を制御するように構成すると共に、前記外気処理用空気調和機 による処理空気の温度が、所望の設定温度となるように、前記冷水供給ラインから前 記冷却兼加熱コイルに供給される水量、及び温水供給ラインから前記再熱コイルに 供給される水量を制御するように構成したことを特徴とするものである。
[0013] 上記のような態様では、外気処理用空気調和機による処理空気の温度及び湿度を 、所望の設定湿度及び設定温度となるように、高精度に調整することができる。
[0014] 他の態様では、少なくとも水循環式の冷却兼加熱コイル及びその下流側に設けら れた気化式加湿器と、加湿用の加熱コイル及びその下流側に設けられた気化式カロ 湿器と、再熱コイルを有する外気処理用空気調和機と、前記冷却兼加熱コイルに循 環供給される冷水を冷却する冷凍機を備えた空調システムにお ヽて、前記冷却兼加 熱コイルには、前記冷凍機からの冷水を供給する冷水供給ラインと、同一の配管系 統の他部分で冷却に使用された後、冷凍機へ戻される返り冷水の一部を供給する返 り冷水供給ラインが接続され、前記加湿用の加熱コイル及び再熱コイルには、温水 供給ラインが接続され、前記外気処理用空気調和機による処理空気の湿度が、所望 の設定湿度となるように、前記冷水供給ライン又は返り冷水供給ライン力 前記冷却 兼加熱コイルに供給される水量及び温水供給ラインから前記加湿用の加熱コイルに 供給される水量を制御するように構成すると共に、前記外気処理用空気調和機によ る処理空気の温度が、所望の設定温度となるように、前記冷水供給ラインから前記冷 却兼加熱コイルに供給される水量、及び温水供給ラインから前記再熱コイルに供給 される水量を制御するように構成したことを特徴とするものである。
上記のような態様では、加湿能力がさらに向上する。
[0015] 他の態様では、上記空調システムにおいて、前記冷却兼加熱コイルとその下流側 に設けられた気化式加湿器の組み合わせが、複数組配設され、前記冷凍機からの 冷水を供給する冷水供給ラインと、同一の配管系統の他部分で冷却に使用された後 、冷凍機へ戻される返り冷水の一部を供給する返り冷水供給ライン力 空気の流れ の最下流側に設けられた冷却兼加熱コイルに接続されると共に、前記最下流側の冷 却兼加熱コイル力 排出された冷水又は返り冷水が、順次上流側に設置された冷却 兼加熱コイルに供給されるように構成されて ヽることを特徴とするものである。
[0016] 上記のような態様では、水循環式の冷却兼加熱コイルと、その下流側に設けられた 気化式加湿器の組み合わせを複数組配設したことにより、加湿能力をさらに向上さ せることができる。 [0017] 他の態様では、上記空調システムにおいて、前記再熱コイルに接続された温水供 給ラインに供給される温水が、同一の配管系統の他部分で冷却に使用された後、冷 凍機へ戻される返り冷水であることを特徴とするものである。
上記のような態様では、返り冷水を有効に活用することができるので、省エネ効果 のさらなる向上を図ることができる。
[0018] 他の態様では、上記空調システムにおいて、空気の流れの最上流側に設けられた 冷却兼加熱コイルの上流側に、さらに気化式加湿器を設置したことを特徴とするもの である。
上記のような態様では、最上流側に設けられた冷却兼加熱コイルの上流側に、さら に気化式加湿器を設置したことにより、加湿能力をさらに向上させることができ、また 、冬季において、返り冷水供給ラインを用いて、冷却兼加熱コイルにより加温がなさ れる際に、排出される返り冷水の温度がより低くなるため、冷凍機負荷が低減され、 省エネ量が増大する。
[0019] 他の態様では、上記空調システムにおいて、前記冷却兼加熱コイルに接続された 返り冷水供給ラインに、加熱手段が組み込まれて ヽることを特徴とするものである。 また、他の態様では、上記空調システムにおいて、前記再熱コイルに接続された返 り冷水供給ラインに、加熱手段が組み込まれて ヽることを特徴とするものである。
[0020] 上記のような態様では、返り冷水の温度が低!、場合や、返り冷水の量が少な!/、場 合など、冷却兼加熱コイルを複数段にしても加湿量が不足する場合に有効である。
[0021] 他の態様では、上記空調システムにお 、て、前記加熱手段の加熱源が、前記冷凍 機を冷却するための冷却水であることを特徴とするものである。
また、他の態様では、上記空調システムにおいて、前記加熱手段の加熱源が、蒸 気であることを特徴とするものである。
また、他の態様では、上記空調システムにおいて、前記加熱手段の加熱源が、 50
°C以下の冷却水であることを特徴とするものである。
[0022] 上記のような態様では、冷却兼加熱コイルに接続された返り冷水供給ライン、ある いは加熱コイルに接続された返り冷水供給ラインに設けられた加熱手段の加熱源を 例示したものであって、いずれを用いても省エネ効果の向上を図ることができる。 [0023] 他の態様では、上記空調システムにおいて、前記気化式加湿器への補給水が純 水であることを特徴とするものである。
上記のような態様では、処理空気中のガス成分の除去が水道水などに比較して大 きくなる。
発明の効果
[0024] 本発明によれば、安定した温湿度制御、冷凍機容量の削減及び省エネルギー化を 可能とした空調システムを提供することができる。
図面の簡単な説明
[0025] [図 1]本発明に係る空調システムの第 1実施形態の構成を示す模式図である。
[図 2]第 1実施形態の空調システムの作用を説明する空気線図 (冬季 1)である
[図 3]第 1実施形態の空調システムの作用を説明する空気線図 (冬季 2)である
[図 4]第 1実施形態の空調システムの作用を説明する空気線図 (夏季)である。
[図 5]本発明に係る空調システムの第 1実施形態の変形例の構成を示す模式図であ る。
