WO2006046606A1 - 溶鉄の製造方法およびその製造装置 - Google Patents

溶鉄の製造方法およびその製造装置 Download PDF

Info

Publication number
WO2006046606A1
WO2006046606A1 PCT/JP2005/019701 JP2005019701W WO2006046606A1 WO 2006046606 A1 WO2006046606 A1 WO 2006046606A1 JP 2005019701 W JP2005019701 W JP 2005019701W WO 2006046606 A1 WO2006046606 A1 WO 2006046606A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
melting furnace
furnace
charging
solid reduced
Prior art date
Application number
PCT/JP2005/019701
Other languages
English (en)
French (fr)
Inventor
Hidetoshi Tanaka
Tsuyoshi Mimura
Takao Harada
Kiminori Hajika
Tadashi Yaso
Toshiyuki Kurakake
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to MX2007005031A priority Critical patent/MX2007005031A/es
Priority to RU2007119767/02A priority patent/RU2007119767A/ru
Priority to US11/666,830 priority patent/US20070295165A1/en
Priority to AU2005297906A priority patent/AU2005297906A1/en
Priority to CA002584600A priority patent/CA2584600A1/en
Priority to EP05805211A priority patent/EP1808498A4/en
Priority to BRPI0517252-7A priority patent/BRPI0517252A/pt
Publication of WO2006046606A1 publication Critical patent/WO2006046606A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0066Preliminary conditioning of the solid carbonaceous reductant
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0086Conditioning, transformation of reduced iron ores
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/10Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
    • C21B13/105Rotary hearth-type furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • C21B13/143Injection of partially reduced ore into a molten bath
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/44Removing particles, e.g. by scrubbing, dedusting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/66Heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for producing molten iron and a production apparatus therefor, and more specifically, in the molten iron production process comprising a combination of a moving hearth type reduction furnace and an iron bath type melting furnace, oxidation of iron ore and the like.
  • the present invention relates to an improved method by which an iron source can be heated and reduced together with a carbonaceous reducing agent such as coal to efficiently produce molten iron having a high iron content purity.
  • the present inventors are in a molten iron production process in which a rotary hearth furnace (moving hearth type reducing furnace) and a melting furnace (iron bath type melting furnace) are connected! / After heating and reducing the compact containing iron oxide and carbonaceous reducing agent in a rotary hearth furnace to solid reduced iron with a metalization rate of 60% or more, this solid reduced iron is sent to the melting furnace, Developed a method for producing molten iron that melts the solid reduced iron to obtain molten iron while controlling the secondary combustion rate in the melting furnace to 40% or less by burning the carbonaceous material supplied as fuel with oxygen did. It was suggested that a part or all of the carbon material supplied as fuel to the melting furnace can be supplied as a floor carbon material on the hearth of the rotary hearth furnace (see Patent Document 1).
  • the present applicant supplies a raw material containing an iron oxide-containing substance and a carbonaceous reductant after laying a granular carbon for adjusting the atmosphere on the hearth of a rotary hearth furnace.
  • the floor carbonaceous material discharged from the rotary hearth furnace is recycled and used in the rotary hearth furnace.
  • Patent Document 2 proposes a method to prevent the carbonaceous material from solidifying in a rice cracker shape.
  • the above process does not have a melting furnace, and is a process for producing metallic iron using only a rotary hearth furnace.
  • the physical and chemical properties required for flooring charcoal and the recycling conditions Are not directly applicable to the molten iron production process in which the rotary hearth furnace and melting furnace described in Patent Document 1 are connected.
  • the present invention provides a more stable process for the moving hearth type reducing furnace and the iron bath type melting furnace in the molten iron production process that combines the moving hearth type reducing furnace and the iron bath type melting furnace.
  • An object of the present invention is to provide a molten iron production method and a suitable molten iron production apparatus capable of further reducing the fuel consumption rate.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-176170 (Claims, [0039] to [0042])
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-213312 (Claims, FIG. 1, etc.)
  • the method for producing molten iron according to the present invention is a method for producing molten iron using a molten iron production process comprising a combination of a moving hearth type reducing furnace and an iron bath type melting furnace, comprising the following (1) to ( It is characterized by having the process of 4).
  • the hearth is moved in the moving hearth reducing furnace to heat and reduce the carbonaceous material agglomerated material to form solid reduced iron, and the floor charcoal is heated to dry distillation to obtain Reduction process
  • the hearth is more reliably protected by using the floor charcoal material, and troubles such as hearth peeling are avoided, so that the continuous operation of the moving hearth type reduction furnace can be continued for a longer period of time. Is possible.
  • the devolatilized cheat does not contain volatile components, refractory damage due to combustion of volatile components in the iron bath melting furnace is prevented, and the refractory life of the iron bath melting furnace is extended.
  • the use of bedding charcoal prevents reoxidation of solid reduced iron in the moving hearth type reduction furnace, achieving a high metallization rate of, for example, 92% or more, and iron bath melting. Charcoal consumption in the furnace is greatly reduced.
