WO2021105263A1 - Ensemble de guidage pour amener un aéronef vers un point de référence; procédé de guidage associé - Google Patents

Ensemble de guidage pour amener un aéronef vers un point de référence; procédé de guidage associé Download PDF

Info

Publication number
WO2021105263A1
WO2021105263A1 PCT/EP2020/083465 EP2020083465W WO2021105263A1 WO 2021105263 A1 WO2021105263 A1 WO 2021105263A1 EP 2020083465 W EP2020083465 W EP 2020083465W WO 2021105263 A1 WO2021105263 A1 WO 2021105263A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
signal
emission
active beacon
cone
Prior art date
Application number
PCT/EP2020/083465
Other languages
English (en)
Inventor
Thierry Mazeau
Charline CASTAING
Patrick Garrec
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to US17/779,469 priority Critical patent/US20220413128A1/en
Publication of WO2021105263A1 publication Critical patent/WO2021105263A1/fr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/04Control of altitude or depth
    • G05D1/06Rate of change of altitude or depth
    • G05D1/0607Rate of change of altitude or depth specially adapted for aircraft
    • G05D1/0653Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing
    • G05D1/0676Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing specially adapted for landing
    • G05D1/0684Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing specially adapted for landing on a moving platform, e.g. aircraft carrier
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/91Radar or analogous systems specially adapted for specific applications for traffic control
    • G01S13/913Radar or analogous systems specially adapted for specific applications for traffic control for landing purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/04Details
    • G01S1/042Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/68Marker, boundary, call-sign, or like beacons transmitting signals not carrying directional information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S13/48Indirect determination of position data using multiple beams at emission or reception
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/876Combination of several spaced transponders or reflectors of known location for determining the position of a receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/28Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived simultaneously from receiving antennas or antenna systems having differently-oriented directivity characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/02Automatic approach or landing aids, i.e. systems in which flight data of incoming planes are processed to provide landing data
    • G08G5/025Navigation or guidance aids