[図 6]本発明に係る空調システムの第 2実施形態の構成を示す模式図である。
[図 7]図 6に示した空調システムの厳寒期における使用ラインを示す模式図である
[図 8]第 2実施形態の空調システムの作用を説明する空気線図 (冬季 1)である
[図 9]図 6に示した空調システムの冬季における使用ラインを示す模式図である。
[図 10]第 2実施形態の空調システムの作用を説明する空気線図 (冬季 2)であ る
[図 11]図 6に示した空調システムの夏季における使用ラインを示す模式図である 。
[図 12]第 2実施形態の空調システムの作用を説明する空気線図 (夏季)である。
[図 13]多段に構成した冷却兼加熱コイルへの冷水及び返り冷水の供給方法の一例 を示す図である。 [図 14]多段に構成した冷却兼加熱コイルへの冷水及び返り冷水の供給方法の一例 を示す図である。
[図 15]本発明に係る空気調和装置の第 3実施形態の構成を示す模式図である。 符号の説明
[0026] 1…プレフィルタ
2…中性能フィルタ
3…冷却兼加熱コイル
4· ··気化式加湿器
5…加熱コイル
6…再熱コイル
7…第 2の再熱コイル
8…送風機
9…温度及び湿度センサ
11· ··冷水供給ライン
12· ··返り冷水供給ライン
13· ··冷水又は返り冷水戻りライン
14· ··温水供給ライン
16· ··温水供給ライン
18· ··再熱コイル側返り冷水供給ライン
発明を実施するための最良の形態
[0027] 以下、本発明の空調システムに係る実施の形態 (以下、実施形態という)について、 図面を参照して具体的に説明する。
[0028] (1)第 1実施形態
本実施形態は、冷凍機への冷水の返り(CRS、以下、返り冷水という)を、外気の湿 球温度 <設定露点温度の時に、冷却兼加熱コイルに導入し、また、再熱にも利用す ることにより、冷凍機の負荷を軽減させるものである。なお、不足分は、 HS (34°C)に より加熱を行っている。
[0029] (1 1)構成 図 1は、本発明に係る空調システムの第 1実施形態の構成を示す模式図である。 すなわち、本実施形態の空調システムを構成する空気調和機のハウジング(図示 せず)内部には、空気取入口側から、プレフィルタ 1、中性能フィルタ 2、冷却兼加熱 コイル 3、この冷却兼加熱コイル 3の下流側に設置された第 1の気化式加湿器 4a、加 熱コイル 5、第 2の気化式加湿器 4b、再熱コイル 6、第 2の再熱コイル 7、処理空気を ノ、ウジング外へ吐出する送風機 8、及び処理空気の供給口には、温度及び湿度セン サ 9が順次配設されている。
[0030] また、前記冷却兼加熱コイル 3には、冷凍機(図示せず)から冷水を供給する冷水 供給ライン 11と、同一の配管系統で、他部分で冷却に使用されて温度が上昇し、冷 凍機へ戻る(例えば、空調空気が供給される半導体製造等のクリーンルームの顕熱 処理用に設けられたドライコイルからの)返り冷水の一部を冷却兼加熱コイル 3に供 給する返り冷水供給ライン 12とが接続され、この冷水供給ライン 11には第 1のバルブ 21が設けられ、返り冷水供給ライン 12には第 2のバルブ 22が設けられている。また、 前記冷却兼加熱コイル 3から排出された冷水又は返り冷水は、冷水又は返り冷水戻 りライン 13により、冷凍機に戻されるように構成されて!、る。
[0031] さらに、加熱コイル 5及び第 2の再熱コイル 7には、それぞれ温水供給ライン 14、 16 が接続され、これらの温水供給ライン 14、 16にはそれぞれ第 3のバルブ 24、第 4の バルブ 26が設けられている。また、加熱コイル 5及び第 2の再熱コイル 7から排出され た温水は、温水排出ライン 15、 17により所定の加熱源に戻されるように構成されてい る。なお、この加熱源としては、冷凍機の冷却水や、生産用機器からの発熱、あるい はボイラ等が用いられる。
[0032] また、再熱コイル 6には、冷凍機(図示せず)から冷水を供給する冷水供給ライン 11 と同一の配管系統で、他部分で冷却に使用されて温度が上昇し、冷凍機へ戻る (例 えば、空調空気が供給される半導体製造等のクリーンルームの顕熱処理用に設けら れたドライコイルからの)返り冷水の一部を再熱コイル 6に供給する再熱コイル側返り 冷水供給ライン 18が設けられ、この再熱コイル側返り冷水供給ライン 18には、第 5の バルブ 28が設けられている。さらに、前記再熱コイル 6から排出された返り冷水は、 返り冷水戻りライン 19により冷凍機に戻すことができるように構成されている。 [0033] なお、上記気化式加湿器 4a、 4bは、吸水性あるいは親水性の気化式加湿素材か ら構成されている。また、この加湿用給水としては純水を使用して、常時一定の補給 、排水を行い、除湿 ·冷却を行う夏季においても、臭気あるいは半導体製造等のタリ ーンルームにお 、て問題となる水溶性ガス成分を除去するために、気化式加湿器へ の給水を行っている。
[0034] (1 2)作用
以上のような構成を有する本実施形態の空調システムの作用を、室内側の温湿度 を 23°C、 45%、空調機吹出口の温湿度を 16°C、 69%、冷水を 7°C、返り冷水を 18 。C、温水を 34°Cと設定し、図 2〜図 4に示した空気線図を参照して、冬季— 1 (例え ば、外気湿球温度 =WBが 0°C未満の厳寒期)、冬季 2 (—般的な冬期の加湿期) 、一般的な除湿 ·冷却時期(主として夏季)とに分けて説明する。なお、図 2〜図 4に 示した A〜Gは、図 1に示した A〜Gの位置における空気の状態に対応している。ま た、温度及び湿度等の具体的な値は例示であり、本発明がこれらの数値に限定され るものではない。また、ファンによる昇温とこれによる相対湿度低下は、理解を容易に するために、ここでは考えないものとする。