  • FIG. 1 is a flow diagram of a molten iron production process showing an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a state near the hearth of a rotary hearth furnace.
  • FIG. 3 is a graph showing the relationship between the thickness of the floor covering charcoal and the metallization rate of solid reduced iron.
  • FIG. 4 is a graph showing the relationship between carbon content and crushing strength of solid reduced iron.
  • FIG. 5 is a flowchart showing one embodiment of a batch charging method according to the present invention.
  • FIG. 6 is a cross-sectional view for explaining the state of gas flow in the iron bath melting furnace according to the present invention, where (a) is a basic structure and (b) is an example in which baffle plates are installed.
  • FIG. 7 is a cross-sectional view for explaining the state of gas flow in the iron bath melting furnace according to the present invention, (a) is an example in which a guide plate is installed, and (b) is an example in which a guide duct is installed. .
  • FIG. 8 is a graph showing the particle size distribution of solid particles.
  • FIG. 9 is a graph showing the relationship between the oxygen gas blowing rate and the solid particle dissipation rate.
  • FIG. 1 is a flow chart of a molten iron production process showing an embodiment of the present invention.
  • This molten iron production process includes a rotary hearth furnace 14 as a moving hearth type reduction furnace and an iron bath type melting furnace 16. Concatenated.
  • the iron ore a as the iron oxide source and the coal b as the carbonaceous reducing agent are separately pulverized as necessary to form powders each having a particle size of less than about 1 mm.
  • the resulting powdered iron ore A as the powdered iron oxide source and powdered coal B as the powdered carbonaceous reductant are blended at a predetermined ratio, and an appropriate amount of binder and an appropriate amount of water are added as necessary.
  • auxiliary raw material I added as an additive in the iron bath type melting furnace 16 may be added here
  • the granulator 11 is granulated to a particle size of about 6 to 20mm and the interior of the carbonaceous material Charcoal interior pellets D as agglomerated material. If the volatile content of coal (carbonaceous reductant) b is too high, the carbonaceous material-containing pellet D will explode when heated in the rotary hearth furnace 14, so it is about 30% by mass or less. It is desirable to do.
  • This charcoal-containing pellet D is preferably dried with a dryer 13 until the water content is about 1 mass% or less in order to prevent bursting in the rotary hearth furnace 14. (Refer to the claims of JP-A-1-193423).
  • coal is charged as a floor covering carbonaceous material E on the hearth 32 of the rotary hearth furnace 14 so as to have a predetermined thickness. Place the carbonized material pellet P on material E to a thickness of 2 layers or less.
  • the floor covering carbon material E onto the hearth 32 for example, the floor covering carbon material E from the intermediate hot bar provided on the rotary hearth 14 is used. It is possible to use a means of quantitatively cutting out, supplying to the hearth 32 through a charging pipe, and dispersing this in the width direction of the hearth 32 with a dispersing screw. And, as means (raw material charging means) for placing the charcoal interior pellets D on the floor covering charcoal material E, the above-mentioned floor covering charging means provided on the downstream side in the moving direction of the hearth 32 is described above. A means comprising an intermediate hot bar, a charging pipe, and a dispersion screw having the same configuration as the floor covering charging means can be used (see Japanese Patent Laid-Open No. 11-279611, FIG. 4).
  • the thickness of the floor carbonaceous material E charged on the hearth 32 is preferably 1 to: LOmm. If it is less than lmm, the thickness of the floor carbonaceous material E is too thin, making it difficult to reliably cover the entire surface of the hearth 32, and the effect of preventing re-oxidation may be insufficient. On the other hand, if it exceeds 10 mm, the effect of heating the carbon material-containing pellet D from the bottom surface through the surface of the hearth 32 is reduced, and the amount of carbon material charged in the iron bath melting furnace 16 is excessive. This is because there is a high risk that the fuel consumption rate will rise. More preferred U wall carbon material E thickness is 2-5mm "3 ⁇ 4.
  • the average particle size of the floor covering carbonaceous material E is preferably 1 to 5 mm. If it is less than lmm, it will be easily scattered when the rotary hearth furnace 14 is charged and when the iron bath melting furnace 16 is charged, so the yield of the carbonaceous material will decrease.
  • Prefer thickness of E It becomes difficult to spread the floor covering carbonaceous material E to a uniform thickness and the gap between the carbonaceous particles becomes large, and the carbonaceous internal pellet D fits into the gap, so the carbonaceous internal pellet This is because it becomes difficult to spread D evenly on the floor carbonaceous material E, and the risk of lowering productivity and metalization rate increases. More preferably, the average particle size of the floor covering carbon material D is 2 to 4 mm.
  • the floor flow charcoal E's Giesera maximum fluidity MF is preferably logMF ⁇ 2. This is because, when the logMF force ⁇ is exceeded, the degree of soft melting of the carbonaceous particles when heated in the rotary hearth furnace 14 becomes excessive, and deposits are easily formed on the hearth 32. More preferred floor charcoal E Giesera maximum fluidity MF is logMF ⁇ 1.