Definitions

  • Guidance assembly for bringing an aircraft to a reference point; associated guidance method
  • the field of the invention is that of devices and methods for guiding an aircraft to a reference point.
  • Such precision is required, for example, for the landing on the deck of a ship of a small helicopter, in particular an autonomous helicopter of the drone type.
  • Radionavigation systems are known, for example for maritime navigation, which use a plurality of transmitter buoys, the geographical positions of which are known.
  • a receiver on board a ship, then determines, from the signals received, the distance separating it from each buoy and, by triangulation, determines the absolute location of the ship.
  • a variant of these systems consists in determining the location of the vessel by measuring a phase difference between the synchronized signals emitted by different buoys.
  • ILS systems for "Instrument Landing System” in English
  • ILS systems consist of beacons positioned on a runway to provide information relating to the direction of landing of the aircraft relative to the runway.
  • Such a system guides an aircraft upon landing so that it lands along the centreline of the runway with controlled incidence.
  • Such a system is not suitable for bringing an aircraft to a reference point with high precision.
  • a detection and location device uses a wave emitted by a transmitter on board the aircraft, to performing a localization of the aircraft intended to improve the precision of the measurement of the angular position of the aircraft with respect to the runway.
  • the aim of the present invention is therefore to meet this need by proposing in particular an alternative to known systems.
  • the invention relates to a guide assembly for bringing an aircraft to a reference point, characterized in that it comprises: an active beacon suitable for emitting a first electromagnetic signal according to a first emission cone, defined by a vertex coinciding with the reference point, a first opening angle and a first axis corresponding to a direction of emission; and a multibeam radar, on board the aircraft, operating in reception and capable of carrying out deviation measurements on a signal received from the active beacon, the multibeam radar comprising an antenna suitable for reception according to at least two cones of spatially separated reception.
  • the invention advantageously takes advantage of the principle of ecartometry, which is also known in the radar field for target tracking.
  • the guide assembly has one or more of the following characteristics, taken in isolation or in any technically possible combination:
  • the active beacon is able to emit, in addition, at least a second electromagnetic signal according to a second emission cone, the top of the second emission cone coinciding with the reference point, the axis of the second emission cone coinciding with the direction of emission, and a second opening angle, the second opening angle being strictly greater than the first opening angle of the first emission cone, the second signal and the first signal being separable from one of the other according to a predefined property, the multibeam radar being able to separate, in the signal received from the active beacon, a contribution of the first signal and a contribution of the second signal and to carry out deviation measurements from the contribution of the first signal and / or the contribution of the second signal.
  • the active beacon is able to emit the first signal according to a first characteristic frequency and the second signal according to a second characteristic frequency, the second frequency being different from the first.
  • the multibeam radar has a so-called parallel configuration in which the axes of the reception cones are mutually parallel or a so-called divergent configuration in which the axes of the reception cones diverge from a center of the radar antenna.
  • the antenna of the multibeam radar comprises four elementary antennas, each elementary antenna being associated with a reception cone.
  • the subject of the invention is also a guidance method for bringing an aircraft to a reference point, using a guidance assembly in accordance with the previous guidance assembly, consisting, in a landing phase, of bringing the aircraft closer. of the reference point along the direction of emission of the active beacon, by monitoring a position of the aircraft in a plane perpendicular to the direction of emission as a function of deviationometry measurements carried out periodically by the multibeam radar from the electromagnetic signal received from the active beacon.
  • the guidance method comprises one or more of the following characteristics, taken in isolation or in any technically possible combination:
  • the landing phase continues by carrying out the deviation measurements from the second electromagnetic signal emitted by the active beacon in the second emission cone.
  • the method consists in bringing the aircraft closer to the direction of emission of the active beacon in a plane substantially perpendicular to the direction of emission, by periodically carrying out ecartometry measurements.
  • the deviation measurements are performed on the second signal emitted in the second emission cone, then, when the deviation measurements on the second signal are no longer relevant, the deviation measurements are performed on the first signal emitted in the first emission cone.
  • the subject of the invention is also an aircraft, characterized in that it carries a device from among a multibeam radar and an active beacon of a guidance assembly in accordance with the previous guidance assembly.
  • FIG. 1 is a schematic representation of the landing of an aircraft on a runway by implementing a guidance assembly according to the invention, which comprises an active beacon for marking the center of the runway and a multibeam radar on board. the aircraft;
  • Figure 2 is a schematic representation of one embodiment of the active tag of Figure 1;
  • Figure 3 is a schematic representation of an embodiment of the multibeam radar of Figure 1;
  • Figures 4 and 5 are geometric representations explaining the ecartometry measurements made by a multibeam radar from the signal emitted by an active beacon;
  • FIG. 6 is an illustration of an approach phase of the guidance method according to the invention making it possible to position the multibeam radar in line with the active beacon;
  • FIG. 7 is an illustration of a landing phase of the guidance method according to the invention making it possible to bring the multibeam radar closer to the active beacon.
  • a guidance assembly is used during the landing of an aircraft 1 on a runway 2, so as to bring the aircraft 1 to a reference point O with high precision.
  • a coordinate system (O, XYZ) is associated with track 2 so that its origin coincides with the reference point O.
  • the plane of track 2 is defined by the X and Y axes, while the direction perpendicular to track 2 , corresponds to the Z axis, which is here considered as vertical.
  • the guidance assembly includes an active beacon 100 and a multibeam radar 50.
  • the active beacon 100 makes it possible to mark the reference point O.
  • the active beacon 100 is for example located in track 2.
  • the multibeam radar 50 is on board the aircraft 1.
  • the multibeam radar 50 is for example fixed with respect to the aircraft 1.
  • a mark (O ', X' Y 'Z') is associated with the multibeam radar 50. To simplify the present description, once the aircraft has landed on runway 2 in the desired position, the mark (O ', X' Y 'Z') coincides with the reference (O, XYZ).
  • the active beacon 100 integrates an antenna 120 comprising three radiating elements 121, 122 and 123. Each radiating element is able to emit a characteristic electromagnetic signal, according to an emission beam of substantially conical shape.
  • the different emission beams have the same origin and a common axis. This common axis, or direction of emission of the active beacon, corresponding to the Z axis.
  • the first radiating element 121 is suitable for emitting a first electromagnetic signal, at a first characteristic frequency f 1, inside a first emission cone 111.
  • the first emission cone 111 is such that its sound vertex coincides with the reference point O and its axis coincides with the Z axis.
  • This first emission cone 111 is characterized by an angle
  • the second radiating element 122 is suitable for emitting a second electromagnetic signal at a second characteristic frequency f2, inside a second emission cone 112.
  • the second emission cone 112 is such that its apex coincides with the point reference O and that its axis coincides with the Z axis. It is characterized by a second opening angle q 2 , strictly greater than the first opening angle 0 ! .
  • the third radiating element 123 is suitable for emitting a third electromagnetic signal, at a third characteristic frequency F3, inside a third emission cone 113.
  • the third emission cone 113 is such that its apex coincides with the reference point O and that its axis coincides with the Z axis. It is characterized by a third opening angle q 3 strictly greater than the second opening angle q 2 .
  • Figure 2 is schematic. The distance separating the radiating elements from each other is small enough that the beams emitted by each of these radiating elements can be considered as superimposed on each other.
  • the supply chain of the antenna 120 incorporates a generator 170 suitable for producing a supply signal of the frequency comb type: it comprises a first component at the first characteristic frequency f1, a second component at the second characteristic frequency f2, and a third component at the third characteristic frequency f3.
  • a power divider 160 Downstream of generator 170, a power divider 160, separates the feed signal into three identical elementary feed signals.
  • Each elementary supply signal is applied to the input of a supply line, the output of which is connected to an associated radiating element.
  • Each supply line comprises a filter followed by an amplifier to shape the excitation signal of the associated radiating element.
  • the first filter 151 makes it possible to select, in the elementary supply signal, the first component of frequency f1.
  • the latter is amplified by amplifier 141 before being applied to the first radiating element 121.
  • the second filter 152 makes it possible to select, in the elementary supply signal, the second component of frequency f2.
  • the latter is amplified by amplifier 142 before being applied to the second radiating element 122.
