EP2438455A1 - Procede pour permettre un atterrissage sur piste décalée - Google Patents

Procede pour permettre un atterrissage sur piste décalée

Info

Publication number
EP2438455A1
EP2438455A1 EP10724777A EP10724777A EP2438455A1 EP 2438455 A1 EP2438455 A1 EP 2438455A1 EP 10724777 A EP10724777 A EP 10724777A EP 10724777 A EP10724777 A EP 10724777A EP 2438455 A1 EP2438455 A1 EP 2438455A1
Authority
EP
European Patent Office
Prior art keywords
aircraft
distance
elevation
beacon
offset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10724777A
Other languages
German (de)
English (en)
Inventor
Thierry Boulay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2438455A1 publication Critical patent/EP2438455A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • G01S1/44Rotating or oscillating beam beacons defining directions in the plane of rotation or oscillation
    • G01S1/54Narrow-beam systems producing at a receiver a pulse-type envelope signal of the carrier wave of the beam, the timing of which is dependent upon the angle between the direction of the receiver from the beacon and a reference direction from the beacon; Overlapping broad beam systems defining a narrow zone and producing at a receiver a pulse-type envelope signal of the carrier wave of the beam, the timing of which is dependent upon the angle between the direction of the receiver from the beacon and a reference direction from the beacon
    • G01S1/56Timing the pulse-type envelope signals derived by reception of the beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/12Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/02Automatic approach or landing aids, i.e. systems in which flight data of incoming planes are processed to provide landing data
    • G08G5/025Navigation or guidance aids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/882Radar or analogous systems specially adapted for specific applications for altimeters