  • the volatile content of the floor covering carbonaceous material E is preferably 10% by mass or more on a dry basis. This is because coal, such as anthracite with low volatile content, has a dense structure, high apparent density, and low volatile content, but it tends to burst and become dusty.
  • the volatile matter of the floor carbonaceous material E is preferably 50% by mass or less, more preferably 40% by mass or less on a dry basis.
  • the volatile matter in the flooring carbonaceous material E is heated in the rotary hearth furnace 14 to be almost completely devolatilized and can be used as fuel gas in the rotary hearth furnace 14, but if there is too much volatile content, the rotary furnace At the initial stage of reduction in the floor furnace 14, more than the required amount of combustible gas is generated from the flooring charcoal, and the combustible gas that cannot be consumed is discharged while remaining in the exhaust gas of the rotary hearth furnace 14. This is because energy efficiency is reduced.
  • the carbonaceous material will become lighter due to the devolatilization of the volatile matter due to heating, and will be scattered when discharged from the rotary hearth furnace 14, reducing the yield of the carbonaceous material. It is to do. Furthermore, it is desirable to dry the floor covering carbonaceous material E before charging it into the rotary hearth furnace 14, but when carbonaceous material with a volatile content of about 50% by mass or more like lignite is dried, it becomes porous. This is because the quality becomes high and it is easy to ignite, making handling difficult.
  • the floor covering charcoal having the preferred volatile content does not have to be a single brand, and two or more types of charcoal with different volatile content may be used as appropriate.
  • Carbon materials to be mixed include those that have been heat-treated in a separate process, such as coat powder and petroleum coatus. May be used.
  • the carbonaceous material-incorporated pellets D and the flooring carbonaceous material E placed in layers on the hearth 32 were heated to an atmospheric temperature of 1 100 to 1450 ° C, more preferably 1250 to 1450 ° C. It passes through the rotary hearth furnace 14 with a residence time of 6 min or more, more preferably 8 min or more.
  • the charcoal-containing pellets D are heated in the rotary hearth furnace 14, and the iron oxide in the charcoal-containing pellets D is reduced and metalized by the carbonaceous reducing agent to become solid reduced iron F.
  • the solid reduced iron F thus obtained has a metallization rate of 92% or more and a carbon content of preferably 10% by mass or less, more preferably 5% by mass or less.
  • the floor carbonaceous material E is heated in the rotary hearth furnace 14 and the volatile components are devolatilized (dry-distilled) to become chi-G. Volatile components that have been devolatilized are combusted in the rotary hearth furnace 14 and are effectively used as fuel.
  • a means (heating means) for heating the above-mentioned charcoal-incorporated pellet D and flooring charcoal E for example, a plurality of panners (not shown) installed on the upper side wall of the rotary hearth furnace 14 are used. Can do.
  • the carbonaceous material-incorporated pellet D dissolves on the hearth 32 when the reduction is completed, and separation of iron and slag components occurs. Since it is difficult to discharge from the rotary hearth furnace 14 as it is melted, it is cooled and solidified in the rotary hearth furnace 14 to discharge the force. In this case, solid reduced iron F is a mixture of granular iron and solid slag. However, it is not preferable from the viewpoint of productivity and energy efficiency of the entire process to cool and solidify the material melted in the rotary hearth furnace 14 again and melt it again in the iron bath melting furnace 16. .
  • the atmospheric temperature during reduction in the rotary hearth furnace 14 is set to 1350 ° C or higher, while improving the productivity in the rotary hearth furnace 14, Before pellet D is melted on the hearth, it is desirable to discharge from rotary hearth furnace 14 and melt in iron bath melting furnace 16.
  • FIG. 2 (b) As shown in Fig. 3, the hearth protection carbon P, which is a fine carbonaceous material that prevents the penetration of the melt between the hearth 3 2 and the flooring carbonaceous material E, or for the hearth protection containing the fine carbonaceous material. It is also effective to provide a layer of charcoal P.
  • the metalization rate of the solid reduced iron F is 92% or more, and the carbon content is preferably 10% by mass.
  • the reason why the content is more preferably 5% by mass or less is as follows.
  • a metalization rate of 92% or more can be easily obtained, and depending on the operating conditions, the reoxidation of solid reduced iron F can be suppressed or prevented. % Metallization rates can be achieved. Therefore, the metalization rate of solid reduced iron F was set to 92% or more. The metallization rate of more preferable solid reduced iron F is 94% or more.
  • the carbon content is preferably 10% by mass or less, more preferably 5% by mass or less. That is, the higher the carbon content in the solid reduced iron F, the more carbon necessary to metallize the iron oxide (such as FeO) remaining in the solid reduced iron F in the iron bath melting furnace 16. In addition, the remaining carbon amount is used for carburizing the molten iron produced by dissolving the solid reduced iron. From the viewpoint of the carbon material consumption in the iron bath melting furnace 16, the higher the carbon content, preferable. However, as shown in Fig.
