WO2006057126A1 - 画素処理装置 - Google Patents

画素処理装置 Download PDF

Info

Publication number
WO2006057126A1
WO2006057126A1 PCT/JP2005/019424 JP2005019424W WO2006057126A1 WO 2006057126 A1 WO2006057126 A1 WO 2006057126A1 JP 2005019424 W JP2005019424 W JP 2005019424W WO 2006057126 A1 WO2006057126 A1 WO 2006057126A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
value
data
component
equation
Prior art date
Application number
PCT/JP2005/019424
Other languages
English (en)
French (fr)
Inventor
Akimichi Hayashi
Masahiko Shimoda
Original Assignee
Ryobi System Solutions
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryobi System Solutions filed Critical Ryobi System Solutions
Priority to US11/791,605 priority Critical patent/US7945092B2/en
Priority to EP05795227.7A priority patent/EP1816599B1/en
Publication of WO2006057126A1 publication Critical patent/WO2006057126A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/001Texturing; Colouring; Generation of texture or colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing

Definitions

  • the present invention relates to a pixel processing apparatus, and more particularly, a pixel processing apparatus that makes an image (constituted by the pixel data) easier to view by processing pixel data included in electrical image data. About.
  • color blindness people In order to make it easier for people with color blindness (so-called people with color blindness or color blindness; hereinafter referred to as “color blindness people”) to recognize the colors contained in the image,
  • color blindness people In order to make it easier for people with color blindness (so-called people with color blindness or color blindness; hereinafter referred to as “color blindness people”) to recognize the colors contained in the image,
  • the pixel processing device of the invention can be suitably used.
  • color distinction is also important.
  • subway route maps that are color-coded for each route in order to distinguish each route, but if the number of routes shown increases (for example, subway routes around Tokyo The figure is an example.) It is often difficult to distinguish the color classification and to grasp the situation of the route.
  • color discrimination is more important than shape discrimination.
  • it is more important to distinguish the shape than to distinguish the shape to know the degree of ripeness by looking at the color of the tomato and to know the degree of baking by looking at the color of the grilled meat.
  • color discrimination is better than shape discrimination. is important.
  • a color blind person is lower in color discrimination than a person without color blindness (hereinafter referred to as a “color blind normal person”). Unless some measures are taken, visual recognition can not be performed well if color discrimination as described above is required.
  • Color vision abnormalities are caused by abnormalities in the cones, which are photoreceptors of the retina, and the first (red) color vision abnormalities that have abnormalities in the L pyramidal system with a sensitivity peak on the long wavelength side and peaks in the middle wavelength region
  • the second (green) color blindness with an abnormality in the M pyramidal system is classified as red-green blindness
  • the third color blindness with an abnormality in the S pyramidal system with a peak on the short wavelength side is classified as Do. If all three of these cones are missing, they become totally blind. In this case of full blindness, most of the color blindness which is very few is red-green blindness, and in the case of Japanese it is about 5 %, About 0.2% of women.
  • Patent Document 1 As measures to improve the color discrimination of such color blindness people, devices such as car driving filters for color blindness people, glasses lenses for color blindness people, etc. have been developed (for example, Patent Document 1) (See Patent Document 2.) Denseness, coloring, and a sense of resistance to using a filter or a lens using a special reflective film There are not many people with color blindness very much.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-34750 (claim 1, FIG. 3)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-303830 (Claim 1)
  • the present invention it is an object of the present invention to provide a pixel processing device using an image processing technique by a computer which can improve color discrimination when looking at various things.
  • the present invention provides an apparatus suitably used to process pixel data so that a color blind person can easily recognize the color contained in the image. Means to solve the problem
  • the pixel processing device (hereinafter, “the device” t ⁇ ⁇ .) Of the present invention has a luminance axis representing luminance, and a first axis and a second axis which are two axes representing the chroma takeness index.
  • the component in the direction of the luminance axis the component in the direction of the first axis, and the component in the direction of the second axis included in the pixel data indicated as position data in the uniform color space indicated by the orthogonal coordinate system of
  • a pixel processing apparatus comprising color vision conversion processing means for performing color vision conversion processing, which is processing for changing a component in the direction of the brightness axis according to a component in the direction of the selected axis which is one of two axes. It is.
  • a uniform color space is a color space in which color differences perceived to be equal in size are intended to correspond approximately to equal distances in space, and several are known.
  • the stimulus value of each cone is determined from the measured values of coloration characteristics (spectral distribution) of a display such as a computer and the spectral absorption characteristics of three types of cones (LMS Color Space, hereinafter referred to as “LMS”).
  • LSP values that determine the color sensation perceived by the brain taking into account operations performed during signal transmission from the cone to the brain (Opponent Color Space (hereinafter referred to as “OCS"))
  • OCS Opponent Color Space
  • CIE L * u * v * color space hereinafter referred to as “Luv color space”
  • CIE L * a * b * color space hereinafter referred to as “Lab color space”
  • first axis and the second axis which are the two axes indicating the chroma takeness index, are the u axis if the uniform color space is SLuv color space (the positive direction indicates red and the negative direction indicates green). And V axis (positive direction indicates yellow, negative direction indicates blue), and if uniform color space is Lab color space, a axis (positive direction indicates red, negative direction indicates green) and b Axis (positive direction indicates yellow, negative direction indicates blue).
  • one of these first and second axes is taken as a selected axis.
  • the pixel data indicated as position data in such uniform color space includes a component in the direction of the luminance axis, a component in the first axial direction, and a component in the second axis, and the three components make up the pixel.
  • the location of the data in the uniform color space is identified.
  • the color vision conversion processing means of the present apparatus is a process for changing the component in the direction of the luminance axis according to the component in the direction of the selected axis (V with respect to the first and second axes, one of the two axes) included in the pixel data. Perform color vision conversion processing.
  • “change the component in the direction of the brightness axis according to the component in the direction of the selected axis” means that the amount of change in the component in the direction of the brightness axis is monotonically increasing with respect to the absolute value of the component in the direction of the selected axis. Do it! .
  • the component in the luminance axis direction of the pixel data is changed according to the component in the selection axis direction of the pixel data.
  • the component in the selected axis direction is larger than the first predetermined value or if the component in the selected axis direction is smaller than the first predetermined value, the component in the luminance axis direction is selected. It may be one that performs color vision conversion processing so as to increase the component of the luminance axis direction in the case of V, shift, or the other (hereinafter referred to as “increase / decrease processing device”).
  • the component in the direction of the selected axis decreases the component in the direction of the brightness axis on the one hand with the first predetermined value as the boundary, and on the other hand increases the component in the direction of the brightness axis.
  • the component difference in the selective axis direction on one side and the other side can be recognized more clearly as the component difference in the luminance axis direction.
  • the first predetermined value may be different if the first axis is the selected axis or different from the case where the second axis is the selected axis, or it may be the same or different.
  • the component in the direction of the selected axis is equal to the first predetermined value, the component in the direction of the luminance axis may not be changed.
  • the selected axis is an axis indicating a red component in the positive direction and a green component in the negative direction, and the component in the selected axis direction is more red than the first predetermined value. Is large In this case, increase the component in the direction of the luminance axis! In the case where the red component is smaller than the first predetermined value, color vision conversion processing may be performed to reduce the component in the direction of the luminance axis.
  • a color-blind person with red-green color blindness becomes more brighter by increasing the component in the direction of the brightness axis, and the pixel data in the red color becomes more bright, and the more green pixel data becomes the component in the direction of the brightness axis. Since the luminance decreases and the luminance decreases, the difference in color between red and green can be recognized more clearly as a component difference in the direction of the luminance axis.
  • the uniform color space is the Luv color space, it is the u axis, and if the uniform color space is the Lab color space It is an a axis.
  • the selected axis is an axis that exhibits a yellow component in the positive direction and a blue component in the negative direction, and the component in the selected axis direction has a yellow component more than the first predetermined value.
  • the color perception conversion process may be performed so as to decrease the component in the direction of the luminance axis when the value of L is large and to increase the component in the direction of the luminance axis when the yellow component is smaller than the first predetermined value. ,.
  • a color vision abnormality person of blue and yellow vision abnormality becomes more brighter because the component in the direction of the luminance axis has more power in the blue pixel data, and the yellow pixel data becomes more in the direction of the luminance axis component. Since the luminance decreases and the luminance becomes low, the color difference between blue and yellow can be recognized more clearly as the component difference in the luminance axis direction.
  • an axis showing a yellow component in the positive direction which is a selected axis and showing a blue component in the negative direction
  • the uniform color space is the Luv color space
  • the V axis if the uniform color space is the Lab color space b axis.
  • the component in the direction of the selected axis after the color vision conversion process is monotonous with the absolute value of the component in the direction of the selected axis after the color vision conversion process with respect to the absolute value of the component in the direction of the selected axis before the color vision conversion process. It may be determined by converting the component in the direction of the selected axis before the color perception conversion process with a monotonically increasing function to be increased (hereinafter referred to as “selected axis component remaining device”).
  • a monotonically increasing function that monotonously increases the absolute value of the component in the selected axis direction after the color perception conversion processing with respect to the absolute value of the component in the selected axis direction before the color perception conversion processing means color vision conversion processing
  • any absolute value a, b (where b is greater than a) of the components in the direction of the previous selected axis Then, the absolute value A of the component in the selection axis direction after color perception conversion processing of pixel data related to a, and the absolute value B of the component in the selection axis direction left after color perception conversion processing of pixel data related to b are Meet the relationship greater than B's force SA.
  • the magnitude of the components in the direction of the selected axis after color vision conversion processing is in the same order as the magnitude of the components in the direction of the selected axis before color vision conversion processing. Since color vision conversion processing is performed so as to brighten or darken the type of color, it is possible to recognize the color tone of the original pixel before color vision conversion processing from the color tint of the pixel after color vision conversion processing.
  • the selected axis component residual device among the selected data set which is a data set of the component in the luminance axis direction included in the pixel data and the component in the selected axis direction, the selected data set having the component in the selected axis direction larger than the second predetermined value And a selection data set having a component in the selection axis direction smaller than the second predetermined value, with the selection axis taken along the selection axis including the selection axis and the luminance axis along the selection axis, and the luminance axis While converting the vertical axis of the selected surface to satisfy either one of the convex function and the concave function when the vertical axis is taken as the vertical axis, one of the other selected data sets is converted to the other function. It may be something which is converted to be satisfied (hereinafter referred to as "concave-convex function conversion device").
  • Convex function that exists on the selected surface when the selected axis is taken on the horizontal axis and the luminance axis is taken on the vertical axis means the selected surface including the selected axis and the luminance axis, and the selected axis on the selected surface is taken along the horizontal axis.
  • the function is indicated by the upward concave curve (of course, it exists on the selected surface).
  • Concave function that exists on the selected surface when the selected axis is on the horizontal axis and the luminance axis is on the vertical axis means a selected surface including the selected axis and the luminance axis, and the selected axis is selected on the selected surface.
  • the luminance axis is taken on the horizontal axis and the vertical axis is taken on it, it means a function shown by the upward convex curve (of course, it exists on the selected surface).
  • the component in the selection axis direction is larger than the second predetermined value.
  • the component in the direction of the selected axis is shaped by a part of the elliptical periphery of the first ellipse whose center is on the straight line indicating the second predetermined value.
  • the shape is formed by a part of an elliptical periphery of a second ellipse whose center is on a straight line in which the component in the selected axis direction indicates the second predetermined value, and a first elliptical periphery existing in a range larger than the second predetermined value to be generated
  • the convex function and the concave function are formed by the second elliptical circumference which is less than the second predetermined value to be formed, and one end of the first elliptical circumference and one end of the second elliptical circumference are the second It may be connected at a predetermined value.
  • the center lies on a straight line in which the component in the selected axis direction indicates the second predetermined value.
  • the first elliptical circumference is constituted by a portion of the elliptical circumference existing in a range larger than the second predetermined value among the elliptic circumferences of the first ellipse.
  • the second elliptical circumference is constituted by a portion of the elliptical circumference present in a range smaller than the second predetermined value among the elliptical circumferences of the second ellipse.
  • One end of the first elliptic circumference and one end of the second elliptic circumference are connected by the second predetermined value, and one of the first elliptic circumference and the second elliptic circumference has the convex function and the concave function. And one of the first and second elliptic peripheries forms the other of the convex function and the concave function.
  • the color combination of the pixel after color vision conversion processing to the color combination of the original pixel before color vision conversion processing, Can be recognized well.
  • the amount of change for changing the component in the direction of the luminance axis according to the component in the direction of the selected axis in the color vision conversion process relates to the selected axis of pixel data with respect to the selected axis reference value which is the reference value for the component related to the selected axis. It may be one determined according to the ratio of the components (hereinafter referred to as "selected axis reference value using device").
  • the amount of change is determined according to the ratio means that the amount of change is a monotonous increase with respect to the ratio, for example, any arbitrary ratio rl, Considering that r2 is large, the variation Rr2 in r2 is larger than the variation Rrl in rl Meet the relationship.
  • the degree of the size of the component by the ratio of the component related to the selected axis of the pixel data to the predetermined selected axis reference value, and determine the variation according to the degree of the size. Therefore, the degree of the magnitude of the component in the direction of the selected axis can be well recognized as a component change in the direction of the luminance axis.
  • the selected axis reference value is a table of the components related to the selected axis. It may be a limit value that can be shown.
  • the ratio of the component to the displayable limit value is used to evaluate the degree of the component size. Can be evaluated to a certain extent with respect to the limit, and the degree of the component size in the selected axis direction can be well recognized as a component change in the luminance axis direction.
  • the displayable limit value of the component related to the selected axis may be any value, it may be determined by the component value in the luminance axis direction because it may change depending on the component value in the luminance axis direction. .
  • the selected axis reference value may be a constant value in at least a partial range of the component in the direction of the luminance axis before color perception conversion processing is performed.
  • the constant axis As described above, by setting the constant axis to be a constant value, if the constant value is determined so that the degree of the magnitude of the component can be evaluated well, the degree of the magnitude of the component in the selective axis direction It can be well recognized as axial component change.
  • the amount of change of the component in the direction of the brightness axis corresponds to the reference value of the brightness axis which is a reference value for the component related to the brightness axis. It may be determined according to a value obtained by multiplying the difference with the component by the ratio (hereinafter, referred to as “a luminance axis reference value using device”).
  • the fact that the amount of change of the component in the direction of the luminance axis is determined according to the multiplied value means that the amount of change is monotonically increasing with respect to the multiplied value, for example, any arbitrary multiplied Considering the values 5x1 and x2 (where x2 is larger than xl), the variation Xx2 in x2 satisfies the relation larger than the variation Xxl in xl.
  • the multiplied value is related to the luminance axis.
  • the difference between the predetermined luminance axis reference value yl and the component Li in the direction of the luminance axis before color perception conversion processing (yl-Li), from the component U in the direction of luminance axis before color perception conversion processing The distance in the direction of the brightness axis to a predetermined brightness axis reference value yl is evaluated, and the amount of change of the component in the direction of the brightness axis is determined according to the multiplied value proportional to the distance.
  • the amount of change of the component in the direction of the luminance axis can be determined well by the difference of the component Li in the direction of the luminance axis before being subjected to color vision conversion processing.
  • the convex function or the concave function in the concavo-convex range, and the displayable range of the selected plane including the selected axis and the luminance axis in the case of the luminance axis reference value using device and the concavo-convex function conversion device, the convex function or the concave function in the concavo-convex range, and the displayable range of the selected plane including the selected axis and the luminance axis.
  • a component associated with the luminance axis at the intersection with the boundary may be used as the luminance axis reference value.
  • the boundary of the displayable range on the selection surface including the selection axis and the luminance axis is the boundary between the displayable range and the displayable range when the displayable range on the selection surface is shown on the selection surface.
  • Indicate a border (usually a line that shows the outer edge of the viewable range)! ⁇ ⁇ .
  • the luminance axis reference value can be set as a displayable limit value
  • the difference between the displayable limit value and the component in the direction of the luminance axis before color vision conversion processing is the luminance axis before color vision conversion processing.
  • a non-selection axis process which is a process of reducing the absolute value of the component in the non-selection axis direction which is an axis other than the selection axis among the first axis and the second axis among the pixel data
  • the color vision conversion processing means may further perform (hereinafter referred to as “non-selected axis processing device”)
  • the non-selected axis is the axis that is not the selected axis among the first axis and the second axis.
  • the first axis is a selected axis
  • the second axis is a non-selected axis
  • the first axis is a non-selected axis
  • non-selection axis processing which is processing to reduce the absolute value of the component in the non-selection axis direction in this manner, pixel data before being processed by the present device and after the pixel data are processed by the present device. Hue can not be changed significantly between
  • “Decrease the absolute value of the component in the non-selected axis direction according to the amount of change that changes the component in the luminance axis direction according to the component in the selected axis direction” means to decrease the absolute value of the component in the non-selected axis direction. It means that the quantity z is monotonically increasing with respect to the amount of change w of the component in the direction of the luminance axis. For example, considering arbitrary amounts of change wl, w2 (where w2 is larger than wl), w2 The reduction amount Zz2 in the above condition satisfies the relation larger than the reduction amount Zzl in the wl.
  • the non-selected axis processing device when the component of the non-selected axis of the pixel data is different in positive / negative before the non-selected axis processing and after the non-selected axis processing, the non-selected axis after the non-selected axis processing Ingredients of
  • the color of pixel data is completely different between the non-selected axis processing and the non-selected axis processing.
  • the color of the non-selected axis after the non-selected axis processing may be set to 0 in order to prevent this.
  • the non-selected axis processing device it is determined whether the pixel data after the non-selected axis processing is within the displayable range, and if it is determined that display is not possible, the component of the non-selected axis can be displayed limit value It should be corrected to If the pixel data after non-selection axis processing is out of the displayable range by non-selection axis processing, the pixel data is not displayed, and if it is out of the displayable range, the component of the non-selection axis May be corrected to the displayable limit value.
  • the uniform color space may be a Luv color space or a Lab color space.
  • uniform color space refers to a color space in which color differences perceived to be of equal size are intended to correspond approximately to equal distances in space, such as OCS, Luv color space and Lab color space etc. are known.
  • conversion processing can be performed in a state close to the color perception perceived by human beings, so that conversion conforming to the human color perception can be performed.
  • the Luv color space and the Lab color space have a luminance axis representing luminance, and a first axis and a second axis which are two axes indicating the chroma taketness index. It is composed of three dimensions, and the data conversion method between RGB color model values and CIE XYZ values, which are often used for displays, etc., is also standardized, and thus handling is very easy.
  • the Luv color space and the Lab color space using the Luv color space, in particular, a color blind person can more clearly recognize the difference in color as a component difference in the direction of the luminance axis.
  • the apparatus may further comprise uniform color space conversion means for converting original pixel data indicated by the RGB color model into position data in the uniform color space.
  • RGB color model There is a lot of pixel data represented by the RGB color model, which is frequently used for imaging and image processing, etc., and the pixel data represented by the RGB color 'model that exists in this way is It is often required to process with the device. For this reason, many RGB colors exist because the present apparatus further includes uniform color space conversion means for converting original pixel data represented by the RGB color model into position data in the uniform color space. 'The original pixel data indicated by the model can be processed smoothly by this device.
  • the RGB color model is frequently used for image processing, etc., so this device is required to output pixel data using the RGB color model.
  • the apparatus may further include uniform color space inverse conversion means for outputting. This device can also output smoothly the pixel data indicated by the RGB color 'model, which is frequently used in.
  • the data conversion method from the uniform color space to the RGB color model is standardized as described above and known, and therefore, the description thereof is omitted here.
  • the present apparatus can be realized by causing a computer to execute a predetermined program, and further, the intensive program can be recorded on a computer readable storage medium.
  • FIG. 1 is a schematic block diagram showing a hardware configuration of a pixel processing apparatus (this apparatus) of the present invention according to an embodiment.
  • FIG. 2 is a schematic functional block diagram showing a large basic configuration of the present apparatus.
  • FIG. 3 is a detailed functional block diagram showing details of a data processing unit.
  • FIG. 4 is a diagram showing an example of target pixel data.
  • FIG. 5 It is a graph of uL plane which shows how L value and u value contained in object pixel data are converted.
  • FIG. 6 It is a graph of uL plane which shows how L value and u value contained in object pixel data are converted.
  • FIG. 7 is a graph showing how target pixel data is converted.
  • FIG. 8 This is a graph showing the range in which each of the 16777216 points indicated by the RGB color model is orthographically projected onto the Lu plane.
  • FIG. 9 This is a graph showing the range in which each of the 16777216 points indicated by the RGB color model is orthographically projected onto the Lv plane.
  • FIG. 10 is a diagram summarizing the meaning of the reference axis, the change axis, the reference axis range, and the boundary line for each of the lines ul to u5 and vl to v6 shown in FIG. 8 and FIG.
  • FIG. 11 A diagram showing an approximate expression for each of the lines ul to u5 and vl to v6 shown in FIG. 8 and FIG.
  • FIG. 12 is a diagram showing an example of target pixel data.
  • FIG. 13 It is a graph of the uL plane which shows how L value and u value contained in object pixel data are converted.
  • FIG. 14 is a graph of a uL plane showing how L values and u values contained in target pixel data are converted.
  • FIG. 15 is a graph showing how target pixel data is converted.
  • FIG. 16 is a diagram showing an example of target pixel data.
  • FIG. 17 is a vL-plane graph showing how L values and V values contained in target pixel data are converted.
  • FIG. 18 is a vL-plane graph showing how L values and V values contained in target pixel data are converted.
  • FIG. 19 is a graph showing how target pixel data is converted.
  • FIG. 20 is a diagram showing an example of target pixel data.
  • FIG. 21 is a vL-plane graph showing how L values and V values contained in target pixel data are converted.
  • FIG. 22 is a vL-plane graph showing how L and V values contained in the target pixel data are converted.
  • FIG. 23 is a graph showing how target pixel data is converted.
  • FIG. 26 is a flowchart for explaining the operation of “a process when u is positive” of s 205.
  • FIG. 27 is a flowchart illustrating an operation in and after s313 in the operation of “processing when u is positive” in s205.
  • FIG. 28 is a flowchart illustrating an operation in and after s351 in the operation of “processing when u is positive” in s205.
  • FIG. 29 is a flowchart for explaining the operation of “a process when u is negative” of s207.
  • FIG. 30 is a flowchart illustrating an operation in and after s413 in the “processing in the case where u is negative” in s2O7.
  • FIG. 31 A flowchart explaining an operation after s451 in the operation of “processing when u is negative” of s207.
  • FIG. 32 is a flowchart for explaining the operation of “processing when u is 0” in s208.
  • FIG. 34 is a flowchart for explaining the operation of “processing when v is positive” at s 605.
  • FIG. 35 A flow chart explaining the operation after s713 in the operation of “processing when v is positive” at s605.
  • FIG. 36 is a flowchart illustrating an operation in and after s751 in the operation of “processing when v is positive” in s605.
  • FIG. 37 is a flowchart for explaining the operation of “processing when v is negative” of s 607.
  • FIG. 38 A flow chart explaining the operation after s813 in the operation of “processing when v is negative” of s 607.
  • FIG. 39 is a flowchart illustrating the operation of s851 and subsequent steps of the “processing in the case where v is negative” of s607.
  • FIG. 40 is a flowchart for describing the operation of “a process when v is 0” of s6O8.
  • FIG. 1 is a schematic block diagram showing a hardware configuration of a pixel processing device (this device) 11 of the present invention according to one embodiment.
  • the hardware configuration of the present apparatus 11 according to an embodiment will be described with reference to FIG.
  • the device 11 is incorporated in a part of a mobile phone (not shown), and includes a digital camera unit 13 attached to the mobile phone and a display unit 15 attached to the mobile phone. It is connected.
  • a digital camera unit 13 attached to the mobile phone
  • a display unit 15 attached to the mobile phone. It is connected.
  • the part related to the present device 11 is shown among the mobile phones, but the call using the mobile phones, the transmission and reception of electronic mail, the digital camera unit 13
  • the image capture using can be performed in the same way as an ordinary mobile phone.
  • the present apparatus 11 is configured by a computer having a program built therein, and as described above, the digital camera unit 13 and the display unit 15 are connected to the present apparatus 11.
  • This device 11 is a CPUl la that performs arithmetic processing, and a RAMI lb that becomes the work area of CPU 1 la, etc. , ROM 1 lc for recording control programs and the like, and an interface 1 id for exchanging information with the digital camera unit 13 and the display unit 15.
  • control programs etc. are stored in ROMl lc, so that they are stored in other storage devices (for example, hard disk etc.), needless to say!
  • FIG. 2 shows a schematic functional block diagram showing a large basic configuration of the present apparatus 11 realized by the hardware of FIG. 1 and a program recorded mainly in the ROM 1lc.
  • the basic configuration of the present apparatus 11 will be described with reference to FIG.
  • the apparatus 11 functionally includes a reception unit 21, a color space conversion unit 31, a data processing unit 41, a color space inverse conversion unit 51, and an output unit 61.
  • the digital camera unit 13 When the digital camera unit 13 receives a shooting command signal for commanding shooting (a portion for emitting the shooting command signal to the digital camera unit 13 is not shown), the digital camera unit 13 captures an image according to the RGB color model. The captured image data is transmitted to the reception unit 21.
  • the reception unit 21 always stands by to receive the image data from the digital camera unit 13, and when the image data is received from the digital camera unit 13, transmits the received image data to the color space conversion unit 31. .
  • the color space conversion unit 31 that receives image data (hereinafter referred to as “RGB image data”) from the reception unit 21 according to the RGB color model is data (L (L,) of the RGB image data in the Luv color space.
  • u, V) (Li, ui, vi), hereinafter referred to as "Luv image data”.
  • RGB image data Luv image data is performed by converting all pixel data included in RGB image data to Luv image data. The method of such conversion is known and will not be described here.
  • the Luv image data converted by the color space conversion unit 31 is transmitted from the color space conversion unit 31 to the data processing unit 41.
  • An example of Luv image data transmitted from the color space conversion unit 31 to the data processing unit 41 is schematically shown in Table 1.
  • Table 1 pixel numbers (1, 2, 3, 4 ⁇ ⁇ ⁇ ⁇ (positive integer)) and (L, u, V) data ((Li, ui, vi)) are included.
  • (L, u, V) data is described as (LI, ul, vl) or (L2, u2, v2), but these L data (Ll, L2, L3 '.') , U data (ul, u2, ⁇ 3 ⁇ ⁇ ⁇ ) and v de
  • the data (vl, v2, v3 ...) actually contains numbers!
  • the L axis that constitutes (L, u, V) is the luminance axis (Li indicates luminance), the u axis (the positive direction indicates red and the negative direction indicates green) and the V axis (positive direction). Is yellow, and the negative direction is blue) is a first axis and a second axis which is an axis of 2 indicating the chroma takeness index.
  • FIG. 3 is a detailed functional block diagram showing the details of the data processing unit 41. As shown in FIG. The details of the data processing unit 41 will be described with reference to FIG.
  • the data processing unit 41 functionally includes a data storage unit 42, a target image data extraction unit 43, a conversion unit 44, a conversion type storage unit 45, a parameter storage unit 46, a mathematical expression storage unit 47, and a reading unit 48. Become.
  • the Luv image data (data as shown in Table 1) transmitted from the color space conversion unit 31 is received by the data storage unit 42 of the data processing unit 41.
  • the data storage unit 42 having received the Luv image data stores the received Luv image data, and transmits the received Luv image data to the conversion unit 44.
  • the conversion unit 44 having received the Luv image data accesses the conversion type storage unit 45, and reads out the conversion type stored in the conversion type storage unit 45, thereby performing the first conversion (for the first and second color vision abnormalities).
  • the conversion unit 44 having received the Luv image data accesses the conversion type storage unit 45, and reads out the conversion type stored in the conversion type storage unit 45, thereby performing the first conversion (for the first and second color vision abnormalities).
  • the following description is given. If it is determined that the third conversion (for the third color vision abnormality) is specified, the third conversion described below is performed.
  • the processing type desired by the user of the apparatus 11 through a keyboard, touch panel, etc.
  • the conversion type storage unit 45 is input to the conversion type storage unit 45 and stored in advance in the conversion type storage unit 45. Then, as described below, data on all the pixels contained in the Luv image data (in Table 1, the pixel numbers associated with the same pixel number, (L, u, V) are data on one pixel. For example, data on all pixels in Table 1 means all n data from pixel number 1 to pixel number n.
  • the conversion unit 44 When it is determined that the first conversion (for the first and second color vision abnormalities) is specified, the conversion unit 44 reads out of the pixel data included in the Luv image data stored in the data storage unit 42. Then, the command signal (hereinafter referred to as “read command signal”) for reading out one item and sending it to the conversion unit 44 is sent to the target image data extraction unit 43.
  • read command signal the command signal for reading out one item and sending it to the conversion unit 44 is sent to the target image data extraction unit 43.
  • target image data extraction unit 43 that has received the read command signal from the conversion unit 44 is still read out of the pixel data included in the Luv image data that the data storage unit 42 stores and stores. If it is determined that there is nothing to do (that is, all the pixel data has been read out and the pixel data that has not been read out has disappeared), the activation signal is sent to the readout unit 48.
  • target picture Pixel data transmitted from the image data extraction unit 43 to the conversion unit 44 and to be processed from now on is referred to as “target pixel data”.
  • u5 is larger than 0.
  • the position of the target pixel data is indicated by a point p5).
  • the ellipse represented by this equation (1) is the uL plane (the three axes that are orthogonal to each other as shown in FIG.
  • Pumax is a parameter.
  • the user of the present apparatus 11 preliminarily inputs the value of Pumax to the parameter storage unit 46 through the keyboard, touch panel, etc. (not shown) which is connected to the present apparatus 11, and the parameter storage unit 46 inputs the value of Pumax. I remember . Therefore, when the conversion unit 44 creates the equation (1), the conversion unit 44 accesses the parameter storage unit 46 to read out and acquire the value of Pumax from the parameter storage unit 46.
  • Equation (1) since L is greater than 0 and smaller than 100, equation (1.1) is obtained.
  • the procedure of calculating the display color range, the procedure of calculating the color coordinate value on the boundary, and the method of deriving the approximation of the boundary are described later.
  • the equation (2) derived and derived in order is input to and stored in the formula storage unit 47 in advance. Therefore, when the conversion unit 44 determines that the L value (Li) is 53.3 or more, the equation storage unit 47 is accessed, and the equation (2) is read out from the equation storage unit 47 and acquired.
  • um5 - 0. 00038119 X L5 3 +0 121971 X L5 2 -. 15. 5168 X L5 + 713. 51
  • the conversion unit 44 does not determine that the L value (L5) is 53.3 or more (that is, the L value (L5) force is less than 3.3)
  • the first reference value um5 is set to 175. 0213.
  • FIG. 5 also shows 175. 0213, which is taken as the first reference value um5 when it is not determined that the L value (L5) is 55.3 or more.
  • Luv Determine the ratio Sc5 u5Zum5 to the first reference value um5 determined by the u value u5 force of the data.
  • the converting unit 44 is a point on the elliptical circumference of the ellipse represented by the equation (1.1), which exists in the range where the display can be displayed, and the point with the largest L value is , uem) and this u Ask em.
  • And is shown as point M5 (Lm 5, uem 5) in FIG.
  • FIG. 1 point on the elliptical circumference of the ellipse represented by the equation (1.1), which exists in the range where the display can be displayed, and the point with the largest L value is , uem) and this u Ask em.
  • the point M5 (Lm5, uem5) corresponds to the point on the elliptical circumference of the ellipse (solid line F1) shown by the equation (1.1) shown in FIG.
  • the L value is the point that falls within the range that can be displayed by the indicated display (the range enclosed by the dotted line). The method of calculating uem will be described below.
  • FIG. 3 An ellipse (hereinafter referred to as “elliptic 3") shown by this equation (3) is shown in FIG. Further, in FIG. 6, similarly to FIG. 5, the range which can be displayed by the display is shown surrounded by a dotted line, and an ellipse (hereinafter referred to as “elliptic 1”) shown by the equation (1) is also shown.
  • the converter 44 obtains uemO using the following equation (4).
  • the maximum points (LmO, uemO) are shown as point MO (LmO, uemO) in FIG.
  • the force derived equation (4) which will be described below, is inputted in advance and stored in the equation storage unit 47. Therefore, the conversion unit 44 accesses the equation storage unit 47, reads out the equation (4) from the equation storage unit 47, and calculates uemO.
  • Equation (4) gives u coordinate uemO of the point of intersection of u with the equation (3) and the equation (2) (which gives the maximum value of u that the display can show when the u is positive) It was obtained from the Softwar e Foundation (group name) using the name of the software managed and distributed by the GNU Project (the same shall apply hereinafter). Specifically, using GNU Scripte, change Pumax in equation (3) from 10 to 100 at intervals of 0.2, and for each case the intersection point (L, u) between equation (3) and equation (2) Ask for). As a result, 451 sets of three values of (Pumax, L, u) are obtained. Then, using GNU Octave, I got equation (4), which is the relational expression (approximate expression) of the two values (P umax, u) in this. Equation (4)
  • uemO ⁇ 0. 000675336 X (Pumax) 2 + 1. 02361 X (Pumax) ⁇ 0. 252138 [0047]
  • the conversion unit 44 converts uemO obtained in the second into the following formula (5) Substitute to find uem.
  • the method of deriving the equation (5) is as described below, but the derived equation (5) is previously input to and stored in the formula storage unit 47. Therefore, the conversion unit 44 accesses the mathematical expression storage unit 47, reads out the expression (5) from the mathematical expression storage unit 47, and then calculates uem.
  • the display can be displayed in the uL plane.
  • a boundary where the maximum value of L at which u is positive ie, equation (2)
  • Formula: L a X u + 100 is used to set L of formula (3) uemO is obtained when removed by, and when clear the L of formula (1) using the formula straight line uem is obtained, they force equation (5) is obtained. Equation (5) can be approximated very well by a small error.
  • uem5 uemO X (100-L5) / 100
  • the L value (Lt) of the Luv data after Ru is performed so as to increase the luminance in accordance with the degree of redness in a certain luminance within the displayable color range.
  • Lt is expressed by equation (6).
  • Equation (6. 1) is obtained by transforming equation (6).
  • Lm in equation (6.1) is, as described above, one of the points on the periphery of the ellipse of the ellipse represented by equation (1.1) which falls within the range that can be displayed by the display. This is the L value of the point with the largest value (L m, uem).
  • the point (Lm, uem) is a point on the elliptic circle of the ellipse shown by the equation (1.1)
  • the following equation (7) is satisfied.
  • first and second conversions One line of Luv data after the second color blindness Find Lt). Since equation (9) is previously input to and stored in equation storage unit 47, conversion unit 44 accesses equation storage unit 47 to read equation (9) from equation storage unit 47, and then Lt (In addition, the conversion unit 44 accesses the parameter storage unit 46 to read out and acquire the value of Pumax from the parameter storage unit 46.)
  • the conversion unit 44 obtains the u value (ut) of the Luv data after the first conversion (for the first and second color vision abnormalities) of the target pixel data. Since the L value (Lt) and u value (ut) of the converted Luv data are points on the ellipse circumference of the ellipse shown by equation (1.1), the u value (ut) is as described above Using the obtained L value (Lt), the following equation (10) (where ut is greater than 0) obtained by transforming equation (1.1) is calculated. Since equation (10) is also input and stored in advance in equation storage unit 47, conversion unit 44 accesses equation storage unit 47 to read equation (10) from equation storage unit 47 and obtain it. , Ut (in addition, the conversion unit 44 accesses the parameter storage unit 46 to read out and acquire the value of Pumax from the parameter storage unit 46).
  • Specific examples of the target pixel data shown in Fig. 4 include L values and Figure 6 shows how u values are converted (Lt5 and ut5, respectively).
  • the point is projected on the uL plane (plane including u axis and L axis).
  • the L value and u value of the Luv data (L5, u5, v5) of the target pixel data are converted to Lt5 and ut5, respectively, so that the red color is converted to high brightness (ie, the u value is larger).
  • the L value increases with
  • Equation (11) and Equation (12) Since the deviation of Equation (11) and Equation (12) is also input in advance and stored in the equation storage unit 47, the conversion unit 44 accesses the equation storage unit 47 and the equation storage unit 47 accesses the equation (11 After reading out and acquiring one of Eqs. (12) and (12), vt is calculated.
  • the unit 44 checks and corrects the vt value as follows if it is determined that the value does not fall within the range.
  • the conversion unit 44 accesses the formula storage unit 47 and freely reads out and acquires from the formula storage unit 47. be able to. If the value of the determined vt is out of the range from the minimum value to the maximum value, the conversion unit 44 determines that the display does not fall within the range that can be displayed, and the vt value is determined as Lt value after conversion. It corrects by replacing with the minimum value or the maximum value (the vt after conversion is closer). Specifically, in the case of (l) vt> 0, when Lt is 0 or more and less than 87.8 (0 ⁇ Lt or 87.8), the equation of vl in FIG.
  • the V The minimum value of is determined, and when vt is smaller than that, it is taken as the value of the minimum value ⁇ vt.
  • the conversion unit 44 transmits the converted data (Lt, ut, vt) to the data storage unit 42 and causes the data storage unit 42 to store the data.
  • the order in which the converted data (Lt, ut, vt) are stored in the data storage unit 42 is the same as the order of the pixel data included in the Luv image data stored in the data storage unit 42 ( That is, the converted data (Lt, ut, vt) is stored in the data storage unit 42 in the order of the original pixel data included in the Luv image data stored in the data storage unit 42.
  • the storage area where the post data (Lt, ut, vt) is stored in the data storage unit 42 is different from the storage area of the original pixel data included in the Luv image data.) O Furthermore, the conversion unit 44 A read command signal instructing to read and transmit one pixel data not yet read out of the pixel data included in the Luv image data stored in the data storage unit 42 is transmitted to the target image data extraction unit 43 (Thus, Luv image data stored in the data storage unit 42 The next pixel data including the subject pixel data is processed.).
  • the position after conversion when v5 is positive is a point p5a (Lt5, ut5, v
  • the position after conversion when t5) is shown and v5 is 0 or less (0 or 0) is shown as a point p5b (Lt5, ut5, vt5).
  • vt5 v5-(Lt5-L5) of the point p5a
  • vt5 v5 + (Lt5-L5) of the point p5b.
  • the equations (2) and the like (including the data and formulas shown in FIGS. 10 and 11 as described above) used in the above process are derived regardless of the operation of the present apparatus 11, and It is inputted in advance and stored in the formula storage unit 47. What is input to the formula storage unit 47 is derived through the following procedure for calculating the display color range, the procedure for calculating the color coordinate values on the boundary, and the procedure for deriving the approximation for the boundary.
  • the maximum value and the minimum value of L value, u value, and V value of the data in the Luv color space converted for all 16777216 ways are extracted.
  • the minimum value 0 and the maximum value 100 are obtained
  • the u value the minimum value 1 83. 0667 and the maximum value 175. 0213 are obtained
  • the V value the minimum value 1 134. 0896 and The maximum value of 107.4177 is obtained.
  • Luv color space determines the range of Luv color space that can be indicated by such an RGB color model that is used as a display signal in a display of an ordinary computer or the like. As shown in the calculation procedure of the display color range described above, in each of the 16777216 cases indicated by the RGB color model, the Luv color space (the L axis, u axis and v axis orthogonal three axis sky are shown). Plot).
  • each of the plotted 16777216 points is taken as the Lu plane (of the three axes orthogonal to one another: the L axis, the u axis and the V axis, the plane including the u axis and the L axis) and the And Lv plane (which is a plane including the V axis and the L axis among the L axis, the u axis, and the V axis which are three axes orthogonal to each other).
  • the projection to the Lu plane is shown in Fig. 8
  • the projection to the Lv plane is shown in Fig. 9.
  • the shaded area is the area where 16777216 points are projected (hereinafter, the area projected onto the Lu plane is referred to as the “Lu projection area”, the area projected onto the Lv plane Is called “Lv projection area”.
  • This boundary line is made up of a plurality of lines (lines ul, u2, u3, u4, u5, vl ⁇ v2, v3, v4, v5, v6) as shown in FIGS.
  • one of the two axes (in the line ul, u-axis and L-axis) indicated by the line to be determined (hereinafter referred to as the "object line", here the line ul) is u (in the line ul). While one of the changes of the other (line ul and L-axis) with respect to the axis is smaller than the change of the one with respect to the other, the one is the reference axis (u-axis in line ul), and the other is the change axis ( Let L axis be the line ul). Also, let the axis perpendicular to the two axes be an arbitrary axis (in the line ul, V axis).
  • the value at the change axis (here, L axis in line ul) on the object line (line ul in this case) indicates the deviation of the maximum or minimum value of the target area (here, Lu projection area) Judge (meaning of border).
  • the value at the change axis (L axis) on the line ul indicates the minimum value of the Lu projection area (the line ul is the lower end of the Lu projection area) 0
  • the value of the reference axis (in the line ul, u axis) and the minimum value force of the target area (here, the Lu projection area) is also the maximum value (reference axis force L axis)
  • the minimum value 0 to the maximum value 100, the maximum for the u axis, / J ⁇ value 83. 0667, the maximum value for the 175. 0213, the maximum value for the v axis / J ⁇ value 134. 08 96 to the maximum value 107 Increase by 0.1 until 4177) (hereinafter referred to as "reference axis assumed value”) and check the following (i) in each case.
  • the value of the change axis is the minimum value obtained in the “Display color range calculation procedure” (the change axial force In the case of the axis, the minimum value is 0, the minimum value is 1 83. 0667 for the u axis, and the minimum value 1 134. 0896 for the V axis is increased by 0.1 by 1 and targeted according to the following (mouth) Find the first value contained in the region (here, the Lu projection region). Conversely, the second judgment is judged to be the maximum value.
  • the value of the change axis (line ul or L axis) will be calculated in the “Display color range calculation procedure”, and the maximum value (maximum value 100 for the change axis force axis), u axis If it is the maximum value 175. 0213 and if it is the V axis, the maximum value 107.
  • force is also decreased by 0.1 and included in the target area (here, the Lu projection area) first according to the following (mouth) Find the value to be The value (the value of the change axis) initially contained in the target area (here, the Lu projection area) determined in this manner, and the value of the reference axis in the value initially contained (the value of the change axis) Let the coordinates on the boundary line be the value initially included (the value of the reference axis when the value of the change axis is calculated).
  • the minimum value 1 83. 0667 force, etc. maximum value 175. 0213, if it is v axis, the maximum / J ⁇ value-134. 0896 force, etc. maximum value 107. 4177) increase by 0.1 each, and each value (L , u, v) are converted to the RGB color model.
  • the combination of the reference axis assumed value at that time and the value of the change axis (L axis in the line ul) is a value initially included in the target area (here, the Lu projection area).
  • the equation (2) described above used the equation for u2 in FIG. 11 described above.
  • the data and formulas shown in FIGS. 10 and 11 are derived in advance regardless of the operation of the present apparatus 11, and are input and stored in the formula storage unit 47 in advance.
  • the conversion unit 44 which has not determined that the u value (ui) is greater than 0 further determines whether the u value (ui) is less than 0 and determines that the u value (ui) is less than 0. Perform “Processing when u is negative” described below.
  • the ellipse shown by this equation (13) is the uL plane (the three axes orthogonal to each other as shown in FIG.
  • the u of the target pixel data is set so that the u and L values of the target pixel data are coordinates of points existing on the circumference of the ellipse (on the circumference of the ellipse) shown by this equation (13). Convert value and L value.
  • Pumin is a parameter. Similar to the above-mentioned Pumax, the user of the present apparatus 11 inputs the value of Pumin in advance into the parameter storage section 46 through the keyboard, touch panel, etc. (the gap is not shown) connected to the present apparatus 11. 46 stores the value of Pu min. Therefore, when the conversion unit 44 creates the equation (13), the conversion unit 44 accesses the parameter storage unit 46 to read out and acquire the value of Pumin from the parameter storage unit 46.
  • equation (13. 1) is obtained because L has a value greater than 0 and less than 100.
  • L is greater than 0 and less than 100 because the processing is performed!
  • the ellipse shown by this equation (13. 2) is shown in FIG. Further, in FIG. 13, the range in which the display can be displayed is shown surrounded by dotted lines.
  • the method of determining the range that can be displayed by the display is performed according to the above-described procedure for calculating the display color range, the procedure for calculating the color coordinate value on the boundary, and the procedure for deriving the approximate expression of the boundary.
  • the said ellipse shown by Formula (13. 2) was shown by the continuous line F2 in FIG. 13, the part in the range which a display can display among this ellipse (namely, it is surrounded by the dotted line in FIG. 13).
  • the part within the above range is a part close to this range because it relates to this processing, and here, only the part where u is negative is shown to handle the case where u is negative.
  • L value (Li) If it is determined that the force is less than 8, the minimum value of u values that can be displayed by the L value (Li) is the first reference value um I assume.
  • the minimum value of the strong u value (here, the first reference value um) is obtained by substituting the L value (Li) of the target pixel data for the L value in the following equation (14).
  • Equation (14) For the derivation method of the equation (14), the calculation procedure of the display color range, the calculation procedure of the color coordinate value on the borderline, and the derivation procedure of the approximation formula of the borderline have already been described.
  • the equation (14) obtained and derived is input and stored in advance in the equation storage unit 47 (specifically, the equation (14) is the equation of the line u5 in FIG. 11). Therefore, when it is determined that the conversion unit 44 force L value (Li) is less than 87.8, the equation storage unit 47 is accessed to read out and obtain the equation (14) from the equation storage unit 47. Equation (14)
  • the conversion unit 44 determines that the L value (L7) is 87.8 or more (when the conversion unit 44 does not determine that the L value (L7) is less than 87.8), the first reference value um7 is one 83. 0667.
  • the first reference value um7 is set.
  • One 83. 0667 is also shown in Figure 13.
  • Luv data (L, u, V) (L7, u7, v7), where u7 or 0) is taken as an example
  • the converting unit 44 is a point on the elliptical circumference of the ellipse represented by the equation (13. 1) which falls within the range in which the display can be displayed. , uem) and ask for this uem.
  • the point M7 (Lm7, uem7) is Of the point on the elliptical circumference (solid line F2) of the ellipse shown by the equation (13. 1) shown in FIG. 13, the range in which the display shown in FIG. L point is the smallest point that exists in).
  • the method of calculating uem will be described below.
  • FIG. 14 shows, similarly to FIG. 13, the range that the display can display is surrounded by a dotted line, and the ellipse (hereinafter referred to as “ellipse 13”) represented by the equation (13) is also shown.
  • the one that falls within the range that can be displayed by the display and the L value is the smallest is (LmO, uemO).
  • the uemO is determined by the following equation (16).
  • the minimum point (LmO, uemO) is shown as a point MO (LmO, uemO) in FIG.
  • the method of deriving the equation (16) is as described below, but the derived equation (16) is previously input to and stored in the equation storage unit 47. Therefore, the conversion unit 44 accesses the equation storage unit 47, reads out the equation (16) from the equation storage unit 47, and calculates uemO.
  • Equation (16) is the u-coordinate uemO of the point of intersection of u at the negative with the equation (15) and the equation (14) (which gives the minimum value of u that the display can display at negative u) It was obtained by Specifically, using GNU Octave, Pumin in equation (15) is varied by an interval of 0.2 from one 80 to one tenth, and for each case, the intersection point of equation (15) and equation (14) (L , u) ask. As a result, 351 sets of three values (Pumin, L, u) are obtained. Next, using GNU Octave, we obtained equation (16), which is the relational equation (approximate equation) for the two values (Pumin, u) in this.
  • uemO 0. 00422958 X (Pumin) 2 + 1. 11416 X (Pumin) + 0. 962 955 [0072]
  • the conversion unit 44 substitutes uemO obtained in the second into the following equation (17) And ask for ue m.
  • the derivation method of equation (17) is as described below, but it is derived.
  • Expression (17) is previously input to and stored in the mathematical expression storage unit 47. For this reason, the conversion unit 44 accesses the equation storage unit 47, reads out the equation (17) from the equation storage unit 47, and calculates uem.
  • L is greater than 0 and less than 100.
  • the calculation method of L value (Lt) after force conversion is performed so as to decrease the luminance according to the degree of green at a certain luminance within the displayable color range.
  • Equation (18) is transformed to obtain equation (18. 1).
  • Lm in the equation (18. 1) is within the range which can be displayed by the display among the points on the elliptic circle of the ellipse shown by the equation (13. 1) as described above. It is the L value of the point (Lm, uem) where the L value is the smallest.
  • the point (Lm, uem) is a point on the elliptical periphery of the ellipse shown by equation (13. 1), the following equation (19) is satisfied.
  • equation (17) is substituted into uem of equation (19), and the equation obtained thereby is further substituted into equation (18. 1) to obtain equation (20).
  • the conversion unit 44 obtains the u value (ut) of the Luv data after the first conversion (for the first and second color vision abnormalities) of the target pixel data.
  • L value (Lt) and u value (ut) of Luv data after conversion Since is a point on the ellipse circumference of the ellipse shown by equation (13. 1), u value (ut) is the equation (13. 1) using L value (Lt) obtained as described above. It is calculated from the following equation (21) (note that ut is less than 0) which is a variation of.
  • equation (21) is also inputted and stored in advance in equation storage unit 47, conversion unit 44 accesses equation storage unit 47 to read equation (21) from equation storage unit 47, (Also, the conversion unit 44 accesses the parameter storage unit 46 to read out and acquire the value of Pumin from the parameter storage unit 46).
  • FIG. 14 shows how the u and u values are converted (Lt7 and ut7 respectively).
  • the difference from the L value L7 before conversion, that is, the ratio of (Lt7 ⁇ L7) 2 (ie, (Lt7 ⁇ L7) Z (Lm7 ⁇ L7) 2) becomes equal to the above S c7 ( u7 / um 7)
  • the L value and u value of the Luv data (L7, u7, v7) of the target pixel data are converted to Lt7 and ut7, respectively, so that the green color is converted to a lower luminance (ie, the u value is smaller) The L value is reduced)).
  • the unit 44 checks and corrects the vt value as follows if it is determined that the value does not fall within the range.
  • the conversion unit 44 determines that the value does not fall within the range that can be displayed by the display, and the vt value is determined as Lt value after conversion. It corrects by replacing with the minimum value or the maximum value (the converted vt is closer). Specifically, in the case of (l) vt> 0, when Lt is 0 or more and less than 87.8 (0 ⁇ Lt or 87.8), the equation of vl in FIG.
  • V 11 is used when 4 or less (32.4 L Lt ⁇ 60.4), the minimum value of V is obtained using the equation of v6 in Fig. 11 when Lt force SO or more and 32.4 or less (0 ⁇ Lt ⁇ 32.4). Seeking Therefore, when vt is smaller than that, let the minimum value be the value of vt.
  • the conversion unit 44 transmits the converted data (Lt, ut, vt) to the data storage unit 42 and causes the data storage unit 42 to store the data.
  • the order in which the converted data (Lt, ut, vt) are stored in the data storage unit 42 is the same as the order of the pixel data included in the Luv image data stored in the data storage unit 42 ( That is, the converted data (Lt, ut, vt) is stored in the data storage unit 42 in the order of the original pixel data included in the Luv image data stored in the data storage unit 42.
  • the storage area where the post data (Lt, ut, vt) is stored in the data storage unit 42 is different from the storage area of the original pixel data included in the Luv image data.) O Furthermore, the conversion unit 44 A read command signal instructing to read and transmit one pixel data not yet read out of the pixel data included in the Luv image data stored in the data storage unit 42 is transmitted to the target image data extraction unit 43 (Thus, Luv image data stored in the data storage unit 42 The next pixel data including the subject pixel data is processed.).
  • the position after conversion when v7 is positive is shown as a point p7a (Lt7, ut7, vt7), and v7 is 0 or less (0 or 0).
  • the converted position is shown as a point p7b (Lt7, ut7, vt7).
  • vt7 v7 ⁇ (L7 ⁇ Lt7) of the point p7a
  • vt7 v7 + (L7 ⁇ Lt7) of the point p7b.
  • the order to be stored in the storage unit 42 is the same as the order of the pixel data included in the Lu V image data stored in the data storage unit 42 (that is, the Luv image data stored by the data storage unit 42)
  • the converted data (Lt, ut, vt) is stored
  • the conversion unit 44 instructs to read out and transmit one pixel data not yet read out of the pixel data included in the Luv image data stored in the data storage unit 42. Send to the unit 43 (thereby the next pixel data included in the Luv image data stored in the data storage unit 42 becomes the target pixel data and processed) o
  • a readout instruction for instructing one of the pixel data included in the Luv image data stored and stored in the data storage unit 42 to be read out and transmitted.
  • the target image data extraction unit 43 accesses the data storage unit 42, and among the pixel data contained in the Luv image data stored in the data storage unit 42, it is still read out After reading out and acquiring one not-in-one pixel data, the one pixel data acquired by the readout is transmitted to the conversion unit 44.
  • the pixel data transmitted to the conversion unit 44 is processed as target pixel data, so the pixel data included in the Luv image data stored in the data storage unit 42 is processed one by one.
  • the target image data extraction unit 43 that has received the read command signal from the conversion unit 44 accesses the data storage unit 42, and the data storage unit 42 stores it, and the pixel data included in the Luv image data is still read out. There is nothing that does not exist (ie all pixel data Is read out, and it is determined that there is no pixel data which has not been read out, the start signal is sent to the reading unit 48.
  • the reading unit 48 that receives the start signal from the target image data extraction unit 43 accesses the data storage unit 42, and all the converted data (Lt, ut, vt) stored in the data storage unit 42 (n pieces) Are read out and acquired, and all (n pieces) of the converted data (Lt, ut, vt) acquired by the readout are transmitted to the color space inverse conversion unit 51. Thereafter, the reading unit 48 accesses the data storage unit 42 and erases the storage of the data storage unit 42.
  • the color space inverse conversion unit 51 which receives all (n pieces) of data after conversion (Lt, ut, vt) from the reading unit 48 (data processing unit 41) is shown as data in the Luv color space.
  • Converted data (Lt, ut, vt) Convert all (n pieces) into RGB image data.
  • all (n) pieces of pixel data of the converted data (Lt, ut, vt) are converted to RGB image data. Performed by conversion (each of n pieces of pixel data is converted.) O The method of such conversion is known and thus the description thereof is omitted here.
  • the color space inverse conversion unit 51 which has converted all the n converted data (Lt, ut, vt) into RGB image data transmits the converted n RGB image data to the output unit 61.
  • the output unit 61 receiving the converted n RGB image data from the color space inverse conversion unit 51 displays an image on the display unit 15 based on the RGB image data.
  • the conversion unit 44 When it is determined that the third conversion (for the third color vision abnormality) is specified, the conversion unit 44 is read out of pixel data included in the Luv image data stored in the data storage unit 42, and V, , And transmits a read command signal to the target image data extraction unit 43 to read one out and send it to the conversion unit 44.
  • the target image data extraction unit 43 that has received the read command signal from the conversion unit 44 accesses the data storage unit 42, and is still read out of the pixel data included in the Luv image data stored in the data storage unit 42.
  • the target image data extraction unit 43 outputs the pixel data of 1 acquired from the data storage unit 42. Transmits the data to the conversion unit 44.
  • the target image data extraction unit 43 that has received the read command signal from the conversion unit 44 stores the unread pixel data included in the Luv image data stored in the data storage unit 42. If it is determined that the read operation is not performed (that is, all the pixel data has been read and the unread pixel data has run out), an activation signal is sent to the reading unit 48. Similar to the first conversion described above, pixel data transmitted from the target image data extraction unit 43 to the conversion unit 44 and to be processed from now on is referred to as “target pixel data”.
  • the ellipse shown by this equation (24) is a vL plane (of three axes orthogonal to each other as shown in FIG.
  • V, L (0, 0)
  • the major axis (diameter in the L-axis direction) is Li
  • the minor axis (the diameter in the V-axis direction).
  • the V of the target pixel data is set so that the V and L values of the target pixel data are coordinates of points existing on the circumference (on the circumference of the ellipse) of the ellipse shown by this equation (24). Convert value and L value.
  • Pvmax is a parameter.
  • the user of the present apparatus 11 previously inputs the value of Pvmax to the parameter storage unit 46 through the keyboard, touch panel or the like (not shown) which is connected to the present apparatus 11, and the parameter storage unit 46 stores the value of Pvmax. doing. Therefore, when the conversion unit 44 creates the equation (24), the conversion unit 44 accesses the parameter storage unit 46 to read out and acquire the value of Pvmax from the parameter storage unit 46.
  • the ellipse shown by this equation (24. 2) is shown in FIG. Further, in FIG. 17, the range which the display can display is shown by being surrounded by a dotted line.
  • the method of determining the displayable range is performed according to the procedure of calculating the display color range, the procedure of calculating the color coordinate value on the boundary, and the procedure of deriving the approximate expression of the boundary.
  • the said ellipse shown by Formula (24. 2) was shown by the continuous line F3 in FIG. 17, the part in the range which a display can display among this ellipse (namely, it is surrounded by the dotted line in FIG. 17).