Definitions

  • the object of the invention relates to a method for determining a distance between an aircraft and the azimuth beacon of a main runway equipped with azimuth and elevation beacons for landing on a track offset from the main runway, ie ie located at a distance d from the track, the tracks being arranged parallel to one another.
  • the invention is used, for example, in the field of aeronautics for radionavigation.
  • the objective of the radionavigation is to bring the aircraft into a space, aligned with the axis of the airstrip and with a descent gradient of 3 ° (typical but programmable).
  • this is usually done by means of on-board equipment, for example a multi-mode receiver, better known by the abbreviation MMR (Multi Mode Receiver), which receives the signals from different navigation systems such as: the Instrumentation Landing System (ILS), the MLS (Microwave Landing System), the FLS system (Flight landing System ”) and the Global Landing System (GLS).
  • MMR Multi Mode Receiver
  • the microwave landing system known as MLS is an instrument approach and landing aid system intended to provide an aircraft with its position in spherical coordinates in a fixture bound to the runway. that is, an azimuth angle, an elevation elevation angle).
  • the azimuth and elevation angles being known to those skilled in the art will not be explained.
  • MLS as standardized by the ICAO World Organization, transmits lateral guidance signals, ie an azimuth angle, and vertical guidance, that is, an elevation angle ( elevation), using a time-lapse beam technique and a multiplexed time signal.
  • the use of a multiplexed signal over time allows lateral and vertical guidance signals to be transmitted on the same radio frequency channel without interfering between the lateral guidance signals and the vertical guidance signals.
  • the guidance signals are transmitted on a frequency close to 5 Gigahertz (GHz) by an azimuth station and a site station.
  • the azimuth station is placed at the end of the runway while the site station is located on the side of the runway, approximately 300 meters from the runway start.
  • Each station transmits a narrow beating beam, scanning back and forth at constant angular velocity the coverage space along the angular coordinate considered.
  • An aircraft antenna and receiver receive the flying beam a first time in the forward scan and a second time in the reverse scan. It is thus possible to determine the azimuth angle or elevation angle by the following linear relationship:
  • is the azimuth angle or the elevation angle
  • T a time interval between the reception of the forward and backward passages of the beating beam
  • T 0 the value of the time interval T for a zero angle ⁇ and v the scanning angular velocity.
  • T 0 and v are constants defined by the international standards on MLS known from the prior art.
  • Offset approaches are approaches that are made using MLS signals from the main runway (where the MLS beacons are located), but for landing aid on a runway parallel to that runway and covered by beacon signals. .
  • This type of approach is described in the D0226 standard (previously in the DO198 standard), standards known to those skilled in the field of radionavigation.
  • the algorithms proposed by the DO226 standard require obtaining distance information. This distance information is obtained either via a measuring device better known under the acronym DME DME (Anglo-Saxon abbreviation of Distance Mesuring Equipment), or via GPS information (for example by following the method described in the application filed by the applicant FR 07 09035). Such a procedure has the particular disadvantage of having to equip the aircraft with an additional device which can be expensive.
  • the idea of the present invention consists in particular in obtaining the distance information by the joint use of equipment already present in an aircraft, an MMR equipment and a radio altimeter which makes it possible to provide the information relative to the height of the aircraft relative to the aircraft. at the point of the nearest ground.
  • the invention relates to a method for determining the distance of an aircraft to an offset track during an approach approach landing, the offset track being located at a distance D from a main track equipped with at least one elevation marker, characterized in that it comprises at least the following steps:
  • ⁇ and ⁇ are the angles decoded by the MMR respectively corresponding to the angle between the aircraft and the azimuth beacon
  • the angle between the aircraft and the elevation beacon and D2 is defined as the distance between the azimuth beacon and the elevation mark along the x-axis, with x, y and z the coordinates of the aircraft in the elevation marker • Use said distance p to obtain a location point of the aircraft in an offset track mark.
  • Figure 1 an aircraft equipped with a radio altimeter
  • Figure 2 a representation of a main track equipped with beacons and an aircraft initiating its descent at a track offset from the main equipped track
  • Figure 3 a diagram showing an airstrip, the coverage of the antenna, the touchdown points of the aircraft,
  • FIG. 1 shows an aircraft 1 equipped with a radio altimeter 2 adapted to provide information of height H 0 , taken as being the shortest distance between the aircraft 1 and a point S on the ground.
  • the distance H 0 , or h in Figure 4 is a distance considered perpendicular to the ground when approaching the aircraft for landing.
  • the aircraft 1 is also equipped with a multi-mode reception device or MMR, which makes it possible to perform radio-controlled approaches to the landing runway.
  • MMR multi-mode reception device
  • This receiver notably allows guidance by many means known to the Domain, such as the aforementioned ILS, MLS, MLS-CC, FLS and GLS system modes.
  • FIG. 2 The example given by way of non-limiting illustration of the invention of FIG. 2 relates more particularly to the use of the MLS mode.
  • This mode allows the centering on a main track by two beacons, an azimuth beacon 10 and an elevation beacon 12.
  • the azimuth beacon 10 provides information of horizontal angular deviation with respect to the main track equipped 1 1 and the beacon elevation or site tag 12 provides vertical angular deviation information relative to the landing point of the aircraft on the runway.
  • Figure 2 also shows the threshold 14 of the track or touchdown point of the aircraft.
  • the azimuth beacon 10 allows for example an angle measurement between -40 ° and + 40 ° and the beacon elevation (site) between 0.9 ° and 15 °. These values being given only as an indication to illustrate the invention without limiting its scope.
  • the idea of the present invention consists in particular in using the height h of the aircraft provided by the radio altimeter located on the aircraft and the angle provided by the elevation beacon of the MLS mode equipping the main track to determine the distance d between the aircraft 1 and the azimuth beacon 10, in order to allow it to land on a track offset by a distance D with respect to the main equipped track, h is the height determined with respect to a point T1 of the offset track.
  • FIG. 3 schematizes a landing strip Pa, a touchdown point of the aircraft Ts, the position of the elevation marker 12 and the position of the azimuth marker 10. It also shows the antenna coverage. .
  • Figure 4 schematizes the determination diagram of the distance p when the aircraft is at point A, the azimuth beacon B, the point C being the point on the track and taken vertically from the aircraft.
  • the azimuth and elevation beacons are positioned in the same plane P, they therefore have the same coordinates along the z axis.
  • the coordinates x, y and z are the coordinates of the aircraft in the mark of the elevation marker 12. "The distance D2 is defined as the distance between the azimuth marker 10 and the elevation marker 12 along the x-axis.
  • the distance D1 is defined as the distance between the azimuth beacon 10 and the elevation beacon 12 along the y-axis.
  • the data link is defined as an RF transmission of data received and decoded by the MMR.
  • the data from this transmission indicate the geometrical positioning of the main track and beacons 10, 12.
  • the data of the data link make it possible to determine the distances D1 and D2.
  • angles ⁇ and ⁇ are the angles decoded by the MMR respectively corresponding to the angle between the aircraft 1 and the azimuth beacon 10, and ⁇ the elevation angle between the aircraft 1 and the elevation marker 12.
  • the method and the system according to the invention have the advantages of reconstructing distance information from the joint information. of equipment already present on an aircraft, for example an MMR and a radioaltimeter and to use this distance value in the reconstruction algorithms known from the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