  • the crushing strength of the solid reduced iron F decreases, and when discharged from the rotary hearth furnace 14 or iron bath melting From the viewpoint of iron yield and carbon yield, the lower the carbon content, the better, since it tends to be pulverized at the time of charging into the furnace and the like, and dust loss increases. Therefore, the upper limit of the carbon content of the solid reduced iron F is within a range in which the crushing strength is not excessively reduced, and the carbon content is as high as possible, preferably 10% by mass or less, more preferably 5% by mass or less. It was.
  • the preferred lower limit for the carbon content of solid reduced iron F is that required to metallize iron oxide (such as FeO) remaining in solid reduced iron F when the metalization rate is 92%. About 5% by mass.
  • the metalization rate and carbon content of such solid reduced iron F are determined by the mixing ratio of the iron ore (iron oxide source) a and coal (carbonaceous reducing agent) b in the carbonaceous material interior pellet D, the bed It can be obtained by appropriately adjusting the thickness and average particle size of the charcoal material E, the atmospheric temperature of the rotary hearth furnace 14, the residence time of the carbonaceous interior pellet D in the rotary hearth furnace 14, and the like.
  • the solid reduced iron F and the chi-g G obtained in this way are taken out of the rotary hearth furnace 14 and remain hot (heated in a high-temperature state) .
  • they are iron bath type without substantial cooling.
  • the melting furnace charging means that are preferably charged intermittently into the melting furnace 16, the following hotspots and containers can be used.
  • the solid reduced iron F and the steel G are taken out together by the discharge screw 101 provided at the outlet of the rotary hearth furnace 14, and the container as a means for containing the reduced iron is obtained.
  • the container 102 When the container 102 is full, switch to another empty container 102 ', close the slide gate valve 103 provided at the top of the full container 102, and then flip the container 102 upside down with a reversing machine (not shown) Then, it is transported onto a hopper 106 as a reduced iron holding means provided on the iron bath melting furnace 16 by a transport vehicle 104 and a crane 105.
  • the slide gate valve 103 is opened, and the solid reduced iron F and the tire G in the container 102 are transferred to the hopper 106 and temporarily held. At least the container 102 and the hopper 106 are refractory to be charged with the solid reduced iron F and the steel G in the iron bath melting furnace 16 as they are heated (in a heated / high temperature state). Then, the sliding gate valve 107 serving as an intermittent cutting means provided at the lower part of the hopper 106 is opened and closed, and the solid reduced iron F and the tire G are intermittently cut out together (without sieving) and charged. Drop into the iron bath melting furnace 16 using gravity via pipe 1 08 (such as The intermittent charging method is called “batch charging method”, and the continuous charging method that is usually performed is called “continuous charging method”.
  • the solid reduced iron F is reoxidized or the chi-G is burned.
  • at least the container 102 and the hopper 106 have a structure that can be purged with an inert gas such as nitrogen gas. It should be noted that it is preferable to insert the solid reduced iron F and Chia G without touching the inner wall of the iron bath melting furnace 16.
  • additional carbon materials such as H (hereinafter referred to as “subsidiary materials and other charges”) are different from solid reduced iron F and steel I Add to the iron bath melting furnace 16 in the system.
  • Solid reduced iron F, Chiaichi G, secondary raw materials, and other charged materials adhere to and accumulate on contact with the inner wall of the iron bath melting furnace 16. It is preferable to insert so as not to contact the inner wall surface.
  • the solid reduced iron F and the chi-g G are intermittently cut out and dropped into the iron bath melting furnace 16 in a short time, so that the fine powder such as chi-g G is scattered into the exhaust gas M. And the yield of charcoal in the entire process can be improved.
  • the chi-g particle which is easily scattered, falls on this descending gas flow, so it overcomes the gas flow generated by the molten metal and yields in the molten metal that is not scattered. It is because it will be added well.
  • the intermittent cutting of solid particles (solid reduced iron F and chain G) (charging into the iron bath type melting furnace 16) is based on the results of Example 2, etc. It is recommended to perform at a frequency of about every 2 to 5 minutes. The reason is as follows. That is, if the charging frequency is increased too much, the solid mass flow rate per unit time will not be sufficiently increased, and the above-mentioned scattering prevention effect will be obtained. Therefore, equipment troubles are likely to occur. On the other hand, if the charging frequency is lowered too much, the above-mentioned scattering prevention effect is saturated, and a large amount of solid reduced iron F and chain G are added at one time. The heat fluctuation in Fig.
  • the temperature of the solid reduced iron F and the steel G when charged into the iron bath melting furnace 16 is preferably 500 to: L 100 ° C in view of the following points.
  • the effect of solid sensible heat recovery is small at temperatures below 500 ° C. V, on the other hand, when it exceeds 1100 ° C, the heat resistance of the discharge screw becomes a problem, and operational troubles are likely to occur.