  • the part within the above range is included in this range because it relates to this processing, and in this case V is a positive part to handle the case where V is positive.
  • L value (Li) If it is determined that the force is less than 8, the maximum V value that can be displayed on the L value (Li) is the first reference value vm. I assume. Maximum value of the V value (here, the first reference value vm It is assumed. Is the force of the value of V obtained by substituting the L value (Li) of the target pixel data for the L value in the following equation (25). The method for deriving the equation (25) has already been described.
  • equation (25) is the equation of line vl in FIG. 11). Therefore, when it is determined that the conversion unit 44 force L value (Li) is less than 87.8, the equation storage unit 47 is accessed to read out and obtain the equation (25) from the equation storage unit 47.
  • the conversion unit 44 determines that the L value (L6) is 87.8 or more (when the conversion unit 44 does not determine that the L value (L6) is less than 87.8), the first reference value vm6 is taken as 107. 4177.
  • the first reference value vm6 is set. 107. 4177 is also shown in FIG.
  • the conversion unit 44 is a point on the elliptical circumference of the ellipse represented by the equation (24. 1) which falls within the range in which the display can be displayed. , vem) and ask for this vem.
  • vem a point on the elliptical circumference of the ellipse represented by the equation (24. 1) which falls within the range in which the display can be displayed.
  • vem a point on the elliptical circumference of the ellipse represented by the equation (24. 1) which falls within the range in which the display can be displayed. , vem) and ask for this vem.
  • the point M6 corresponds to the point on the elliptical circumference of the ellipse (solid line F3) shown by the equation (24. 1) shown in FIG.
  • the L value is the smallest point because it is within the range that the indicated display can display (the range enclosed by the dotted line). The following describes how to calculate vem.
  • FIG. 18 shows, similarly to FIG. 17, the range in which the display can be displayed surrounded by a dotted line, and also shows an ellipse (hereinafter referred to as “ellipse 24”) represented by equation (24).
  • Equation (27) uses GNU Script Script for the V coordinate vemO of the point of intersection of V with the equation (26) and the equation (25) (which gives the maximum value of V that the display can display when the V is positive). It was obtained by Specifically, using GNU Scripte, Pvmax in equation (26) is varied from 10 to 100 by 0.2 intervals, and in each case the intersection point (L,) between equation (26) and equation (25) v) ask. As a result, 51 combinations of three values of (Pvmax, L, v) are obtained. Then, using GNU Octave, we obtained equation (27), which is the relational expression (approximate expression) of the two values (Pvmax, v) in this.
  • the conversion unit 44 substitutes ve m O obtained in the second into the following equation (28) Find the ve m.
  • the method of deriving the equation (28) is as described below, but the derived equation (28) is previously input to and stored in the equation storage unit 47. Therefore, the conversion unit 44 accesses the equation storage unit 47, reads out the equation (28) from the equation storage unit 47, and calculates vem.
  • the L value (Lt) calculation method after conversion is performed to decrease the luminance according to the degree of yellow at a certain luminance within the displayable color range, and (Lm-Li)
  • Equation (29) is transformed to obtain equation (29. 1).
  • Lm in the equation (29. 1) is within the range which can be displayed by the display among the points on the elliptic circle of the ellipse shown by the equation (24. 1) as described above. It is the L value of the point (Lm, vem) where the L value is the smallest.
  • the point (Lm, vem) is a point on the ellipse periphery of the ellipse shown by equation (24. 1), the following equation (30) is satisfied.
  • equation (28) is substituted into vem of equation (30), and the equation obtained thereby is further substituted into equation (29. 1) to obtain equation (31).
  • Equation (31) is previously input and stored in the equation storage unit 47, the converter 44 accesses the equation storage unit 47, reads Equation (31) from the equation storage unit 47, and obtains Lt. Calculate (Also, the conversion unit 44 accesses the parameter storage unit 46 to read out and acquire the value of Pvmax from the parameter storage unit 46).
  • the conversion unit 44 obtains the V value (vt) of the Luv data after the third conversion (for the third color vision abnormality) of the target pixel data. Since the L value (Lt) and v value (vt) of the converted Luv data are points on the ellipse circumference of the ellipse shown by equation (24.1), the V value (vt) is as described above. Using the obtained L value (Lt), the following equation (32) (where vt is greater than 0) obtained by transforming equation (24. 1) is calculated.
  • equation (32) is also inputted and stored in advance in equation storage unit 47
  • conversion unit 44 accesses equation storage unit 47 to read equation (32) from equation storage unit 47, and then vt (Also, the conversion unit 44 accesses the parameter storage unit 46 to read out and acquire the value of Pvmax from the parameter storage unit 46).
  • Specific values of the target pixel data shown in FIG. 16 include L value and v value Figure 18 shows how is converted (Lt and vt respectively).
  • Equation (33) and Equation (34) Since the deviation of Equation (33) and Equation (34) is also inputted in advance and stored in the equation storage unit 47, the conversion unit 44 accesses the equation storage unit 47 and the equation storage unit 47 accesses the equation (33). After reading and acquiring either of the equations (34) and (34), ut is calculated.
  • the value of ut (value strength or 0 calculated according to either of Equations (33) and (34)) determined in this manner falls within the range that the display can display.
  • the conversion unit 44 checks whether or not the value ut is corrected as follows if it is determined that the value does not fall within the range.
  • the basic idea of this correction is the value of Lt after conversion and the change axis range of u2 and u4 in Fig. 10 (but only the reference axis range is shown in Fig. 10, but the range of the area is all RGB values)
  • the change axis range is also determined at the same time, because u2 is 53.3 to: LOO.0 and u4 is 87.8 to 91.2.
  • the conversion unit 44 transmits the converted data (Lt, ut, vt) to the data storage unit 42 and causes the data storage unit 42 to store the data.
  • the order in which the converted data (Lt, ut, vt) are stored in the data storage unit 42 is the same as the order of the pixel data included in the Luv image data stored in the data storage unit 42 ( That is, the converted data (Lt, ut, vt) is stored in the data storage unit 42 in the order of the original pixel data included in the Luv image data stored in the data storage unit 42.
  • the storage area where the post data (Lt, ut, vt) is stored in the data storage unit 42 is different from the storage area of the original pixel data included in the Luv image data.) O Furthermore, the conversion unit 44 A read command signal instructing to read and transmit one pixel data not yet read out of the pixel data included in the Luv image data stored in the data storage unit 42 is transmitted to the target image data extraction unit 43 (Thus, Luv image data stored in the data storage unit 42 The next pixel data including the subject pixel data is processed.).
  • a position after conversion when u6 is positive is shown as a point p6a (Lt6, ut6, vt6), and when u6 is 0 or less (0 or 0).
  • the position after conversion is shown as point p6b (Lt6, ut6, vt6).
  • ut6 u6- (L6-Lt6) of the point p6a
  • ut6 u6 + (L6-Lt6) of the point p6b.
  • the conversion unit 44 which has determined that the V value (vi) is greater than 0 further determines whether the V value (vi) is less than 0 and determines that the V value (vi) is less than 0. Perform “Processing when v is negative” described below.
  • Formula (35) of the following ellipse in a 2-axis orthogonal axis with L is created.
  • the ellipse represented by this equation (35) is a vL plane (of three axes orthogonal to each other as shown in FIG.
  • the L axis, the u axis and the V axis, two axes of the V axis and the L axis And the center (V, L) (0, 100), the major axis (diameter in the L-axis direction) is (100-Li), and the minor axis (V)
  • the axial diameter) is (Pvmin X (100-Li) ZlOO).
  • the V value of the target pixel data is set so that the V value and the L value of the target pixel data become coordinates of a point existing on the circumference of the ellipse (on the circumference of the ellipse) shown by this equation (35). Convert L and L values.
  • Pvmin is a parameter.
  • the user of the present apparatus 11 preliminarily inputs the Pvmin value to the parameter storage unit 46 through the keyboard, touch panel, etc. (not shown) connected to the present apparatus 11, and the parameter storage unit 46 inputs the Pvmin value.
  • the parameter storage unit 46 inputs the Pvmin value.
  • converting unit 44 creates equation (35)
  • converting unit 44 generates parameter storage unit 46. To read out and acquire the value of Pvmin from the parameter storage unit 46.
  • equation (35. 1) is obtained.
  • L is greater than 0 and greater than 100 / J.
  • the method of deriving equation (36) which takes the value of is performed by the procedure for calculating the display color range, the procedure for calculating the color coordinate values on the boundary, and the procedure for deriving the approximation for the boundary, as described above.
  • the derived equation (36) is input in advance and stored in the formula storage unit 47. (Specifically, equation (36) is the equation of line v4 in FIG. 11). Therefore, when it is determined that the conversion unit 44 force L value (Li) is larger than 60.4, the equation storage unit 47 is accessed to read out and obtain the equation (36) from the equation storage unit 47.
  • the first reference value vm is the minimum value of V values that the display can display at the L value (Li). The minimum value of the V value (here, the first reference value vm) is obtained by substituting the L value (Li) of the target pixel data for the L value in the following equation (37).
  • the derivation method of the equation (37) is calculated by the calculation procedure of the display color range, the calculation procedure of the color coordinate value on the boundary, and the derivation procedure of the approximation of the boundary.
  • the derived equation (37) is previously input to and stored in the equation storage unit 47 (specifically, equation (37) is the equation of the line v5 in FIG. 11). Therefore, when it is determined that the conversion unit 44 power L value (Li) is not larger than 60.4 and is larger than 39.0, the formula storage unit 47 is accessed, and the formula storage unit 47 is ) To read and acquire.
  • the conversion unit 44 determines that the L value (L9) is not larger than 60.4 and is larger than 39.0
  • the first reference value vm9 is expressed by the following formula (37. 1) It is calculated.
  • the first reference value vm9 calculated in this way is shown in FIG.
  • the first criterion is used.
  • the value vm6 is one 134.0896.
  • FIG. 21 also shows one 134.0896, which is used as the first reference value vm9 when it is determined that the L value (L9) is less than or equal to 39.0.
  • Luv Determine the ratio Sc9 v9Zvm9 to the first reference value vm9 determined by the v value v9 power of the data.
  • conversion unit 44 is a point on the elliptical circumference of the ellipse represented by equation (35. 1) which falls within the range in which the display can be displayed. , vem) and ask for this vem.
  • vem a point on the elliptical circumference of the ellipse represented by equation (35. 1) which falls within the range in which the display can be displayed.
  • vem a point on the elliptical circumference of the ellipse represented by equation (35. 1) which falls within the range in which the display can be displayed. , vem) and ask for this vem.
  • Luv data (L, u, V) (L9, u9, v9), where v9 ⁇ 0) is taken as an example
  • the point M9 (Lm9, vem9) is one of the points on the elliptical periphery of the ellipse (solid line F4) shown by the equation (35. 1) shown in FIG.
  • the L value is the largest point because it is within the range that the indicated display can display (the range enclosed by the dotted line). The following describes how to calculate vem.
  • FIG. 38 An ellipse (hereinafter referred to as “ellipse 38") shown by this equation (38) is shown in FIG. Further, in FIG. 22, similarly to FIG. 21, the range which can be displayed by the display is shown surrounded by a dotted line, and an ellipse (hereinafter referred to as “ellipse 35”) shown by the equation (35) is also shown.
  • Equation (39) uses GNU Scripte for the V coordinate vemO of the point of intersection of V with the equation (38) and the equation (36) (The minimum value of V that can be displayed by the display with V is negative.) It was obtained by Specifically, using GNU Scripte, Pvmin in equation (38) is varied from one hundred to one tenth at an interval of 0.2, and for each case the intersection point of equation (38) with equation (36) (L , V). As a result, 51 combinations of three values of (Pvmin, L, v) are obtained. Then, using GNU Octave, we obtained equation (39), which is the relational expression (approximate expression) of the two values (Pvmin, v) in this.
  • the conversion unit 44 substitutes the vemO determined in the second into the following equation (40) And ve m.
  • the method of deriving equation (40) is as described below, but the derived equation (40) is previously input to and stored in formula storage unit 47. Therefore, the conversion unit 44 accesses the equation storage unit 47 and reads and acquires the equation (40) from the equation storage unit 47, and then calculates vem.
  • vemO Li in equation (40) is the L value (Li) of the Luv data contained in the target pixel data, and L (Li) is the force O or 100.
  • vem vemO X (100-Li) / 100
  • Example vem vem 9 is calculated by the following formula (40.1).
  • vem9 vemO X (100-L9) / 100
  • the L value (Lt) The L value (Lt) calculation method after conversion is performed to increase the luminance according to the degree of blue at a certain luminance within the displayable color range, and (Lm-Li).
  • Equation (41) can be obtained by transforming equation (41).
  • Lm in equation (41. 1) is within the range that can be displayed by the display among the points on the elliptic circle of the ellipse shown by equation (35. 1) as described above. It is the L value of the point (Lm, vem) where the L value is the largest.
  • the point (Lm, vem) is a point on the elliptical periphery of the ellipse shown by equation (35. 1), the following equation (42) is satisfied.
  • Equation (43) 100-(100-Li) X (l-vemV (Pvmin X (100-Li) Zl00) 2 ) ° ' 5 and equation (40) is substituted into vem of equation (42), and thereby obtained Substituting the following equation into equation (41. 1) yields equation (43).
  • the conversion unit 44 obtains the V value (vt) of the Luv data after the third conversion (for the third color vision abnormality) of the target pixel data. Since the L value (Lt) and v value (vt) of the converted Luv data are points on the ellipse circumference of the ellipse shown by equation (35. 1), the V value (vt) is as described above It is calculated from the following equation (44) (where vt is less than 0), which is a modification of equation (35. 1), using the obtained L value (Lt).
  • equation (44) is also inputted and stored in advance in equation storage unit 47
  • conversion unit 44 accesses equation storage unit 47 to read equation (44) from equation storage unit 47, and then vt (Also, the converter 44 accesses the parameter storage unit 46 to The value of Pvmin is read from the storage unit 46 and acquired. ).
  • Figure 22 shows how the v and v values are converted (Lt and vt, respectively).
  • Equation (45) and Equation (46) Since the deviation of Equation (45) and Equation (46) is also inputted in advance and stored in the mathematical expression storage unit 47, the conversion unit 44 accesses the mathematical expression storage unit 47 and After reading and acquiring either of the equations (46) and (46), ut is calculated.
  • the value of ut (value strength or 0 calculated according to either of Eq. (45) and Eq. (46) thus determined falls within the range that the display can display.
  • the conversion unit 44 checks whether or not the value ut is corrected as follows if it is determined that the value does not fall within the range.
  • the basic idea of this correction is the value of Lt after conversion and the change axis range of u2 and u4 in Fig. 10 (but only the reference axis range is shown in Fig. 10, but the range of the area is all RGB values)
  • the change axis range is also determined at the same time, because u2 is 53.3 to: LOO.0 and u4 is 87.8 to 91.2.
  • the conversion unit 44 accesses the formula storage unit 47 and freely reads out and acquires from the formula storage unit 47. can do. If it is determined that the value of ut is not within the range that the display can display, the conversion unit 44 determines that the value of ut is the minimum of the value of Lt after conversion. Correct by replacing with the value or the maximum value (the ut after conversion is closer).
  • the conversion unit 44 transmits the converted data (Lt, ut, vt) to the data storage unit 42 and causes the data storage unit 42 to store the data.
  • the order in which the converted data (Lt, ut, vt) are stored in the data storage unit 42 is the same as the order of the pixel data included in the Luv image data stored in the data storage unit 42 ( That is, the converted data (Lt, ut, vt) is stored in the data storage unit 42 in the order of the original pixel data included in the Luv image data stored in the data storage unit 42.
  • the storage area where the post data (Lt, ut, vt) is stored in the data storage unit 42 is different from the storage area of the original pixel data included in the Luv image data.) O Furthermore, the conversion unit 44 A read command signal instructing to read and transmit one pixel data not yet read out of the pixel data included in the Luv image data stored in the data storage unit 42 is transmitted to the target image data extraction unit 43 (Thus, Luv image data stored in the data storage unit 42 The next pixel data including the subject pixel data is processed.).
  • the position after conversion when u9 is positive is shown as a point p9a (Lt9, ut9, vt9), and when u9 is 0 or less (0 or 0).
  • the position after conversion is shown as point p9b (Lt9, ut9, vt9).
  • ut9 u9-(Lt9-L9) of the point p9a
  • ut9 u9 + (Lt9-L9) of the point p9b.
  • the converted data (Lt, ut, vt) is stored in the data storage unit 42.
  • the storage area where the converted data (Lt, ut, vt) is stored in the data storage unit 42 is a Luv image. It differs from the storage area of the original pixel data contained in the data.)
  • the conversion unit 44 instructs to read out and transmit one pixel data not yet read out of the pixel data included in the Luv image data stored in the data storage unit 42. Send to the unit 43 (thereby the next pixel data included in the Luv image data stored in the data storage unit 42 becomes the target pixel data and processed) o
  • the conversion unit converts the read command signal instructing to read out and transmit one pixel data not yet read out of the pixel data included in the Luv image data stored in the data storage unit 42.
  • the target image data extraction unit 43 accesses the data storage unit 42, and among the pixel data included in the Luv image data stored in the data storage unit 42, the pixel data that has not been read yet After readout and acquisition one by one, the pixel data of the readout and acquisition 1 is transmitted to the conversion unit 44.
  • the pixel data transmitted to the conversion unit 44 is processed as target pixel data, so the pixel data included in the Luv image data stored in the data storage unit 42 is processed one by one.
  • the target image data extraction unit 43 that has received the read command signal from the conversion unit 44 accesses the data storage unit 42, and the data storage unit 42 stores it, and the pixel data included in the Luv image data is still read out. If it is determined that there is nothing (i.e., all the pixel data has been read and there is no pixel data that has not been read), an activation signal is sent to the reading unit 48.
  • the reading unit 48 that receives the start signal from the target image data extraction unit 43 is a data storage unit. 42, the converted data (Lt, ut, vt) stored in the data storage unit 42 are all read out (n pieces), and the read converted data (Lt, ut, vt) obtained All (n) are transmitted to the color space inverse conversion unit 51. Thereafter, the reading unit 48 accesses the data storage unit 42 and erases the storage of the data storage unit 42.
  • the color space inverse conversion unit 51 which has received all (n pieces) of the converted data (Lt, ut, vt) from the reading unit 48 (data processing unit 41) is shown as data in the Luv color space.
  • Converted data (Lt, ut, vt) Convert all (n pieces) into RGB image data.
  • all (n) pieces of pixel data of the converted data (Lt, ut, vt) are converted to RGB image data. Performed by conversion (each of n pieces of pixel data is converted.) O The method of such conversion is known and thus the description thereof is omitted here.
  • the color space inverse conversion unit 51 which has converted all the n converted data (Lt, ut, vt) into RGB image data transmits the converted n RGB image data to the output unit 61.
  • the output unit 61 receiving the converted n RGB image data from the color space inverse conversion unit 51 displays an image on the display unit 15 based on the RGB image data.
  • FIG. 24 is a flowchart for explaining the operation of the present apparatus 11. The operation of the device 11 will be described with reference to FIG.
  • the receiving unit 21 determines whether the image data from the digital camera unit 13 has been received (slOl), and if it is determined that the image data has been received (YES), the received image data is subjected to color space conversion Send to section 31 (sl02). If the reception unit 21 does not determine that the image data is received at slOl (NO), the process returns to slOl again.
  • the color space conversion unit 31 receives the RGB image data transmitted from the reception unit 21 at sl 02, converts the RGB image data into Luv image data, and then transmits the converted Luv image data to the data processing unit 41 ( sl03).
  • the data storage unit 42 of the data processing unit 41 receives the Luv image data transmitted from the color space conversion unit 31 at sl03, and the data storage unit 42 receives the Luv image data, the received Luv image data. Store the data (sl04). After sl04, the data store 42 receives the The Luv image data is transmitted to the conversion unit 44 (sl05).
  • the conversion unit 44 Upon receiving the Luv image data transmitted from the data storage unit 42 at sl05, the conversion unit 44 accesses the conversion type storage unit 45 and reads out the conversion type stored in the conversion type storage unit 45 (sl06), In the first conversion (for the first and second color blindness) or the third conversion (for the third color blindness), the shift conversion is designated!, And after it is determined, the designated conversion! The determined conversion (specifically, either the first conversion (for the first and second color vision abnormalities) or the third conversion (for the third color vision abnormality) is performed (sl07). The operation of conversion of sl07 (the first conversion (for the first and second color vision abnormalities) and the third conversion (for the third color vision abnormalities)) will be described in detail later.
  • the output unit 61 receiving the converted n RGB image data transmitted from the color space inverse conversion unit 51 at sl 08 causes the display unit 15 to display an image based on the RGB image data (sl 09 ).
  • FIG. 25 is a flow chart for explaining the operation when it is determined that the first conversion (for the first and second color vision abnormalities) is specified in sl06 among the operations in sl07 described above.
  • the operation of the present apparatus 11 (particularly, the data processing unit 41) of sl07 according to the first conversion (for the first and second color vision abnormalities) will be described with reference to FIG.
  • the conversion unit 44 reads out of the pixel data included in the Luv image data stored in the data storage unit 42.
  • a read command signal for reading out one not sent and sending it to the conversion unit 44 is sent to the target image data extraction unit 43 (s201).
  • Target image data that has received the read command signal transmitted from the conversion unit 44 at s201
  • the extraction unit 43 accesses the data storage unit 42, and determines whether there is any pixel data included in the Luv image data stored in the data storage unit 42 that has not been read yet (s202) . If it is determined that the target image data extraction unit 43 has not been read yet at s202 (YES), the target image data extraction unit 43 is included in the Luv image data stored in the data storage unit 42. Among the pixel data to be read out, one that has not been read out is read out and acquired, and the target image data extraction unit 43 transmits the pixel data of 1 acquired and read out from the data storage unit 42 to the conversion unit 44.
  • target pixel data The pixel data transmitted from the target image data extraction unit 43 to the conversion unit 44 and to be processed from now on is referred to as “target pixel data”. 0 While the target image data extraction unit 43 still reads in s202 If it is not determined that there is something that has not been output (NO), the target image data extraction unit 43 transmits an activation signal to the reading unit 48 (s209).
  • the target image data extraction unit 43 reads out in s209.
  • the reading unit 48 transmits the activation signal to the unit 48, and the reading unit 48 that has received the activation signal issued in s209 accesses the data storage unit 42, and the converted data stored in the data storage unit 42 is stored.
  • Data (Lt, ut, vt) All (n pieces) is read out and acquired, and all the converted data (Lt, ut, vt) (n pieces) obtained by the readout are transmitted to the color space inverse conversion unit 51 (S210).
  • the reading unit 48 accesses the data storage unit 42, and erases the storage of the data storage unit 42 (s211). After s211, go to sl08.
  • FIG. 26 is a flowchart for explaining the operation of the “processing in the case where u is positive” of s 205 described above.
  • the operation of the “processing when u is positive” of s 205 will be described with reference to FIG.
  • the conversion unit 44 accesses the parameter storage unit 46 to read out and acquire the value of Pumax from the parameter storage unit 46 as appropriate.
  • the conversion unit 44 calculates the value of u by substituting the L value (Li) of the target pixel data for the L value in the equation (2) acquired in s303 (s304), and calculating the value of u Store the first reference value um as the maximum value (maximum u value that the display can display at L value (Li)).
  • the conversion unit 44 accesses the mathematical expression storage unit 47, reads out and acquires the equation (4) from the mathematical expression storage unit 47 (s307), and the conversion unit 44 obtains the value of Pumax from the parameter storage unit 46.
  • uemO is calculated (s308). Note that, as described above, uemO is within the range that can be displayed by the display among the points on the elliptical periphery of the ellipse represented by the above equation (3), and the point with the largest L value (LmO, uemO) u coordinate.
  • the conversion unit 44 accesses the mathematical expression storage unit 47 and reads out and acquires the equation (5) from the mathematical expression storage unit 47 (s309), then calculates the equation (5) acquired in s309 in s308. Then, uem is calculated by substituting the calculated ue mO and the L value (Li) of the Luv data contained in the target pixel data (s310).
  • the conversion unit 44 accesses the mathematical expression storage unit 47, reads out and obtains the expression (9) from the mathematical expression storage unit 47 (s311), and the conversion unit 44 obtains the value of Pumax from the parameter storage unit 46.
  • the L value (Li) of the Lu V data contained in the target pixel data Sc calculated in s306, uemO calculated in s308, To calculate the L value (Lt) of the Luv data after the first conversion (for the first and second color vision abnormalities) of the target pixel data (s 312).
  • FIG. 27 is a flow chart for explaining the operation after s313 in the operation of “processing in the case where u is positive” of s205 described above. The operation of “processing when u is positive” after s313 will be described with reference to FIG.
  • the conversion unit 44 accesses the equation storage unit 47, reads out the above equation (10) from the equation storage unit 47, and obtains (s313) the conversion unit 44 further.
  • the value Pumax is read out and acquired from the parameter storage unit 46
  • the L value (Lt) calculated in s312 and the L value (Li) of the Luv data included in the target pixel data are given by the formula (10)
  • the u value (ut) of the Luv data after the first conversion (for the first and second color vision abnormalities) of the target pixel data is determined (s 314).
  • the v value is obtained by substituting the v value vi and the L value Li of the Luv image data (Li, ui, vi) and the Lt calculated in s312 into the equation (11) (s317).
  • the conversion unit 44 determines whether the value of the V value (vt) calculated in s317 is negative (vt 0 0) force or not (s318). If it is determined that there is (YES), vt is set to 0 (s319). If it is not determined that the value of the V value (vt) calculated by the conversion unit 44 force s 317 is negative (vt 0 0) at s318 (NO), the V value calculated at s317 (vt Leave the value of) (without changing the V value (vt)).
  • the conversion unit 44 accesses the mathematical expression storage unit 47, reads out the above-mentioned expression (12) from the mathematical expression storage unit 47, and acquires it (s320),
  • the v value is obtained by substituting the v value vi and the L value Li of the Luv image data (Li, ui, vi) of the target pixel data and the Lt calculated in s312 into the equation (12) (s321).
  • FIG. 28 is a flow chart for explaining the operation after s 351 in the operation of “processing in the case where u is positive” of s 205 described above.
  • the operation of “processing when u is positive” after s 351 will be described with reference to FIG.
  • the equation of vl in FIG. 11 is obtained.
  • Lt is 87.8 or more and less than 97.0 (87.8 ⁇ Lt ⁇ 97.0)
  • the equation of v2 in FIG. 11 is read out and the equation of V3 of FIG. 11 is read and acquired at s352 when Lt is 97.0 or more and 100 or less (97.0 ⁇ Lt ⁇ 100).
  • Lt is substituted for L in the equation to obtain the maximum value of V (s353).
  • the process returns to s201, and the conversion unit 44 reads out and transmits one of the pixel data included in the Luv image data stored in the data storage unit 42 that has not been read yet.
  • the signal is transmitted to the target image data extraction unit 43 (thereby the next pixel data included in the Luv image data stored in the data storage unit 42 becomes the target pixel data and processed) o
  • FIG. 29 is a flowchart for explaining the operation of the “processing in the case where u is negative” in s207 described above.
  • the operation of the “processing when u is negative” of s207 will be described with reference to FIG.
  • the conversion unit 44 accesses the parameter storage unit 46 to obtain the parameter storage unit 46 or not. Read and acquire the value of Pumin as appropriate.
  • the conversion unit 44 calculates the value of u by substituting the L value (Li) of the target pixel data for the L value in the equation (14) acquired in s403 (s404), and the calculated value of u Store the first reference value um as the value (the minimum value of u values that the display can display at the L value (Li)).
  • the conversion unit 44 accesses the mathematical expression storage unit 47, reads out the above-mentioned equation (16) from the mathematical expression storage unit 47 and acquires (s407), and the conversion unit 44 obtains the value of Pumi n from the parameter storage unit 46.
  • uemO is calculated (s408).
  • uemO is within the range that can be displayed by the display among the points on the elliptical periphery of the ellipse shown by the above equation (15), and the point with the smallest L value (LmO, uemO) Is the u coordinate of.
  • the conversion unit 44 accesses the mathematical expression storage unit 47 and reads out and acquires the equation (17) from the mathematical expression storage unit 47 (s409), then calculates the equation (17) acquired in s409 in s408
  • the value u emO is substituted with the L value (Li) of the Luv data contained in the target pixel data to calculate uem (s 410).
  • the conversion unit 44 accesses the equation storage unit 47, reads out the above equation (20) from the equation storage unit 47 and acquires it (s411), and the conversion unit 44 receives from the parameter storage unit 46 the Pumi.
  • the value of n is read out and acquired, the L value (Li) of the Luv data contained in the target pixel data, the Sc calculated in s406, and the uemO calculated in s408 in equation (20) acquired in s411.
  • the L value (Lt) of the Luv data after the first conversion (for the first and second color vision abnormalities) of the target pixel data (s 412).
  • FIG. 30 is a flow chart for explaining the operation after s 413 in the operation of “processing in the case where u is negative” in s 207 described above.
  • the operation of “processing when u is negative” after s 413 will be described with reference to FIG.
  • the conversion unit 44 accesses the mathematical expression storage unit 47, reads out the above-mentioned equation (21) from the mathematical expression storage unit 47, and obtains (s413).
  • the L value (Lt) calculated in s412 and the L value (Li) of the Luv data included in the target pixel data are given by the formula (21)
  • the u value (ut) of the Luv data after the first conversion (for the first and second color vision abnormalities) of the target pixel data is obtained by substituting into (s 414).
  • the v value is obtained by substituting the v value vi and the L value Li of the Luv image data (Li, ui, vi) and the Lt calculated in s412 into the equation (22) (s417).
  • the conversion unit 44 accesses the mathematical expression storage unit 47, reads out the above-mentioned expression (23) from the mathematical expression storage unit 47, and obtains it (s420)
  • the v value is obtained by substituting the v value vi and the L value Li of the Luv image data (Li, ui, vi) of the target pixel data and Lt calculated in s412 into the equation (23) (s421).
  • FIG. 31 is a flow chart for explaining the operation after s 451 in the operation of “processing in the case where u is negative” of s 207 described above.
  • the operation of “processing when u is negative” after s 451 will be described with reference to FIG.
  • vt is larger than the maximum value of V calculated in s453 (s454), and when it is judged that vt is larger than the maximum value of V (YES), it is calculated in s453.
  • Acquire (s456) Specifically, when Lt is greater than 60.4 and less than or equal to 100 (60.4 ⁇ Lt ⁇ 100), the equation of v4 in FIG. 11 is obtained. Lt is greater than 32.4 and less than or equal to 60.4 (32.4 Lt L60.4) At time t, the equation of v5 in FIG. 11 is read out, and when Lt is 0 or more and 32.4 or less (0 ⁇ Lt ⁇ 32.4), the equation of v6 in FIG.
  • the process returns to s201, and the conversion unit 44 reads out and transmits one of the pixel data included in the Luv image data stored in the data storage unit 42 that has not been read yet.
  • the signal is transmitted to the target image data extraction unit 43 (thereby the next pixel data included in the Luv image data stored in the data storage unit 42 becomes the target pixel data and processed) o
  • FIG. 32 is a flowchart for explaining the operation of the "processing when u is 0" in s208 described above.
  • the operation of “processing when u is 0” in s208 will be described with reference to FIG.
  • the Luv data (Li, ui, vi) of the target pixel data is stored as it is in the data storage unit 42 as converted data (Lt, ut, vt) .
  • the process After s501, the process returns to s201, and the conversion unit 44 reads out and transmits one pixel data not yet read out of the pixel data included in the Luv image data stored in the data storage unit 42.
  • the signal is transmitted to the target image data extraction unit 43 (thereby the next pixel data included in the Luv image data stored in the data storage unit 42 becomes the target pixel data and processed) o
  • FIG. 33 is a flow chart for explaining an operation when it is determined that the third conversion (for third color vision abnormality) is specified in sl06 among the operations in sl07 described above.
  • the present apparatus 11 especially, the data processing unit 41
  • the third conversion for the third color vision abnormality
  • the conversion unit 44 When it is determined that the third conversion (for the third color vision abnormality) is specified, the conversion unit 44 is read out of pixel data included in the Luv image data stored in the data storage unit 42, and V, , And transmits a read command signal to the target image data extraction unit 43 (s601).
  • the target image data extraction unit 43 that has received the read command signal transmitted from the conversion unit 44 in s601 accesses the data storage unit 42, and is included in the Luv image data stored in the data storage unit 42. It is determined whether there is any pixel data that has not yet been read out (s602). If it is determined that the target image data extraction unit 43 has not been read yet at s602 (YES), the target image data extraction unit 43 is included in the Luv image data stored in the data storage unit 42. Among the pixel data to be read out, one that has not been read out is read out and acquired, and the target image data extraction unit 43 transmits the pixel data of 1 acquired and read out from the data storage unit 42 to the conversion unit 44.
  • target pixel data The pixel data transmitted from the target image data extraction unit 43 to the conversion unit 44 and to be processed from now on is referred to as “target pixel data”. 0 While the target image data extraction unit 43 still reads in s602 If it is not determined that there is something that has not been output (NO), the target image data extraction unit 43 transmits an activation signal to the reading unit 48 (s609).
  • V value (vi) of the Luv data contained in the target pixel data is greater than 0 at s604, the V value (vi) of the Luv data is less than 0, It is judged whether or not it is negative (s 606), and when it is judged that it is small (YES), "processing when v is negative” (s 607) is performed. The operation of “processing when the v is negative” of s 607 will be described in detail later.
  • the target image data extraction unit 43 reads at s609.
  • the reading unit 48 that transmits the activation signal to the unit 48 but receives the activation signal issued in s 609 accesses the data storage unit 42, and the converted data stored in the data storage unit 42 (Lt , ut, vt) Reads and acquires all (n), and transmits all the converted data (Lt, ut, vt) (n) to the color space inverse conversion unit 51 (s 610) .
  • the reading unit 48 accesses the data storage unit 42, and erases the storage of the data storage unit 42 (s611). After s611, go to sl08.
  • FIG. 34 is a flow chart for explaining the operation of the “processing in the case where v is positive” of s 605 described above.
  • the operation of the “processing when v is positive” of s 605 will be described with reference to FIG.
  • the conversion unit 44 creates an equation of an ellipse
  • the conversion unit 44 accesses the parameter storage unit 46 to read out and acquire the value of P vmax from the parameter storage unit 46 as appropriate.
  • the conversion unit 44 calculates the value of V by substituting the L value (Li) of the target pixel data for the L value in the equation (25) acquired in s703 (s704), and the calculated value of V Store the first reference value vm as the value (maximum V value that the display can display at L value (Li)).
  • the conversion unit 44 accesses the mathematical expression storage unit 47, reads out the above-mentioned expression (27) from the mathematical expression storage unit 47 and acquires (s707), and the conversion unit 44 obtains the value of Pvm ax from the parameter storage unit 46.
  • vemO is calculated (s 708). As described above, vemO is within the range that can be displayed by the display among the points on the elliptical circumference of the ellipse shown by the above equation (26), and v of the point with the smallest L value (LmO, vemO) It is a coordinate.
  • the conversion unit 44 accesses the mathematical expression storage unit 47, reads out the above-mentioned expression (28) from the mathematical expression storage unit 47 and acquires (s709), the expression (28) acquired in s709 becomes s708.
  • the vem is calculated by substituting the calculated vemO and the L value (Li) of the Luv data included in the target pixel data (s710).
  • the conversion unit 44 accesses the mathematical expression storage unit 47 and reads out and acquires the above equation (31) from the mathematical expression storage unit 47 (s 711), and the conversion unit 44 obtains the Pvm from the parameter storage unit 46.
  • the value of ax is read out and acquired, the L value (Li) of the Luv data contained in the target pixel data, the Sc calculated in s706, and the value calculated in s708 in the equation (31) acquired in s711
  • FIG. 35 is a flow chart for explaining the operation after s 713 of the operation of “processing in the case where v is positive” of s 605 described above.
  • the operation of the “processing when the v is positive” after s 713 will be described with reference to FIG.
  • the conversion unit 44 accesses the mathematical expression storage unit 47, reads out the above-mentioned equation (32) from the mathematical expression storage unit 47, and obtains (s713)
  • the L value (Lt) calculated in s712 and the L value (Li) of the Luv data included in the target pixel data are given by the equation (32)
  • the V value (vt) of the Luv data after the third conversion (for the third color vision abnormality) of the target pixel data by substitution into is calculated (s714).
  • the u value ui and L value Li of the Luv image data (Li, ui, vi) of the data, and Lt calculated in s712 are substituted into the equation (33) to obtain the value of ut (s717).
  • the value of u value (ut) calculated by conversion unit 44 force s717 is negative (ut ⁇ 0) in s718 (NO) the value of u value (ut) calculated in s717 is Leave the value (unchanged u value (ut)).
  • the conversion unit 44 accesses the formula storage unit 47 and reads out and obtains the above formula (34) from the formula storage unit 47 (s720)
  • the values of ut are determined by substituting the u value ui and L value Li of the Luv image data (Li, ui, vi) of the target pixel data and Lt calculated in s712 into the equation (34) (s721 ).
  • FIG. 36 is a flow chart for explaining the operation after s751 in the operation of “processing in the case where v is positive” of s605 described above. The operation of “processing when v is positive” after s751 will be described with reference to FIG.
  • Acquire s756. Specifically, when Lt is 91.2 or more and 100 or less (91.2 Lt 100), the formula of u3 in FIG. 11 is obtained. Lt is 87.8 or more and 91.2 or less (87.8 Lt 91.2) 11) When Lt is 0 or more and less than 87.8 (0 ⁇ Lt ⁇ 87.8), read out the formula of u5 in Fig. 11 to s756.
  • the minimum value of u is determined by substituting Lt into L of the equation using the equation read out and acquired in s756 (s757). After that, it is judged whether or not ut is smaller than the minimum value of u calculated in s757 (s758). If it is judged that ut is smaller than the minimum value of u (YES), it is calculated in s757 Let the minimum value of u be ut (s759). If it is determined in s758 that ut is smaller than the minimum value of u (NO), ut is not changed.
  • the process After s760, the process returns to s601, and the conversion unit 44 reads out and transmits one of the pixel data included in the Luv image data stored in the data storage unit 42 that has not been read yet.
  • the signal is transmitted to the target image data extraction unit 43 (thereby the next pixel data included in the Luv image data stored in the data storage unit 42 becomes the target pixel data and processed) o
  • FIG. 37 is a flowchart for explaining the operation of the “processing in the case where v is negative” in s 607 described above. It is. The operation of the “processing when the v is negative” of s 607 will be described with reference to FIG.
  • the converting unit 44 calculates the value of V by substituting the L value (Li) of the target pixel data to the L value in the equation (36) acquired in s803 (s804), and the calculated value of V Store the first reference value vm as the value (minimum of the V value that the display can display at L value (Li)).
  • the conversion unit 44 substitutes the L value (Li) of the target pixel data into the L value in the equation (37) acquired in s882, and calculates the value of V (s883).
  • the value (L value (Li), the minimum value of V values that can be displayed by the display) is stored as a first reference value vm .
  • the conversion unit 44 sets one as the first reference value vm. 134. 0896 (minimum value of v values that can be displayed by the display) Remember (s 884).
  • the conversion unit 44 accesses the mathematical expression storage unit 47, reads out the above-mentioned equation (39) from the mathematical expression storage unit 47 and acquires it (s807), and the conversion unit 44 obtains the value of Pvmin from the parameter storage unit 46. After reading out and acquiring, vemO is calculated (s 808).
  • vemO is within the range that can be displayed by the display among the points on the elliptical circumference of the ellipse shown by the above equation (38), and the point with the largest L value (LmO, vemO) V coordinate of
  • the conversion unit 44 accesses the mathematical expression storage unit 47 and reads out and acquires the equation (40) from the mathematical expression storage unit 47 (s809), then calculates the equation (40) acquired in s809 in s808 Vem is calculated by substituting v emO and L value (Li) of Luv data included in the target pixel data (s 810).
  • the conversion unit 44 accesses the mathematical expression storage unit 47, reads out the above equation (43) from the mathematical expression storage unit 47, and acquires (s811), and the conversion unit 44 obtains the Pvmi from the parameter storage unit 46.
  • the L value (Li) of the Luv data included in the target pixel data, the Sc calculated in s806, and the vemO calculated in s808 are obtained according to equation (43) acquired in s811.
  • 1 v (Lt) of the Luv data after the third conversion (for the third color vision abnormality) of the object pixel data is obtained by substituting and (s 812).
  • FIG. 38 is a flow chart for explaining the operation after s 813 of the operation of “processing in the case where v is negative” in s 607 described above. The operation of “processing when the v is negative” after s 813 will be described with reference to FIG.
  • the conversion unit 44 After calculating the L value (Lt) at s812, the conversion unit 44 accesses the equation storage unit 47, reads out the above equation (44) from the equation storage unit 47, and obtains (s813) the conversion unit 44 After reading and acquiring the value of Pvmin from the parameter storage unit 46, the L value (Lt) calculated in s812 and the L value (Li) of the Luv data included in the target pixel data are given by The V value (vt) of the Luv data after the third conversion (for the third color vision abnormality) of the target pixel data is obtained by substitution into.
  • the value of u value (ut) calculated in s817 Leave the value (unchanged u value (ut)).
  • the conversion unit 44 accesses the formula storage unit 47, reads out the above-mentioned formula (46) from the formula storage unit 47, and acquires (s820)
  • the values of ut are obtained by substituting the u value ui and L value Li of the Luv image data (Li, ui, vi) of the target pixel data, and Lt calculated in s812 into the equation (46) (s821 ).
  • FIG. 39 is a flow chart for explaining the operation after s851 in the operation of “processing in the case where v is negative” of s607 described above. The operation of the “processing when the v is negative” after s851 will be described with reference to FIG.
  • Acquire (s 856). Specifically, when Lt is 91.2 or more and 100 or less (91.2 Lt 100), the formula of u3 in FIG. 11 is obtained. Lt is 87.8 or more and 91.2 or less (87.8 Lt 91.2) 11) When Lt is 0 or more and less than 87.8 (0 ⁇ Lt ⁇ 87.8), read out the formula of u5 in Fig. 11 to s 856!
  • the minimum value of u is determined by substituting Lt into L of the equation using the equation read out in s856 and read out (s857). After that, it is judged whether ut is smaller than the minimum value of u calculated in s857 (s858), and when it is judged that ut is smaller than the minimum value of u (YES), it is calculated in s857. The minimum value of u is ut (s 859). If it is determined in s858 that ut is smaller than the minimum value of u (NO), ut is not changed.
  • the process After s860, the process returns to s601, and the conversion unit 44 reads out and transmits one of the pixel data included in the Luv image data stored in the data storage unit 42 that has not been read yet.
  • the signal is transmitted to the target image data extraction unit 43 (thereby the next pixel data included in the Luv image data stored in the data storage unit 42 becomes the target pixel data and processed) o
  • FIG. 40 is a flowchart for explaining the operation of the “processing when v is 0” of s 608 described above.
  • the operation of the “processing when v is 0” of s 608 will be described with reference to FIG.
  • conversion is performed.
  • Data (Lt, ut, vt) is transmitted to the data storage unit 42 and stored in the data storage unit 42 (s901). That is, when the V value (vi) is 0, the Luv data (Li, ui, vi) of the target pixel data is directly stored in the data storage unit 42 as data after conversion (Lt, ut, vt). .
  • the process After s901, the process returns to s601, and the conversion unit 44 instructs to read out and transmit one pixel data not yet read out of the pixel data included in the Luv image data stored in the data storage unit 42.
  • the signal is transmitted to the target image data extraction unit 43 (thereby the next pixel data included in the Luv image data stored in the data storage unit 42 becomes the target pixel data and processed) o
  • the present device 11 has the luminance axis (L axis) representing luminance and the first axis (u axis) and the second axis which are two axes representing the chroma takeness index.
  • the first axis (u axis) is the selected axis
  • the third conversion (for the third color vision abnormality) is performed
  • the second axis Let (V axis) be the selected axis.
  • the component in the direction of the selected axis is larger than the first predetermined value, which is 0, and
  • the component in the direction of the selected axis (first axis (u axis)) is smaller than the first predetermined value of 0, or one of the components (here, smaller than the first predetermined value of 0) )
  • Reduces the component in the direction of the luminance axis (L axis), and in the case of any other force (here, the first predetermined value is greater than 0), the component in the direction of the luminance axis (L axis) Perform color vision conversion processing to increase power.
  • the selected axis is an axis that indicates a red component in the forward direction and indicates a green component in the negative direction. Selection of selected axis (first axis (u axis)) direction When the red component is larger than the first predetermined value of 0, the component in the direction of the luminance axis (L axis) is increased, and the red component is smaller than the first predetermined value of 0. Color vision conversion processing is performed to reduce the component in the direction of the luminance axis (L axis).
  • the component in the direction of the selected axis (the second axis (V axis)) is larger than 0, which is the first predetermined value.
  • the component in the direction of the axis (the second axis (V axis)) is smaller than the first predetermined value, 0, or one of the cases (here, the first predetermined value is larger than 0) Reduces the component in the direction of the luminance axis (L axis) and increases the component in the direction of the luminance axis (L axis) in the other case (here, the first predetermined value is smaller than 0). Perform color vision conversion processing.
  • the selected axis (second axis (V axis)) is an axis showing a yellow component in the positive direction and a blue component in the negative direction, and the selected axis
  • the component in the (second axis (V axis)) direction is larger than the first predetermined value, which is the first predetermined value of 0
  • the component in the luminance axis (L axis) direction is decreased to obtain the first predetermined value.
  • color vision conversion processing is performed to increase the component in the direction of the luminance axis (L axis).
  • the component in the selected axis direction after the color vision conversion processing is monotonous with the absolute value of the component in the selected axis direction after the color vision conversion processing relative to the absolute value of the component in the selected axis direction before the color perception conversion processing. It is determined by converting the component in the direction of the selected axis before the color vision conversion processing by the monotonically increasing function to be increased. In this regard, each case is described below.
  • Lm is also constant (Lm is a point on the ellipse periphery of the ellipse shown by equation (1.1), which is within the range that the display can display, and the L value is Since L is the L coordinate of the largest point (Lm, uem), Lm is also constant if Li is constant. 0 and 0 in the first conversion (for the first and second color blindness) In the case, since (Lm-Li)> 0, if ui is increased (positive and absolute value increases), then S c Force S Increases Car, which also increases Lt.
  • the component in the selected axis (first axis (u axis)) direction after color vision conversion processing is the color vision conversion
  • the absolute value of the component ut in the direction of the selected axis (first axis (u axis)) after color perception conversion processing is monotonously compared to the absolute value of the component ui in the direction of the selected axis (first axis (u axis)) before processing It is determined by converting the component ui in the direction of the selected axis (first axis (u axis)) before color vision conversion processing by the monotonically increasing function to be increased.
  • Lm is also constant (Lm is within the range where the display can display among the points on the ellipse periphery of the ellipse shown by equation (13. 1), and the L value is the minimum). Since L is the L coordinate of the point (L m, uem), L m is also constant if Li is constant.
  • the component ut in the direction of the selected axis (first axis (u axis)) after color perception conversion processing is before color vision conversion processing.
  • the absolute value of the component ut in the direction of the selected axis (first axis (u axis)) after color vision conversion processing is monotonically increased relative to the absolute value of the component ui in the direction of the selected axis (first axis (u axis))! It is determined by converting the component ui in the direction of the selected axis (first axis (u axis)) before color vision conversion processing by a monotonically increasing function,
  • vt increases by decreasing Lt (Pvmax> 0, 0 ⁇ Lt ⁇ 100). That is, when v> 0 in the third conversion (for third color vision abnormality), the component vt in the direction of the selected axis (second axis (V axis)) after color vision conversion processing is the selected axis before color vision conversion processing.
  • a monotonically increasing function that monotonously increases the absolute value of the component vt in the selected axis (second axis (V axis)) direction after color perception conversion processing with respect to the absolute value of the component vi in the (second axis (V axis)) direction It is determined by converting the component vi in the direction of the selected axis (second axis (V axis)) before color vision conversion processing.
  • Lm is also constant (Lm is within the range that can be displayed by the display among the points on the ellipse periphery of the ellipse shown by equation (35.1), and the L value is maximum Since L is the L coordinate of the point (Lm, vem), Lm is also constant if Li is constant.
  • vt decreases (negative value increases with negative value) by increasing Lt (Pvmin ⁇ 0, 0 ⁇ Lt ⁇ 100) o
  • Lt Pvmin ⁇ 0, 0 ⁇ Lt ⁇ 100
  • V 0 0 the component vt in the selected axis (second axis (V axis)) direction after color vision conversion processing is the absolute value of the component vi in the selected axis (second axis (V axis)) direction before color vision conversion processing.
  • the selected axis before color vision conversion processing (second axis (V axis)) by a monotonically increasing function that monotonously increases the absolute value of the component vt in the direction of the selected axis (second axis (V axis)) after color vision conversion processing It is determined by transforming the directional component vi.
  • the selected data set (Li, ui) which is the data set of 2 the selected data set whose component in the selected axis (first axis (u axis)) direction is the second predetermined value is larger than 0,
  • the component in the direction of the axis (u-axis) is smaller than the second predetermined value, 0, either of the selected data set (here, the second predetermined value, greater than 0, V, selected data)
  • a convex function (ellipse shown by equation
  • the component in the direction of the luminance axis (L axis) is on the straight line (here, L axis) indicating 0 which is the second predetermined value.
  • the first elliptical circumference (solid line in FIG. 5) in a range larger than the second predetermined value, which is the second predetermined value, is formed by a part of the elliptical circumference of the first ellipse (the ellipse represented by the equation (1)) having the center.
  • a second elliptic circle whose center is on a straight line (here, L axis) in which the component in the direction of F1) and the selected axis (first axis (u axis)) indicates the second predetermined value 0 (equation (13))
  • the second predetermined value which is larger than 0, is one of the selected data set and the selected data set whose component in the selected axis (second axis (V axis)) direction is smaller than 0 which is the second predetermined value.
  • a selection data set (here, the second predetermined value, which is larger than 0, a selection data set), a selection plane (vL plane) including a selection axis (second axis (V axis)) and a luminance axis (L axis)
  • the convex function exists on the selected surface (vL plane) when the selected axis (second axis (V axis)) is taken on the horizontal axis and the luminance axis (L axis) is taken on the vertical axis in FIG. !
  • the component in the direction of the luminance axis (L axis) is on the straight line (here, L axis) indicating 0 which is the second predetermined value.
  • the second predetermined value which is formed by a part of the ellipse circumference of the first ellipse (the ellipse represented by equation (24)) having the center, is the first ellipse circumference (shown in FIG. 17) which is in a range larger than 0.
  • a second ellipse whose center is on a straight line (here, L-axis) in which the component in the direction of the selected axis (second axis (V axis)) indicates the second predetermined value 0 (solid line F3) and equation (35)
  • the component in the direction of the luminance axis (L axis) is changed according to the component in the direction of the selected axis (first axis (u axis)) in the color perception conversion process.
  • the selected axis reference value um is the displayable limit value of the component related to the selected axis (first axis (u axis)) (the L value (Li) (The maximum u value that can be displayed on the display).
  • the selected axis reference value um is a constant value 175. 0213.
  • the selected axis reference value um is the displayable limit value (the L value (Li) of the component related to the selected axis (the first axis (u axis)).
  • the selected axis reference value um is a constant value of 83.0667.
  • the component in the luminance axis (L-axis) direction is changed according to the component in the selected axis (second axis (V-axis)) direction in the color perception conversion process.
  • Selection axis of pixel data (second axis (V axis)) relative to the selected axis reference value vm, which is the reference value for the variation (Lt L i) of the selected axis (second axis (V axis)) It is determined according to the ratio Sc ( viZvm) of the component vi related to.
  • the luminance axis reference is a reference value related to the component related to the luminance axis (L axis), the amount of change (Lt-Li) of the component in the luminance axis (L axis) direction.
  • the luminance axis reference value Lm is the convex function (the ellipse shown by the solid line F4 in FIG. 21 by the equation (35)) or the concave function (the third function).
  • display is possible in the selected surface (vL plane) including the selected axis (second axis (V axis)) and the luminance axis (L axis), the ellipse shown by the solid line F3 in equation (24) It is a component related to the luminance axis (L-axis) of the intersection point (M6 in FIG. 17 and M9 in FIG. 21) with the intersection (denoted by dotted line in FIGS. 17 and 21) of a wide range.
  • the selected axis reference value vm is the displayable limit value (the L value (Li) of the component related to the selected axis (second axis (V axis)). , And the maximum value of V that can be displayed by the display).
  • the selected axis reference value vm is a constant value 107.4177.
  • At least a partial range (here, the L value (Li)) of the component in the luminance axis (L axis) direction before color vision conversion processing is 39.
  • the selected axis reference value vm is reduced to the displayable limit value (the L value (Li) of the component related to the selected axis (second axis (V axis)).
  • the minimum value of the V value that can be displayed on the display the formula for calculating the minimum value differs depending on whether the L value (Li) is larger than 60.4).
  • At least a partial range (here, the L value (Li)) of the component in the direction of the luminance axis (L axis) before being subjected to color vision conversion processing is 39.
  • the selected axis reference value vm is a constant value of 134.0896.
  • the first conversion for the first and second color vision abnormalities
  • one of the first axis (u axis) and the second axis (V axis) is selected (the first axis (u Data processing unit 41 serving as the color perception conversion processing means further performs non-selection axis processing which is processing for reducing the absolute value of the component in the non-selection axis (V axis) direction which is an axis other than the axis).
  • non-selected axis processing is performed as follows.
  • the component vt of the non-selected axis processing after the non-selected axis processing is set to 0.
  • V axis the pixel data non-selected axis (V axis) of If the components are different in positive / negative between the non-selected axis processing before vi and the non-selected axis processing vt, the component vt of the non-selected axis processing after the non-selected axis processing is set to 0.
  • the conversion unit 44 determines whether or not vi is positive (> 0) and vi is 0 or less (0 or ⁇ 0), so that the value of the value of vt thus determined is within the range that can be displayed. Checks and if it is judged that it does not exist in the range, the vt value is the minimum value or the maximum value of the range that can be displayed by the display at the value of Lt after conversion (vt after conversion is closer or closer) Correct by replacing with. As a result, it is determined whether the pixel data after non-selected axis processing can be displayed, and if it is determined that display is not possible, the component of the non-selected axis can be displayed at the displayable limit value (the value of Lt after conversion). Is corrected to the minimum or maximum value of the range that can be displayed by the display in.
  • the component vt of the non-selected axis processing after the non-selected axis processing is set to 0.
  • vt vi + (Li ⁇ Lt). If ui is negative in the first conversion (for the first and second color vision abnormalities), then (Li-Lt)> 0, so the absolute value of vt becomes smaller than the absolute value of vi.
  • the conversion unit 44 determines whether or not vi is positive (> 0) and vi is 0 or less (0 or ⁇ 0), so that the value of the value of vt thus determined is within the range that can be displayed. Checks and if it is judged that it does not exist in the range, the vt value is the minimum value or the maximum value of the range that can be displayed by the display at the value of Lt after conversion (vt after conversion is closer or closer) Correct by replacing with. As a result, it is determined whether the pixel data after non-selected axis processing can be displayed, and if it is determined that display is not possible, the component of the non-selected axis can be displayed at the displayable limit value (the value of Lt after conversion). Is corrected to the minimum or maximum value of the range that can be displayed by the display in.
  • the data processing unit 41 serving as the color perception conversion processing means further performs non-selection axis processing, which is processing for reducing the absolute value of the component in the non-selection axis (u axis) direction.
  • non-selected axis processing is performed as follows. (l) When v is positive
  • ut is set to 0, and the non-selected axis of pixel data (u axis) If the component of ⁇ is different between positive and negative before the non-selected axis processing ui and after non-selected axis processing ut, the component ut of the non-selected axis processing after non-selected axis processing is set to 0.
  • the conversion unit determines whether or not the value of ut determined in this way falls within the range that the display can display, for both ui is positive (> 0) and ui is 0 or less (0 or 0). 44 checks, and if it is determined that the value does not fall within the range, the ut value is the minimum value or the maximum value of the range that can be displayed by the display at the value of Lt after conversion (the ut after conversion is closer, Correct by replacing with). As a result, it is determined whether the pixel data after non-selected axis processing can be displayed, and if it is determined that display is not possible, the component of the non-selected axis can be displayed at the displayable limit value (the value of Lt after conversion). Is corrected to the minimum or maximum value of the range that can be displayed by the display in.
  • the absolute value of ut is smaller than the absolute value of ui. That is, according to the amount of change (Lt Li) that changes the component in the luminance axis (L axis) direction according to the component in the selected axis (second axis (V axis)) direction, the non-selected axis (u axis) Decrease the absolute value of the directional component.
  • ut is set to 0, and the non-selected axis of pixel data (u axis) If the component of ⁇ is different between positive and negative before the non-selected axis processing ui and after the non-selected axis processing ut, the component ut of the non-selected axis processing after the non-selected axis processing is set to 0.
  • the conversion unit determines whether or not the value of ut determined in this way falls within the range that the display can display, for both ui is positive (> 0) and ui is 0 or less (0 or 0). 44 checks, and if it is determined that the value does not fall within the range, the ut value is the minimum value or the maximum value of the range that can be displayed by the display at the value of Lt after conversion (the ut after conversion is closer, Correct by replacing with). As a result, it is determined whether the pixel data after non-selected axis processing can be displayed, and if it is determined that display is not possible, the component of the non-selected axis can be displayed at the displayable limit value (the value of Lt after conversion). Is corrected to the minimum or maximum value of the range that can be displayed by the display in.
  • the apparatus 11 further includes a color space conversion unit 31 as uniform color space conversion means for converting original pixel data represented by the RGB color model into position data in the Luv color space, which is a uniform color space. .
  • the present device 11 converts the pixel data (Lt, ut, vt) in the uniform color space processed by the data processing unit 41 as color vision conversion processing means into an RGB color model, and then outputs the same.
  • Inverse conversion means here, the color space inverse conversion unit 51 and the output unit 61 Is made. ), Will be equipped further.
  • the present apparatus 11 is configured by causing a computer to execute a predetermined program (see FIG. 1), and further, the pressing program is recorded on a computer readable storage medium. be able to.
  • a color conversion that brightens or darkens a specific type of color while leaving the original image's color combination, for the color of each pixel that makes up the image data, is close to the color perception perceived by humans. It needs to be done in space.
  • measured values of coloration characteristics (spectral distribution) of a display such as a computer such as a computer, spectral absorption characteristics of three types of cones, and stimulation values of each cone (LM b Power up Color bpace.
  • the Luv color space like Opponent Color Space, consists of three dimensions: luminance axis, red-green axis, and yellow-blue axis, and assuming that the display conforms to sRGB, the mutual conversion method between RGB values and CIE XYZ values is It is standardized (the conversion method of CIE XYZ and Luv space is also standardized).
  • a force that can also use the CIE L * a * b * color space similar to the Luv color space The above simulation results are converted to two color spaces. As a result, the Luv color space is closer to a two-dimensional plane. (The axis in which the range of perceptible colors is almost the same as in people with trichromatic color vision and the axis in which the range of perceptible colors is extremely small are clearer.)

