WO2006053868A1 - Procede et dispositif de localisation d'aeronefs, notamment pour leur guidage automatique en phase d'atterrissage - Google Patents

Procede et dispositif de localisation d'aeronefs, notamment pour leur guidage automatique en phase d'atterrissage Download PDF

Info

Publication number
WO2006053868A1
WO2006053868A1 PCT/EP2005/055975 EP2005055975W WO2006053868A1 WO 2006053868 A1 WO2006053868 A1 WO 2006053868A1 EP 2005055975 W EP2005055975 W EP 2005055975W WO 2006053868 A1 WO2006053868 A1 WO 2006053868A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
frequency
beacon
aircraft
beacons
Prior art date
Application number
PCT/EP2005/055975
Other languages
English (en)
Inventor
Pascal Cornic
Patrick Garrec
Philippe Lacomme
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to EP05821549A priority Critical patent/EP1812808A1/fr
Priority to US11/719,839 priority patent/US20090243911A1/en
Publication of WO2006053868A1 publication Critical patent/WO2006053868A1/fr
Priority to IL183419A priority patent/IL183419A0/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/82Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted
    • G01S13/825Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted with exchange of information between interrogator and responder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/91Radar or analogous systems specially adapted for specific applications for traffic control
    • G01S13/913Radar or analogous systems specially adapted for specific applications for traffic control for landing purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • G01S7/4082Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder
    • G01S7/4091Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder during normal radar operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/762Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted with special measures concerning the radiation pattern, e.g. S.L.S.
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/765Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted with exchange of information between interrogator and responder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/78Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted discriminating between different kinds of targets, e.g. IFF-radar, i.e. identification of friend or foe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • G01S7/4056Means for monitoring or calibrating by simulation of echoes specially adapted to FMCW