  • the additional carbon H is added as described above. It may be added to the iron bath melting furnace 16 in addition.
  • the average volatile content of all the carbonaceous materials charged in the iron bath melting furnace 16 is preferably 15% by mass or less on a dry basis.
  • the volatile content of the additional carbon material H is the weighted average of the volatile content of the additional carbon material H and the volatile content of the chain 1 G (usually approximately 0% by mass). It is desirable to select the coal type so that the average volatile content obtained is 15% by mass or less based on the dry weight. This is because if the average volatile content exceeds 15% by mass, the gas-phase temperature rises excessively due to the combustion of the volatile components in the iron bath melting furnace 16 and the risk of refractory damage increases.
  • Oxygen gas J as an oxygen-containing gas is blown into the iron bath melting furnace 16 with a plurality of lances as oxygen blowing means, and the carbonaceous material (Chiichi G, additional carbonaceous material H) is combusted to produce solid reduced iron.
  • Molten iron K is obtained by dissolving F and separating slag L.
  • the iron bath melting furnace 16 may be a tilting type or a fixed type.
  • this melting step it is preferable to perform melting under conditions of a secondary combustion rate of 40% or less. If the secondary combustion rate exceeds 40%, the effect of reducing the consumption of carbonaceous materials is hardly observed when the metallization rate of solid reduced iron F is 92% or more (see, for example, Fig. 2 and Fig. 3 in Patent Document 1). In addition, the load on the iron bath type melting furnace 16 is increased, for example, the gas phase temperature of the iron bath type melting furnace 16 is excessively increased and the refractory is likely to be damaged.
  • a more preferable range of the secondary combustion rate is 10 to 40% at which the carbon material consumption is sufficiently low, and a more preferable range is 15 to 30% at which the load of the iron bath melting furnace 16 is further reduced.
  • the exhaust gas from the iron bath melting furnace 16 (melting furnace exhaust gas) M contains CO and H2 components at high concentrations, so it is cooled and removed by the gas cooling dust removal device 24, and at least a part of it is rotary hearth furnace It is desirable to use it as fuel gas for the rotary hearth furnace 14 after adding to the external fuel N if necessary.
  • the use of the floor covering carbonaceous material E protects the hearth 32 more reliably, avoids troubles such as hearth peeling, and makes it possible to achieve a longer term.
  • Continuous operation of the rotary hearth furnace 14 becomes possible.
  • the volatile matter that has been devolatilized by heating the floor bedding material E in the rotary hearth furnace 14 is effective as a fuel gas for the rotary hearth furnace together with at least part of the exhaust gas from the iron bath melting furnace 16. The fuel consumption of the rotary hearth furnace 14 can be reduced.
  • the volatile matter does not contain volatile matter after devolatilization, refractory damage due to combustion of volatile matter in the iron bath melting furnace 16 is prevented, and the refractory life of the iron bath melting furnace 16 is reduced. Extended.
  • the use of bedding carbonaceous material E prevents reoxidation of the solid reduced iron F in the rotary hearth furnace 14 and achieves a high metallization rate of 92% or more.
  • the consumption of charcoal in 16 can be greatly reduced.
  • the metalization rate of solid reduced iron F, the amount of flooring carbonaceous material E used, and the amount of volatiles the total heat of exhaust gas generated from the iron bath melting furnace 16 is adjusted.
  • the entire process including reduction and melting can be an energy self-contained process.
  • solid reduced iron F and cheer G are intermittently cut out and dropped into the iron bath melting furnace 16 from above in a short time, so that fine powder such as cheer G can be introduced into the exhaust gas M.
  • the scattering rate can be reduced and the yield of charcoal can be improved throughout the process.
  • step (6) may be provided between the reduction step (step (2) above) and the melting furnace charging step (step (3) above).
  • the solid reduced iron F and the steel G are cut out from the hopper 106 together with heat, and pressed with a hot forming machine to form a hot pricket iron (HBI).
  • HBI hot pricket iron
  • 500 ⁇ : L At a temperature of 100 ° C, put it into the iron bath melting furnace 16 by charging.
  • the shape of the molded body is not limited to the shape of a bucket, but may be a plate shape, an irregular lump shape, or the like.
  • the strength of the compact is not required unless it returns to fine powder again due to the impact of handling until it is charged into the iron bath melting furnace 16.
  • the following steps (7) to (9) may be provided.
  • Hot classification process in which solid reduced iron F and steel G are taken together from rotary hearth furnace 14 and then classified into coarse and fine grains.
  • the following equipment configuration may be employed. That is, a screen of about 2 to 5 mm is provided at the discharge part of the solid reduced iron F and the chain G of the rotary hearth furnace 14, and the solid reduced iron F and the chain G are sieved while being hot. The upper coarse particles and the fine particles under the sieve are held in separate intermediate hot tubs. Then, the coarse particles are charged from the upper part of the iron bath melting furnace 16 at a temperature of, for example, 500 to L 100 ° C by dropping using gravity. On the other hand, for fine particles, an inert gas such as N2 is used as a carrier gas.
