WO2006049057A1 - 人体背骨測定表示システム - Google Patents

人体背骨測定表示システム Download PDF

Info

Publication number
WO2006049057A1
WO2006049057A1 PCT/JP2005/019683 JP2005019683W WO2006049057A1 WO 2006049057 A1 WO2006049057 A1 WO 2006049057A1 JP 2005019683 W JP2005019683 W JP 2005019683W WO 2006049057 A1 WO2006049057 A1 WO 2006049057A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
spine
fixed
data
support arm
Prior art date
Application number
PCT/JP2005/019683
Other languages
English (en)
French (fr)
Inventor
Eiichi Ichikawa
Morio Ichikawa
Original Assignee
Nihon University
Masaru Seiki Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University, Masaru Seiki Corporation filed Critical Nihon University
Priority to KR1020077009795A priority Critical patent/KR101199605B1/ko
Priority to US11/718,368 priority patent/US7883477B2/en
Priority to JP2006543205A priority patent/JP4597139B2/ja
Publication of WO2006049057A1 publication Critical patent/WO2006049057A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4538Evaluating a particular part of the muscoloskeletal system or a particular medical condition
    • A61B5/4561Evaluating static posture, e.g. undesirable back curvature

Definitions

  • the present invention relates to a human spine measurement display system that makes it possible to easily measure the bending of the spine of a human body and display it realistically on a display screen based on the measurement result.
  • the spine If the spine is found to be bent, show the patient a moire topography thermography image, and from the superficial state of the human body, "the spine is bent to the right or left. "Was explained. In the diagnosis by palpation, the results of palpation were explained to the patient verbally.
  • the surgical treatment by the practitioner the prescribed treatment was performed on the bent spine from the surface of the human body, and the bending of the spine was corrected / improved! /.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-211434
  • the present invention has been made in view of the above-described conventional circumstances, and by scanning a predetermined measuring element along the spine, the measurement data of the three-dimensional coordinates and the rotation value of the spine are obtained.
  • An object of the present invention is to provide a human spine measurement display system that can simulate the shape of the spine and display a three-dimensional pseudo spine image using computer graphics.
  • a human spine measurement display system includes a longitudinal direction (X axis direction), a width direction (Y axis direction), a thickness direction ( Measured with a probe placed at the tip of the scanning arm that moves freely in the Z-axis direction and rotation direction (twist angle ⁇ around the X-axis) between the second and third fingers of the operator By moving these finger tips in a three-dimensional manner from the first cervical vertebra position or the first thoracic vertebra position to the fifth lumbar vertebra position on the subject's spine, the X, ⁇ , ⁇ , and ⁇ directions are moved.
  • a spine measuring device that detects a deviation amount of the reference position force and outputs it as deviation amount measurement data, an input device for inputting gender and height data of the measurement subject, and a deviation amount measurement from the measurement mechanism While taking in data, the measurement object from the input device
  • An image processing device that captures gender and height data of the subject, generates a three-dimensional spine image of the measurement subject based on the measurement data of the deviation and the sex and height data of the measurement subject, and provides the image to the display device.
  • the image processing apparatus is a conversion unit that takes in X axis direction, Y axis direction, Z axis direction, and ⁇ direction deviation amount measurement data captured from the measurement mechanism, converts the data into predetermined conversion data, and stores the converted data in the conversion data storage unit
  • a basic map database storing the average size and basic shape of the measurement subject according to gender and height, and the measurement subject input by the input device
  • a data selection means for selecting each vertebra corresponding to the sex and height data from the basic map database according to the gender and height data, and storing them in the vertebra table;
  • a synthesizing unit Based on the size and shape of each vertebra stored in the bone table, a synthesizing unit that generates an image of the entire entire spine, an image of the entire spine generated by the synthesizing unit, and the conversion data storage
  • Image data generating means for generating a three-dimensional spine image of the measurement subject at coordinate positions in the X direction, Y direction, Z direction, and ⁇ direction of each vertebra
  • the image processing device displays the three-dimensional spine image of the measurement subject in a predetermined direction based on a predetermined instruction. It is possible to generate display data that can be displayed after being moved or rotated by a predetermined angle and output it.
  • the spine is bent in any state by a simple method of scanning the measurement probe from the surface on the spine of the measurement subject lying on the skin. It is possible to display an accurate three-dimensional image created in a simulated manner, and to visually confirm the state of the spine.
  • the practitioner has an advantage that the measurement subject can easily understand by presenting the image and explaining how the spine is bent before and after the treatment.
  • the patient who is the subject of measurement can visually recognize the state of the spine, which is not the case in specialized medical terms, as an image, so which part of his / her spine is bent and how What! / Or you will be able to understand easily.
  • FIG. 1 is a schematic configuration diagram of a human spine measurement display system according to an embodiment of the present invention.
  • FIG. 2 is a detailed configuration diagram in the vicinity of a measuring element used in the human spine measurement display system according to the embodiment of the present invention.
  • FIG. 3 is an explanatory diagram of a coordinate detection device used in the human spine measurement display system according to the present invention.
  • FIG. 4 is a block diagram showing an image processing apparatus used in the human spine measurement display system of the present invention.
  • FIG. 5 is a diagram for explaining how the human body spine measurement / display system according to the present invention converts the measurement data to force conversion data by the conversion means.
  • FIG. 6 is an explanatory diagram of a basic structure of a vertebra (fourth thoracic vertebra) constituting a vertebra (vertebra).
  • FIG. 7 is a diagram showing the average measured value of such vertebrae as a vertebra table.
  • FIG. 8 is an explanatory diagram showing how the angle between vertebrae is obtained.
  • FIG. 9 is an explanatory view showing an overall image of the spine.
  • FIG. 10 is a cross-sectional view taken along line AA in FIG.
  • FIG. 11 shows a spine image generated by an image processing device and displayed on a display device based on measurement data measured by the spine measurement device in the human spine measurement display system according to the present invention.
  • FIG. 12 is a spine image generated by displaying lumbar vertebrae and thoracic vertebrae among the spines displayed according to FIG. 11;
  • FIG. 13 is a flowchart for explaining the overall measurement flow for measuring the state of the spine of a patient (measurement subject).
  • FIG. 14 is a flowchart of measurement data rotation angle measurement processing by the image processing device of the human spine measurement display system according to the present invention.
  • FIG. 15 is a flowchart for performing display processing of a spine bending state generated based on measurement data by computer graphics in the human spine measurement display system according to the present invention. It is a chart.
  • FIG. 16 is a view showing another configuration example of a measuring mechanism of the rotation (torsion) angle ⁇ by the measuring piece of the spine measuring device of the human spinal measurement display system according to the present invention.
  • FIG. 17 is a side view of the mechanism part of the spine measurement apparatus shown in FIG. 1 in the human spine measurement display system according to the present invention.
  • FIG. 18 is a plan view of the mechanical part of the spine measurement apparatus shown in FIG. 1 in the human spine measurement display system according to the present invention.
  • FIG. 19 is a view showing an example in which the measurement direction support arm rotates in a vertical plane in the human spine measurement display system according to the present invention.
  • FIG. 20 is a view showing an example in which the measurement direction support arm rotates in a vertical plane in the human spine measurement display system according to the present invention.
  • FIG. 21 is a view showing an example in which the measurement direction support arm rotates in a horizontal plane in the human spine measurement display system according to the present invention.
  • FIG. 22 is a view showing an example in which the measurement direction support arm rotates in a horizontal plane in the human spine measurement display system according to the present invention.
  • the measurement direction support arm rotates in a horizontal plane.
  • the measurement direction support arm rotates in a horizontal plane.
  • the measurement direction support arm slides in a horizontal plane.
  • FIG. 26 is a plan view showing an example of movement of the bet in the human spine measurement display system according to the present invention!
  • FIG. 27 is a block diagram showing an embodiment in which the human spine measurement / display system according to the present invention is slid within the bed surface.
  • FIG. 28 is a view showing an example of a probe
  • FIG. 28 (a) is a front view
  • FIG. 28 (b) is a side view. .
  • FIG. 29 (a) is a front view
  • FIG. 29 (b) is a side view.
  • FIG. 30 is a view showing an example of a measuring element in the human spine measurement display system according to the present invention, where FIG. 30 (a) is a front view and FIG. 30 (b) is a side view. .
  • FIG. 31 (a) is a front view and FIG. 31 (b) is a side view showing an example of a probe.
  • FIG. 32 is a view showing an example of a measuring element in the human spine measurement display system according to the present invention!
  • FIG. 32 (a) is a front view
  • FIG. 32 (b) is a side view. .
  • FIG. 33 is a diagram showing an example of a measuring element in the human spine measurement display system according to the present invention!
  • FIG. 33 (a) is a front view
  • FIG. 33 (b) is a side view. .
  • CPU Central processing unit
  • FIG. 1 is a schematic configuration diagram of a human spine measurement display system according to the present invention.
  • the human spine measurement display system 1 according to the present invention can be broadly divided into a spine measurement device 3 that can measure the curvature of the spine of the human body as measurement data of deviation from a reference value, and the measurement subject.
  • the input device 5 for inputting height data and the deviation amount measurement data from the spine measurement device 3 and the data from the input device 5 are taken in, and the deviation measurement data and the gender of the measurement subject are captured.
  • the image processing device 7 generates a three-dimensional spine image of the measurement subject based on the height data, and the display device 9 displays the image data from the image processing device 7.
  • This spine measuring device 3 has a longitudinal direction (X-axis direction), a width direction (Y-axis direction), a thickness direction (Z-axis direction), and a rotational direction (twist angle about the X-axis) of the subject's spine.
  • the measuring element 31 provided at the tip of the scanning arm that freely moves to ⁇ ) is sandwiched between the measuring person's second and third fingers, and the measuring object's spine lying on the measuring bed 32 is lying on the skin.
  • the amount of deviation of the reference position force in the X, ⁇ , ⁇ , and ⁇ directions can be obtained. It is a measuring device that detects and outputs as deviation measurement data.
  • the spine measuring device 3 is a measurement in which the measurement subject sleeps in a lean state.
  • An angle detector (not shown in FIG. 1), a coordinate detection device 38 that converts the Y axis detector, the Y axis detector, the Z axis detector, and the angle detector force detection data into coordinate data. It has.
  • FIG. 2 is a detailed configuration diagram of the vicinity of the measuring element used in the human spine measurement display system according to the embodiment of the present invention, where FIG. 2 (a) is a front view and FIG. 2 (b) is a side view. .
  • the measuring element 31 is for scanning the spine of the patient (measurement subject) from the surface.
  • the measuring element 31 includes laterally protruding gripping pieces 31a and 31b, and a fixed portion formed in a vertical direction at a predetermined length at the center of the gripping pieces 31a and 31b. It consists of a piece 31c.
  • the measuring element 31 has the fixed piece 31c rotatably fixed to the lower end of the vertical support arm 36 by a rotating shaft 31d. As a result, it is formed in an inverted T shape. Further, as shown in FIG.
  • the gripping pieces 31a and 31b of the measuring element 31 are formed in a shape having an angle OC with respect to the traveling direction of scanning along the spine.
  • an angle detector 39 is provided in the vicinity of the rotation axis 31d of the measuring element 31 of the vertical support arm 36, and the torsion angles ⁇ and ⁇ ′ are measured as shown in FIG. It is now possible to output as angle measurement data!
  • the spine measuring device 3 sandwiches the grip pieces 31a, 31b of the measuring element 3 between the second finger and the third finger of the measurer, and the tips of the second finger and the third finger to the measurement bed 32.
  • the movement amount (deviation amount) of the measurement direction support arm 34, the parallel support arm 35, and the vertical support arm 36 and the rotation axis 31d of the probe 31 are centered.
  • the bending state of the spine can be measured by contact.
  • the measurement bed 32 has a width of about 600 mm, a length of 1800 mm, and a height of about 500 mm, on which a patient (measurement subject) can lie.
  • the patient (measuring subject) lies on a predetermined position of the measuring bed 32 and the spine of the patient (measuring subject) is in a certain state and the measuring element 31 is scanned over the spine, the spine This is to ensure accurate measurement.
  • the measurer pulls the measuring element 31 and moves it on the surface of the spine from the neck to the waist.
  • the spine is within the range of 900 [mm] in the X direction, 400 [mm] in the Y direction, and 200 [mm] in the Z direction. It is configured to conform to the unevenness of the left and right and to the left and right.
  • the coordinate detection device 38 is attached to the base 33, and the amount of movement of the measuring element 3 in the X direction, Y direction, and Z direction is determined by, for example, an encoder ( The 24-bit up / down counter board (PCN24-4 (PCI))) counts as a predetermined pulse signal, and detects the coordinate value when it matches the arbitrarily set count comparison value for each coordinate as a digital value. Is. Then, the coordinate detection device 38 can transmit the detected measurement data to the image processing device 7.
  • PCN24-4 PCI
  • PCI The 24-bit up / down counter board
  • the spine measuring device 3 is connected to the image processing device 7 with a cable, and the measurement data from the spine measuring device 3 can be supplied to the image processing device 7 through the cable. ing.
  • the image processing device 7 is electrically connected to the input device 5 and the display device 9, and the image processing device 7 can receive necessary data from the input device 5, and the image processing device The result of processing in 7 is displayed on the display device 9.
  • FIG. 3 is an explanatory diagram of a coordinate detection device used in the human spine measurement display system according to the present invention.
  • the coordinate detection device 38 includes an X coordinate axis, a Y coordinate axis, and a Z coordinate axis.
  • a decimal number display unit 38f to be displayed and a status display unit 38g to display a count value of a coordinate value every 0.1 second and a predetermined angle value as a status are provided.
  • FIG. 4 is a block diagram showing an image processing apparatus used in the human spine measurement display system of the present invention.
  • an image processing device 7 is, for example, a personal computer in the present embodiment, and performs a predetermined calculation based on measurement data transmitted from the spine measurement device 3, and the state of the spine Create image data that realistically displays
  • this image processing apparatus 7 uses a PowerMac 7100 / 66AV manufactured by Apple as a personal computer in the present embodiment.
  • This personal computer image processing device 7 includes a central processing unit (CPU) 71 that executes various arithmetic processes and programs, and a read-out that stores a program for performing basic operations such as startup.
  • CPU central processing unit
  • ROM 72 Dedicated memory
  • RAM main memory
  • ROM 72 main memory
  • ROM 73 having an operating system and an area for storing the human spine measurement display processing program for executing the processing of the present invention, and other data storage areas necessary for processing, and an operating system
  • the CPU 71 executes the program of the ROM 72 to store the operating system from the hard disk device 74 in a predetermined area of the RAM 73, When the storage in the RAM 73 is completed, the CPU 71 executes the operating system of the RAM 73, displays the usable state (basic screen) on the display device 9, and enters a standby state.
  • the image processing device 7 After the human spine measurement display program is taken out from the hard disk device 74 and stored in the RAM 73, the human spine measurement display program stored in the RAM 73 is stored in the CPU7. As shown in FIG. 4, the conversion unit 71a, the data selection unit 71b, the synthesis unit 71c, and the image data generation unit 71d are realized by the execution of 1.