Definitions

  • the present invention relates to a method and a device for locating aircraft, in particular for their automatic guidance during the landing phase.
  • the invention relates for example to the guidance of drones during the approach and landing phase.
  • a first solution uses GPS (Global Positioning System) or DGPS (Differential Global Positioning System). This solution poses the problem of availability or continuity of service. Moreover, we know its vulnerability in the presence of jammers.
  • an object of the invention is in particular to overcome the aforementioned drawbacks.
  • the subject of the invention is a method for locating an aircraft comprising:
  • the radar operates in continuous and simultaneous transmitting and receiving mode the radar waveform comprising trays of frequency f p interposed between frequency ramps, the frequency f p being detected by the beacons, the beacons re-transmitting towards the radar a frequency signal U, f 2 shifted by a fixed frequency ⁇ f specific to each of the beacons.
  • a frequency plateau is for example inserted between each ramp. It can also be interspersed as a result of several ramps.
  • the signal transmitted during the frequency trays is modulated to encode messages to the tags. Triggering when transmitting an embedded tag can be caused by such a message.
  • the location in distance and angle is for example performed on the frequency ramps.
  • the distance and angle location started in the first step continues in the second step.
  • the radar being monopulse type, it measures for example the angular positions of the beacons, a deviation path being reserved for each beacon.
  • the first stage begins, for example, in the approach phase of an airstrip.
  • the invention also relates to a device for locating an aircraft comprising:
  • a radar performing the location of the aircraft in distance and at an angle
  • FIG. 4 an example of a second waveform of a radar used for the invention
  • FIG. 6 an example of a waveform conveying an encoded message.
  • FIG. 1 shows an aircraft 1 in landing phase on a runway 2. Thereafter, it will be considered by way of example that the aircraft is a drone. Moreover, FIG. 1 illustrates elements of a device according to the invention.
  • the device comprises at least:
  • a radar 3 on the ground preferably with a large detection cone, for example of the order of 20 °;
  • a beacon 4 embedded in the drone 1 this beacon makes it possible in particular to make the target formed by the drone point;
  • the radar 3 and the ground beacon 5 are arranged near the track 2.
  • the location of the drone is refined using the beacon 5 on the ground and the beacon 4 on board the drone emitting towards the radar.
  • the activation of the beacon 4 can be activated automatically on board the drone by radar remission detection or from for example a command from a control station.
  • the second stage therefore occurs in the terminal approach and landing phase.
  • the requirement of angular precision in particular here is extremely important, from one to a few milliradians.
  • the position information provided by the radar 3 is then no longer accurate enough.
  • a single tag on the ground and a single tag embedded are represented, but if needed other ground beacons or other embedded tags may be used.
  • the angle of approach, in azimuth and elevation, is measured by the radar by differential measurement between the position of at least one beacon 5 on the ground and at least one on-board beacon 4.
  • the measurement of the distance may for example be performed on the skin echo of the drone or on the signal of the onboard beacon if it operates in transponder mode.
  • Figure 2 illustrates the drone 1 in the terminal approach phase above the track 2 to a predetermined touch point 21.
  • the elements of the guiding device are represented by their position.
  • the radar 3 and the beacon 5 on the ground are for example arranged near the edge of the track.
  • the beam 22 of the radar 3 covers both the drone 1 and the beacon 5 on the ground.
  • the radar 3 is located in the beam 23 of the onboard beacon 4 and in the beam 24 of the ground beacon 5.
  • the radar can thus perform a differential location between a point reference on the drone, this reference being the beacon 4 onboard, and another specific reference to the ground formed of the tag 5.
  • the radar comprises for example two ways of deviation to make on the one hand measures of deviation on the beacon 4 embedded in the drone and on the other hand, deviation measurements on the beacon 5 on the ground.
  • the deviation measurement channels are for example established conventionally by beamforming by calculation or by monopulse treatment
  • the radar 3 calculates the position of the onboard beacon 5 with respect to the point of touching 21.
  • the radar also calculates the position of the beacon 5 on the ground with respect to the point of touching 21. This position is also perfectly known. In these two measurements made by the radar, there is the same error of location.
  • the exact location of the embedded tag 4 is then obtained by subtracting the aforementioned location error on the result of the measurement. This differential measurement thus makes it possible to eliminate errors in aligning the drone with respect to a given trajectory that meets the predetermined touch point 21.
  • the ground beacon 5 therefore serves as a reference and enables the radar devometer to work in a controlled manner. false zero and to estimate the target angles in relative relation to this beacon 5.
  • the measurement of the angle of approach is thus carried out by the radar by measurement Differential between the position of the ground beacon 5 and the onboard beacon 4. Also knowing the distance by means of the radar processing engaged during the first step, we deduce the substantially exact position of the aircraft. Indeed, during this terminal phase, radar processing is not interrupted. In addition to the differentiation processing of the signals emitted by the beacons 4, 5, the distance and doppler processing on the drone skin echoes continues. In particular to maintain the drone in the landing corridor.
  • FIG. 3 shows an exemplary waveform of a radar 3 used in a device according to the invention.
  • a curve 31 represents this radar waveform by its transmission frequency as a function of time.
  • the radar emission is continuous because, due to the short range of the application, the blind zones are not eligible.
  • This wave 31 comprises a series of ramps 32. Each ramp has a duration of ⁇ Ti. Between each ramp is inserted a plateau 33 of duration ⁇ T 2 . This plateau of constant frequency f p is shifted by a frequency ⁇ f with respect to the original frequency f 0 of the ramps.
  • Such a waveform enables the radar to perform both a conventional radar processing of the echo signals received from the drone and a processing of the signals emitted by the beacons 4, 5 for more precise deviation measurements.
  • These beacons 4, 5 emit a fixed frequency represented by a plate 34. To simplify the figure, the two beacons are supposed to emit at the same frequency, in fact they emit at different frequencies to allow the radar to distinguish them.
  • the frequency ramps allow conventional processing, that is to say a radar emission assigned to the distance and doppler processing of the skin echo of the drone.
  • a curve 35 represents the reception wave received corresponding to the transmitted wave 32.
  • the wave emitted by the radar is switched to the fixed frequency f p to illuminate the beacon 4 of the drone and the beacon 5 to ground.
  • the signal detected by the beacons will be the signal formed by the successive plates 33 interposed between the ramps. It is from the signals re-emitted by the beacons that the more precise deviation measurements can be made.
  • FIG. 4 shows another example of a radar waveform by a curve 41. For this waveform, a frequency plateau 42 is no longer interposed between each frequency ramp but between groups of several ramps 43.
  • the radar transmission and reception mode corresponding to the frequency ramps 43 lasts on the order of 25 milliseconds.
  • the mode of radar transmission and reception of beacon signals may have the same duration as the other mode.
  • the durations of the two modes can also be adjusted during the tracking phase so as to optimize the quality of the reception depending on the flight situation.
  • FIG. 4 the two plates 44, 45 of frequency U and f 2 of the two beacons 4, 5 are represented.
  • the radar 3 comprises filters adapted to separate the two frequencies.
  • Each frequency, or rather its corresponding signal, is then guided to its deviation path.
  • the signal from the beacon 5 on the ground is switched to the deviation path reserved for this beacon and the signal from the onboard beacon 4 is switched to the other deviation path.
  • the two adapted filters make it possible to identify the signals coming from each of the beacons. Since the provenances of these signals are identified, the radar then carries out deviation measurements on these signals and can unambiguously assign them to the location of the ground beacon 5 and the location of the on-board beacon 4.
  • the frequencies U, f 2 emitted by the beacons 4, 5 are made in the responses of these tags to the frequency f p transmitted by the radar during the platens 33, 43.
  • FIG. 5 shows an example of a circuit incorporated in the beacons which makes it possible to obtain these response frequencies U h.
  • This circuit is a conventional circuit whose FIG. 5 recalls the principle. It forms a phase-locked loop so as to allow a non-phase locked continuous transmission on a predefined channel.
  • the beacons thus re-transmit a frequency fi, f 2 shifted by a fixed frequency with respect to the frequency f p received from the radar.
  • a reception antenna 51 thus captures the signals S (f p ) of frequency f p emitted by the radar 3.
  • the received signal enters a first microwave mixer 52, which also receives the signal from the local oscillator 53, whose Frequency is linearly modulated as a function of time during the search phase of the radar signal.
  • the mixed signal drives an amplifier 54 and then a bandpass filter 55.
  • the output of the bandpass filter is compared with a threshold S by a detector 56 based on an operational amplifier or digital circuits if the output signal
  • the band-pass filter is centered on an expected beat frequency f b , between the frequency transmitted by the radar 3 and the frequency generated by the local oscillator so as to enable the beacon to detect the presence of the signals emitted by this radar. .
  • the frequency of the local oscillator is slaved to the radar frequency by means of a control circuit 57. It would be better in FIG. 5 to replace the box 3 with a box entitled control circuit of the local oscillator.
  • the transfer function of the circuit 57 is then applied to the output signal of the detector. Part of the signal is looped back to the input of the local oscillator 53.
  • the other part of the signal drives a second mixer 58 which adds a frequency ⁇ f supplied by a fixed frequency oscillator 59.
  • the output of the first oscillator 53 is also connected to the transmitting antenna 60. It is also necessary to provide a switch controlled by the control circuit 57 making it possible to activate or inhibit the transmitting beacon to the radar. This switch is for example arranged between the output of the first oscillator 53 and the transmitting antenna 60.
  • the output signal of the second mixer is emitted by the transmitting antenna 60.
  • the signal S (f- ⁇ ) is transmitted by the antenna 60 to the radar 3, this signal being used by the radar for the differential measurements.
  • the frequency of this signal is the frequency U characteristic of a beacon.
  • Each beacon transmits its own frequency U, h determined by the frequency ⁇ f of the fixed oscillator 59.
  • the emission of the beacons can be triggered automatically by detection of the radar signal or by a signal emitted by a ground station.
  • the power emitted by the beacons is for example of the order of milliwatts.
  • the antennas of the tags may be printed circuit, their dimensions being for example of the order of 10 cm x 10 cm.
  • Figure 6 illustrates another possible radar waveform.
  • the waveform is generally, for example, the same as that of FIG. 4.
  • the signal transmitted during the frequency trays 42 is modulated around the frequency f p of this plate.
  • This modulation serves for example to encode messages 61 to the tags.
  • this code can contain the order of transmission of the tags.
  • Other operational messages can obviously be sent.
  • a method, or device, according to the invention thus allows the guidance of a drone with the aid of information delivered by the detection and tracking carried out by the radar 3 in the first approach phase, for example in a radar aperture cone of the order of 20 °.
  • the final guidance is achieved using the same radar 3 associated with the two tags 4, 5 emitting in the radar band .
  • a single embedded tag 4 and a single ground tag 5 may suffice. However, for reasons of operational safety, several tags can be used, for example two embedded tags and two tags on the ground.
  • the radar 3 used can be made in a low-cost X-band technology. For this purpose, the radar transmitter can be in a solid state.
  • the generation of the radar waveforms is done from digital circuits allowing the agility of frequency and waveform while ensuring the phase coherence with a very high stability, which notably increases the extraction performance of the target by Doppler effect.
  • Frequency agility is likely to increase the discretion of the radar emission, to increase the quality of the detection and the pursuit, for example in the presence of reflections on the sea.
  • the radar antenna is fixed without a mechanical servocontrol device. Indeed, once positioned on the ground, the radar observes only in one direction, this direction being relative to that of the track.
  • the compensation of the movements of the carrier can be easily performed using gyrometric sensors and accelerometers in integrated circuits positioned on the back of the radar antenna. The information from these sensors is then used to correct the coordinates estimated by the radar.
  • the X-band is very insensitive to weather disturbances and guarantees an all-weather operation of the device, unlike infra-red sensors or radars in the millimetric band, for example.
  • the location of the drone during the initial approach phase is carried out using an autonomous device from the ground without the need for active cooperation on board the drone, which enhances the operational safety.
  • the responder beacons can be activated at a very short distance, and in a very directional manner, which makes it possible to secure the connection as much as possible.
  • the conventional radar function remains active and there is therefore redundancy of radar information and beacons, further increasing the reliability of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Abstract