  • the following is preferable. That is, it is preferable to reduce the amount of oxygen gas blown (total amount of blown from a plurality of lances) when the solid reduced iron F and the steel G are charged into the iron bath melting furnace 16. As a result, the amount of gas generated from the molten metal is reduced, and the amount of scattered air can be further reduced.
  • oxygen is blown from a part (one or more) of the lances installed near the position where the solid reduced iron F and the chain G are loaded.
  • the amount may be preferentially reduced or stopped.
  • the amount of gas generated by the molten metal near the position where the solid reduced iron F and the chain G are charged is significantly reduced locally, so that the amount of scattered chain G can be further reduced. it can.
  • the ceiling portion 111 of the iron bath melting furnace 16 is a solid reduction.
  • a baffle plate 114 is provided between the reduced iron inlet 112, which is the charging section for iron F and steel G, and the exhaust gas outlet 113, which is the exhaust gas for the iron bath melting furnace 16 (melting furnace exhaust gas) M. It is preferable to keep it.
  • the baffle plate 114 is not provided, as shown in Fig. 6 (a), the chi-G is dissolved in the melting furnace on the gas flow that is short-circuited from the reduced iron inlet 112 to the exhaust gas outlet 113 along the ceiling 111. Easily discharged together with exhaust gas M.
  • the baffle plate 114 when the baffle plate 114 is provided, the gas flow from the reduced iron inlet 112 to the ceiling 111 becomes a downward flow by the baffle plate 114 as shown in FIG.
  • the chain G carried on the gas flow is likely to reach the surface of the melt by the downward flow, and the dissipation into the melting furnace exhaust gas M is effectively suppressed.
  • this melting step it is preferable to perform melting under the condition of a secondary combustion rate of 40% or less.
  • a more preferable range of the secondary combustion rate is 10 to 40% at which the carbon consumption is sufficiently low, and a further preferable range is 15 to 30% that makes the load of the iron bath melting furnace 16 lighter.
  • the solid reduced iron and the chia are intermittently charged together into the iron bath melting furnace.
  • the solid reduced iron with a screen or the like remains hot. It is possible to classify into reduced iron and cheer and separately charge it into an iron bath melting furnace.
  • the solid reduced iron may be continuous or intermittent, but the charge is charged intermittently.
  • charging with solid reduced iron increases the solid mass flow rate per unit time, and more reliably prevents the scattering of the cheer than charging with the cheer alone. Therefore, it is more preferable.
  • a container and a hot tub both equipped with a slide gate valve
  • the rotary hearth furnace and the iron bath melting furnace can be installed close to each other, the container is omitted and the solid reduced iron F and It is also possible to insert the chia-G directly into a hotspot equipped with a slide gate valve and intermittently cut the solid reduced iron F and chi-G by opening and closing the slide gate valve!
  • the reduction of the amount of oxygen gas blown at the time of charging the solid reduced iron and the steel into the iron bath melting furnace is provided with a plurality of lances in the iron bath melting furnace, all or part of it.
  • the amount of oxygen injected from the lance was reduced or stopped, but only one lance was installed in the iron bath melting furnace to reduce the amount of oxygen injected from the lance. It may be.
  • a reduction plate is provided.
  • Guide means 115 such as a guide plate 115 ′ and a guide duct 115 ′ ′ may be provided at the iron entrance 112. These guiding means 115 secure a downward solid flow in the iron bath melting furnace 16 and make it easy for the cheat G to reach the surface of the molten metal, so that the cheat G is trapped in the gas flow along the ceiling 111. Thus, it can be prevented from being discharged together with the melting furnace exhaust gas M.
  • iron ore has been exemplified as the iron oxide source, it may be used in combination with blast furnace dust containing iron oxide, mill scale, etc. Further, it contains non-ferrous metal and its oxide along with acid pig iron. For example, dust slag discharged from the metal refinery equipment can be used.
  • coal is exemplified as the carbonaceous reducing agent, the bedding carbon material, and the additional carbon material, coke, oil coatas, charcoal, wood chips, waste plastic, old tires, and the like can also be used.
  • the carbon material-incorporated pellets are exemplified as the carbon material-incorporated agglomerates, and an example of granulating with a granulator has been shown. You may make it compress-mold with. In this case, depending on the type of binder, a dried raw material may be used rather than adding moisture during molding. In addition, by increasing the pressure of the pressure molding machine, it is possible to increase the strength of the carbonaceous interior plecket and suppress explosion during heating. Therefore, carbonaceous materials containing 30% by mass or more of volatile matter are also used as interior carbonaceous materials. It can be used. [0066] In addition, although a combination of a charging pipe and a dispersion screw has been illustrated as a means for supplying the floor charcoal to the hearth, it may be dispersed on the hearth by a vibration feeder.
  • oxygen gas is exemplified as the oxygen-containing gas, high-temperature air or oxygen-enriched high-temperature air may be used.