  • an operating system 74a for storing measurement data of digital values from the coordinate detection device 38 74c, a basic diagram database 74d in which image data of a basic model of a vertebra is stored, and a vertebra table database 74e to be referred to when a spine image is created based on the converted data are stored.
  • the RAM 73 is provided with a conversion data storage unit 73a and an image data storage unit 73b when the human spine measurement display program is executed by the CPU 71.
  • the conversion means 71a realized by the CPU 71 is a means for converting the measurement data stored in the measurement data storage means 74c according to a predetermined conversion procedure.
  • the synthesizing means 71b realized by the CPU 71 is a means for creating an image of the vertebra of the measurer based on the conversion data.
  • the image data generating means 71c realized by the CPU 71 is means for combining each vertebra generated by the combining means 71b with the spine and storing it in the image data storage section 73b.
  • the input device 5 is a keyboard or mouse that is connected to the image processing device 7 and inputs data such as the gender and height of the person to be measured for the spine.
  • the display device 9 is a CRT display device or a liquid crystal display device.
  • the display device 9 is realized by image data of a spine state stored in the image data storage unit 73b generated by the image processing device 7. This is a device for displaying an image.
  • the spine measuring device 3 when the measuring element 31 is pinched with a finger and the finger is moved along the spine of the human body to be measured to the head force of the human body and the waist, measurement in the X-axis direction is performed. If the probe 31 is moved in the width direction of the human body along the “bend” of the spine of the human body, the measurement amount in the Y-axis direction can be obtained, and along the unevenness of the spine of the human body. By moving the probe 3 1 in the vertical movement direction, the amount of movement in the Z-axis direction can be obtained, and by rotating the probe 31 around the rotation axis 31d, the amount of rotation 0 can be obtained. Can do.
  • FIG. 5 is a diagram for explaining a state in which measurement data force conversion data is converted by the conversion means in the human spine measurement display system according to the present invention. That is, FIG. 5 (a) shows the measurement data stored in the measurement data storage means 74a, and the measurement data in the X direction, Y direction, Z direction, and angle 0 from the left, respectively.
  • the converting means 71a divides the X direction (the length direction of the spine) by 1 mm, for example, “009” having a maximum coordinate value in the X direction from “001” to “009”, “ “019”, which is the largest of “011” to “019”, ..., “4469”, which is the largest of "4461” to “4469”, and the last data "4476", that is, in the X direction Detects values "009", “019”, ..., "4469”, “4476” and temporarily stores the coordinate values of their X, Y, Z, and angle ⁇ (RAM73) Remember it.
  • Figure 5 (b) shows the state stored in the memory (RAM73).
  • the measurement data detected in this way is the numerical value with the last decimal point and may include errors during measurement. Therefore, the decimal part is rounded down to obtain an integer.
  • the numerical value converted by the conversion means 71a in this way is stored in the conversion data storage means 73a as conversion data based on the measurement data.
  • the spine length only changes due to the difference in height, etc., so that the basic average measurement data is stored in advance in the vertebra table.
  • the shape of the vertebra is stored as a basic model in the basic diagram database 74d.
  • each vertebra corresponding to the sex and height data is selected from the basic map database 74d according to the height data, and is extracted and stored in the vertebra table 74e.
  • the synthesizing unit 71c generates a basic image of the entire spine based on the size and shape of each vertebra stored in the thrust table 74e.
  • the image data generation means 71d reflects the conversion data stored in the conversion data storage means 73a in the image of the entire spine generated by the synthesis means 71c, so that the X direction, Y of each vertebra
  • the spine of the measurement subject can be simulated.
  • the image data of the measurement subject's spine, which is simulated by the image data generation means 71d, is sent to the display device 9, so that a pseudo spine is displayed as a realistic image on the display device 9, for example, bending of the spine. It is possible to know the force of which vertebra is the part that is on.
  • the basic diagram database 74d stores data on the spine of the human body.
  • the human spine (spine) data is from the cervical vertebrae (7), thoracic vertebrae (12), lumbar vertebrae (5), sacrum (5), and tailbone (5) that make up the human spine (spine). It is the image data of the shape of these vertebrae.
  • the basic structure of such a vertebra is adjacent to the upper and lower sides of the intervertebral disc on the ventral side, and has a space (vertebral foramina) surrounded by the spinal cord through the spinal cord and a spinous process on the back. I have it.
  • FIG. 6 is an explanatory diagram of the basic structure of the vertebra (fourth thoracic vertebra) constituting the vertebra (vertebra).
  • FIG. 6 (a) shows the top surface shape of the vertebra 15, the rounded vertebral body 15a, the dorsal hole 15b on the dorsal side, the pedicles 15c on both sides of the vertebral hole 15b, and the posterior side.
  • a spinous process 15d is formed in the center of the dorsal side, and a lateral process 15e is formed on both sides thereof, and an upper joint process 15f is formed on both sides of the vertebral hole 15b obliquely upward (toward the dorsal side) to connect with other vertebrae. Made up.
  • FIG. 6 (b) shows the lower surface shape of the vertebra 15, and lower joint processes 15g connected to other vertebrae are formed obliquely downward (backward to ventral) on both sides of the vertebral hole 15b. .
  • Fig. 6 (c) shows the shape of the left side of the vertebra 15 with the lower vertebral notch 15b below the lower vertebral notch 15h and a lower vertebral notch 15h below the ventral side of the lower vertebra notch 15h.
  • the upper radius 15i, the upper radius 15d above the lower radius 15i, and the lateral radius 15k at the distal end of the transverse process 15e Formed.
  • the image data of each vertebra having such a shape is stored in the basic diagram database 74a.
  • the vertebra table 74e is, for example, a table of average measured values (standard deviation) of vertebrae of Japanese adult men and average measured values (standard deviation) of vertebrae of Japanese adult women. It is a thing.
  • Fig. 7 shows the average vertebra measurement value as a vertebra table 74e.
  • Fig. 7 (a) shows the vertebra measurement value of a Japanese adult male (age: 26 years).
  • the average lateral height (standard deviation) is 12.93 [mm] ⁇ l.45 [mm] for the third cervical spine, 12.24 [mm] ⁇ l.21 [mm] for the fourth cervical spine, ...
  • the first thoracic vertebra is 15.12 [mm] ⁇ l. 12 [mm], ..., the 12th thoracic vertebral force 22. 33 [mm] ⁇ l. 91 [111111], the first lumbar vertebra 23.39 [ mm] ⁇ l. 80 [mm], ...
  • the fifth lumbar spine is 25.15 [mm] ⁇ 2.29 [mm], dorsal height, upper sagittal diameter, lower sagittal diameter, upper lateral diameter
  • the third cervical vertebral force is also expressed up to the fifth lumbar vertebra.
  • Figure 7 (b) shows the average vertebral measurement of a Japanese adult female (age: 26 years). Similarly, the average value of the ventral height (standard deviation) is 12. 28 [mm] ⁇ l. 23 [mm], the 4th cervical spine is 11.61 [mm] ⁇ l. 17 [mm], ⁇ the first thoracic vertebra is 14.89 [mm] ⁇ l. 23 [mm], ⁇ ⁇ 12th thoracic vertebral force 22. 10 [mm] ⁇ l.80 [mm], 1st lumbar vertebral force S 23.76 [mm] ⁇ l. 94 [mm], ⁇ 5th lumbar vertebrae 24.85 [ mm] ⁇ 2. ll [mm], and the 3rd cervical vertebral force is expressed up to the 5th lumbar vertebra for each of the dorsal height, upper sagittal diameter, lower sagittal diameter, upper lateral diameter, and lower lateral diameter .
  • the vertebra table 74e is created for each gender and stored in a predetermined storage area of the disk device 74.
  • the synthesizing means 71c reflects the size of the vertebra table 16 in the shape image of each vertebra stored in the basic diagram database 74d to obtain a realistic pseudo image of the spine. That is, among the vertebrae stored in the basic diagram data 15, for example, the third thoracic vertebra is located above the fourth thoracic vertebra through the intervertebral disc, and the upper joint process 15f of the fourth thoracic vertebra and the third thoracic vertebra The lower joint process 15g is connected. Then, sequentially above the third thoracic vertebra When the two thoracic vertebrae and the first thoracic vertebrae are combined up to the first cervical vertebral force and the tailbone, an image of the spine is formed.
  • the data stored in the vertebra table 74e considers the standard deviation of the average value of the Japanese, and based on their gender and height, 18 vertebrae from the first thoracic vertebra to the sacrum starting from the measurement.
  • the spine image of the combined basic model is obtained by selecting from the basic map database 74d.
  • the image data generating unit 71d reflects the converted data (measurement data) on the basic spine shape created by the synthesizing unit 71c, and the individual subject's spine is measured. The image data of the state is generated.
  • the converted data is measured for the position in the width direction Y direction of the back and the thickness direction Z direction of the chest for every 1 mm in the X direction which is the longitudinal direction of the spine.
  • This conversion data is divided and assigned to each vertebra. Then, it can be obtained that the X value is from the millimeter to the millimeter.
  • the spine image data is rotated in a predetermined direction when the coordinates of the viewpoint are changed using a three-dimensional computer graphic image processing software program executed by the CPU 71. Can be displayed.
  • Fig. 8 is an explanatory diagram showing how the angle between vertebrae is obtained.
  • Fig. 8 (a) shows the left and right bending angles between vertebrae
  • Fig. 8 (b) shows the front and rear bending angles. It is explanatory drawing which showed.
  • Fig. 8 (a) for example, if B1 is the third lumbar vertebra, T is the intervertebral disc, and B2 is the second lumbar vertebra, this is the second lumbar portion of the conversion data (measurement data) divided into each vertebra.
  • the corresponding Y value and Y value force corresponding to the third lumbar part can also be obtained. That is, when the spine is not bent, it is not tilted to the left or right, so the Y value is all “0”. For example, when the second lumbar is tilted to the right, the Y value is “ If you lean to the left to “1” or “2”, the Y value will be measured as “1” or “1 2”.
  • the second lumbar vertebra (C4) is tilted backward by “9.27 degrees” with respect to the third lumbar vertebra (C3), and the Z value is “one 10” (this embodiment In the case of the plane consisting of the X and Y coordinates, the front side is positive and the back side is negative).
  • the Z value force of the conversion data (measurement data) is 1-7
  • the slope ⁇ 2 of C3 and C4 is obtained as “5.06 degrees”, for example.
  • FIG. 9 is an explanatory view showing an overall image of the spine.
  • FIG. 10 is a cross-sectional view taken along the line A— in FIG. As shown in FIG. 9, the spine 200 is rotated (twisted) with respect to the center line O on the minus ⁇ side for the areas J1 and J3 and on the plus ⁇ side for the areas J2 and J4.
  • the line segment 400 shows the state.
  • FIG. 10 shows a cross section of the A—A line portion of the vertebra 201 of the spine 200.
  • the rotation (twist) state of the vertebra 201 is, for example, on the plus ⁇ side or minus ⁇ side with respect to the center line O. Rotate (twist) and show the state Such a state of rotation (twisting) of the spine 200 is measured by the probe 31 of the spine measuring device 3, and measurement data of the rotation (twisting) angle ⁇ is given to the image processing device 7.
  • the image processing device 7 performs image processing on the image data obtained as described above using three-dimensional computer graphics, and the image processing result is displayed on the display device 9 connected to the image processing device 7. To send. As a result, a pseudo spine image is displayed on the screen of the display device 9.
  • FIG. 11 shows a human spine measurement display system according to the present invention.
  • the spine is measured by the spine measurement device, and is generated by the image processing device based on the measurement data and displayed on the display device. It is a figure which shows a spine image.
  • Fig. 11 (a) is a dorsal spine image that generates the entire measured spine and displays the dorsal force.
  • Fig. 11 (b) is a left-side spine image generated from the entire measured spine and displayed from the left side.
  • the entire spine is divided into a cervical vertebra part, an upper thoracic vertebra, a middle thoracic vertebra, a lower thoracic vertebra, a lumbar vertebra, a sacrum, and a coccyx, and in this embodiment, they are displayed in different colors.
  • “white” for the cervical spine “red” for the upper thoracic vertebra, “blue” for the middle cervical vertebra, “green” for the lower thoracic vertebra, “yellow” for the lumbar vertebra, and “gray” for the sacrum and tailbone.
  • the image data for displaying the spine is three-dimensional computer graphic image data
  • the image data generating means 18 generates an image of the spine with the viewpoint coordinates changed, and is shown in FIG. 11 (b). Such a left side spine image can be displayed.
  • a predetermined key for example, “UP key” or “DOWN key ( ⁇ )”
  • the display can be switched to the display of only the upper thoracic vertebra.
  • Fig. 12 is a spine image in which the lumbar vertebrae and the thoracic vertebra are generated from the spine displayed according to Fig. 11, and Fig. 12 (a) shows four thoracic vertebrae (05th, 06th, 07th, 08th). ) Lateral spine image, Fig. 1 2 (b) is the left thoracic spine image of 4 thoracic vertebrae (09th, 10th, 11th, 12th), Fig. 12 (c) is 5 lumbar vertebrae (01, 02, 03, 04) , 05th) are generated and displayed respectively.
  • Fig. 12 (a) shows the display of the dorsal spine image of the upper thoracic vertebra.
  • the 5th, 6th, 7th, and 8th thoracic vertebrae are called the upper thoracic vertebrae.
  • the angle of forward / backward bending, left / right inclination and rotation angle are displayed.
  • the bending angle in the front-rear direction is the bending angle of the sixth thoracic vertebra with respect to the fifth thoracic vertebra.
  • the angle of the 6th thoracic vertebra backward flexion 0.1 [degree], ...
  • the bending angle of the 9th thoracic vertebra with respect to the 8th thoracic vertebra is: ] "And a description of the front and rear bend angles may be displayed.
  • the rotation (twist) state is calculated.
  • the rotation (twist) angle in the anteroposterior direction is the rotation (twist) angle of the sixth thoracic vertebra with respect to the fifth thoracic vertebra.
  • 5th thoracic vertebra ⁇ 6th thoracic vertebra (twist) angle right front 7.0 [degree]
  • a predetermined key for example, “UP key” or “DOWN key” provided on the input device 10 is displayed in a state where the back backbone image of the upper thoracic vertebra is displayed.
  • the viewpoint can be changed, and an image in which the currently displayed upper thoracic vertebra is moved downward can be displayed.
  • the image processing apparatus 7 creates a spine image based on the basic diagram database 74d and the vertebra table 74e, and reflects specific values based on the measurement data on the spine image.
  • the image processing apparatus 7 By moving the vertebrae in the specified direction and displaying them, the entire spine as shown in Fig. 11 or a part of the spine as shown in Fig. 12 is also displayed.
  • the state of moving the spine position is simulated and displayed.
  • an image in which the viewpoint of the spine is changed can be displayed.
  • FIG. 13 is a flowchart for explaining the overall measurement flow for measuring the state of the spine of a patient (measurement subject).
  • Step Sl To measure the spine state of the patient (measurement target), turn on the human spine measurement display system 1 and lay the patient (measurement target) on the measurement bed 32 to prepare for measurement. (Step Sl).
  • step S2 it is checked whether or not the force is ready (step S2). If the preparation is not completed, the process returns to step S1 to prepare.
  • the measurer pulls the probe 31 and moves it toward the head of the patient (measurement subject) and places it on the spine on the cervical spine side of the patient (measurement subject). Then, move along the spine toward the lumbar spine (step S3).
  • step S4 When the measuring element 31 is moved, the unevenness and bending of the spine are detected as X value, Y value, Z value, and ⁇ value (step S4).
  • the detected measurement data is transmitted to the image processing device 7 (step S5).
  • step S6 it is determined whether or not the force has been measured.
  • step S7 data drop processing and other processing are executed (step S7). If the data correction processing is not completed (step S8; NO), step S3 Returning to the process, continue moving the stylus 31 on the spine.
  • FIG. 14 is a flowchart of measurement data rotation angle measurement processing by the image processing apparatus of the human spine measurement display system according to the present invention.
  • the CPU 71 stores the measurement data in the measurement data storage means 74c (step S21), and the conversion means 71a stores the X value and Y of the measurement data.
  • the maximum value is obtained from the data whose value and Z value are less than lmm, and the absolute value of the rotation angle ⁇ is obtained (step S22). Since the last digit of the maximum value is below the decimal point, the decimal point is converted to millimeters.
  • the value after the decimal point is considered to be an error during measurement, so the decimal point of the measurement data is rounded down to an integer.
  • the conversion means 71a realized by the CPU 71a of the image processing device 7 converts the data of the rotation (twist) angle ⁇ into degrees (step S23). Further, the conversion means 71a displays the first decimal place of the measurement data as, for example, 5.5 [degrees] (step S24). The measurement data thus converted into a predetermined integer or angle by the conversion means 71a is stored in the conversion data storage means 74c by the conversion means 71a (step S25). Then, after image processing is performed by the synthesizing means 71c and the image data generating means 71d, image data is displayed (step S26).