La présente invention concerne un procédé et un dispositif de localisation d'aéronefs. Un radar (3) effectue la localisation de l'aéronef en distance et en angle. La localisation est affinée au moyen d'au moins une balise embarquée (4) à bord de l'aéronef et d'au moins une balise (5) dont la position est prédéterminée par rapport au radar (3), la mesure de la position de la balise embarquée (4) étant effectuée par le radar (3) par mesure différentielle entre la position d'au moins une balise au sol (5) et d'au moins une balise embarquée (4). L'invention est notamment utilisée pour le guidage automatique de drônes en phase d'approche et d'atterrissage.

Description

PROCEDE ET DISPOSITIF DE LOCALISATION D'AERONEFS, NOTAMMENT POUR LEUR GUIDAGE AUTOMATIQUE EN PHASE
D'ATTERRISSAGE
La présente invention concerne un procédé et un dispositif de localisation d'aéronefs, notamment pour leur guidage automatique en phase d'atterrissage. L'invention concerne par exemple le guidage de drônes en phase d'approche et d'atterrissage.
Des solutions sont connues pour guider automatiquement des aéronefs, en particulier des drônes, en phase d'atterrissage. Une première solution utilise le système GPS (Global Positionning System) ou DGPS (Differential Global Positionning System). Cette solution pose le problème de la disponibilité ou de la continuité de service. Par ailleurs on connaît sa vulnérabilité en présence de brouilleurs.
Une deuxième solution est basée sur l'utilisation de lasers. Cette solution à base de lasers n'offre pas les performances tout temps. De plus le pinceau laser étroit nécessite un grand nombre de balayages pour détecter une cible, donc une phase de recherche plus ou moins longue. Il est à noter par ailleurs qu'un positionnement en absolu par rapport à la piste est obligatoire. Une autre solution connue utilise des radars millimétriques très directifs qui nécessitent eux aussi une phase de recherche pour la désignation d'objectifs et un positionnement absolu par rapport à la piste. Cette solution radar qui fait appel aux techniques classiques des radars de poursuite notamment à servomécanismes, sont coûteuses et difficiles à mettre en œuvre. Elle présente par ailleurs d'autres inconvénients. En particulier, en cas d'objectifs multiples, il faut partager le temps et opérer des ralliements de cible à cible au risque de perdre une cible et de devoir faire une acquisition complète du contexte. En phase d'approche, les contraintes de guidage pour garder la cible dans le faisceau radar sont très importantes. Les conséquences de pertes de cette cible peuvent être dramatiques. Enfin, compte tenu des pertes de propagation dans le domaine millimétrique, il est nécessaire d'utiliser un transpondeur embarqué dans le drône, ce transpondeur étant en émission permanente, ce qui n'est pas discret. Il faut encore ajouter que la présence de ce transpondeur diminue la fiabilité du système de guidage. En effet, en cas de panne transpondeur, il y a rupture de la liaison descendante du transpondeur vers le radar, ce qui rend le radar aveugle.
Un but de l'invention est notamment de pallier les inconvénients précités. A cet effet, l'invention a pour objet un procédé de localisation d'un aéronef comportant :
- une première étape de localisation de l'aéronef en distance et en angle au moyen d'un radar ;
- une deuxième étape pour affiner la localisation au moyen d'au moins une balise embarquée à bord de l'aéronef et d'au moins une balise dont la position est prédéterminée par rapport au radar, la mesure de la position de la balise embarquée étant effectuée par le radar par écartométrie différentielle entre la position d'au moins une balise au sol et d'au moins une balise embarquée.
Avantageusement, le radar fonctionne en mode émission et réception continues et simultanées la forme d'onde radar comportant des plateaux de fréquence fp intercalés entre des rampes de fréquence, la fréquence fp étant détectée par les balises, les balises ré-émettant vers le radar un signal de fréquence U, f2 décalée d'une fréquence fixe Δf propre à chacune des balises. Un plateau de fréquence est par exemple intercalé entre chaque rampe. Il peut être aussi intercalé à la suite de plusieurs rampes.
Avantageusement, le signal émis pendant les plateaux de fréquence est modulé pour coder des messages à destination des balises. Le déclenchement à l'émission d'une balise embarquée peut être provoqué par un tel message.
La localisation en distance et en angle est par exemple effectuée sur les rampes de fréquences. La localisation en distance et en angle commencée dans la première étape se poursuit dans la deuxième étape. Dans la deuxième étape, le radar étant de type monopulse, il mesure par exemple les positions angulaires des balises, une voie d'écartométrie étant réservée à chaque balise. La première étape commence par exemple en phase d'approche d'une piste d'atterrissage. L'invention a également pour objet un dispositif de localisation d'un aéronef comportant :
- un radar effectuant la localisation de l'aéronef en distance et en angle ;
- au moins une balise embarquée à bord de l'aéronef et au moins une balise dont la position est prédéterminée par rapport au radar pour affiner la localisation, la mesure de la position de la balise embarquée étant effectuée par le radar par mesure différentielle entre la position d'au moins une balise au sol et d'au moins une balise embarquée.
L'invention a pour principaux avantages qu'elle est simple à mettre en œuvre, qu'elle est économique et qu'elle permet une très grande fiabilité de localisation.
D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit faite en regard de dessins annexés qui représentent :
- la figure 1 , un aéronef en phase d'atterrissage où figurent des composants d'un dispositif selon l'invention ;
- la figure 2, la position d'un aéronef en phase d'approche terminale en regard de la piste et des composants d'un dispositif selon l'invention ;
- la figure 3, un exemple d'une première forme d'onde d'un radar utilisé pour l'invention ;
- la figure 4, un exemple d'une deuxième forme d'onde d'un radar utilisé pour l'invention ;
- la figure 5, un exemple de dispositif à verrouillage de phase utilisé dans une balise embarquée dans l'aéronef ;
- la figure 6, un exemple de forme d'onde véhiculant un message codé.
La figure 1 présente un aéronef 1 en phase d'atterrissage sur une piste 2. Par la suite, on considérera à titre d'exemple que l'aéronef est un drône. Par ailleurs la figure 1 illustre des éléments d'un dispositif selon l'invention. Le dispositif comporte au moins :
- un radar 3 au sol, de préférence à large cône de détection, par exemple de l'ordre de 20° ; - une balise 4 embarquée dans le drône 1 , cette balise permet notamment de rendre ponctuelle la cible formée par le drône ;
- une balise 5 au sol qui sert notamment de référence, comme cela sera montré par la suite.
Ces éléments permettent de calculer la position du drône jusqu'à l'atterrissage complet. Le drône est ensuite guidé par des moyens de guidage classique à partir de sa position calculée. Le radar 3 et la balise au sol 5 sont disposés à proximité de la piste 2.