[0035] (1 2— 1)冬季 1· ··図 2参照
外気が非常に低温の場合 (例えば、 WBが 0°Cよりも低い場合)には、送風機 8及び 第 1の気化式加湿器 4a及び第 2の気化式加湿器 4bを作動させると共に、冷却兼カロ 熱コイル 3に接続された返り冷水供給ライン 12のノ レブ 22を開とし、また、加熱コィ ル 5のバルブ 24を開とする。さら〖こ、再熱コイル 6に接続された再熱コイル側返り冷水 供給ライン 18の第 5のバルブ 28と、第 2の再熱コイル 7に接続された温水供給ライン 16の第 4のノ レブ 26を開とする。すると、ハウジングの空気取入口力も外気が流入 する(例えば、 0°C、 28%RH) 0
[0036] 流入した空気は、フィルタ 1、 2を介して塵埃が濾過された後、返り冷水(18°C)が循 環供給された冷却兼加熱コイル 3を通過後(B点、 14°C)、第 1の気化式加湿器 4aを 経て(C点、 6°C)、加熱コイル 5に導入され、加熱コイル 5によって加熱される(D点、 2 0. 5°C) oこのとき、気化式加湿は温度低下を伴うので、図 2の Bと Cとを結ぶ実線で 示すように、乾球温度及び相対湿度が推移する (C点、 6°C) o [0037] 加熱コイル 5で加熱された空気は、第 2の気化式加湿器 4bによって加湿が行われ た後(E点、 11. 5°C)、再熱コイル 6に導入される。このとき、気化式加湿は温度低下 を伴うので、図 2の Dと Eとを結ぶ実線で示すように、乾球温度及び相対湿度が推移 する(11. 5°C、約 95%RH)。そして、再熱コイル 6及び第 2の再熱コイル 7により 16 °Cまで加温されて室内に供給される。これにより、図 2の Aと Gとを結ぶ実線で示すよ うに、空気の温湿度状態が推移する。
[0038] なお、再熱コイル 6には、冷却兼加熱コイル 3に供給される CRSと同じ返り冷水、す なわち、同一の配管系統で、他部分で冷却に使用されて温度が上昇し、冷凍機へ戻 る(例えば、空調空気が供給される半導体製造等のクリーンルームの顕熱処理用に 設けられたドライコイルからの)返り冷水( 18°C)が供給されるため、この返り冷水によ つて処理空気は加温され、さらに、第 2の再熱コイル 7によって加温されて、室内に供 給される。
[0039] (1 2— 2)冬季 2· ··図 3参照
一般的な冬季の加湿期(例えば、 WBが 0°C以上)の場合には、送風機 8及び第 1 の気化式加湿器 4a、第 2の気化式加湿器 4bを作動させるとともに、冷却兼加熱コィ ル 3に接続された返り冷水供給ライン 12のバルブ 22を開とする。さらに、再熱コイル 6 に接続された再熱コイル側返り冷水供給ライン 18の第 5のバルブ 28と、第 2の再熱コ ィル 7に接続された温水供給ライン 16の第 4のバルブ 26を開とする。
[0040] すると、ハウジングの空気取入口から外気が流入する(9°C、 80%RH)。流入した 空気は、フィルタ 1、 2を介して塵埃が濾過された後、返り冷水(18°C)が循環供給さ れた冷却兼加熱コイル 3を通過後(B点、 15. 3°C)、第 1の気化式加湿器 4a (C点、 1 1. 4°C)及び第 2の気化式加湿器 4bを経て (E点、 10. 5°C)、再熱コイル 6及び第 2 の再熱コイル 7により 16°Cまで加温されて室内に供給される。これにより、図 3の Aと G とを結ぶ実線で示すように、空気の温湿度状態が推移する。
[0041] なお、再熱コイル 6には、冷却兼加熱コイル 3に供給される CRSと同じ返り冷水、す なわち、同一の配管系統で、他部分で冷却に使用されて温度が上昇し、冷凍機へ戻 る(例えば、空調空気が供給される半導体製造等のクリーンルームの顕熱処理用に 設けられたドライコイルからの)返り冷水( 18°C)が供給されるため、この返り冷水によ つて処理空気は加温され、さらに、第 2の再熱コイル 7によって加温されて、室内に供 給される。
[0042] (1 2— 3)夏季…図 4参照
夏季などの空気の除湿が必要な場合には、送風機 8を作動させるとともに、冷却兼 加熱コイル 3に接続された冷水供給ライン 11のノ レブ 21を開とする。さらに、再熱コ ィル 6に接続された再熱コイル側返り冷水供給ライン 18の第 5のバルブ 28と、第 2の 再熱コイル 7に接続された温水供給ライン 16の第 4のバルブ 26を開とする。
[0043] すると、ハウジングの空気取入口から外気(33°C、 62%RH)が流入する。流入した 空気は、フィルタ 1、 2を介して塵埃が濾過された後、冷却兼加熱コイル 3によって冷 却される(B点、 11. 2°C) o続いて、気化式加湿器により加湿され (C点、 10. 3°C、 E 点、 10. 5°C)、さらに再熱コイル 6に導入されて加温される。
[0044] この再熱コイル 6には、冷却兼加熱コイル 3bに供給される CRSと同じ返り冷水、す なわち、同一の配管系統で、他部分で冷却に使用されて温度が上昇し、冷凍機へ戻 る(例えば、空調空気が供給される半導体製造等のクリーンルームの顕熱処理用に 設けられたドライコイルからの)返り冷水( 18°C)が供給されるため、この返り冷水によ つて処理空気は加温される(F点、 15°C) oそして、さらに、第 2の再熱コイル 7によつ て加温されて(G点、 16°C)、室内 Mに供給される。これにより、図 4の Aと Gとを結ぶ 実線で示すように、空気の温湿度状態が推移する。
[0045] (1 3)効果