  • FIG. 15 is a flowchart for performing display processing by computer graphics of the spine bending state generated based on the measurement data in the human spine measurement display system according to the present invention.
  • a predetermined instruction is input from the input device 5 such as a mouse connected to the image processing apparatus 7 (step S41).
  • the process is terminated.
  • step S41 When a display instruction is issued from the input device 5 to the image processing device 7 (step S41; YES), conversion data (predetermined conversion is performed based on measurement data) from the conversion data storage means 73a. (Step S42), and based on the image processing software program (human spine measurement display program) executed by the image processing device 7, the measurement object is measured with reference to the basic map database 74d and the vertebra table 74e. Image data of the basic model of the spine based on the gender and height of the elderly person, and the converted data (data that has been converted based on the measurement data) is reflected in the 3D spine image data of the basic model 3D spine image data of the measurement subject is generated and this is sent to the display device 9. Send it out (step S43).
  • step S43 Send it out
  • the image processing device 7 determines whether or not the end key has been pressed (step S44), and if the end key has been pressed (step S44; YES), the processing ends.
  • the image processing device 7 determines whether or not the end key has been pressed (step S44). If it is determined that the end key has not been pressed (step S44; NO), it is determined whether or not there is a request for additional display. The process proceeds to step S44.
  • This judgment item can be, for example, “Display all”, “Display only cervical vertebra”, “Display only thoracic vertebra”, “Display only lumbar vertebra”, “Display only sacral vertebra”, “Display only vertebra vertebra”, etc. is there.
  • the image processing device 7 determines the determination item (step S45), and if there is the determination item (step S45; present), performs processing for executing a display instruction according to the determination item. After that, return to step S42.
  • the image processing device 7 ends the process when an additional display request is made (Step S45; No).
  • the spine image generated in this way displays the back force and displays the left and right bends, and displays the left and right side force spine images so that the forward and backward bends are visible.
  • the viewpoint is moved 90 degrees in the specified direction.
  • the up key is pressed, the top (upper thoracic vertebra) is displayed. If the uppermost part is displayed, the upper part cannot be displayed, so the part that is currently displayed is displayed as it is. If it is not the uppermost part, The image processing apparatus 7 executes a process of displaying the upper part of the currently displayed part.
  • the image processing device 7 executes a process of displaying the lower part of the currently displayed part.
  • the bending state of the spine can be detected.
  • the gender and height of the patient (measuring subject) are required, and the pre-treatment status (symptoms such as neck, shoulders, back, and waist) can be checked by filling out a pre-examination form. obtain.
  • the state of the spine is measured and displayed on the display screen of the display device 9 by 3D computer graphics.
  • both the practitioner and the patient (measurement subject) can easily know the state of the spine.
  • the human spine measurement display system of the present invention in what state the spine is in a simple method of scanning the measurement probe from the surface over the spine of the measurement subject lying on the skin. It can be visually recognized by a 3D image created in a pseudo manner. This has the advantage that the practitioner can easily do this by explaining the image of how the spine bends before and after the procedure.
  • the patient who is the subject of measurement can visually recognize the state of the spine, which is not the case in specialized medical terms, as an image, so which part of his / her spine is bent and how! / Or you will be able to understand easily.
  • the measuring element is described as an inverted T-shape.
  • the shape is not particularly limited as long as it can scan the spine.
  • the basic diagram data and the vertebra table force are described as being read out to generate the vertebra image, but the measurement subject's vertebra is generated.
  • Height 'Vertical images of vertebrae can be displayed if the vertebrae of each measurement target can be displayed.
  • the spine image is displayed by three-dimensional computer graphics and the viewpoint is moved by 90 degrees.
  • the moving range of the viewpoint that can be 45 degrees is not particularly limited.
  • FIG. 16 is a diagram showing another configuration example of the measuring mechanism of the rotation (torsion) angle ⁇ by the probe of the spine measurement device of the human spine measurement display system according to the present invention.
  • the measuring mechanism of the rotation (torsion) angle ⁇ shown in FIG. 16 is a force that rotatably fixes the fixed piece 31c of the measuring element 31 to the end of the vertical support arm 36 by the rotating shaft 31d. It provides a structure when the angle detector cannot be installed near 31d.
  • another measuring mechanism of the rotation (torsion) angle ⁇ is such that a timing pulley 31e is fixed to the rotating shaft 31d of the measuring element 31, and the rotating shaft 31d Can be transmitted to the timing pulley 31e.
  • the rotation (torsion) angle ⁇ is measured by fixing the angle detector 39 to the upper portion of the vertical support arm 36 and rotating the angle detector 39.
  • the timing pulley 39a is fixed to the shaft so that the rotation amount of the timing pulley 39a can be transmitted to the angle detector 39.
  • another measuring mechanism of the rotation (torsion) angle ⁇ in the embodiment of the present invention spans the timing belt 39b between the timing pulley 31e and the timing pulley 39a, and the measuring element 31
  • the rotation amount of the fixed pieces 31c of the gripping pieces 31a and 31b can be transmitted to the angle detector 39 via the timing pulley 3le, the timing belt 39b, and the timing pulley 39a.
  • the rotation (torsion) angle by the probe 31 can be measured even when the angle detector cannot be attached around the probe 31.
  • the embodiment of the present invention has been described as a face-down type measuring apparatus, this can also be applied to an upright type or a sitting type measuring apparatus.
  • FIG. 17 is a side view of the mechanism portion of the spine measurement apparatus shown in FIG. 1 in the human spine measurement display system according to the present invention.
  • FIG. 18 is a plan view of the mechanism part of the spine measurement apparatus shown in FIG. 1 in the human spine measurement display system according to the present invention.
  • the spine measuring device 3 includes a measurement bed 32 that sleeps when the measurement subject is lean, a base 33 that is fixed and suspended on one side of the measurement bed 32, and the base.
  • the measurement direction support arm 34 is fixed so as to be movable in the horizontal direction of the drawing (X direction) with respect to 33 and the measurement direction support arm 34 is fixed to be movable in the drawing vertical direction (Y axis direction).
  • the measurement direction support arm 34 is attached and fixed to a rail fixed to the base 33, a moving mechanism 34a having a slider force fixed to be movable on the rail, and the parallel support arm 35. And a rotating mechanism 34c that is interposed between the slider of the moving mechanism 34a and the mounting seat 34b and allows the mounting seat 34b to be rotated in a vertical plane.
  • the rotating mechanism 34c may be a mechanism that is interposed between the slider of the moving mechanism 34a and the mounting seat 34b so that the mounting seat 34b can be rotated in a vertical plane.
  • the rotating mechanism 34c includes an automatic locking mechanism that fixes the mounting seat 34b at the position when the mounting seat 34b is in a measurable position, and a mechanism for rotating the mounting seat 34b.
  • a release mechanism that releases the automatic lock mechanism is also provided.
  • FIG. 19 and FIG. 20 are diagrams showing an example in which the measurement direction support arm rotates in a vertical plane in the human spine measurement display system according to the present invention.
  • the measurement direction support arm 34 shown in FIG. 19 is an example in which the mounting seat 34b is configured to rotate upward. As a result, the mounting seat 34b and the like do not get in the way, and the person to be measured can easily lean on the bed.
  • the measurement direction support arm 34 shown in FIG. 20 is an example in which the mounting seat 34b is configured to rotate upward. As a result, the mounting seat 34b and the like do not get in the way, and the person to be measured can easily lean on the bed.
  • FIG. 21 to FIG. 24 show the measurement in the human spine measurement display system according to the present invention. It is the figure which showed the Example which a fixed direction support arm rotates in a horizontal surface.
  • the measurement direction support arm 34 shown in FIG. 21 is an example in which the mounting seat 34b is configured to rotate rightward in the horizontal plane to an angle of 90 degrees. As a result, the mounting seat 34b and the like do not get in the way, and the person to be measured can easily lean on the bed.
  • the measurement direction support arm 34 shown in FIG. 22 is an example in which the mounting seat 34b is configured to rotate leftward to an angle of 90 degrees in the horizontal plane. As a result, the mounting seat 34b and the like do not get in the way, and the person to be measured can easily lean on the bed.
  • the measurement direction support arm 34 shown in FIG. 23 is an example in which the mounting seat 34b is configured to rotate rightward in the horizontal plane to an angle of 1 80 [degrees]. As a result, the mounting seat 34b and the like do not get in the way, and the person to be measured can easily lean on the bed.
  • the measurement direction support arm 34 shown in FIG. 24 is an example in which the mounting seat 34b is configured to rotate leftward in the horizontal plane to an angle of 1800 [degrees]. As a result, the mounting seat 34b and the like do not get in the way, and the person to be measured can easily lean on the bed.
  • FIG. 25 is a view showing an example in which the measurement direction support arm slides in a horizontal plane in the human spine measurement display system according to the present invention.
  • the measurement direction support arm 34 is provided with a rail fixed to the base 33 and a moving mechanism 34a having a slider force movably fixed on the rail, and the parallel support arm 35. At least a mounting seat 34b to be fixed, and a horizontal slide mechanism 34d interposed between the slider of the moving mechanism 34a and the mounting seat 34b and capable of moving the mounting seat 34b in the horizontal direction are provided. .
  • the mounting seat 34b and the like do not get in the way, and the person to be measured can easily lean on the bed.
  • FIG. 26 is a plan view showing an example of movement of the bet in the human spine measurement display system according to the present invention.
  • FIG. 27 is a configuration diagram showing an example of sliding in the bed surface in the human spine measurement display system according to the present invention.
  • the measurement bed 32 includes a base portion 32a installed on the floor, a fixed base 32ba fixed on the base portion 32a, and a movable base 32b horizontally movable on the fixed base 32ba.
  • the movable mechanism 32b includes a movable mechanism 32b, and a bed sheet portion 32c fixed on the movable table 32bb of the movable mechanism 32b.
  • the measurement bed 32 moves as indicated by arrows X and y in FIG. 26, so that the bed sheet portion 32c can be moved away from the mounting seat 34b by an equal force.
  • the mounting seat 34b and the like do not get in the way, and the person to be measured can easily put it on the bed.
  • FIG. 28 is a diagram showing an example of a probe in the human spine measurement display system according to the present invention, in which FIG. 28 (a) is a front view and FIG. 28 (b) is a side view.
  • the measuring element 31 includes gripping pieces 31a and 31b that are formed to a predetermined length and that the second and third fingers of the measurer use, and these gripping pieces.
  • 31a and 31b are formed in a substantially T shape with a fixed piece 31c formed at a predetermined length in the center, and the end of the fixed piece 31c is connected via a rotating shaft (see FIG. 2; reference numeral 31d) It is pivotally fixed to the lower end of the vertical support arm (see Fig. 2; reference numeral 36).
  • the gripping pieces 31a and 31b are formed in a concave shape with a predetermined arc (arc of radius r) on the side in contact with the spine. Further, as shown in FIG. 28 (b), the gripping piece 31a has a triangular cross section. The gripping piece 31b is the same, although not shown.
  • the fixed piece 31c is in a plane perpendicular to the horizontal plane including the grip pieces 31a and 31b near the grip pieces 31a and 31b and the grip pieces It is formed by bending at a predetermined angle (angle ⁇ ) in a direction perpendicular to the axial direction of 3 la, 31b.
  • the measurer can use the probe 31 more easily.
  • FIG. 29 is a diagram showing an example of a probe in the human spine measurement display system according to the present invention, in which FIG. 29 (a) is a front view and FIG. 29 (b) is a side view.
  • the measuring element 31 is formed in a substantially T shape by gripping pieces 31a and 31b and the fixing piece 31c. Is the same.
  • the grip pieces 31a and 31b are formed in a concave shape with a predetermined arc (arc of radius r) on the side in contact with the spine. Further, as shown in FIG. 29 (b), the gripping piece 31a has a circular cross section. Although not shown, the gripping piece 31b has a similar cross section.
  • the fixed piece 31c is in a plane perpendicular to the horizontal plane including the grip pieces 31a and 31b near the grip pieces 31a and 31b and the grip pieces It is the same as the embodiment shown in FIG. 28 in that it is formed by bending at a predetermined angle (angle ⁇ ) in a direction perpendicular to the axial direction of 3 la, 31b.
  • the measurer can use the probe 31 more easily.
  • FIG. 30 is a diagram showing an embodiment of a measuring element in the human spine measurement display system according to the present invention.
  • FIG. 30 (a) is a front view
  • FIG. 30 (b) is a front view. It is a side view.
  • the measuring element 31 is formed in a substantially T shape by gripping pieces 31a and 31b and the fixed piece 31c. Is the same.
  • the grip pieces 31a and 31b are formed in a concave shape with a predetermined arc (arc of radius r) on the side in contact with the spine.
  • the gripping piece 31a has an oblong shape in its cross section.
  • the gripping piece 31b is also formed in an elliptical shape.
  • the fixing piece 31c differs from the embodiment shown in FIG. 28 in that it is formed in a straight line as shown in FIG. 30 (b).
  • the measurer can use the probe 31 more easily.
  • FIG. 31 is a diagram showing an example of a measuring element in the human spine measurement display system according to the present invention, in which FIG. 31 (a) is a front view and FIG. 31 (b) is a side view.
  • the measuring element 31 is formed in a substantially T-shape by gripping pieces 31a and 31b and the fixed piece 31c as shown in FIG. This is the same as the embodiment shown in FIG.
  • the gripping pieces 31a, 31b are formed flat on the side in contact with the spine so as to be distorted from FIG. 31 (a). Furthermore, as shown in FIG. 31 (b), the gripping pieces 31a and 31b are formed with a circular cross section.
  • the fixed piece 31c is in a plane perpendicular to the horizontal plane including the grip pieces 31a, 31b near the grip pieces 31a, 31b and the grip pieces It is formed by bending at a predetermined angle (angle ⁇ ) in the direction perpendicular to the axial direction of 3 la and 31b. This is the same as the embodiment shown in FIG.
  • the measurer can use the probe 31 more easily.
  • FIG. 32 is a diagram showing an embodiment of a measuring element in the human spine measurement display system according to the present invention.
  • FIG. 32 (a) is a front view
  • FIG. 32 (b) is a front view. It is a side view.
  • the measuring element 31 includes gripping pieces 31a and 31b that are formed to a predetermined length and that the second and third fingers of the measurer use, and these gripping pieces.
  • 28 is different from the embodiment shown in FIG. 28 in that it is formed in a substantially cross shape with a fixing piece 31c formed in a predetermined length over both sides of the gripping piece at the center of 31a, 31b.
  • the gripping pieces 31a and 31b are formed so that one of their cross-sectional areas is larger than the other cross-section.
  • the measurer can use the probe 31 more easily.
  • FIG. 33 is a view showing an embodiment of a measuring element in the human spine measurement display system according to the present invention.
  • FIG. 33 (a) is a front view
  • FIG. 33 (b) is a front view. It is a side view.
  • the measuring element 31 includes gripping pieces 31a and 31b that are formed to have a predetermined length and that the second and third fingers of the measurer use, and these gripping pieces 31a.
  • 31b is formed in a substantially cross shape with a fixed piece 31c formed in a predetermined length at the center, and the end of the fixed piece 3lc can be rotated to the lower end of the vertical support arm via a rotating shaft It is fixed.
  • the fixed piece 31c is in a plane perpendicular to the horizontal plane including the gripping pieces 31a and 31b below the gripping pieces 31a and 31b, and the gripping piece 3 It is bent at a predetermined angle (0) in a direction perpendicular to the axial direction of la and 31b.
  • gripping pieces 31a and 31b are formed so that one of their cross-sectional areas is larger than the other cross-section, as shown in FIG. 33 (a).
  • the measurer can use the probe 31 more easily.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