Abstract

  色識別性を向上させることができるコンピュータによる画像処理技術を用いた画素処理装置を提供する。   輝度を表す輝度軸と、クロマティクネス指数を示す2の軸である第1軸及び第2軸と、の3の直交座標軸系によって示される均等色空間における位置データとして示された画素データが含む輝度軸方向の成分、第1軸方向の成分及び第2軸方向の成分のうち、第1軸及び第2軸とのいずれか一方の軸である選択軸方向の成分に応じて輝度軸方向の成分を変化させる処理である色覚変換処理を行う色覚変換処理手段を、備えるものである、画素処理装置である。  

Description

画素処理装置
技術分野
[0001] 本発明は、画素処理装置に関し、より詳細には、電気的な画像データに含まれる画 素データを処理することで画像 (該画素データによって構成される。)を見やすくする 画素処理装置に関する。
色覚異常を有する人々(所謂、色弱や色盲と呼ばれる人。以下、「色覚異常者」とい う。)が、画像に含まれる色彩を認識しやすくするように画素データを処理するために も、本発明の画素処理装置は好適に用いられることができる。
背景技術
[0002] 現代人は、様々なものを目視することで、多くの情報を取得したり(例えば、地下鉄 路線図、標識、インターネット通信網上に存する種々のホームページ等を見ることで 役立つ多くの情報を取得したり、トマトの色を見てそれが熟れて 、ることを知ったり、 焼き肉で肉の焼け具合を知ることができる。)、心を和ませる(例えば、美しい花が咲 いた風景や紅葉した山等を見ることで、その変化によって心が和む。)ことが多い。 このような目視は、言うまでもなく視覚により種々のものを認識することであるが、目 視による認識においてはそのもの(輪郭)が見えるかどうか (通常、視力が充分力どう かによる。以下、「形状識別性」という。)のみならず色の違いを見分けることができる 力どうか (通常、色覚が充分力どうかによる。以下、「色識別性」という。)も重要である 。例えば、前述の例では、地下鉄路線図にはそれぞれの路線を区別するために各路 線ごとに色分けされているものが多いが、示される路線数が増加すると (例えば、東 京周辺の地下鉄路線図がよ 、例である。 )色分けをうまく区別できず路線の状況把握 が困難なことが多い。この地下鉄路線図の例では、形状識別性よりも色識別性が重 要である。そして、トマトの色を見て熟し具合を把握することや、焼き肉の色を見て焼 け具合を知ることも、形状識別性よりも色識別性が重要である。力 tlえて、葉や枝が密 集した生け垣の中に鮮やかな色の花が咲 、たような場合に該花を見つけるときや紅 葉を見るとき等も、形状識別性よりも色識別性が重要である。 [0003] このような色識別性が重要である中で、色覚異常者は、色覚異常を有さない者 (以 下、「色覚正常者」という。)よりも色識別性が低いことから、何らかの対策をとらなけれ ば、前述したような色識別性を要する場合には目視による認識をうまく行うことができ ない。色覚異常は、網膜の視細胞である錐体の異常により生じ、長波長側に感度の ピークを持つ L錐体系に異常のある第 1 (赤)色覚異常と、中波長領域にピークを持 つ M錐体系に異常のある第 2 (緑)色覚異常と、を赤緑色覚異常と分類し、短波長側 にピークのある S錐体系に異常のある第 3色覚異常を青黄色覚異常と分類する。これ ら 3種類の錐体が全て欠けて ヽる場合は全色盲となる力 この全色盲のケースは非 常に少なぐ大部分の色覚異常は赤緑色覚異常で、 日本人の場合男性の約 5%、女 性の約 0. 2%に相当すると言われている。このような色覚異常者の色識別性を高め るための対応として、色覚障害者用自動車運転用フィルタや色覚異常者用眼鏡レン ズ等といった器具等も開発されているが (例えば、特許文献 1、特許文献 2参照。)、 濃 、着色や特殊な反射膜を用いたフィルタやレンズを用いることに抵抗感を覚える 色覚異常者も多ぐあまり普及していない。
また、最近では、コンピュータを用いた画像処理技術も検討されている。例えば、画 像処理等の方法で識別しにくい色を識別しやすい色に変換したり、境界に線を入れ たりする方法も検討されているが、あくまで 2色が異なることが認識できるのみである ので、例えば、赤緑色覚異常の人が、トマトを収穫する場合、画像処理等によって赤 い熟れたトマトと緑のトマトとが識別できたとしても、どちらが赤い熟れたトマトかは分 からず、様々な場面で利用できるものではな 、。
[0004] 特許文献 1 :特開 2004— 34750号公報 (請求項 1、第 3図)
特許文献 2:特開 2002— 303830号公報 (請求項 1)
発明の開示
発明が解決しょうとする課題
[0005] そこで、本発明においては、様々なものを見る際に色識別性を向上させることがで きるコンピュータによる画像処理技術を用いた画素処理装置を提供することを目的と する。特に、色覚異常者が、画像に含まれる色彩を認識しやすくするように画素デー タを処理するのにも好適に用いられる装置を提供する。 課題を解決するための手段
[0006] 本発明の画素処理装置(以下、「本装置」 t ヽぅ。 )は、輝度を表す輝度軸と、クロマ テイクネス指数を示す 2の軸である第 1軸及び第 2軸と、の 3の直交座標軸系によって 示される均等色空間における位置データとして示された画素データが含む輝度軸方 向の成分、第 1軸方向の成分及び第 2軸方向の成分のうち、第 1軸及び第 2軸とのい ずれか一方の軸である選択軸方向の成分に応じて輝度軸方向の成分を変化させる 処理である色覚変換処理を行う色覚変換処理手段を、備えるものである、画素処理 装置である。
[0007] 均等色空間とは、等しい大きさに知覚される色差が、空間内の等しい距離にほぼ対 応するように意図した色空間をいい、幾つかのものが知られている。例えば、コンビュ ータなどのディスプレイの発色特性 (分光分布)の測定値と 3種類の錐体の分光吸収 特性から各錐体の刺激値を求めたもの(LMS Color Space,以下「LMS」という。)や、 さらに錐体から脳に信号が伝達される過程で行われる演算を考慮して、 LMS値から 脳が知覚する色感覚を求めたもの(Opponent Color Space,以下「OCS」という。)や 、 CIE L*u*v*色空間(以下、「Luv色空間」という。)や、 CIE L*a*b*色空間(以下、「 Lab色空間」という。)等が例示できる。
これらの均等色空間のうち、今回は OCS、 Luv色空間及び Lab色空間等のように、 輝度を表す輝度軸と、クロマテイクネス指数を示す 2の軸である第 1軸及び第 2軸と、 の 3の直交座標軸系によって示される均等色空間を用いる。
なお、クロマテイクネス指数を示す 2の軸である第 1軸及び第 2軸とは、均等色空間 力 SLuv色空間であれば u軸 (正方向が赤色を、負方向が緑色を示す。)及び V軸 (正 方向が黄色を、負方向が青色を示す。)であり、均等色空間が Lab色空間であれば a 軸 (正方向が赤色を、負方向が緑色を示す。)及び b軸 (正方向が黄色を、負方向が 青色を示す。)である。
そして、これら第 1軸及び第 2軸とのいずれか一方の軸を選択軸とする。
[0008] このような均等色空間における位置データとして示された画素データは、輝度軸方 向の成分、第 1軸方向の成分及び第 2軸方向の成分を含み、これら 3の成分により該 画素データの均等色空間における位置が特定される。 本装置の色覚変換処理手段は、画素データが含む選択軸 (第 1軸及び第 2軸との V、ずれか一方の軸)方向の成分に応じて輝度軸方向の成分を変化させる処理である 色覚変換処理を行う。なお、ここに「選択軸方向の成分に応じて輝度軸方向の成分 を変化させる」とは、輝度軸方向の成分の変化量が、選択軸方向の成分の絶対値に 対して単調増加であることを!、う。
こうすることで均等色空間における位置データとして示された画素データは、該画 素データの選択軸方向の成分に応じて、該画素データの輝度軸方向の成分が変化 されるので、選択軸方向の成分を輝度軸方向の成分として観察することができる。即 ち、選択軸方向の成分の差による色の違い (例えば、 Luv色空間の u軸方向の成分 の差による色の違い。この場合、実際は赤緑間の色の違いになる。)を輝度軸方向の 成分の差 (即ち、輝度の差)として観察できるので、第 1軸及び第 2軸とのうちその成 分の差による色の違 、を認識しにくい方の軸を選択軸にすれば (即ち、選択軸方向 の成分差による色識別性が低い)、選択軸方向の成分差を輝度軸方向の成分 (輝度 差)として色の違 、を認識することができる。
[0009] 選択軸方向の成分が第 1所定値よりも大きい場合と、選択軸方向の成分が該第 1 所定値よりも小さい場合と、のいずれか一方の場合には輝度軸方向の成分を減少さ せると共に、 V、ずれか他方の場合には輝度軸方向の成分を増カロさせるように色覚変 換処理を行うもの(以下、「増減両処理装置」という。)であってもよい。
こうすることで選択軸方向の成分が第 1所定値を境に、一方では輝度軸方向の成 分を減少させると共に、他方では輝度軸方向の成分を増加させるので、第 1所定値 を境として一方側と他方側とで選択軸方向の成分差を輝度軸方向の成分差として一 層はっきりと認識することができる。
なお、第 1所定値は、第 1軸を選択軸とする場合と、第 2軸を選択軸とする場合と、 で異なっても同一でも 、ずれでもよ!/、。
また、選択軸方向の成分が第 1所定値に等しいときは、輝度軸方向の成分を変化さ せないようにすればよい。
[0010] 増減両処理装置の場合、前記選択軸が、正方向に赤成分を示し負方向に緑成分 を示す軸であり、前記選択軸方向の成分が、前記第 1所定値よりも赤成分が大きい 場合には輝度軸方向の成分を増力!]させ、前記第 1所定値よりも赤成分が小さい場合 には輝度軸方向の成分を減少させるように色覚変換処理を行うものであってもよい。 こうすることで赤緑色覚異常の色覚異常者が、より赤い色の画素データは輝度軸方 向の成分がより増加して高輝度になり、より緑色の画素データは輝度軸方向の成分 力 り減少して低輝度になることから、赤緑間の色の違いを輝度軸方向の成分差とし て一層はっきりと認識することができる。
なお、ここで選択軸たる正方向に赤成分を示し負方向に緑成分を示す軸としては、 均等色空間が Luv色空間であれば u軸であり、均等色空間が Lab色空間であれば a 軸である。
[0011] 増減両処理装置の場合、前記選択軸が、正方向に黄成分を示し負方向に青成分 を示す軸であり、前記選択軸方向の成分が、前記第 1所定値よりも黄成分が大きい 場合には輝度軸方向の成分を減少させ、前記第 1所定値よりも黄成分が小さい場合 には輝度軸方向の成分を増力 tlさせるように色覚変換処理を行うものであってもよ 、。 こうすることで青黄色覚異常の色覚異常者が、より青色の画素データは輝度軸方向 の成分がより増力!]して高輝度になり、より黄色の画素データは輝度軸方向の成分が より減少して低輝度になることから、青黄間の色の違いを輝度軸方向の成分差として 一層はっきりと認識することができる。
なお、ここで選択軸たる正方向に黄成分を示し負方向に青成分を示す軸としては、 均等色空間が Luv色空間であれば V軸であり、均等色空間が Lab色空間であれば b 軸である。
[0012] 前記色覚変換処理後の選択軸方向の成分が、前記色覚変換処理前の選択軸方 向の成分の絶対値に対して前記色覚変換処理後の選択軸方向の成分の絶対値を 単調増加させる単調増加関数によって前記色覚変換処理前の選択軸方向の成分を 変換することで決定されるもの(以下、「選択軸成分残留装置」という。)であってもよ い。
ここに「色覚変換処理前の選択軸方向の成分の絶対値に対して前記色覚変換処 理後の選択軸方向の成分の絶対値を単調増カロさせる単調増加関数」とは、色覚変 換処理前の選択軸方向の成分の任意の絶対値 a、 b (ただし、 aより bが大きい)を考え ると、 aに係る画素データを色覚変換処理した後の選択軸方向の成分の絶対値 Aと、 bに係る画素データを色覚変換処理した後の選択軸方向の成分の絶対値 Bと、が B の方力 S Aよりも大きい関係を満たすことを 、う。
こうすることで色覚変換処理後の選択軸方向の成分の大小が、色覚変換処理前の 選択軸方向の成分の大小の順番と同じ順番になることから、元の画素の色合いを残 したまま特定の種類の色を明るく又は暗くするように色覚変換処理するので、色覚変 換処理後の画素の色合 、から色覚変換処理前の元の画素の色合 、を認識すること ができる。
選択軸成分残留装置の場合、画素データが含む輝度軸方向の成分と選択軸方向 の成分とのデータ組である選択データ組のうち、選択軸方向の成分が第 2所定値より 大きい選択データ組と、選択軸方向の成分が該第 2所定値より小さい選択データ組 と、のいずれか一方の選択データ組を、選択軸と輝度軸とを含む選択面にて選択軸 を横軸にとり輝度軸を縦軸にとったときに該選択面に存する凸関数と凹関数とのいず れか一方の関数を満足させるように変換すると共に、いずれか他方の選択データ組 をいずれか他方の関数を満足させるように変換するもの(以下、「凹凸関数変換装置 」という。)であってもよい。
「選択軸を横軸にとり輝度軸を縦軸にとったときに選択面に存する凸関数」とは、選 択軸と輝度軸とを含む選択面を考え、選択面上に選択軸を横軸にとり輝度軸を縦軸 にとつたとき、上に凹の曲線 (無論、選択面上に存する。 )により示される関数をいう。 同様に、「選択軸を横軸にとり輝度軸を縦軸にとったときに選択面に存する凹関数」と は、選択軸と輝度軸とを含む選択面を考え、選択面上に選択軸を横軸にとり輝度軸 を縦軸にとったとき、上に凸の曲線 (無論、選択面上に存する。 )により示される関数 をいう。
このような選択データ組 (画素データが含む輝度軸方向の成分及び選択軸方向の 成分の両成分により構成される。)のうち、選択軸方向の成分が第 2所定値より大きい 選択データ組と、選択軸方向の成分が該第 2所定値より小さい選択データ組と、のい ずれか一方の選択データ組を、凸関数と凹関数とのいずれか一方の関数を満足さ せるように変換すると共に、 V、ずれか他方の選択データ組を 、ずれか他方の関数を 満足させるように色覚変換処理にて変換するので、凸関数と凹関数とによって元の画 素の色合いをどの程度、色覚変換処理後の画素の色合いに反映させるかを決めるこ とがでさる。
[0014] 凹凸関数変換装置の場合、輝度軸方向の成分が同じ場合、選択軸方向の成分が 前記第 2所定値を示す直線上に中心が存する第 1の楕円の楕円周の一部により形 成される前記第 2所定値より大きい範囲に存する第 1楕円周と、選択軸方向の成分が 前記第 2所定値を示す直線上に中心が存する第 2の楕円の楕円周の一部により形 成される前記第 2所定値未満に存する第 2楕円周と、によって前記凸関数と前記凹 関数とが形成され、該第 1楕円周の一端と該第 2楕円周の一端とが前記第 2所定値 にて連結されて 、るものであってもよ 、。
第 1の楕円と第 2の楕円とはいずれも、選択軸方向の成分が前記第 2所定値を示す 直線上に中心が存する。そして、第 1楕円周は、第 1の楕円の楕円周のうち前記第 2 所定値より大きい範囲に存する楕円周の部分によって構成される。第 2楕円周は、第 2の楕円の楕円周のうち前記第 2所定値より小さい範囲に存する楕円周の部分によ つて構成される。これら第 1楕円周の一端と第 2楕円周の一端とが前記第 2所定値に て連結されており、これら第 1楕円周と第 2楕円周との一方が前記凸関数と前記凹関 数とのいずれか一方を形成し、第 1楕円周と第 2楕円周との他方が前記凸関数と前 記凹関数とのいずれか他方を形成する。
このような第 1楕円周と第 2楕円周とにより前記凸関数と前記凹関数とを構成するこ とで、色覚変換処理後の画素の色合 、から色覚変換処理前の元の画素の色合 、を うまく認識することができる。
[0015] 前記色覚変換処理において選択軸方向の成分に応じて輝度軸方向の成分を変化 させる変化量が、選択軸に係る成分に関する基準値である選択軸基準値に対する 画素データの選択軸に係る成分の割合に応じて決定されるもの(以下、「選択軸基準 値使用装置」という。)であってもよい。
ここに該変化量が該割合に応じて決定されるとは、該変化量が該割合に対して単 調増加であることをいい、例えば、任意の該割合である rl、 (ただし、 rlより r2が大 きい)を考えると、 r2における該変化量 Rr2が、 rlにおける該変化量 Rrlよりも大きい 関係を満たす。
こうすることで所定の選択軸基準値に対する画素データの選択軸に係る成分の割 合により成分の大きさの程度を評価することができ、その大きさの程度に応じて該変 化量を決定するので、選択軸方向の成分の大きさの程度を輝度軸方向の成分変化 としてうまく認識することができる。
[0016] 選択軸基準値使用装置の場合、色覚変換処理される前の輝度軸方向の成分の少 なくとも一部の範囲においては、前記選択軸基準値が、前記選択軸に係る成分の表 示可能な限界値であってもよ 、。
このように選択軸に係る成分の表示可能な限界値を選択軸基準値とすることで表 示可能な限界値に対する成分の割合により成分の大きさの程度を評価するので、成 分の大きさを限界に対してある程度標準化して評価することができ、選択軸方向の成 分の大きさの程度を輝度軸方向の成分変化としてうまく認識することができる。
なお、選択軸に係る成分の表示可能な限界値は、いかなるものであってもよいが、 輝度軸方向の成分値により変化することがあるので、輝度軸方向の成分値によって 決定されてもよい。
[0017] 選択軸基準値使用装置の場合、色覚変換処理される前の輝度軸方向の成分の少 なくとも一部の範囲においては、前記選択軸基準値が一定値であってもよい。
このように一定値の選択軸基準値とすることで、成分の大きさの程度をうまく評価す ることができるよう該一定値を定めれば、選択軸方向の成分の大きさの程度を輝度軸 方向の成分変化としてうまく認識することができる。
[0018] 選択軸基準値使用装置の場合、前記輝度軸方向の成分の変化量が、輝度軸に係 る成分に関する基準値である輝度軸基準値と色覚変換処理される前の輝度軸方向 の成分との差に前記割合を乗じた値に応じて決定されるもの(以下、「輝度軸基準値 使用装置」という。)であってもよい。
前記輝度軸方向の成分の変化量が、該乗じた値に応じて決定されるとは、該変化 量が該乗じた値に対して単調増加であることをいい、例えば、任意の該乗じた値であ 5x1、 x2 (ただし、 xlより x2が大きい)を考えると、 x2における該変化量 Xx2が、 xl における該変化量 Xxlよりも大きい関係を満たす。なお、該乗じた値は、輝度軸に係 る成分に関する基準値である輝度軸基準値 ylと色覚変換処理される前の輝度軸方 向の成分 Liとの差 (yl— Li)に前記割合 (例えば、(uiZum) )を乗じた値 (即ち、 (yl — Li; X (uiz um) )である。
こうすることで所定の輝度軸基準値 ylと色覚変換処理される前の輝度軸方向の成 分 Liとの差 (yl— Li)により、色覚変換処理される前の輝度軸方向の成分 Uから所定 の輝度軸基準値 ylまでの輝度軸方向の距離を評価し、その距離に比例する該乗じ た値に応じて前記輝度軸方向の成分の変化量が決定されるので、輝度軸基準値 yl に対する色覚変換処理される前の輝度軸方向の成分 Liの差により前記輝度軸方向 の成分の変化量をうまく決定することができる。
[0019] 輝度軸基準値使用装置及び凹凸関数変換装置の場合、凹凸関数変換装置にお ける前記凸関数又は前記凹関数と、選択軸と輝度軸とを含む選択面における表示可 能な範囲の境界線と、の交点の輝度軸に係る成分を前記輝度軸基準値とするもので あってもよい。
選択軸と輝度軸とを含む選択面における表示可能な範囲の境界線とは、選択面に おける表示可能な範囲を選択面に示したとき、表示可能な範囲と表示不可能な範囲 との境を示す境界線 (通常、表示可能な範囲の外縁を示す線)を!ヽぅ。
こうすることで変換後の選択データ組が満足する前記凸関数又は前記凹関数と、 該表示可能な範囲の境界線と、の交点の輝度軸に係る成分を前記輝度軸基準値と すれば、前記輝度軸基準値を表示可能な限界値とすることができるので、表示可能 な限界値と色覚変換処理される前の輝度軸方向の成分との差は、色覚変換処理さ れる前の輝度軸方向の成分 Uから輝度軸方向に移動可能な量を示す。従って、該 輝度軸方向に移動可能な量に応じて前記輝度軸方向の成分の変化量をうまく決定 することができる。
[0020] 前記画素データのうち、前記第 1軸及び前記第 2軸とのうち選択軸以外の軸である 非選択軸方向の成分の絶対値を減少させる処理である非選択軸処理を、前記色覚 変換処理手段がさらに行うもの(以下、「非選択軸処理装置」という。)であってもよい 非選択軸は、第 1軸及び第 2軸とのうち選択軸ではない方の軸であり、例えば、第 1 軸が選択軸であれば第 2軸が非選択軸であり、第 2軸が選択軸であれば第 1軸が非 選択軸である。
このように非選択軸方向の成分の絶対値を減少させる処理である非選択軸処理を 行うことで、本装置により処理される前の画素データと、該画素データが本装置により 処理された後の画素データと、の間で色相が大きく変化しないようにすることができる
[0021] 非選択軸処理装置の場合、選択軸方向の成分に応じて輝度軸方向の成分を変化 させる変化量に応じて、非選択軸方向の成分の絶対値を減少させるものであっても よい。
「選択軸方向の成分に応じて輝度軸方向の成分を変化させる変化量に応じて、非 選択軸方向の成分の絶対値を減少させる」とは、非選択軸方向の成分の絶対値の 減少量 zが、該輝度軸方向の成分の変化量 wに対して単調増加であることをいい、例 えば、任意の該変化量 wl、 w2 (ただし、 wlより w2が大きい)を考えると、 w2におけ る該減少量 Zz2が、 wlにおける該減少量 Zzlよりも大きい関係を満たす。
こうすることで輝度軸方向の成分変化量 wに応じて非選択軸方向の成分の絶対値 を減少させるので、本装置により処理される前の画素データと、該画素データが本装 置により処理された後の画素データと、の間で色相の変化を一層うまく抑えることがで きる。
[0022] 非選択軸処理装置の場合、画素データの非選択軸の成分が、非選択軸処理前と 非選択軸処理後とで正負が異なる場合には、非選択軸処理後の非選択軸の成分を
0とするものであってもよ!/、。
画素データの非選択軸の成分が、非選択軸処理前と非選択軸処理後とで正負が 異なる場合は、非選択軸処理前と非選択軸処理後とで画素データの色が全く異なつ た色 (色が反転する)になるため、これを防止するには、非選択軸処理後の非選択軸 の成分を 0としてもよい。
[0023] 非選択軸処理装置の場合、非選択軸処理後の画素データが表示可能な範囲か否 か判断し、表示可能でないと判断した場合には、非選択軸の成分を表示可能限界値 に修正するものであってもよ 、。 非選択軸処理により非選択軸処理後の画素データが表示可能な範囲を外れてし まうとその画素データは表示されなくなるので、表示可能な範囲を外れてしまう場合 には、非選択軸の成分を表示可能限界値に修正するようにしてもよい。
[0024] 均等色空間が、 Luv色空間又は Lab色空間であってもよい。
前述のように、均等色空間とは、等しい大きさに知覚される色差が、空間内の等し い距離にほぼ対応するように意図した色空間をいい、例えば、 OCS、 Luv色空間及 び Lab色空間等が知られている。このような均等色空間を用いることで、人間が知覚 する色感覚に近い状態で変換処理することができるので、より人間の色感覚に沿つ た変換をすることができる。
これら OCS、 Luv色空間及び Lab色空間のうち、 Luv色空間及び Lab色空間は、 輝度を表す輝度軸と、クロマテイクネス指数を示す 2の軸である第 1軸及び第 2軸と、 の 3次元で構成されており、ディスプレイ等に多く用いられている RGBカラ一'モデル 値や CIE XYZ値との間のデータ変換方法も規格化されていることから、非常に取扱 が容易である。また、 Luv色空間及び Lab色空間のうちとりわけ Luv色空間を用いる と、色覚異常者が色の違いを輝度軸方向の成分差として一層はっきりと認識すること ができる。
[0025] RGBカラー ·モデルにより示された元画素データを均等色空間における位置デー タに変換する均等色空間変換手段を、さらに備えてなるものであってもよい。
撮像や画像処理等にぉ 、て多用されて ヽる RGBカラー ·モデルにより示された画 素データが多く存在しており、このように多く存在する RGBカラー'モデルにより示さ れた画素データを本装置にて処理することが多く求められる。このため RGBカラー · モデルにより示された元画素データを均等色空間における位置データに変換する均 等色空間変換手段を本装置がさらに備えるようにしてもよぐこうすることで多く存在 する RGBカラー'モデルにより示された元画素データを本装置にて円滑に処理する ことができる。
また、 RGBカラー ·モデル力 均等色空間へのデータ変換方法は、前述のように規 格ィ匕されており公知であるのでここでは説明を省略する。
[0026] 色覚変換処理手段により処理された均等色空間における画素データを RGBカラー •モデルに変換した後、出力する均等色空間逆変換手段を、さらに備えてなるもので あってもよい。
前述のように RGBカラ一'モデルは画像処理等にお!、て多用されて 、るので、この ように多用されて 、る RGBカラー ·モデルにより画素データを出力することが本装置 に求められることがある。このため色覚変換処理手段により処理された均等色空間に おける画素データを RGBカラー ·モデルに変換した後、出力する均等色空間逆変換 手段を本装置がさらに備えるようにしてもよぐこうすることで多用される RGBカラー' モデルにより示された画素データを本装置力も円滑に出力することができる。
なお、均等色空間から RGBカラー ·モデルへのデータ変換方法は、前述のように規 格ィ匕されており公知であるのでここでは説明を省略する。
[0027] 本装置は、所定のプログラムをコンピュータに実行させることで実現させることがで き、さらに、力かるプログラムはコンピュータ読みとり可能な記憶媒体に記録することが できる。
図面の簡単な説明
[0028] [図 1]一実施形態の本発明の画素処理装置 (本装置)のハードウェア構成を示す概 略ブロック図である。
[図 2]本装置の大まカゝな基本構成を示す概略機能ブロック図である。
[図 3]データ処理部の詳細を示す詳細機能ブロック図である。
[図 4]対象画素データの例を示す図である。
[図 5]対象画素データに含まれる L値及び u値がどのように変換されるかを示す uL平 面のグラフである。
[図 6]対象画素データに含まれる L値及び u値がどのように変換されるかを示す uL平 面のグラフである。
[図 7]対象画素データがどのように変換されるかを示したグラフである。
[図 8]RGBカラ一 ·モデルにより示される 16777216通りの各点を Lu平面へ正投影し たときにこれらの点が存する範囲を示すグラフである。
[図 9]RGBカラ一.モデルにより示される 16777216通りの各点を Lv平面へ正投影し たときにこれらの点が存する範囲を示すグラフである。 [図 10]図 8及び図 9において示した各線 ul〜u5、 vl〜v6についての基準軸、変化 軸、基準軸範囲、境界線の意味についてまとめた図である。
[図 11]図 8及び図 9において示した各線 ul〜u5、 vl〜v6についての近似式を示す 図である。
[図 12]対象画素データの例を示す図である。
[図 13]対象画素データに含まれる L値及び u値がどのように変換されるかを示す uL 平面のグラフである。
[図 14]対象画素データに含まれる L値及び u値がどのように変換されるかを示す uL 平面のグラフである。
[図 15]対象画素データがどのように変換されるかを示したグラフである。
[図 16]対象画素データの例を示す図である。
[図 17]対象画素データに含まれる L値及び V値がどのように変換されるかを示す vL平 面のグラフである。
[図 18]対象画素データに含まれる L値及び V値がどのように変換されるかを示す vL平 面のグラフである。
[図 19]対象画素データがどのように変換されるかを示したグラフである。
[図 20]対象画素データの例を示す図である。
[図 21]対象画素データに含まれる L値及び V値がどのように変換されるかを示す vL平 面のグラフである。
[図 22]対象画素データに含まれる L値及び V値がどのように変換されるかを示す vL平 面のグラフである。
[図 23]対象画素データがどのように変換されるかを示したグラフである。
圆 24]本装置の動作を説明するフローチャートである。
圆 25]sl07の動作のうち、 sl06にて第 1変換 (第 1及び第 2色覚異常用)が指定され ていると判断した場合の動作を説明するフローチャートである。
[図 26]s205の「uが正の場合の処理」の動作を説明するフローチャートである。
[図 27]s205の「uが正の場合の処理」の動作のうち s313以降の動作を説明するフロ 一チャートである。 [図 28]s205の「uが正の場合の処理」の動作のうち s351以降の動作を説明するフロ 一チャートである。
[図 29]s207の「uが負の場合の処理」の動作を説明するフローチャートである。
[図 30]s2O7の「uが負の場合の処理」の動作のうち s413以降の動作を説明するフロ 一チャートである。
[図 31]s207の「uが負の場合の処理」の動作のうち s451以降の動作を説明するフロ 一チャートである。
[図 32]s208の「uが 0の場合の処理」の動作を説明するフローチャートである。
圆 33]sl07の動作のうち、 sl06にて第 3変換 (第 3色覚異常用)が指定されていると 判断した場合の動作を説明するフローチャートである。
[図 34]s605の「vが正の場合の処理」の動作を説明するフローチャートである。
[図 35]s605の「vが正の場合の処理」の動作のうち s713以降の動作を説明するフロ 一チャートである。
[図 36]s605の「vが正の場合の処理」の動作のうち s751以降の動作を説明するフロ 一チャートである。
[図 37]s607の「vが負の場合の処理」の動作を説明するフローチャートである。
[図 38]s607の「vが負の場合の処理」の動作のうち s813以降の動作を説明するフロ 一チャートである。
[図 39]s607の「vが負の場合の処理」の動作のうち s851以降の動作を説明するフロ 一チャートである。
[図 40]s6O8の「vが 0の場合の処理」の動作を説明するフローチャートである。
符号の説明
11
11a CPU
l ib RAM
11c ROM
l id インターフェイス
13 デジタルカメラ部 21 受付部
31 色空間変換部
41 データ処理部
42 データ記憶部
43 対象画像データ抽出部
44 変換部
45 変換種別記憶部
46 パラメータ記憶部
47 数式記憶部
48 読出部
51 色空間逆変換部
61 出力部
発明を実施するための最良の形態
[0030] 以下、本発明の実施の形態を図面を参照して説明する。し力しながら、これらによつ て本発明は何ら制限されるものではない。
[0031] 図 1は、一実施形態の本発明の画素処理装置 (本装置) 11のハードウェア構成を 示す概略ブロック図である。図 1を参照して、一実施形態の本装置 11のハードウェア 構成について説明する。本装置 11は、携帯電話(図示せず)の一部に組み込まれて いるものであり、該携帯電話に取り付けられたデジタルカメラ部 13と、該携帯電話に 取り付けられた表示部 15と、が接続されている。なお、ここでは説明及び理解を容易 にするため、該携帯電話のうち本装置 11に関係する部分のみを示しているが、該携 帯電話を用いた通話、電子メールの送受信、デジタルカメラ部 13を用いた画像撮影 は通常の携帯電話と同様に行うことができる。
[0032] 本実施形態では、本装置 11は、プログラムを内蔵させたコンピュータによって構成 されており、前述の通り、本装置 11にはデジタルカメラ部 13と表示部 15とが接続され ている。
本装置 11は、演算処理を行う CPUl la、 CPU1 laの作業領域等となる RAMI lb 、制御プログラム等を記録する ROMl lc、デジタルカメラ部 13及び表示部 15と情報 のやり取りを行うためのインターフェイス l idと、を有する。なお、ここでは制御プログ ラム等は ROMl lcに記憶されている力 それ以外の記憶装置 (例えば、ハードデイス ク等)に記憶するようにしてょ 、ことは言うまでもな!/、。
[0033] 図 2に、図 1のハードウェアと主として ROMl lcに記録されるプログラムにより実現 される本装置 11の大まカゝな基本構成を示す概略機能ブロック図を示す。図 2を参照 して、本装置 11の基本構成について説明する。
本装置 11は、機能的には、受付部 21と色空間変換部 31とデータ処理部 41と色空 間逆変換部 51と出力部 61とを備えている。
そして、デジタルカメラ部 13は、撮影を命令する撮影命令信号 (撮影命令信号をデ ジタルカメラ部 13に向けて発する部分は図示していない。)を受け取ると、 RGBカラ 一 ·モデルによる画像を撮像してその撮像した画像データを受付部 21に送信する。 受付部 21は、デジタルカメラ部 13からの画像データを受信するため常時待機してお り、デジタルカメラ部 13から画像データを受信すると、該受信した画像データを色空 間変換部 31に送信する。
[0034] 受付部 21から RGBカラー ·モデルによる画像データ(以下、「RGB画像データ」と いう。)を受信した色空間変換部 31は、 RGB画像データを Luv色空間におけるデー タ((L, u, V) = (Li, ui, vi)を含む。以下、「Luv画像データ」という。 )に変換する。 なお、 RGB画像データ力 Luv画像データへの変換は、 RGB画像データに含まれ る全ての画素データを Luv画像データへ変換することによって行う。かかる変換の方 法は、既知であるのでここでは説明を省略する。
色空間変換部 31により変換された Luv画像データは、色空間変換部 31からデータ 処理部 41へ送信される。色空間変換部 31からデータ処理部 41へ送信される Luv画 像データの例を模式的に表 1に示す。表 1中では、画素番号(1、 2、 3、 4· · ·η (正の 整数))と、 (L, u, V)データ((Li, ui, vi) )と、を含んでいる(なお、各画素データが、 画像のどの位置に存するものかは、画素データが並んでいる順番によって決される。 )。また、(L, u, V)のデータとして(LI, ul, vl)や(L2, u2, v2)のように記載してい るが、これら Lのデータ(Ll、 L2、 L3' . ')、 uのデータ(ul、 u2、 ιι3 · · ·)及び vのデ ータ (vl、 v2、 v3…)は実際には数字が入って!/、る。このように画素番号 iに係る画 素(該画素の Luvデータ(L, u, V) = (Li, ui, vi) )の集合(即ち、 iが 1力 n)によって 画像が形成される。
なお、(L, u, V)を構成する L軸が輝度軸であり(Liが輝度を示し)、 u軸 (正方向が 赤色を、負方向が緑色を示す。)及び V軸 (正方向が黄色を、負方向が青色を示す。 )がクロマテイクネス指数を示す 2の軸である第 1軸及び第 2軸である。
[0035] (表 1) Luv画像データの例
画素番号 (L, u, V)
1 (LI, ul, vl)
2 (L2, u2, v2)
3 (L3, u3, v3)
4 (L4, u4, v4)
n (Ln, un, vn)
[0036] 図 3は、データ処理部 41の詳細を示す詳細機能ブロック図である。図 3を参照して 、データ処理部 41の詳細について説明する。
データ処理部 41は、機能的には、データ記憶部 42と対象画像データ抽出部 43と 変換部 44と変換種別記憶部 45とパラメータ記憶部 46と数式記憶部 47と読出部 48と を有してなる。
色空間変換部 31から送信された Luv画像データ (表 1に示すようなデータ)は、デ ータ処理部 41のデータ記憶部 42によって受信される。 Luv画像データを受信したデ ータ記憶部 42は、該受信した Luv画像データを記憶すると共に、該受信した Luv画 像データを変換部 44へ送信する。
Luv画像データを受信した変換部 44は、変換種別記憶部 45にアクセスし変換種 別記憶部 45が記憶している変換種別を読み出すことで、第 1変換 (第 1及び第 2色覚 異常用)又は第 3変換 (第 3色覚異常用)のいずれの変換が指定されているかを判断 し、第 1変換 (第 1及び第 2色覚異常用)が指定されていると判断した場合は以下述 ベる「第 1変換」を行い、第 3変換 (第 3色覚異常用)が指定されていると判断した場合 は以下述べる「第 3変換」を行う。なお、本装置 11に接続されたキーボードやタツチパ ネル等 ( 、ずれも図示せず)を通じて本装置 11の使用者が所望する処理種別 (具体 的には、第 1変換 (第 1及び第 2色覚異常用)又は第 3変換 (第 3色覚異常用)の別) が変換種別記憶部 45に入力され、変換種別記憶部 45に予め記憶されて 、る。 そして、以下述べるように、 Luv画像データに含まれる全ての画素に関するデータ( 表 1においては同じ画素番号に係る画素番号、 (L, u, V)がーつの画素に関するデ ータである。従って、例えば、表 1において全ての画素に関するデータとは、画素番 号 1から画素番号 nまでの n個のデータ全部である。 )について第 1変換 (第 1及び第 2 色覚異常用)又は第 3変換 (第 3色覚異常用)を行う (即ち、 Luv画像データに含まれ る全ての画素データについて該指定された変換 (第 1又は第 3変換のいずれか)が完 了するまで、 Luv画像データに含まれる個々の画素データについて該指定された変 換 (第 1又は第 3変換のいずれか)を続ける。 )0
(第 1変換 (第 1及び第 2色覚異常用))
第 1変換 (第 1及び第 2色覚異常用)が指定されていると判断した変換部 44は、デ ータ記憶部 42が記憶している Luv画像データに含まれる画素データのうち未だ読み 出されて 、な 、ものを 1つ読み出して変換部 44へ送信する命令信号 (以下、「読み 出し命令信号」という。)を対象画像データ抽出部 43に送信する。変換部 44からの読 み出し命令信号を受信した対象画像データ抽出部 43は、データ記憶部 42にァクセ スし、データ記憶部 42が記憶して 、る Luv画像データに含まれる画素データのうち 未だ読み出されていないものを 1つ(即ち、画素番号 iに係る画素データとして、画素 番号 i及び Luvデータ(L, u, V) = (Li, ui, vi) (ただし iは正の整数)の情報を 1単位 とする。)読み出し取得する。そして、対象画像データ抽出部 43は、データ記憶部 42 カも該読み出し取得した 1の画素データを変換部 44へ送信する。ここで変換部 44か ら読み出し命令信号を受信した対象画像データ抽出部 43が、データ記憶部 42が記 憶して!/ヽる Luv画像データに含まれる画素データのうち未だ読み出されて 、な ヽもの が存しない(即ち、全ての画素データが読み出され、読み出されていない画素データ がなくなった)と判断した場合には、読出部 48へ起動信号を送信する。なお、対象画 像データ抽出部 43から変換部 44へ送信されこれから処理される画素データを「対象 画素データ」という。
対象画素データを対象画像データ抽出部 43から受信した変換部 44は、まず、対 象画素データ(画素番号 i、 Luvデータ(L, u, V) = (Li, ui, vi) )に含まれる Luvデー タの u値 (ui)が 0より大きいか否力判断し、大きいと判断した場合、次の「uが正の場 合の処理」を行う。なお、 u値 (ui)が 0より大きいと判断しない場合、 Luvデータの u値 (ui)が 0より小さいか否力判断し、小さいと判断した場合、次の「uが負の場合の処理 」を行い、 0より小さいと判断しない場合 (即ち、この場合は u値 (ui)が 0である。)、後 述のように何らの変換も行わな 、。
また、ここでは理解を容易にするため、対象画素データの具体例として、図 4に示す ように u値が 0より大きい対象画素データ(画素番号 5、 Luvデータ(L, u, V) = (L5, u5, v5)、ただし、前述のように u5は 0より大きい。また、図 4中、該対象画素データの 位置を点 p5により示す。)を用いる。
(uが正の場合の処理)
u値 (ui)力^より大きいと判断した変換部 44は、 Luv画像データの Luvデータ(L, u , V) = (Li, ui, vi)に含まれる Lの数値 Liを用いて uと Lとの 2軸直交軸における次の 楕円の式(1)を作成する。この式(1)により示される楕円は、 uL平面(図 4にて示した ように互いに直交する 3軸である L軸、 u軸及び V軸のうち、 u軸と L軸との 2軸を含む 平面をいう。)上に存し、中心 (u, L) = (0, 100)であり、長径 (L軸方向の径)が(10 0— Li)であり、そして短径 (u軸方向の径)が(Pumax X (100— Li) ZlOO)である。 後述するように、対象画素データの u値と L値とが、この式(1)によって示される楕円 の円周上 (楕円周上)に存する点の座標となるように対象画素データの u値と L値とを 変換する。
式 (1)
uV (Pumax X (100— Li) /100) 2+ (L— 100) 2/ (100— Li) 2= l
なお、式(1)中、 Pumaxはパラメータである。本装置 11に接続されたキーボードや タツチパネル等( 、ずれも図示せず)を通じて本装置 11の使用者が Pumaxの値を予 めパラメータ記憶部 46に入力し、パラメータ記憶部 46が Pumaxの値を記憶している 。このため変換部 44が式(1)を作成する際には、変換部 44がパラメータ記憶部 46に アクセスしてパラメータ記憶部 46から Pumaxの値を読み出し取得する。
そして、式(1)を変形すると、 Lは 0より大きく 100より小さいので、式(1. 1)が得られ る。なお、 L (Li)力^)又は 100になるのは、 u (ui) =v(vi) =0のときであり、この場合 は後述する uが 0の場合の処理又は Vが 0の場合の処理が行われることから、ここでは Lは 0より大きく 100より/ Jヽさ!ヽ。
式 (1. 1)
L= 100—(100— Li) X (l-uV(Pumax X (100— Li) /100) 2) 0' 5 [0039] 図 4にて示した対象画素データの具体例(画素番号 5、 Luvデータ(L, u, v) = (L5 , u5, v5)、ただし、 u5は 0より大きい。図 4中、点 p5)に関して式(1)を作成すれば、 次の式(1. 2)になる。
式(1. 2)
uV(Pumax X (100— L5) /100) 2+ (L— 100) 2/ (100— L5) 2= l この式(1. 2)にて示される楕円を図 5に示した。また、図 5には、ディスプレイが表 示し得る範囲を点線によって囲って示した。なお、ディスプレイが表示し得る範囲の 求め方については、後述するディスプレイ色範囲の算出手順、境界線上の色座標値 の算出手順及び境界線の近似式の導出手順によって行われる。そして、図 5中、実 線 F1により式(1. 2)にて示される該楕円を示した力 該楕円のうち、ディスプレイが 表示し得る範囲内の部分 (即ち、図 5中、点線により囲まれた範囲内の部分)がここの 処理に関係するため該範囲内に存し、かっここでは uが正の場合を扱うため uが正の 部分のみを示している。
[0040] 次!、で、変換部 44は、対象画素データ(画素番号 i、 Luvデータ(L, u, v) = (Li, u i, vi) )に含まれる Luvデータの L値 (Li)が 53. 3以上である力否力判断し、 L値 (Li) 力 3. 3以上であると判断した場合はその L値 (Li)においてディスプレイが表示し得 る u値の最大値を第 1基準値 umとする。かかる u値の最大値 (ここでは第 1基準値 um とされる。 )は、次の式(2)中の L値に対象画素データの L値 (Li)を代入して求められ る uの値とする。また、力かる式(2)の導出方法については、後述するディスプレイ色 範囲の算出手順、境界線上の色座標値の算出手順及び境界線の近似式の導出手 順によつて行われ、導出された式(2)は予め数式記憶部 47に入力され記憶されてい る。このため変換部 44が、 L値 (Li)が 53. 3以上であると判断した場合には数式記憶 部 47にアクセスして数式記憶部 47から式(2)を読み出し取得する。
式 (2)
u=—0. 00038119 X L3+0. 121971 X L2— 15. 5168 X L + 713. 514
[0041] 一方、変換部 44力 対象画素データ(画素番号 i、 Luvデータ(L, u, v) = (Li, ui, vi) )に含まれる Luvデータの L値 (Li)力 3. 3以上である力否か判断し、 L値 (Li)が 53. 3以上であると判断しない場合 (即ち、 L値 (Li)が 53. 3未満)は、第 1基準値 um は 175. 0213とする。
[0042] 図 4にて示した対象画素データの具体例(画素番号 5、 Luvデータ(L, u, v) = (L5 , u5, v5)、ただし、 u5 >0)を考えれば、 L値 (L5)が 53. 3以上であると変換部 44が 判断した場合には、第 1基準値 um5は次の式(2. 1)にて算出される。このようにして 算出した第 1基準値 um5を図 5に示した。
式(2. 1)
um5 =— 0. 00038119 X L53+0. 121971 X L52— 15. 5168 X L5 + 713. 51
4
一方、 L値 (L5)が 53. 3以上であると変換部 44が判断しない場合 (即ち、 L値 (L5) 力 3. 3未満)は、第 1基準値 um5は 175. 0213とされる。このように L値(L5)が 53 . 3以上であると判断しない場合に第 1基準値 um5とされる 175. 0213も図 5に示し た。
[0043] そして、変換部 44は、対象画素データ(画素番号 i、 Luvデータ(L, u, v) = (Li, ui , vi) )に含まれる Luvデータの u値 ui力 上記のようにして決定された第 1基準値 um に対する割合 Sc ( =uiZum)を求める。
例えば、図 4にて示した対象画素データの具体例(画素番号 5、 Luvデータ (L, u, V) = (L5, u5, v5)、ただし、 u5 >0)を例に挙げれば、 Luvデータの u値 u5力 決定 された第 1基準値 um5に対する割合 Sc5=u5Zum5を求める。
[0044] 続いて、変換部 44は、式(1. 1)によって示される楕円の楕円周上の点のうちデイス プレイが表示し得る範囲内に存するもので L値が最大の点を (Lm, uem)とし、この u emを求める。例えば、図 4にて示した対象画素データの具体例(画素番号 5、 Luvデ ータ(L, u, V) = (L5, u5, v5)、ただし、 u5 >0)を例に挙げれば、図 5に点 M5 (Lm 5, uem5)として示した。図 5から理解されるように、点 M5 (Lm5, uem5)は、図 5に 示された式(1. 1)によって示される楕円(実線 F1)の楕円周上の点のうち、図 5に示 されたディスプレイが表示し得る範囲(点線にて囲まれた範囲)内に存するもので L値 が最大の点である。以下、 uemの算出方法を説明する。
[0045] (uemの算出方法)
第 1に、式 (3)を考える。
式 (3)
uV (Pumax) 2 + (L— 100) 2/ ( 100) 2 = 1
この式(3)にて示される楕円(以下、「楕円 3」という。)を図 6に示した。また、図 6に は、図 5と同様、ディスプレイが表示し得る範囲を点線によって囲って示し、式(1)に よって示される楕円(以下、「楕円 1」という。)も同様に示した。