1 - Procédé pour déterminer la distance d'un aéronef à une piste décalée (15) lors d'un atterrissage par approche décalée, la piste décalée (15) étant située à une distance D d'une piste principale (11) équipée d'au moins une balise élévation (12), caractérisé en ce qu'il comporte au moins les étapes suivantes : • Déterminer la hauteur h à laquelle se trouve l'aéronef (1), hauteur déterminée par rapport à un point T1 de la piste décalée (15), hauteur mesurée par un radioaltimètre équipant l'aéronef, • Déterminer l'angle d'élévation φ du mode MLS en utilisant les informations de la balise élévation (12) fournie par une balise élévation (12) équipant ladite piste principale (11), • Déterminer la valeur de la distance p de l'avion à la balise azimut (10) en utilisant la formule suivante (I) • Utiliser ladite distance p afin d'obtenir un point de localisation de l'aéronef dans un repère piste décalée (15).

Description

PROCEDE POUR PERMETTRE UN ATTERRISSAGE SUR PISTE
DECALEE
L'objet de l'invention concerne un procédé pour déterminer une distance entre un aéronef et la balise azimut d'une piste principale équipée de balises en azimut et en élévation pour atterrir sur une piste décalée de la piste principale, c'est-à-dire située à une distance d de la piste, les pistes étant disposées parallèlement l'une par rapport à l'autre.
L'invention est utilisée, par exemple, dans le domaine de l'aéronautique pour la radionavigation.
Dans le cadre des atterrissages automatiques ou semi-automatiques, l'objectif de la radionavigation est d'amener l'aéronef dans un espace, aligné avec l'axe de la piste d'atterrissage et avec une pente de descente de 3° (typique mais programmable). A la connaissance du Demandeur, ceci est habituellement réalisé grâce à un équipement embarqué, par exemple un récepteur multi mode plus connu sous l'abréviation anglo-saxonne MMR (Multi Mode Receiver), qui réceptionne les signaux de différents systèmes de navigation tels que : le système d'instrumentation d'atterrissage ou « ILS » (abréviation anglo-saxonne de "Instrument Landing System"), le système MLS (acronyme de l'expression anglo-saxonne "Microwave Landing System"), le système FLS ("Flight landing System") et le système de positionnement GLS ("Global landing System"). Le système d'atterrissage hyperfréquence appelé MLS est un système d'aide à l'approche et à l'atterrissage aux instruments, destiné à fournir à un aéronef sa position en coordonnées sphériques dans un repère lié à la piste d'atterrissage, c'est-à- dire un angle d'azimut, un angle de site élévation). Les angles d'azimut et de site étant connus des Hommes de métier travaillant dans ce domaine ne seront pas explicités. Le MLS, tel que normalisé par l'organisation mondiale OACI, transmet des signaux de guidage latéral, c'est-à-dire un angle d'azimut, et de guidage vertical, c'est-à-dire un angle de site (élévation), en utilisant une technique de faisceaux battants à temps référencé et un signal multiplexe dans le temps. L'utilisation d'un signal multiplexe dans le temps permet la transmission des signaux de guidage latéral et vertical sur le même canal de radiofréquence sans créer d'interférences entre les signaux de guidage latéral et les signaux de guidage vertical. Les signaux de guidage sont émis sur une fréquence voisine de 5 Giga Hertz (GHz) par une station azimut et une station site. La station azimut est placée en fin de piste tandis que la station site est située sur le côté de la piste, à environ 300 mètres du seuil de début de piste. Chaque station transmet un faisceau battant étroit, balayant en aller et retour à vitesse angulaire constante l'espace de couverture suivant la coordonnée angulaire considérée. Une antenne et un récepteur de bord de l'aéronef reçoivent le faisceau battant une première fois lors du balayage aller et une deuxième fois lors du balayage retour. Il est ainsi possible de déterminer l'angle d'azimut ou l'angle de site par la relation linéaire suivante :
Θ = (T -TO ).^- (1 )
où θ est l'angle d'azimut ou l'angle de site,
T un intervalle de temps entre la réception des passages aller et retour du faisceau battant,
T0 la valeur de l'intervalle de temps T pour un angle θ nul et v la vitesse angulaire de balayage. T0 et v sont des constantes définies par les normes internationales sur le MLS connues de l'art antérieur.
Les approches décalées sont des approches qui sont réalisées en utilisant les signaux MLS de la piste principale (où sont situées les balises MLS), mais pour l'aide à l'atterrissage sur une piste parallèle à cette piste et couverte par les signaux des balises. Ce type d'approche est décrit dans la norme D0226 (précédemment dans la norme DO198), normes connues de l'Homme du métier dans le domaine de la radionavigation. Les algorithmes proposés par la norme DO226 imposent d'obtenir une information de distance. Cette information de distance est obtenue soit via un dispositif de mesure plus connu sous l'acronyme anglo-saxon DME (abréviation anglo-saxonne de Distance Mesuring Equipement), soit via des informations GPS (en suivant par exemple le procédé décrit dans la demande déposée par le demandeur FR 07 09035). Une telle manière de procéder présente notamment comme inconvénient de devoir équiper l'avion d'un dispositif supplémentaire ce qui peut s'avérer onéreux.
L'idée de la présente invention consiste notamment à obtenir l'information de distance par l'utilisation conjointe d'équipements déjà présents dans un avion, un équipement MMR et un radioaltimètre qui permet de fournir l'information hauteur de l'aéronef par rapport au point du sol le plus proche. L'invention concerne un procédé pour déterminer la distance d'un aéronef à une piste décalée lors d'un atterrissage par approche décalée, la piste décalée étant située à une distance D d'une piste principale équipée d'au moins une balise élévation, caractérisé en ce qu'il comporte au moins les étapes suivantes :