 本発明は、所定の測定子を背骨に沿って走査させることにより、背骨の3次元座標および回旋角度の測定データを求め、その測定データから背骨の形状をシミュレーションし、コンピュータグラフィックを利用して3次元の擬似的な背骨画像を表示することのできる人体背骨測定表示システムを提供する。  人体背骨測定表示システム1は、人体の背骨の曲がりや回旋(捩じり)角度を基準値からの乖離量測定データとして測定可能な背骨測定装置3と、前記測定対象者の性別、身長データを入力するための入力装置5と、前記背骨測定装置3からの乖離量測定データおよび前記入力装置7からのデータを取り込み、その乖離量測定データおよび前記測定対象者の性別、身長データを基に測定対象者の3次元背骨画像を生成する画像処理装置7と、前記画像処理装置7からの画像データを表示するディスプレイ装置9とから構成されている。

Description

人体背骨測定表示システム
技術分野
[0001] 本発明は、人体の背骨の曲がりを簡便に測定可能にするとともに、その測定結果を 基に表示画面上にリアルに表示することのできる人体背骨測定表示システムに関す る。
背景技術
[0002] 従前より、人体の背骨に歪みや不正な曲がりあると、内臓疾患を発症したり、肩こり 、頭痛といった症状が発生したりして人体に様々な影響を及ぼすことが知られている 。そのため、(1)背骨に不正な曲がりがある力否かを確認するために、カイロブラクテ イツクの施術者力 人体の背骨位置を触診して背骨が不正に曲がっている力否かを 確認する手技方法や、 (2)人体にモアレ光を照射して人体表面に左右対称なモアレ 模様が映し出されるか否を視認することのできるモアレトポトグラフィを使用する方法 や (特許文献 1参照)、(3)血流不良から生じる人体表面の温度を検出して、その温 度分布により身体の歪み (背骨の曲がり)を視認することのできるサーモグラフィを使 用する方法などが多く用いられている。
そして、背骨に曲がりがあることが判った場合には、患者に対して、モアレトポグラフ ィゃサーモグラフィの画像を見せて、人体の表面的な状態から、「背骨が右あるいは 左に曲がつている」といった説明が行われていた。また、触診による診断は、触診した 結果を患者に口頭により説明がなされていた。
そして、施術者による手技療法により、曲がっている背骨に対し、人体表面から所 定の施術を行 、、背骨の曲がりを矯正 ·改善して!/、た。
特許文献 1:特開平 11— 211434号公報
発明の開示
発明が解決しょうとする課題
[0003] し力しながら、上述した従来の方法は、患者 (測定対象者)に対して行われる背骨 の状態の説明は、口頭で説明を受けるのみであるため、背骨の具体的曲がり状態を 知ることはできなかった。また、モアレトポグラフィゃサーモグラフィ画像への表示内容 力も背骨の具体的曲がり具合を知るためには、表示内容を把握するのに熟練を要し 、素人目にも簡単に背骨の曲がり具合を知ることは困難であった。
さらに、曲がった背骨に対し、触診し、その後に所定の施術を行った結果を説明す る場合にも、触診や施術自体が施術者の技術や経験に頼る部分が多ぐ患者 (測定 対象者)にとつては、自己の背骨の曲がり具合や矯正具合を説明されても、背骨の何 れの部分が、どのくらい、何れの方向に曲がっているの力、あるいは、施術後に背骨 の曲がりがどのくらい矯正されたの力 といった具体的な曲がり状態を理解することが 難し力つた。すなわち、施術者による背骨の曲がり状態の口頭での説明は、例えば「 上部胸椎の X X枚目が · ·になっている。」というように、専門的な表現がなされ、自己
Figure imgf000004_0001
ヽつた問題があった。
カロえて、背骨の一つ一つの曲がり状態を詳細に知ることはさらに難し 、と 、う問題 かあつた。
[0004] 本発明は、上記従来の事情に鑑みてなされ、所定の測定子を背骨に沿って走査さ せることにより、背骨の 3次元座標および回旋値の測定データを求め、その測定デー タカも背骨の形状をシミュレーションし、コンピュータグラフィックを利用して 3次元の 擬似的な背骨画像を表示することのできる人体背骨測定表示システムを提供するこ とを目的とする。
課題を解決するための手段
[0005] 上記目的を達成するために請求項 1記載の発明に係る人体背骨測定表示システム は、測定対象者の背骨の長手方向 (X軸方向)、幅方向 (Y軸方向)、厚み方向 (Z軸 方向)、回旋方向(X軸を中心とした捩れ角 Θ )に自在に移動する走査アーム先端に 設けられた測定子を、測定者の第 2手指と第 3手指の間に挟んで測定対象者の背骨 の第 1頸椎位置または第 1胸椎位置から第 5腰椎位置までこれらの手指先端を沿わ せた状態で前記手指先端の 3次元移動させることにより、前記 X、 Υ、 Ζ、 Θ方向の基 準位置力 の乖離量を検出して乖離量測定データとして出力する背骨測定装置と、 前記測定対象者の性別、身長データを入力するための入力装置と、前記測定機構 からの乖離量測定データを取り込むとともに、前記入力装置からの前記測定対象者 の性別、身長データを取り込み、その乖離量測定データおよび前記測定対象者の性 別、身長データを基に測定対象者の 3次元背骨画像を生成し表示装置に与える画 像処理装置とを備え、前記画像処理装置は、前記測定機構から取り込んだ X軸方向 、 Y軸方向、 Z軸方向、 Θ方向の乖離量測定データを取り込み所定の変換データに 変換して変換データ記憶手段に記憶させる変換手段と、人体の背骨を構成する各椎 骨に関し、測定対象者の性別および身長による平均的大きさおよびその基本的形状 が記憶された基本図データベースと、前記入力装置により入力された測定対象者の 性別、身長データに応じて、前記基本図データベースから当該性別、身長データに 対応する各椎骨を選択して取り出し椎骨テーブルに格納するデータ選択手段と、前 記推骨テーブルで格納された各椎骨の大きさ、形状に基づいて、基本となる背骨全 体の画像を生成する合成手段と、前記合成手段により生成された背骨全体の画像と 前記変換データ記憶手段に記憶された変換データとを基に、各椎骨の X方向、 Y方 向、 Z方向、 Θ方向の座標位置に測定対象者の 3次元背骨画像を生成する画像デ ータ生成手段と、力もなることを特徴とするものである。また、請求項 2記載の発明に 係る人体背骨測定表示システムでは、請求項 1において、前記画像処理装置は、所 定の指示に基づいて、前記測定対象者の 3次元背骨画像を、所定の方向に移動あ るいは所定角度回転させて表示可能な表示データに生成して出力可能にしてなるも のであることを特徴とするものである。
発明の効果
本願請求項 1記載の発明に係る人体背骨測定表示システムによれば、俯せに横た わる測定対象者の背骨上を表面から測定子を走査させる簡便な方法で背骨がどの 様な状態で曲がっているかを擬似的に作成した正確なる 3次元画像を表示させること ができ、当該背骨の状態を視認で確認することができる。
これにより、施術者は、施術前と施術後で背骨の曲がり具合がどの位であるか画像 を提示ししつつ説明することにより、測定対象者に容易に理解させ得るといった利点 がある。
また、測定対象者である患者は、専門的な医学用語ではなぐ実際と同様の背骨の 状態を画像として視認できるため、自己の背骨のどの部分がどの様に、どちらに曲が つて!/、るか容易に理解することができるようになる。
図面の簡単な説明
[図 1]本発明の一実施の形態に係る人体背骨測定表示システムの概略構成図である
[図 2]本発明の実施の形態に係る人体背骨測定表示システムで使用される測定子付 近の詳細構成図である。
[図 3]本発明に係る人体背骨測定表示システムで使用される座標検出装置の説明図 である。
[図 4]本発明の人体背骨測定表示システムで使用する画像処理装置を示すブロック 構成図である。
[図 5]本発明に係る人体背骨測定表示システムにおいて前記変換手段により、測定 データ力 変換データに変換する様子を説明するための図である。
[図 6]脊骨 (脊椎)を構成する椎骨 (第 4胸椎)の基本構造の説明図である。
[図 7]このような椎骨の平均測定値を椎骨テーブルとして示した図である。
[図 8]椎骨間の角度を求める様子を示した説明図である。
[図 9]背骨の全体像を示す説明図である。
[図 10]図 9の A— A線断面図である。
[図 11]本発明に係る人体背骨測定表示システムにおいて、背骨測定装置により背骨 を測定し、その測定データに基づ 、て画像処理装置にて生成してディスプレイ装置 に表示された背骨画像を示す図である。
[図 12]前記図 11による表示された背骨のうち、腰椎、胸椎を生成して表示した背骨 画像であり、
[図 13]患者 (測定対象者)の背骨の状態を測定する全体的な測定の流れを説明する ためのフローチャートである。
[図 14]本発明に係る人体背骨測定表示システムの画像処理装置による測定データ の回旋角度測定処理のフローチャートである。
[図 15]本発明に係る人体背骨測定表示システムにおいて、測定データに基づき生成 された背骨の曲がり状態をコンピュータグラフィックにより表示処理を行うためのフロ 一チャートである。
[図 16]本発明に係る人体背骨測定表示システムの背骨測定装置の測定子による回 旋 (捩じり)角度 Θの測定機構の他の構成例を示した図である。
[図 17]本発明に係る人体背骨測定表示システムにお!/、て、図 1に示す背骨測定装置 の機構部の側面図である。
[図 18]本発明に係る人体背骨測定表示システムにお!/、て、図 1に示す背骨測定装置 の機構部の平面図である。
圆 19]本発明に係る人体背骨測定表示システムにおいて、前記測定方向支持ァー ムが垂直面内で回転する実施例を示した図である。
圆 20]本発明に係る人体背骨測定表示システムにおいて、前記測定方向支持ァー ムが垂直面内で回転する実施例を示した図である。
圆 21]本発明に係る人体背骨測定表示システムにおいて、前記測定方向支持ァー ムが水平面内で回転する実施例を示した図である。
圆 22]本発明に係る人体背骨測定表示システムにおいて、前記測定方向支持ァー ムが水平面内で回転する実施例を示した図である。
圆 23]本発明に係る人体背骨測定表示システムにおいて、前記測定方向支持ァー ムが水平面内で回転する実施例を示した図である。
圆 24]本発明に係る人体背骨測定表示システムにおいて、前記測定方向支持ァー ムが水平面内で回転する実施例を示した図である。
圆 25]本発明に係る人体背骨測定表示システムにおいて、前記測定方向支持ァー ムが水平面内でスライドする実施例を示した図である。
[図 26]本発明に係る人体背骨測定表示システムにお!/ヽて、前記ベットの移動例を示 す平面図である。
[図 27]本発明に係る人体背骨測定表示システムにお!/ヽて、ベット面内でスライドする 実施例を示した構成図である。
圆 28]本発明に係る人体背骨測定表示システムにお!/ヽて、測定子の実施例を示す 図であって、図 28 (a)は正面図、図 28 (b)は側面図である。
圆 29]本発明に係る人体背骨測定表示システムにお!/ヽて、測定子の実施例を示す 図であって、図 29 (a)は正面図、図 29 (b)は側面図である。
圆 30]本発明に係る人体背骨測定表示システムにお!/ヽて、測定子の実施例を示す 図であって、図 30 (a)は正面図、図 30(b)は側面図である。
圆 31]本発明に係る人体背骨測定表示システムにおいて、測定子の実施例を示す 図であって、図 31 (a)は正面図、図 31(b)は側面図である。
圆 32]本発明に係る人体背骨測定表示システムにお!/ヽて、測定子の実施例を示す 図であって、図 32 (a)は正面図、図 32(b)は側面図である。
圆 33]本発明に係る人体背骨測定表示システムにお!/ヽて、測定子の実施例を示す 図であって、図 33 (a)は正面図、図 33 (b)は側面図である。
符号の説明
1··人体背骨測定表示システム
3··背骨測定装置
5··入力装置
7"画像処理装置
9··ディスプレイ装置
31 ··測定子
31&··移動機構
31b' ·取付座
31C 回動機構
32 ··測定ベット
34 ··測定方向支持アーム
35 ··平行支持アーム
36 ··垂直支持アーム
38 ··座標検出装置
71 ··中央演算処理装置 (CPU)
72 ··読出専用メモリ (ROM)
73 ,·主メモリ (RAM)
74 ··ハードディスク装置 74 71a-•変換手段
71b- •データ選択手段
71c- ,合成手段
71d- •画像データ生成手段
73a- •変換データ記憶部
73b- •画像データ記憶部
74c- •測定データ記憶手段
74d- •基本図データベース
74e- •椎骨テーブル
発明を実施するための最良の形態
[0009] 以下、本発明の実施の形態について図面を参照して説明する。
図 1は、本発明に係る人体背骨測定表示システムの概略構成図である。図 1におい て、本発明に係る人体背骨測定表示システム 1は、大別すると、人体の背骨の曲がり を基準値からの乖離量測定データとして測定可能な背骨測定装置 3と、前記測定対 象者の性別、身長データを入力するための入力装置 5と、前記背骨測定装置 3から の乖離量測定データおよび前記入力装置 5からのデータを取り込み、その乖離量測 定データおよび前記測定対象者の性別、身長データを基に測定対象者の 3次元背 骨画像を生成する画像処理装置 7と、前記画像処理装置 7からの画像データを表示 するディスプレイ装置 9とから構成されて 、る。
[0010] ここで、背骨測定装置 3についてさらに説明する。この背骨測定装置 3は、測定対 象者の背骨の長手方向(X軸方向)、幅方向(Y軸方向)、厚み方向(Z軸方向)、回 旋方向(X軸を中心とした捩れ角 Θ )に自在に移動する走査アーム先端に設けられた 測定子 31を、測定者の第 2手指と第 3手指の間に挟んで測定ベット 32に俯せに寝て いる測定対象者の背骨の第 1頸椎位置または第 1胸椎位置から仙骨位置までこれら の手指先端を沿わせた状態で前記手指先端の 3次元移動させることにより、前記 X、 Υ、 Ζ、 Θ方向の基準位置力 の乖離量を検出して乖離量測定データとして出力する 測定装置である。
さらに説明すると、前記背骨測定装置 3は、測定対象者が俯せた状態で寝る測定 ベッド 32と、この測定ベット 32の一方の側面側に固定され垂設された基台 33と、この 基台 33に対して図面左右方向(X方向)に移動可能に固定されている測定方向支持 アーム 34と、この測定方向支持アーム 34に固定されていて図面垂直方向(Y軸方向 )に移動可能にされている平行支持アーム 35と、この平行支持アーム 35に固定され ていて図面上下方向(Z軸方向)移動可能にされている垂直支持アーム 36と、この垂 直支持アーム 36の先端に回動可能に固定されている測定子 31と、前記測定方向支 持アーム 34の移動量を検出できる X軸検出器(図示せず)と、前記平行支持アーム 3 5の移動量を検出できる Y軸検出器(図示せず)と、垂直支持アーム 36の移動量を検 出できる Z軸検出器 (図示せず)と、前記測定子 31の回動量を角度 Θとして測定でき る角度検出器(図 1では図示せず)と、前記 Y軸検出器、 Y軸検出器、 Z軸検出器お よび角度検出器力 の検出データを基に座標データにする座標検出装置 38とを備 えている。
図 2は本発明の実施の形態に係る人体背骨測定表示システムで使用される測定子 付近の詳細構成図であって、図 2 (a)は正面図、図 2 (b)は側面図である。
図 2 (a)および図 2 (b)において、前記測定子 31は、患者 (測定対象者)の背骨を表 面上から走査させるためのものである。前記測定子 31は、図 2 (a)に示すように、横 に張り出した把持片 31a, 31bと、これら把持片 31a, 31bの中央部において垂直方 向に所定の長さに形成された固定片 31cとから構成されている。前記測定子 31は、 図 2 (a) ,図 2 (b)に示すように、前記固定片 31cが回転軸 31dでもって垂直支持ァー ム 36の下端に回動可能に固定されており、これによつて逆 T字型形状に形成されい る。また、前記測定子 31の前記把持片 31a, 31bは、図 2 (b)に示すように、背骨に 沿って走査する進行方向に対して角度 OCの角度を持たせた形状に形成されて 、る。 さらに、前記垂直支持アーム 36の測定子 31の回転軸 31dの付近には、角度検出器 39が設けられており、図 2 (a)に示すように、捩れ角度 θ , Θ 'を測定して角度測定デ ータとして出力できるようになって!/、る。