En phase d'approche, le drône pénètre dans le lobe de l'antenne du radar 3. Le début de cette phase commence par exemple aux alentours d'une altitude de 1 000 mètres à l'approche de la piste 2, à 5000 mètres de cette dernière. Avant cette phase la position du drône peut être détectée par des moyens classiques tels que le système GPS. A partir de la phase d'approche, les exigences de précision deviennent de plus en plus fortes. Un procédé selon l'invention comporte au moins deux étapes. Dans une première étape, on localise le drône en distance et en angle par le radar 3, à faisceau peu directif, lors de la phase d'approche initiale. L'exigence de précision de localisation est modeste au cours de cette phase. On n'exige pas plus que quelques mètres à quelques dizaines de mètres de précision. La localisation angulaire du drône peut se faire par exemple par écartométrie. A cet effet, le radar utilisé est par exemple un radar monopulse. La mesure de la distance du drône au radar se fait par exemple de façon classique au moyen de fenêtres distance.
Dans une deuxième étape, on affine la localisation du drône à l'aide de la balise 5 au sol et la balise 4 embarquée à bord du drône émettant en direction du radar. Pour enclencher cette deuxième étape, il est nécessaire d'activer la balise 4 embarquée à bord du drône. La mise en marche de la balise 4 peut être activée automatiquement à bord du drône par détection de rémission radar ou à partir par exemple d'une commande d'une station de contrôle.
La deuxième étape se produit donc en phase d'approche terminale et d'atterrissage. L'exigence de précision angulaire notamment est ici extrêmement importante, de un à quelques milliradians. Les informations de position fournies par le radar 3 ne sont alors plus assez précises. Dans l'exemple de la figure 1 , une seule balise au sol et une seule balise embarquée sont représentées, mais en cas de besoin d'autres balises au sol ou d'autres balises embarquées peuvent être utilisées. La mesure de l'angle d'approche, en azimut et en élévation, est effectuée par le radar par mesure différentielle entre la position d'au moins une balise 5 au sol et d'au moins une balise 4 embarquée. La mesure de la distance peut par exemple s'effectuer sur l'écho de peau du drône ou encore sur le signal de la balise embarquée si celle-ci fonctionne en mode transpondeur.
La figure 2 illustre le drône 1 en phase d'approche terminale au-dessus de la piste 2 vers un point de toucher 21 prédéterminé. Les éléments du dispositif de guidage sont représentés par leur position. Le radar 3 et la balise 5 au sol sont par exemple disposés à proximité du bord de la piste. Le faisceau 22 du radar 3 couvre à la fois le drône 1 et la balise 5 au sol. De même, le radar 3 est situé dans le faisceau 23 de la balise embarquée 4 et dans le faisceau 24 de la balise au sol 5. Le radar peut ainsi effectuer une localisation différentielle entre une référence ponctuelle sur le drône, cette référence étant la balise 4 embarquée, et une autre référence ponctuelle au sol formée de la balise 5. A cet effet, le radar comporte par exemple deux voies d'écartométrie pour faire d'une part des mesures d'écartométrie sur la balise 4 embarquée dans le drône et d'autre part des mesures d'écartométrie sur la balise 5 au sol. Les voies d'écartométrie sont par exemple établies classiquement par formation de faisceau par calcul ou par traitement monopulse
Le radar 3 calcule la position de la balise embarquée 5 par rapport au point de toucher 21. Le radar calcule aussi la position de la balise 5 au sol par rapport au point de toucher 21. Cette position est par ailleurs parfaitement connue. Dans ces deux mesures effectuées par le radar, il y a la même erreur de localisation. La localisation exacte de la balise embarquée 4 est ensuite obtenue en retranchant l'erreur de localisation précitée sur le résultat de la mesure. Cette mesure différentielle permet donc d'éliminer les erreurs d'alignement du drône par rapport à une trajectoire donnée qui vient rencontrer le point de toucher prédéterminé 21. La balise 5 au sol sert donc de référence et permet à l'écartomètre radar de travailler en faux zéro et d'estimer les angles cibles en relatif par rapport à cette balise 5. La mesure de l'angle d'approche est donc effectuée par le radar par mesure différentielle entre la position de la balise au sol 5 et de la balise embarquée 4. Connaissant par ailleurs la distance au moyen du traitement radar engagé pendant la première étape, on en déduit la position sensiblement exacte de l'aéronef. En effet, pendant cette phase terminale, le traitement radar n'est pas interrompu. En plus du traitement par écartométrie des signaux émis par les balises 4, 5, le traitement distance et doppler sur les échos de peau de drône continue. En particulier pour maintenir le drône dans le corridor d'atterrissage.
La figure 3 présente un exemple de forme d'onde d'un radar 3 utilisée dans un dispositif selon l'invention. Une courbe 31 représente cette forme d'onde radar par sa fréquence d'émission en fonction du temps. L'émission radar est continue car du fait de la courte portée de l'application, les zones aveugles ne sont pas admissibles.
Cette onde 31 comporte une suite de rampes 32. Chaque rampe a une durée de ΔTi. Entre chaque rampe est intercalée un plateau 33 de durée ΔT2. Ce plateau de fréquence constante fp est décalé d'une fréquence Δf par rapport à la fréquence f0 d'origine des rampes. Une telle forme d'onde permet au radar d'effectuer à la fois un traitement radar classique des signaux échos reçus du drône et un traitement des signaux émis par les balises 4, 5 pour des mesures d'écartométrie plus précises. Ces balises 4, 5 émettent une fréquence fixe représentée par un plateau 34. Pour simplifier la figure, les deux balises sont supposées émettre à la même fréquence, en réalité elles émettent à des fréquences différentes pour permettre au radar de les distinguer.
Les rampes de fréquence permettent le traitement classique, c'est-à-dire une émission radar affectée au traitement distance et doppler de l'écho de peau du drône. Une courbe 35 représente l'onde de réception reçue correspondant à l'onde émise 32. Après une rampe 32, l'onde émise par le radar est commutée sur la fréquence fixe fp pour éclairer la balise 4 du drône et la balise 5 au sol. Le signal détecté par les balises sera le signal formé par les plateaux 33 successifs intercalés entre les rampes. C'est à partir des signaux ré-émis par les balises que les mesures d'écartométrie plus précises pourront être effectuées. La figure 4 présente un autre exemple de forme d'onde radar par une courbe 41. Pour cette forme d'onde, un plateau de fréquence 42 n'est plus intercalé entre chaque rampe de fréquences mais entre des groupes de plusieurs rampes 43. Avec cette forme d'onde le plateau à la fréquence fp est plus long, c'est-à-dire qu'il a une durée nettement supérieure à la durée ΔT2 d'un plateau 33 de l'exemple précédent. Cela permet notamment d'allouer un temps de détection plus grand aux balises. A titre d'exemple le mode d'émission et de réception radar correspondant aux rampes de fréquence 43 dure de l'ordre de 25 millisecondes. Le mode d'émission radar et de réception des signaux des balises peut avoir la même durée que l'autre mode. Les durées des deux modes peuvent également être ajustées au cours de la phase de poursuite de façon à optimiser la qualité de la réception en fonction de situation de vol. Sur la figure 4 les deux plateaux 44, 45 de fréquence U et f2 des deux balises 4, 5 sont représentés. Le radar 3 comporte des filtres adaptés pour séparer les deux fréquences. Chaque fréquence, ou plutôt son signal correspondant, est ensuite guidée vers sa voie d'écartométrie. Ainsi le signal issu de la balise 5 au sol est commuté vers la voie d'écartométrie réservé à cette balise et le signal issu de la balise embarquée 4 est commuté sur l'autre voie d'écartométrie. Les deux filtres adaptés permettent d'identifier les signaux provenant de chacune des balises. Les provenances de ces signaux étant identifiées, le radar effectue ensuite des mesures d'écartométrie sur ces signaux et peut sans ambiguïté les attribuer à la localisation de la balise au sol 5 et à la localisation de la balise embarquée 4. Les fréquences U, f2 émises par les balises 4, 5 sont en fait les réponses de ces balises à la fréquence fp émise par le radar pendant les plateaux 33, 43.