• Déterminer la hauteur h à laquelle se trouve l'aéronef, hauteur déterminée par rapport à un point T1 de la piste décalée, hauteur mesurée par un radioaltimètre équipant l'aéronef,
• Déterminer l'angle d'élévation du mode MLS en utilisant les informations de la balise élévation fournie par une balise élévation équipant ladite piste principale,
• Déterminer la valeur de la distance p de l'avion à la balise azimut en utilisant la formule suivante
où θ et φ sont les angles décodés par le MMR correspondant respectivement à l'angle entre l'avion et la balise azimut, et l'angle entre l'avion et la balise élévation et D2 est définie comme la distance entre la balise azimut et la balise élévation suivant l'axe des x, avec x, y et z les coordonnées de l'avion dans le repère de la balise élévation • Utiliser ladite distance p afin d'obtenir un point de localisation de l'aéronef dans un repère piste décalée.
D'autres caractéristiques et avantages du dispositif selon l'invention apparaîtront mieux à la lecture de la description qui suit d'un exemple de réalisation donné à titre illustratif et nullement limitatif annexé des figures qui représentent :
• La figure 1 un aéronef équipé d'un radio altimètre,
• La figure 2, une représentation d'une piste principale équipée de balises et d'un avion amorçant sa descente au niveau d'une piste décalée de la piste principale équipée,
• La figure 3, un schéma montrant une piste d'atterrissage, la couverture de l'antenne, les points de toucher au sol de l'avion,
• La figure 4, un schéma de principe pour la reconstruction de la distance de l'avion.
Sur la figure 1 est représenté un avion 1 équipé d'un radioaltimètre 2 adapté à fournir une information de hauteur H0, prise comme étant la distance la plus courte entre l'avion 1 et un point S au sol. La distance H0, ou h sur la figure 4 est une distance considérée comme perpendiculaire au sol lors de l'approche de l'avion pour l'atterrissage.
L'avion 1 est aussi équipé d'un dispositif de réception multi mode ou MMR, qui permet d'effectuer des approches radioguidées de piste d'atterrissage. Ce récepteur permet notamment le guidage par de nombreux moyens connus du Domaine, tels que les modes systèmes précités ILS, MLS, MLS- CC, FLS et GLS.
L'exemple donné à titre illustratif et non limitatif de l'invention de la figue 2 concerne plus particulièrement l'utilisation du mode MLS. Ce mode permet le centrage sur une piste principale grâce à deux balises, une balise azimut 10 et une balise élévation 12. La balise azimut 10 fournit une information d'écart angulaire horizontal par rapport à la piste principale équipée 1 1 et la balise élévation ou balise site 12 fournit une information d'écart angulaire vertical par rapport au point de pose des roues de l'avion sur la piste. La figure 2 présente aussi le seuil 14 de la piste ou point de toucher des roues de l'avion.
La balise azimut 10 permet par exemple une mesure d'angle entre -40° et +40° et la balise élévation (site) entre 0,9° et 15°. Ces valeurs n'étant données qu'à titre indicatif pour illustrer l'invention sans en limiter la portée. L'idée de la présente invention consiste notamment à utiliser la hauteur h de l'avion fournie par le radioaltimètre situé sur l'avion et l'angle fourni par la balise élévation du mode MLS équipant la piste principale afin de déterminer la distance d entre l'avion 1 et la balise azimut 10, ceci afin de permettre son atterrissage sur une piste décalée 15 d'une distance D par rapport à la piste principale équipée, h est la hauteur déterminée par rapport à un point T1 de la piste décalée.
La figure 3 schématise une piste d'atterrissage Pa, un point de toucher au sol de l'avion Ts, la position de la balise élévation 12 et la position de la balise azimut 10. Elle montre aussi la couverture de l'antenne faisceau balise.
La figure 4 schématise le diagramme de détermination de la distance p lorsque l'avion se trouve au point A, la balise azimut B, le point C étant le point sur la piste et pris à la verticale de l'avion.
Les balises azimut et élévation sont positionnées dans un même plan P, elles ont donc les mêmes coordonnées selon l'axe z.
Le procédé dispose dans le repère de la balise élévation 12, D1 et D2 sont fournit par le data link des données suivantes: p2 = l2 + h2 x-D2
Cos(θ) = -
Tan{φ) = - x
Soit h x = -
Tan(φ) et
- Dl ι = Tan(φ)
Cos(θ)
D'où
avec :
• Les coordonnées x, y et z sont les coordonnées de l'avion dans le repère de la balise élévation 12. « La distance D2 est définie comme la distance entre la balise azimut 10 et la balise élévation12 suivant l'axe des x.
• La distance D1 est définie comme la distance entre la balise azimut 10 et la balise élévation 12 suivant l'axe des y.
• Le data link : est défini comme étant une transmission RF de données reçues et décodées par le MMR. Les donnée issues de cette transmission indiquent le positionnement géométrique de la piste principale et des balises 10, 12. Les données du data link permettent de déterminer les distances D1 et D2.
• Les angles θ et φ sont les angles décodés par le MMR correspondant respectivement à l'angle entre l'avion 1 et la balise azimut 10, et φ l'angle d'élévation entre l'avion 1 et la balise élévation 12.
Le procédé et le système selon l'invention présentent comme avantages de reconstruire une information de distance à partir des informations conjointes d'équipements déjà présents sur un avion, par exemple un MMR et un radioaltimètre et d'utiliser cette valeur distance dans les algorithmes de reconstruction connus de l'art antérieur.
Ils évitent l'utilisation d'équipements supplémentaires pouvant générer des perturbations électroniques et aussi rendre le dispositif plus coûteux.