そして、この背骨測定装置 3は、前記測定子 3の把持片 31a, 31bを測定者の第 2 手指と第 3手指の間に挟み、第 2指と第 3指の先端を前記測定ベット 32に府せて寝て V、る測定対象者の背骨の第 1頸椎位置または第 1胸椎位置 (首の付け根)から仙骨 位置までの背骨に沿って移動(走査)させることにより、測定方向支持アーム 34、平 行支持アーム 35、垂直支持アーム 36の移動量 (乖離量)と、測定子 31の回転軸 31 dを中心とした回転量とに応じて、背骨の曲がり状態を接触測定できるようになつてい る。
[0012] なお、測定ベット 32は、患者 (測定対象者)が俯せに横たわることのできる幅 600m m、長さ 1800mm、高さ 500mm程度の大きさからなる。患者 (測定対象者)が、当該 測定ベット 32の所定位置に俯せで横たわることにより、患者 (測定対象者)の背骨が 一定の状態となり、前記測定子 31を背骨上に走査させる場合に、背骨の測定が正確 に行えるようにするためのものである。
すなわち、測定ベット 32に横たわった患者 (測定対象者)の背骨の曲がり状態を測 定する際に、測定者が前記測定子 31を徒手し、背骨の表面上を首から腰方向へ移 動させると、前記測定方向支持アーム 34、平行支持アーム 35、垂直支持アーム 36 により、例えば、 X方向に 900 [mm]、 Y方向に 400 [mm]、 Z方向に 200 [mm]の範 囲内で背骨の凹凸や左右へのズレに準じるように構成されて 、る。
[0013] また、座標検出装置 38は、本実施の形態では、前記基台 33に取り付けられており 、前記測定子 3の X方向、 Y方向、 Z方向への移動量を、例えば、エンコーダ(24ビッ トアップダウンカウンターボード(PCN24— 4 (PCI) ) )により、所定のパルス信号とし てカウントし、各座標ごとに任意に設定したカウント比較値と一致したときの座標値を デジタル値として検出するものである。そして、座標検出装置 38は、検出した測定デ ータを、画像処理装置 7に伝送可能になっている。
[0014] なお、前記画像処理装置 7には背骨測定装置 3がケーブルで接続されており、前 記背骨測定装置 3からの測定データをケーブルを介して画像処理装置 7に供給でき るようになっている。また、画像処理装置 7には、入力装置 5と、ディスプレイ装置 9と が電気的に接続されており、画像処理装置 7には入力装置 5から必要なデータが入 力でき、また、画像処理装置 7で処理した結果などをディスプレイ装置 9で表示できる ように構成されている。
[0015] 図 3は、本発明に係る人体背骨測定表示システムで使用される座標検出装置の説 明図である。この図 3において、座標検出装置 38は、 X座標軸、 Y座標軸、 Z座標軸 、角度 0のそれぞれのチャンネル(chO、 chl、 ch2、 ch3) 38a、 38b、 38c、 38dと、 16進数のデータが検出され表示される 16進数表示部 38eと、 10進数のデータが検 出され表示される 10進数表示部 38fと、 0. 1秒毎の座標値のカウント値や所定の角 度値がステータスとして表示されるステータス表示部 38gとを備えている。
[0016] 図 4は、本発明の人体背骨測定表示システムで使用する画像処理装置を示すプロ ック構成図である。
この図 4において、画像処理装置 7は、本実施の形態においては、例えばパーソナ ルコンピュータであり、前記背骨測定装置 3から伝送される測定データに基づいて所 定の演算を行 ヽ、背骨の状態をリアルに表示する画像データを作成する。
[0017] 例えば、この画像処理装置 7は、本実施の形態では、パーソナルコンピュータとして 、 Apple社の PowerMac7100/66AVを使用している。このパーソナルコンピュー タカ なる画像処理装置 7は、各種演算処理やプログラムを実行する中央演算処理 装置 (CPU) 71と、起動時などの基本的な動作を行わせるためのプログラムを格納し ている読出専用メモリ (ROM) 72と、オペレーティングシステムや本発明の処理を実 行する人体背骨測定表示処理プログラムを記憶するエリアや、その他処理に必要な データ記憶エリアを有する主メモリ(RAM) 73と、オペレーティングシステムや'本発 明の処理を実行する人体背骨測定表示処理プログラムや'この人体背骨測定表示 処理プログラムを実行する際に必要とするデータベースなどを格納しているハードデ イスク装置 74と、その他の入出力処理ボードや電源装置とを備えて 、る。
[0018] また、このパーソナルコンピュータ力もなる画像処理装置 7は、電源が投入されると 、 CPU71が ROM72のプログラムを実行して、ハードディスク装置 74からオペレーテ イングシステムを RAM73の所定のエリアに記憶させ、この RAM73への記憶が終了 した時点で、 CPU71が RAM73のオペレーティングシステムを実行して使用可能状 態 (基本画面)をディスプレイ装置 9に表示して待機状態になる。そこで、例えば入力 装置 5とディスプレイ装置 9とを用いて画像処理装置 7に当該人体背骨測定表示プロ グラムの起動を指示する力、あるいは、自動起動に設定されていると、画像処理装置 7は、ハードディスク装置 74から人体背骨測定表示プログラムを取り出して RAM73 に記憶させた後、前記 RAM73に記憶された人体背骨測定表示プログラムを CPU7 1が実行することにより、図 4に示すように、変換手段 71a、データ選択手段 71b、合 成手段 71cおよび画像データ生成手段 71dを実現するようになっている。
[0019] また、ハードディスク装置 74には、図 4に示すように、オペレーティングシステム 74a と、人体背骨測定表示プログラム 74bと、前記座標検出装置 38からのデジタル値の 測定データを記憶する測定データ記憶手段 74cと、椎骨の基本モデルの画像デー タが記憶された基本図データベース 74dと、前記変換データにより背骨画像を作成 する際に参照する椎骨テーブルデータベース 74eとが格納されている。
さらに、 RAM73には、人体背骨測定表示プログラムが CPU71おいて実行される と、変換データ記憶部 73aおよび画像データ記憶部 73bが設けられる。
[0020] なお、 CPU71で実現される変換手段 71aは、前記測定データ記憶手段 74cに記 憶された測定データを所定変換手順により変換を行う手段である。また、 CPU71で 実現される合成手段 71bは、前記変換データを基に測定者の椎骨の画像を作成す る手段である。 CPU71で実現される画像データ生成手段 71cは、前記合成手段 71 bにより生成された各椎骨を背骨に合成して画像データ記憶部 73bに格納する手段 である。
[0021] 前記入力装置 5は、前記画像処理装置 7に接続され、背骨の測定対象者の性別や 身長等のデータを入力するキーボードやマウスである。
前記ディスプレイ装置 9は、本実施の形態では、 CRTディスプレイ装置や液晶ディ スプレイ装置であり、前記画像処理装置 7で生成した前記画像データ格納部 73bに 記憶してある背骨の状態の画像データによりリアルに画像表示する装置である。
[0022] すなわち、前記背骨測定装置 3では、測定子 31を指で挟み、その指を前記測定対 象である人体の背骨に沿って人体の頭部力 腰部へ移動させると X軸方向の測定量 を得ることができ、人体の背骨の「曲がり」等に沿って測定子 31を人体の幅方向へ移 動させると Y軸方向の測定量を得ることができ、人体の背骨の凹凸に沿って測定子 3 1を上下動する方向に移動させると Z軸方向の移動量を得ることがてき、かつ、測定 子 31の回転軸 31dを中心に回動させることにより、回旋量 0を得ることができる。
[0023] 図 5は、本発明に係る人体背骨測定表示システムにおいて前記変換手段により、 測定データ力 変換データに変換する様子を説明するための図である。 すなわち、図 5 (a)は、前記測定データ記憶手段 74aに記憶された測定データであ り、左からそれぞれ X方向、 Y方向、 Z方向、角度 0の測定データである。前記変換 手段 71aは、 X方向(背骨の長さ方向)を 1ミリメートルごとに分割し、例えば、 X方向 の座標値が「001」から「009」までのうち最大である「009」と、「011」から「019」まで のうち最大である「019」、 · · ·、「4461」から「4469」までのうち最大である「4469」、 そして、最後のデータ「4476」、つまり X方向の値が「009」、「019」、 · · ·、「4469」、 「4476」を検出し、それらの X方向、 Y方向、 Z方向、角度 Θの座標値を一時的にメモ リ(RAM73)に記憶しておく。図 5 (b)は、メモリ(RAM73)に記憶された様子を示し ている。
このように検出された測定データは下 1桁が小数点以下の数値であり、測定時の誤 差も含まれることが考えられることから、小数点以下は切り捨てて整数を得る。
[0024] また、図 5 (b)に示すように、最初の測定データである X方向の座標値、 Y方向の座 標値、 Z方向、角度 Θの座標値は、(Χ、 Υ、 Ζ、 θ ) = (009、 0002、 0044、 0008) である。変換手段 71aは、この測定データの小数点以下を切り捨てる操作を例えば 次のように行う。すなわち、変換手段 71aは、前記座標値を、(Χ、 Υ、 Ζ、 θ ) = (0、 0 、 4、 0)とする。つぎに(Χ、 Υ、 Ζ、 θ ) = (019、 0004、 0049、 0001)につ!/、ては、 変換手段 71aは、(Χ、 Υ、 Ζ、 θ ) = (1、 0、 4、 0)と変換する。つづいて (Χ、 Υ、 Ζ、 θ ) = (029、 0005、 0053、 0013)【こつ!ヽて ίま、変換手段 71aiま、(Χ、 Υ、 Ζ、 θ ) = (2 、 0、 5、 1)に変換し、そして最後の測定データ(Χ、 Υ、 Ζ、 θ ) = (4476、 0212、 048 8、 0030)につ!/、ては、(Χ、Υ、Ζ、 0 ) = (447、 21、 48、 3)と変換することにより、図 5 (c)に示すような、それぞれ整数変換した数値を得ることができる。
そして、このように変換手段 71aによって変換された数値は、測定データに基づい た変換データとして変換データ記憶手段 73aに記憶される。
[0025] ところで、人体の背骨を構成する椎骨は、椎骨数が決まっているため、身長差等に より背骨長さが変わっているだけなので、予め基本となる平均測定値データを椎骨テ 一ブル 74cとして記憶しておく。また、椎骨の形状を基本モデルとして基本図データ ベース 74dに記憶しておく。
そして、データ選択手段 71bは、前記入力手段 7から入力された測定対象者の性 別、身長データに応じて、前記基本図データベース 74dから当該性別、身長データ に対応する各椎骨を選択して取り出し椎骨テーブル 74eに格納する。
合成手段 71cは、前記推骨テーブル 74eに格納された各椎骨の大きさ、形状に基 づいて、基本となる背骨全体の画像を生成する。
[0026] そして、画像データ生成手段 71dは、前記合成手段 71cにより生成された背骨全体 の画像に、前記変換データ記憶手段 73aに記憶された変換データを反映させて、各 椎骨の X方向、 Y方向、 Z方向、 Θ方向の座標位置に測定対象者の 3次元背骨画像 を生成することにより、測定対象者の背骨のシミュレーションを行うことができる。この 画像データ生成手段 71dでシミュレーションされた測定対象者の背骨の画像データ はディスプレイ装置 9に送られることにより、ディスプレイ装置 9には、擬似的な背骨が リアルな画像として表示され、例えば背骨の曲がっている部分が、何れの椎骨である 力を図り知ることが可能となる。
[0027] 基本図データベース 74dには人体の背骨 (脊柱)のデータが格納されて 、る。この 人体の背骨 (脊柱)のデータは、人体の背骨 (脊柱)を構成する頸椎 (7個)、胸椎 (12 個)、腰椎 (5個)、仙骨(5個)、尾骨(5個)からなり、これらの椎骨の形状の画像デー タである。このような椎骨の基本構造は、腹側に椎間板を挟んで上下に隣接し、その 背側には脊髄を通し骨性に取り囲まれた空隙 (椎孔)を有し、後方には棘突起を有し たものである。
[0028] 図 6は、脊骨 (脊椎)を構成する椎骨 (第 4胸椎)の基本構造の説明図である。
ここで、図 6 (a)は、椎骨 15の上面形状であり、丸みをおびた椎体 15aと、その背側 に椎孔 15bと、椎孔 15bの両側部の椎弓根 15cと、後方背側の中央に棘突起 15dと 、その両側部に横突起 15eがそれぞれ形成され、椎孔 15bの両側部には、斜め上方 (背側向き)に他の椎骨とつながる上関節突起 15fが形成されて成る。
図 6 (b)は、椎骨 15の下面形状であり、前記椎孔 15bの両側部には、斜め下方 (背 側から腹側向き)に他の椎骨とつながる下関節突起 15gが形成されて成る。
図 6 (c)は、椎骨 15の左側面形状であり、前記椎孔 15bの下方は半円形に切り欠 かれた下椎切痕 15hと、下椎切痕 15hの腹側の両下方に下肋骨窩 15iと、下肋骨窩 15iの両上方に上肋骨窩 1¾と、前記横突起 15eの先端部分の横突肋骨窩 15kによ り形成されている。
そして、このような形状を成した各椎骨の画像データが、当該基本図データベース 74aに記憶されている。
[0029] 椎骨テーブル 74eは、本実施の形態では、例えば、日本人成人男性の椎骨の平均 計測値(士標準偏差)、 日本人成人女性の椎骨の平均計測値(士標準偏差)をテー ブルにしたものである。
図 7は、このような椎骨の平均測定値を椎骨テーブル 74eとして示したものであり、 図 7(a)は、 日本人成人男性 (年齢 :26歳)の椎骨計測値であり、例えば、腹側高の 平均値(士標準偏差)は、第 3頸椎が 12. 93[mm]±l.45 [mm],第 4頸椎が 12. 24[mm]±l. 21 [mm], ···、第 1胸椎が 15. 12[mm]±l. 12 [mm], ···、第 12 胸椎力 22. 33[mm]±l. 91[111111]、第1腰椎カ 23. 39[mm]±l. 80 [mm], ··· 、第 5腰椎が 25. 15[mm]±2. 29[mm]となり、背側高、上面矢状径、下面矢状径 、上面横径、下面横径のそれぞれについて、第 3頸椎力も第 5腰椎まで表されたもの である。
[0030] 図 7(b)は、日本人成人女性 (年齢 :26歳)の椎骨平均計測値であり、同様に、腹側 高の平均値(士標準偏差)は、第 3頸椎が 12. 28[mm]±l. 23[mm]、第 4頸椎が 11.61[mm]±l. 17 [mm], ···ゝ第 1胸椎が 14.89[mm]±l. 23 [mm], ··· 第 12胸椎力 22. 10[mm]±l.80 [mm]、第 1腰椎力 S 23. 76[mm]±l. 94 [mm] 、 ···、第 5腰椎が 24. 85[mm]±2. ll[mm]となり、背側高、上面矢状径、下面矢 状径、上面横径、下面横径のそれぞれについて、第 3頸椎力も第 5腰椎まで表された ものである。
そして、男女それぞれについて、このような椎骨テーブル 74eとして作成され、 ドディスク装置 74の所定格納エリアに記憶されている。
[0031] 合成手段 71cは、前記基本図データベース 74dに記憶された各椎骨の形状画像 に前記椎骨テーブル 16による大きさを反映して、背骨のリアルな擬似画像を得るも のである。すなわち、前記基本図データ 15に記憶された各椎骨のうち、例えば、第 4 胸椎の上方には椎間板を介して第 3胸椎が位置し、第 4胸椎の前記上関節突起 15f と、第 3胸椎の下関節突起 15gがつながっている。そして、順次第 3胸椎の上方に第 2胸椎、その上方に第 1胸椎というように第 1頸椎力 尾骨までを合成すると背骨の画 像が形成される。
つまり前記椎骨テーブル 74eに記憶されたデータは、日本人の平均値に標準偏差 を考慮したものであり、その性別、身長に基づいて、測定開始の第 1胸椎から仙骨ま での 18個の椎骨 (実際の表示は第 1頸椎から仙骨の 25個)の大きさにより、基本図 データベース 74dから選び出して組み合わせ基本モデルの背骨の画像が得られる。
[0032] 画像データ生成手段 71dは、既に説明したが、前記合成手段 71cにより作成された 基本となる背骨の形状に対して前記変換データ (測定データ)を反映して、測定対象 者個人の背骨の状態の画像データを生成するものである。