La figure 5 présente un exemple de circuit incorporé dans les balises qui permet d'obtenir ces fréquences de réponse U, h- Ce circuit est un circuit classique dont la figure 5 rappelle le principe. Il forme une boucle de verrouillage de phase de façon à permettre une émission continue verrouillée ne phase sur un canal prédéfini. Les balises ré-émettent ainsi une fréquence f-i, f2 décalée d'une fréquence fixe par rapport à la fréquence fp reçue du radar. Une antenne de réception 51 capte donc les signaux S(fp) de fréquence fp émis par le radar 3. Le signal reçu entre dans un premier mélangeur hyperfréquence 52, lequel reçoit par ailleurs le signal de l'oscillateur local 53, dont la fréquence est modulée linéairement en fonction du temps au cours de la phase de recherche du signal radar. Le signal mélangé attaque un amplificateur 54 puis un filtre passe-bande 55. La sortie du filtre passe-bande est comparée à un seuil S par un détecteur 56 à base d'amplificateur opérationnel ou de circuits numériques si le signal de sortie du filtre est numérisé.
Le filtre passe-bande est centré sur une fréquence de battement fb attendue, entre la fréquence émise par le radar 3 et la fréquence générée par l'oscillateur local de façon à permettre à la balise de détecter la présence des signaux émise par ce radar. Une fois la détection de la fréquence radar réalisée, la fréquence de l'oscillateur local est asservie à la fréquence radar par l'intermédiaire d'un circuit de contrôle 57. Il vaudrait mieux sur la figure 5 remplacer la boite 3 par une boite intitulée circuit de contrôle de l'oscillateur local. La fonction de transfert du circuit 57 est ensuite appliquée au signal de sortie du détecteur. Une partie du signal est rebouclée en entrée de l'oscillateur local 53. L'autre partie du signal attaque un deuxième mélangeur 58 qui additionne une fréquence Δf fournie par un oscillateur à fréquence fixe 59.
Le deuxième oscillateur peut ne pas être utilisé. On peut dans ce cas asservir l'oscillateur local directement sur la fréquence de battement recherchée fb =Δf. Dans ce cas, la sortie du premier oscillateur 53 est aussi connectée à l'antenne d'émission 60. Il faut également prévoir un commutateur commandé par le circuit de contrôle 57 permettant d'activer ou d'inhiber l'émission balise vers le radar, ce commutateur est par exemple disposé entre la sortie du premier oscillateur 53 et l'antenne d'émission 60. Le signal de sortie du deuxième mélangeur est émis par l'antenne d'émission 60. Le signal S(f-ι) est émis par l'antenne 60 vers le radar 3, ce signal étant exploité par le radar pour les mesures différentielles. La fréquence de ce signal est la fréquence U caractéristique d'une balise. Chaque balise émet sa propre fréquence U, h déterminée par la fréquence Δf de l'oscillateur fixe 59. Selon les balises, Δf = U - fp ou Δf = f2 - fp. L'émission des balises peut être déclenchée automatiquement par détection du signal radar ou par un signal émis par une station au sol. La puissance émise par les balises est par exemple de l'ordre du milliwatt. Les antennes des balises peuvent être à circuit imprimé, leurs dimensions étant par exemple de l'ordre de 10 cm x 10 cm.
La figure 6 illustre une autre forme d'onde radar possible. La forme d'onde est dans l'ensemble par exemple la même que celle de la figure 4. Cependant, le signal émis pendant les plateaux de fréquence 42 est modulé autour de la fréquence fp de ce plateau. Cette modulation sert par exemple à coder des messages 61 à destination des balises. En particulier ce code peut contenir l'ordre d'émission des balises. D'autres messages opérationnels peuvent évidemment être envoyés.
Un procédé, ou un dispositif, selon l'invention permet donc le guidage d'un drône à l'aide d'informations délivrées par la détection et la poursuite effectuée par le radar 3 dans la première phase d'approche, par exemple dans un cône d'ouverture radar de l'ordre de 20°. A partir de la phase d'approche finale, à quelques centaines de mètres du point de toucher sur la piste par exemple, le guidage final est réalisé à l'aide du même radar 3 associé aux deux balises 4, 5 émettant dans la bande radar. Une seule balise embarquée 4 et une seule balise au sol 5 peuvent suffire. Néanmoins, pour des raisons de sûreté de fonctionnement, plusieurs balises peuvent être utilisées, par exemple deux balises embarquées et deux balises au sol. Le radar 3 utilisé peut être réalisé dans une technologie à bas coût en bande X. A cet effet, l'émetteur radar peut être à état solide. La génération des formes d'onde radar s'effectue à partir de circuits numériques permettant l'agilité de fréquence et de forme d'onde tout en assurant la cohérence de phase avec une très grande stabilité, ce qui augmente notamment les performances d'extraction de la cible par effet Doppler. L'agilité de fréquence est de nature à accroître la discrétion de l'émission radar, à augmenter la qualité de la détection et de la poursuite, par exemple en présence de réflexions sur la mer. Toujours dans le but de réduire les coûts, l'antenne du radar est par exemple fixe sans dispositif d'asservissement mécanique. En effet, une fois positionné au sol, le radar n'observe que dans une direction, cette direction étant relative à celle de la piste. Si nécessaire, notamment en cas d'installation sur un porteur, la compensation des mouvements du porteur peut être effectuée facilement à l'aide de capteurs gyrométriques et accéléromètres en circuits intégrés positionnés au dos de l'antenne du radar. Les informations de ces capteurs sont alors utilisées pour corriger les coordonnées estimées par le radar.
Avantageusement, la bande X est très peu sensible aux perturbations météorologiques et garantit un fonctionnement tout temps du dispositif, contrairement aux senseurs infra-rouges ou aux radars dans la bande millimétrique par exemple.
Il est à noter que la localisation du drône lors de la phase d'approche initiale s'effectue à l'aide d'un dispositif autonome à partir du sol sans besoin de coopération active à bord du drône, ce qui renforce la sûreté de fonctionnement. Au cours de la phase d'approche finale, les balises répondeuses peuvent être activées à très courte distance, et de façon très directive, ce qui permet de sécuriser au maximum la liaison. Pendant cette phase d'approche finale, la fonction radar classique reste active et il y a donc redondance des informations radar et balises, accroissant encore la fiabilité du dispositif.
Le procédé et le dispositif selon l'invention ont été décrit pour une phase d'atterrissage, ils peuvent néanmoins être appliqués pour d'autres phases de vol, en particulier pour le décollage.