[0046] 第 2に、この式(3)によって示される楕円の楕円周上の点のうちディスプレイが表示 し得る範囲内に存するもので L値が最大の点を (LmO, uemO)とするとこの uemOを 次の式 (4)を用いて変換部 44が求める。なお、該最大の点(LmO, uemO)を、図 6 中、点 MO (LmO, uemO)として示した。式 (4)の導出方法については、以下述べる 通りである力 導出された式 (4)は予め数式記憶部 47に入力され記憶されている。こ のため変換部 44が、数式記憶部 47にアクセスして数式記憶部 47から式 (4)を読み 出し取得した後、 uemOを算出する。
式 (4)は、式(3)と式(2) (uが正におけるディスプレイが表示し得る u値の最大値を 与える。)との uが正における交点の u座標 uemOを GNU Octave (Free Softwar e Foundation (団体名)から GNUプロジェクトにて管理及び配布されているソフトゥ エアの名称。以下、同様。)を用いて求めることで得た。具体的には、 GNU Octave を使って、式(3)の Pumaxを 10から 100まで 0. 2間隔で変化させ、それぞれの場合 について式(3)と式(2)との交点(L, u)を求める。その結果、 (Pumax, L, u)の 3つ の値の組が 451個得られる。続いて、 GNU Octaveを使って、この中の 2つの値(P umax, u)の関係式 (近似式)である式 (4)を得た。 式 (4)
uemO =— 0. 000675336 X (Pumax) 2+ 1. 02361 X (Pumax)— 0. 252138 [0047] 第 3に、変換部 44は、第 2において求められた uemOを次の式(5)に代入して uem を求める。式(5)の導出方法については、以下述べる通りであるが、導出された式(5 )は予め数式記憶部 47に入力され記憶されている。このため変換部 44が、数式記憶 部 47にアクセスして数式記憶部 47から式(5)を読み出し取得した後、 uemを算出す る。
ここに式(5)は、対象画素データ(画素番号 i、 Luvデータ(L, u, V) = (Li, ui, vi) ) に含まれる Luvデータの L値 (Li)力 より大きく 100より小さ!/、際に uemOを用いて ue mを近似する近似式である(なお、式(5)中の Liは、対象画素データに含まれる Luv データの L値 (Li)である。また、前述したように、 L (Li)が 0又は 100になるのは、 u(u i) =v (vi) =0のときであるので、この場合は uが 0の場合の処理又は Vが 0の場合の 処理が行われることから、ここでは Lは 0より大きく 100より小さい。 ) o uL平面におい てディスプレイが表示し得る uが正における Lの最大値を示す境界線 (即ち、式(2)に より近似される線)は、(L, u) = (100, 0)を通過する直線 (即ち、 L = a X u+ 100、 但し aは定数)によりほぼ近似することができ、該直線の式: L = a X u+ 100を用いて 式(3)の Lを消去すると uemOが得られ、そして該直線の式を用いて式(1)の Lを消 去すると uemが得られ、それら力 式(5)が得られる。なお、式(5)は、小さな誤差に より極めてうまく近似することができる。
式 (5)
uem=uemO X (100—Li) /100
例えば、図 4にて示した対象画素データの具体例(画素番号 5、 Luvデータ (L, u, V) = (L5, u5, v5)、ただし、 u5 >0)を例に挙げれば、この具体例に関する uemで ある uem5は次の式(5. 1)により算出される。
式(5. 1)
uem5=uemO X (100—L5) /100
[0048] その後、変換部 44は、対象画素データ(画素番号 i、 Luvデータ (L, u, v) = (Li, u i, vi) )を第 1変換 (第 1及び第 2色覚異常用)した後の Luvデータの L値 (Lt)を求め る。力かる変換後の L値 (Lt)の算出方法は、ディスプレイが表示可能な色範囲内で、 ある輝度における赤さの度合に応じて輝度を増加させるように行われるものであり、 ( Lm-Li)に対する、変換によって L値が増加する量 (変換後の L値 Ltと変換前の L値 Liとの差、即ち(Lt Li) )の割合 (即ち、(Lt— Li) Z (Lm— Li) )が、上記した Sc ( = ui/um)に等しくなるように L値 (Lt)を定める。なお、(Lm—Li)は、 L=Liである全 ての色の中で、本変換処理で最も高輝度に変換される色の変換後の L値 Lmと、変 換前の L値 Liと、の差を示している。
具体的には、 Ltは式(6)にて示される。
式 (6)
(Lt— Li) / Lm— =Sc、 = uiz umノ
式 (6)を変形すると、式 (6. 1)が得られる。
式(6. 1)
Lt=Sc X (Lm-Li) +Li
[0049] なお、式(6. 1)中の Lmは、上述したように式(1. 1)によって示される楕円の楕円 周上の点のうちディスプレイが表示し得る範囲内に存するもので L値が最大の点(L m, uem)の L値である。ここに点(Lm, uem)は式(1. 1)によって示される楕円の楕 円周上の点であるから、次の式 (7)を満たす。
式 (7)
Lm= 100—(100— Li) X (l -uemV (Pumax X (100— Li) Zl00) 2) °' 5 そして、式 (5)を式 (7)に代入すると式 (8)が得られる。
式 (8)
Lm= 100—(100— Li) X ( 1 - uemO VPumax2) α 5
この式 (8)を式 (6. 1)に代入すると式(9)が得られる。
式 (9)
Lt = Sc X (Lm-Li) +Li
=Li+ (100— Li) X Sc X (l—(1— uemOVPumax2)。· 5)
[0050] この式(9)を用いて変換部 44は、対象画素データ(画素番号 i、 Luvデータ (L, u, v) = (Li, ui, vi) )を第 1変換 (第 1及び第 2色覚異常用)した後の Luvデータの 1直( Lt)を求める。なお式(9)は予め数式記憶部 47に入力され記憶されているので、変 換部 44が、数式記憶部 47にアクセスして数式記憶部 47から式(9)を読み出し取得 した後、 Ltを算出する(また、変換部 44がパラメータ記憶部 46にアクセスしてパラメ ータ記憶部 46から Pumaxの値を読み出し取得する。 )。
引き続き、変換部 44は、該対象画素データを第 1変換 (第 1及び第 2色覚異常用) した後の Luvデータの u値(ut)を求める。変換後の Luvデータの L値(Lt)と u値 (ut) とは、式(1. 1)により示される楕円の楕円周上の点であるから、 u値 (ut)は上述のよ うに求められた L値 (Lt)を用い、式(1. 1)を変形した次の式(10) (なお、 utは 0より 大)から計算される。なお式(10)も予め数式記憶部 47に入力され記憶されているの で、変換部 44が、数式記憶部 47にアクセスして数式記憶部 47から式(10)を読み出 し取得した後、 utを算出する(また、変換部 44がパラメータ記憶部 46にアクセスして ノ ラメータ記憶部 46から Pumaxの値を読み出し取得する。 )。
式(10)
ut = Pumax/ 100 X ( ( 1— Li) 2—(Lt— 100) 2)。· 5
[0051] 図 4にて示した対象画素データの具体例(画素番号 5、 Luvデータ(L, u, v) = (L5 , u5, v5)、ただし、 u5 >0)に含まれる L値及び u値がどのように変換されるかを (そ れぞれ Lt5及び ut5)図 6中に示した。図 6中の点 po (L, u) = (L5, u5)は、該対象 画素データの具体例(画素番号 5、 Luvデータ(L, u, V) = (L5, u5, v5) )の点を uL 平面 (u軸と L軸とを含む平面)上に投影した点である。
かかる点 po (L, u) = (L5, u5)は、図 6に示すように uL平面上において、(Lm5— L5)に対する、変換によって L値が増加する量 (変換後の L値 Lt5と変換前の L値 L5 との差、即ち(Lt5— L5) )の割合(即ち、(Lt5— L5)Z(Lm5— L5) )が、上記の Sc 5 (=u5/um5)に等しくなるように L値 (Lt5)が定められ、該定めれた L値 (Lt5)に 応じた楕円 1の楕円周上の点 pt (L, u) = (Lt5, ut5)に変換される。このように対象 画素データの Luvデータ(L5, u5, v5)の L値及び u値がそれぞれ Lt5及び ut5に変 換されることで、より赤い色が高輝度に変換 (即ち、 u値が大きいものほど L値が増加 する。)される。
[0052] 次いで、変換部 44は、対象画素データの Luv画像データ(L, u, v) = (Li, ui, vi) の v値 viが正力 0以下かを判断し、 viが正(>0)であれば、式(11)にて変換後の Luv データの V値 (vt)の値を求める。そして変換部 44は、求めた V値 (vt)の値が負(vtく 0)か否力判断し負であると判断した場合は vt = 0とする(こうすることで V vtへ変 換することによって色相が反転することを防止する。 ) o
一方、変換部 44力 対象画素データの Luv画像データ(L, u, V) = (Li, ui, vi)の v値 viが 0以下(0又はく 0)であれば、式(12)にて vtの値を求める。そして変換部 44 は、求めた V値 (vt)の値が正 (vt>0)力否力判断し正であると判断した場合は vt=0 とする(こうすることで viから vtへ変換することによって色相が反転することを防止する 。)。
式 (11)
vt=vi— (Lt-Li)
式(12)
vt=vi+ (Lt-Li)
なお式(11)及び式( 12)の 、ずれも予め数式記憶部 47に入力され記憶されて 、る ので、変換部 44が、数式記憶部 47にアクセスして数式記憶部 47から式(11)及び式 ( 12)の 、ずれかを読み出し取得した後、 vtを算出する。
その後、このように決定した vt (式(11)及び式(12)のいずれかによつて計算された 値力 又は 0)の値が、ディスプレイが表示し得る範囲内に存する力否かを変換部 44 はチェックをし、該範囲内に存しないと判断した場合は vt値を次のように補正する。 該補正の基本的な考え方は、変換後の Ltの値と、後述する図 10の v2、 v5の基準軸 範囲、および後述の図 11の vl〜v6の近似式により、 L=Ltにおける Vの最小値、最 大値が決まる。なお、これら図 10及び図 11に示すデータは、予め数式記憶部 47に 入力され記憶されているので、変換部 44が、数式記憶部 47にアクセスして数式記憶 部 47から自由に読み出し取得することができる。該決定した vtの値力この最小値か ら最大値までの範囲から外れる場合、ディスプレイが表示し得る範囲内に存しないと 変換部 44は判断し、 vt値を、変換後の Ltの値における最小値または最大値 (変換 後の vtが近い方)に置き換えることで補正する。具体的に述べれば、(l)vt>0の場 合、 Ltが 0以上かつ 87. 8未満(0≤Ltく 87.8)の時には図 11の vlの式を用い、 Ltが 87. 8以上かつ 97. 0未満(87.8≤Ltく 97.0)の時には図 11の v2の式を用い、 Ltが 9 7. 0以上かつ 100以下(97.0≤Lt≤100)の時には図 11の v3の式を用いて Vの最大 値を求め、 vtがそれより大きい時は、その最大値を vtの値とする。(2)vtが 0以下 (vt ≤0)の場合、 Ltが 60. 4より大きくかつ 100以下(60.4く Lt≤100)の時には図 11の V 4の式を用い、 Ltが 32. 4より大きく 60. 4以下(32.4く Lt≤60.4)の時には図 11の v5 の式を用い、 Ltが 0以上 32. 4以下(0≤Lt≤32.4)の時には図 11の v6の式を用いて Vの最小値を求め、 vtがそれより小さい時は、その最小値^ vtの値とする。
[0054] 以上のようにして、対象画素データ(画素番号 i、 Luvデータ(L, u, v) = (Li, ui, vi ) )に含まれる Luvデータ (Li, ui, vi)は、変換後のデータ (Lt, ut, vt) (以下、「変換 後データ」という。)に変換される。
その後、変換部 44は、この変換後データ (Lt, ut, vt)をデータ記憶部 42に送信し データ記憶部 42に記憶させる。なお、変換後データ (Lt, ut, vt)をデータ記憶部 42 に記憶させる順番は、データ記憶部 42が記憶して 、る Luv画像データに含まれる画 素データの順番と同じ順番である(即ち、データ記憶部 42が記憶している Luv画像 データに含まれる元の画素データの順番通りに、変換後データ (Lt, ut, vt)はデー タ記憶部 42に記憶される。なお、変換後データ (Lt, ut, vt)がデータ記憶部 42に記 憶される記憶領域は、 Luv画像データに含まれる元の画素データの記憶領域とは異 なる。 ) oさらに、変換部 44は、データ記憶部 42が記憶している Luv画像データに含 まれる画素データのうち未だ読み出されていないものを 1つ読み出し送信するよう命 令する読み出し命令信号を対象画像データ抽出部 43に送信する(これによりデータ 記憶部 42が記憶している Luv画像データに含まれる次の画素データが対象画素デ ータとなり、処理される。)。
[0055] 以上説明したような変換によって、図 4にて示した対象画素データの具体例(画素 番号 5、 Luvデータ(L, u, V) = (L5, u5, v5)、た^し、 u5 >0)力 どのように変換さ れるかを図 7に示した。なお、 u値 L値がどのように変換される力 (点 po (L5, u5)から 点 pt (Lt5, ut5)への変換)は、既に詳しく図 6を用いて説明したのでそれに関しては 図 6及びその説明を参照された 、。
ここに図 7中には、 v5が正(>0)である場合の変換後の位置を点 p5a (Lt5, ut5, v t5)として示し、 v5が 0以下(0又はく 0)である場合の変換後の位置を点 p5b (Lt5, u t5, vt5)として示した。ただし、点 p5aの vt5 =v5—(Lt5— L5)であり、点 p5bの vt5 =v5+ (Lt5— L5)である。
このように変換後の V座標を式(11)又は式(12)にて算出することで、変換前と変換 後で、色相が大きく変化するのを抑止できる (変換の前後で色合いが大きく変わった と感じさせない。 ) o
[0056] なお、上記の処理に用いる式(2)等(上述したように図 10及び図 11に示すデータ や数式等を含む。)は、本装置 11の動作とは関係なく導出等され、予め数式記憶部 47に入力され記憶される。この数式記憶部 47に入力されるものは、次のようなデイス プレイ色範囲の算出手順、境界線上の色座標値の算出手順、境界線の近似式の導 出手順を経て導出される。
[0057] (ディスプレイ色範囲の算出手順)
RGBカラ一.モデルにおける R値、 G値、 B値それぞれがとりうる値は 0から 255の整 数であるので、 RGBカラ一'モデルによる 1の画素データの場合は 256 X 256 X 256 = 16777216通り力ある。これら全ての場合について Luv色空間におけるデータに 変換する。
このように 16777216通り全てについて変換した Luv色空間におけるデータの L値 、 u値、 V値それぞれの最大値と最小値とを抽出する。このようにして L値に関しては 最小値 0及び最大値 100が求められ、 u値に関しては最小値一 83. 0667及び最大 値 175. 0213が求められ、 V値に関しては最小値一 134. 0896及び最大値 107. 4 177が求められる。
[0058] (境界線上の色座標値の算出手順)
次 、で、通常のコンピュータ等のディスプレイにおける表示信号として用いられて ヽ る RGBカラ一.モデルによって示され得る Luv色空間の範囲を求める。上記したディ スプレイ色範囲の算出手順にぉ 、て示したように、 RGBカラー ·モデルにより示され る 16777216通りのそれぞれの場合を Luv色空間(L軸、 u軸及び v軸の直交 3軸空 間)にプロットする。次いで、これらプロットされた 16777216個の各点を、 Lu平面(互 いに直交する 3軸である L軸、 u軸及び V軸のうち、 u軸と L軸とを含む平面をいう。)及 び Lv平面(互いに直交する 3軸である L軸、 u軸及び V軸のうち、 V軸と L軸とを含む平 面をいう。 )に投影する。この Lu平面への投影を図 8に示し、 Lv平面への投影を図 9 に示す。これら図 8及び図 9において、斜線を付した領域が 16777216個の各点が 投影される領域 (以下、 Lu平面へ投影される領域を「Lu投影領域」といい、 Lv平面 へ投影される領域を「Lv投影領域」という。)である。
Lu投影領域及び Lv投影領域につ ヽて、その領域の境界線を示す近似式を求める 。この境界線 ίま、図 8及び図 9に示したように複数の線 (線 ul、 u2、 u3、 u4、 u5、 vl ゝ v2、 v3、 v4、 v5、 v6)によって構成する。
[0059] この近似式を求める方法を、図 8に示した線 ulを例にとって説明する。
第 1に、求める線 (以下、「対象線」という。ここでは線 ul。)が示す 2軸 (線 ulにおい ては、 u軸と L軸)のうち一方 (線 ulにお ヽては u軸)に対する他方 (線 ulにお ヽては L軸)の変化が該他方に対する該一方の変化よりも小さいものの該一方を基準軸 (線 ulにおいては u軸)とし、該他方を変化軸 (線 ulにおいては L軸)とする。また、該 2 軸に対して垂直な軸を任意軸 (線 ulにお 、ては V軸)とする。
第 2に、対象線 (ここでは線 ul)上の変化軸 (線 ulにおいては L軸)における値が、 対象とする領域 (ここでは Lu投影領域)の最大値か最小値の 、ずれを示すか判断す る(境界線の意味)。線 ulを例にとれば、線 ul上の変化軸 (L軸)における値は Lu投 影領域の最小値を示している(線 ulは Lu投影領域の下端である。 )0
[0060] 第 3に、基準軸 (線 ulにお 、ては u軸)の値を、対象とする領域 (ここでは Lu投影領 域)の最小値力も最大値 (基準軸力 L軸であれば最小値 0から最大値 100、 u軸で あれば最 /Jヽ値ー 83. 0667力ら最大値 175. 0213、 v軸であれば最 /Jヽ値ー 134. 08 96から最大値 107. 4177)まで 0. 1ずつ増加させ (以下、「基準軸仮定値」という。) 、それぞれの場合において以下の (ィ)についてチェックする。
(ィ)第 2における判断が最小値と判断されれば、変化軸 (線 ulにお 、ては L軸)の 値を「ディスプレイ色範囲の算出手順」において求められた最小値 (変化軸力 軸で あれば最小値 0、 u軸であれば最小値一 83. 0667及び V軸であれば最小値一 134. 0896)から 0. 1ずつ増加させて、以下の(口)に従って対象とする領域 (ここでは Lu 投影領域)に最初に含まれる値を求める。逆に、第 2における判断が最大値と判断さ れれば、変化軸 (線 ulにお 、ては L軸)の値を「ディスプレイ色範囲の算出手順」に ぉ 、て求められた最大値 (変化軸力 軸であれば最大値 100、 u軸であれば最大値 175. 0213及び V軸であれば最大値 107. 4177)力も 0. 1ずつ減少させて、以下の (口)に従って対象とする領域 (ここでは Lu投影領域)に最初に含まれる値を求める。 このようにして求められる対象とする領域 (ここでは Lu投影領域)に最初に含まれる値 (変化軸の値)と、該最初に含まれる値 (変化軸の値)における基準軸の値 (該最初に 含まれる値 (変化軸の値)を計算したときの基準軸仮定値)と、が境界線上の座標と する。
[0061] (口)上記の基準軸仮定値と変化軸 (線 ulにおいては L軸)の値とにおいて、任意軸
(線 ulにおいては V軸)の値を「ディスプレイ色範囲の算出手順」にて求めた最小値 から最大値 (基準軸が、 L軸であれば最小値 0から最大値 100、 u軸であれば最小値 一 83. 0667力ら最大値 175. 0213、 v軸であれば最 /Jヽ値ー 134. 0896力ら最大値 107. 4177)まで 0. 1ずつ増加させ、それぞれの値(L, u, v)を RGBカラ一'モデル に変換する。 RGBカラ一'モデルに変換されたときの R値、 G値、 B値のいずれもが 0 以上 255以下となるような任意軸 (線 ulにおいては V軸)の値が 1つでも存在する場 合には、そのときの基準軸仮定値と変化軸 (線 ulにおいては L軸)の値との組合せは 、対象とする領域 (ここでは Lu投影領域)に最初に含まれる値とする。
なお、図 8及び図 9において示した各線 ul〜u5、 vl〜v6についての基準軸、変化 軸、基準軸範囲、境界線の意味について図 10にまとめて示す。
[0062] (境界線の近似式の導出手順)
上記した「境界線上の色座標値の算出手順」に従って求められた境界線上の座標 を使用して、 Lu投影領域及び Lv投影領域の境界線を構成する複数の線 (具体的に は、線 ul〜u5、 vl〜v6)を示す近似式を求める。
この複数の線 (線 ul〜u5、 vl〜v6)を示す近似式は、種々の方法により導出され てよいが、ここでは前述の GNU Octaveを用いた。
このようにして求めた、複数の線 (線 ul〜u5、 vl〜v6)を示す近似式を図 11にまと めて示す。
前述の式(2)は、具体的には、前述した図 11の u2に関する式を用いた。 このようにして図 10及び図 11に示すデータや数式等は、本装置 11の動作とは関 係なく予め導出等され、予め数式記憶部 47に入力され記憶される。
(uが負の場合の処理)
u値 (ui)が 0より大きいと判断しな力つた変換部 44は、さらに u値 (ui)が 0より小さい か否か判断し、 u値 (ui)が 0より小さいと判断した場合、以下説明する「uが負の場合 の処理」を行う。
u値 (ui)力^より小さいと判断した変換部 44は、 Luv画像データの Luvデータ(L, u , V) = (Li, ui, vi)に含まれる Lの数値 Liを用いて uと Lとの 2軸直交軸における次の 楕円の式( 13)を作成する。この式( 13)により示される楕円は、 uL平面(図 12にて示 すように互いに直交する 3軸である L軸、 u軸及び V軸のうち、 u軸と L軸との 2軸を含 む平面をいう。)上に存し、中心 (u, L) = (0, 0)であり、長径 (L軸方向の径)が Liで あり、そして短径 (u軸方向の径)が(PuminX LiZlOO)である。後述するように、対 象画素データの u値と L値とが、この式(13)によって示される楕円の円周上 (楕円周 上)に存する点の座標となるように対象画素データの u値と L値とを変換する。
式(13)
uV (Pumin X Li/ 100) 2 + L2/Li2 = 1
なお、式(13)中、 Puminはパラメータである。前述の Pumaxと同様、本装置 11に 接続されたキーボードゃタツチパネル等 ( 、ずれも図示せず)を通じて本装置 11の使 用者が Puminの値を予めパラメータ記憶部 46に入力し、パラメータ記憶部 46が Pu minの値を記憶している。このため変換部 44が式(13)を作成する際には、変換部 4 4がパラメータ記憶部 46にアクセスしてパラメータ記憶部 46から Puminの値を読み 出し取得する。
そして、式(13)を変形すると、 Lは 0より大きく 100より小さい値であるので、式(13. 1)が得られる。なお、 L (Li)カ^)又は 100になるのは、 u (ui) =v(vi) =0のときである ので、この場合は uが 0の場合の処理又は Vが 0の場合の処理が行われることから、こ こでは Lは 0より大きく 100より小さ!/ヽ。
式(13. 1)
L=Li X ( 1—u2/ (Pumin X Li/100) 2) 0 5 [0064] また、ここでは理解を容易にするため、対象画素データの具体例として、図 12に示 すように u値が 0より小さい対象画素データ(画素番号 7、 Luvデータ(L, u, V) = (L7 , u7, v7)、ただし、前述のように u7は 0より小さい。また、図 12中、該対象画素デー タの位置を点 p7により示す。)を用いる。
図 12にて示した対象画素データの具体例(画素番号 7、 Luvデータ (L, u, V) = (L 7, u7, v7)、ただし、前述のように u7は 0より小さい。)に関して式(13)を作成すれば 、次の式(13. 2)になる。
式(13. 2)
uV (Pumin X L7/ 100) 2 + L2/L72 = 1
この式(13. 2)にて示される楕円を図 13に示した。また、図 13には、ディスプレイが 表示し得る範囲を点線によって囲って示した。なお、ディスプレイが表示し得る範囲 の求め方については、前述したディスプレイ色範囲の算出手順、境界線上の色座標 値の算出手順及び境界線の近似式の導出手順によって行われる。そして、図 13中、 実線 F2により式(13. 2)にて示される該楕円を示したが、該楕円のうち、ディスプレイ が表示し得る範囲内の部分 (即ち、図 13中、点線により囲まれた範囲内の部分)がこ この処理に関係するため該範囲内に近い部分であって、かっここでは uが負の場合 を扱うため uが負の部分のみを示して 、る。
[0065] 次!、で、変換部 44は、対象画素データ(画素番号 i、 Luvデータ(L, u, v) = (Li, u i, vi) )に含まれる Luvデータの L値 (Li)力 8未満であるか否か判断し、 L値 (Li) 力 8未満であると判断した場合はその L値 (Li)においてディスプレイが表示し得 る u値の最小値を第 1基準値 umとする。力かる u値の最小値 (ここでは第 1基準値 um とされる。)は、次の式(14)中の L値に対象画素データの L値 (Li)を代入して求めら れる uの値とするが、カゝかる式(14)の導出方法については、既に説明したディスプレ ィ色範囲の算出手順、境界線上の色座標値の算出手順及び境界線の近似式の導 出手順によって行われ、導出された式(14)は予め数式記憶部 47に入力され記憶さ れている(具体的には、式(14)は、図 11中の線 u5の式)。このため変換部 44力 L 値 (Li)が 87. 8未満であると判断した場合には数式記憶部 47にアクセスして数式記 憶部 47から式(14)を読み出し取得する。 式 (14)
u=— 0. 945026 X L— 0. 0931042
[0066] 一方、変換部 44力 対象画素データ(画素番号 i、 Luvデータ(L, u, v) = (Li, ui, vi) )に含まれる Luvデータの L値 (Li)力 8未満である力否か判断し、 L値 (Li)が 87. 8未満であると判断しない場合 (即ち、 L値 (Li)が 87. 8以上)は、第 1基準値 um は一 83. 0667 (ディスプレイが表示し得る u値の最小値)とされる。
[0067] 図 12にて示した対象画素データの具体例(画素番号 7、 Luvデータ (L, u, v) = (L 7, u7, v7)、ただし、 u7く 0)を考えれば、 L値 (L7)が 87. 8未満であると変換部 44 が判断した場合には、第 1基準値 um7は次の式(14. 1)にて算出される。このように して算出した第 1基準値 um7を図 13に示した。
式(14. 1)
um7 =— 0. 945026 X L7—0. 0931042
一方、 L値 (L7)が 87. 8以上であると変換部 44が判断した場合 (L値 (L7)が 87. 8 未満であると変換部 44が判断しない場合)は、第 1基準値 um7は一 83. 0667とされ る。このように L値 (L7)が 87. 8以上であると判断した場合 (L値 (L7)が 87. 8未満で あると変換部 44が判断しない場合)に第 1基準値 um7とされる一 83. 0667も図 13に 示した。
[0068] そして、変換部 44は、対象画素データ(画素番号 i、 Luvデータ(L, u, v) = (Li, ui , vi) )に含まれる Luvデータの u値 ui力 上記のようにして決定された第 1基準値 um に対する割合 Sc ( =uiZum)を求める。
例えば、図 12にて示した対象画素データの具体例(画素番号 7、 Luvデータ (L, u , V) = (L7, u7, v7)、ただし、 u7く 0)を例に挙げれば、 Luvデータの u値 u7が、決 定された第 1基準値 um7に対する割合 Sc7=u7Zum7を求める。
[0069] 続いて、変換部 44は、式(13. 1)によって示される楕円の楕円周上の点のうちディ スプレイが表示し得る範囲内に存するもので L値が最小の点を (Lm, uem)とし、この uemを求める。例えば、図 12にて示した対象画素データの具体例(画素番号 7、 Lu Vデータ(L, u, V) = (L7, u7, v7)、ただし、 u7< 0)を例に挙げれば、図 13に点 M 7 (Lm7, uem7)として示した。図 13から理解されるように、点 M7 (Lm7, uem7)は 、図 13に示された式(13. 1)によって示される楕円の楕円周(実線 F2)上の点のうち 、図 13に示されたディスプレイが表示し得る範囲(点線にて囲まれた範囲)内に存す るもので L値が最小の点である。以下、 uemの算出方法を説明する。
[0070] (uemの算出方法)
第 1に、式(15)を考える。
式(15)
uV (Pumin) 2 + L2/ ( 100) 2 = 1
この式(15)にて示される楕円(以下、「楕円 15」という。)を図 14に示した。また、図 14〖こは、図 13と同様、ディスプレイが表示し得る範囲を点線によって囲って示し、式 (13)によって示される楕円(以下、「楕円 13」という。)も同様に示した。
[0071] 第 2に、この式(15)によって示される楕円の楕円周上の点のうちディスプレイが表 示し得る範囲内に存するもので L値が最小の点を(LmO, uemO)とするとこの uemO を次の式(16)にて求める。なお、該最小の点(LmO, uemO)を、図 14中、点 MO (L mO, uemO)として示した。式(16)の導出方法については、以下述べる通りであるが 、導出された式(16)は予め数式記憶部 47に入力され記憶されている。このため変 換部 44が、数式記憶部 47にアクセスして数式記憶部 47から式(16)を読み出し取得 した後、 uemOを算出する。
式(16)は、式(15)と式(14) (uが負におけるディスプレイが表示し得る u値の最小 値を与える。)との uが負における交点の u座標 uemOを GNU Octaveを用いて求め ることで得た。具体的には、 GNU Octaveを使って、式(15)の Puminを一 80から 一 10まで 0. 2間隔で変化させ、それぞれの場合について式(15)と式(14)との交点 (L, u)を求める。その結果、 (Pumin, L, u)の 3つの値の組が 351個得られる。続い て、 GNU Octaveを使って、この中の 2つの値(Pumin, u)の関係式(近似式)であ る式(16)を得た。
式(16)
uemO = 0. 00422958 X (Pumin) 2+ 1. 11416 X (Pumin) +0. 962955 [0072] 第 3に、変換部 44は、第 2において求められた uemOを次の式(17)に代入して ue mを求める。式(17)の導出方法については、以下述べる通りであるが、導出された 式(17)は予め数式記憶部 47に入力され記憶されている。このため変換部 44が、数 式記憶部 47にアクセスして数式記憶部 47から式(17)を読み出し取得した後、 uem を算出する。
ここに式(17)は、対象画素データ(画素番号 i、 Luvデータ(L, u, V) = (Li, ui, vi ) )に含まれる Luvデータの L値 (Li)力 より大きく 100より小さ!/、際に uemOを用いて uemを近似する近似式である(なお、式(17)中の Liは、対象画素データに含まれる Luvデータの L値(Li)である。また、 L (Li)力O又は 100になるのは、 u (ui) =v (vi) =0のときであるので、この場合は uが 0の場合の処理又は Vが 0の場合の処理が行わ れることから、ここでは Lは 0より大きく 100より小さい。)。 uL平面においてディスプレ ィが表示し得る uが負における Lの最小値を示す境界線 (即ち、式(14)により近似さ れる線)は、 (L, u) = (0, 0)を通過する直線 (即ち、 L = a X u、但し aは定数)により ほぼ近似することができ、該直線の式: L = a X uを用 、て式( 15)の Lを消去すると ue m0が得られ、そして該直線の式を用いて式(13)の Lを消去すると uemが得られ、そ れらから式(17)が得られる。なお、式(17)は、小さな誤差により極めてうまく近似す ることがでさる。
式 (17)
uem = uemO X Li/ 100
図 12にて示した対象画素データの具体例(画素番号 7、 Luvデータ (L, u, V) = (L 7, u7, v7)、ただし、 u7く 0)を例に挙げれば、この具体例に関する uemである uem 7は次の式(17. 1)により算出される。
式(17. 1)
uem7 = uemO X L7/100
その後、変換部 44は、対象画素データ(画素番号 i、 Luvデータ (L, u, v) = (Li, u i, vi) )を第 1変換 (第 1及び第 2色覚異常用)した後の Luvデータの L値 (Lt)を求め る。力かる変換後の L値 (Lt)の算出方法は、ディスプレイが表示可能な色範囲内で、 ある輝度における緑色の度合に応じて輝度を減少させるように行われるものであり、 ( Lm-Li)に対する、変換によって L値が減少する量 (変換後の L値 Ltと変換前の L値 Liとの差、即ち(Lt Li) )の割合 (即ち、(Lt— Li)Z(Lm— Li) )が、上記した Sc ( = ui/um)に等しくなるように L値 (Lt)を定める。なお、(Lm—Li)は、 L=Liである全 ての色の中で、本変換処理で最も低輝度に変換される色の変換後の L値 Lmと、変 換前の L値 Liと、の差である。
具体的には、 Ltは式(18)にて示される。
式(18)
(Lt— Li) / (Lm— =Sc、 = uiz umノ
式(18)を変形すると、式(18. 1)が得られる。
式(18. 1)
Lt=Sc X (Lm-Li) +Li
[0074] なお、式(18. 1)中の Lmは、上述したように式(13. 1)によって示される楕円の楕 円周上の点のうちディスプレイが表示し得る範囲内に存するもので L値が最小の点( Lm, uem)の L値である。ここに点(Lm, uem)は式(13. 1)によって示される楕円の 楕円周上の点であるから、次の式(19)を満たす。
式(19)
Lm = Li X ( 1— uem (Pumin X Li/ 100) 2) · 5
そして、式(19)の uemに式(17)を代入し、それによつて得られる式をさらに式(18 . 1)に代入すると式(20)が得られる。
式(20)
Lt = Sc X (Lm-Li) +Li
=Li X (1 -Sc X ( 1 - ( 1 - uemO (Pumin) 2) °' 5) )
[0075] この式(20)を用いて変換部 44は、対象画素データ(画素番号 i、 Luvデータ (L, u , ν) = (Li, ui, vi) )を第 1変換 (第 1及び第 2色覚異常用)した後の Luvデータの L値 (Lt)を求める。なお式(20)は予め数式記憶部 47に入力され記憶されているので、 変換部 44が、数式記憶部 47にアクセスして数式記憶部 47から式(20)を読み出し取 得した後、 Ltを算出する(また、変換部 44がパラメータ記憶部 46にアクセスしてパラ メータ記憶部 46から Puminの値を読み出し取得する。 )。
引き続き、変換部 44は、該対象画素データを第 1変換 (第 1及び第 2色覚異常用) した後の Luvデータの u値(ut)を求める。変換後の Luvデータの L値(Lt)と u値 (ut) とは、式(13. 1)により示される楕円の楕円周上の点であるから、 u値 (ut)は上述の ように求められた L値 (Lt)を用い、式(13. 1)を変形した次の式(21) (なお、 utは 0よ り小)から計算される。なお式(21)も予め数式記憶部 47に入力され記憶されている ので、変換部 44が、数式記憶部 47にアクセスして数式記憶部 47から式(21)を読み 出し取得した後、 utを算出する(また、変換部 44がパラメータ記憶部 46にアクセスし てパラメータ記憶部 46から Puminの値を読み出し取得する。 )。
式(21)
ut=Pumin/100 X (Li2— Lt2) 0 5
[0076] 図 12にて示した対象画素データの具体例(画素番号 7、 Luvデータ (L, u, v) = (L 7, u7, v7)、ただし、 u7く 0)に含まれる L値及び u値がどのように変換されるかを (そ れぞれ Lt7及び ut7)図 14中に示した。図 14中の点 po (L, u) = (L7, u7)は、該対 象画素データの具体例(画素番号 7、 Luvデータ(L, u, V) = (L7, u7, v7)、ただし 、 u7< 0)の点を uL平面 (u軸と L軸とを含む平面)上に投影した点である。
かかる点 po (L, u) = (L7, u7)は、図 14に示すように uL平面上において、(Lm7 -L7)に対する、変換によって L値が減少する量 (変換後の L値 Lt7と変換前の L値 L 7との差、即ち(Lt7— L7) )の割合 (即ち、(Lt7— L7)Z(Lm7— L7) )が、上記の S c7 (=u7/um7)に等しくなるように L値 (Lt7)が定められ、該定めれた L値 (Lt7)に 応じた楕円 13の楕円周上の点 pt (L, u) = (Lt7, ut7)に変換される。このように対 象画素データの Luvデータ(L7, u7, v7)の L値及び u値がそれぞれ Lt7及び ut7に 変換されることで、より緑色が低輝度に変換 (即ち、 u値が小さいものほど L値が減少 する。)される。
[0077] 次いで、変換部 44は、対象画素データの Luv画像データ(L, u, v) = (Li, ui, vi) の v値 viが正力 0以下かを判断し、 viが正(>0)であれば、式(22)にて変換後の Luv データの V値 (vt)の値を求める。そして変換部 44は、求めた V値 (vt)の値が負(vtく 0)か否力判断し負であると判断した場合は vt = 0とする(こうすることで V vtへ変 換することによって色相が反転することを防止する。 ) o
一方、変換部 44力 対象画素データの Luv画像データ(L, u, V) = (Li, ui, vi)の v値 viが 0以下(0又はく 0)であれば、式(23)にて vtの値を求める。そして変換部 44 は、求めた v値 (vt)の値が正 (vt>0)力否力判断し正であると判断した場合は vt = 0 とする(こうすることで viから vtへ変換することによって色相が反転することを防止する
。)。
式(22)
vt=vi— (Li-Lt)
式(23)
vt=vi+ (Li-Lt)
なお式(22)及び式(23)の!、ずれも予め数式記憶部 47に入力され記憶されて!、る ので、変換部 44が、数式記憶部 47にアクセスして数式記憶部 47から式(22)及び式 (23)のいずれかを読み出し取得した後、 vtを算出する。
その後、このように決定した vt (式(22)及び式(23)のいずれかによつて計算された 値力 又は 0)の値が、ディスプレイが表示し得る範囲内に存する力否かを変換部 44 はチェックをし、該範囲内に存しないと判断した場合は vt値を次のように補正する。 該補正の基本的な考え方は、変換後の Ltの値と、図 10の v2、 v5の基準軸範囲、お よび図 11の vl〜v6の近似式により、 L=Ltにおける Vの最小値、最大値が決まる。 なお、これら図 10及び図 11に示すデータは、予め数式記憶部 47に入力され記憶さ れているので、変換部 44が、数式記憶部 47にアクセスして数式記憶部 47から自由 に読み出し取得することができる。該決定した vtの値がこの最小値力 最大値までの 範囲から外れる場合、ディスプレイが表示し得る範囲内に存しないと変換部 44は判 断し、 vt値を、変換後の Ltの値における最小値または最大値 (変換後の vtが近い方 )に置き換えることで補正する。具体的に述べれば、(l)vt>0の場合、 Ltが 0以上か つ 87. 8未満(0≤Ltく 87.8)の時には図 11の vlの式を用い、 Ltが 87. 8以上かつ 9 7. 0未満(87.8≤Ltく 97.0)の時には図 11の v2の式を用い、 Ltが 97. 0以上かつ 10 0以下(97.0≤Lt≤100)の時には図 11の v3の式を用いて Vの最大値を求め、 vtがそ れより大きい時は、その最大値を vtの値とする。(2)vtが 0以下 (vt≤0)の場合、 Ltが 60. 4より大きくかつ 100以下(60.4く Lt≤100)の時には図 11の v4の式を用い、 Lt 力 4より大きく 60. 4以下(32.4く Lt≤60.4)の時には図 11の v5の式を用い、 Lt 力 SO以上 32. 4以下(0≤Lt≤32.4)の時には図 11の v6の式を用いて Vの最小値を求 め、 vtがそれより小さい時は、その最小値を vtの値とする。
[0079] 以上のようにして、対象画素データ(画素番号 i、 Luvデータ(L, u, v) = (Li, ui, vi ) )に含まれる Luvデータ (Li, ui, vi)は、変換後のデータ (Lt, ut, vt) (以下、変換 後データという。 )に変換される。
その後、変換部 44は、この変換後データ (Lt, ut, vt)をデータ記憶部 42に送信し データ記憶部 42に記憶させる。なお、変換後データ (Lt, ut, vt)をデータ記憶部 42 に記憶させる順番は、データ記憶部 42が記憶して 、る Luv画像データに含まれる画 素データの順番と同じ順番である(即ち、データ記憶部 42が記憶している Luv画像 データに含まれる元の画素データの順番通りに、変換後データ (Lt, ut, vt)はデー タ記憶部 42に記憶される。なお、変換後データ (Lt, ut, vt)がデータ記憶部 42に記 憶される記憶領域は、 Luv画像データに含まれる元の画素データの記憶領域とは異 なる。 ) oさらに、変換部 44は、データ記憶部 42が記憶している Luv画像データに含 まれる画素データのうち未だ読み出されていないものを 1つ読み出し送信するよう命 令する読み出し命令信号を対象画像データ抽出部 43に送信する(これによりデータ 記憶部 42が記憶している Luv画像データに含まれる次の画素データが対象画素デ ータとなり、処理される。)。
[0080] 以上説明したような変換によって、図 12にて示した対象画素データの具体例(画素 番号 7、 Luvデータ(L, u, V) = (L7, u7, v7)、た し、 u7< 0)力 どのように変換さ れるかを図 15に示した。なお、 u値 L値がどのように変換される力 (点 po (L7, u7)か ら点 pt (Lt7, ut7)への変換)は、既に詳しく図 14を用いて説明したのでそれに関し ては図 14及びその説明を参照されたい。
ここに図 15中には、 v7が正(>0)である場合の変換後の位置を点 p7a (Lt7, ut7 , vt7)として示し、 v7が 0以下(0又はく 0)である場合の変換後の位置を点 p7b (Lt7 , ut7, vt7)として示した。ただし、点 p7aの vt7=v7—(L7— Lt7)であり、点 p7bの v t7=v7+ (L7— Lt7)である。
このように変換後の V座標を式 (22)又は式 (23)にて算出することで、変換前と変換 後で、色相が大きく変化するのを抑止できる (変換の前後で色合いが大きく変わった と感じさせない。 )。 [0081] (uが 0の場合)
u値 (ui)が 0より大きいと判断しな力つた変換部 44は、さらに u値 (ui)が 0より小さい か否か判断し、 u値 (ui)が 0より小さいと判断しない場合 (即ち、 ui力 SOである。)、対象 画素データに係る Luvデータ(L, u, v) = (Li, ui, vi)をそのまま変換後のデータ(L t, ut, vt)としてデータ記憶部 42に送信しデータ記憶部 42に記憶させる(即ち、 uiが 0の場合、 Luvデータ (Li, ui, vi)は変更されない。 )0なお、この変換後データ (Lt, ut, vt)をデータ記憶部 42に記憶させる順番は、データ記憶部 42が記憶している Lu V画像データに含まれる画素データの順番と同じ順番である(即ち、データ記憶部 42 が記憶して 、る Luv画像データに含まれる元の画素データの順番通りに、変換後デ ータ(Lt, ut, vt)はデータ記憶部 42に記憶される。なお、変換後データ(Lt, ut, vt )がデータ記憶部 42に記憶される記憶領域は、 Luv画像データに含まれる元の画素 データの記憶領域とは異なる。 ) o
その後、変換部 44は、データ記憶部 42が記憶している Luv画像データに含まれる 画素データのうち未だ読み出されていないものを 1つ読み出し送信するよう命令する 読み出し命令信号を対象画像データ抽出部 43に送信する(これによりデータ記憶部 42が記憶している Luv画像データに含まれる次の画素データが対象画素データとな り、処理される。 ) o
[0082] 前述したように、データ記憶部 42が記憶して 、る Luv画像データに含まれる画素デ ータのうち未だ読み出されていないものを 1つ読み出し送信するよう命令する読み出 し命令信号を変換部 44から受信すると、対象画像データ抽出部 43はデータ記憶部 42にアクセスし、データ記憶部 42が記憶して 、る Luv画像データに含まれる画素デ ータのうち未だ読み出されていないものを 1つずつ読み出し取得した後、該読み出し 取得した 1の画素データを変換部 44へ送信する。これにより、変換部 44へ送信され た画素データは対象画素データとして処理されるので、データ記憶部 42が記憶して いる Luv画像データに含まれる画素データは 1つずつ処理を受ける。
読み出し命令信号を変換部 44から受信した対象画像データ抽出部 43が、データ 記憶部 42にアクセスし、データ記憶部 42が記憶して 、る Luv画像データに含まれる 画素データのうち未だ読み出されて 、な 、ものが存しな ヽ(即ち、全ての画素データ が読み出され、読み出されていない画素データがなくなった)と判断した場合には、 読出部 48へ起動信号を送信する。
該起動信号を対象画像データ抽出部 43から受信した読出部 48は、データ記憶部 42にアクセスし、データ記憶部 42が記憶している変換後のデータ (Lt, ut, vt)全て (n個)を読み出し取得し、該読み出し取得した変換後のデータ (Lt, ut, vt)全て (n 個)を色空間逆変換部 51へ送信する。その後、読出部 48は、データ記憶部 42にァ クセスし、データ記憶部 42の記憶を消去する。