つまり、前記変換データ (測定データ)は、上述したように、背骨長手方向である X 方向 1 [mm]毎に対して、背中の幅方向 Y方向、胸の厚み方向 Z方向の位置が測定 されており、この変換データ (測定データ)を分割して各椎骨に割り当てる。すると、 X 値何ミリから何ミリまでは、「第 X腰椎」であることが得られる。
そして、このような背骨の画像データは、前記 CPU71において実行される 3次元コ ンピュータグラフィックの画像処理ソフトプログラムを利用して、視点の座標を変更す ると、背骨の画像を所定方向に回転して表示することができる。
[0033] 図 8は、椎骨間の角度を求める様子を示した説明図であり、図 8 (a)は、椎骨間の左 右の曲がり角度を示し、図 8 (b)は前後の曲がり角度を示した説明図である。
図 8 (a)に示すように、例えば、 B1を第 3腰椎、 Tを椎間板、 B2を第 2腰椎とすると、 これは各椎骨に分割された変換データ (測定データ)の第 2腰椎部分に相当する Y値 と第 3腰椎部分に相当する Y値力も得ることができる。すなわち、背骨に曲がりがない 場合には、左右の何れにも傾いていないため Y値は全て「0」となる力 例えば第 2腰 椎が右に傾 ヽて 、る場合には Y値は「1」あるいは「2」に、左に傾!ヽて 、る場合には Y 値は「一 1」、「一 2」として測定されることとなる。
この変換データ (測定データ)を背骨の基本モデルに反映すると、第 3腰椎の中心 の C1と第 2腰椎の中心の C2には角度 |8 1分の傾きが生じていることが得られ、椎間 板 Tを変形させて椎骨の画像を生成する。
[0034] つぎに図 8 (b)に示すように、上記同様、 B1を第 3腰椎、 B2を第 2腰椎とすると、こ れは各椎骨に分割された変換データ (測定データ)の第 2腰椎部分に相当する Z値と 第 3腰椎部分に相当する Z値力 得ることができる。
すなわち、腰椎の場合は、基本モデルにおいて第 3腰椎 (C3)に対し第 2腰椎 (C4 )が後ろに「9. 27度」傾いている状態、 Z値が「一 10」(本実施の形態では X座標、 Y 座標からなる平面に対し、手前側をプラス、奥側をマイナスとして示す)が正常であり 、これに対し変換データ (測定データ)の Z値力「一 7」であった場合には、 C3と C4の 傾き β 2は、例えば「5. 06度」として得られる。
[0035] 次に、背骨の捩れについて説明する。
図 9は、背骨の全体像を示す説明図である。図 10は図 9の A— Α線断面図である。 背骨 200は、図 9に示すように、中心線 Oに対して、エリア J1、J3についてはマイナス Θ側に、エリア J2、 J4についてはプラス Θ側に、回旋し (捩れ)ている状態を示してお り、線分 400はその状態をあらわしている。
図 10は、背骨 200の椎骨 201の A— A線部分の断面を示しており、椎骨 201の 回旋 (捩れ)状態が、例えば中心線 Oに対して、プラス Θ側、あるいは、マイナス Θ側 に回旋 (捩れ)て 、る状態を示して 、る。このような背骨 200の回旋 (捩れ)の状態を 前記前記背骨測定装置 3の測定子 31によって測定し、その回旋 (捩れ)角 Θの測定 データを、前記画像処理装置 7に与えるようになって 、る。
[0036] 前記画像処理装置 7では、このようにして得られた各椎骨間の傾き βや、回旋角度
Θを、基本モデルの背骨画像データに与えることにより、測定対象者の性別や身長 に基づ!/ヽた独自の背骨の状態が画像データとして生成される。
そして、前記画像処理装置 7は、 3次元コンピュータグラフィックを用いて上述のよう にして得られた画像データを画像処理し、その画像処理した結果を前記画像処理装 置 7に接続されたディスプレイ装置 9に送り込む。これにより、前記ディスプレイ装置 9 の画面上では、擬似的な背骨画像として表示されることになる。
[0037] 図 11は、本発明に係る人体背骨測定表示システムにおいて、背骨測定装置により 背骨を測定し、その測定データに基づ!、て画像処理装置にて生成してディスプレイ 装置に表示された背骨画像を示す図である。
図 11 (a)は、上記測定した背骨全体を生成し背面力 表示した背面背骨画像であ り、図 11 (b)は、上記測定した背骨全体を生成し左側面から表示した左側面背骨画 像である。
図 11 (a)に示すように、背骨全体を頸椎部分、上部胸椎、中部胸椎、下部胸椎、腰 椎、仙骨、尾骨に分割し、本実施の形態では、それぞれ色分け表示する。 例えば、 頸椎は「白」、上部胸椎は「赤」、中部頸椎は「青」、下部胸椎は「緑」、腰椎は「黄」、 仙骨及び尾骨は「灰」と 、うように色分け表示することにより、背骨の曲がって 、る部 分が何処である力、またどちらの方向へ曲がっているかが容易に視認できる。そして 、この背骨を表示する画像データは、 3次元のコンピュータグラフィックの画像データ であるため、前記画像データ生成手段 18により視点座標を変えた背骨の画像を生 成し、図 11 (b)に示すような左側面背骨画像を表示することができる。
[0038] また、例えば、「上部胸椎の曲がりが異常である」と思料される場合には、上部胸椎 のみを表示することができる。
前記図 11 (a)、図 11 (b)の画像が表示されている状態で、入力装置 10に設けられ た所定キー(例えば、「UPキー )」または「DOWNキー(丄)」)を押下することによ り、上部胸椎のみの表示に切替表示することができる。
[0039] 図 12は、前記図 11による表示された背骨のうち、腰椎、胸椎を生成して表示した 背骨画像であり、図 12 (a)は胸椎 4体 (05、 06、 07、 08番目)の側面背骨画像、図 1 2 (b)は胸椎 4体 (09、 10、 11、 12番目)の左側面背骨画像、図 12 (c)は、腰椎 5体( 01、 02、 03、 04、 05番目)をそれぞれ生成して表示した説明図である。
図 12 (a)は、上部胸椎の背面背骨画像を生成して表示したものであり、胸椎のうち 、上部胸椎と称されている第 5胸椎、第 6胸椎、第 7胸椎、第 8胸椎について前後屈 の角度、左右傾斜および回旋角度が表示される。
[0040] そして上部胸椎の画像とともに、前後方向の曲がり角度と左右方向の曲がり角度を 算出し、例えば、前後方向の曲がり角度は、第 5胸椎に対する第 6胸椎の曲がり角度 は「第 5胸椎→第 6胸椎の角度 =後屈 0. 1 [度]」、 · · ·、第 8胸椎に対する第 9胸椎の 曲がり角度は「第 8胸椎→第 9胸椎の前屈 =前屈 0. 0 [度]」と前後の曲がり角度の説 明を表示してもよい。同様に、左右方向の曲がり角度について、第 5胸椎に対する第 6胸椎の左右傾斜は「第 5胸椎→第 6胸椎 =右上 0. 1 [度]」、 · · ·、第 8胸椎に対する 第 9胸椎の曲がり角度は「第 8胸椎→第 9胸椎の左右傾斜 =右下 0. 1 [度]」等という ように左右の傾斜角度の説明を表示することで、背骨の曲がり状態を表示するように してちよい。
[0041] 力!]えて、上部胸椎の画像とともに、回旋 (捩れ)状態を算出し、例えば、前後方向の 回旋 (捩れ)角度は、第 5胸椎に対する第 6胸椎の回旋 (捩れ)角度は「第 5胸椎→第 6胸椎の回旋 (捩れ)角度 =右前 7. 0 [度]」、 · · ·、第 8胸椎に対する第 9胸椎の回旋 (捩れ)角度は「第 8胸椎→第 9胸椎の回旋 (捩れ) =右前 2. 4 [度]」と 、うように回旋 (捩れ)角度の説明を表示してもよい。同様に、左右方向の曲がり角度について、第 5 胸椎に対する第 6胸椎の左右傾斜は「第 5胸椎→第 6胸椎 =右上 0. 1 [度]」、 · · ·、 第 8胸椎に対する第 9胸椎の曲がり角度は「第 8胸椎→第 9胸椎の左右傾斜 =右下 0 . 1 [度]」等というように左右の傾斜角度の説明を表示することで、背骨の曲がり状態 を表示するようにしてもょ 、。
[0042] また、前記図 12 (a)に示すように上部胸椎の背面背骨画像が表示されている状態 で、入力装置 10に設けられた所定キー(例えば、「UPキー )」または「DOWNキ 一 U )」)を押下することにより、視点を変更することができ、現在表示されている上 部胸椎を下側に移動させた画像を表示することができる。
例えば、図 12 (a)の上部胸椎の背面背骨画像が表示されている状態で、「DOWN キー )」を押下すると、図 12 (b)に示すように、上部胸椎のさらに下側の胸椎画像 が表示されるとともに、上記同様、前後方向の前後屈、左右傾斜および回旋 (捩れ) 角度を算出してそれぞれ表示される。
[0043] ついで前記図 12 (b)に示すように上部胸椎の左側面背骨画像が表示されている状 態で、入力装置 10に設けられた所定キー「DOWNキー( 」を押下することにより、 図 12 (c)に示すように、腰椎の背骨画像が表示されるとともに、上記同様、前後方向 の前後屈、左右傾斜および回旋 (捩れ)角がそれぞれ表示される。
[0044] すなわち、本発明に係る画像処理装置 7は、基本図データベース 74dと椎骨テー ブル 74eに基づ ヽて背骨画像を作成し、これに測定データによる具体的な値を反映 し、その部分の椎骨を所定方向へ座標移動させて表示することにより、図 11に示す ような背骨の全体、あるいは、図 12に示すような一部分が背面力も表示され、所定キ 一を押下することにより、背骨位置を移動させた状態をシミュレーションして表示され ることになる。なお、背骨の視点を変えた画像も表示可能になっている。
このように、背骨を構成する複数の椎骨のうち、何れの椎骨がどの様に曲がってい るか容易に視認することが可能となる。
[0045] つぎに、本発明の人体背骨測定表示システム 1により、人体の背骨の状態を測定し 、コンピュータグラフィックにより 3次元表示する様子を図 13から図 15のフローチヤ一 トを参照して説明する。
図 13は、患者 (測定対象者)の背骨の状態を測定する全体的な測定の流れを説明 するためのフローチャートである。
患者 (測定対象者)の背骨の状態を測定するために、人体背骨測定表示システム 1 の電源を投入し、患者 (測定対象者)を前記測測定ベット 32に俯せに寝カゝせ、測定 準備を行う (ステップ Sl)。
[0046] これは、電源を投入すると、座標検出装置 38に表示された値が、例えば、 X値と Y 値が「0」または「1」となって 、る場合に準備完了となる。
そして、準備が完了した力どうかのチェックを行い (ステップ S2)、準備が完了してい ない場合には、ステップ S1の処理に戻り、準備を行う。準備が完了した場合には、測 定者が測定子 31を徒手し、患者 (測定対象者)の頭部方向に移動させて、患者 (測 定対象者)の頸椎側の背骨上に配置し、腰椎側へ向けて背骨上に沿って移動させる (ステップ S3)。
前記測定子 31を移動させると、背骨の凹凸や曲がり具合を X値、 Y値、 Z値、 Θ値と して検出する (ステップ S4)。検出された測定データは、画像処理装置 7に伝送する( ステップ S5)。そして、計測が終わった力否かの判定を行い (ステップ S6)、計測が終 わった場合には処理を終了する。まだ終えていない場合には (ステップ S6 ; NO)、デ ータ脱落処理やその他の処理を実行し (ステップ S 7)、データ補正処理が終了して いないときには (ステップ S8 ;NO)、ステップ S3の処理に戻り、引き続き背骨上に測 定子 31を移動させる。
[0047] 図 14は、本発明に係る人体背骨測定表示システムの画像処理装置による測定デ ータの回旋角度測定処理のフローチャートである。 つぎに、画像処理装置 7は測定データを受け取ると (ステップ S 20)、 CPU71により 測定データを測定データ記憶手段 74cに記憶し (ステップ S21)、変換手段 71aによ り測定データの X値, Y値, Z値がが lmm以下のデータの中から最大値を求めるとと もに、回旋角度 Θの絶対値の最大値を求める (ステップ S22)。その最大値の下 1桁 が小数点以下となるため、小数点を振ってミリ単位に変換する。ここで、小数点以下 の値は、測定時の誤差とも考えられるため、測定データの小数点以下を切り捨てて 整数にする。
[0048] また、画像処理装置 7の CPU71aで実現されている変換手段 71aは、回旋 (捩れ) 角度 Θのデータを度単位に変換する (ステップ S23)。また、変換手段 71aは、測定 データの小数点以下第 1位を、例えば 5. 5 [度]というように表示する (ステップ S 24) 。このように変換手段 71aで所定の整数や角度に変換された測定データは、前記変 換手段 71aによって変換データ記憶手段 74cに記憶される (ステップ S25)。そして、 前記合成手段 71cや前記画像データ生成手段 71dにより画像処理が行われた後に 、画像データの表示が行われる (ステップ S26)。
[0049] 図 15は、本発明に係る人体背骨測定表示システムにおいて、測定データに基づき 生成された背骨の曲がり状態をコンピュータグラフィックにより表示処理を行うための フローチャートである。
背骨の状態をコンピュータグラフィックを用いて表示するには、前記画像処理装置 7 に接続されたマウス等の入力装置 5から所定の指示を入力し (ステップ S41)、指示が 行われない場合は (ステップ S41; NO)、処理を終了する。
[0050] 前記入力装置 5から前記画像処理装置 7に対して表示指示が行われた場合には( ステップ S41; YES)、前記変換データ記憶手段 73aから変換データ (測定データに 基づき所定の変換がされたデータ)を読み出し (ステップ S42)、前記画像処理装置 7 が実行する画像処理ソフトプログラム (人体背骨測定表示プログラム)に基づ 、て基 本図データベース 74dと椎骨テーブル 74eを参照して測定対象者の男女の別や身 長に基づいた背骨の基本モデルの画像データを作成し、かつ、基本モデルの 3次元 背骨画像データに変換データ (測定データに基づき所定の変換がされたデータ)を 反映して測定対象者の 3次元背骨画像データを生成し、これをディスプレイ装置 9へ 送出する (ステップ S43)。
これにより、前記ディスプレイ装置 9の表示画面上には、 3次元の擬似的な背骨画 像が表示されることになる。ここで、前記画像処理装置 7は、終了キーが押下された かの判定を行い (ステップ S44)、終了キーが押下された場合には (ステップ S44; YE S)、処理を終了する。
[0051] また、前記画像処理装置 7は、終了キーが押下されたかの判定をし (ステップ S44) 、終了キーが押下されないと判断したときには (ステップ S44 ;NO)、追加表示要求 がある力否かの判定に移る(ステップ S44)。この判定項目は、「全体表示」、「頸椎の みの表示」、「胸椎のみの表示」、「腰椎のみの表示」、「仙椎のみの表示」、「尾椎の みの表示」などである。前記画像処理装置 7は、前記判定項目を判定し (ステップ S4 5)、前記判定項目があったときには (ステップ S45;有り)、その判定項目にしたがつ て表示指示を実行するための処理を行った後に、ステップ S42に戻る。
また、前記画像処理装置 7は、追加表示要求がな力つたときには (ステップ S45 ;な し)、処理を終了する。
[0052] このように生成された背骨の画像は、背面力 表示し左右の曲がり視認する他に、 前後への曲がりが視認できるように左右の側面力 背骨画像を表示し、
矢印キー (→ある 、は )が押下された場合には、所定の方向へ 90度ずつ視点を 移動して表示し、アップキーが押下された場合には、最上部(上部胸椎部分)が表示 されているかの判定を行い、最上部が表示されていた場合には、それ以上の上方は 表示不可能であるためそのまま現在表示されて ヽる部分を表示し、最上部でなかつ た場合には、現在表示されて!ヽる部分の上方部分を表示する処理を画像処理装置 7 が実行する。
また、ダウンキーが押下された場合には、最下部 (仙骨部分)が表示されているかの 判定を行い、最下部が表示されていた場合には、それ以下の下方は表示不可能で あるためそのまま現在表示されている部分を表示し、最下部でな力つた場合には、現 在表示されている部分の下方部分を表示する処理を前記画像処理装置 7が実行す る。