Claims

REVENDICATIONS
1. Procédé de localisation d'un aéronef, caractérisé en ce qu'il comporte :
- une première étape de localisation de l'aéronef en distance et en angle au moyen d'un radar (3) ;
- une deuxième étape pour affiner la localisation au moyen d'au moins une balise embarquée (4) à bord de l'aéronef et d'au moins une balise (5) dont la position est prédéterminée par rapport au radar (3), la mesure de la position de la balise embarquée (4) étant effectuée par le radar (3) par mesure différentielle entre la position d'au moins une balise au sol (5) et d'au moins une balise embarquée (4).
2. Procédé selon la revendication 1 , caractérisé en ce que la forme d'onde radar (31 , 41 ) comporte des plateaux de fréquence fp (33, 42) intercalés entre des rampes de fréquence (32, 43), la fréquence fp étant détectée par les balises (4, 5), les balises ré-émettant vers le radar (3) un signal de fréquence (f-i, f2) décalée d'une fréquence fixe (Δf) propre à chacune des balises.
3. Procédé selon la revendication 2, caractérisé en ce que un plateau de fréquence (33) est intercalé entre chaque rampe (32).
4. Procédé selon la revendication 2, caractérisé en ce qu'un plateau (42) est intercalé à la suite de plusieurs rampes (43).
5. Procédé selon l'une quelconque des revendications 2 à 4, caractérisé en ce que le signal émis pendant les plateaux de fréquence (33, 42) est modulé pour coder des messages (61 ) à destination des balises (4, 5).
6. Procédé selon la revendication 5, caractérisé en ce que le déclenchement à rémission d'une balise embarquée (4) est provoquée par un message.
7. Procédé selon l'une quelconque des revendications 2 à 6, caractérisé en ce que la localisation en distance et en angle est effectuée sur les rampes de fréquences (32, 43).
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la localisation en distance et en angle commence dans la première étape se poursuit dans la deuxième étape.
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que dans la deuxième étape, le radar (3) étant de type monopulse, il mesure les positions angulaires des balises, une voie d'écartométrie étant réservée à chaque balise.
10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la première étape commence en phase d'approche d'une piste d'atterrissage (2).
11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'aéronef est un drône.
12. Dispositif de localisation d'un aéronef, caractérisé en ce qu'il comporte :
- un radar (3) effectuant la localisation de l'aéronef en distance et en angle ;
- au moins une balise embarquée (4) à bord de l'aéronef et au moins une balise (5) dont la position est prédéterminée par rapport au radar (3) pour affiner la localisation, la mesure de la position de la balise embarquée (4) étant effectuée par le radar (3) par mesure différentielle entre la position d'au moins une balise au sol (5) et d'au moins une balise embarquée (4).
13. Dispositif selon la revendication 12, caractérisé en ce que la forme d'onde radar (31 , 41 ) comporte des plateaux de fréquence fp (33, 42) intercalés entre des rampes de fréquence (32, 43), la fréquence fp étant détectée par les balises (4, 5), les balises ré-émettant vers le radar (3) un signal de fréquence (f-i, f2) décalée d'une fréquence fixe (Δf) propre à chacune des balises.
14. Dispositif selon la revendication 13, caractérisé en ce que un plateau de fréquence (33) est intercalé entre chaque rampe (32).
15. Dispositif selon la revendication 13, caractérisé en ce qu'un plateau (42) est intercalé à la suite de plusieurs rampes (43).
16. Dispositif selon l'une quelconque des revendications 13 à 15, caractérisé en ce que le signal émis pendant les plateaux de fréquence (33, 42) est modulé pour coder des messages (61 ) à destination des balises (4, 5).
17. Dispositif selon la revendication 16, caractérisé en ce que le déclenchement à l'émission d'une balise embarquée (4) est provoquée par un message.
18. Dispositif selon l'une quelconque des revendications 13 à 17, caractérisé en ce que la localisation en distance et en angle est effectuée sur les rampes de fréquences (32, 43).
19. Dispositif selon l'une quelconque des revendications 12 à 18, caractérisé en ce que la localisation en distance et en angle se poursuit pendant les mesures différentielles effectuées à l'aide des balises (4, 5).
20. Dispositif selon l'une quelconque des revendications 12 à 19, caractérisé en ce que le radar (3) étant de type monopulse, il comporte au moins deux voies d'écartométrie, une première voie d'écartométrie étant réservée à une balise embarquée (4) émettant à une première fréquence (f-i) et une deuxième voie d'écartométrie étant réservée à une balise au sol (5) émettant à une deuxième fréquence (f2), le radar effectuant la mesures de positions angulaires des balises.
21. Dispositif selon l'une quelconque des revendications 12 à 19, caractérisé en ce que la localisation est effectuée en phase d'approche d'une piste d'atterrissage (2).
22. Dispositif selon l'une quelconque des revendications 12 à 20, caractérisé en ce que l'aéronef est un drône.
PCT/EP2005/055975 2004-11-19 2005-11-15 Procede et dispositif de localisation d'aeronefs, notamment pour leur guidage automatique en phase d'atterrissage WO2006053868A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05821549A EP1812808A1 (fr) 2004-11-19 2005-11-15 Procede et dispositif de localisation d'aeronefs, notamment pour leur guidage automatique en phase d'atterrissage
US11/719,839 US20090243911A1 (en) 2004-11-19 2005-11-15 Method and device for positioning aircraft, such as for automatic guiding during the landing phase
IL183419A IL183419A0 (en) 2004-11-19 2007-05-24 Method and device for positioning aircraft, such as for automatic guiding during the landing phase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0412313A FR2878336B1 (fr) 2004-11-19 2004-11-19 Procede et dispositif de localisation d'aeronefs, notamment pour leur guidage automatique en phase d'atterrissage
FR0412313 2004-11-19