  • a rotary hearth furnace has been exemplified as the moving hearth type reducing furnace, a linear furnace may be used.
  • a power electric energy that shows an example of burning carbonaceous material with an oxygen-containing gas may be used in combination.
  • the screen is exemplified as the classification means in the hot classification process, but means such as a means for classifying according to the difference in reach by the particle size by dropping from the slope into the free space, a means for classification in the fluidized bed, or the like is used. You can also.
  • Invention Example 1 is an example in which only the chia derived from the flooring charcoal is charged into the iron bath melting furnace without using any additional charcoal, and Invention Example 2 is added to the cheering derived from the flooring charcoal.
  • 'Smelting furnace exhaust gas amount 1700 Nm 3 Zh
  • the mass ratio of the solid reduced iron and chia constituting the solid particles is about 90:10 to 80:20, and the apparent density is solid reduction.
  • Iron is 2 to 3 gZcm 3
  • the chia is about 1.
  • solid particles are assumed to contain about 4% by mass or more of particles of lmm or less.
  • the oxygen gas blowing rate is the same as the acid during normal operation.
  • the simulation calculation was performed with the amount of raw gas blown at 100% and gradually decreasing from 100% to 33%.
  • Figure 9 shows the calculation results. From the figure, the dissipation rate of solid particles was 41.7% when the oxygen gas injection rate was 100%, but it was 30.3% or less by reducing the oxygen gas injection rate to 80% or less. It can be seen that it is improved by more than 10%.
  • the dissipation ratio of solid particles is a value expressed as a ratio (%) of the mass of solid particles dissipated in the melting furnace exhaust gas to the total mass of solid particles charged in the iron bath melting furnace. .
  • the method for producing molten iron of the present invention is a method for producing molten iron using a molten iron production process in which a moving hearth type reducing furnace and an iron bath type melting furnace are combined. It is characterized by comprising the steps (1) to (4).
  • a melting furnace charging step for charging the solid reduced iron and the chili into the iron bath melting furnace while hot
  • the hearth is more reliably protected by using the floor charcoal, and the furnace Troubles such as floor peeling are avoided, and continuous operation of the moving hearth type reduction furnace becomes possible for a longer period.
  • volatiles do not contain volatile components after devolatilization, refractory damage due to combustion of volatile components in the iron bath melting furnace is prevented, and the refractory life of the iron bath melting furnace is extended.
  • the use of bedding carbon material prevents reoxidation of solid reduced iron in the moving hearth type reduction furnace and achieves a high metallization rate, greatly increasing the consumption of carbon material in the iron bath melting furnace. To decrease. As a result, it is possible to further reduce the fuel consumption rate while further stabilizing the operation of the moving hearth type reduction furnace and the iron bath melting furnace.
  • a high metallization rate of 92% or more can be achieved.
  • the method of the present invention it is also possible to use at least a part of the exhaust gas of the iron bath melting furnace as the fuel gas of the moving hearth type reducing furnace.
  • the volatile matter that has been devolatilized by heating the flooring charcoal in the moving hearth type reducing furnace, together with at least part of the exhaust gas from the iron bath type melting furnace, is moved to the moving hearth type. It can be used effectively as fuel for the reduction furnace and can reduce the fuel consumption of the moving hearth type reduction furnace.
  • a hot classification step in which the solid reduced iron and the chia are taken out from the moving hearth type reduction furnace together and then classified into coarse and fine grains while still hot.
  • Coarse grain charging step of charging the coarse grains into the iron bath melting furnace by gravity (9) A fine particle induction process in which the fine particles are charged into the iron bath melting furnace by an injection.
  • the fine powder is trapped in the molten iron and Z or molten slag, so that the fine powder is prevented from being scattered at the time of charging into the iron bath melting furnace. Because the amount of dust in the exhaust gas can be greatly reduced, the iron yield and carbon yield can be greatly improved.