[0083] 変換後のデータ (Lt, ut, vt)全て (n個)を読出部 48 (データ処理部 41)から受信し た色空間逆変換部 51は、 Luv色空間におけるデータとして示された変換後データ( Lt, ut, vt)全て (n個)を RGB画像データに変換する。なお、 Luv色空間におけるデ ータ(Lt, ut, vt)から RGB画像データへの変換は、変換後のデータ(Lt, ut, vt)全 て (n個)の画素データを RGB画像データへ変換することによって行う(n個ある画素 データそれぞれ変換する。 ) oかかる変換の方法は、既知であるのでここでは説明を 省略する。
n個の変換後データ (Lt, ut, vt)全てを RGB画像データへ変換した色空間逆変換 部 51は、該変換した n個の RGB画像データを出力部 61へ送信する。
該変換した n個の RGB画像データを色空間逆変換部 51から受信した出力部 61は 、該 RGB画像データに基づ ヽて表示部 15に画像を表示する。
[0084] (第 3変換 (第 3色覚異常用))
第 3変換 (第 3色覚異常用)が指定されていると判断した変換部 44は、データ記憶 部 42が記憶している Luv画像データに含まれる画素データのうち未だ読み出されて V、な 、ものを 1つ読み出して変換部 44へ送信する読み出し命令信号を対象画像デ ータ抽出部 43に送信する。変換部 44からの読み出し命令信号を受信した対象画像 データ抽出部 43は、データ記憶部 42にアクセスし、データ記憶部 42が記憶している Luv画像データに含まれる画素データのうち未だ読み出されていないものを 1つ(即 ち、画素番号 iに係る画素データとして、画素番号 i及び Luvデータ(L, u, V) = (Li, ui, vi) (ただし iは正の整数)の情報を 1単位とする。)読み出し取得する。そして、対 象画像データ抽出部 43は、データ記憶部 42から該読み出し取得した 1の画素デー タを変換部 44へ送信する。ここで変換部 44から読み出し命令信号を受信した対象 画像データ抽出部 43が、データ記憶部 42が記憶して 、る Luv画像データに含まれ る画素データのうち未だ読み出されていないものが存しない (即ち、全ての画素デー タが読み出され、読み出されていない画素データがなくなった)と判断した場合には 、読出部 48へ起動信号を送信する。なお、上記の第 1変換と同様、対象画像データ 抽出部 43から変換部 44へ送信されこれから処理される画素データを「対象画素デ ータ」という。
対象画素データを対象画像データ抽出部 43から受信した変換部 44は、まず、対 象画素データ(画素番号 i、 Luvデータ(L, u, V) = (Li, ui, vi) )に含まれる Luvデー タの v値 (vi)が 0より大きいか否か判断し、大きいと判断した場合、次の「vが正の場合 の処理」を行う。なお、 V値 (vi)が 0より大きいと判断しない場合、 Luvデータの V値 (vi )が 0より小さいか否力判断し、小さいと判断した場合、次の「vが負の場合の処理」を 行い、 0より小さいと判断しない場合 (即ち、この場合は V値 (vi)が 0である。)、後述の ように何らの変換も行わな!/、。
また、ここでは理解を容易にするため、対象画素データの具体例として、図 16に示 すように V値が 0より大きい対象画素データ(画素番号 6、 Luvデータ(L, u, V) = (L6 , u6, v6)、ただし、前述のように v6は 0より大きい。また、図 16中、該対象画素デー タの位置を点 p6により示す。)を用いる。
(Vが正の場合の処理)
V値 (vi)が 0より大きいと判断した変換部 44は、 Luv画像データの Luvデータ(L, u , V) = (Li, ui, vi)に含まれる Lの数値 Liを用いて vと Lとの 2軸直交軸における次の 楕円の式(24)を作成する。この式(24)により示される楕円は、 vL平面(図 16にて示 したように互いに直交する 3軸である L軸、 u軸及び V軸のうち、 V軸と L軸との 2軸を含 む平面をいう。)上に存し、中心 (V, L) = (0, 0)であり、長径 (L軸方向の径)が Liで あり、そして短径 (V軸方向の径)が(Pvmax X LiZlOO)である。後述するように、対 象画素データの V値と L値とが、この式(24)によって示される楕円の円周上 (楕円周 上)に存する点の座標となるように対象画素データの V値と L値とを変換する。
式(24) vV (Pvmax X Li/ 100) 2 + L2/Li2 = 1
なお、式(24)中、 Pvmaxはパラメータである。本装置 11に接続されたキーボード ゃタツチパネル等( 、ずれも図示せず)を通じて本装置 11の使用者が Pvmaxの値を 予めパラメータ記憶部 46に入力し、パラメータ記憶部 46が Pvmaxの値を記憶してい る。このため変換部 44が式(24)を作成する際には、変換部 44がパラメータ記憶部 4 6にアクセスしてパラメータ記憶部 46から Pvmaxの値を読み出し取得する。
そして、式(24)を変形すると、 Lは 0より大きく 100より小さいので式(24. 1)が得ら れる。なお、 L (Li)力 ^又は 100になるのは、 u(ui) =v (vi) =0のときであり、この場 合は uが 0の場合の処理又は Vが 0の場合の処理が行われることから、ここでは Lは 0 より大きく 100より/ J、さい。 式(24. 1)
L=Li X (1— V2/ (Pvmax X Li/ 100) 2)。· 5
[0086] 図 16にて示した対象画素データの具体例(画素番号 6、 Luvデータ(L, u, v) = (L 6, u6, v6)、た し、 ν6ίま 0より大き!/ヽ。図 16中、 p6)【こ関して式(24)を作成すれ ば、次の式(24. 2)になる。
式(24. 2)
vV (Pvmax X L6/ 100) 2 + L2/L62 = 1
この式(24. 2)にて示される楕円を図 17に示した。また、図 17には、ディスプレイが 表示し得る範囲を点線によって囲って示した。なお、ディスプレイが表示し得る範囲 の求め方については、前記したディスプレイ色範囲の算出手順、境界線上の色座標 値の算出手順及び境界線の近似式の導出手順によって行われる。そして、図 17中、 実線 F3により式(24. 2)にて示される該楕円を示したが、該楕円のうち、ディスプレイ が表示し得る範囲内の部分 (即ち、図 17中、点線により囲まれた範囲内の部分)がこ この処理に関係するため該範囲内に存し、かっここでは Vが正の場合を扱うため Vが 正の部分を示している。
[0087] 次!、で、変換部 44は、対象画素データ(画素番号 i、 Luvデータ(L, u, v) = (Li, u i, vi) )に含まれる Luvデータの L値 (Li)力 8未満であるか否か判断し、 L値 (Li) 力 8未満であると判断した場合はその L値 (Li)においてディスプレイが表示し得 る V値の最大値を第 1基準値 vmとする。かかる V値の最大値 (ここでは第 1基準値 vm とされる。 )は、次の式(25)中の L値に対象画素データの L値 (Li)を代入して求めら れる Vの値とする力 力かる式(25)の導出方法については、既に説明したディスプレ ィ色範囲の算出手順、境界線上の色座標値の算出手順及び境界線の近似式の導 出手順によって行われ、導出された式(25)は予め数式記憶部 47に入力され記憶さ れている(具体的には、式(25)は、図 11中の線 vlの式)。このため変換部 44力 L 値 (Li)が 87. 8未満であると判断した場合には数式記憶部 47にアクセスして数式記 憶部 47から式(25)を読み出し取得する。
式(25)
v= l. 22208 X L + 0. 124972
[0088] 一方、変換部 44力 対象画素データ(画素番号 i、 Luvデータ(L, u, v) = (Li, ui, vi) )に含まれる Luvデータの L値 (Li)力 8未満である力否か判断し、 L値 (Li)が 87. 8未満であると判断しない場合 (即ち、 L値 (Li)が 87. 8以上)は、第 1基準値 vm は 107. 4177 (ディスプレイが表示し得る V値の最大値)とされる。
[0089] 図 16にて示した対象画素データの具体例(画素番号 6、 Luvデータ(L, u, v) = (L 6, u6, v6)、ただし、 v6 >0)を考えれば、 L値 (L6)が 87. 8未満であると変換部 44 が判断した場合には、第 1基準値 vm6は次の式(25. 1)にて算出される。このように して算出した第 1基準値 vm6を図 17に示した。
式(25. 1)
vm6 = l. 22208 X L6 + 0. 124972
一方、 L値 (L6)が 87. 8以上であると変換部 44が判断した場合 (L値 (L6)が 87. 8 未満であると変換部 44が判断しない場合)は、第 1基準値 vm6は 107. 4177とされ る。このように L値 (L6)が 87. 8以上であると判断した場合 (L値 (L6)が 87. 8未満で あると変換部 44が判断しない場合)に第 1基準値 vm6とされる 107. 4177も図 17に 示した。
[0090] そして、変換部 44は、対象画素データ(画素番号 i、 Luvデータ(L, u, v) = (Li, ui , vi) )に含まれる Luvデータの v値 vi力 上記のようにして決定された第 1基準値 vm に対する割合 Sc (=vi/vm)を求める。
例えば、図 16にて示した対象画素データの具体例(画素番号 6、 Luvデータ (L, u , v) = (L6, u6, v6)、ただし、 v6 >0)を例に挙げれば、 Luvデータの v値 v6力 決 定された第 1基準値 vm6に対する割合 Sc6=v6Zvm6を求める。
[0091] 続いて、変換部 44は、式(24. 1)によって示される楕円の楕円周上の点のうちディ スプレイが表示し得る範囲内に存するもので L値が最小の点を (Lm, vem)とし、この vemを求める。例えば、図 16にて示した対象画素データの具体例(画素番号 6、 Luv データ(L, u, V) = (L6, u6, v6)、ただし、 v6 >0)を例に挙げれば、図 17に点 M6 ( Lm6, vem6)として示した。図 17から理解されるように、点 M6 (Lm6, vem6)は、図 17に示された式(24. 1)によって示される楕円(実線 F3)の楕円周上の点のうち、図 17に示されたディスプレイが表示し得る範囲(点線にて囲まれた範囲)内に存するも ので L値が最小の点である。以下、 vemの算出方法を説明する。
[0092] (vemの算出方法)
第 1に、式(26)を考える。
式(26)
vV (Pvmax) 2 + L2/ ( 100) 2 = 1
この式(26)にて示される楕円(以下、「楕円 26」という。)を図 18に示した。また、図 18〖こは、図 17と同様、ディスプレイが表示し得る範囲を点線によって囲って示し、式 (24)によって示される楕円(以下、「楕円 24」という。)も同様に示した。
[0093] 第 2に、この式(26)によって示される楕円の楕円周上の点のうちディスプレイが表 示し得る範囲内に存するもので L値が最小の点を(LmO, vemO)とするとこの vemO を次の式(27)にて求める。なお、該最小の点(LmO, vemO)を、図 18中、点 MO (L mO, vemO)として示した。式(27)の導出方法については、以下述べる通りであるが 、導出された式(27)は予め数式記憶部 47に入力され記憶されている。このため変 換部 44が、数式記憶部 47にアクセスして数式記憶部 47から式(27)を読み出し取得 した後、 vemOを算出する。
式(27)は、式(26)と式(25) (Vが正におけるディスプレイが表示し得る V値の最大 値を与える。)との Vが正における交点の V座標 vemOを GNU Octaveを用いて求め ることで得た。具体的には、 GNU Octaveを使って、式(26)の Pvmaxを 10から 10 0まで 0. 2間隔で変化させ、それぞれの場合について式(26)と式(25)との交点(L, v)を求める。その結果、 (Pvmax, L, v)の 3つの値の組力 51個得られる。続いて、 GNU Octaveを使って、この中の 2つの値(Pvmax, v)の関係式(近似式)である 式(27)を得た。
式(27)
vemO =— 0. 00323344 X (Pvmax) 2+ 1. 10944 X (Pvmax)— 1. 11198 第 3に、変換部 44は、第 2において求められた vemOを次の式(28)に代入して ve mを求める。式(28)の導出方法については、以下述べる通りであるが、導出された 式(28)は予め数式記憶部 47に入力され記憶されている。このため変換部 44が、数 式記憶部 47にアクセスして数式記憶部 47から式(28)を読み出し取得した後、 vem を算出する。
ここに式(28)は、対象画素データ(画素番号 i、 Luvデータ(L, u, V) = (Li, ui, vi ) )に含まれる Luvデータの L値 (Li)力 より大きく 100より小さ!/、際に vemOを用いて vemを近似する近似式である(なお、式(28)中の Liは、対象画素データに含まれる Luvデータの L値(Li)である。また、 L (Li)力O又は 100になるのは、 u (ui) =v (vi) =0のときであり、この場合は uが 0の場合の処理又は Vが 0の場合の処理が行われる こと力 、ここでは Lは 0より大きく 100より小さい。 ) o vL平面においてディスプレイが 表示し得る Vが正における Lの最小値を示す境界線 (即ち、式(25)により近似される 線)は、 (L, v) = (0, 0)を通過する直線 (即ち、 L = a X v、但し aは定数)によりほぼ 近似することができ、該直線の式: L = a X Vを用いて式(26)の Lを消去すると vemO が得られ、そして該直線の式を用いて式(24)の Lを消去すると vemが得られ、それら 力 式(28)が得られる。なお、式(28)は、小さな誤差により極めてうまく近似すること ができる。
式(28)
vem = vemO X Li/ 100
図 16にて示した対象画素データの具体例(画素番号 6、 Luvデータ (L, u, V) = (L 6, u6, v6)、ただし、 v6 >0)を例に挙げれば、この具体例に関する vemである vem 6は次の式(28. 1)により算出される。
式(28. 1) vem6=vemO X L6/100
[0095] その後、変換部 44は、対象画素データ(画素番号 i、 Luvデータ (L, u, v) = (Li, u i, vi) )を第 3変換 (第 3色覚異常用)した後の Luvデータの L値 (Lt)を求める。かかる 変換後の L値 (Lt)の算出方法は、ディスプレイが表示可能な色範囲内で、ある輝度 における黄色の度合に応じて輝度を減少させるように行われるものであり、(Lm— Li )に対する、変換によって L値が減少する量 (変換後の L値 Ltと変換前の L値 Liとの 差、即ち(Lt— Li) )の割合 (即ち、(Lt— Li) Z (Lm— Li) )が、上記した Sc ( =viZv m)に等しくなるように L値 (Lt)を定める。なお、(Lm— Li)は、 L = Liである全ての色 の中で、本変換処理で最も低輝度に変換される色の変換後の L値 Lmと、変換前の L 値 Liと、の差である。
具体的には、 Ltは式(29)にて示される。
式(29)
(Lt-Li) / (Lm-Li) =Sc (=vi/vm)
式(29)を変形すると、式(29. 1)が得られる。
式(29. 1)
Lt=Sc X (Lm-Li) +Li
[0096] なお、式(29. 1)中の Lmは、上述したように式(24. 1)によって示される楕円の楕 円周上の点のうちディスプレイが表示し得る範囲内に存するもので L値が最小の点( Lm, vem)の L値である。ここに点(Lm, vem)は式(24. 1)によって示される楕円の 楕円周上の点であるから、次の式(30)を満たす。
式(30)
Lm = Li X ( 1— vem2/ (Pvmax X Li/ 100) 2)。· 5
そして、式(30)の vemに式(28)を代入し、それによつて得られる式をさらに式(29 . 1)に代入すると式(31)が得られる。
式(31)
Lt = Sc X (Lm-Li) +Li
= Li X (1 -Sc X ( 1 - ( 1 - vemO (Pvmax) 2) °' 5) )
[0097] この式(31)を用いて変換部 44は、対象画素データ(画素番号 i、 Luvデータ (L, u , v) = (Li, ui, vi) )を第 3変換 (第 3色覚異常用)した後の Luvデータの L値 (Lt)を 求める。なお式(31)は予め数式記憶部 47に入力され記憶されているので、変換部 44が、数式記憶部 47にアクセスして数式記憶部 47から式(31)を読み出し取得した 後、 Ltを算出する(また、変換部 44がパラメータ記憶部 46にアクセスしてパラメータ 記憶部 46から Pvmaxの値を読み出し取得する。 )。
引き続き、変換部 44は、該対象画素データを第 3変換 (第 3色覚異常用)した後の Luvデータの V値 (vt)を求める。変換後の Luvデータの L値(Lt)と v値 (vt)とは、式( 24. 1)により示される楕円の楕円周上の点であるから、 V値 (vt)は上述のように求め られた L値 (Lt)を用い、式(24. 1)を変形した次の式(32) (なお、 vtは 0より大)から 計算される。なお式(32)も予め数式記憶部 47に入力され記憶されているので、変換 部 44が、数式記憶部 47にアクセスして数式記憶部 47から式(32)を読み出し取得し た後、 vtを算出する(また、変換部 44がパラメータ記憶部 46にアクセスしてパラメータ 記憶部 46から Pvmaxの値を読み出し取得する。 )。
式(32)
vt = Pvmax/ 100 X (Li2— Lt2) 0 5
図 16にて示した対象画素データの具体例(画素番号 6、 Luvデータ(L, u, v) = (L 6, u6, v6)、ただし、 v6 >0)に含まれる L値及び v値がどのように変換されるかを (そ れぞれ Lt及び vt)図 18中に示した。図 18中の点 po (L, V) = (L6, v6)は、該対象 画素データの具体例(画素番号 6、 Luvデータ(L, u, V) = (L6, u6, v6)、ただし、 v 6 >0)の点を vL平面 (V軸と L軸とを含む平面)上に投影した点である。
力^^る, po (L, u) = (L6, u6) iま、図 18に示すように vL平面上にお!ヽて、 (Lm6 -L6)に対する、変換によって L値が減少する量 (変換後の L値 Lt6と変換前の L値 L 6との差、即ち(Lt6— L6) )の割合(即ち、(Lt6— L6)Z(Lm6— L6) )が、上記の S c6 (=v6/vm6)に等しくなるように L値 (Lt6)が定められ、該定めれた L値 (Lt6)に 応じた楕円 24の楕円周上の点 pt (L, V) = (Lt7, vt7)に変換される。このように対象 画素データの Luvデータ(L6, u6, v6)の L値及び V値がそれぞれ Lt6及び vt6に変 換されることで、より黄色が低輝度に変換 (即ち、 V値が大きいものほど L値が減少す る。)される。 [0099] 次いで、変換部 44は、対象画素データの Luv画像データ(L, u, v) = (Li, ui, vi) の u値 uiが正力 0以下かを判断し、 uiが正(>0)であれば、式(33)にて変換後の Lu Vデータの u値 (ut)の値を求める。そして変換部 44は、求めた u値 (ut)の値が負(ut く 0)か否力判断し負であると判断した場合は ut=0とする(こうすることで u utへ 変換することによって色相が反転することを防止する。 ) o
一方、変換部 44力 対象画素データの Luv画像データ(L, u, V) = (Li, ui, vi)の u値 uiが 0以下(0又はく 0)であれば、式(34)にて utの値を求める。そして変換部 44 は、求めた u値 (ut)の値が正 (ut>0)力否か判断し正であると判断した場合は ut= 0とする(こうすることで u utへ変換することによって色相が反転することを防止す る。)。
式(33)
ut=ui ~~ (Li— Lt)
式(34)
ut=ui+ (Li-Lt)
なお式(33)及び式(34)の 、ずれも予め数式記憶部 47に入力され記憶されて 、る ので、変換部 44が、数式記憶部 47にアクセスして数式記憶部 47から式(33)及び式 (34)のいずれかを読み出し取得した後、 utを算出する。
[0100] その後、このように決定した ut (式(33)及び式(34)のいずれかによつて計算された 値力 又は 0)の値が、ディスプレイが表示し得る範囲内に存する力否かを変換部 44 はチェックをし、該範囲内に存しないと判断した場合は ut値を次のように補正する。 該補正の基本的な考え方は、変換後の Ltの値と、図 10の u2、 u4の変化軸範囲(た だし、図 10では基準軸範囲しか示していないが、領域の範囲は全 RGB値を Luv値 に変換することにより求めているので、変化軸範囲も同時に求めている。変化軸しの 範囲は、 u2は 53. 3〜: LOO. 0、 u4は 87. 8〜91. 2である。;)、および図 11の ul〜u 5の近似式により、 L=Ltにおける uの最小値、最大値が決まる。なお、これら図 10及 び図 11に示すデータは、予め数式記憶部 47に入力され記憶されているので、変換 部 44が、数式記憶部 47にアクセスして数式記憶部 47から自由に読み出し取得する ことができる。該決定した utの値力この最小値力 最大値までの範囲力 外れる場合 、ディスプレイが表示し得る範囲内に存しないと変換部 44は判断し、 ut値を、変換後 の Ltの値における最小値または最大値 (変換後の utが近 、方)に置き換えることで 補正する。具体的に述べれば、(l) ut>0の場合、 Ltが 0以上かつ 53. 3未満(0≤L t< 53.3)の時には図 11の ulの式を用い、 Ltが 53. 3以上かつ 100. 0以下(53.3≤L t≤ 100)の時には図 11の u2の式を用いて uの最大値を求め、 utがそれより大き!/、時 は、その最大値を utの値とする。(2) utが 0以下の場合、 Ltが 91. 2以上かつ 100以 下(91.2≤Lt≤100)の時には図 11の u3の式を用い、 Ltが 87. 8以上かつ 91. 2未 満(87.8≤Ltく 91.2)の時には図 11の u4の式を用い、 Ltが 0以上かつ 87. 8未満(0 ≤ Ltく 87.8)の時には図 11の u5の式を用いて uの最小値を求め、 utがそれより小さ い時は、その最小値を utの値とする。
[0101] 以上のようにして、対象画素データ(画素番号 i、 Luvデータ(L, u, V) = (Li, ui, vi ) )に含まれる Luvデータ (Li, ui, vi)は、変換後のデータ (Lt, ut, vt) (以下、変換 後データという。 )に変換される。
その後、変換部 44は、この変換後データ (Lt, ut, vt)をデータ記憶部 42に送信し データ記憶部 42に記憶させる。なお、変換後データ (Lt, ut, vt)をデータ記憶部 42 に記憶させる順番は、データ記憶部 42が記憶して 、る Luv画像データに含まれる画 素データの順番と同じ順番である(即ち、データ記憶部 42が記憶している Luv画像 データに含まれる元の画素データの順番通りに、変換後データ (Lt, ut, vt)はデー タ記憶部 42に記憶される。なお、変換後データ (Lt, ut, vt)がデータ記憶部 42に記 憶される記憶領域は、 Luv画像データに含まれる元の画素データの記憶領域とは異 なる。 ) oさらに、変換部 44は、データ記憶部 42が記憶している Luv画像データに含 まれる画素データのうち未だ読み出されていないものを 1つ読み出し送信するよう命 令する読み出し命令信号を対象画像データ抽出部 43に送信する(これによりデータ 記憶部 42が記憶している Luv画像データに含まれる次の画素データが対象画素デ ータとなり、処理される。)。
[0102] 以上説明したような変換によって、図 16にて示した対象画素データの具体例(画素 番号 6、 Luvデータ(L, u, V) = (L6, u6, v6)、ただし、 v6 >0)力 どのように変換さ れるかを図 19に示した。なお、 V値 L値がどのように変換される力 (点 po (L6, v6)から 点 pt (Lt6, vt6)への変換)は、既に詳しく図 18を用いて説明したのでそれに関して は図 18及びその説明を参照された 、。
ここに図 19中には、 u6が正(>0)である場合の変換後の位置を点 p6a (Lt6, ut6 , vt6)として示し、 u6が 0以下(0又はく 0)である場合の変換後の位置を点 p6b (Lt6 , ut6, vt6)として示した。ただし、点 p6aの ut6=u6—(L6— Lt6)であり、点 p6bの ut6=u6+ (L6— Lt6)である。
このように変換後の u座標を式 (33)又は式 (34)にて算出することで、変換前と変 換後で、色相が大きく変化するのを抑止できる (変換の前後で色合いが大きく変わつ たと感じさせない。)。
(Vが負の場合の処理)
V値 (vi)が 0より大きいと判断しな力つた変換部 44は、さらに V値 (vi)が 0より小さい か否か判断し、 V値 (vi)が 0より小さいと判断した場合、以下説明する「vが負の場合 の処理」を行う。
V値 (vi)が 0より小さいと判断した変換部 44は、 Luv画像データの Luvデータ(L, u , V) = (Li, ui, vi)に含まれる Lの数値 Liを用いて vと Lとの 2軸直交軸における次の 楕円の式(35)を作成する。この式(35)により示される楕円は、 vL平面(図 20にて示 したように互いに直交する 3軸である L軸、 u軸及び V軸のうち、 V軸と L軸との 2軸を含 む平面をいう。)上に存し、中心 (V, L) = (0, 100)であり、長径 (L軸方向の径)が(1 00— Li)であり、そして短径 (V軸方向の径)が(Pvmin X (100— Li) ZlOO)である。 後述するように、対象画素データの V値と L値とが、この式(35)によって示される楕円 の円周上 (楕円周上)に存する点の座標となるように対象画素データの V値と L値とを 変換する。
式(35)
Vソ (Pvmin X (100—Li) /100) 2+ (L— 100) 2/ (100—Li) 2= 1
なお、式(35)中、 Pvminはパラメータである。本装置 11に接続されたキーボードや タツチパネル等( 、ずれも図示せず)を通じて本装置 11の使用者が Pvminの値を予 めパラメータ記憶部 46に入力し、パラメータ記憶部 46が Pvminの値を記憶して 、る 。このため変換部 44が式(35)を作成する際には、変換部 44がパラメータ記憶部 46 にアクセスしてパラメータ記憶部 46から Pvminの値を読み出し取得する。
そして、式(35)を変形すると、 Lは 0より大きく 100より小さいので、式(35. 1)が得 られる。なお、 L (Li)力 O又は 100になるのは、 u(ui) =v(vi) =0のときであり、この場 合は uが 0の場合の処理又は Vが 0の場合の処理が行われることから、ここでは Lは 0 より大きく 100より/ Jヽさい。
式(35. 1)
L= 100—(100— Li) X (l-vV(PvminX (100—Π) /100) 2) °· 5
[0104] 図 20にて示した対象画素データの具体例(画素番号 9、 Luvデータ(L, u, v) = (L 9, u9, v9)、ただし、 v9は 0より小さい。図 20中、点 p9)に関して式(35)を作成すれ ば、次の式(35. 2)になる。
式(35. 2)
vV(Pvmin X (100— L9) /100) 2+ (L— 100) 2/ (100— L9) 2= l この式(35. 2)にて示される楕円を図 21に示した。また、図 21には、ディスプレイが 表示し得る範囲を点線によって囲って示した。なお、ディスプレイが表示し得る範囲 の求め方については、前記したディスプレイ色範囲の算出手順、境界線上の色座標 値の算出手順及び境界線の近似式の導出手順によって行われる。そして、図 21中、 実線 F4により式(35. 2)にて示される該楕円を示したが、該楕円のうち、ディスプレイ が表示し得る範囲内の部分 (即ち、図 21中、点線により囲まれた範囲内の部分)がこ この処理に関係するため該範囲内に存し、かっここでは Vが負の場合を扱うため Vが 負の部分を示している。
[0105] 次!、で、変換部 44は、対象画素データ(画素番号 i、 Luvデータ(L, u, v) = (Li, u i, vi) )に含まれる Luvデータの L値 (Li)が 60. 4より大きいか否力判断し、 L値 (Li) 力 4より大きいと判断した場合はその L値 (Li)においてディスプレイが表示し得る V値の最小値を第 1基準値 vmとする。力かる V値の最小値 (ここでは第 1基準値 vmと される。 )は、次の式(36)中の L値に対象画素データの L値 (Li)を代入して求められ る Vの値とする力 カゝかる式(36)の導出方法については、既に説明したディスプレイ 色範囲の算出手順、境界線上の色座標値の算出手順及び境界線の近似式の導出 手順によって行われ、導出された式(36)は予め数式記憶部 47に入力され記憶され ている(具体的には、式(36)は、図 11中の線 v4の式)。このため変換部 44力 L値( Li)が 60. 4より大きいと判断した場合には数式記憶部 47にアクセスして数式記憶部 47から式(36)を読み出し取得する。
式(36)
v= 2. 78401 X L— 278. 237
[0106] そして、変換部 44力 対象画素データ(画素番号 i、 Luvデータ(L, u, v) = (Li, ui , vi) )に含まれる Luvデータの L値 (Li)が 60. 4より大きいと判断しない場合 (即ち、 L値 (Li)が 60. 4以下)は、さらに L値 (Li)が 39. 0より大きいか否か判断し、 39. 0よ り大きいと判断した場合は、その L値 (Li)においてディスプレイが表示し得る V値の最 小値を第 1基準値 vmとする。力かる V値の最小値 (ここでは第 1基準値 vmとされる。) は、次の式(37)中の L値に対象画素データの L値 (Li)を代入して求められる Vの値 とするが、力かる式(37)の導出方法については、既に説明したディスプレイ色範囲 の算出手順、境界線上の色座標値の算出手順及び境界線の近似式の導出手順に よって行われ、導出された式(37)は予め数式記憶部 47に入力され記憶されている( 具体的には、式(37)は、図 11中の線 v5の式)。このため変換部 44力 L値 (Li)が 6 0. 4より大きいと判断せずかつ 39. 0より大きいと判断した場合には数式記憶部 47に アクセスして数式記憶部 47から式(37)を読み出し取得する。
式(37)
v=—0. 000944111 X L3+0. 186393 X L2— 10. 2379 X L + 37. 5197
[0107] さらに、変換部 44が、対象画素データ(画素番号 i、 Luvデータ(L, u, v) = (Li, ui , vi) )に含まれる Luvデータの L値 (Li)が 60. 4より大きいと判断しない場合 (即ち、 L値 (Li)が 60. 4以下)は、さらに L値 (Li)が 39. 0より大きいか否か判断し、 39. 0よ り大きいと判断しない場合 (即ち、 L値 (Li)が 39. 0以下)は、第 1基準値 vmは一 134 . 0896 (ディスプレイが表示し得る V値の最小値)とされる。
[0108] 図 20にて示した対象画素データの具体例(画素番号 9、 Luvデータ(L, u, v) = (L 9, u9, v9)、ただし、 v9く 0)を考えれば、 L値 (L9)力 ½0. 4より大きいと変換部 44 が判断した場合には、第 1基準値 vm9は次の式(36. 1)にて算出される。このように して算出した第 1基準値 vm9を図 21に示した。 式(36. 1)
vm9 = 2. 78401 X L9— 278. 237
一方、 L値 (L9)が 60. 4より大きいと判断せずかつ 39. 0より大きいと変換部 44が 判断した場合には、第 1基準値 vm9は次の式(37. 1)にて算出される。このようにし て算出した第 1基準値 vm9を図 21に示した。
式(37. 1)
vm9 =— 0. 000944111 X L93 + 0. 186393 X L92— 10. 2379 X L9 + 37. 51 97
そして、 L値 (L9)が 60. 4より大きいと判断せず、さらに 39. 0より大きいと判断しな い場合 (即ち、 L値 (Li)が 39. 0以下)には、第 1基準値 vm6は一 134. 0896とされ る。このように L値 (L9)が 39. 0以下であると判断した場合に第 1基準値 vm9とされる 一 134. 0896も図 21に示した。
[0109] そして、変換部 44は、対象画素データ(画素番号 i、 Luvデータ(L, u, v) = (Li, ui , vi) )に含まれる Luvデータの v値 vi力 上記のようにして決定された第 1基準値 vm に対する割合 Sc (=vi/vm)を求める。
例えば、図 20にて示した対象画素データの具体例(画素番号 9、 Luvデータ (L, u , V) = (L9, u9, v9)、ただし、 v9く 0)を例に挙げれば、 Luvデータの v値 v9力 決 定された第 1基準値 vm9に対する割合 Sc9=v9Zvm9を求める。
[0110] 続いて、変換部 44は、式(35. 1)によって示される楕円の楕円周上の点のうちディ スプレイが表示し得る範囲内に存するもので L値が最大の点を (Lm, vem)とし、この vemを求める。例えば、図 20にて示した対象画素データの具体例(画素番号 9、 Luv データ(L, u, V) = (L9, u9, v9)、ただし、 v9< 0)を例に挙げれば、図 21に点 M9 ( Lm9, vem9)として示した。図 21から理解されるように、点 M9 (Lm9, vem9)は、図 21に示された式(35. 1)によって示される楕円(実線 F4)の楕円周上の点のうち、図 21に示されたディスプレイが表示し得る範囲(点線にて囲まれた範囲)内に存するも ので L値が最大の点である。以下、 vemの算出方法を説明する。
[0111] (vemの算出方法)
第 1に、式(38)を考える。 式(38)
vV (Pvmin) 2+ (L— 100) 2/ (100) 2= 1
この式(38)にて示される楕円(以下、「楕円 38」という。)を図 22に示した。また、図 22には、図 21と同様、ディスプレイが表示し得る範囲を点線によって囲って示し、式 (35)によって示される楕円(以下、「楕円 35」という。)も同様に示した。
[0112] 第 2に、この式(38)によって示される楕円の楕円周上の点のうちディスプレイが表 示し得る範囲内に存するもので L値が最大の点を (LmO, vemO)とするとこの vemO を次の式(39)にて求める。なお、該最大の点(LmO, vemO)を、図 22中、点 MO (L mO, vemO)として示した。式(39)の導出方法については、以下述べる通りであるが 、導出された式(39)は予め数式記憶部 47に入力され記憶されている。このため変 換部 44が、数式記憶部 47にアクセスして数式記憶部 47から式(39)を読み出し取得 した後、 vemOを算出する。
式(39)は、式(38)と式(36) (Vが負におけるディスプレイが表示し得る V値の最小 値を与える。)との Vが負における交点の V座標 vemOを GNU Octaveを用いて求め ることで得た。具体的には、 GNU Octaveを使って、式(38)の Pvminを一 100から 一 10まで 0. 2間隔で変化させ、それぞれの場合について式(38)と式(36)との交点 (L, V)を求める。その結果、 (Pvmin, L, v)の 3つの値の組力 51個得られる。続い て、 GNU Octaveを使って、この中の 2つの値(Pvmin, v)の関係式(近似式)であ る式(39)を得た。
式(39)
vemO = 0. 000945382 X (Pvmin) 2+ 1. 04221 X (Pvmin) +0. 515752 [0113] 第 3に、変換部 44は、第 2において求められた vemOを次の式 (40)に代入して ve mを求める。式 (40)の導出方法については、以下述べる通りであるが、導出された 式 (40)は予め数式記憶部 47に入力され記憶されている。このため変換部 44が、数 式記憶部 47にアクセスして数式記憶部 47から式 (40)を読み出し取得した後、 vem を算出する。
ここに式(40)は、対象画素データ(画素番号 i、 Luvデータ(L, u, V) = (Li, ui, vi ) )に含まれる Luvデータの L値 (Li)力 より大きく 100より小さ!/、際に vemOを用いて vemを近似する近似式である(なお、式 (40)中の Liは、対象画素データに含まれる Luvデータの L値(Li)である。また、 L (Li)力O又は 100になるのは、 u (ui) =v (vi) =0のときであり、この場合は uが 0の場合の処理又は Vが 0の場合の処理が行われる こと力 、ここでは Lは 0より大きく 100より小さい。 ) o vL平面においてディスプレイが 表示し得る Vが負における Lの最大値を示す境界線 (即ち、式(36)により近似される 線)は、 (L, u) = (100, 0)を通過する直線 (即ち、 L = a Xv+ 100、但し aは定数)に よりほぼ近似することができ、該直線の式: L = a Xv+ 100を用いて式(38)の Lを消 去すると vemOが得られ、そして該直線の式を用いて式(35)の Lを消去すると vemが 得られ、それらから式 (40)が得られる。なお、式 (40)は、小さな誤差により極めてうま く近似することがでさる。
式 (40)
vem=vemO X (100-Li) /100
図 20にて示した対象画素データの具体例(画素番号 9、 Luvデータ (L, u, V) = (L 9, u9, v9)、ただし、 v9く 0)を例に挙げれば、この具体例に関する vemである vem 9は次の式 (40. 1)により算出される。
式(40. 1)
vem9=vemO X (100-L9) /100
その後、変換部 44は、対象画素データ(画素番号 i、 Luvデータ (L, u, v) = (Li, u i, vi) )を第 3変換 (第 3色覚異常用)した後の Luvデータの L値 (Lt)を求める。かかる 変換後の L値 (Lt)の算出方法は、ディスプレイが表示可能な色範囲内で、ある輝度 における青色の度合に応じて輝度を増加させるように行われるものであり、(Lm— Li )に対する、変換によって L値が増加する量 (変換後の L値 Ltと変換前の L値 Liとの 差、即ち(Lt— Li) )の割合 (即ち、(Lt— Li) Z (Lm— Li) )が、上記した Sc ( =viZv m)に等しくなるように L値 (Lt)を定める。なお、(Lm— Li)は、 L = Liである全ての色 の中で、本変換処理で最も高輝度に変換される色の変換後の L値 Lmと、変換前の L 値 Liと、の差を示す。
具体的には、 Ltは式 (41)にて示される。
式 (41) (Lt-Li) / (Lm-Li) =Sc (=vi/vm)
式 (41)を変形すると、式 (41. 1)が得られる。
式 (41. 1)
Lt=Sc X (Lm-Li) +Li
[0115] なお、式 (41. 1)中の Lmは、上述したように式(35. 1)によって示される楕円の楕 円周上の点のうちディスプレイが表示し得る範囲内に存するもので L値が最大の点( Lm, vem)の L値である。ここに点(Lm, vem)は式(35. 1)によって示される楕円の 楕円周上の点であるから、次の式 (42)を満たす。
式 (42)
Lm= 100—(100— Li) X (l -vemV (Pvmin X (100— Li) Zl00) 2) °' 5 そして、式 (42)の vemに式 (40)を代入し、それによつて得られる式をさらに式 (41 . 1)に代入すると式 (43)が得られる。
式 (43)
Lt = Sc X (Lm-Li) +Li
=Li+ (100— Li) X Sc X ( 1 - ( 1 - vemO (Pvmin) 2) °' 5)
[0116] この式 (43)を用いて変換部 44は、対象画素データ(画素番号 i、 Luvデータ (L, u , ν) = (Li, ui, vi) )を第 3変換 (第 3色覚異常用)した後の Luvデータの L値 (Lt)を 求める。なお式 (43)は予め数式記憶部 47に入力され記憶されているので、変換部 44が、数式記憶部 47にアクセスして数式記憶部 47から式 (43)を読み出し取得した 後、 Ltを算出する(また、変換部 44がパラメータ記憶部 46にアクセスしてパラメータ 記憶部 46から Pvminの値を読み出し取得する。 )。
引き続き、変換部 44は、該対象画素データを第 3変換 (第 3色覚異常用)した後の Luvデータの V値 (vt)を求める。変換後の Luvデータの L値(Lt)と v値 (vt)とは、式( 35. 1)により示される楕円の楕円周上の点であるから、 V値 (vt)は上述のように求め られた L値 (Lt)を用い、式(35. 1)を変形した次の式 (44) (なお、 vtは 0より小)から 計算される。なお式 (44)も予め数式記憶部 47に入力され記憶されているので、変換 部 44が、数式記憶部 47にアクセスして数式記憶部 47から式 (44)を読み出し取得し た後、 vtを算出する(また、変換部 44がパラメータ記憶部 46にアクセスしてパラメータ 記憶部 46から Pvminの値を読み出し取得する。 )。
式 (44)
vt = Pvmin/ 100 X ( ( 1— Li) 2—(Lt 100) 2)。· 5
[0117] 図 20にて示した対象画素データの具体例(画素番号 9、 Luvデータ (L, u, v) = (L 9, u9, v9)、ただし、 v9く 0)に含まれる L値及び v値がどのように変換されるかを (そ れぞれ Lt及び vt)図 22中に示した。図 22中の点 po (L, v) = (L9, v9)は、該対象 画素データの具体例(画素番号 9、 Luvデータ(L, u, V) = (L9, u9, v9)、ただし、 v 9< 0)の点を vL平面 (V軸と L軸とを含む平面)上に投影した点である。
力力る, po (L, u) = (L9, u9) iま、図 22に示すように vL平面上にお!/、て、 (Lm9 -L9)に対する、変換によって L値が増加する量 (変換後の L値 Lt9と変換前の L値 L 9との差、即ち(Lt9一 L9) )の割合(即ち、(Lt9 L9)Z(Lm9— L9) )が、上記の S c9 (=v9/vm9)に等しくなるように L値 (Lt9)が定められ、該定めれた L値 (Lt9)に 応じた楕円 35の楕円周上の点 pt (L, V) = (Lt9, vt9)に変換される。このように対象 画素データの Luvデータ(L9, u9, v9)の L値及び V値がそれぞれ Lt9及び vt9に変 換されることで、より青い色が高輝度に変換 (即ち、 V値が小さいものほど L値が増加 する。)される。
[0118] 次いで、変換部 44は、対象画素データの Luv画像データ(L, u, v) = (Li, ui, vi) の u値 uiが正力 0以下かを判断し、 uiが正(>0)であれば、式 (45)にて変換後の Lu Vデータの u値 (ut)の値を求める。そして変換部 44は、求めた u値 (ut)の値が負(ut く 0)か否力判断し負であると判断した場合は ut=0とする(こうすることで u utへ 変換することによって色相が反転することを防止する。 ) o
一方、変換部 44力 対象画素データの Luv画像データ(L, u, V) = (Li, ui, vi)の u値 uiが 0以下(0又はく 0)であれば、式 (46)にて utの値を求める。そして変換部 44 は、求めた u値 (ut)の値が正 (ut>0)力否か判断し正であると判断した場合は ut= 0とする(こうすることで u utへ変換することによって色相が反転することを防止す る。)。
式 (45)
ut = ui ~~ (Lt Li; 式 (46)
ut=ui+ (Lt-Li)
なお式 (45)及び式 (46)の 、ずれも予め数式記憶部 47に入力され記憶されて 、る ので、変換部 44が、数式記憶部 47にアクセスして数式記憶部 47から式 (45)及び式 (46)のいずれかを読み出し取得した後、 utを算出する。
[0119] その後、このように決定した ut (式 (45)及び式 (46)のいずれかによつて計算された 値力 又は 0)の値が、ディスプレイが表示し得る範囲内に存する力否かを変換部 44 はチェックをし、該範囲内に存しないと判断した場合は ut値を次のように補正する。 該補正の基本的な考え方は、変換後の Ltの値と、図 10の u2、 u4の変化軸範囲(た だし、図 10では基準軸範囲しか示していないが、領域の範囲は全 RGB値を Luv値 に変換することにより求めているので、変化軸範囲も同時に求めている。変化軸しの 範囲は、 u2は 53. 3〜: LOO. 0、 u4は 87. 8〜91. 2である。;)、および図 11の ul〜u 5の近似式により、 L=Ltにおける uの最小値、最大値が決まる。なお、これら図 10及 び図 11に示すデータは、予め数式記憶部 47に入力され記憶されているので、変換 部 44が、数式記憶部 47にアクセスして数式記憶部 47から自由に読み出し取得する ことができる。該決定した utの値力この最小値力 最大値までの範囲力 外れる場合 、ディスプレイが表示し得る範囲内に存しないと変換部 44は判断し、 ut値を、変換後 の Ltの値における最小値または最大値 (変換後の utが近 、方)に置き換えることで 補正する。具体的に述べれば、(l) ut>0の場合、 Ltが 0以上かつ 53. 3未満(0≤L t< 53.3)の時には図 11の ulの式を用い、 Ltが 53. 3以上かつ 100. 0以下(53.3≤L t≤ 100)の時には図 11の u2の式を用いて uの最大値を求め、 utがそれより大き!/、時 は、その最大値を utの値とする。(2) utが 0以下の場合、 Ltが 91. 2以上かつ 100以 下(91.2≤Lt≤100)の時には図 11の u3の式を用い、 Ltが 87. 8以上かつ 91. 2未 満(87.8≤Ltく 91.2)の時には図 11の u4の式を用い、 Ltが 0以上かつ 87. 8未満(0 ≤ Ltく 87.8)の時には図 11の u5の式を用いて uの最小値を求め、 utがそれより小さ い時は、その最小値を utの値とする。
[0120] 以上のようにして、対象画素データ(画素番号 i、 Luvデータ(L, u, v) = (Li, ui, vi ) )に含まれる Luvデータ (Li, ui, vi)は、変換後のデータ (Lt, ut, vt) (以下、変換 後データという。 )に変換される。