  • the third filter 153 makes it possible to select, in the elementary supply signal, the third component of frequency f3.
  • the latter is amplified by amplifier 143 before being applied to the third radiating element 123.
  • the multibeam radar 50 incorporates an antenna 60.
  • the antenna plane of the antenna 60 corresponds to the plane C ⁇ "and its geometric center, at the origin O".
  • the antenna 60 comprises for example four elementary antennas, each elementary antenna being able to pick up electromagnetic signals according to a conical reception beam.
  • the points of implantation of the elementary antennas on the antenna plane correspond to the vertices of a square with center O ’and side of length D.
  • the elementary antenna 52 A collects the signals according to a reception cone 51 A of axis A, respectively a reception cone 51 B of axis B, a reception cone 51c d 'axis C and a receiving cone 51 D of axis D.
  • the axes of the receiving cones are parallel to each other and to the Z ’axis. However, they are distinct from the Z ’axis and oriented towards the negative sides to be able to pick up the signal emitted by the active beacon 100.
  • the different reception cones have the same opening angle Q.
  • the multibeam radar 50 is for example a radar operating in transmission / reception, which is not dedicated to guidance, but can be used to perform other tasks during the flight of the aircraft 1. On the other hand, when the radar multibeam 50 is used for guidance, it operates only on reception. Thus, the multibeam radar 50 comprises four identical transmission / reception channels, respectively 54 A , 54 B , 54 c and 54 D. Each channel is associated with one of the elementary antennas.
  • Each voice has a transmission line and a reception line connected to the associated elementary antenna via a circulator 55.
  • the transmission line is not presented in more detail since it is not used for guidance.
  • a reception line receives as input the signal collected by the corresponding elementary antenna. It integrates in a classic way:
  • a frequency mixer 56 for transposing the signal into baseband, the latter being characterized by an intermediate frequency
  • an analog / digital converter 58 to encode the filtered signal.
  • the digitized signal at the output of each reception line is applied to the input of a computer 59.
  • the computer 59 is suitably programmed so as to periodically carry out ecartometry measurements and generate a guidance signal S.
  • the guidance signal S is brought to the attention of the pilot of the aircraft 1 so that the latter can take it into account in the manner of maneuvering his device during landing.
  • the guidance signal S is transmitted to an autopilot device for automatic landing of the aircraft 1.
  • the situation shown in FIG. 4 corresponds to the case where the multibeam radar 50 is located directly above the active beacon 100 (the Z axis then coinciding with the Z axis).
  • the antenna plane C ⁇ ’ is parallel to the XY plane of runway 2.
  • FIG. 5 represents a section of these different cones along an intermediate plane 3 parallel to the XY plane of the track 2.
  • the intermediate plane 3 is integral with the aircraft 1, that is to say that the distance between the intermediate plane 3 and the plane C ⁇ is constant.
  • intersection of a cone with the intermediate plane 3 takes place in a circle.
  • the sections of the reception cones 51 A , 51 B , 51 C and 51 D lie within the section of the emission cone 111.
  • the diameter of the section of the emission cone 111 gradually decreases.
  • the section of the emission cone 111 is tangent to the different sections of the reception cones 51A, 51 B, 51 C and 51 D. This is shown in solid lines in FIG. 5.
  • the diameter of the section of the emission cone 111 reduces so that the sections of the reception cones 51 A , 51 B , 51 C and 51 D eventually come out and come together. find outside the perimeter of the section of the emission cone 111.
  • the section of the emission cone 111 is offset with respect to the mark (O ', X' Y '), so that all or part of some of the sections of the receiving cones 51 A , 51 B , 51c and 51 D extend beyond the perimeter of the section of the cone d' emission 111. There then exists a difference between the amplitude of the signals picked up by each of the elementary antennas of the radar 50. The determination of this difference allows an evaluation of the misalignment of the Z and Z ′ axes.
  • the calculator 59 is thus able to periodically calculate the quantities:
  • the search at each instant, for the minimum of each of these two ratios allows the aircraft 1 to be centered on the direction of emission of the active beacon 100.
  • the deviation measurements therefore make it possible to correct the position of the aircraft 1 in order to align the Z ′ axis with the Z axis, while gradually reducing the altitude of the aircraft 1.
  • the elementary antennas of the radar 50 no longer being “illuminated”. by the first conical beam of the beacon 100.
  • D / L / 2 is the distance between the center of an elementary antenna and the point O ’in the antenna plane of radar 50.
  • the deviation measurements can no longer be carried out by means of the first signal (the aircraft being at an altitude below the limit altitude Hi associated with the first emission cone 111), they are carried out by means of the second signal, emitted in a second emission cone 112 having a larger aperture than the first emission cone 111.
  • the active beacon 100 simultaneously transmits three signals, at different characteristic frequencies (respectively f1, f2 and f3), in three coaxial emission cones originating from the point O (respectively 111, 112 and 113).
  • FIG. 6 illustrates an approach phase of the guidance method making it possible to align the Z ′ axis of the radar 50 with the Z axis of the beacon 100 by a movement in the direction F1 of the aircraft 1.
  • the radar 50 catches the third signal emitted in the third emission cone 113, having the largest opening.
  • the aircraft 1 is guided to, at a substantially constant altitude, approach the Z axis of the third emission cone 113.
  • the radar 50 ends up hooking the second signal emitted in the second emission cone 112. From this moment, the deviation measurements are carried out, no longer on the third signal (which would no longer be discriminant), but on the second signal.
  • Guidance of the aircraft still at a substantially constant altitude, can continue to bring it closer to the Z axis of the second emission cone 112.
  • the radar 50 ends up catching the first signal emitted in the first cone 111, which then makes it possible to carry out the ecartometry measurements, no longer on the second signal, but on the first signal.
  • the aircraft 1 is thus progressively brought to the direction of transmission of the active beacon 100, directly above the reference point O
  • Figure 7 illustrates the next phase of the guidance process. This is the actual landing phase, allowing, while maintaining alignment with the direction of emission of the active beacon 100, to approach the aircraft 1 to the reference point O.
  • the aircraft is moves in direction F2.
  • the altitude of the aircraft 1 is progressively reduced while regulating the position of the aircraft transversely to the Z axis by using the deviation measurements taken from the first signal emitted in the first cone 111.
  • the aircraft 1 ends up reaching the limit altitude Hi associated with the first emission cone 111.
  • the multibeam radar 50 uses the second signal emitted in the second emission cone 112 to perform the ecartometry measurements.
  • the multibeam radar 50 uses the third signal emitted in the third emission cone 113 to carry out the deviation measurements. .
  • the system just described allows a small drone to land 10 mm from the O reference point. This corresponds to the desired precision.
  • the antenna of the active beacon has at least one emission cone.
  • the multiplication of emission cones improves guidance precision.
  • the antenna comprises a single emission cone, the opening of which is adjustable, in particular as a function of the distance separating the aircraft to be guided from the reference point.
  • the multibeam radar comprises an antenna integrating at least two elementary antennas, separated from one another along a direction of separation.
  • the guidance method is then carried out in a plane defined by the emission axis of the active beacon and the direction of separation of the radar.
  • the elementary antennas are distant from each other in the antenna plane and the axes of the reception cones are mutually parallel.
  • the antenna of the multibeam radar is configured so that the elementary antennas are close to each other in the antenna plane and that the axes of the reception cones are divergent (divergent configuration).
  • each signal could be produced with characteristic amplitude modulation, characteristic phase modulation, characteristic frequency modulation, or characteristic polarization (straight, left circular, or right circular).
  • the various signals emitted by the active beacon can be emitted simultaneously or successively.
  • the electromagnetic signal emitted by the active beacon can be a signal in the infrared spectrum, in the optical spectrum, in the radio spectrum, or any other electromagnetic spectrum adapted according to the envisaged application.
  • it is the multibeam radar which marks the reference point and the active beacon which is on board the aircraft.
  • the radar To guide the movement of the aircraft from the deviation measurements taken by the radar, it is then necessary to establish a communication link between the radar and the aircraft so that the pilot and / or the piloting system of the aircraft. the aircraft can receive the data necessary for guidance.
  • aircraft we mean any type of aircraft, helicopter, airship, or more generally any type of maneuverable flying machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Ensemble de guidage pour amener un aéronef (1) vers un point de référence (O), caractérisé en ce qu'il comporte : une balise active (100) propre à émettre un premier signal électromagnétique selon un premier cône d'émission, définit par un sommet coïncidant avec le point de référence, un premier angle d'ouverture et un premier axe correspondant à une direction d'émission (Z); et un radar multifaisceaux (50), embarqué à bord de l'aéronef (1), fonctionnant en réception et propre à réaliser des mesures d'écartométrie sur un signal reçu depuis la balise active (100), le radar multifaisceaux (50) comportant une antenne adaptée pour une réception selon au moins deux cônes de réception spatialement séparés.