このように、本実施形態によれば、冷却兼加熱コイルに冷水と返り冷水を所望の湿 度が得られるように必要流量供給するように構成すると共に、返り冷水を再熱コイル の熱源として利用することにより、優れた省エネ効果を得ることができる。
[0046] (1 4)変形例
本実施形態は、冷却兼加熱コイルと気化式加湿器の組み合わせを多段に構成す ることにより、さらに、加湿能力を向上させることができるものであり、この組み合わせ を 2段としたものを図 5に示す。
[0047] (1—4— 1)構成
すなわち、図 5に示したように、空調システムを構成する空気調和機のハウジング( 図示せず)内部には、空気取入口側から、プレフィルタ 1、中性能フィルタ 2、多段に 構成された第 1の冷却兼加熱コイル 3a及び第 2の冷却兼加熱コイル 3b、第 1の冷却 兼加熱コイル 3aと第 2の冷却兼加熱コイル 3bとの間に設置された第 1の気化式加湿 器 4a、第 2の冷却兼加熱コイル 3bの下流側に設置された第 2の気化式加湿器 4b、 加熱コイル 5、第 3の気化式加湿器 4c、再熱コイル 6、第 2の再熱コイル 7、及び、処 理空気をハウジング外へ吐出する送風機 8が順次配設されている。
[0048] また、前記第 2の冷却兼加熱コイル 3bには、冷凍機(図示せず)から冷水を供給す る冷水供給ライン 11と同一の配管系統で、他部分で冷却に使用されて温度が上昇し 、冷凍機へ戻る (例えば、空調空気が供給される半導体製造等のクリーンルームの顕 熱処理用に設けられたドライコイルからの)返り冷水の一部を第 2の冷却兼加熱コィ ル 3bに供給する返り冷水供給ライン 12とが接続され、この冷水供給ライン 11には第 1のバルブ 21が設けられ、返り冷水供給ライン 12には第 2のバルブ 22が設けられて いる。
[0049] また、前記第 2の冷却兼加熱コイル 3bから排出された冷水又は返り冷水は、上流 側に設置された前記第 1の冷却兼加熱コイル 3aに供給され、さら〖こ、第 1の冷却兼カロ 熱コイル 3aから排出された冷水又は返り冷水は、冷水又は返り冷水戻りライン 13によ り、冷凍機に戻されるように構成されている。その他の構成は、図 1に示した第 1実施 形態と同様であるので、説明は省略する。
[0050] (1 4 2)作用 '効果
図 5に示した変形例にぉ ヽては、冷却兼加熱コイルと気化式加湿器の組み合わせ を 2段に構成し、下流側の冷却兼加熱コイルに冷水と返り冷水を選択的に供給し、こ の返り冷水を上流側に設置された冷却兼加熱コイルに供給するように構成すると共 に、その中間及び下流側に気化式加湿器を設置することにより、返り冷水の温度をよ り低くすることができるので、冷凍負荷のさらなる低減を図ることができると共に、加湿 能力をさらに向上させることができる。
[0051] (2)第 2実施形態
(2 - 1)構成
図 6は、本発明に係る空調システムの構成を示す模式図である。 すなわち、本実施形態の空調システムを構成する空気調和機のハウジング(図示 せず)内部には、空気取入口側から、プレフィルタ 1、中性能フィルタ 2、多段に構成 された第 1の冷却兼加熱コイル 3a及び第 2の冷却兼加熱コイル 3b、第 1の冷却兼カロ 熱コイル 3aの上流側に設置された第 1の気化式加湿器 4a、第 1の冷却兼加熱コイル 3aと第 2の冷却兼加熱コイル 3bとの間に設置された第 2の気化式加湿器 4b、第 2の 冷却兼加熱コイル 3bの下流側に設置された第 3の気化式加湿器 4c、加熱コイル 5、 第 4の気化式加湿器 4d、再熱コイル 6、第 2の再熱コイル 7、及び、処理空気をハウジ ング外へ吐出する送風機 8が順次配設されて 1ヽる。
[0052] また、前記第 2の冷却兼加熱コイル 3bには、冷凍機(図示せず)から冷水を供給す る冷水供給ライン 11と、同一の配管系統で、他部分で冷却に使用されて温度が上昇 し、冷凍機へ戻る (例えば、空調空気が供給される半導体製造等のクリーンルームの 顕熱処理用に設けられたドライコイルからの)返り冷水の一部を第 2の冷却兼加熱コ ィル 3bに供給する返り冷水供給ライン 12とが接続され、この冷水供給ライン 11には 第 1のバルブ 21が設けられ、返り冷水供給ライン 12には第 2のバルブ 22が設けられ ている。
[0053] また、前記第 2の冷却兼加熱コイル 3bから排出された冷水又は返り冷水は、上流 側に設置された前記第 1の冷却兼加熱コイル 3aに供給され、さら〖こ、第 1の冷却兼加 熱コイル 3aから排出された冷水又は返り冷水は、冷水又は返り冷水戻りライン 13によ り、冷凍機に戻されるように構成されている。
[0054] さらに、加熱コイル 5及び第 2の再熱コイル 7には、それぞれ温水供給ライン 14、 16 が接続され、これらの温水供給ライン 14、 16にはそれぞれ第 3のバルブ 24、第 4の バルブ 26が設けられている。また、加熱コイル 5及び第 2の再熱コイル 7から排出され た温水は、温水排出ライン 15、 17により所定の加熱源に戻されるように構成されてい る。なお、この加熱源としては、冷凍機の冷却水や、生産用機器からの発熱、あるい はボイラ等が用いられる。
[0055] また、再熱コイル 6には、冷凍機(図示せず)から冷水を供給する冷水供給ライン 11 と同一の配管系統で、他部分で冷却に使用されて温度が上昇し、冷凍機へ戻る (例 えば、空調空気が供給される半導体製造等のクリーンルームの顕熱処理用に設けら れたドライコイルからの)返り冷水の一部を再熱コイル 6に供給する再熱コイル側返り 冷水供給ライン 18が設けられ、この再熱コイル側返り冷水供給ライン 18には、第 5の バルブ 28が設けられている。さらに、前記再熱コイル 6から排出された返り冷水は、 返り冷水戻りライン 19により冷凍機に戻すことができるように構成されている。