その後、変換部 44は、この変換後データ (Lt, ut, vt)をデータ記憶部 42に送信し データ記憶部 42に記憶させる。なお、変換後データ (Lt, ut, vt)をデータ記憶部 42 に記憶させる順番は、データ記憶部 42が記憶して 、る Luv画像データに含まれる画 素データの順番と同じ順番である(即ち、データ記憶部 42が記憶している Luv画像 データに含まれる元の画素データの順番通りに、変換後データ (Lt, ut, vt)はデー タ記憶部 42に記憶される。なお、変換後データ (Lt, ut, vt)がデータ記憶部 42に記 憶される記憶領域は、 Luv画像データに含まれる元の画素データの記憶領域とは異 なる。 ) oさらに、変換部 44は、データ記憶部 42が記憶している Luv画像データに含 まれる画素データのうち未だ読み出されていないものを 1つ読み出し送信するよう命 令する読み出し命令信号を対象画像データ抽出部 43に送信する(これによりデータ 記憶部 42が記憶している Luv画像データに含まれる次の画素データが対象画素デ ータとなり、処理される。)。
[0121] 以上説明したような変換によって、図 20にて示した対象画素データの具体例(画素 番号 9、 Luvデータ(L, u, V) = (L9, u9, v9)、ただし、 v9< 0)が、どのように変換さ れるかを図 23に示した。なお、 V値 L値がどのように変換される力 (点 po (L9, v9)から 点 pt (Lt9, vt9)への変換)は、既に詳しく図 22を用いて説明したのでそれに関して は図 22及びその説明を参照された 、。
ここに図 23中には、 u9が正(>0)である場合の変換後の位置を点 p9a (Lt9, ut9 , vt9)として示し、 u9が 0以下(0又はく 0)である場合の変換後の位置を点 p9b (Lt9 , ut9, vt9)として示した。ただし、点 p9aの ut9=u9—(Lt9— L9)であり、点 p9bの ut9=u9+ (Lt9— L9)である。
このように変換後の u座標を式 (45)又は式 (46)にて算出することで、変換前と変 換後で、色相が大きく変化するのを抑止できる (変換の前後で色合いが大きく変わつ たと感じさせない。)。
[0122] (Vが 0の場合)
V値 (vi)が 0より大きいと判断しな力つた変換部 44は、さらに V値 (vi)が 0より小さい か否か判断し、 V値 (vi)が 0より小さいと判断しない場合 (即ち、 viが 0である。)、対象 画素データに係る Luvデータ(L, u, v) = (Li, ui, vi)をそのまま変換後のデータ(L t, ut, vt)としてデータ記憶部 42に送信しデータ記憶部 42に記憶させる(即ち、 viが 0の場合、 Luvデータ (Li, ui, vi)は変更されない。 )0なお、この変換後データ (Lt, ut, vt)をデータ記憶部 42に記憶させる順番は、データ記憶部 42が記憶している Lu V画像データに含まれる画素データの順番と同じ順番である(即ち、データ記憶部 42 が記憶して 、る Luv画像データに含まれる元の画素データの順番通りに、変換後デ ータ(Lt, ut, vt)はデータ記憶部 42に記憶される。なお、変換後データ(Lt, ut, vt )がデータ記憶部 42に記憶される記憶領域は、 Luv画像データに含まれる元の画素 データの記憶領域とは異なる。 ) o
その後、変換部 44は、データ記憶部 42が記憶している Luv画像データに含まれる 画素データのうち未だ読み出されていないものを 1つ読み出し送信するよう命令する 読み出し命令信号を対象画像データ抽出部 43に送信する(これによりデータ記憶部 42が記憶している Luv画像データに含まれる次の画素データが対象画素データとな り、処理される。 ) o
前述したように、データ記憶部 42が記憶している Luv画像データに含まれる画素デ ータのうち未だ読み出されていないものを 1つ読み出し送信するよう命令する読み出 し命令信号を変換部 44から受信すると、対象画像データ抽出部 43はデータ記憶部 42にアクセスし、データ記憶部 42が記憶して 、る Luv画像データに含まれる画素デ ータのうち未だ読み出されていないものを 1つずつ読み出し取得した後、該読み出し 取得した 1の画素データを変換部 44へ送信する。これにより、変換部 44へ送信され た画素データは対象画素データとして処理されるので、データ記憶部 42が記憶して いる Luv画像データに含まれる画素データは 1つずつ処理を受ける。
読み出し命令信号を変換部 44から受信した対象画像データ抽出部 43が、データ 記憶部 42にアクセスし、データ記憶部 42が記憶して 、る Luv画像データに含まれる 画素データのうち未だ読み出されて 、な 、ものが存しな ヽ(即ち、全ての画素データ が読み出され、読み出されていない画素データがなくなった)と判断した場合には、 読出部 48へ起動信号を送信する。
該起動信号を対象画像データ抽出部 43から受信した読出部 48は、データ記憶部 42にアクセスし、データ記憶部 42が記憶している変換後のデータ (Lt, ut, vt)全て (n個)を読み出し取得し、該読み出し取得した変換後のデータ (Lt, ut, vt)全て (n 個)を色空間逆変換部 51へ送信する。その後、読出部 48は、データ記憶部 42にァ クセスし、データ記憶部 42の記憶を消去する。
[0124] 変換後のデータ (Lt, ut, vt)全て (n個)を読出部 48 (データ処理部 41)から受信し た色空間逆変換部 51は、 Luv色空間におけるデータとして示された変換後データ( Lt, ut, vt)全て (n個)を RGB画像データに変換する。なお、 Luv色空間におけるデ ータ(Lt, ut, vt)から RGB画像データへの変換は、変換後のデータ(Lt, ut, vt)全 て (n個)の画素データを RGB画像データへ変換することによって行う(n個ある画素 データそれぞれ変換する。 ) oかかる変換の方法は、既知であるのでここでは説明を 省略する。
n個の変換後データ (Lt, ut, vt)全てを RGB画像データへ変換した色空間逆変換 部 51は、該変換した n個の RGB画像データを出力部 61へ送信する。
該変換した n個の RGB画像データを色空間逆変換部 51から受信した出力部 61は 、該 RGB画像データに基づ ヽて表示部 15に画像を表示する。
[0125] 続いて、本装置 11の動作について説明する。
図 24は、本装置 11の動作を説明するフローチャートである。図 24を参照して、本 装置 11の動作について説明する。
まず、受付部 21は、デジタルカメラ部 13からの画像データを受信した力否力判断し (slOl)、画像データを受信したと判断した場合 (YES)には該受信した画像データ を色空間変換部 31に送信する(sl02)。受付部 21が、 slOlにて画像データを受信 したと判断しない場合 (NO)には、再び slOlへ戻る。
sl02にて受付部 21から送信された RGB画像データを受信した色空間変換部 31 は、 RGB画像データを Luv画像データに変換した後、該変換した Luv画像データを データ処理部 41へ送信する(sl03)。
[0126] sl03にて色空間変換部 31から送信された Luv画像データを、データ処理部 41の データ記憶部 42は受信し、 Luv画像データを受信したデータ記憶部 42は、該受信 した Luv画像データを記憶する(sl04)。 sl04の後、データ記憶部 42は、該受信し た Luv画像データを変換部 44へ送信する(sl05)。
sl05にてデータ記憶部 42から送信された Luv画像データを受信した変換部 44は 、変換種別記憶部 45にアクセスし変換種別記憶部 45が記憶している変換種別を読 み出し (sl06)、第 1変換 (第 1及び第 2色覚異常用)又は第 3変換 (第 3色覚異常用) の 、ずれの変換が指定されて!、るかを判断した後、該指定されて!、ると判断した変 換 (具体的には、第 1変換 (第 1及び第 2色覚異常用)又は第 3変換 (第 3色覚異常用 )のいずれか)を行う(sl07)。なお、 sl07の変換 (第 1変換 (第 1及び第 2色覚異常 用)、第 3変換 (第 3色覚異常用))についての動作は、後で詳しく述べる。
[0127] sl07にて変換 (第 1変換 (第 1及び第 2色覚異常用)、第 3変換 (第 3色覚異常用)) された変換後のデータ (Lt, ut, vt)全て (n個)は、データ処理部 41の読出部 48から 色空間逆変換部 51へ送信され、該変換後のデータ (Lt, ut, vt)全て (n個)を受信し た色空間逆変換部 51は、 Luv色空間におけるデータとして示された変換後データ( Lt, ut, vt)全て(n個)を RGB画像データに変換した後、該変換した n個の RGB画 像データを出力部 61へ送信する(s 108)。
sl08にて色空間逆変換部 51から送信された該変換した n個の RGB画像データを 受信した出力部 61は、該 RGB画像データに基づ ヽて表示部 15に画像を表示させ る(sl09)。
sl09の後、作業終了力否力判断し (sl lO)、作業終了であると判断すれば (YES) 作業を終了し (END)、作業終了であると判断しなければ (NO)再び slOlへ戻る。
[0128] 図 25は、上記した sl07の動作のうち、 sl06にて第 1変換 (第 1及び第 2色覚異常 用)が指定されていると判断した場合の動作を説明するフローチャートである。図 25 を参照して、第 1変換 (第 1及び第 2色覚異常用)に係る sl07の本装置 11 (特に、デ ータ処理部 41)の動作について説明する。
第 1変換 (第 1及び第 2色覚異常用)が指定されていると判断した変換部 44は、デ ータ記憶部 42が記憶している Luv画像データに含まれる画素データのうち未だ読み 出されていないものを 1つ読み出して変換部 44へ送信する読み出し命令信号を対 象画像データ抽出部 43に送信する(s201)。
[0129] s201にて変換部 44から送信された読み出し命令信号を受信した対象画像データ 抽出部 43は、データ記憶部 42にアクセスし、データ記憶部 42が記憶している Luv画 像データに含まれる画素データのうち未だ読み出されていないものが存するか否か 判断する(s202)。 s202にて対象画像データ抽出部 43が未だ読み出されていない ものが存すると判断した場合 (YES)、対象画像データ抽出部 43は、データ記憶部 4 2が記憶している Luv画像データに含まれる画素データのうち未だ読み出されていな いものを 1つ読み出し取得し、そして、対象画像データ抽出部 43は、データ記憶部 4 2から該読み出し取得した 1の画素データを変換部 44へ送信する(s203。なお、対 象画像データ抽出部 43から変換部 44へ送信されこれから処理される画素データを「 対象画素データ」という。 )0一方、 s202にて対象画像データ抽出部 43が未だ読み 出されていないものが存すると判断しない場合 (NO)、対象画像データ抽出部 43は 読出部 48へ起動信号を送信する(s209)。
[0130] s203にて対象画像データ抽出部 43から送信された対象画素データを受信した変 換部 44は、対象画素データ(画素番号 i、 Luvデータ (L, u, v) = (Li, ui, vi) )に含 まれる Luvデータの u値 (ui)が 0より大き 、か否か判断し(s204)、大き 、と判断した 場合 (YES)、「uが正の場合の処理」(s205)を行う。なお、 s205の「uが正の場合の 処理」についての動作は、後で詳述する。
s204にて変換部 44力 対象画素データに含まれる Luvデータの u値 (ui)が 0より 大き 、と判断しな 、場合 (NO)、 Luvデータの u値 (ui)が 0より小さ 、か否か判断し(s 206)、小さいと判断した場合 (YES)、「uが負の場合の処理」(s207)を行う。なお、 s 207の「uが負の場合の処理」についての動作は、後で詳述する。
s206にて変換部 44力 対象画素データに含まれる Luvデータの u値 (ui)が 0より 小さいと判断しない場合 (NO。即ち、この場合は u値 (ui)が 0である。)、「uが 0の場 合の処理」(s208)を行う。なお、 s208の「u力^の場合の処理」についての動作は、 後で詳述する。
[0131] 前述したように、 s202にて対象画像データ抽出部 43が未だ読み出されていないも のが存すると判断しない場合 (NO)には、 s209にて対象画像データ抽出部 43が読 出部 48へ起動信号を送信するが、 s209にて発せられた該起動信号を受信した読出 部 48は、データ記憶部 42にアクセスし、データ記憶部 42が記憶している変換後の データ (Lt, ut, vt)全て (n個)を読み出し取得し、該読み出し取得した変換後のデ ータ(Lt, ut, vt)全て (n個)を色空間逆変換部 51へ送信する(s210)。 s210の後、 読出部 48は、データ記憶部 42にアクセスし、データ記憶部 42の記憶を消去する(s2 11)。 s211の後、 sl08へ行く。
[0132] 図 26は、上記した s205の「uが正の場合の処理」の動作を説明するフローチャート である。図 26を参照して、 s205の「uが正の場合の処理」の動作について説明する。 s204にて対象画素データに含まれる Luvデータの u値 (ui)力 SOより大き!/ヽと判断( YES)した変換部 44は、対象画素データの Luvデータ(L, u, v) = (Li, ui, vi)に含 まれる Lの数値 Liを用 ヽて uと Lとの 2軸直交軸における楕円の式 (具体的には、前述 の式(1)及び式(1. 1) )を作成する(s301)。なお、変換部 44が楕円の式を作成す る際には、変換部 44がパラメータ記憶部 46にアクセスしてパラメータ記憶部 46から P umaxの値を適宜読み出し取得する。
[0133] 次!、で、変換部 44は、対象画素データ(画素番号 i、 Luvデータ(L, u, v) = (Li, u i, vi) )に含まれる Luvデータの L値 (Li)力 3. 3以上であるか否か判断し(s302)、 L値 (Li)が 53. 3以上であると判断した場合 (YES)は変換部 44が数式記憶部 47に アクセスして数式記憶部 47から前述の式(2)を読み出し取得する(s303)。そして、 変換部 44は、 s303にて取得した式(2)中の L値に対象画素データの L値 (Li)を代 入して uの値を算出し(s304)、該算出した uの値 (L値 (Li)においてディスプレイが 表示し得る u値の最大値)を第 1基準値 umと記憶する。
一方、 s302において変換部 44力 対象画素データ(画素番号 i、 Luvデータ(L, u , ν) = (Li, ui, vi) )に含まれる Luvデータの L値 (Li)が 53. 3以上であると判断しな い場合 (NO)は、変換部 44は、第 1基準値 umとして 175. 0213を記憶する(s305)
[0134] s304又は s305の後、変換部 44は、対象画素データ(画素番号 i、 Luvデータ(L, u, V) = (Li, ui, vi) )に含まれる Luvデータの u値 uiが、 s304又は s305にて決定さ れた第 1基準値 umに対する割合 Sc ( =uiZum)を求める(s306)。
s306の後、変換部 44は、数式記憶部 47にアクセスして数式記憶部 47から式 (4) を読み出し取得し (s307)、さらに変換部 44がパラメータ記憶部 46から Pumaxの値 を読み出し取得した後、 uemOを算出する(s308)。なお、 uemOは、前述の通り、上 記式(3)によって示される楕円の楕円周上の点のうちディスプレイが表示し得る範囲 内に存するもので L値が最大の点(LmO, uemO)の u座標である。
s308の後、変換部 44は、数式記憶部 47にアクセスして数式記憶部 47から式(5) を読み出し取得した後(s309)、 s309にて取得した式(5)に、 s308にて算出した ue mOと、対象画素データに含まれる Luvデータの L値 (Li)と、を代入して uemを算出 する(s310)。
[0135] s310の後、変換部 44は、数式記憶部 47にアクセスして数式記憶部 47から式(9) を読み出し取得し (s311)、さらに変換部 44がパラメータ記憶部 46から Pumaxの値 を読み出し取得した後、 s311にて取得した式(9)に、対象画素データに含まれる Lu Vデータの L値(Li)と、 s306にて算出した Scと、 s308にて算出した uemOと、を代入 して対象画素データを第 1変換 (第 1及び第 2色覚異常用)した後の Luvデータの L 値(Lt)を求める(s312)。
[0136] 図 27は、上記した s205の「uが正の場合の処理」の動作のうち s313以降の動作を 説明するフローチャートである。図 27を参照して、 s313以降の「uが正の場合の処理 」の動作について説明する。
s312にて L値 (Lt)を算出した後、変換部 44は、数式記憶部 47にアクセスして数式 記憶部 47から前述の式(10)を読み出し取得し (s313)、さらに変換部 44がパラメ一 タ記憶部 46から Pumaxの値を読み出し取得した後、 s312にて算出された L値 (Lt) と、対象画素データに含まれる Luvデータの L値 (Li)と、を式(10)に代入して対象 画素データを第 1変換 (第 1及び第 2色覚異常用)した後の Luvデータの u値 (ut)を 求める(s314)。
[0137] s314の後、変換部 44は、対象画素データの Luv画像データ(L, u, v) = (Li, ui, vi)の v値 viが正か否かを判断し(s315)、 viが正 ( >0)であれば (YES)、変換部 44 は、数式記憶部 47にアクセスして数式記憶部 47から前述の式(11)を読み出し取得 し(s316)、対象画素データの Luv画像データ(Li, ui, vi)の v値 vi及び L値 Liと、 s3 12にて算出した Ltと、を式(11)に代入して vtの値を求める(s317)。その後、変換 部 44は、 s317にて算出した V値 (vt)の値が負(vtく 0)力否か判断し(s318)、負で あると判断した場合 (YES)は vt=0とする(s319)。なお、 s318にて変換部 44力 s 317にて算出した V値 (vt)の値が負(vtく 0)であると判断しない場合 (NO)は、 s31 7にて算出した V値 (vt)の値のままにする (V値 (vt)変更せず)。
[0138] 一方、変換部 44力 s315にて対象画素データの Luv画像データ(L, u, v) = (Li , ui, vi)の ν値 viが正(>0)であると判断しない場合 (ΝΟ。即ち、 viが 0以下(0又は く 0) )、変換部 44は、数式記憶部 47にアクセスして数式記憶部 47から前述の式(1 2)を読み出し取得し(s320)、対象画素データの Luv画像データ(Li, ui, vi)の v値 v i及び L値 Liと、 s312にて算出した Ltと、を式(12)に代入して vtの値を求める(s321 )。その後、変換部 44は、 s321にて算出した V値 (vt)の値が正 (vt>0)力否か判断 し(s322)、正であると判断した場合 (YES)は vt=0とする(s323)。なお、 s322にて 変換部 44力 s321にて算出した V値 (vt)の値が正 (vt>0)であると判断しな 、場合 (NO)は、 s321にて算出した V値 (vt)の値のままにする(V値 (vt)変更せず)。
[0139] 図 28は、上記した s205の「uが正の場合の処理」の動作のうち s351以降の動作を 説明するフローチャートである。図 28を参照して、 s351以降の「uが正の場合の処理 」の動作について説明する。
上記のようにして V値 (vt)を求めた後(s319、 s318にて V値 (vt)の値が負(vtく 0) であると判断しなかった場合 (NO)、 s323、 s322にて v値 (vt)の値が正 (vt>0)で あると判断しなかった場合 (NO)、のいずれかの後)、変換部 44は、 vt >0か否力判 断し (s351)、 vt>0であると判断した場合 (YES)、変換部 44は、数式記憶部 47に アクセスして数式記憶部 47から L=Ltにおける Vの最大値を求める式を読み出し取 得する(s352)。具体的には、 Ltが 0以上かつ 87. 8未満(0≤Lt< 87.8)の時には図 11の vlの式を、 Ltが 87. 8以上かつ 97. 0未満(87.8≤Ltく 97.0)の時には図 11の v2の式を、そして Ltが 97. 0以上かつ 100以下(97.0≤Lt≤100)の時には図 11の V 3の式を s352において読み出し取得する。 s352において読み出し取得した式を用 い、該式の Lに Ltを代入して Vの最大値を求める(s353)。その後、 s353にて算出し た Vの最大値よりも vtが大きいか否力判断し (s354)、 Vの最大値よりも vtが大きいと判 断した場合 (YES)には、 s353にて求めた Vの最大値^ vtとする(s355)。 s354にて Vの最大値よりも vtが大きいと判断しない場合 (NO)には、 vtを変更しない。 一方、 s351にて vt>0であると判断しない場合 (NO)、変換部 44は、数式記憶部 4 7にアクセスして数式記憶部 47から L=Ltにおける Vの最小値を求める式を読み出し 取得する(s356)。具体的には、 Ltが 60. 4より大きくかつ 100以下(60.4< Lt≤100) の時には図 11の v4の式を、 Ltが 32. 4より大きく 60. 4以下(32.4く Lt≤60.4)の時 には図 11の v5の式を、そして Ltが 0以上 32. 4以下(0≤Lt≤32.4)の時には図 11の v6の式を s356において読み出し取得する。 s356において読み出し取得した式を用 い、該式の Lに Ltを代入して Vの最小値を求める(s357)。その後、 s357にて算出し た Vの最小値よりも vtが小さいか否力判断し (s358)、 Vの最小値よりも vtが小さいと判 断した場合 (YES)には、 s357にて求めた Vの最小値^ vtとする(s359)。 s358にて Vの最小値よりも vtが小さいと判断しない場合 (NO)には、 vtを変更しない。
[0140] 以上のようにして、対象画素データ(画素番号 i、 Luvデータ(L, u, v) = (Li, ui, vi ) )に含まれる Luvデータ (Li, ui, vi)は、変換後データ (Lt, ut, vt)に変換される。 その後、変換部 44は、この変換後データ (Lt, ut, vt)をデータ記憶部 42に送信し データ記憶部 42に記憶させる(s360)。
以上のようにして 1の対象画素データに関する s205の「uが正の場合の処理」の動 作が終了する。
s360の後、 s201へ戻り、変換部 44は、データ記憶部 42が記憶している Luv画像 データに含まれる画素データのうち未だ読み出されていないものを 1つ読み出し送信 するよう命令する読み出し命令信号を対象画像データ抽出部 43に送信する(これに よりデータ記憶部 42が記憶している Luv画像データに含まれる次の画素データが対 象画素データとなり、処理される。 ) o
[0141] 図 29は、上記した s207の「uが負の場合の処理」の動作を説明するフローチャート である。図 29を参照して、 s207の「uが負の場合の処理」の動作について説明する。 s206にて対象画素データに含まれる Luvデータの u値 (ui)力Oより小さいと判断 (Y ES)した変換部 44は、対象画素データの Luvデータ(L, u, v) = (Li, ui, vi)に含ま れる Lの数値 Liを用 ヽて uと との 2軸直交軸における楕円の式 (具体的には、前述 の式(13)及び式(13. 1) )を作成する(s401)。なお、変換部 44が楕円の式を作成 する際には、変換部 44がパラメータ記憶部 46にアクセスしてパラメータ記憶部 46か ら Puminの値を適宜読み出し取得する。
[0142] 次!、で、変換部 44は、対象画素データ(画素番号 i、 Luvデータ(L, u, v) = (Li, u i, vi) )に含まれる Luvデータの L値 (Li)力 8未満であるか否か判断し(s402)、 L値 (Li)が 87. 8未満であると判断した場合 (YES)は変換部 44が数式記憶部 47に アクセスして数式記憶部 47から前述の式(14)を読み出し取得する(s403)。そして、 変換部 44は、 s403にて取得した式(14)中の L値に対象画素データの L値 (Li)を代 入して uの値を算出し(s404)、該算出した uの値 (L値 (Li)においてディスプレイが 表示し得る u値の最小値)を第 1基準値 umと記憶する。
一方、 s402において変換部 44力 対象画素データ(画素番号 i、 Luvデータ(L, u , ν) = (Li, ui, vi) )に含まれる Luvデータの L値 (Li)力 ¾ 7. 8未満であると判断しな い場合 (NO)は、変換部 44は、第 1基準値 umとして一 83. 0667 (ディスプレイが表 示し得る u値の最小値)を記憶する(s405)。
[0143] s404又は s405の後、変換部 44は、対象画素データ(画素番号 i、 Luvデータ(L, u, V) = (Li, ui, vi) )に含まれる Luvデータの u値 uiが、 s404又は s405にて決定さ れた第 1基準値 umに対する割合 Sc ( =uiZum)を求める(s406)。
s406の後、変換部 44は、数式記憶部 47にアクセスして数式記憶部 47から前述の 式(16)を読み出し取得し (s407)、さらに変換部 44がパラメータ記憶部 46から Pumi nの値を読み出し取得した後、 uemOを算出する(s408)。なお、 uemOは、前述の通 り、上記の式(15)によって示される楕円の楕円周上の点のうちディスプレイが表示し 得る範囲内に存するもので L値が最小の点(LmO, uemO)の u座標である。
s408の後、変換部 44は、数式記憶部 47にアクセスして数式記憶部 47から式(17) を読み出し取得した後(s409)、 s409にて取得した式(17)に、 s408にて算出した u emOと、対象画素データに含まれる Luvデータの L値 (Li)と、を代入して uemを算出 する(s410)。
[0144] s410の後、変換部 44は、数式記憶部 47にアクセスして数式記憶部 47から前記の 式(20)を読み出し取得し (s411)、さらに変換部 44がパラメータ記憶部 46から Pumi nの値を読み出し取得した後、 s411にて取得した式(20)に、対象画素データに含ま れる Luvデータの L値(Li)と、 s406にて算出した Scと、 s408にて算出した uemOと、 を代入して対象画素データを第 1変換 (第 1及び第 2色覚異常用)した後の Luvデー タの L値(Lt)を求める(s412)。
[0145] 図 30は、上記した s207の「uが負の場合の処理」の動作のうち s413以降の動作を 説明するフローチャートである。図 30を参照して、 s413以降の「uが負の場合の処理 」の動作について説明する。
s412にて L値 (Lt)を算出した後、変換部 44は、数式記憶部 47にアクセスして数式 記憶部 47から前述の式(21)を読み出し取得し (s413)、さらに変換部 44がパラメ一 タ記憶部 46から Puminの値を読み出し取得した後、 s412にて算出された L値 (Lt) と、対象画素データに含まれる Luvデータの L値 (Li)と、を式(21)に代入して対象 画素データを第 1変換 (第 1及び第 2色覚異常用)した後の Luvデータの u値 (ut)を 求める(s414)。
[0146] s414の後、変換部 44は、対象画素データの Luv画像データ(L, u, v) = (Li, ui, vi)の v値 viが正か否かを判断し(s415)、 viが正 ( >0)であれば (YES)、変換部 44 は、数式記憶部 47にアクセスして数式記憶部 47から前述の式(22)を読み出し取得 し(s416)、対象画素データの Luv画像データ(Li, ui, vi)の v値 vi及び L値 Liと、 s4 12にて算出した Ltと、を式(22)に代入して vtの値を求める(s417)。その後、変換 部 44は、 s417にて算出した V値 (vt)の値が負(vtく 0)力否か判断し(s418)、負で あると判断した場合 (YES)は vt=0とする(s419)。なお、 s418にて変換部 44が、 s 417にて算出した V値 (vt)の値が負(vtく 0)であると判断しない場合 (NO)は、 s41 7にて算出した V値 (vt)の値のままにする (V値 (vt)変更せず)。
[0147] 一方、変換部 44力 s415にて対象画素データの Luv画像データ(L, u, v) = (Li , ui, vi)の ν値 viが正(>0)であると判断しない場合 (ΝΟ。即ち、 viが 0以下(0又は く 0) )、変換部 44は、数式記憶部 47にアクセスして数式記憶部 47から前述の式(2 3)を読み出し取得し(s420)、対象画素データの Luv画像データ(Li, ui, vi)の v値 v i及び L値 Liと、 s412にて算出した Ltと、を式(23)に代入して vtの値を求める(s421 )。その後、変換部 44は、 s421にて算出した V値 (vt)の値が正 (vt>0)力否か判断 し(s422)、正であると判断した場合 (YES)は vt=0とする(s423)。なお、 s422にて 変換部 44力 s421にて算出した V値 (vt)の値が正 (vt>0)であると判断しな 、場合 (NO)は、 s421にて算出した v値 (vt)の値のままにする(V値 (vt)変更せず)。
[0148] 図 31は、上記した s207の「uが負の場合の処理」の動作のうち s451以降の動作を 説明するフローチャートである。図 31を参照して、 s451以降の「uが負の場合の処理 」の動作について説明する。
上記のようにして V値 (vt)を求めた後(s419、 5418にて 値 (vt)の値が負(vtく 0) であると判断しなかった場合 (NO)、 s423、 s422にて v値 (vt)の値が正 (vt>0)で あると判断しなかった場合 (NO)、のいずれかの後)、変換部 44は、 vt >0か否力判 断し (s451)、 vt>0であると判断した場合 (YES)、変換部 44は、数式記憶部 47に アクセスして数式記憶部 47から L=Ltにおける Vの最大値を求める式を読み出し取 得する(s452)。具体的には、 Ltが 0以上かつ 87. 8未満(0≤Lt< 87.8)の時には図 11の vlの式を、 Ltが 87. 8以上かつ 97. 0未満(87.8≤Ltく 97.0)の時には図 11の v2の式を、そして Ltが 97. 0以上かつ 100以下(97.0≤Lt≤100)の時には図 11の V 3の式を s452において読み出し取得する。 s452において読み出し取得した式を用 い、該式の Lに Ltを代入して Vの最大値を求める(s453)。その後、 s453にて算出し た Vの最大値よりも vtが大きいか否力判断し (s454)、 Vの最大値よりも vtが大きいと判 断した場合 (YES)には、 s453にて求めた Vの最大値^ vtとする(s455)。 s454にて Vの最大値よりも vtが大きいと判断しない場合 (NO)には、 vtを変更しない。
一方、 s451にて vt>0であると判断しない場合 (NO)、変換部 44は、数式記憶部 4 7にアクセスして数式記憶部 47から L=Ltにおける Vの最小値を求める式を読み出し 取得する(s456)。具体的には、 Ltが 60. 4より大きくかつ 100以下(60.4< Lt≤100) の時には図 11の v4の式を、 Ltが 32. 4より大きく 60. 4以下(32.4く Lt≤60.4)の時 には図 11の v5の式を、そして Ltが 0以上 32. 4以下(0≤Lt≤32.4)の時には図 11の v6の式を s456において読み出し取得する。 s456において読み出し取得した式を用 い、該式の Lに Ltを代入して Vの最小値を求める(s457)。その後、 s457にて算出し た Vの最小値よりも vtが小さ 、か否か判断し (s458)、 Vの最小値よりも vtが小さ 、と判 断した場合 (YES)には、 s457にて求めた Vの最小値^ vtとする(s459)。 s458にて Vの最小値よりも vtが小さいと判断しない場合 (NO)には、 vtを変更しない。
[0149] 以上のようにして、対象画素データ(画素番号 i、 Luvデータ(L, u, v) = (Li, ui, vi ) )に含まれる Luvデータ (Li, ui, vi)は、変換後データ (Lt, ut, vt)に変換される。 その後、変換部 44は、この変換後データ (Lt, ut, vt)をデータ記憶部 42に送信し データ記憶部 42に記憶させる(s460)。
以上のようにして 1の対象画素データに関する s207の「uが負の場合の処理」の動 作が終了する。
s460の後、 s201へ戻り、変換部 44は、データ記憶部 42が記憶している Luv画像 データに含まれる画素データのうち未だ読み出されていないものを 1つ読み出し送信 するよう命令する読み出し命令信号を対象画像データ抽出部 43に送信する(これに よりデータ記憶部 42が記憶している Luv画像データに含まれる次の画素データが対 象画素データとなり、処理される。 ) o
[0150] 図 32は、上記した s208の「uが 0の場合の処理」の動作を説明するフローチャート である。図 32を参照して、 s208の「uが 0の場合の処理」の動作について説明する。 s206にて変換部 44力 対象画素データに含まれる Luvデータの u値 (ui)が 0より 小さいと判断しない場合 (NO。即ち、この場合は u値 (ui)が 0である。)、変換部 44は 、対象画素データに係る Luvデータ (L, u, V) = (Li, ui, vi)をそのまま変換後のデ ータ (Lt, ut, vt)としてデータ記憶部 42に送信しデータ記憶部 42に記憶させる(s5 01)。即ち、 u値 (ui)が 0である場合には、対象画素データの Luvデータ(Li, ui, vi) がそのまま変換後のデータ (Lt, ut, vt)としてデータ記憶部 42に記憶される。
これにより 1の対象画素データに関する s208の「uが 0の場合の処理」の動作が終 了する。
s501の後、 s201へ戻り、変換部 44は、データ記憶部 42が記憶している Luv画像 データに含まれる画素データのうち未だ読み出されていないものを 1つ読み出し送信 するよう命令する読み出し命令信号を対象画像データ抽出部 43に送信する(これに よりデータ記憶部 42が記憶している Luv画像データに含まれる次の画素データが対 象画素データとなり、処理される。 ) o
[0151] 図 33は、上記した sl07の動作のうち、 sl06にて第 3変換 (第 3色覚異常用)が指 定されていると判断した場合の動作を説明するフローチャートである。図 33を参照し て、第 3変換 (第 3色覚異常用)に係る sl07の本装置 11 (特に、データ処理部 41)の 動作について説明する。
第 3変換 (第 3色覚異常用)が指定されていると判断した変換部 44は、データ記憶 部 42が記憶している Luv画像データに含まれる画素データのうち未だ読み出されて V、な 、ものを 1つ読み出して変換部 44へ送信する読み出し命令信号を対象画像デ ータ抽出部 43に送信する(s601)。
[0152] s601にて変換部 44から送信された読み出し命令信号を受信した対象画像データ 抽出部 43は、データ記憶部 42にアクセスし、データ記憶部 42が記憶している Luv画 像データに含まれる画素データのうち未だ読み出されていないものが存するか否か 判断する(s602)。 s602にて対象画像データ抽出部 43が未だ読み出されていない ものが存すると判断した場合 (YES)、対象画像データ抽出部 43は、データ記憶部 4 2が記憶している Luv画像データに含まれる画素データのうち未だ読み出されていな いものを 1つ読み出し取得し、そして、対象画像データ抽出部 43は、データ記憶部 4 2から該読み出し取得した 1の画素データを変換部 44へ送信する(s603。なお、対 象画像データ抽出部 43から変換部 44へ送信されこれから処理される画素データを「 対象画素データ」という。 )0一方、 s602にて対象画像データ抽出部 43が未だ読み 出されていないものが存すると判断しない場合 (NO)、対象画像データ抽出部 43は 読出部 48へ起動信号を送信する(s609)。
[0153] s603にて対象画像データ抽出部 43から送信された対象画素データを受信した変 換部 44は、対象画素データ(画素番号 i、 Luvデータ (L, u, v) = (Li, ui, vi) )に含 まれる Luvデータの v値 (vi)が 0より大き 、か否か判断し(s604)、大き 、と判断した 場合 (YES)、「vが正の場合の処理」(s605)を行う。なお、 s605の「vが正の場合の 処理」についての動作は、後で詳述する。
s604にて変換部 44力 対象画素データに含まれる Luvデータの V値 (vi)が 0より 大き 、と判断しな 、場合 (NO)、 Luvデータの V値 (vi)が 0より小さ 、か否か判断し(s 606)、小さいと判断した場合 (YES)、「vが負の場合の処理」(s607)を行う。なお、 s 607の「vが負の場合の処理」についての動作は、後で詳述する。
s606にて変換部 44力 対象画素データに含まれる Luvデータの V値 (vi)が 0より 小さいと判断しない場合 (NO。即ち、この場合は V値 (vi)が 0である。)、「vが 0の場 合の処理」(s608)を行う。なお、 s608の「v力^の場合の処理」についての動作は、 後で詳述する。
[0154] 前述したように、 s602にて対象画像データ抽出部 43が未だ読み出されていないも のが存すると判断しない場合 (NO)には、 s609にて対象画像データ抽出部 43が読 出部 48へ起動信号を送信するが、 s609にて発せられた該起動信号を受信した読出 部 48は、データ記憶部 42にアクセスし、データ記憶部 42が記憶している変換後の データ (Lt, ut, vt)全て (n個)を読み出し取得し、該読み出し取得した変換後のデ ータ(Lt, ut, vt)全て (n個)を色空間逆変換部 51へ送信する(s610)。 s610の後、 読出部 48は、データ記憶部 42にアクセスし、データ記憶部 42の記憶を消去する(s6 11)。 s611の後、 sl08へ行く。
[0155] 図 34は、上記した s605の「vが正の場合の処理」の動作を説明するフローチャート である。図 34を参照して、 s605の「vが正の場合の処理」の動作について説明する。 s604にて対象画素データに含まれる Luvデータの V値 (vi)力 SOより大き!/、と判断 ( Y ES)した変換部 44は、対象画素データの Luvデータ(L, u, v) = (Li, ui, vi)に含ま れる Lの数値 Liを用いて vと Lとの 2軸直交軸における楕円の式 (具体的には、前述の 式(24)及び式(24. 1) )を作成する(s701)。なお、変換部 44が楕円の式を作成す る際には、変換部 44がパラメータ記憶部 46にアクセスしてパラメータ記憶部 46から P vmaxの値を適宜読み出し取得する。
[0156] 次!、で、変換部 44は、対象画素データ(画素番号 i、 Luvデータ(L, u, v) = (Li, u i, vi) )に含まれる Luvデータの L値 (Li)力 8未満であるか否か判断し(s702)、 L値 (Li)が 87. 8未満であると判断した場合 (YES)は変換部 44が数式記憶部 47に アクセスして数式記憶部 47から前述の式(25)を読み出し取得する(s703)。そして、 変換部 44は、 s703にて取得した式(25)中の L値に対象画素データの L値 (Li)を代 入して Vの値を算出し(s704)、該算出した Vの値 (L値 (Li)においてディスプレイが表 示し得る V値の最大値)を第 1基準値 vmと記憶する。
一方、 s702において変換部 44力 対象画素データ(画素番号 i、 Luvデータ(L, u , ν) = (Li, ui, vi) )に含まれる Luvデータの L値 (Li)力 ¾ 7. 8未満であると判断しな い場合 (NO)は、変換部 44は、第 1基準値 vmとして 107. 4177を記憶する(s705) [0157] s704又は s705の後、変換部 44は、対象画素データ(画素番号 i、 Luvデータ(L, u, V) = (Li, ui, vi) )に含まれる Luvデータの v値 viが、 s704又は s705にて決定さ れた第 1基準値 vmに対する割合 Sc ( =viZvm)を求める(s706)。
s706の後、変換部 44は、数式記憶部 47にアクセスして数式記憶部 47から前述の 式(27)を読み出し取得し (s707)、さらに変換部 44がパラメータ記憶部 46から Pvm axの値を読み出し取得した後、 vemOを算出する(s708)。なお、 vemOは、前述の 通り、上記式(26)によって示される楕円の楕円周上の点のうちディスプレイが表示し 得る範囲内に存するもので L値が最小の点(LmO, vemO)の v座標である。
s708の後、変換部 44は、数式記憶部 47にアクセスして数式記憶部 47から前述の 式(28)を読み出し取得した後(s709)、 s709にて取得した式(28)に、 s708にて算 出した vemOと、対象画素データに含まれる Luvデータの L値 (Li)と、を代入して ve mを算出する(s710)。
[0158] s710の後、変換部 44は、数式記憶部 47にアクセスして数式記憶部 47から前記の 式(31)を読み出し取得し (s711)、さらに変換部 44がパラメータ記憶部 46から Pvm axの値を読み出し取得した後、 s711にて取得した式(31)に、対象画素データに含 まれる Luvデータの L値(Li)と、 s706にて算出した Scと、 s708にて算出した vemOと 、を代入して対象画素データを第 3変換 (第 3色覚異常用)した後の Luvデータの L値 (Lt)を求める(s712)。
[0159] 図 35は、上記した s605の「vが正の場合の処理」の動作のうち s713以降の動作を 説明するフローチャートである。図 35を参照して、 s713以降の「vが正の場合の処理 」の動作について説明する。
s712にて L値 (Lt)を算出した後、変換部 44は、数式記憶部 47にアクセスして数式 記憶部 47から前述の式(32)を読み出し取得し (s713)、さらに変換部 44がパラメ一 タ記憶部 46から Pvmaxの値を読み出し取得した後、 s712にて算出された L値 (Lt) と、対象画素データに含まれる Luvデータの L値 (Li)と、を式(32)に代入して対象 画素データを第 3変換 (第 3色覚異常用)した後の Luvデータの V値 (vt)を求める(s7 14)。 [0160] s714の後、変換部 44は、対象画素データの Luv画像データ(L, u, v) = (Li, ui, vi)の u値 uiが正か否かを判断し(s715)、 u値 uiが正( >0)であれば (YES)、変換 部 44は、数式記憶部 47にアクセスして数式記憶部 47から前述の式(33)を読み出し 取得し(s716)、対象画素データの Luv画像データ(Li, ui, vi)の u値 ui及び L値 Li と、 s712にて算出した Ltと、を式(33)に代入して utの値を求める(s717)。その後、 変換部 44は、 s717にて算出した u値 (ut)の値が負(utく 0)力否力判断し( s 718)、 負であると判断した場合 (YES)は ut=0とする(s719)。なお、 s718にて変換部 44 力 s717にて算出した u値 (ut)の値が負(utく 0)であると判断しない場合 (NO)は、 s717にて算出した u値 (ut)の値のままにする(u値 (ut)変更せず)。
[0161] 一方、変換部 44力 s715にて対象画素データの Luv画像データ(L, u, v) = (Li , ui, vi)の u値 uiが正(>0)であると判断しない場合 (ΝΟ。即ち、 u値 uiが 0以下(0 又はく 0) )、変換部 44は、数式記憶部 47にアクセスして数式記憶部 47から前述の 式(34)を読み出し取得し(s720)、対象画素データの Luv画像データ (Li, ui, vi) の u値 ui及び L値 Liと、 s712にて算出した Ltと、を式(34)に代入して utの値を求め る(s721)。その後、変換部 44は、 s721にて算出した u値 (ut)の値が正 (vt>0)力 否か判断し(s722)、正であると判断した場合 (YES)は ut=0とする(s723)。なお、 s722にて変換部 44が、 s721にて算出した u値 (ut)の値が正 (vt>0)であると判断 しない場合 (NO)は、 s721にて算出した u値 (ut)の値のままにする (u値 (ut)変更せ ず)。
[0162] 図 36は、上記した s605の「vが正の場合の処理」の動作のうち s751以降の動作を 説明するフローチャートである。図 36を参照して、 s751以降の「vが正の場合の処理 」の動作について説明する。
上記のようにして u値 (ut)を求めた後(s719、 s718にて u値 (ut)の値が負(utく 0) であると判断しなかった場合 (NO)、 s723、 s722にて u値 (ut)の値が正(ut>0)で あると判断しなかった場合 (NO)、のいずれかの後)、変換部 44は、 ut>0か否か判 断し (s751)、 ut>0であると判断した場合 (YES)、変換部 44は、数式記憶部 47に アクセスして数式記憶部 47から L=Ltにおける uの最大値を求める式を読み出し取 得する(s752)。具体的には、 Ltが 0以上かつ 53. 3未満(0≤Lt< 53.3)の時には図 11の ulの式を、 Ltが 53. 3以上かつ 100. 0以下(53.3≤Lt≤100)の時には図 11の u2の式を s752において読み出し取得する。 s752において読み出し取得した式を用 い、該式の Lに Ltを代入して uの最大値を求める(s753)。その後、 s753にて算出し た uの最大値よりも utが大きいか否力判断し (s754)、 uの最大値よりも気が大きいと 判断した場合 (YES)には、 s753にて求めた uの最大値を utとする(s755)。 s754に て uの最大値よりも utが大きいと判断しない場合 (NO)には、 utを変更しない。
一方、 s751にて ut>0であると判断しない場合 (NO)、変換部 44は、数式記憶部 4 7にアクセスして数式記憶部 47から L=Ltにおける uの最小値を求める式を読み出し 取得する(s756)。具体的には、 Ltが 91. 2以上かつ 100以下(91.2≤Lt≤100)の時 には図 11の u3の式を、 Ltが 87. 8以上かつ 91. 2未満(87.8≤Ltく 91.2)の時には 図 11の u4の式を、 Ltが 0以上かつ 87. 8未満(0≤Lt< 87.8)の時には図 11の u5の 式を s756にお!/、て読み出し取得する。 s756にお!/、て読み出し取得した式を用い、 該式の Lに Ltを代入して uの最小値を求める(s757)。その後、 s757にて算出した u の最小値よりも utが小さ 、か否か判断し (s758)、 uの最小値よりも utが小さ 、と判断 した場合 (YES)には、 s757にて求めた uの最小値を utとする(s759)。 s758にて u の最小値よりも utが小さいと判断しない場合 (NO)には、 utを変更しない。