Publications (1)

Publication Number Publication Date
WO2006053868A1 true WO2006053868A1 (fr) 2006-05-26

Family

ID=34954983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/055975 WO2006053868A1 (fr) 2004-11-19 2005-11-15 Procede et dispositif de localisation d'aeronefs, notamment pour leur guidage automatique en phase d'atterrissage

Country Status (5)

Country Link
US (1) US20090243911A1 (fr)
EP (1) EP1812808A1 (fr)
FR (1) FR2878336B1 (fr)
IL (1) IL183419A0 (fr)
WO (1) WO2006053868A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2237067A1 (fr) 2009-04-03 2010-10-06 Thales Système et procédé d'aide à l'appontage d'un aéronef
EP2253935A1 (fr) 2009-05-20 2010-11-24 Thales Procédé et système d'aide à l'atterrissage ou à l'appointage d'un aeronef
US8378885B2 (en) 2007-03-16 2013-02-19 Thales Device and method for locating a mobile approaching a surface reflecting electromagnetic waves
US8576112B2 (en) 2009-09-04 2013-11-05 Thales Broadband multifunction airborne radar device with a wide angular coverage for detection and tracking, notably for a sense-and-avoid function

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2929414A1 (fr) 2008-04-01 2009-10-02 Thales Sa Procede de detection avec un radar d'une cible connue susceptible d'etre sensiblement disposee a une hauteur donnee, a proximite d'autres cibles disposees sensiblement a la meme hauteur
FR2937010B1 (fr) * 2008-10-13 2010-12-10 Dcns Procede et systeme de controle de l'appontage/decollage automatique d'un drone sur ou d'une grille circulaire d'appontage d'une plate-forme notamment navale
WO2010071842A1 (fr) * 2008-12-19 2010-06-24 Xollai, Llc Système et procédé pour déterminer une orientation et une position d'un objet
FR2952734A1 (fr) * 2009-11-13 2011-05-20 Thales Sa Dispositif d'aide a la decision d'appontage d'un aeronef sur un navire
FR2972808B1 (fr) * 2011-03-17 2013-04-12 Thales Sa Procede de surveillance radar et d'acquisition de signaux radar
US8483890B2 (en) * 2011-04-12 2013-07-09 Honeywell International Inc. Identification of ship state tonal parameters for use in relative GPS shipboard landing systems
US10061018B1 (en) * 2015-02-19 2018-08-28 Zain Naboulsi System for identifying drones
US9590720B2 (en) * 2015-05-13 2017-03-07 Ubiqomm Llc Ground terminal and gateway beam pointing toward an unmanned aerial vehicle (UAV) for network access
FR3038991B1 (fr) * 2015-07-16 2018-08-17 Safran Electronics & Defense Procede d'assistance automatique a l'atterrissage d'un aeronef
FR3064800B1 (fr) * 2017-03-30 2020-09-25 Thales Sa Procede de guidage d'une cible aerienne, notamment en phase d'atterrissage vertical, et systeme radar mettant en oeuvre un tel procede
FR3078783B1 (fr) * 2018-03-12 2020-02-21 Thales Procede de localisation haute resolution d'une cible selon un axe vertical, notamment pour son guidage et radar mettant en oeuvre un tel procede
FR3103617B1 (fr) 2019-11-27 2022-05-06 Thales Sa Ensemble de guidage pour amener un aeronef vers un point de reference ; procede de guidage associe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4115771A (en) * 1976-05-11 1978-09-19 Litchstreet Co. Passive ATCRBS using signals of remote SSR
DE3248879A1 (de) * 1982-06-18 1984-04-12 Dornier System Gmbh, 7990 Friedrichshafen Verfahren und vorrichtung zur erzeugung kuenstlicher zielmarken in der abbildung eines radars mit synthetischer apertur (sar)
US4532516A (en) * 1982-10-18 1985-07-30 The Singer Company Calibrator for distance measuring equipment
DE19620682A1 (de) * 1995-05-24 1996-11-28 Deutsche Forsch Luft Raumfahrt Verfahren zur Lokalisierung und Identifizierung von Objekten mittels eines codierten Transponders