Description

Ensemble de guidage pour amener un aéronef vers un point de référence ; procédé de guidage associé
L’invention a pour domaine celui des dispositifs et des procédés de guidage d’un aéronef vers un point de référence.
On souhaiterait disposer de moyens permettant de guider un aéronef jusqu’à un point de référence afin de s’en approcher au plus près, c’est-à-dire avec une précision de guidage de l’ordre de la dizaine de centimètres, de préférence de l’ordre de la dizaine de millimètres.
Une telle précision est par exemple requise pour l’atterrissage sur le pont d’un navire d’un hélicoptère de taille réduite, en particulier un hélicoptère autonome de type drone.
On connaît des systèmes de radionavigation, par exemple pour la navigation maritime, qui mettent en oeuvre une pluralité de bouées émettrices, dont les positions géographiques sont connues. Un récepteur, embarqué à bord d’un navire, détermine alors, à partir des signaux reçus, la distance qui le sépare de chaque bouée et, par triangulation, détermine la localisation absolue du navire.
Une variante de ces systèmes consiste à déterminer la localisation du navire par la mesure d’une différence de phase entre les signaux synchronisés émis par différentes bouées.
Cependant, la précision de ces systèmes, qui est ajustée aux besoins de la navigation maritime, n’est que de l’ordre du mètre.
On connaît également les systèmes ILS (pour « Instrument Landing System » en anglais), qui sont constitués de balises positionnées sur une piste pour fournir une information relative à la direction d’atterrissage de l’aéronef par rapport à la piste. Un tel système guide un aéronef au moment de l’atterrissage pour qu’il atterrisse le long de l’axe de la piste, avec une incidence maîtrisée. Un tel système n’est pas adapté pour amener un aéronef sur un point de référence avec une précision élevée.
Une alternative aux systèmes ILS est présentée dans les documents FR 2 894347 et FR 2 878336. Un dispositif de détection et de localisation, au sol, exploite une onde émise par un émetteur embarqué à bord de l’aéronef, pour effectuer une localisation de l’aéronef destinée à améliorer la précision de la mesure de positon angulaire de l’aéronef par rapport à la piste.
Le but de la présente invention est par conséquent de répondre à ce besoin en proposant notamment une alternative aux systèmes connus.
Pour cela l’invention a pour objet un ensemble de guidage pour amener un aéronef vers un point de référence, caractérisé en ce qu’il comporte : une balise active propre à émettre un premier signal électromagnétique selon un premier cône d’émission, définit par un sommet coïncidant avec le point de référence, un premier angle d’ouverture et un premier axe correspondant à une direction d’émission ; et un radar multifaisceaux, embarqué à bord de l’aéronef, fonctionnant en réception et propre à réaliser des mesures d’écartométrie sur un signal reçu depuis la balise active, le radar multifaisceaux comportant une antenne adaptée pour une réception selon au moins deux cônes de réception spatialement séparés.
L’invention met avantageusement à profit le principe de l’écartométrie, qui est par ailleurs connu dans le domaine radar pour le suivi de cible.
Suivant des modes particuliers de réalisation l’ensemble de guidage comporte une ou plusieurs des caractéristiques suivantes, prises isolément ou suivant toutes les combinaisons techniquement possibles :
- la balise active est propre à émettre, en outre, au moins un second signal électromagnétique selon un second cône d’émission, le sommet du second cône d’émission coïncidant avec le point de référence, l’axe du second cône d’émission coïncidant avec la direction d’émission, et un second angle d’ouverture, le second angle d’ouverture étant strictement supérieur au premier angle d’ouverture premier cône d’émission, le second signal et le premier signal étant séparables l’un de l’autre selon une propriété prédéfinie, le radar multifaisceaux étant propre à séparer, dans le signal reçu de la balise active, une contribution du premier signal et une contribution du second signal et à réaliser des mesures d’écartométrie à partir de la contribution du premier signal et/ou de la contribution du second signal.
- la propriété prédéfinie étant une fréquence, la balise active est propre à émettre le premier signal selon une première fréquence caractéristique et le second signal selon une seconde fréquence caractéristique, la seconde fréquence étant différente de la première.
- le radar multifaisceaux présente une configuration dite parallèle dans laquelle les axes des cônes de réception sont parallèles entre eux ou une configuration dite divergente dans laquelle les axes des cônes de réception divergent à partir d’un centre de l’antenne du radar. - l’antenne du radar multifaisceaux comporte quatre antennes élémentaires, chaque antenne élémentaire étant associée à un cône de réception.
L’invention a également pour objet un procédé de guidage pour amener un aéronef vers un point de référence, en utilisant un ensemble de guidage conforme à l’ensemble de guidage précédent, consistant, dans une phase d’atterrissage, à rapprocher l’aéronef du point de référence le long de la direction d’émission de la balise active, en contrôlant une position de l’aéronef dans un plan perpendiculaire à la direction d’émission en fonction de mesures d’écartométrie réalisées périodiquement par le radar multifaisceaux à partir du signal électromagnétique reçu de la balise active.
Suivant des modes particuliers de réalisation, le procédé de guidage comporte une ou plusieurs des caractéristiques suivantes, prises isolément ou suivant toutes combinaisons techniquement possibles :
- lorsque, dans la phase d’atterrissage, la distance entre l’aéronef et le point de référence est inférieure à une altitude limite caractéristique du premier cône d’émission de la balise active et que les mesures d’écartométrie ne peuvent plus être réalisées à partir du premier signal électromagnétique émis par la balise active, la phase d’atterrissage se poursuit en réalisant les mesures d’écartométrie à partir du second signal électromagnétique émis par la balise active dans le second cône d’émission.
- dans une phase d’approche, le procédé consiste à rapprocher l’aéronef de la direction d’émission de la balise active selon un plan sensiblement perpendiculaire à la direction d’émission, en réalisant périodiquement des mesures d’écartométrie.
- dans la phase d’approche, les mesures d’écartométrie sont réalisées sur le second signal émis dans le second cône d’émission, puis, lorsque les mesures d’écartométrie sur le second signal ne sont plus pertinentes, les mesures d’écartométrie sont réalisées sur le premier signal émis dans le premier cône d’émission.
L’invention a également pour objet un aéronef, caractérisé en ce qu’il embarque un dispositif parmi un radar multifaisceaux et une balise active d’un ensemble de guidage conforme à l’ensemble de guidage précédent.
L’invention et ses avantages seront mieux compris à la lecture de la description détaillée qui va suivre d’un mode de réalisation particulier, donné uniquement à titre d’exemple illustratif non limitatif, cette description étant faite en se référant aux dessins annexés sur lesquels : La figure 1 est une représentation schématique de l’atterrissage d’un aéronef sur une piste en mettant en oeuvre un ensemble de guidage selon l’invention, qui comporte une balise active de marquage du centre de la piste et un radar multifaisceaux à bord de l’aéronef ;
La figure 2 est une représentation schématique d’un mode de réalisation de la balise active de la figure 1 ;
La figure 3 est une représentation schématique d’un mode de réalisation du radar multifaisceaux de la figure 1 ;
Les figures 4 et 5 sont des représentations géométriques permettant d’expliquer les mesures d’écartométrie réalisées par un radar multifaisceaux à partir du signal émis par une balise active ;
La figure 6 est une illustration d’une phase d’approche du procédé de guidage selon l’invention permettant de positionner le radar multifaisceaux à l’aplomb de la balise active ; et,
La figure 7 est une illustration d’une phase d’atterrissage du procédé de guidage selon l’invention permettant de rapprocher le radar multifaisceaux de la balise active.
En se référant à la figure 1 , un ensemble de guidage est utilisé lors de l’atterrissage d’un aéronef 1 sur une piste 2, de manière à amener l’aéronef 1 sur un point de référence O avec une précision élevée.
Un repère (O, X Y Z) est associé à la piste 2 de sorte que son origine coïncide avec le point de référence O. Le plan de la piste 2 est défini par les axes X et Y, tandis que la direction perpendiculaire à la piste 2, correspond à l’axe Z, qui est ici considéré comme vertical.
L’ensemble de guidage comporte une balise active 100 et un radar multifaisceaux 50.
La balise active 100 permet de marquer le point de référence O. La balise active 100 est par exemple implantée dans la piste 2.
Le radar multifaisceaux 50 est embarqué à bord de l’aéronef 1. Le radar multifaisceaux 50 est par exemple fixe par rapport à l’aéronef 1.