[0163] 以上のようにして、対象画素データ(画素番号 i、 Luvデータ(L, u, v) = (Li, ui, vi ) )に含まれる Luvデータ (Li, ui, vi)は、変換後データ (Lt, ut, vt)に変換される。 その後、変換部 44は、この変換後データ (Lt, ut, vt)をデータ記憶部 42に送信し データ記憶部 42に記憶させる(s760)。
以上のようにして 1の対象画素データに関する s605の「vが正の場合の処理」の動 作が終了する。
s760の後、 s601へ戻り、変換部 44は、データ記憶部 42が記憶している Luv画像 データに含まれる画素データのうち未だ読み出されていないものを 1つ読み出し送信 するよう命令する読み出し命令信号を対象画像データ抽出部 43に送信する(これに よりデータ記憶部 42が記憶している Luv画像データに含まれる次の画素データが対 象画素データとなり、処理される。 ) o
[0164] 図 37は、上記した s607の「vが負の場合の処理」の動作を説明するフローチャート である。図 37を参照して、 s607の「vが負の場合の処理」の動作について説明する。 s606にて対象画素データに含まれる Luvデータの V値 (vi)が 0より小さいと判断 (Y ES)した変換部 44は、対象画素データの Luvデータ(L, u, v) = (Li, ui, vi)に含ま れる Lの数値 Liを用いて vと Lとの 2軸直交軸における楕円の式 (具体的には、前述の 式(35)及び式(35. 1) )を作成する(s801)。なお、変換部 44が楕円の式を作成す る際には、変換部 44がパラメータ記憶部 46にアクセスしてパラメータ記憶部 46から P vminの値を適宜読み出し取得する。
[0165] 次!、で、変換部 44は、対象画素データ(画素番号 i、 Luvデータ(L, u, v) = (Li, u i, vi) )に含まれる Luvデータの L値 (Li)が 60. 4より大きいか否か判断し(s802)、 L 値 (Li)が 60. 4より大き 、と判断した場合 (YES)は変換部 44が数式記憶部 47にァ クセスして数式記憶部 47から前述の式(36)を読み出し取得する(s803)。そして、 変換部 44は、 s803にて取得した式(36)中の L値に対象画素データの L値 (Li)を代 入して Vの値を算出し(s804)、該算出した Vの値 (L値 (Li)においてディスプレイが表 示し得る V値の最小値)を第 1基準値 vmと記憶する。
一方、 s802において変換部 44力 対象画素データ(画素番号 i、 Luvデータ(L, u , ν) = (Li, ui, vi) )に含まれる Luvデータの L値 (Li)が 60. 4より大きいと判断しな い場合 (NO)は、 L値 (Li)力 39. 0より大きい力否力判断し(s881)、 39. 0より大きい と判断した場合 (YES)は、変換部 44が数式記憶部 47にアクセスして数式記憶部 47 力も前述の式(37)を読み出し取得する(s882)。そして、変換部 44は、 s882にて取 得した式(37)中の L値に対象画素データの L値 (Li)を代入して Vの値を算出し (s88 3)、該算出した Vの値 (L値 (Li)にお 、てディスプレイが表示し得る V値の最小値)を 第 1基準値 vmと記憶する。
s881にて L値 (Li)が 39. 0より大きいと判断しない場合 (NO)は、変換部 44は、第 1基準値 vmとして一 134. 0896 (ディスプレイが表示し得る v値の最小値)を記憶す る(s884)。
[0166] s804、 s883又は s884の後、変換部 44は、対象画素データ(画素番号 i、 Luvデー タ(L, u, V) = (Li, ui, vi) )に含まれる Luvデータの v値 viが、 s804、 s883又は s88 4にて決定された第 1基準値 vmに対する割合 Sc ( =viZvm)を求める(s806)。 s806の後、変換部 44は、数式記憶部 47にアクセスして数式記憶部 47から前述の 式(39)を読み出し取得し (s807)、さらに変換部 44がパラメータ記憶部 46から Pvmi nの値を読み出し取得した後、 vemOを算出する(s808)。なお、 vemOは、前述の通 り、上述の式(38)によって示される楕円の楕円周上の点のうちディスプレイが表示し 得る範囲内に存するもので L値が最大の点(LmO, vemO)の v座標である。
s808の後、変換部 44は、数式記憶部 47にアクセスして数式記憶部 47から式 (40) を読み出し取得した後(s809)、 s809にて取得した式 (40)に、 s808にて算出した v emOと、対象画素データに含まれる Luvデータの L値 (Li)と、を代入して vemを算出 する(s810)。
[0167] s810の後、変換部 44は、数式記憶部 47にアクセスして数式記憶部 47から前記の 式 (43)を読み出し取得し (s811)、さらに変換部 44がパラメータ記憶部 46から Pvmi nの値を読み出し取得した後、 s811にて取得した式 (43)に、対象画素データに含ま れる Luvデータの L値(Li)と、 s806にて算出した Scと、 s808にて算出した vemOと、 を代入して対象画素データを第 3変換 (第 3色覚異常用)した後の Luvデータの 1直( Lt)を求める(s812)。
[0168] 図 38は、上記した s607の「vが負の場合の処理」の動作のうち s813以降の動作を 説明するフローチャートである。図 38を参照して、 s813以降の「vが負の場合の処理 」の動作について説明する。
s812にて L値 (Lt)を算出した後、変換部 44は、数式記憶部 47にアクセスして数式 記憶部 47から前述の式 (44)を読み出し取得し (s813)、さらに変換部 44がパラメ一 タ記憶部 46から Pvminの値を読み出し取得した後、 s812にて算出された L値 (Lt) と、対象画素データに含まれる Luvデータの L値 (Li)と、を式 (44)に代入して対象 画素データを第 3変換 (第 3色覚異常用)した後の Luvデータの V値 (vt)を求める(s8 14)。
[0169] s814の後、変換部 44は、対象画素データの Luv画像データ(L, u, v) = (Li, ui, vi)の u値 uiが正か否かを判断し(s815)、 u値 uiが正( >0)であれば (YES)、変換 部 44は、数式記憶部 47にアクセスして数式記憶部 47から前述の式 (45)を読み出し 取得し(s816)、対象画素データの Luv画像データ(Li, ui, vi)の u値 ui及び L値 Li と、 s812にて算出した Ltと、を式 (45)に代入して utの値を求める(s817)。その後、 変換部 44は、 s817にて算出した u値 (ut)の値が負(utく 0)力否力判断し(s818)、 負であると判断した場合 (YES)は ut=0とする(s819)。なお、 s818にて変換部 44 力 s817にて算出した u値 (ut)の値が負(utく 0)であると判断しない場合 (NO)は、 s817にて算出した u値 (ut)の値のままにする(u値 (ut)変更せず)。
[0170] 一方、変換部 44力 s815にて対象画素データの Luv画像データ(L, u, v) = (Li , ui, vi)の u値 uiが正(>0)であると判断しない場合 (ΝΟ。即ち、 u値 uiが 0以下(0 又はく 0) )、変換部 44は、数式記憶部 47にアクセスして数式記憶部 47から前述の 式 (46)を読み出し取得し(s820)、対象画素データの Luv画像データ (Li, ui, vi) の u値 ui及び L値 Liと、 s812にて算出した Ltと、を式(46)に代入して utの値を求め る(s821)。その後、変換部 44は、 s821にて算出した u値 (ut)の値が正 (ut>0)力 否か判断し(s822)、正であると判断した場合 (YES)は ut=0とする(s823)。なお、 s822にて変換部 44力 s821にて算出した u値 (ut)の値が正 (ut>0)であると判断 しない場合 (NO)は、 s821にて算出した u値 (ut)の値のままにする(u値 (ut)変更せ ず)。
[0171] 図 39は、上記した s607の「vが負の場合の処理」の動作のうち s851以降の動作を 説明するフローチャートである。図 39を参照して、 s851以降の「vが負の場合の処理 」の動作について説明する。
上記のようにして u値 (ut)を求めた後(s819、 s818にて u値 (ut)の値が負(utく 0) であると判断しなかった場合 (NO)、 s823、 s822にて u値 (ut)の値が正(ut>0)で あると判断しなかった場合 (NO)、のいずれかの後)、変換部 44は、 ut>0か否か判 断し (s851)、 ut>0であると判断した場合 (YES)、変換部 44は、数式記憶部 47に アクセスして数式記憶部 47から L=Ltにおける uの最大値を求める式を読み出し取 得する(s852)。具体的には、 Ltが 0以上かつ 53. 3未満(0≤Lt< 53.3)の時には図 11の ulの式を、 Ltが 53. 3以上かつ 100. 0以下(53.3≤Lt≤100)の時には図 11の u2の式を s852において読み出し取得する。 s852において読み出し取得した式を用 い、該式の Lに Ltを代入して uの最大値を求める(s853)。その後、 s853にて算出し た uの最大値よりも utが大きいか否力判断し (s854)、 uの最大値よりも気が大きいと 判断した場合 (YES)には、 s853にて求めた uの最大値を utとする(s855)。 s854に て uの最大値よりも utが大きいと判断しない場合 (NO)には、 utを変更しない。
一方、 s851にて ut>0であると判断しない場合 (NO)、変換部 44は、数式記憶部 4 7にアクセスして数式記憶部 47から L=Ltにおける uの最小値を求める式を読み出し 取得する(s856)。具体的には、 Ltが 91. 2以上かつ 100以下(91.2≤Lt≤100)の時 には図 11の u3の式を、 Ltが 87. 8以上かつ 91. 2未満(87.8≤Ltく 91.2)の時には 図 11の u4の式を、 Ltが 0以上かつ 87. 8未満(0≤Lt< 87.8)の時には図 11の u5の 式を s856にお!/、て読み出し取得する。 s856にお!/、て読み出し取得した式を用い、 該式の Lに Ltを代入して uの最小値を求める(s857)。その後、 s857にて算出した u の最小値よりも utが小さ 、か否か判断し (s858)、 uの最小値よりも utが小さ 、と判断 した場合 (YES)には、 s857にて求めた uの最小値を utとする(s859)。 s858にて u の最小値よりも utが小さいと判断しない場合 (NO)には、 utを変更しない。
[0172] 以上のようにして、対象画素データ(画素番号 i、 Luvデータ(L, u, v) = (Li, ui, vi ) )に含まれる Luvデータ (Li, ui, vi)は、変換後データ (Lt, ut, vt)に変換される。 その後、変換部 44は、この変換後データ (Lt, ut, vt)をデータ記憶部 42に送信し データ記憶部 42に記憶させる(s860)。
以上のようにして 1の対象画素データに関する s607の「vが負の場合の処理」の動 作が終了する。
s860の後、 s601へ戻り、変換部 44は、データ記憶部 42が記憶している Luv画像 データに含まれる画素データのうち未だ読み出されていないものを 1つ読み出し送信 するよう命令する読み出し命令信号を対象画像データ抽出部 43に送信する(これに よりデータ記憶部 42が記憶している Luv画像データに含まれる次の画素データが対 象画素データとなり、処理される。 ) o
[0173] 図 40は、上記した s608の「vが 0の場合の処理」の動作を説明するフローチャート である。図 40を参照して、 s608の「vが 0の場合の処理」の動作について説明する。 s606にて変換部 44力 対象画素データに含まれる Luvデータの V値 (vi)が 0より 小さいと判断しない場合 (NO。即ち、この場合は V値 (vi)が 0である。)、変換部 44は 、対象画素データに係る Luvデータ (L, u, V) = (Li, ui, vi)をそのまま変換後のデ ータ (Lt, ut, vt)としてデータ記憶部 42に送信しデータ記憶部 42に記憶させる(s9 01)。即ち、 V値 (vi)が 0である場合には、対象画素データの Luvデータ(Li, ui, vi) がそのまま変換後のデータ (Lt, ut, vt)としてデータ記憶部 42に記憶される。
これにより 1の対象画素データに関する s608の「vが 0の場合の処理」の動作が終 了する。
s901の後、 s601へ戻り、変換部 44は、データ記憶部 42が記憶している Luv画像 データに含まれる画素データのうち未だ読み出されていないものを 1つ読み出し送信 するよう命令する読み出し命令信号を対象画像データ抽出部 43に送信する(これに よりデータ記憶部 42が記憶している Luv画像データに含まれる次の画素データが対 象画素データとなり、処理される。 ) o
[0174] 以上説明したように、本装置 11は、輝度を表す輝度軸 (L軸)と、クロマテイクネス指 数を示す 2の軸である第 1軸 (u軸)及び第 2軸 (V軸)と、の 3の直交座標軸系によって 示される均等色空間たる Luv色空間における位置データとして示された画素データ が含む輝度軸方向の成分 Li、第 1軸方向の成分 ui及び第 2軸方向の成分 viのうち、 第 1軸 (u軸)及び第 2軸 (V軸)との 、ずれか一方の軸である選択軸方向の成分に応 じて輝度軸方向の成分を変化させる処理 (Ltへと変化させる。)である色覚変換処理 を行う色覚変換処理手段たるデータ処理部 41を、備えるものである、画素処理装置 である。
なお、第 1変換 (第 1及び第 2色覚異常用)を行う際には第 1軸 (u軸)を選択軸とし、 第 3変換 (第 3色覚異常用)を行う際には第 2軸 (V軸)を選択軸とする。
[0175] そして、第 1変換 (第 1及び第 2色覚異常用)を行う際には、選択軸 (第 1軸 (u軸)) 方向の成分が第 1所定値たる 0よりも大きい場合と、選択軸 (第 1軸 (u軸))方向の成 分が該第 1所定値たる 0よりも小さい場合と、のいずれか一方の場合 (ここでは該第 1 所定値たる 0よりも小さい場合)には輝度軸 (L軸)方向の成分を減少させると共に、い ずれ力他方の場合 (ここでは該第 1所定値たる 0よりも大きい場合)には輝度軸 (L軸) 方向の成分を増力 tlさせるように色覚変換処理を行う。
第 1変換 (第 1及び第 2色覚異常用)を行う際には、選択軸 (第 1軸 (u軸))が、正方 向に赤成分を示し負方向に緑成分を示す軸であり、選択軸 (第 1軸 (u軸))方向の成 分が、前記第 1所定値たる 0よりも赤成分が大きい場合には輝度軸 (L軸)方向の成 分を増加させ、前記第 1所定値たる 0よりも赤成分が小さ 、場合には輝度軸 (L軸)方 向の成分を減少させるように色覚変換処理を行う。
[0176] また、第 3変換 (第 3色覚異常用)を行う際には、選択軸 (第 2軸 (V軸))方向の成分 が第 1所定値たる 0よりも大き 、場合と、選択軸 (第 2軸 (V軸))方向の成分が該第 1所 定値たる 0よりも小さ 、場合と、の 、ずれか一方の場合 (ここでは該第 1所定値たる 0 よりも大きい場合)には輝度軸 (L軸)方向の成分を減少させると共に、いずれか他方 の場合 (ここでは該第 1所定値たる 0よりも小さい場合)には輝度軸 (L軸)方向の成分 を増加させるように色覚変換処理を行う。
第 3変換 (第 3色覚異常用)を行う際には、選択軸 (第 2軸 (V軸))が、正方向に黄成 分を示し負方向に青成分を示す軸であり、選択軸 (第 2軸 (V軸))方向の成分が、前 記第 1所定値たる 0よりも黄成分が大き ヽ場合には輝度軸 (L軸)方向の成分を減少 させ、前記第 1所定値たる 0よりも黄成分が小さい場合には輝度軸 (L軸)方向の成分 を増加させるように色覚変換処理を行う。
[0177] 前記色覚変換処理後の選択軸方向の成分が、前記色覚変換処理前の選択軸方 向の成分の絶対値に対して前記色覚変換処理後の選択軸方向の成分の絶対値を 単調増加させる単調増加関数によって前記色覚変換処理前の選択軸方向の成分を 変換することで決定される。これに関し、それぞれの場合について以下説明する。
[0178] 第 1変換 (第 1及び第 2色覚異常用)において u>0の場合には、色覚変換処理後 の選択軸 (第 1軸 (u軸))方向の成分 utが、色覚変換処理前の選択軸 (第 1軸 (u軸) )方向の成分 uiを用いて次のように決定される。 Sc=uiZumであるから、上述のよう に um>0のときには、 uiに Scは正比例して増加する。このとき色覚変換処理後の輝 度軸 (L軸)方向の成分 Ltは、 Lt = Sc X (Lm— Li) +Liにて決定されるので、色覚 変換処理前の輝度軸 (L軸)方向の成分 Liが一定であれば、 Lmも一定である(Lmは 、式(1. 1)によって示される楕円の楕円周上の点のうちディスプレイが表示し得る範 囲内に存するもので L値が最大の点(Lm, uem)の L座標であるので、 Liが一定であ れば Lmも一定である。 )0そして、第 1変換 (第 1及び第 2色覚異常用)において u>0 の場合には、(Lm—Li) >0であるので、 uiが増カロ(正で絶対値が増加する)すると S c力 S増カロし、それにより Ltも増加する。そして、 utは、 ut = Pumax/100 X ( (1— Li) 2—(Lt— 100) 2) · 5にて決定されるので、 Liが一定であれば Ltの増加により utが増 加する(Pumax>0、 0く Ltく 100)。即ち、第 1変換 (第 1及び第 2色覚異常用)に ぉ 、て u>0の場合には、色覚変換処理後の選択軸 (第 1軸 (u軸))方向の成分 が 、色覚変換処理前の選択軸 (第 1軸 (u軸))方向の成分 uiの絶対値に対して色覚変 換処理後の選択軸 (第 1軸 (u軸))方向の成分 utの絶対値を単調増加させる単調増 加関数によって色覚変換処理前の選択軸 (第 1軸 (u軸))方向の成分 uiを変換するこ とで決定されている。
[0179] 第 1変換 (第 1及び第 2色覚異常用)において u< 0の場合には、色覚変換処理後 の選択軸 (第 1軸 (u軸))方向の成分 utが、色覚変換処理前の選択軸 (第 1軸 (u軸) )方向の成分 uiを用いて次のように決定される。 Sc=uiZumであるから、上述のよう に umく 0のときには、 uiが小さくなる(負で絶対値が増加する)につれて Scは正比例 して増加する。このとき色覚変換処理後の輝度軸 (L軸)方向の成分 Ltは、 Lt= Sc X (Lm-Li) +Liにて決定されるので、色覚変換処理前の輝度軸 (L軸)方向の成分 Li が一定であれば、 Lmも一定である(Lmは、式(13. 1)によって示される楕円の楕円 周上の点のうちディスプレイが表示し得る範囲内に存するもので L値が最小の点(L m, uem)の L座標であるので、 Liが一定であれば Lmも一定である。 )0そして、第 1 変換 (第 1及び第 2色覚異常用)において u< 0の場合には、(Lm— Li) < 0であるの で、 uiが小さくなる (負で絶対値が増加する)につれて Scが増加し、それにより Ltも減 少する。そして、 utは、 ut=PuminZlOO X (Li2— Lt2) 5にて決定されるので、 Li が一定であれば Ltの減少により utが減少 (負で絶対値が増加する)する(Puminく 0 、 0く Ltく 100)。即ち、第 1変換 (第 1及び第 2色覚異常用)において uく 0の場合に は、色覚変換処理後の選択軸 (第 1軸 (u軸))方向の成分 utが、色覚変換処理前の 選択軸 (第 1軸 (u軸))方向の成分 uiの絶対値に対して色覚変換処理後の選択軸( 第 1軸 (u軸))方向の成分 utの絶対値を単調増力!]させる単調増加関数によって色覚 変換処理前の選択軸 (第 1軸 (u軸))方向の成分 uiを変換することで決定されて 、る
[0180] 第 3変換 (第 3色覚異常用)において v>0の場合には、色覚変換処理後の選択軸 ( 第 2軸 (v軸))方向の成分 vtが、色覚変換処理前の選択軸 (第 2軸 (V軸))方向の成 分 viを用いて次のように決定される。 Sc=viZvmであるから、上述のように vm>0の ときには、 viに Scは正比例して増加する。このとき色覚変換処理後の輝度軸 (L軸) 方向の成分 Ltは、 Lt = Sc X (Lm-Li) +Liにて決定されるので、色覚変換処理前 の輝度軸 (L軸)方向の成分 Liが一定であれば、 Lmも一定である(Lmは、式(24. 1 )によって示される楕円の楕円周上の点のうちディスプレイが表示し得る範囲内に存 するもので L値が最小の点(Lm, vem)の L座標であるので、 Liが一定であれば Lm も一定である。 ) oそして、第 3変換 (第 3色覚異常用)において v>0の場合には、 (L m— Li)く 0であるので、 viが増カロ(正で絶対値が増加する)すると Scが増加し、それ により Ltは減少する。そして、 vtは、 vt = Pvmax/100 X (Li2— Lt2) ' 5にて決定さ れるので、 Liが一定であれば Ltの減少により vtが増加する(Pvmax>0、 0<Lt< 1 00)。即ち、第 3変換 (第 3色覚異常用)において v>0の場合には、色覚変換処理後 の選択軸 (第 2軸 (V軸))方向の成分 vtが、色覚変換処理前の選択軸 (第 2軸 (V軸) ) 方向の成分 viの絶対値に対して色覚変換処理後の選択軸 (第 2軸 (V軸))方向の成 分 vtの絶対値を単調増加させる単調増加関数によって色覚変換処理前の選択軸( 第 2軸 (V軸))方向の成分 viを変換することで決定されて ヽる。
第 3変換 (第 3色覚異常用)において v< 0の場合には、色覚変換処理後の選択軸 ( 第 2軸 (V軸))方向の成分 vtが、色覚変換処理前の選択軸 (第 2軸 (V軸))方向の成 分 viを用いて次のように決定される。 Sc=viZvmであるから、上述のように vmく 0の ときには、 viが小さくなる (負で絶対値が増加する)につれて Scは正比例して増加す る。このとき色覚変換処理後の輝度軸 (L軸)方向の成分 Ltは、 Lt = Sc X (Lm-Li) + Liにて決定されるので、色覚変換処理前の輝度軸 (L軸)方向の成分 Liが一定で あれば、 Lmも一定である(Lmは、式(35. 1)によって示される楕円の楕円周上の点 のうちディスプレイが表示し得る範囲内に存するもので L値が最大の点(Lm, vem) の L座標であるので、 Liが一定であれば Lmも一定である。 )0そして、第 3変換 (第 3 色覚異常用)において v< 0の場合には、(Lm—Li) >0であるので、 viが小さくなる( 負で絶対値が増加する)につれて Scが増加し、それにより Ltは増加する。そして、 vt は、 vt=Pvmin/100 X ( (1— Li) 2—(Lt— 100) 2)。· 5にて決定されるので、 Liがー 定であれば Ltの増加により vtが減少 (負で絶対値が増加する)する(Pvmin< 0、 0 <Lt< 100) o即ち、第 3変換 (第 3色覚異常用)において Vく 0の場合には、色覚変 換処理後の選択軸 (第 2軸 (V軸))方向の成分 vtが、色覚変換処理前の選択軸 (第 2 軸 (V軸))方向の成分 viの絶対値に対して色覚変換処理後の選択軸 (第 2軸 (V軸) ) 方向の成分 vtの絶対値を単調増加させる単調増加関数によって色覚変換処理前の 選択軸 (第 2軸 (V軸))方向の成分 viを変換することで決定されて 、る。
[0182] 第 1変換 (第 1及び第 2色覚異常用)においては、画素データが含む輝度軸 (L軸) 方向の成分 Liと選択軸 (第 1軸 (u軸))方向の成分 uiとのデータ組である選択データ 組 (Li, ui)のうち、選択軸 (第 1軸 (u軸))方向の成分が第 2所定値たる 0より大きい選 択データ組と、選択軸 (第 1軸 (u軸))方向の成分が該第 2所定値たる 0より小さ 、選 択データ組と、のいずれか一方の選択データ組 (ここでは該第 2所定値たる 0より大き V、選択データ組)を、選択軸 (第 1軸 (u軸))と輝度軸 (L軸)とを含む選択面 (uL平面 )にて選択軸 (第 1軸 (u軸))を横軸にとり輝度軸 (L軸)を縦軸にとったときに該選択 面 (uL平面)に存する凸関数 (図 5中、実線 F1により式(1)にて示される楕円)と凹関 数(図 13中、実線 F2により式(13)にて示される楕円)とのいずれか一方の関数 (ここ では該凸関数)を満足させるように変換すると共に、 V、ずれか他方の選択データ組( ここでは該第 2所定値たる 0より小さ 、選択データ組)を!、ずれか他方の関数 (ここで は該凹関数)を満足させるように変換する。
そして、輝度軸 (L軸)方向の成分 Liが同じ場合、選択軸 (第 1軸 (u軸))方向の成 分が前記第 2所定値たる 0を示す直線 (ここでは L軸)上に中心が存する第 1の楕円( 式(1)にて示される楕円)の楕円周の一部により形成される前記第 2所定値たる 0より 大きい範囲に存する第 1楕円周(図 5中、実線 F1)と、選択軸 (第 1軸 (u軸))方向の 成分が前記第 2所定値たる 0を示す直線 (ここでは L軸)上に中心が存する第 2の楕 円(式(13)にて示される楕円)の楕円周の一部により形成される前記第 2所定値たる 0未満に存する第 2楕円周(図 13中、実線 F2)と、によって前記凸関数と前記凹関数 とが形成され、該第 1楕円周(図 5中、実線 F1)の一端と該第 2楕円周(図 13中、実線 F2)の一端とが前記第 2所定値たる 0 (u=0)にて連結されている。
[0183] 第 3変換 (第 3色覚異常用)においては、画素データが含む輝度軸 (L軸)方向の成 分 Liと選択軸 (第 2軸 (V軸))方向の成分 viとのデータ組である選択データ組 (Li, vi) のうち、選択軸 (第 2軸 (V軸))方向の成分が第 2所定値たる 0より大き 、選択データ 組と、選択軸 (第 2軸 (V軸))方向の成分が該第 2所定値たる 0より小さ 、選択データ 組と、の 、ずれか一方の選択データ組 (ここでは該第 2所定値たる 0より大き 、選択デ ータ組)を、選択軸 (第 2軸 (V軸) )と輝度軸 (L軸)とを含む選択面 (vL平面)にて選 択軸 (第 2軸 (V軸))を横軸にとり輝度軸 (L軸)を縦軸にとったときに該選択面 (vL平 面)に存する凸関数 (図 21中、実線 F4により式 (35)にて示される楕円)と凹関数 (図 17中、実線 F3により式 (24)にて示される楕円)との!/、ずれか一方の関数 (ここでは 該凹関数)を満足させるように変換すると共に、いずれか他方の選択データ組 (ここで は該第 2所定値たる 0より小さ 、選択データ組)を!、ずれか他方の関数 (ここでは該凸 関数)を満足させるように変換する。
そして、輝度軸 (L軸)方向の成分 Liが同じ場合、選択軸 (第 2軸 (V軸))方向の成 分が前記第 2所定値たる 0を示す直線 (ここでは L軸)上に中心が存する第 1の楕円( 式(24)にて示される楕円)の楕円周の一部により形成される前記第 2所定値たる 0よ り大きい範囲に存する第 1楕円周(図 17中、実線 F3)と、選択軸 (第 2軸 (V軸))方向 の成分が前記第 2所定値たる 0を示す直線 (ここでは L軸)上に中心が存する第 2の 楕円(式 (35)にて示される楕円)の楕円周の一部により形成される前記第 2所定値た る 0未満に存する第 2楕円周(図 21中、実線 F4)と、によって前記凸関数と前記凹関 数とが形成され、該第 1楕円周(図 17中、実線 F3)の一端と該第 2楕円周(図 21中、 実線 F4)の一端とが前記第 2所定値たる 0 (v=0)にて連結されている。
第 1変換 (第 1及び第 2色覚異常用)においては、前記色覚変換処理において選択 軸 (第 1軸 (u軸))方向の成分に応じて輝度軸 (L軸)方向の成分を変化させる変化量 (Lt-Li)が、選択軸 (第 1軸 (u軸))に係る成分に関する基準値である選択軸基準 値 umに対する画素データの選択軸 (第 1軸 (u軸) )に係る成分 uiの割合 Sc ( =uiZ um)に応じて決定される。具体的には、(1^— ) 7 (し111— )
Figure imgf000089_0001
で あるので、該変化量 (Lt Li)は割合 Sc ( =uiZum)に(Lm— Li)を乗じて決定され る。
また、第 1変換 (第 1及び第 2色覚異常用)においては、前記輝度軸 (L軸)方向の 成分の変化量 (Lt Li)が、輝度軸 (L軸)〖こ係る成分に関する基準値である輝度軸 基準値 Lmと色覚変換処理される前の輝度軸 (L軸)方向の成分 Liとの差 (Lm— Li) に前記割合 Sc ( =uiZum)を乗じた値に応じて決定される。そして、第 1変換 (第 1及 び第 2色覚異常用)においては、輝度軸基準値 Lmは、前記凸関数(図 5中、実線 F1 により式(1)にて示される楕円)又は前記凹関数(図 13中、実線 F2により式(13)に て示される楕円)と、選択軸 (第 1軸 (u軸) )と輝度軸 (L軸)とを含む選択面 (uL平面) における表示可能な範囲の境界線(図 5及び図 13中、点線にて示す。)と、の交点( 図 5中の M5、図 13中の M7)の輝度軸(L軸)に係る成分である。
[0185] そして、第 1変換 (第 1及び第 2色覚異常用)において u>0の場合、色覚変換処理 される前の輝度軸 (L軸)方向の成分の少なくとも一部の範囲(ここでは L値 (Li)が 53 . 3以上)においては、前記選択軸基準値 umが、前記選択軸 (第 1軸 (u軸))に係る 成分の表示可能な限界値 (その L値 (Li)にお 、てディスプレイが表示し得る u値の最 大値)である。第 1変換 (第 1及び第 2色覚異常用)において u>0の場合、色覚変換 処理される前の輝度軸 (L軸)方向の成分の少なくとも一部の範囲(ここでは L値 (Li) 力 3. 3未満)においては、前記選択軸基準値 umが一定値 175. 0213である。 また、第 1変換 (第 1及び第 2色覚異常用)において uく 0の場合、色覚変換処理さ れる前の輝度軸 (L軸)方向の成分の少なくとも一部の範囲(ここでは L値 (Li)が 87. 8未満)においては、前記選択軸基準値 umが、前記選択軸 (第 1軸 (u軸))に係る成 分の表示可能な限界値 (その L値 (Li)にお 、てディスプレイが表示し得る u値の最小 値)である。第 1変換 (第 1及び第 2色覚異常用)において u< 0の場合、色覚変換処 理される前の輝度軸 (L軸)方向の成分の少なくとも一部の範囲(ここでは L値 (Li)が 87. 8以上)においては、前記選択軸基準値 umが一定値一 83. 0667である。
[0186] 第 3変換 (第 3色覚異常用)においては、前記色覚変換処理において選択軸 (第 2 軸 (V軸))方向の成分に応じて輝度軸 (L軸)方向の成分を変化させる変化量 (Lt L i)が、選択軸 (第 2軸 (V軸) )〖こ係る成分に関する基準値である選択軸基準値 vmに 対する画素データの選択軸 (第 2軸 (V軸) )に係る成分 viの割合 Sc ( = viZvm)に応 じて決定される。具体的には、(Lt—Li) Z (Lm—Li) =Sc ( =viZvm)でぁるので、 該変化量 (Lt— Li)は割合 Sc ( =viZvm)に (Lm— Li)を乗じて決定される。 第 3変換 (第 3色覚異常用)においては、前記輝度軸 (L軸)方向の成分の変化量( Lt-Li)が、輝度軸 (L軸)に係る成分に関する基準値である輝度軸基準値 Lmと色 覚変換処理される前の輝度軸 (L軸)方向の成分 Liとの差 (Lm— Li)に前記割合 Sc ( =viZvm)を乗じた値に応じて決定される。そして、第 3変換 (第 3色覚異常用)にお いては、輝度軸基準値 Lmは、前記凸関数(図 21中、実線 F4により式(35)にて示さ れる楕円)又は前記凹関数(図 17中、実線 F3により式 (24)にて示される楕円)と、選 択軸 (第 2軸 (V軸))と輝度軸 (L軸)とを含む選択面 (vL平面)における表示可能な範 囲の境界線(図 17及び図 21中、点線にて示す。)と、の交点(図 17中の M6、図 21 中の M9)の輝度軸 (L軸)に係る成分である。
[0187] そして、第 3変換 (第 3色覚異常用)において v>0の場合、色覚変換処理される前 の輝度軸 (L軸)方向の成分の少なくとも一部の範囲(ここでは L値 (Li)が 87. 8未満 )においては、前記選択軸基準値 vmが、前記選択軸 (第 2軸 (V軸))に係る成分の表 示可能な限界値 (その L値 (Li)にお 、てディスプレイが表示し得る V値の最大値)で ある。第 3変換 (第 3色覚異常用)において v>0の場合、色覚変換処理される前の輝 度軸 (L軸)方向の成分の少なくとも一部の範囲(ここでは L値 (Li)が 87. 8以上)に おいては、前記選択軸基準値 vmが一定値 107. 4177である。
また、第 3変換 (第 3色覚異常用)において v< 0の場合、色覚変換処理される前の 輝度軸 (L軸)方向の成分の少なくとも一部の範囲(ここでは L値 (Li)が 39. 0より大き い)においては、前記選択軸基準値 vmが、前記選択軸 (第 2軸 (V軸))に係る成分の 表示可能な限界値 (その L値 (Li)にお ヽてディスプレイが表示し得る V値の最小値。 なお、ここでは L値 (Li)が 60. 4より大きいか否かで該最小値を算出するための式が 異なる。)である。第 3変換 (第 3色覚異常用)において Vく 0の場合、色覚変換処理さ れる前の輝度軸 (L軸)方向の成分の少なくとも一部の範囲(ここでは L値 (Li)が 39. 0以下)においては、前記選択軸基準値 vmが一定値一 134. 0896である。
[0188] 第 1変換 (第 1及び第 2色覚異常用)において、画素データのうち、第 1軸 (u軸)及 び第 2軸 (V軸)とのうち選択軸 (第 1軸 (u軸) )以外の軸である非選択軸 (V軸)方向の 成分の絶対値を減少させる処理である非選択軸処理を、前記色覚変換処理手段た るデータ処理部 41がさらに行う。 具体的には、非選択軸処理は次のように行う。
(l) uが正の場合
viが正 ( >0)であれば vt=vi— (Lt-Li)にて非選択軸 (V軸)方向の成分 vtを算出 する。第 1変換 (第 1及び第 2色覚異常用)において uiが正であれば (Lt Li) >0で あるから、 viの絶対値よりも vtの絶対値が小さくなる。即ち、選択軸 (第 1軸 (u軸))方 向の成分に応じて輝度軸 (L軸)方向の成分を変化させる変化量 (Lt Li)に応じて、 非選択軸 (V軸)方向の成分の絶対値を減少させる。そして、求めた V値 (vt)の値が 負(vt< 0)力否力判断し負であると判断した場合は vt = 0とすることで、画素データ の非選択軸 (V軸)の成分が、非選択軸処理前 viと非選択軸処理後 vtとで正負が異 なる場合には、非選択軸処理後の非選択軸の成分 vtを 0として 、る。
viが 0以下(0又は < 0)であれば vt=vi+ (Lt-Li)にて非選択軸 (v軸)方向の成 分 vtを算出する。第 1変換 (第 1及び第 2色覚異常用)において uiが正であれば (Lt -Li) >0であるから、 viの絶対値よりも vtの絶対値が小さくなる。即ち、選択軸 (第 1 軸 (u軸))方向の成分に応じて輝度軸 (L軸)方向の成分を変化させる変化量 (Lt Li)に応じて、非選択軸 (V軸)方向の成分の絶対値を減少させる。そして、求めた V値 (vt)の値が正 (vt>0)力否力判断し正であると判断した場合は vt = 0とすることで、 画素データの非選択軸 (V軸)の成分が、非選択軸処理前 viと非選択軸処理後 vtと で正負が異なる場合には、非選択軸処理後の非選択軸の成分 vtを 0として 、る。
viが正(>0)と viが 0以下(0又は < 0)のいずれも、最後に、このように決定した vtの 値力 ディスプレイが表示し得る範囲内に存するか否かを変換部 44はチェックをし、 該範囲内に存しないと判断した場合は vt値を、変換後の Ltの値におけるディスプレ ィが表示し得る範囲の最小値または最大値 (変換後の vtが近 、方)に置き換えること で補正する。これにより非選択軸処理後の画素データが表示可能な範囲か否力判 断し、表示可能でないと判断した場合には、非選択軸の成分を表示可能限界値 (変 換後の Ltの値におけるディスプレイが表示し得る範囲の最小値または最大値)に修 正している。
(2) uが負の場合
viが正 ( >0)であれば vt=vi—(Li Lt)にて非選択軸 (V軸)方向の成分 vtを算出 する。第 1変換 (第 1及び第 2色覚異常用)において uiが負であれば (Li Lt) >0で あるから、 viの絶対値よりも vtの絶対値が小さくなる。即ち、選択軸 (第 1軸 (u軸))方 向の成分に応じて輝度軸 (L軸)方向の成分を変化させる変化量 (Li Lt)に応じて、 非選択軸 (V軸)方向の成分の絶対値を減少させる。そして、求めた V値 (vt)の値が 負(vt< 0)力否力判断し負であると判断した場合は vt = 0とすることで、画素データ の非選択軸 (V軸)の成分が、非選択軸処理前 viと非選択軸処理後 vtとで正負が異 なる場合には、非選択軸処理後の非選択軸の成分 vtを 0として 、る。
viが 0以下(0又は < 0)であれば vt=vi+ (Li— Lt)にて非選択軸 (v軸)方向の成 分 vtを算出する。第 1変換 (第 1及び第 2色覚異常用)において uiが負であれば (Li — Lt) >0であるから、 viの絶対値よりも vtの絶対値が小さくなる。即ち、選択軸 (第 1 軸 (u軸))方向の成分に応じて輝度軸 (L軸)方向の成分を変化させる変化量 (Li L t)に応じて、非選択軸 (V軸)方向の成分の絶対値を減少させる。そして、求めた 直( vt)の値が正 (vt>0)力否力判断し正であると判断した場合は vt = 0とすることで、画 素データの非選択軸 (V軸)の成分が、非選択軸処理前 viと非選択軸処理後 vtとで 正負が異なる場合には、非選択軸処理後の非選択軸の成分 vtを 0としている。
viが正(>0)と viが 0以下(0又は < 0)のいずれも、最後に、このように決定した vtの 値力 ディスプレイが表示し得る範囲内に存するか否かを変換部 44はチェックをし、 該範囲内に存しないと判断した場合は vt値を、変換後の Ltの値におけるディスプレ ィが表示し得る範囲の最小値または最大値 (変換後の vtが近 、方)に置き換えること で補正する。これにより非選択軸処理後の画素データが表示可能な範囲か否力判 断し、表示可能でないと判断した場合には、非選択軸の成分を表示可能限界値 (変 換後の Ltの値におけるディスプレイが表示し得る範囲の最小値または最大値)に修 正している。
第 3変換 (第 3色覚異常用)において、画素データのうち、第 1軸 (u軸)及び第 2軸( V軸)とのうち選択軸 (第 2軸 (V軸) )以外の軸である非選択軸 (u軸)方向の成分の絶 対値を減少させる処理である非選択軸処理を、前記色覚変換処理手段たるデータ 処理部 41がさらに行う。
具体的には、非選択軸処理は次のように行う。 (l) vが正の場合
uiが正 ( >0)であれば ut=ui— (Li-Lt)にて非選択軸(u軸)方向の成分 utを算 出する。第 3変換 (第 3色覚異常用)において viが正であれば (Li Lt) >0であるか ら、 uiの絶対値よりも utの絶対値が小さくなる。即ち、選択軸 (第 2軸 (V軸))方向の成 分に応じて輝度軸 (L軸)方向の成分を変化させる変化量 (Li Lt)に応じて、非選 択軸 (u軸)方向の成分の絶対値を減少させる。そして、求めた u値 (ut)の値が負(ut く 0)か否力判断し負であると判断した場合は ut=0とすることで、画素データの非選 択軸 (u軸)の成分が、非選択軸処理前 uiと非選択軸処理後 utとで正負が異なる場 合には、非選択軸処理後の非選択軸の成分 utを 0として 、る。
uiが 0以下(0又はく 0)であれば ut=ui+ (Li-Lt)にて非選択軸(u軸)方向の成 分 utを算出する。第 3変換 (第 3色覚異常用)において viが正であれば (Li Lt) >0 であるから、 uiの絶対値よりも utの絶対値が小さくなる。即ち、選択軸 (第 2軸 (V軸)) 方向の成分に応じて輝度軸 (L軸)方向の成分を変化させる変化量 (Li Lt)に応じ て、非選択軸 (u軸)方向の成分の絶対値を減少させる。そして、求めた u値 (ut)の値 が正 (ut>0)力否力判断し正であると判断した場合は ut = 0とするとすることで、画素 データの非選択軸 (u軸)の成分が、非選択軸処理前 uiと非選択軸処理後 utとで正 負が異なる場合には、非選択軸処理後の非選択軸の成分 utを 0としている。
uiが正(>0)と uiが 0以下(0又はく 0)のいずれも、最後に、このように決定した ut の値が、ディスプレイが表示し得る範囲内に存する力否かを変換部 44はチェックをし 、該範囲内に存しないと判断した場合は ut値を、変換後の Ltの値におけるディスプ レイが表示し得る範囲の最小値または最大値 (変換後の utが近 、方)に置き換えるこ とで補正する。これにより非選択軸処理後の画素データが表示可能な範囲か否力判 断し、表示可能でないと判断した場合には、非選択軸の成分を表示可能限界値 (変 換後の Ltの値におけるディスプレイが表示し得る範囲の最小値または最大値)に修 正している。
(2) vが負の場合
uiが正 ( >0)であれば ut=ui—(Lt Li)にて非選択軸(u軸)方向の成分 utを算 出する。第 3変換 (第 3色覚異常用)において viが負であれば (Lt Li) >0であるか ら、 uiの絶対値よりも utの絶対値が小さくなる。即ち、選択軸 (第 2軸 (V軸))方向の成 分に応じて輝度軸 (L軸)方向の成分を変化させる変化量 (Lt Li)に応じて、非選 択軸 (u軸)方向の成分の絶対値を減少させる。そして、求めた u値 (ut)の値が負(ut く 0)か否力判断し負であると判断した場合は ut=0とすることで、画素データの非選 択軸 (u軸)の成分が、非選択軸処理前 uiと非選択軸処理後 utとで正負が異なる場 合には、非選択軸処理後の非選択軸の成分 utを 0として 、る。
uiが 0以下(0又はく 0)であれば ut=ui+ (Lt— Li)にて非選択軸(u軸)方向の成 分 utを算出する。第 3変換 (第 3色覚異常用)において viが負であれば (Lt Li) >0 であるから、 uiの絶対値よりも utの絶対値が小さくなる。即ち、選択軸 (第 2軸 (V軸)) 方向の成分に応じて輝度軸 (L軸)方向の成分を変化させる変化量 (Lt Li)に応じ て、非選択軸 (u軸)方向の成分の絶対値を減少させる。そして、求めた u値 (ut)の値 が正 (ut>0)力否力判断し正であると判断した場合は ut = 0とするとすることで、画素 データの非選択軸 (u軸)の成分が、非選択軸処理前 uiと非選択軸処理後 utとで正 負が異なる場合には、非選択軸処理後の非選択軸の成分 utを 0としている。
uiが正(>0)と uiが 0以下(0又はく 0)のいずれも、最後に、このように決定した ut の値が、ディスプレイが表示し得る範囲内に存する力否かを変換部 44はチェックをし 、該範囲内に存しないと判断した場合は ut値を、変換後の Ltの値におけるディスプ レイが表示し得る範囲の最小値または最大値 (変換後の utが近 、方)に置き換えるこ とで補正する。これにより非選択軸処理後の画素データが表示可能な範囲か否力判 断し、表示可能でないと判断した場合には、非選択軸の成分を表示可能限界値 (変 換後の Ltの値におけるディスプレイが表示し得る範囲の最小値または最大値)に修 正している。
そして、本装置 11は、 RGBカラー ·モデルにより示された元画素データを均等色空 間たる Luv色空間における位置データに変換する均等色空間変換手段たる色空間 変換部 31を、さらに備えてなる。
さらに、本装置 11は、色覚変換処理手段たるデータ処理部 41により処理された均 等色空間における画素データ (Lt, ut, vt)を RGBカラー ·モデルに変換した後、出 力する均等色空間逆変換手段 (ここでは色空間逆変換部 51と出力部 61とにより構 成される。)を、さらに備えてなる。
さらに、本装置 11は、所定のプログラムをコンピュータに実行させることで構成され るものであり(図 1を参照されたい。)、さらに、力かるプログラムはコンピュータに読み とり可能な記憶媒体に記録することができる。
以上のような本装置 11を発明した過程において、考慮した事項を参考のため以下 記述しておく。
画像データを構成する各画素の色にっ ヽて、元の画像の色合 、を残したまま特定 の種類の色を明るぐまたは暗くするような色変換は、人間が知覚する色感覚に近い 色空間の中で行う必要がある。
そのような色空間の例として、コンピュータなどのディスプレイの発色特性 (分光分 布)の測定値と 3種類の錐体の分光吸収特性力ゝら各錐体の刺激値を求めたもの (LM b Color bpace 力める。
また、さらに錐体から脳に信号が伝達される過程で行われる演算を考慮して、 LMS 値力 脳が知覚する色感覚を求めたもの(Opponent Color Space)などがある。
このような色空間を使用することにより、コンピュータによる色覚異常の人々の色の 見え方をシミュレートすることも可能になっている。
しかし、これら色空間を使うためには、使用するディスプレイ毎に発色特性を測定し 、色変換のためのパラメータ値を計算する必要がある。
また、仮にこれら色空間を使ったとしても、色覚異常の人々が元の色を推測すること を補助するような色変換を考える場合、色覚異常の程度が様々であったり、軽度の色 覚異常の原因が L錐体と M錐体のうちの一方がそれらの中間的な特性を示すことで あったりするため、全ての人々にとつて目的を果たすような色変換は困難である。 これらを考慮し、本色変換は CIE L*u*v*色空間(以降、 Luv色空間)で行うことにし た。
Luv色空間は Opponent Color Spaceと同様に輝度軸、赤緑軸、黄青軸の 3次元で 構成されており、ディスプレイが sRGBに従っているという前提であれば RGB値と CIE XYZ値の相互変換方法は規格ィ匕されている(CIE XYZと Luv空間の変換方法も規格 化されている。)。 Luv色空間と類似した CIE L*a*b*色空間も使用できる力 前記のシミュレーション 結果を 2つの色空間に変換してみた結果、 Luv色空間の方がより 2次元平面に近い 結果を示した (知覚できる色の範囲が三色型色覚の人々とほぼ同じ軸と、知覚できる 色の範囲が極めて少ない軸が、より明確であった。 ) o
この結果より、色覚異常の人々を考慮した色変換を行うためには、 Luv色空間の方 が使いやすいと判断した。