Claims

REVENDICATIONS
1 - Procédé pour déterminer la distance d'un aéronef à une piste décalée (15) lors d'un atterrissage par approche décalée, la piste décalée (15) étant située à une distance D d'une piste principale (1 1 ) équipée d'au moins une balise élévation (12), caractérisé en ce qu'il comporte au moins les étapes suivantes :
• Déterminer la hauteur h à laquelle se trouve l'aéronef (1 ), hauteur déterminée par rapport à un point T1 de la piste décalée (15), hauteur mesurée par un radioaltimètre équipant l'aéronef,
• Déterminer l'angle d'élévation φ du mode MLS en utilisant les informations de la balise élévation (12) fournie par une balise élévation (12) équipant ladite piste principale (1 1 ),
• Déterminer la valeur de la distance p de l'avion à la balise azimut (10) en utilisant la formule suivante :
où θ et φ sont les angles décodés par le MMR correspondant respectivement à l'angle entre l'avion (1 ) et la balise azimut (10) et l'angle entre l'avion (1 ) et la balise élévation (12) et D2 est définie comme la distance entre la balise azimut (10), et la balise élévation (12) suivant l'axe des x, avec x, y et z les coordonnées de l'avion dans le repère de la balise élévation (12)
• Utiliser ladite distance p afin d'obtenir un point de localisation de l'aéronef dans un repère piste décalée (15).
2 - Procédé selon la revendication 1 caractérisé en ce que l'on utilise la distance p dans un algorithme de reconstruction tel que celui décrit dans la norme DO198 ou DO226
EP10724777A 2009-06-05 2010-06-04 Procede pour permettre un atterrissage sur piste décalée Withdrawn EP2438455A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0902729A FR2946447B1 (fr) 2009-06-05 2009-06-05 Procede pour permettre un atterrissage sur piste decalee
PCT/EP2010/057858 WO2010139799A1 (fr) 2009-06-05 2010-06-04 Procede pour permettre un atterrissage sur piste décalée