Un repère (O’, X’ Y’ Z’) est associé au radar multifaisceaux 50. Pour simplifier la présente description, une fois l’aéronef posé sur la piste 2 dans la position recherchée, le repère (O’, X’ Y’ Z’) coïncide avec le repère (O, X Y Z).
Comme représenté sur la figure 2, la balise active 100 intègre une antenne 120 comportant trois éléments rayonnants 121 , 122 et 123. Chaque élément rayonnant est propre à émettre un signal électromagnétique caractéristique, selon un faisceau d’émission de forme sensiblement conique. Les différents faisceaux d’émission possèdent la même origine et un axe commun. Cet axe commun, ou direction d’émission de la balise active, correspondant à l’axe Z.
Plus précisément, le premier élément rayonnant 121 est propre à émettre un premier signal électromagnétique, à une première fréquence caractéristique f 1 , à l’intérieur d’un premier cône d’émission 111. Le premier cône d’émission 111 est tel que son sommet coïncide avec le point de référence O et que son axe coïncide avec l’axe Z. Ce premier cône d’émission 111 se caractérise par un angle
Figure imgf000007_0001
Le second élément rayonnant 122 est propre à émettre un second signal électromagnétique à une seconde fréquence caractéristique f2, à l’intérieur d’un second cône d’émission 112. Le second cône d’émission 112 est tel que son sommet coïncide avec le point de référence O et que son axe coïncide avec l’axe Z. Il se caractérise par un second angle d’ouverture q2, strictement supérieur au premier angle d’ouverture 0!.
Le troisième élément rayonnant 123 est propre à émettre un troisième signal électromagnétique, à une troisième fréquence caractéristique F3, à l’intérieur d’un troisième cône d’émission 113. Le troisième cône d’émission 113 est tel que son sommet coïncide avec le point de référence O et que son axe coïncide avec l’axe Z. Il se caractérise par un troisième angle d’ouverture q3 strictement supérieur au second angle d’ouverture q2.
Il est à noter que la figure 2 est schématique. La distance séparant les éléments rayonnants les uns des autres est suffisamment petite pour que l’on puisse considérer les faisceaux émis par chacun de ces éléments rayonnants comme superposés les uns aux autres.
La chaîne d’alimentation de l’antenne 120 intègre un générateur 170 propre à produire un signal d’alimentation du type peigne de fréquences : il comporte une première composante à la première fréquence caractéristique f1 , une seconde composante à la seconde fréquence caractéristique f2, et une troisième composante à la troisième fréquence caractéristique f3.
En aval du générateur 170, un diviseur de puissance 160, sépare le signal d’alimentation en trois signaux d’alimentation élémentaires identiques.
Chaque signal d’alimentation élémentaire est appliqué en entrée d’une ligne d’alimentation, dont la sortie est connectée à un élément rayonnant associé. Chaque ligne d’alimentation comporte un filtre suivi d’un amplificateur pour mettre en forme le signal d’excitation de l’élément rayonnant associé.
Plus précisément, le premier filtre 151 permet de sélectionner, dans le signal d’alimentation élémentaire, la première composante de fréquence f1 . Cette dernière est amplifiée par l’amplificateur 141 avant d’être appliquée au premier élément rayonnant 121.
Le second filtre 152 permet de sélectionner, dans le signal d’alimentation élémentaire, la seconde composante de fréquence f2. Cette dernière est amplifiée par l’amplificateur 142 avant d’être appliquée au second élément rayonnant 122.
Le troisième filtre 153 permet de sélectionner, dans le signal d’alimentation élémentaire, la troisième composante de fréquence f3. Cette dernière est amplifiée par l’amplificateur 143 avant d’être appliquée au troisième élément rayonnant 123.
En se référant à la figure 3, le radar multifaisceaux 50 intègre une antenne 60. Le plan antennaire de l’antenne 60 correspond au plan CΎ’ et son centre géométrique, à l’origine O’.
L’antenne 60 comporte par exemple quatre antennes élémentaires, chaque antenne élémentaire étant propre à capter des signaux électromagnétique selon un faisceau de réception conique.
Plus précisément, dans le mode de réalisation de la figure 2, les points d’implantation des antennes élémentaires sur le plan antennaire correspondent aux sommets d’un carré de centre O’ et de côté de longueur D.
L’antenne élémentaire 52A, respectivement 52B, 52c et 52D, collecte les signaux selon un cône de réception 51 A d’axe A, respectivement un cône de réception 51 B d’axe B, un cône de réception 51c d’axe C et un cône de réception 51 D d’axe D.
Les axes des cônes de réception sont parallèles entre eux et à l’axe Z’. Ils sont cependant distincts de l’axe Z’ et orientés vers les côtes négatives pour pouvoir capter le signal émis par la balise active 100.
Les différents cônes de réception présentent le même angle d’ouverture Q.
Le radar multifaisceaux 50 est par exemple un radar fonctionnant en émission / réception, qui n’est pas dédié au guidage, mais peut être utilisé pour réaliser d’autres tâches au cours du vol de l’aéronef 1. En revanche, lorsque le radar multifaisceaux 50 est utilisé pour le guidage, il fonctionne uniquement en réception. Ainsi, le radar multifaisceaux 50 comporte quatre voies d’émission/réception identiques, respectivement 54A, 54B, 54c et 54D. Chaque voie est associée à l’une des antennes élémentaires.
Chaque voix comporte une ligne d’émission et une ligne de réception connectées à l’antenne élémentaire associée via un circulateur 55.
La ligne d’émission n’est pas présentée plus en détail puisque elle n’est pas utilisée pour le guidage.
Une ligne de réception reçoit en entrée le signal collecté par l’antenne élémentaire correspondante. Elle intègre de manière classique :
- un mélangeur de fréquences 56 pour la transposition du signal en bande de base, celle-ci étant caractérisée par une fréquence intermédiaire ;
- une unité d’amplification et de filtrage 57 pour isoler le signal utile à l’intérieur de la bande de base ; et,
- un convertisseur analogique/numérique 58 pour coder le signal filtré.
Le signal numérisé en sortie de chaque ligne de réception est appliqué en entrée d’un calculateur 59.
Le calculateur 59 est convenablement programmé de manière à réaliser périodiquement des mesures d’écartométrie et générer en sortie un signal de guidage S.
Via par exemple une interface homme/machine adaptée, le signal de guidage S est porté à la connaissance du pilote de l’aéronef 1 pour que ce dernier puisse en tenir compte dans la manière de manoeuvrer son appareil au cours de l’atterrissage. En variante, le signal de guidage S est transmis à un dispositif autopilote pour un atterrissage automatique de l’aéronef 1 .
Le principe des mesures d’écartométrie réalisées par le calculateur 59 est illustré par les figures 4 et 5, pour le cas particulier où l’on ne considère qu’un unique cône d’émission, par exemple le premier cône d’émission 111.
La situation représentée à la figure 4 correspond au cas où le radar multifaisceaux 50 se situe à l’aplomb de la balise active 100 (l’axe Z’ coïncidant alors avec l’axe Z). De plus, le plan antennaire CΎ’ est parallèle au plan XY de la piste 2.
Sont représentés le premier cône d’émission 111 de la balise 100 et les quatre cônes de réception 51 A, 51 B, 51 c et 51 D du radar 50 .
La figure 5 représente une section de ces différents cônes selon un plan intermédiaire 3 parallèle au plan XY de la piste 2. Le plan intermédiaire 3 est solidaire de l’aéronef 1 , c’est-à-dire que la distance entre le plan intermédiaire 3 et le plan CΎ est constante.
L’intersection d’un cône avec le plan intermédiaire 3 se fait selon un cercle.
Lorsque l’altitude de l’aéronef 1 est élevée, les sections des cônes de réception 51A, 51 B, 51 C et 51 D se situent à l’intérieur de la section du cône d’émission 111.
Lorsque l’altitude de l’aéronef 1 diminue, c’est-à-dire lorsque le radar 50 se rapproche de la balise active 100, le diamètre de la section du cône d’émission 111 diminue progressivement.
Autour d’une altitude limite Hi, la section du cône d’émission 111 est tangent aux différentes sections des cônes de réception 51A, 51 B, 51 C et 51 D. Ceci est représenté en traits pleins sur la figure 5.
Lorsque l’altitude de l’aéronef 1 continue à diminuer, le diamètre de la section du cône d’émission 111 réduit de sorte que les sections des cônes de réception 51A, 51 B, 51 C et 51 D finissent par sortir et se retrouver à l’extérieur du périmètre de la section du cône d’émission 111.
Pour les altitudes supérieures à l’altitude limite Hi, des mesures d’écartométrie permettent d’aligner l’axe Z’ de l’aéronef sur l’axe Z de la balise.
Comme illustré sur la figure 5 en traits pointillés pour le cas de l’altitude limite Hi, dès que l’axe Z’ du radar n’est plus aligné sur l’axe Z de la balise, la section du cône d’émission 111 est décalée par rapport au repère (O’, X’ Y’), de sorte que tout ou partie de certaines des sections des cônes de réception 51A, 51 B, 51c et 51 D sortent du périmètre de la section du cône d’émission 111. Il existe alors une différence entre l’amplitude des signaux captés par chacune des antennes élémentaires du radar 50. La détermination de cette différence permet une évaluation du désalignement des axe Z et Z’.