Claims

請求の範囲
[1] 輝度を表す輝度軸と、クロマテイクネス指数を示す 2の軸である第 1軸及び第 2 軸と、の 3の直交座標軸系によって示される均等色空間における位置データとして示 された画素データが含む輝度軸方向の成分、第 1軸方向の成分及び第 2軸方向の 成分のうち、第 1軸及び第 2軸との 、ずれか一方の軸である選択軸方向の成分に応 じて輝度軸方向の成分を変化させる処理である色覚変換処理を行う色覚変換処理 手段を、備えるものである、画素処理装置。
[2] 選択軸方向の成分が第 1所定値よりも大きい場合と、選択軸方向の成分が該第 1 所定値よりも小さい場合と、のいずれか一方の場合には輝度軸方向の成分を減少さ せると共に、 V、ずれか他方の場合には輝度軸方向の成分を増カロさせるように色覚変 換処理を行うものである、請求項 1に記載の画素処理装置。
[3] 前記選択軸が、正方向に赤成分を示し負方向に緑成分を示す軸であり、 前記選択軸方向の成分が、前記第 1所定値よりも赤成分が大きい場合には輝 度軸方向の成分を増力 tlさせ、前記第 1所定値よりも赤成分が小さい場合には輝度軸 方向の成分を減少させるように色覚変換処理を行うものである、請求項 2に記載の画 素処理装置。
[4] 前記選択軸が、正方向に黄成分を示し負方向に青成分を示す軸であり、 前記選択軸方向の成分が、前記第 1所定値よりも黄成分が大きい場合には輝 度軸方向の成分を減少させ、前記第 1所定値よりも黄成分が小さい場合には輝度軸 方向の成分を増力 tlさせるように色覚変換処理を行うものである、請求項 2に記載の画 素処理装置。
[5] 前記色覚変換処理後の選択軸方向の成分が、前記色覚変換処理前の選択軸方 向の成分の絶対値に対して前記色覚変換処理後の選択軸方向の成分の絶対値を 単調増加させる単調増加関数によって前記色覚変換処理前の選択軸方向の成分を 変換することで決定されるものである、請求項 1乃至 4のいずれか 1に記載の画素処 理装置。
[6] 画素データが含む輝度軸方向の成分と選択軸方向の成分とのデータ組であ る選択データ組のうち、選択軸方向の成分が第 2所定値より大きい選択データ組と、 選択軸方向の成分が該第 2所定値より小さい選択データ組と、のいずれか一方の選 択データ組を、選択軸と輝度軸とを含む選択面にて選択軸を横軸にとり輝度軸を縦 軸にとったときに該選択面に存する凸関数と凹関数とのいずれか一方の関数を満足 させるように変換すると共に、いずれ力他方の選択データ組をいずれか他方の関数 を満足させるように変換するものである、請求項 5に記載の画素処理装置。
[7] 輝度軸方向の成分が同じ場合、選択軸方向の成分が前記第 2所定値を示す 直線上に中心が存する第 1の楕円の楕円周の一部により形成される前記第 2所定値 より大きい範囲に存する第 1楕円周と、選択軸方向の成分が前記第 2所定値を示す 直線上に中心が存する第 2の楕円の楕円周の一部により形成される前記第 2所定値 未満に存する第 2楕円周と、によって前記凸関数と前記凹関数とが形成され、 該第 1楕円周の一端と該第 2楕円周の一端とが前記第 2所定値にて連結されてい るものである、請求項 6に記載の画素処理装置。
[8] 前記色覚変換処理において選択軸方向の成分に応じて輝度軸方向の成分を変化 させる変化量が、選択軸に係る成分に関する基準値である選択軸基準値に対する 画素データの選択軸に係る成分の割合に応じて決定されるものである、請求項 1乃 至 7の 、ずれか 1に記載の画素処理装置。
[9] 色覚変換処理される前の輝度軸方向の成分の少なくとも一部の範囲において は、前記選択軸基準値が、前記選択軸に係る成分の表示可能な限界値である、請 求項 8に記載の画素処理装置。
[10] 色覚変換処理される前の輝度軸方向の成分の少なくとも一部の範囲において は、前記選択軸基準値が一定値である、請求項 8又は 9に記載の画素処理装置。
[11] 前記輝度軸方向の成分の変化量が、輝度軸に係る成分に関する基準値であ る輝度軸基準値と色覚変換処理される前の輝度軸方向の成分との差に前記割合を 乗じた値に応じて決定されるものである、請求項 8乃至 11のいずれ力 1に記載の画 素処理装置。
[12] 請求項 6又は 7に記載の前記凸関数又は前記凹関数と、選択軸と輝度軸とを含む 選択面における表示可能な範囲の境界線と、の交点の輝度軸に係る成分を前記輝 度軸基準値とするものである、請求項 11に記載の画素処理装置。
[13] 前記画素データのうち、前記第 1軸及び前記第 2軸とのうち選択軸以外の軸で ある非選択軸方向の成分の絶対値を減少させる処理である非選択軸処理を、前記 色覚変換処理手段がさらに行うものである、請求項 1乃至 12のいずれか 1に記載の 画素処理装置。
[14] 選択軸方向の成分に応じて輝度軸方向の成分を変化させる変化量に応じて、非選 択軸方向の成分の絶対値を減少させるものである、請求項 13に記載の画素処理装 置。
[15] 画素データの非選択軸の成分が、非選択軸処理前と非選択軸処理後とで正負が 異なる場合には、非選択軸処理後の非選択軸の成分を 0とするものである、請求項 1
3又は 14に記載の画素処理装置。
[16] 非選択軸処理後の画素データが表示可能な範囲力否力判断し、表示可能でな 、 と判断した場合には、非選択軸の成分を表示可能限界値に修正するものである、請 求項 13乃至 15のいずれ力 1に記載の画素処理装置。
[17] 均等色空間が、 Luv色空間又は Lab色空間である、請求項 1乃至 16のいずれ 力 1に記載の画素処理装置。
[18] RGBカラー ·モデルにより示された元画素データを均等色空間における位置 データに変換する均等色空間変換手段を、さらに備えてなるものである、請求項 1乃 至 17の!、ずれか 1に記載の画素処理装置。
[19] 色覚変換処理手段により処理された均等色空間における画素データを RGBカラー
•モデルに変換した後、出力する均等色空間逆変換手段を、さらに備えてなるもので ある、請求項 1乃至 18の 、ずれか 1に記載の画素処理装置。
[20] 請求項 1乃至 19のいずれかに記載の画素処理装置をコンピュータに実現させ るためのプログラム。
[21] 請求項 1乃至 19のいずれかに記載の画素処理装置をコンピュータに実現させ るためのプログラムを記録したコンピュータ読みとり可能な記憶媒体。
PCT/JP2005/019424 2004-11-26 2005-10-21 画素処理装置 WO2006057126A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/791,605 US7945092B2 (en) 2004-11-26 2005-10-21 Pixel processor
EP05795227.7A EP1816599B1 (en) 2004-11-26 2005-10-21 Pixel processor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004342963A JP3867988B2 (ja) 2004-11-26 2004-11-26 画素処理装置
JP2004-342963 2004-11-26

Publications (1)

Publication Number Publication Date
WO2006057126A1 true WO2006057126A1 (ja) 2006-06-01

Family

ID=36497869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019424 WO2006057126A1 (ja) 2004-11-26 2005-10-21 画素処理装置

Country Status (4)

Country Link
US (1) US7945092B2 (ja)
EP (1) EP1816599B1 (ja)
JP (1) JP3867988B2 (ja)
WO (1) WO2006057126A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008089683A1 (fr) * 2007-01-17 2008-07-31 Huawei Technologies Co., Ltd. Procédé, système et dispositif de correction de gamma
CN106485759A (zh) * 2016-09-23 2017-03-08 北京小米移动软件有限公司 颜色指示方法及装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032528A1 (fr) * 2006-09-13 2008-03-20 Konica Minolta Holdings, Inc. procédé de conversion d'image, dispositif de conversion d'image et programme de conversion d'image
JP4360655B1 (ja) * 2008-06-08 2009-11-11 スクルド・エンタープライズ有限会社 画像信号補正方法
US8368716B2 (en) * 2008-09-29 2013-02-05 Hewlett-Packard Development Company, L.P. Processing pixel values of a color image
JP5589544B2 (ja) 2009-06-17 2014-09-17 株式会社リコー 画像処理装置、画像処理方法、プログラムおよび記録媒体
JP5440184B2 (ja) * 2010-01-05 2014-03-12 株式会社リコー 画像処理装置、画像処理方法、画像処理プログラム及び記録媒体
US8660355B2 (en) 2010-03-19 2014-02-25 Digimarc Corporation Methods and systems for determining image processing operations relevant to particular imagery
JP5423702B2 (ja) 2011-02-15 2014-02-19 株式会社デンソー 画像処理装置及びその調整方法
US9398844B2 (en) 2012-06-18 2016-07-26 Microsoft Technology Licensing, Llc Color vision deficit correction
US9311639B2 (en) 2014-02-11 2016-04-12 Digimarc Corporation Methods, apparatus and arrangements for device to device communication
US10885676B2 (en) * 2016-12-27 2021-01-05 Samsung Electronics Co., Ltd. Method and apparatus for modifying display settings in virtual/augmented reality
JP6765519B2 (ja) * 2017-05-10 2020-10-07 三井化学株式会社 色処理プログラム、色処理方法、色彩感覚検査システム、出力システム、色覚補正画像処理システムおよび色覚シミュレーション画像処理システム
KR102415312B1 (ko) * 2017-10-30 2022-07-01 삼성디스플레이 주식회사 색 변환 장치, 이를 포함하는 표시 장치, 및 색 변환 방법
US11107258B2 (en) * 2018-07-20 2021-08-31 Microsoft Technology Licensing, Llc. Providing a dark viewing mode while preserving formatting
US10922203B1 (en) * 2018-09-21 2021-02-16 Nvidia Corporation Fault injection architecture for resilient GPU computing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63282883A (ja) * 1987-05-15 1988-11-18 Nippon Hoso Kyokai <Nhk> 色覚変換装置
JPH11175050A (ja) * 1997-12-16 1999-07-02 Hitachi Ltd 色覚障害者用表示システム
JP2000306074A (ja) * 1999-04-20 2000-11-02 Ntt Data Corp 色覚障害者用カラーパレット生成方法及び方式
JP2002044678A (ja) 2000-07-19 2002-02-08 Sony Corp カラー映像信号変換装置
JP2002290985A (ja) * 2001-03-27 2002-10-04 Sanyo Electric Co Ltd 色変換装置、画像表示装置およびそれを用いた放送受信装置
JP2003223635A (ja) * 2002-01-29 2003-08-08 Nippon Hoso Kyokai <Nhk> 映像表示装置および撮影装置
EP1453006A1 (en) 2003-02-28 2004-09-01 Océ-Technologies B.V. Converted digital colour image with improved colour distinction for colour-blinds

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498157A (en) * 1992-10-07 1996-03-12 Hall; Neil R. Dental color mixture indicator device
JP3437097B2 (ja) 1998-07-14 2003-08-18 富士通株式会社 表示パネルの製造方法
JP2001154655A (ja) * 1999-11-29 2001-06-08 Ibm Japan Ltd 色変換システム
JP2002303830A (ja) 2001-04-09 2002-10-18 Seiko Epson Corp 色覚異常者用眼鏡レンズ
US6931151B2 (en) * 2001-11-21 2005-08-16 Intel Corporation Method and apparatus for modifying graphics content prior to display for color blind use
US20050105796A1 (en) 2002-04-26 2005-05-19 Jin-Woo Hong Method and system for transforming adaptively visual contents according to terminal user's color vision characteristics
JP2004034750A (ja) 2002-06-28 2004-02-05 Mechanical Research:Kk 色覚障害者用自動車運転用フィルタ
US7145571B2 (en) * 2002-11-01 2006-12-05 Tenebraex Corporation Technique for enabling color blind persons to distinguish between various colors
DE102004003300B4 (de) * 2004-01-22 2014-03-06 Heidelberger Druckmaschinen Ag Verfahren zur Herstellung eines Prüfdrucks für einen Druckprozess mit mehr als vier Druckfarben

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63282883A (ja) * 1987-05-15 1988-11-18 Nippon Hoso Kyokai <Nhk> 色覚変換装置
JPH11175050A (ja) * 1997-12-16 1999-07-02 Hitachi Ltd 色覚障害者用表示システム
JP2000306074A (ja) * 1999-04-20 2000-11-02 Ntt Data Corp 色覚障害者用カラーパレット生成方法及び方式
JP2002044678A (ja) 2000-07-19 2002-02-08 Sony Corp カラー映像信号変換装置
JP2002290985A (ja) * 2001-03-27 2002-10-04 Sanyo Electric Co Ltd 色変換装置、画像表示装置およびそれを用いた放送受信装置
JP2003223635A (ja) * 2002-01-29 2003-08-08 Nippon Hoso Kyokai <Nhk> 映像表示装置および撮影装置
EP1453006A1 (en) 2003-02-28 2004-09-01 Océ-Technologies B.V. Converted digital colour image with improved colour distinction for colour-blinds
JP2004266821A (ja) * 2003-02-28 2004-09-24 Oce Technologies Bv 色盲のための改善された色識別を有する変換されたデジタルカラー画像

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1816599A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008089683A1 (fr) * 2007-01-17 2008-07-31 Huawei Technologies Co., Ltd. Procédé, système et dispositif de correction de gamma
CN106485759A (zh) * 2016-09-23 2017-03-08 北京小米移动软件有限公司 颜色指示方法及装置

Also Published As

Publication number Publication date
US7945092B2 (en) 2011-05-17
EP1816599B1 (en) 2013-09-11
EP1816599A1 (en) 2007-08-08
EP1816599A4 (en) 2010-03-24
JP2006157301A (ja) 2006-06-15
JP3867988B2 (ja) 2007-01-17
US20080193011A1 (en) 2008-08-14

Similar Documents

Publication Publication Date Title
WO2006057126A1 (ja) 画素処理装置
TWI742690B (zh) 人體檢測方法、裝置、電腦設備及儲存媒體
JP5341462B2 (ja) 収差補正方法、画像処理装置および画像処理システム
US8373619B2 (en) Image processing system, image processing apparatus, aberration correction method, and computer-readable storage medium
US9386297B2 (en) Image generating apparatus generating reconstructed image, method, and computer-readable recording medium
CN112989904A (zh) 风格图像生成方法、模型训练方法、装置、设备和介质
CN106204690A (zh) 一种图像处理方法及装置
CN114972632A (zh) 基于神经辐射场的图像处理方法及装置
JP6020471B2 (ja) 画像処理方法、画像処理装置および画像処理プログラム
US10268267B2 (en) Content sharing methods and apparatuses
JP6135952B2 (ja) 画像アンチエイリアシング方法および装置
CN103413339B (zh) 十亿像素高动态范围图像重建与显示的方法
CN109255763A (zh) 图像处理方法、装置、设备及存储介质
CN105791793A (zh) 图像处理方法及其电子装置
US20170206051A1 (en) Content sharing methods and apparatuses
EP4207075A1 (en) Image processing method and apparatus, and computer device and storage medium
US20210118216A1 (en) Method of displaying a wide-format augmented reality object
CN106454101A (zh) 一种图像处理方法和终端
CN115474316A (zh) 用于控制氛围灯的方法及装置、电子设备、存储介质
CN109862262A (zh) 图像虚化方法、装置、终端及存储介质
CN105279727B (zh) 图像处理方法及装置
US10991337B2 (en) Method for using RGB blend to prevent chromatic dispersion of VR device, and electronic device
JP5889383B2 (ja) 画像処理装置および画像処理方法
EP3998458A2 (en) Method and apparatus for generating zebra crossing in high resolution map, and electronic device
CN111489407B (zh) 光场图像编辑方法、装置、设备及存储介质

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11791605

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005795227

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005795227

Country of ref document: EP