[0056] なお、上記気化式加湿器 4a〜4dは、吸水性あるいは親水性の気化式加湿素材か ら構成されており、その下部にはそれぞれ水槽 9a〜9dが配設され、これらの水槽 9a 〜9dに回収された加湿用給水力 第 1のポンプ 10a〜第 3のポンプ 10cによって、再 度気化式加湿器 4a〜4dの上部に循環供給されるように構成されている。また、この 加湿用給水としては純水を使用して、常時一定の補給、排水を行い、除湿 ·冷却を 行う夏季にぉ ヽても、臭気あるいは半導体製造等クリーンルームにお ヽて問題となる 水溶性ガス成分を除去するために、気化式加湿器への給水を行って!/ヽる。
[0057] (2— 2)作用
以上のような構成を有する本実施形態の空調システムの作用を、室内側の温湿度 を 23°C、 45%、空調機吹出口の温湿度を 16°C、 69%、冷水を 7°C、返り冷水を 18 。C、温水を 34°Cと設定し、図 8、図 10、図 12に示した空気線図を参照して、冬季— 1 (例えば、外気湿球温度 =WBが 0°C未満の厳寒期)、冬季 2 (—般的な冬期の加 湿期)、一般的な除湿,冷却時期(主として夏季)とに分けて説明する。なお、図 8、図 10、図 12に示した A〜Jは、図 6に示した A〜Jの位置における空気の状態に対応し ている。また、温度及び湿度等の具体的な値は例示であり、本発明がこれらの数値 に限定されるものではない。また、ファンによる昇温とこれによる相対湿度低下は、理 解を容易にするために、ここでは考えな 、ものとする。
[0058] (2— 2— 1)冬季 1· ··図 7、図 8参照
外気が非常に低温の場合 (例えば、 WBが 0°Cよりも低い場合)であって、最上流側 に設置された水膜 (第 1の気化式加湿器 4a)の下流側 (B点)が 0°C以下の場合、図 7 に示したように、第 1のポンプ 10aを停止し、送風機 8及び第 2の気化式加湿器 4b及 び第 3の気化式加湿器 4cを作動させるとともに、第 2の冷却兼加熱コイル 3bに接続さ れた返り冷水供給ライン 12のバルブ 22を開とし、また、加熱コイル 5のバルブ 24を開 とする。さら〖こ、再熱コイル 6に接続された再熱コイル側返り冷水供給ライン 18の第 5 のノ レブ 28と、第 2の再熱コイル 7に接続された温水供給ライン 16の第 4のバルブ 2 6を開とする。すると、ハウジングの空気取入口力も外気が流入する(例えば、 2°C 、 60%RH) o
[0059] 流入した空気は、フィルタ 1、 2を介して塵埃が濾過された後、返り冷水(18°C)が循 環供給された第 1の冷却兼加熱コイル 3aを通過後(C点、 10. 2°C)、第 2の気化式加 湿器 4bを経て (D点、 4°C)、第 2の冷却兼加熱コイル 3bに導入される。このとき、気 化式加湿は温度低下を伴うので、図 8の C点と D点とを結ぶ実線で示すように、乾球 温度及び相対湿度が推移する(D点、 4°C) oそして、第 2の冷却兼加熱コイル 3bを通 過後(E点、 12. 5°C)、第 3の気化式加湿器 4cを経て (F点、 8. 2°C)、加熱コイル 5 によって加熱される(G点、 14. 7°C) oこのとき、気化式加湿は温度低下を伴うので、 図 8の E点と F点とを結ぶ実線で示すように、乾球温度及び相対湿度が推移する (F 点、 8. 2°C)
[0060] 加熱コイル 5で加熱された空気は、第 4の気化式加湿器 4dによって加湿が行われ た後(H点、 11. 6°C)、再熱コイル 6に導入される。このとき、気化式加湿は温度低下 を伴うので、図 8の G点と H点とを結ぶ実線で示すように、乾球温度及び相対湿度が 推移する(H点、 11. 6°C、約 90%RH)。そして、再熱コイル 6及び第 2の再熱コイル 7により 16°Cまで加温されて室内に供給される。これにより、図 8の A点 ^[点とを結ぶ 実線で示すように、空気の温湿度状態が推移する。
[0061] なお、再熱コイル 6〖こは、冷却兼加熱コイル 3bに供給される CRSと同じ返り冷水、 すなわち、同一の配管系統で、他部分で冷却に使用されて温度が上昇し、冷凍機へ 戻る(例えば、空調空気が供給される半導体製造等のクリーンルームの顕熱処理用 に設けられたドライコイルからの)返り冷水( 18°C)が供給されるため、この返り冷水に よって処理空気は加温され、さらに、第 2の再熱コイル 7によって加温されて、室内に 供給される。
[0062] (2— 2— 2)冬季 2· ··図 9,図 10参照
一般的な冬季の加湿期(例えば、 WBが 0°C以上)の場合には、図 9に示したように 、第 1のポンプ 10aを停止させずに、送風機 8及び第 1の気化式加湿器 4a〜第 3の気 化式加湿器 4cを作動させるとともに、第 2の冷却兼加熱コイル 3bに接続された返り冷 水供給ライン 12のバルブ 22を開とする。さらに、再熱コイル 6に接続された再熱コィ ル側返り冷水供給ライン 18の第 5のバルブ 28と、第 2の再熱コイル 7に接続された温 水供給ライン 16の第 4のバルブ 26を開とする。
[0063] すると、ハウジングの空気取入口力 外気が流入する(10°C、 40%RH)。流入した 空気は、フィルタ 1、 2を介して塵埃が濾過された後、第 1の気化式加湿器 4aに導入 されて、図 10の A点と B点とを結ぶ実線で示すように、乾球温度及び相対湿度が推 移する(B点、 5. 4°C、約 89%RH)。