Le calculateur 59 est ainsi propre à calculer périodiquement les grandeurs :
ÔX = (|A| + |C|) - (|B| + |D|) dg = (I A| + | B |) — (| C | + |D |) å = |A| + |B| + |C| + |D|
Où |A|, |B|, | C | et |D| sont les amplitudes des signaux captés respectivement par les antennes élémentaires 51A, 51 B, 51c et 51 D. Le rapport de la grandeur dc sur la grandeur å est proportionnelle à l’écart Dc entre O’ et O selon l’axe X et le rapport de la grandeur dg sur la grandeur å est proportionnelle à l’écart Ay entre O’ et O selon l’axe Y.
Ainsi, la recherche, à chaque instant, du minimum de chacun de ces deux rapports permet le centrage de l’aéronef 1 sur la direction d’émission de la balise active 100.
Les mesures d’écartométrie permettent donc de corriger la position de l’aéronef 1 afin d’aligner l’axe Z’ sur l’axe Z, tout en réduisant progressivement l’altitude de l’aéronef 1 .
Cependant, comme indiqué ci-dessus, en-deçà de l’altitude limite Hi, il n’est plus possible de réaliser les mesures d’écartométrie à partir du premier signal, les antennes élémentaires du radar 50 n’étant plus « éclairées » par le premier faisceau conique de la balise 100 .
Or l’altitude limite Hi pour le premier cône d’émission 111 est donnée par la relation suivante :
D/L/2
= tan(01/2)
Hc
Où D/L/2 est la distance entre le centre d’une antenne élémentaire et le point O’ dans le plan antennaire du radar 50.
A D constant, on constate ainsi qu’il convient d’augmenter l’angle d’ouverture du cône d’émission pour réduire l’altitude limite.
Ceci est pris en compte dans le mode de réalisation actuellement préféré, pour lequel la balise active 100 émet des signaux dans des cônes d’émission de plus en plus ouverts.
Ainsi, dès que les mesures d’écartométrie ne peuvent plus être effectuées au moyen du premier signal (l’aéronef se trouvant à une altitude inférieure à l’altitude limite Hi associée au premier cône d’émission 111), elles sont effectuées au moyen du second signal, émis dans un second cône d’émission 112 ayant une plus grande ouverture que le premier cône d’émission 111.
De manière similaire, dès que les mesures d’écartométrie ne peuvent plus être effectuées au moyen du second signal (l’aéronef se trouvant à une altitude inférieure à une altitude limite H2 associée au second cône d’émission 112), elles sont effectuées au moyen du troisième signal, émis dans un troisième cône d’émission 113, ayant une plus grande ouverture que le second cône d’émission Le procédé de guidage selon l’invention va maintenant être décrit en référence aux figures 6 et 7, qui sont des vues selon un plan vertical XZ.
Au point de référence O, la balise active 100 émet simultanément trois signaux, à des fréquences caractéristiques différentes (respectivement f1 , f2 et f3), dans trois cônes d’émission coaxiaux issus du point O (respectivement 111 , 112 et 113).
La figure 6 illustre une phase d’approche du procédé de guidage permettant d’aligner l’axe Z’ du radar 50 avec l’axe Z de la balise 100 par un déplacement selon la direction F1 de l’aéronef 1.
Dans cette phase d’approche, l’aéronef 1 s’approche de la piste 2.
Le radar 50 accroche le troisième signal émis dans le troisième cône démission 113, présentant la plus grande ouverture.
Par écartométrie sur ce troisième signal, l’aéronef 1 est guidé pour, à altitude sensiblement constante, se rapprocher de l’axe Z du troisième cône d’émission 113.
En poursuivant son déplacement, le radar 50 finit par accrocher le second signal émis dans le second cône d’émission 112. A partir de ce moment, les mesures d’écartométrie sont réalisées, non plus sur le troisième signal (ce qui ne serait plus discriminant), mais sur le second signal.
Le guidage de l’aéronef, toujours à une altitude sensiblement constante, peut se poursuivre pour le rapprocher davantage de l’axe Z du second cône d’émission 112.
En poursuivant son déplacement, le radar 50 finit par accrocher le premier signal émis dans le premier cône 111 , ce qui permet alors de réaliser les mesures d’écartométrie, non plus sur le second signal, mais sur le premier signal.
L’aéronef 1 est ainsi progressivement amené sur la direction d’émission de la balise active 100, à l’aplomb du point de référence O
La figure 7 illustre la phase suivante du procédé de guidage. Il s’agit de la phase d’atterrissage proprement dite, permettant, tout en conservant l’alignement sur la direction d’émission de la balise active 100, d’approcher l’aéronef 1 du point de référence O. L’aéronef se déplace selon la direction F2.
Dans cette phase d’atterrissage, l’altitude de l’aéronef 1 est progressivement réduite tout en régulant la position de l’aéronef transversalement à l’axe Z en utilisant les mesures d’écartométrie réalisées à partir du premier signal émis dans le premier cône 111. L’aéronef 1 finit par atteindre l’altitude limite Hi associée au premier cône d’émission 111.
Pour pouvoir poursuivre le guidage de l’aéronef en-deçà de l’altitude limite Hi, le radar multifaisceaux 50 utilise alors le second signal émis dans le second cône d’émission 112 pour réaliser les mesures d’écartométrie.
Ceci permet d’assujettir la position de l’aéronef le long de l’axe Z jusqu’à atteindre l’altitude limite H2 associée au second cône d’émission 112.
Pour pouvoir approcher l’aéronef encore plus près du point de référence O, en-deçà de l’altitude limite H2, le radar multifaisceaux 50 utilise le troisième signal émis dans le troisième cône d’émission 113 pour réaliser les mesures d’écartométrie.
Ceci permet tout en guidant l’aéronef le long de l’axe Z, de l’amener jusqu’à l’altitude limite H3 associée au troisième cône d’émission 113.
L’aéronef 1 se trouvant alors à proximité du point de référence O, il suffit de couper le moteur de l’aéronef 1 pour qu’il se pose sur la piste 2 à proximité immédiate du point de référence 0.
En choisissant correctement la valeur des angles d’ouverture des cônes d’émission, ainsi que les paramètres caractéristiques du radar multifaisceaux (notamment la distance séparant les antennes élémentaires), il est possible de guider l’aéronef jusqu’à quelques millimètre du point de référence.
Avec ces valeurs, le système venant d’être décrit permet l’atterrissage d’un drone de petite taille à 10 mm du point de référence O. Ceci correspond à la précision recherchée.
De manière générale, l’antenne de la balise active comporte au moins un cône d’émission. La multiplication des cônes d’émission améliore la précision du guidage.
Dans un mode de réalisation, l’antenne comporte un unique cône d’émission, dont l’ouverture est ajustable, notamment en fonction de la distance séparant l’aéronef à guider du point de référence.
L’homme du métier connaît d’autres architectures de la chaîne d’alimentation du ou des éléments rayonnants de l’antenne, que celle décrite à la figure 2.
De manière générale, le radar multifaisceaux comporte une antenne intégrant au moins deux antennes élémentaires, séparées l’une de l’autre le long d’une direction de séparation. Le procédé de guidage s’effectue alors dans un plan défini par l’axe d’émission de la balise active et la direction de séparation du radar. Dans le mode de réalisation présenté ci-dessus, les antennes élémentaires sont distantes les unes des autres dans le plan antennaire et les axes des cônes de réception sont parallèles entre eux. En variante de cette configuration dite parallèle, l’antenne du radar multifaisceaux est configurée de manière à ce que les antennes élémentaires soient proches les unes des autres dans le plan antennaire et que les axes des cônes de réception soient divergents (configuration divergente).
L’homme du métier connaît d’autres architectures de l’électronique associée à l’antenne du radar multifaisceaux, que celle décrite à la figure 3.
Au lieu que les différents signaux émis par la balise active soient caractérisés par une fréquence particulière, une autre propriété du signal peut être utilisée pour permettre une discrimination entre chacun des signaux émis. Par exemple, chaque signal pourrait être produit avec une modulation d’amplitude caractéristique, une modulation de phase caractéristique, une modulation de fréquence caractéristique, ou une polarisation (rectiligne, circulaire gauche ou circulaire droite) caractéristique.
Les différents signaux émis par la balise active peuvent être émis simultanément ou successivement.
Le signal électromagnétique émis par la balise active peut être un signal dans le spectre infrarouge, dans le spectre optique, dans le spectre radio, ou tout autre spectre électromagnétique adapté en fonction de l’application envisagée.
Dans une autre variante de réalisation, c’est le radar multifaisceaux qui marque le point de référence et la balise active qui est embarquée à bord de l’aéronef. Pour guider le déplacement de l’aéronef à partir des mesures d’écartométrie effectuées par le radar, il convient alors d’établir une liaison de communication entre le radar et l’aéronef pour que le pilote et/ou le système de pilotage de l’aéronef puisse recevoir les données nécessaires au guidage.
Par aéronefs, on entend tout type d’avions, d’hélicoptères, de dirigeables, ou plus généralement tout type d’engins volants manoeuvrables.