[0053] すなわち、本発明の人体背骨測定表示システム 1を利用して背骨の曲がり状態を 測定表示するには、患者 (測定対象者)の男女の別および身長が必要であり、また、 治療前の状態 (首、肩、背中、腰等の症状)を、問診ゃ予診票の記入によって得る。 そして、上記したように背骨の状態を測定し、 3次元コンピュータグラフィックによりデ イスプレイ装置 9の表示画面上に表示する。
表示された背骨の画像を見せながら、患者 (測定対象者)に説明を行い、正常な状 態に比して曲がった部分の背骨に対して施術を行う。
[0054] 施術が終わると、再度背骨の状態を測定し、 3次元コンピュータグラフィックにより擬 似的な背骨をディスプレイ装置 9の表示画面上に表示する。
そして、施術前と施術後の背骨の状態の画像データを前記画像処理装置 7からデ イスプレイ装置 9に与えることにより、前記ディスプレイ装置 9の表示画面に表示され た画像、あるいはプリント出力された画像により、見比べることができる。
このように施術前、施術後の背骨の曲がり状態を擬似的な背骨画像によって表示 することにより、施術者、あるいは患者 (測定対象者)の両者とも容易に背骨の曲がり 状態を知ることができる。
[0055] 以上説明したように、本発明の人体背骨測定表示システムによると、俯せに横たわ る測定対象者の背骨上を表面から測定子を走査させる簡便な方法で背骨がどの様 な状態で曲がっているかを擬似的に作成した 3次元画像で視認することができる。 これにより、施術者は、施術前と施術後で背骨の曲がり具合がどの位であるか画像 を説明することにより容易に行えるようになると 、つた利点がある。
また、測定対象者である患者は、専門的な医学用語ではなぐ実際と同様の背骨の 状態を画像として視認できるため、自己の背骨のどの部分がどの様に、どちらに曲が つて!/、るか容易に理解することができるようになる。
[0056] なお、上記実施の形態では、測定子を逆 T字型として説明したが、背骨上を走査で きるものであればその形状は特に限定しな 、。
また、上記実施の形態では、測定対象者の椎骨を画像とするために、基本図デー タと椎骨テーブル力 該当するデータを読み出して椎骨の画像を生成するものとして 説明したが、測定対象者の身長 '性別に対応した椎骨画像をデータベースとして設 けてもよぐ各測定対象者の椎骨が表示できれば、椎骨を画像化するデータの形式 や記憶方法は特に限定しな 、。
なお、上記実施の形態では、 3次元のコンピュータグラフィックにより背骨画像を表 示し、 90度ずつ視点を移動させて説明したが、 45度でも良ぐ視点の移動範囲は特 に限定しない。
[0057] 図 16は、本発明に係る人体背骨測定表示システムの背骨測定装置の測定子によ る回旋 (捩じり)角度 Θの測定機構の他の構成例を示した図である。
この図 16に示す回旋 (捩じり)角度 Θの測定機構は、測定子 31の固定片 31cを垂 直支持アーム 36の末端に回転軸 31dで回動可能に固定している力 この回転軸 31 d付近に角度検出器を取り付けることができないときの構造を提供するものである。
[0058] すなわち、本発明の実施の形態における回旋 (捩じり)角度 Θの他の測定機構は、 前記測定子 31の回転軸 31dにはタイミングプーリ 31eが固定されており、前記回転 軸 31dの回転をタイミングプーリ 31eに伝達できるようになつている。また、本発明の 実施の形態における回旋 (捩じり)角度 Θの他の測定機構は、この前記垂直支持ァ ーム 36の上部に角度検出器 39を固定し、この角度検出器 39の回転軸にタイミング プーリ 39aを固定し、タイミングプーリ 39aの回動量を角度検出器 39に伝達できるよう になっている。そして、本発明の実施の形態における回旋 (捩じり)角度 Θの他の測 定機構は、前記タイミングプーリ 31eと、タイミングプーリ 39aとの間にタイミングベルト 39bをかけ渡し、前記測定子 31の把持片 31a, 31bの固定片 31cの回転量を、タイミ ングプーリ 3 le ·タイミングベルト 39b ·タイミングプーリ 39aを介して角度検出器 39に 伝達できるようになって!/、る。
このような構造を採用することにより、測定子 31回りに角度検出器を取り付けられな いときにも、測定子 31による回旋 (捩じり)角度を測定可能にできるものである。なお、 本発明の実施の形態は、うつぶせ型の測定装置として説明したが、これは、直立型 あるいは座型等の測定装置にも適用可能である。
[0059] 図 17は、本発明に係る人体背骨測定表示システムにおいて、図 1に示す背骨測定 装置の機構部の側面図である。図 18は、本発明に係る人体背骨測定表示システム にお 、て、図 1に示す背骨測定装置の機構部の平面図である。
これら図 17および図 18において、前記背骨測定装置 3については、既に説明した 力 再度説明すると、前記背骨測定装置 3は、測定対象者が俯せた状態で寝る測定 ベッド 32と、この測定ベット 32の一方の側面側に固定され垂設された基台 33と、この 基台 33に対して図面左右方向(X方向)に移動可能に固定されている測定方向支持 アーム 34と、この測定方向支持アーム 34に固定されていて図面垂直方向(Y軸方向 )に移動可能にされている平行支持アーム 35と、この平行支持アーム 35に固定され ていて図面上下方向(Z軸方向)移動可能にされている垂直支持アーム 36と、この垂 直支持アーム 36の先端に回動可能に固定されている測定子 31とからなる機構部を 備えたものである。また、前記基台 33の下部には、図 17および図 18に示すように、 転倒防止部材 33aが測定方向支持アーム 34と同一方向に延設されている。
[0060] 前記測定方向支持アーム 34は、前記基台 33に固定されるレールおよびこのレー ル上を移動可能に固定されるスライダー力 なる移動機構 34aと、前記平行支持ァ ーム 35を取り付け固定する取付座 34bと、前記移動機構 34aのスライダーと前記取 付座 34bとの間に介装され前記取付座 34bを垂直面内に回動可能とする回動機構 3 4cとを備えている。なお、回動機構 34cは、前記移動機構 34aのスライダーと前記取 付座 34bとの間に介装され前記取付座 34bを垂直面内に回動可能とするような機構 であってもよい。
また、回動機構 34cには、前記取付座 34bが測定可能位置にあるときに前記取付 座 34bが当該位置で固定されるようにする自動ロック機構と、前記取付座 34bを回動 させるときに自動ロック機構を解除する解除機構も備えて ヽる。
[0061] 図 19および図 20は、本発明に係る人体背骨測定表示システムにおいて、前記測 定方向支持アームが垂直面内で回転する実施例を示した図である。
図 19に示す測定方向支持アーム 34は、前記取付座 34bが上方向に回動するよう に構成した例である。これによつて、前記取付座 34b等が邪魔にならず、被測定者は ベットに臥せるのが簡単になる。
図 20に示す測定方向支持アーム 34は、前記取付座 34bが上方向に回動するよう に構成した例である。これによつて、前記取付座 34b等が邪魔にならず、被測定者は ベットに臥せるのが簡単になる。
[0062] 図 21ないし図 24は、本発明に係る人体背骨測定表示システムにおいて、前記測 定方向支持アームが水平面内で回転する実施例を示した図である。
図 21に示す測定方向支持アーム 34は、前記取付座 34bが右方向に水平面内で 9 0 [度]の角度まで回動するように構成した例である。これによつて、前記取付座 34b 等が邪魔にならず、被測定者はベットに臥せるのが簡単になる。
図 22に示す測定方向支持アーム 34は、前記取付座 34bが左方向に水平面内で 9 0 [度]の角度まで回動するように構成した例である。これによつて、前記取付座 34b 等が邪魔にならず、被測定者はベットに臥せるのが簡単になる。
図 23に示す測定方向支持アーム 34は、前記取付座 34bが右方向に水平面内で 1 80 [度]の角度まで回動するように構成した例である。これによつて、前記取付座 34b 等が邪魔にならず、被測定者はベットに臥せるのが簡単になる。
図 24に示す測定方向支持アーム 34は、前記取付座 34bが左方向に水平面内で 1 80 [度]の角度まで回動するように構成した例である。これによつて、前記取付座 34b 等が邪魔にならず、被測定者はベットに臥せるのが簡単になる。
図 25は、本発明に係る人体背骨測定表示システムにおいて、前記測定方向支持 アームが水平面内でスライドする実施例を示した図である。
この図 25において、前記測定方向支持アーム 34は、前記基台 33に固定されるレ ールおよびこのレール上を移動可能に固定されるスライダー力もなる移動機構 34aと 、前記平行支持アーム 35を取り付け固定する取付座 34bと、前記移動機構 34aのス ライダーと前記取付座 34bとの間に介装され前記取付座 34bを水平方向に移動可能 とする水平スライド機構 34dとを少なくとも備えたものである。
この水平スライド機構 34dにより前記取付座 34bを図 25に示すように移動させること によって、前記取付座 34b等が邪魔にならず、被測定者はベットに臥せるのが簡単 になる。
図 26は、本発明に係る人体背骨測定表示システムにお!/、て、前記ベットの移動例 を示す平面図である。図 27は、本発明に係る人体背骨測定表示システムにおいて、 ベット面内でスライドする実施例を示した構成図である。
前記測定ベッド 32は、床上に設置されるベース部 32aと、前記ベース部 32aの上に 固定された固定台 32baおよび前記固定台 32baの上で水平移動可能な移動台 32b bからなる可動機構 32bと、前記可動機構 32bの移動台 32bbの上に固定されたべッ トシート部 32cとから構成されて 、る。
このような構成にしたので、測定ベット 32が、図 26の矢印 X, yに示すように、移動 するので、前記ベットシート部 32cを前記取付座 34b等力 離れたところに移動させ ることができることになり、前記取付座 34b等が邪魔にならず、被測定者はベットに臥 せるのが簡単になる。
図 28は、本発明に係る人体背骨測定表示システムにおいて、測定子の実施例を 示す図であって、図 28 (a)は正面図、図 28 (b)は側面図である。
図 28 (a)および図 28 (b)において、前記測定子 31は、所定の長さに形成され測 定者の第 2手指と第 3手指が力かる把持片 31a, 31bと、これら把持片 31a, 31bの中 央部にて所定の長さに形成された固定片 31cとで略 T字状に形成され、前記固定片 31cの末端を回転軸(図 2参照;符号 31d)を介して垂直支持アーム(図 2参照;符号 36)の下端に回動可能に固定されている。
前記把持片 31a, 31bは、背骨に接する側が、所定の弧 (半径 rの円弧)で凹形状 に形成されている。また、前記把持片 31aは、図 28 (b)に示すように、その断面が三 角形状に形成されている。前記把持片 31bも、図示しないが、同様である。
さらに、前記固定片 31cは、図 28 (b)に示すように、前記把持片 31a, 31bの近くで 前記把持片 31a, 31bを含む水平面に対して直角の面内であってかつ前記把持片 3 la, 31bの軸方向に対しても直角の方向に所定の角度 (角度 Θ )に曲げて形成され ている。
このような形状にしたので、測定者は、測定子 31の使用勝手がよくなる。
図 29は、本発明に係る人体背骨測定表示システムにおいて、測定子の実施例を 示す図であって、図 29 (a)は正面図、図 29 (b)は側面図である。
図 29 (a)および図 29 (b)において、前記測定子 31は、把持片 31a, 31bと、前記 固定片 31cとで略 T字状に形成されている点は、図 28に示す実施例と同一である。 そして、前記把持片 31a, 31bは、背骨に接する側が、所定の弧(半径 rの円弧)で 凹形状に形成されている。また、前記把持片 31aは、図 29 (b)に示すように、その断 面が円形状に形成されている。前記把持片 31bも、図示しないが、同様の断面であ る。
さらに、前記固定片 31cは、図 29 (b)に示すように、前記把持片 31a, 31bの近くで 前記把持片 31a, 31bを含む水平面に対して直角の面内であってかつ前記把持片 3 la, 31bの軸方向に対しても直角の方向に所定の角度 (角度 Θ )に曲げて形成され ている点も図 28に示す実施例と同一である。
このような形状にしたので、測定者は、測定子 31の使用勝手がよくなる。
[0065] 図 30は、本発明に係る人体背骨測定表示システムにお!/、て、測定子の実施例を 示す図であって、図 30 (a)は正面図、図 30 (b)は側面図である。
図 30 (a)および図 30 (b)において、前記測定子 31は、把持片 31a, 31bと、前記 固定片 31cとで略 T字状に形成されている点は、図 28に示す実施例と同一である。 そして、前記把持片 31a, 31bは、背骨に接する側が、所定の弧(半径 rの円弧)で 凹形状に形成されている。また、前記把持片 31aは、図 30 (b)に示すように、その断 面が長楕円形状に形成されている。前記把持片 31bも、図示しないが、長楕円形状 に形成されている。
さらに、前記固定片 31cは、図 30 (b)に示すように、直線状に形成されている点が、 図 28に示す実施例と異なる。
このような形状にしたので、測定者は、測定子 31の使用勝手がよくなる。
[0066] 図 31は、本発明に係る人体背骨測定表示システムにおいて、測定子の実施例を 示す図であって、図 31 (a)は正面図、図 31 (b)は側面図である。
図 31 (a)および図 31において、前記測定子 31は、把持片 31a, 31bと、図 31 (a) に示すように、前記固定片 31cとで略 T字状に形成されている点は、図 28に示す実 施例と同一である。
そして、前記把持片 31a, 31bは、図 31 (a)からもわ力るように、背骨に接する側が 平に形成されている。さらに、前記把持片 31a, 31bは、図 31 (b)に示すように、その 断面が円形状に形成されて!ヽる。
さらに、前記固定片 31cは、図 31 (b)に示すように、前記把持片 31a, 31bの近くで 前記把持片 31a, 31bを含む水平面に対して直角の面内であってかつ前記把持片 3 la, 31bの軸方向に対しても直角の方向に所定の角度 (角度 Θ )に曲げて形成され ている点も図 28に示す実施例と同一である。
このような形状にしたので、測定者は、測定子 31の使用勝手がよくなる。
[0067] 図 32は、本発明に係る人体背骨測定表示システムにお!/、て、測定子の実施例を 示す図であって、図 32 (a)は正面図、図 32 (b)は側面図である。
図 32において、前記測定子 31は、図 32 (a)に示すように、所定の長さに形成され 測定者の第 2手指と第 3手指が力かる把持片 31a, 31bと、これら把持片 31a, 31bの 中央部にて前記把持片の両側にわたって所定の長さに形成された固定片 31cとで 略十字状に形成されいる点が図 28に示す実施例と異なるところである。
また、前記把持片 31a, 31bは、図 32 (a)からわ力るように、その一方の断面積が他 方の断面より大きく形成してものである。
このような形状にしたので、測定者は、測定子 31の使用勝手がよくなる。
[0068] 図 33は、本発明に係る人体背骨測定表示システムにお!/、て、測定子の実施例を 示す図であって、図 33 (a)は正面図、図 33 (b)は側面図である。
図 33 (a)および図 33 (b)において、前記測定子 31は、所定の長さに形成され測定 者の第 2手指と第 3手指が力かる把持片 31a, 31bと、これら把持片 31a, 31bの中央 部にて所定の長さに形成された固定片 31cとで略十字状に形成され、前記固定片 3 lcの末端を回転軸を介して垂直支持アームの下端に回動可能に固定したものであ る。
前記固定片 31cは、図 33 (b)に示すように、前記把持片 31a, 31bの下側において 前記把持片 31a, 31bを含む水平面に対して直角の面内であってかつ前記把持片 3 la, 31bの軸方向に対しても直角の方向に所定の角度( 0 )に曲げられているもので ある。
また、前記把持片 31a, 31bは、図 33 (a)からもわ力るように、その一方の断面積が 他方の断面より大きく形成したものてある。
このような形状にしたので、測定者は、測定子 31の使用勝手がよくなる。