[0064] 続いて、返り冷水(18°C)が循環供給された第 1の冷却兼加熱コイル 3aを通過後( C点、 13°C)、第 2の気化式加湿器 4bを経て(D点、 9. 5°C)、第 2の冷却兼加熱コィ ル 3bに導入される。そして、第 2の冷却兼加熱コイル 3bを通過後(E点、 14. 6°C)、 第 3の気化式加湿器 4cを経て (F点、 11. 2°C)、再熱コイル 6及び第 2の再熱コイル 7 により 16°Cまで加温されて室内に供給される。これにより、図 10の A点 ^[点とを結ぶ 実線で示すように、空気の温湿度状態が推移する。
[0065] なお、再熱コイル 6〖こは、冷却兼加熱コイル 3bに供給される CRSと同じ返り冷水、 すなわち、同一の配管系統で、他部分で冷却に使用されて温度が上昇し、冷凍機へ 戻る(例えば、空調空気が供給される半導体製造等のクリーンルームの顕熱処理用 に設けられたドライコイルからの)返り冷水( 18°C)が供給されるため、この返り冷水に よって処理空気は加温され、さらに、第 2の再熱コイル 7によって加温されて、室内に 供給される。
[0066] (2— 2— 3)夏季…図 11、図 12参照
夏季などの空気の除湿が必要な場合には、図 11に示したように、送風機 8を作動さ せるとともに、第 2の冷却兼加熱コイル 3bに接続された冷水供給ライン 11のバルブ 2 1を開とする。さら〖こ、再熱コイル 6に接続された再熱コイル側返り冷水供給ライン 18 の第 5のバルブ 28と、第 2の再熱コイル 7に接続された温水供給ライン 16の第 4のバ ルブ 26を開とする。
[0067] すると、ハウジングの空気取入口から外気(33°C、 60%RH)が流入する。流入した 空気は、フィルタ 1、 2を介して塵埃が濾過された後、第 1の気化式加湿器 4aによって 加湿された後(図 12の A〜B)、第 1の冷却兼加熱コイル 3aによって冷却され(B〜C 、 15. 2°C)、さらに、第 2の気化式加湿器 4bによって加湿される(C〜D;)。続いて、 第 2の冷却兼加熱コイル 3bによってさらに冷却され (D〜E)、第 3の気化式加湿器 4c 及び第 4の気化式加湿器 4dによって加湿された後(E〜H)、再熱コイル 6に導入さ れる。
[0068] この再熱コイル 6には、冷却兼加熱コイル 3bに供給される CRSと同じ返り冷水、す なわち、同一の配管系統で、他部分で冷却に使用されて温度が上昇し、冷凍機へ戻 る(例えば、空調空気が供給される半導体製造等のクリーンルームの顕熱処理用に 設けられたドライコイルからの)返り冷水( 18°C)が供給されるため、この返り冷水によ つて処理空気は加温される(F〜I、 14. 5°C) oそして、さらに、第 2の再熱コイル 7に よって加温されて (I〜J、 16°C)、室内 Mに供給される。これにより、図 12の A点 ^[点 とを結ぶ実線で示すように、空気の温湿度状態が推移する。
[0069] (2— 3)効果
このように、本実施形態によれば、冷却兼加熱コイルの上流側に気化式加湿器を 設置することにより、返り冷水の温度をより低くして冷凍機に戻すことができる。また、 夏季においては、冷却除湿により生じた結露水、及び臭気と水溶性ガス成分の連続 除去を行うための排水は低温となっており、最上流側に滴下することにより、その冷 却能力を空気側への予冷として有効に使用することができるため、さらに優れた省ェ ネ効果を得ることができる。
[0070] (2— 4)他の構成
本実施形態にぉ ヽては、多段に構成した冷却兼加熱コイルへの冷水及び返り冷水 の供給方法として、図 13に示したような、冷水及び返り冷水を、一つのコイルへは対 向流で流し、複数のコイルへは並列に流す「同時供給方式」や、図 14に示したような 、冷水及び返り冷水を対向流で並列に、且つ制御を分割した「最適選択式」を用いる ことちでさる。
[0071] (3)第 3実施形態
本実施形態は、冷却兼加熱コイル及び再熱コイルに供給する CRS系統に加熱装 置を組み込んだものである。
すなわち、本実施形態においては、図 15に示したように、第 2の冷却兼加熱コイル 3bに返り冷水を供給する返り冷水供給ライン 12と、再熱コイル 6に返り冷水を供給す る再熱コイル側返り冷水供給ライン 18のそれぞれに、加熱手段 30が設けられている
[0072] 以上のような構成を有する本実施形態の空調システムによれば、返り冷水の温度が 低い場合や、返り冷水の量が少ない場合など、冷却兼加熱コイルを複数段にしても 加湿量が不足する場合に有効である。
[0073] (4)他の実施形態
本発明は、上記の各実施形態に限定されるものではなぐ気化式加湿器は、親水 性あるいは吸水性の膜に限定されず、例えば、水スプレー等のように、加湿に伴う蒸 発潜熱により、対象空気の乾球温度が低下するものであれば良い。また、ファン、フィ ルタは、本発明の必須構成要件ではなぐその有無は特に限定されない。
[0074] また、外気、室内の温湿度条件、返り冷水の温度及び安定性により、温水による加 湿能力増加を目的とした補助加熱コイル (請求項にいう加湿用加熱コイル)、返り冷 水及び温水による再熱コイルは不要となる場合もある。また、気化式加湿器への給水 方法は、循環滴下方式、あるいは 1パス方式 (余剰分は排水)のいずれでも良ぐ給 水の水質は純水でなく巿水でも良い。
[0075] また、上記第 2、第 3実施形態にぉ 、て、最上流側の気化式加湿装置として水スプ レー方式を採用することにより、冬季— 1 (厳寒期)においても運転可能となる。また、 温湿度のみを対象とする場合は、冬季加湿期のみ、加湿装置部分を運転するよう〖こ しても良い。
[0076] さらに、第 3実施形態において、加熱装置は共通として、返り冷水供給ライン 12と再 熱コイル側返り冷水供給ライン 18系統を同温度としても良い。また、第 3実施形態に おいて、加熱装置の能力を増やし、加熱コイル 5、第 2の再熱コイル 7を不要としても 良い。