Claims

REVENDICATIONS
1. Ensemble de guidage pour amener un aéronef (1) vers un point de référence (O), caractérisé en ce qu’il comporte :
- une balise active (100) propre à émettre un premier signal électromagnétique selon un premier cône d’émission (111), définit par un sommet coïncidant avec le point de référence, un premier angle d’ouverture (qc) et un premier axe correspondant à une direction d’émission (Z) ;
- un radar multifaisceaux (50), embarqué à bord de l’aéronef (1 ), fonctionnant en réception et propre à réaliser des mesures d’écartométrie sur un signal reçu depuis la balise active (100), le radar multifaisceaux (50) comportant une antenne (60) adaptée pour une réception selon au moins deux cônes de réception (51 A, 51 B, 51 C, 51 D) spatialement séparés.
2. Ensemble de guidage selon la revendication 1 , dans lequel la balise active (100) est propre à émettre, en outre, au moins un second signal électromagnétique selon un second cône d’émission (112), le sommet du second cône d’émission coïncidant avec le point de référence (O), l’axe du second cône d’émission coïncidant avec la direction d’émission (Z), et un second angle d’ouverture (q2), le second angle d’ouverture étant strictement supérieur au premier angle d’ouverture (qc) du premier cône d’émission (111), le second signal et le premier signal étant séparables l’un de l’autre selon une propriété prédéfinie, le radar multifaisceaux (50) étant propre à séparer, dans le signal reçu de la balise active (100), une contribution du premier signal et une contribution du second signal et à réaliser des mesures d’écartométrie à partir de la contribution du premier signal et/ou de la contribution du second signal.
3. Ensemble de guidage selon la revendication 2, dans lequel, la propriété prédéfinie étant une fréquence, la balise active (100) est propre à émettre le premier signal selon une première fréquence caractéristique et le second signal selon une seconde fréquence caractéristique, la seconde fréquence étant différente de la première.
4. Ensemble de guidage selon l’une quelconque des revendications 1 à 3, dans lequel le radar multifaisceaux (50) présente une configuration dite parallèle dans laquelle les axes des cônes de réception sont parallèles entre eux ou une configuration dite divergente dans laquelle les axes des cônes de réception divergent à partir d’un centre de l’antenne du radar.
5. Ensemble de guidage selon l’une quelconque des revendications 1 à 4, dans lequel l’antenne (60) du radar multifaisceaux (50) comporte quatre antennes élémentaires (52A, 52B, 52c, 52D), chaque antenne élémentaire étant associée à un cône de réception (51A, 51 B, 51 C, 51 D).
6. Procédé de guidage pour amener un aéronef (1) vers un point de référence (O), en utilisant un ensemble de guidage conforme à l’une quelconque des revendications 1 à 5, consistant, dans une phase d’atterrissage, à rapprocher l’aéronef du point de référence le long de la direction d’émission (Z) de la balise active (100), en contrôlant une position de l’aéronef dans un plan perpendiculaire à la direction d’émission en fonction de mesures d’écartométrie réalisées périodiquement par le radar multifaisceaux (50) à partir du signal électromagnétique reçu de la balise active (100).
7. Procédé de guidage selon la revendication 6, dans lequel, l’ensemble de guidage étant conforme à la revendication 2, lorsque, dans la phase d’atterrissage, la distance entre l’aéronef (1) et le point de référence (O) est inférieure à une altitude limite (Hi) caractéristique du premier cône d’émission (111) de la balise active (100) et que les mesures d’écartométrie ne peuvent plus être réalisées à partir du premier signal électromagnétique émis par la balise active (100), la phase d’atterrissage se poursuit en réalisant les mesures d’écartométrie à partir du second signal électromagnétique émis par la balise active (100) dans le second cône d’émission (112).
8. Procédé de guidage selon la revendication 6 ou la revendication 7, consistant, dans une phase d’approche, à rapprocher l’aéronef (1) de la direction d’émission (Z) de la balise active (100) selon un plan sensiblement perpendiculaire à la direction d’émission (Z), en réalisant périodiquement des mesures d’écartométrie.
9. Procédé de guidage selon la revendication 8, dans lequel, l’ensemble de guidage étant conforme à la revendication 2, dans la phase d’approche, les mesures d’écartométrie sont réalisées sur le second signal émis dans le second cône d’émission (112), puis, lorsque les mesures d’écartométrie sur le second signal ne sont plus pertinentes, les mesures d’écartométrie sont réalisées sur le premier signal émis dans le premier cône d’émission (111).
10. Aéronef (1), caractérisé en ce qu’il embarque un dispositif parmi un radar multifaisceaux (50) et une balise active (100) d’un ensemble de guidage selon l’une quelconque des revendications 1 à 5.
PCT/EP2020/083465 2019-11-27 2020-11-26 Ensemble de guidage pour amener un aéronef vers un point de référence; procédé de guidage associé WO2021105263A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/779,469 US20220413128A1 (en) 2019-11-27 2020-11-26 Guidance system for leading an aircraft to a reference point; associated guidance method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1913300A FR3103617B1 (fr) 2019-11-27 2019-11-27 Ensemble de guidage pour amener un aeronef vers un point de reference ; procede de guidage associe
FRFR1913300 2019-11-27