Claims

請求の範囲
[1] 測定対象者の背骨の長手方向 (X軸方向)、幅方向 (Y軸方向)、厚み方向 (Z軸方向 )、回旋方向 (X軸を中心とした捩れ角 Θ )に自在に移動する走査アーム先端に設け られた測定子を、測定者の第 2手指と第 3手指の間に挟んで測定対象者の背骨の第 1頸椎位置または第 1胸椎位置から仙骨位置までこれらの手指先端を沿わせた状態 で前記手指先端の 3次元移動させることにより、前記 X、 Υ、 Ζ、 Θ方向の基準位置か らの乖離量を検出して乖離量測定データとして出力する背骨測定装置と、
前記測定対象者の性別、身長データを入力するための入力装置と、
前記測定機構からの乖離量測定データを取り込むとともに、前記入力装置からの 前記測定対象者の性別、身長データを取り込み、その乖離量測定データおよび前 記測定対象者の性別、身長データを基に測定対象者の 3次元背骨画像を生成し表 示装置に与える画像処理装置とを備え、
前記画像処理装置は、
前記測定機構力 取り込んだ X軸方向、 Υ軸方向、 Ζ軸方向、 Θ方向の乖離量測 定データを取り込み所定の変換データに変換して変換データ記憶手段に記憶させる 変換手段と、
人体の背骨を構成する各椎骨に関し、測定対象者の性別および身長による平均的 大きさおよびその基本的形状が記憶された基本図データベースと、
前記入力装置により入力された測定対象者の性別、身長データに応じて、前記基 本図データベースから当該性別、身長データに対応する各椎骨を選択して取り出し 椎骨テーブルに格納するデータ選択手段と、
前記推骨テーブルで格納された各椎骨の大きさ、形状に基づいて、基本となる背 骨全体の画像を生成する合成手段と、
前記合成手段により生成された背骨全体の画像と前記変換データ記憶手段に記 憶された変換データとを基に、各椎骨の X方向、 Υ方向、 Ζ方向、 Θ方向の座標位置 に測定対象者の 3次元背骨画像を生成する画像データ生成手段と、
力もなることを特徴とする人体背骨測定表示システム。
[2] 前記画像処理装置は、所定の指示に基づ!、て、前記測定対象者の 3次元背骨画像 を、所定の方向に移動あるいは所定角度回転させて表示可能な表示データに生成 して出力可能にしてなるものであることを特徴とする請求項 1記載の人体背骨測定表 示システム。
[3] 前記背骨測定装置は、測定対象者が俯せた状態で寝る測定ベッドと、この測定べッ トの一方の側面側に設けられた基台と、この基台に対して測定ベットの長手方向であ る測定方向に移動可能に固定されている測定方向支持アームと、この測定方向支持 アームに固定されて 、て前記測定方向に対して直角方向に移動可能にされて 、る 平行支持アームと、この平行支持アームに固定されていて上下方向移動可能にされ て 、る垂直支持アームと、この垂直支持アームの先端に回動可能に固定されて!、る 測定子とからなる機構部を少なくとも備えことを特徴とする請求項 1記載の人体背骨 測定表示システム。
[4] 前記測定方向支持アームは、前記基台に固定されるレールおよびこのレール上を移 動可能に固定されるスライダー力 なる移動機構と、前記平行支持アームを取り付け 固定する取付座と、前記移動機構のスライダーと前記取付座との間に介装され前記 取付座を垂直面内に回動可能とする回転機構とを少なくとも備えたことを特徴とする 請求項 3記載の人体背骨測定表示システム。
[5] 前記測定方向支持アームは、前記基台に固定されるレールおよびこのレール上を移 動可能に固定されるスライダー力 なる移動機構と、前記平行支持アームを取り付け 固定する取付座と、前記移動機構のスライダーと前記固定部との間に介装され前記 取付座を水平面内に回動可能とする回動機構とを少なくとも備えたことを特徴とする 請求項 3記載の人体背骨測定表示システム。
[6] 前記測定方向支持アームは、前記基台に固定されるレールおよびこのレール上を移 動可能に固定されるスライダー力 なる移動機構と、前記平行支持アームを取り付け 固定する取付座と、前記移動機構のスライダーと前記取付座との間に介装され前記 取付座を水平方向に移動可能とする水平スライド機構とを少なくとも備えたことを特 徴とする請求項 3記載の人体背骨測定表示システム。
[7] 前記測定ベッドは、床上に設置されるベース部と、前記ベース部上に固定された固 定台および前記固定台の上で水平移動可能な移動台からなる可動機構と、前記可 動機構の移動台上に固定されたベットシート部とから構成されたことを特徴とする請 求項 3記載の人体背骨測定表示システム。
[8] 前記測定子は、所定の長さに形成され測定者の第 2手指と第 3手指がかかる把持片 と、これら把持片の中央部にて所定の長さに形成された固定片とで略 T字状に形成 され、前記固定片の末端を回転軸を介して垂直支持アームの下端に回動可能に固 定されてなり、
前記把持片は背骨に接する側が、所定の弧で凹形状に、または、平面形状に形成 されていることを特徴とする請求項 1記載の人体背骨測定表示システム。
[9] 前記測定子は、所定の長さに形成され測定者の第 2手指と第 3手指がかかる把持片 と、これら把持片の中央部にて所定の長さに形成された固定片とで略 T字状に形成 され、前記固定片の末端を回転軸を介して垂直支持アームの下端に回動可能に固 定されてなり、
前記固定片は、前記把持片の近くで前記把持片を含む水平面に対して直角の面 内であってかつ前記把持片の軸方向に対しても直角の方向に所定の角度に曲げら れていることを特徴とする請求項 1記載の人体背骨測定表示システム。
[10] 前記測定子は、所定の長さに形成され測定者の第 2手指と第 3手指がかかる把持片 と、これら把持片の中央部にて前記把持片の両側にわたって所定の長さに形成され た固定片とで略十字状に形成され、前記固定片の一方の末端を回転軸を介して垂 直支持アームの下端に回動可能に固定されてなり、
前記固定片は、直線状あるいは前記把持片の近くで前記把持片を含む水平面に 対して直角の面内であってかつ前記把持片の軸方向に対しても直角の方向に所定 の角度に曲げられていることを特徴とする請求項 1記載の人体背骨測定表示システ ム。
[11] 前記把持片は、その断面が三角形状、円形状または楕円形状をしたものであること を特徴とする請求項 10記載の人体背骨測定表示システム。
[12] 前記把持片は、その一方の断面積が他方の断面より大きく形成してなることを特徴と する請求項 10記載の人体背骨測定表示システム。
PCT/JP2005/019683 2004-11-01 2005-10-26 人体背骨測定表示システム WO2006049057A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020077009795A KR101199605B1 (ko) 2004-11-01 2005-10-26 인체 등뼈 측정 표시 시스템
US11/718,368 US7883477B2 (en) 2004-11-01 2005-10-26 Human body backbone measuring/displaying system
JP2006543205A JP4597139B2 (ja) 2004-11-01 2005-10-26 人体背骨測定表示システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-317640 2004-11-01
JP2004317640 2004-11-01

Publications (1)

Publication Number Publication Date
WO2006049057A1 true WO2006049057A1 (ja) 2006-05-11

Family

ID=36319069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019683 WO2006049057A1 (ja) 2004-11-01 2005-10-26 人体背骨測定表示システム

Country Status (5)

Country Link
US (1) US7883477B2 (ja)
JP (1) JP4597139B2 (ja)
KR (1) KR101199605B1 (ja)
TW (1) TW200624086A (ja)
WO (1) WO2006049057A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010214098A (ja) * 2009-02-23 2010-09-30 Kochi Univ Of Technology 椎間板負荷の測定装置および測定方法
JP2015181614A (ja) * 2014-03-20 2015-10-22 二郎 平井 変形特定方法及びその関連技術
US20200214639A1 (en) * 2017-07-04 2020-07-09 Universite De Poitiers Medical device for applying pressure to a human joint segment, corresponding system, associated method and uses

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8549888B2 (en) 2008-04-04 2013-10-08 Nuvasive, Inc. System and device for designing and forming a surgical implant
KR101209004B1 (ko) * 2010-06-28 2012-12-07 주식회사 세라젬 인체 스캔 기능을 갖는 온열치료기 및 이를 이용한 인체 스캔방법
US8721566B2 (en) * 2010-11-12 2014-05-13 Robert A. Connor Spinal motion measurement device
US11207132B2 (en) 2012-03-12 2021-12-28 Nuvasive, Inc. Systems and methods for performing spinal surgery
US9848922B2 (en) 2013-10-09 2017-12-26 Nuvasive, Inc. Systems and methods for performing spine surgery
US10433893B1 (en) 2014-10-17 2019-10-08 Nuvasive, Inc. Systems and methods for performing spine surgery
CN109171664A (zh) * 2018-11-07 2019-01-11 北京活力正合智能科技有限公司 一种脊柱侧弯观测仪
CN110742614B (zh) * 2019-09-26 2023-05-16 南京林业大学 一种卧姿脊柱形态测试仪
CN111772584B (zh) * 2020-07-08 2022-08-09 莆田学院附属医院(莆田市第二医院) 一种智能脊柱数字化手术装置
CN112274137B (zh) * 2020-10-20 2022-03-11 沈钰 一种用于脊柱影像学评估的角度测量工具
KR102330544B1 (ko) * 2021-04-05 2021-11-23 신준식 추나 요법 치료 전후의 비교자세를 보여주는 자세 비교장치 및 그 방법
KR102340875B1 (ko) * 2021-04-27 2021-12-16 신준식 추나 요법의 시술이 가능한 정형용 교정장치 및 이를 이용한 추나 요법 시술방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067325A (ja) * 1991-09-24 1994-01-18 Henry Graf 椎骨の振幅を測定するための装置
JP3037703U (ja) * 1996-11-12 1997-05-20 ロフテー株式会社 頸椎弧測定器
WO2003017839A1 (fr) * 2001-08-27 2003-03-06 Nihon University Systeme de mesure et d'affichage de la colonne vertebrale d'un etre humain
US6539328B1 (en) * 1999-04-30 2003-03-25 Sigma Instruments, Inc. Device and process for measurement and treatment of spinal mobility

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US889224A (en) * 1907-11-25 1908-06-02 Margaret B Fowler Curvature-gage.
US1234527A (en) * 1916-12-26 1917-07-24 Edward C Berriman Device for indicating the outline of the back.
US1271461A (en) * 1917-03-20 1918-07-02 Henry O Hanna Vertegraph.
US1571140A (en) * 1925-06-01 1926-01-26 O'connor Michael Florance Neurovertameter
US2162916A (en) * 1935-10-07 1939-06-20 Daniel F Hyland Orthopedics
US2111648A (en) * 1936-10-19 1938-03-22 Joseph C Stone Posture measuring device
CA1148733A (en) * 1981-05-08 1983-06-28 Queen's University At Kingston Scoliosis inclinometer
US4425713A (en) * 1982-08-25 1984-01-17 Rotella Sam S Postureometer
US5101835A (en) * 1990-08-27 1992-04-07 Delre Lawrence Method and apparatus for testing a spine
US5533084A (en) * 1991-02-13 1996-07-02 Lunar Corporation Bone densitometer with improved vertebral characterization
US5156162A (en) * 1991-08-29 1992-10-20 Gerhardt John J Scoliosis measurement instrument with midline leg member
US6468233B2 (en) * 2000-06-26 2002-10-22 Gerry Cook Posture analyzer
US6524260B2 (en) * 2001-03-19 2003-02-25 Ortho Scan Technologies Inc. Contour mapping system and method particularly useful as a spine analyzer and probe therefor
US6500131B2 (en) * 2001-03-19 2002-12-31 Orthoscan Technologies, Inc. Contour mapping system applicable as a spine analyzer, and probe useful therein
US20030220590A1 (en) * 2002-05-22 2003-11-27 Csonka Paul Janos Electro-mechanical assembly for measurements of spine curvatures
JP2004261482A (ja) * 2003-03-04 2004-09-24 Univ Nihon 人体背骨測定表示システム
JP4474137B2 (ja) * 2003-09-05 2010-06-02 キヤノン株式会社 情報処理装置、情報処理方法、その記録媒体およびプログラム
US20050148839A1 (en) * 2003-12-10 2005-07-07 Adi Shechtman Method for non-invasive measurement of spinal deformity
US7131952B1 (en) * 2004-07-15 2006-11-07 Dickholtz Sr Marshall Method and apparatus for measuring spinal distortions
US20070242869A1 (en) * 2006-04-12 2007-10-18 Eastman Kodak Company Processing and measuring the spine in radiographs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067325A (ja) * 1991-09-24 1994-01-18 Henry Graf 椎骨の振幅を測定するための装置
JP3037703U (ja) * 1996-11-12 1997-05-20 ロフテー株式会社 頸椎弧測定器
US6539328B1 (en) * 1999-04-30 2003-03-25 Sigma Instruments, Inc. Device and process for measurement and treatment of spinal mobility
WO2003017839A1 (fr) * 2001-08-27 2003-03-06 Nihon University Systeme de mesure et d'affichage de la colonne vertebrale d'un etre humain

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010214098A (ja) * 2009-02-23 2010-09-30 Kochi Univ Of Technology 椎間板負荷の測定装置および測定方法
JP2015181614A (ja) * 2014-03-20 2015-10-22 二郎 平井 変形特定方法及びその関連技術
US20200214639A1 (en) * 2017-07-04 2020-07-09 Universite De Poitiers Medical device for applying pressure to a human joint segment, corresponding system, associated method and uses

Also Published As

Publication number Publication date
US7883477B2 (en) 2011-02-08
JPWO2006049057A1 (ja) 2008-08-07
JP4597139B2 (ja) 2010-12-15
TW200624086A (en) 2006-07-16
KR101199605B1 (ko) 2012-11-08
US20080208080A1 (en) 2008-08-28
KR20070083863A (ko) 2007-08-24

Similar Documents

Publication Publication Date Title
JP4597139B2 (ja) 人体背骨測定表示システム
JP6132354B2 (ja) 脊椎側弯症の評価システムおよび同システムに適用される評価用器具
EP2296545B1 (en) Systems for performing surface electromyography
JP4451817B2 (ja) 歯科技術評価システム
Youdas et al. Reliability of measurements of lumbar spine sagittal mobility obtained with the flexible curve
KR101033198B1 (ko) 학생 건강 체력 평가 시스템용 일체형 측정 장치
JP4120825B2 (ja) 人体背骨測定表示システム
Poncet et al. Clinical impact of optical imaging with 3-D reconstruction of torso topography in common anterior chest wall anomalies
CN110059670B (zh) 人体头面部、肢体活动角度及体姿非接触测量方法及设备
Law et al. Measurement of cervical range of motion (CROM) by electronic CROM goniometer: a test of reliability and validity
Roy et al. A noninvasive 3D body scanner and software tool towards analysis of scoliosis
Lee et al. Analysis of sagittal profile of spine using 3D ultrasound imaging: A phantom study and preliminary subject test
KR101309013B1 (ko) 안면 영상과 엑스레이 영상을 이용한 형상진단기
CN114092447B (zh) 一种基于人体三维图像测量脊柱侧弯的方法、装置和设备
Biviá-Roig et al. Biomechanical analysis of breastfeeding positions and their effects on lumbopelvic curvatures and lumbar muscle responses
Xi et al. Lumbar segment-dependent soft tissue artifacts of skin markers during in vivo weight-bearing forward–Backward bending
RU2732958C1 (ru) Способ оценки статики позвоночника
KR20170004514A (ko) 척추 측만증 분석시스템
RU2809449C1 (ru) Способ скрининг-диагностики состояния позвоночника у детей и подростков
JP6738506B1 (ja) 背部画像の読影支援装置、読影支援方法、及びプログラム
Zsidai et al. Ultrasound based measuring-diagnostic and muscle activity measuring system for spinal analysis
Cheriet et al. 3D digitizing device applied in evaluation and simulation of postoperative trunk surface shape in adolescent idiopathic scoliosis
JP2004261482A (ja) 人体背骨測定表示システム
JP2023020753A (ja) 肩甲骨位置算出装置及び肩甲骨位置算出方法
Kutchak et al. Clinical Study Validity and Reproducibility of the Measurements Obtained Using the Flexicurve Instrument to Evaluate the Angles of Thoracic and Lumbar Curvatures of the Spine in the Sagittal Plane

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006543205

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077009795

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05799454

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11718368

Country of ref document: US