Claims

請求の範囲
[1] 少なくとも水循環式の冷却兼加熱コイルを有する外気処理用空気調和機と、前記 冷却兼加熱コイルに循環供給される冷水を冷却する冷凍機を備えた空調システムに おいて、
前記冷却兼加熱コイルには、前記冷凍機からの冷水を供給する冷水供給ラインと、 同一の配管系統の他部分で冷却に使用された後、冷凍機へ戻される返り冷水の一 部を供給する返り冷水供給ラインが接続され、
前記外気処理用空気調和機による処理空気の温度が、所望の設定温度となるよう に、前記冷水供給ライン又は返り冷水供給ラインから前記冷却兼加熱コイルに供給 される水量を制御するように構成したことを特徴とする空調システム。
[2] 少なくとも水循環式の冷却兼加熱コイルと、その下流側に設けられた気化式加湿器 を有する外気処理用空気調和機と、前記冷却兼加熱コイルに循環供給される冷水を 冷却する冷凍機を備えた空調システムにお 、て、
前記冷却兼加熱コイルには、前記冷凍機からの冷水を供給する冷水供給ラインと、 同一の配管系統の他部分で冷却に使用された後、冷凍機へ戻される返り冷水の一 部を供給する返り冷水供給ラインが接続され、
前記外気処理用空気調和機による処理空気の湿度が、所望の設定湿度となるよう に、前記冷水供給ライン又は返り冷水供給ラインから前記冷却兼加熱コイルに供給 される水量を制御するように構成したことを特徴とする空調システム。
[3] 少なくとも水循環式の冷却兼加熱コイルと、その下流側に設けられた気化式加湿器 の組み合わせを複数組有する外気処理用空気調和機と、前記冷却兼加熱コイルに 循環供給される冷水を冷却する冷凍機を備えた空調システムにおいて、
空気の流れの最下流側に設けられた冷却兼加熱コイルには、前記冷凍機からの冷 水を供給する冷水供給ラインと、同一の配管系統の他部分で冷却に使用された後、 冷凍機へ戻される返り冷水の一部を供給する返り冷水供給ラインが接続されると共に 前記最下流側の冷却兼加熱コイル力 排出された冷水又は返り冷水は、順次上流 側に設置された冷却兼加熱コイルに供給されるように構成され、 前記外気処理用空気調和機による処理空気の湿度が、所望の設定湿度となるよう に、前記冷水供給ライン又は返り冷水供給ラインから前記冷却兼加熱コイルに供給 される水量を制御するように構成したことを特徴とする空調システム。
[4] 少なくとも水循環式の冷却兼加熱コイルと、その下流側に設けられた気化式加湿器 と、再熱コイルを有する外気処理用空気調和機と、前記冷却兼加熱コイルに循環供 給される冷水を冷却する冷凍機を備えた空調システムにおいて、
前記冷却兼加熱コイルには、前記冷凍機からの冷水を供給する冷水供給ラインと、 同一の配管系統の他部分で冷却に使用された後、冷凍機へ戻される返り冷水の一 部を供給する返り冷水供給ラインが接続され、
前記再熱コイルには、温水供給ラインが接続され、
前記外気処理用空気調和機による処理空気の湿度が、所望の設定湿度となるよう に、前記冷水供給ライン又は返り冷水供給ラインから前記冷却兼加熱コイルに供給 される水量を制御するように構成すると共に、
前記外気処理用空気調和機による処理空気の温度が、所望の設定温度となるよう に、前記冷水供給ラインから前記冷却兼加熱コイルに供給される水量、及び温水供 給ライン力 前記再熱コイルに供給される水量を制御するように構成したことを特徴と する空調システム。
[5] 少なくとも水循環式の冷却兼加熱コイル及びその下流側に設けられた気化式加湿 器と、加湿用の加熱コイル及びその下流側に設けられた気化式加湿器と、再熱コィ ルを有する外気処理用空気調和機と、前記冷却兼加熱コイルに循環供給される冷 水を冷却する冷凍機を備えた空調システムにおいて、
前記冷却兼加熱コイルには、前記冷凍機からの冷水を供給する冷水供給ラインと、 同一の配管系統の他部分で冷却に使用された後、冷凍機へ戻される返り冷水の一 部を供給する返り冷水供給ラインが接続され、
前記加湿用の加熱コイル及び再熱コイルには、温水供給ラインが接続され、 前記外気処理用空気調和機による処理空気の湿度が、所望の設定湿度となるよう に、前記冷水供給ライン又は返り冷水供給ラインから前記冷却兼加熱コイルに供給 される水量及び温水供給ラインカゝら前記加湿用の加熱コイルに供給される水量を制 御するように構成すると共に、
前記外気処理用空気調和機による処理空気の温度が、所望の設定温度となるよう に、前記冷水供給ラインから前記冷却兼加熱コイルに供給される水量、及び温水供 給ラインから前記再熱コイルに供給される水量を制御するように構成したことを特徴と する空調システム。
[6] 前記冷却兼加熱コイルとその下流側に設けられた気化式加湿器の組み合わせ力 複数組配設され、
前記冷凍機力 の冷水を供給する冷水供給ラインと、同一の配管系統の他部分で 冷却に使用された後、冷凍機へ戻される返り冷水の一部を供給する返り冷水供給ラ インが、空気の流れの最下流側に設けられた冷却兼加熱コイルに接続されると共に 前記最下流側の冷却兼加熱コイルから排出された冷水又は返り冷水が、順次上流 側に設置された冷却兼加熱コイルに供給されるように構成されていることを特徴とす る請求項 4又は請求項 5に記載の空調システム。
[7] 前記再熱コイルに接続された温水供給ラインに供給される温水が、同一の配管系 統の他部分で冷却に使用された後、冷凍機へ戻される返り冷水であることを特徴とす る請求項 4又は請求項 5に記載の空調システム。
[8] 空気の流れの最上流側に設けられた冷却兼加熱コイルの上流側に、さらに気化式 加湿器を設置したことを特徴とする請求項 2乃至請求項 5のいずれか一に記載の空 調システム。
[9] 前記冷却兼加熱コイルに接続された返り冷水供給ラインに、加熱手段が組み込ま れていることを特徴とする請求項 1乃至請求項 5のいずれか一に記載の空調システム
[10] 前記再熱コイルに接続された返り冷水供給ラインに、加熱手段が組み込まれている ことを特徴とする請求項 4又は請求項 5に記載の空調システム。
[11] 前記加熱手段の加熱源が、前記冷凍機を冷却するための冷却水であることを特徴 とする請求項 9に記載の空調システム。
[12] 前記加熱手段の加熱源が、前記冷凍機を冷却するための冷却水であることを特徴
鸯換え用 (m ) とする請求項 10に記載の空調システム。
[13] 前記加熱手段の加熱源が、蒸気であることを特徴とする請求項 9に記載の空調シス テム。
[14] 前記加熱手段の加熱源が、蒸気であることを特徴とする請求項 10に記載の空調シ ステム。
[15] 前記加熱手段の加熱源が、 50°C以下の冷却水であることを特徴とする請求項 9に 記載の空調システム。
[16] 前記加熱手段の加熱源が、 50°C以下の冷却水であることを特徴とする請求項 10 に記載の空調システム。
[17] 前記気化式加湿器への補給水が純水であることを特徴とする請求項 2乃至請求項
5のいずれか一に記載の空調システム。
差換ぇ用鈹 (m )
PCT/JP2005/022967 2004-12-20 2005-12-14 空調システム WO2006068017A2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2005800438852A CN101107481B (zh) 2004-12-20 2005-12-14 空调系统
KR1020077016511A KR101182064B1 (ko) 2004-12-20 2005-12-14 공조 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004368554A JP4651377B2 (ja) 2004-12-20 2004-12-20 空調システム
JP2004-368554 2004-12-20

Publications (2)

Publication Number Publication Date
WO2006068017A2 true WO2006068017A2 (ja) 2006-06-29
WO2006068017A3 WO2006068017A3 (ja) 2007-01-18

Family

ID=36602160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022967 WO2006068017A2 (ja) 2004-12-20 2005-12-14 空調システム