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3705404A (en) * 1969-11-17 1972-12-05 John P Chisholm Aircraft clock monitoring and time propagating
US4128839A (en) * 1977-06-28 1978-12-05 The Bendix Corporation Means for accumulating aircraft position data for a beacon based collision avoidance system and other purposes
GB9807540D0 (en) * 1998-04-09 1998-06-10 Orad Hi Tec Systems Ltd Tracking system for sports
US6211808B1 (en) * 1999-02-23 2001-04-03 Flight Safety Technologies Inc. Collision avoidance system for use in aircraft
US6380869B1 (en) * 1999-05-19 2002-04-30 Potomac Aviation Technology Corporation Automated air-traffic advisory system and method
DE19953790A1 (de) * 1999-11-09 2001-05-10 Bosch Gmbh Robert Verfahren zur Erfassung von bewegten und/oder festen Objekten im Kursverlauf eines Fahrzeuges
US6958677B1 (en) * 2000-03-31 2005-10-25 Ge Medical Systems Information Technologies, Inc. Object location monitoring system
US7106245B2 (en) * 2002-01-22 2006-09-12 Bae Systems Information And Electronic Systems Integration Inc. Digital RF tag

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4115771A (en) * 1976-05-11 1978-09-19 Litchstreet Co. Passive ATCRBS using signals of remote SSR
DE3248879A1 (de) * 1982-06-18 1984-04-12 Dornier System Gmbh, 7990 Friedrichshafen Verfahren und vorrichtung zur erzeugung kuenstlicher zielmarken in der abbildung eines radars mit synthetischer apertur (sar)
DE3222869C1 (de) * 1982-06-18 1986-07-17 Dornier System Gmbh, 7990 Friedrichshafen Vorrichtung zur Erzeugung kuenstlicher Zielmarken in der Abbildung eines Radars mit synthetischer Apertur
US4532516A (en) * 1982-10-18 1985-07-30 The Singer Company Calibrator for distance measuring equipment
DE19620682A1 (de) * 1995-05-24 1996-11-28 Deutsche Forsch Luft Raumfahrt Verfahren zur Lokalisierung und Identifizierung von Objekten mittels eines codierten Transponders

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8378885B2 (en) 2007-03-16 2013-02-19 Thales Device and method for locating a mobile approaching a surface reflecting electromagnetic waves
EP2237067A1 (fr) 2009-04-03 2010-10-06 Thales Système et procédé d'aide à l'appontage d'un aéronef
FR2944128A1 (fr) * 2009-04-03 2010-10-08 Thales Sa Systeme et procede a l'appontage d'un aeronef
US8886373B2 (en) 2009-04-03 2014-11-11 Thales System and method for assisting in the decking of an aircraft
EP2253935A1 (fr) 2009-05-20 2010-11-24 Thales Procédé et système d'aide à l'atterrissage ou à l'appointage d'un aeronef
US8576112B2 (en) 2009-09-04 2013-11-05 Thales Broadband multifunction airborne radar device with a wide angular coverage for detection and tracking, notably for a sense-and-avoid function

Also Published As

Publication number Publication date
FR2878336A1 (fr) 2006-05-26
EP1812808A1 (fr) 2007-08-01
US20090243911A1 (en) 2009-10-01
FR2878336B1 (fr) 2007-04-27
IL183419A0 (en) 2009-02-11

Similar Documents

Publication Publication Date Title
WO2006053868A1 (fr) Procede et dispositif de localisation d'aeronefs, notamment pour leur guidage automatique en phase d'atterrissage
EP1963942B1 (fr) Systeme d'atterrissage autonome et automatique pour drones
EP2237067B1 (fr) Système et procédé d'aide à l'appontage d'un aeronef
DK174601B1 (da) Radaranlæg til forhindring af fartøjers kollision under ringe sigtbarhed
CA3111509C (fr) Procede et systeme de balayage par envoi-reception de lidar coherent
KR101868600B1 (ko) 장거리 레이더를 이용하는 표적 탐지각 산출 장치와 방법 및 이 장치를 구비하는 장거리 레이더 시스템
EP1749218B1 (fr) Altimetre radar d'helicoptere pour des operations au cours desquelles une charge est portee sous l'helicoptere
EP0143497B1 (fr) Système radar à monoimpulsion à onde continue modulée en fréquence dont on améliore la stabilité d'axe
FR2459485A1 (fr) Systeme d'atterrissage a micro-ondes a faisceaux battants
KR101925490B1 (ko) 위성 항법 시스템 기반의 바이스태틱 합성 개구 레이더 탐지 방법
FR3013849A1 (fr) Radar anticollision, notamment pour un aeronef au roulage et systeme anticollision
EP2107391B1 (fr) Procédé de détection avec un radar d'une cible connue susceptible d'être sensiblement disposée à une hauteur donnée, à proximité d'autres cibles disposées sensiblement à la même hauteur
EP2253935A1 (fr) Procédé et système d'aide à l'atterrissage ou à l'appointage d'un aeronef
EP2605037A1 (fr) Système d'assistance au pilotage d'un aéronef, notamment d'aide à l'atterrissage, à l'appontage et à la navigation
KR101920379B1 (ko) 위성 항법 시스템 기반의 바이스태틱 합성 개구 레이더 시스템
FR3064800A1 (fr) Procede de guidage d'une cible aerienne, notamment en phase d'atterrissage vertical, et systeme radar mettant en oeuvre un tel procede
KR20200120685A (ko) 대형 안테나 어레이를 갖는 자동차용 레이더 센서의 각도 추정 및 모호정수 결정
US20220155460A1 (en) Remote airflow observation device, remote airflow observation method, and program
WO2021105263A1 (fr) Ensemble de guidage pour amener un aéronef vers un point de référence; procédé de guidage associé
EP2438455A1 (fr) Procede pour permettre un atterrissage sur piste décalée
US20240085521A1 (en) Object detection device
FR2655174A1 (fr) Dispositif et procede pour indiquer la position d'un transpondeur par rapport a une position de reference.
FR2939948A1 (fr) Procede pour permettre un atterrissage sur piste decalee
EP2255148A2 (fr) Dispositif de conduite de tir bas cout contre cibles fixes et mobiles
FR2903194A1 (fr) Procede et dispositif de detection de cibles comportant des moyens d'auto-protection susceptibles d'emettre des ondes electromagnetiques

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 183419

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2005821549

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005821549

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11719839

Country of ref document: US