Publications (1)

Publication Number Publication Date
WO2021105263A1 true WO2021105263A1 (fr) 2021-06-03

Family

ID=70613847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/083465 WO2021105263A1 (fr) 2019-11-27 2020-11-26 Ensemble de guidage pour amener un aéronef vers un point de référence; procédé de guidage associé

Country Status (3)

Country Link
US (1) US20220413128A1 (fr)
FR (1) FR3103617B1 (fr)
WO (1) WO2021105263A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116774207B (zh) * 2023-08-22 2023-10-24 中国民用航空总局第二研究所 一种航向信标航道结构抖动的障碍物识别方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2878336A1 (fr) 2004-11-19 2006-05-26 Thales Sa Procede et dispositif de localisation d'aeronefs, notamment pour leur guidage automatique en phase d'atterrissage
FR2894347A1 (fr) 2005-12-02 2007-06-08 Thales Sa Systeme d'atterrissage autonome et automatique pour drones.
DE102007050246A1 (de) * 2007-10-20 2009-04-30 Diehl Bgt Defence Gmbh & Co. Kg Verfahren und Vorrichtung zum selbständigen Landen eines Drehflüglers
US20190113593A1 (en) * 2017-10-17 2019-04-18 Airbus Operations S.A.S. System And Method For Aiding The Landing Of An Aircraft

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9429953B1 (en) * 2015-08-25 2016-08-30 Skycatch, Inc. Autonomously landing an unmanned aerial vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2878336A1 (fr) 2004-11-19 2006-05-26 Thales Sa Procede et dispositif de localisation d'aeronefs, notamment pour leur guidage automatique en phase d'atterrissage
FR2894347A1 (fr) 2005-12-02 2007-06-08 Thales Sa Systeme d'atterrissage autonome et automatique pour drones.
DE102007050246A1 (de) * 2007-10-20 2009-04-30 Diehl Bgt Defence Gmbh & Co. Kg Verfahren und Vorrichtung zum selbständigen Landen eines Drehflüglers
US20190113593A1 (en) * 2017-10-17 2019-04-18 Airbus Operations S.A.S. System And Method For Aiding The Landing Of An Aircraft

Also Published As

Publication number Publication date
FR3103617B1 (fr) 2022-05-06
FR3103617A1 (fr) 2021-05-28
US20220413128A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
EP2237067B1 (fr) Système et procédé d'aide à l'appontage d'un aeronef
EP2122388B1 (fr) Dispositif et procede de localisation d'un mobile a l'approche d'une surface reflechissant les ondes electromagnetiques
EP3323028B1 (fr) Procédé d'assistance automatique à l'atterrissage d'un aéronef
EP1963942B1 (fr) Systeme d'atterrissage autonome et automatique pour drones
EP2293101A1 (fr) Dispositif radar aeroporté multifonction à large bande de large couverture angulaire permettant la détection et le pistage
EP1812808A1 (fr) Procede et dispositif de localisation d'aeronefs, notamment pour leur guidage automatique en phase d'atterrissage
FR2959318A1 (fr) Localisation continue de grande precision
EP2253935A1 (fr) Procédé et système d'aide à l'atterrissage ou à l'appointage d'un aeronef
WO2021105263A1 (fr) Ensemble de guidage pour amener un aéronef vers un point de référence; procédé de guidage associé
FR2780701A1 (fr) Dispositif destine a ameliorer la securite des aeronefs en regime de vol a vue
EP2107391B1 (fr) Procédé de détection avec un radar d'une cible connue susceptible d'être sensiblement disposée à une hauteur donnée, à proximité d'autres cibles disposées sensiblement à la même hauteur
EP0163345A1 (fr) Système de guidage terminal ou de recalage de position pour aéronef par mesures de distance
EP0478424B1 (fr) Procédé et dispositif de mesure de l'intégrité d'une émission
FR2836554A1 (fr) Dispositif de localisation pour systeme d'aeronef sans pilote
FR2986334A1 (fr) Instrument radar satellitaire pour la surveillance maritime
WO2021110868A1 (fr) Procédé et dispositif de mesure de hauteur d'un aéronef en vol par rapport à au moins un point du sol
EP3534172B1 (fr) Systeme de geolocalisation, aeronef et procede de geolocalisation associe
FR3066829A1 (fr) Systeme bidirectionnel de navigation sous-marine
FR2852685A1 (fr) Procede et dispositif pour determiner au moins une information de position verticale d'un aeronef.
FR2956907A1 (fr) Systeme radar multistatique pour la mesure precise de l'altitude
EP0163346B1 (fr) Système de guidage terminal ou de recalage de position pour aéronef par mesures de distance et d'angle
EP2639596B1 (fr) Objet volant guidé sur faisceaux électro-magnétiques
WO2010139799A1 (fr) Procede pour permettre un atterrissage sur piste décalée
EP2302411B1 (fr) Procédé et système d'évitement d'un engin d'interception par un mobile aérien
FR3066828A1 (fr) Procede d'approche d'une station de base, programme d'ordinateur et drone sous-marin associes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20815773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20815773

Country of ref document: EP

Kind code of ref document: A1