Country Status (4)

Country Link
JP (1) JP4651377B2 (ja)
KR (1) KR101182064B1 (ja)
CN (1) CN101107481B (ja)
WO (1) WO2006068017A2 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014226A (ja) * 2007-07-02 2009-01-22 Techno Ryowa Ltd 空調システム
US8151579B2 (en) 2007-09-07 2012-04-10 Duncan Scot M Cooling recovery system and method
KR100836232B1 (ko) 2008-01-07 2008-06-09 충남대학교산학협력단 공기조화장치용 에너지 절약형 냉각/재가열 시스템
JP2010243005A (ja) * 2009-04-02 2010-10-28 Daikin Ind Ltd 除湿システム
JP5410915B2 (ja) * 2009-10-09 2014-02-05 象印マホービン株式会社 空気調和機
CN102538085A (zh) * 2010-12-27 2012-07-04 无锡华润上华科技有限公司 空调系统
JP6384706B2 (ja) * 2013-12-26 2018-09-05 清水建設株式会社 クリーンルーム用空調システム
JP2016080335A (ja) * 2014-10-22 2016-05-16 パナソニック株式会社 加温加湿装置
JP6917139B2 (ja) * 2016-11-17 2021-08-11 株式会社竹中工務店 外気処理空調装置
CN107940802A (zh) * 2017-11-02 2018-04-20 成都金川田农机制造有限公司 一种冷暖两用机组
CN107763893A (zh) * 2017-11-02 2018-03-06 成都金川田农机制造有限公司 一种冷暖机组
CN107906583A (zh) * 2017-11-02 2018-04-13 成都金川田农机制造有限公司 一种家用冷暖机组
CN107917459A (zh) * 2017-11-02 2018-04-17 成都金川田农机制造有限公司 一体式冷暖机组
EP3755454A4 (en) 2018-02-23 2021-11-10 Scot M. Duncan HIGH PERFORMANCE DEHUMIDIFICATION SYSTEM AND PROCESS
US11333372B2 (en) 2018-03-09 2022-05-17 Scot Matthew Duncan Energy recovery high efficiency dehumidification system
JP2019190705A (ja) * 2018-04-23 2019-10-31 株式会社東芝 演算装置、演算方法及び演算プログラム
JP6708708B2 (ja) * 2018-07-26 2020-06-10 新菱冷熱工業株式会社 恒湿度空調システム
CN109764452A (zh) * 2019-01-09 2019-05-17 青岛海尔空调器有限总公司 一种能源系统、加湿装置及能源系统控制方法
CN112032863A (zh) * 2020-09-10 2020-12-04 中山市科瓦特机电有限公司 一种高精度恒温恒湿系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317795A (ja) * 2000-05-09 2001-11-16 Techno Ryowa Ltd 空気調和機及び湿度制御方法
JP2002061903A (ja) * 2000-08-10 2002-02-28 Techno Ryowa Ltd 湿膜コイル型空気調和機
JP2004012016A (ja) * 2002-06-06 2004-01-15 Hitachi Plant Eng & Constr Co Ltd 空気調和装置及びその運転方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2623488B2 (ja) * 1990-06-20 1997-06-25 鐘紡株式会社 空調用水加湿方法及び装置
JP3500586B2 (ja) * 1994-09-09 2004-02-23 高砂熱学工業株式会社 空調機の運転方法
JP3148541B2 (ja) * 1994-12-27 2001-03-19 シャープ株式会社 磁気記録再生装置
JP4059112B2 (ja) * 2003-03-18 2008-03-12 株式会社日立プラントテクノロジー 冷水の温度制御装置及び空調設備

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317795A (ja) * 2000-05-09 2001-11-16 Techno Ryowa Ltd 空気調和機及び湿度制御方法
JP2002061903A (ja) * 2000-08-10 2002-02-28 Techno Ryowa Ltd 湿膜コイル型空気調和機
JP2004012016A (ja) * 2002-06-06 2004-01-15 Hitachi Plant Eng & Constr Co Ltd 空気調和装置及びその運転方法

Also Published As

Publication number Publication date
JP2006177567A (ja) 2006-07-06
CN101107481A (zh) 2008-01-16
WO2006068017A3 (ja) 2007-01-18
KR20070102681A (ko) 2007-10-19
JP4651377B2 (ja) 2011-03-16
CN101107481B (zh) 2010-06-23
KR101182064B1 (ko) 2012-09-11

Similar Documents

Publication Publication Date Title
WO2006068017A2 (ja) 空調システム
JP3545315B2 (ja) 空気調和機及び湿度制御方法
JP7039528B2 (ja) 冷却回収システム及び方法
US6681584B1 (en) Method and apparatus for cooling and cleaning air
KR101825873B1 (ko) 바이패스를 이용한 히트파이프 공기조화장치
WO2006064850A1 (ja) 恒温・恒湿用空調システム
KR101209335B1 (ko) 냉온풍기
WO2007091813A1 (en) Air-conditioner using heat of condensation
WO2011060676A1 (zh) 一种集成化的溶液式除湿空调装置
JP4948070B2 (ja) 空調制御方法および空気調和機
JP2007139333A (ja) 換気装置及び建物
JP4409973B2 (ja) 空気調和装置
KR101840588B1 (ko) 히트파이프를 이용한 공기조화장치
CN107763763A (zh) 具有无级调节和冷凝热回收功能的深度除湿空调机组
JP3942820B2 (ja) 空調用加湿方法
JP2006105426A (ja) 換気装置及び建物
JP3754586B2 (ja) 空気調和機
JP2002156137A (ja) 空調用加湿設備
JP2009014226A (ja) 空調システム
CN109059141A (zh) 地面调温与新风温度调节除湿联动的室内气候调节系统
CN112984655A (zh) 一种内置二次回风通道的组合式空调机组
JP4689179B2 (ja) 空調機
KR102322117B1 (ko) 습도 조절과 공기 정화 기능을 갖는 냉난방 겸용 보일러 시스템
CN109425065A (zh) 一种手术室净化空调机组
JP2923765B2 (ja) 室内空気調和装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 200580043885.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077016511

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 05816646

Country of ref document: EP

Kind code of ref document: A2

WWW Wipo information: withdrawn in national office

Ref document number: 5816646

Country of ref document: EP