Publications (1)

Publication Number Publication Date
EP2438455A1 true EP2438455A1 (fr) 2012-04-11

Family

ID=41668270

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10724777A Withdrawn EP2438455A1 (fr) 2009-06-05 2010-06-04 Procede pour permettre un atterrissage sur piste décalée

Country Status (4)

Country Link
US (1) US8682510B2 (fr)
EP (1) EP2438455A1 (fr)
FR (1) FR2946447B1 (fr)
WO (1) WO2010139799A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105185183A (zh) * 2015-10-12 2015-12-23 四川天中星航空科技有限公司 微波着陆内场模拟系统
CN105320627B (zh) * 2015-10-27 2018-01-05 兰州飞行控制有限责任公司 无线电高度表与耦合计算机交联适配电路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3381295A (en) 1967-03-17 1968-04-30 Sperry Rand Corp Radio controlled guidance apparatus for aircraft having radio signal gain programing
US4368517A (en) * 1978-03-16 1983-01-11 Bunker Ramo Corporation Aircraft landing display system
FR2925712B1 (fr) 2007-12-21 2010-01-01 Thales Sa Procede pour l'aide a l'atterrissage d'aeronef utilisant un gps et un mls dans le cadre d'une approche axiale calculee.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010139799A1 *

Also Published As

Publication number Publication date
US8682510B2 (en) 2014-03-25
US20120265377A1 (en) 2012-10-18
FR2946447B1 (fr) 2011-07-22
FR2946447A1 (fr) 2010-12-10
WO2010139799A1 (fr) 2010-12-09

Similar Documents

Publication Publication Date Title
US7598910B2 (en) Direction finding and mapping in multipath environments
EP2225622B1 (fr) Procede pour l'aide a l'atterrissage d'aeronef utilisant un gps et un mls dans le cadre d'une approche axiale calculee
EP2237067B1 (fr) Système et procédé d'aide à l'appontage d'un aeronef
US6492945B2 (en) Instantaneous radiopositioning using signals of opportunity
EP2122388B1 (fr) Dispositif et procede de localisation d'un mobile a l'approche d'une surface reflechissant les ondes electromagnetiques
JP5537944B2 (ja) 大気中乱気流位置測定システムおよび方法
US6204804B1 (en) Method for determining object movement data
EP3074786B1 (fr) Radar anticollision, notamment pour un aéronef au roulage, et système anticollision
WO2006053868A1 (fr) Procede et dispositif de localisation d'aeronefs, notamment pour leur guidage automatique en phase d'atterrissage
EP1963942A1 (fr) Systeme d'atterrissage autonome et automatique pour drones
EP2253935A1 (fr) Procédé et système d'aide à l'atterrissage ou à l'appointage d'un aeronef
EP1589351A1 (fr) Procédé et dispositif d'aide à l'atterrissage d'un aéronef sur une piste d'atterrissage
EP2107391B1 (fr) Procédé de détection avec un radar d'une cible connue susceptible d'être sensiblement disposée à une hauteur donnée, à proximité d'autres cibles disposées sensiblement à la même hauteur
RU2685705C1 (ru) Способ определения собственного местоположения судна на основе сигналов автоматической идентификационной системы и устройство для его осуществления
FR2984577A1 (fr) Systeme d'assistance au pilotage d'un aeronef, notamment d'aide a l'atterrissage, a l'appontage et a la navigation
EP2438455A1 (fr) Procede pour permettre un atterrissage sur piste décalée
US20220155460A1 (en) Remote airflow observation device, remote airflow observation method, and program
FR3064800A1 (fr) Procede de guidage d'une cible aerienne, notamment en phase d'atterrissage vertical, et systeme radar mettant en oeuvre un tel procede
FR2939948A1 (fr) Procede pour permettre un atterrissage sur piste decalee
EP0881505B1 (fr) Procédé de recalage de navigation d'un mobile au moyen d'une cartographie radar de zones de terrain à relief accentue
FR2947641A1 (fr) Procede pour evaluer une erreur dans le positionnement d'un aeronef engendre par un systeme de positionnement embarque
WO2021105263A1 (fr) Ensemble de guidage pour amener un aéronef vers un point de référence; procédé de guidage associé
RU2558412C1 (ru) Многопозиционная система посадки воздушных судов
WO2021110868A1 (fr) Procédé et dispositif de mesure de hauteur d'un aéronef en vol par rapport à au moins un point du sol
Williams et al. Extending the range of Loran-C ASF modelling

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120724