  • the solid reduced iron and the chew may be charged into the iron bath type melting furnace while being heated. Is possible. By doing so, it is possible to reduce the proportion of fine powder, such as chia, scattered in the exhaust gas, and to improve the yield of carbonaceous materials throughout the process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

 回転炉床炉14の炉床上に床敷炭材Hを装入し、この床敷炭材Hの上に粉状鉄鉱石Aと粉状石炭Bとを含む炭材内装ペレットDを載置し、前記炉床を回転炉床炉14内を通過させて炭材内装ペレットDを加熱還元して固体還元鉄Fとなすとともに、床敷炭材Hを加熱乾留してチャーGとする。ついで、鉄浴式溶解炉16に、これら固体還元鉄FおよびチャーGを実質的に冷却することなく装入するとともに、酸素ガスを吹き込み、固体還元鉄Fを溶解して溶鉄Kを得る。鉄浴式溶解炉16の排ガスMの少なくとも一部は、冷却除塵後、回転炉床炉14の燃料ガスとして使用する。

Description

明 細 書
溶鉄の製造方法およびその製造装置
技術分野
[0001] 本発明は、溶鉄の製造方法およびその製造装置に関し、詳しくは、移動炉床式還 元炉と鉄浴式溶解炉とを組み合わせてなる溶鉄製造プロセスにて、鉄鉱石などの酸 化鉄源を石炭などの炭素質還元剤とともに加熱還元し、鉄分純度の高い溶鉄を効率 よく製造し得るように改善された方法に関する。
背景技術
[0002] 本発明者らは、回転炉床炉 (移動炉床式還元炉)と溶解炉 (鉄浴式溶解炉)を連結 した溶鉄製造プロセスにお!/ヽて、酸化鉄と炭素質還元剤を含む成形体を回転炉床 炉で加熱還元して金属化率 60%以上の固体還元鉄とした後、この固体還元鉄を溶 解炉へ送り、燃料として供給される炭材を酸素で燃焼させて該溶解炉内における二 次燃焼率を 40%以下に制御しつつ、前記固体還元鉄を溶解させて鉄溶湯を得る溶 鉄の製造方法を開発した。そして、溶解炉に燃料として供給する炭材の一部または 全部を回転炉床炉の炉床上に床敷炭材として供給し得ることを示唆した (特許文献 1 参照)。
[0003] し力しながら、上記床敷炭材を用いる方法につ!、ては、定性的な作用効果を示唆 するにとどまっており、回転炉床炉および溶解炉の操業をより安定化しつつ燃料原 単位をさらに低減ィ匕するための具体的な操業条件は未確定であり、改善の余地があ つた o
[0004] いっぽう、本出願人は、回転炉床炉の炉床上に粉粒状の雰囲気調整用の床敷炭 材を敷いたのち、酸化鉄含有物質と炭素質還元剤を含む原料を供給し、炉内でカロ 熱し、還元 ·溶融して金属鉄を製造するプロセスにおいて、回転炉床炉から排出され た床敷炭材を回転炉床炉にリサイクルして使用することにより、粉粒状の床敷炭材が 煎餅状に固結する現象を防止する方法を提案した (特許文献 2参照)。
[0005] し力しながら、上記プロセスは溶解炉を有せず、回転炉床炉のみで金属鉄を製造 するプロセスであり、床敷炭材に要求される物理 ·化学性状やそのリサイクルの条件 等は、上記特許文献 1に記載の回転炉床炉と溶解炉を連結した溶鉄製造プロセスに そのまま適用できるものではない。
[0006] そこで、本発明は、移動炉床式還元炉と鉄浴式溶解炉とを組み合わせてなる溶鉄 製造プロセスにおいて、移動炉床式還元炉および鉄浴式溶解炉の操業をより安定 化しつつ、燃料原単位をさらに低減できる溶鉄の製造方法および好適な溶鉄の製造 装置を提供することを目的とする。
特許文献 1 :特開 2004- 176170号公報(特許請求の範囲、 [0039]〜[0042]) 特許文献 2:特開 2003-213312号公報 (特許請求の範囲、図 1など)
発明の開示
[0007] 本発明の溶鉄の製造方法は、移動炉床式還元炉と鉄浴式溶解炉とを組み合わせ てなる溶鉄製造プロセスを用いて溶鉄を製造する方法であって、下記(1)〜 (4)のェ 程を備えたことを特徴とする。
(1)前記移動炉床式還元炉の炉床上に床敷炭材を装入し、この床敷炭材の上に粉 状酸化鉄源と粉状炭素質還元剤とを含む炭材内装塊成化物を載置する還元炉装入 工程
(2)前記炉床を前記移動炉床式還元炉内で移動させて前記炭材内装塊成化物を加 熱還元して固体還元鉄となすとともに、前記床敷炭材を加熱乾留してチヤ一となす還 元工程
(3)前記固体還元鉄およびチヤ一を実質的に冷却することなく前記鉄浴式溶解炉に 装入する溶解炉装入工程
(4)前記鉄浴式溶解炉に酸素含有ガスを吹き込み、前記固体還元鉄を溶解して溶 鉄となす溶解工程。
[0008] 本発明によれば、床敷炭材を用いたことによって炉床がより確実に保護されて炉床 剥離などのトラブルが回避され、より長期的な移動炉床式還元炉の連続操業が可能 となる。また、脱揮後のチヤ一は揮発分を含まないので、鉄浴式溶解炉内での揮発 分の燃焼による耐火物損傷が防止され、鉄浴式溶解炉の耐火物寿命が延長される。 更に、床敷炭材を用いたことにより、移動炉床式還元炉内における固体還元鉄の再 酸化が防止されて、例えば 92%以上という高い金属化率が達成され、鉄浴式溶解 炉における炭材消費量が大幅に減少する。
[0009] この結果、移動炉床式還元炉および鉄浴式溶解炉の操業をより安定化しつつ、燃 料原単位のさらなる低減が実現できる。
図面の簡単な説明
[0010] [図 1]本発明の一実施形態を示す溶鉄製造プロセスのフロー図である。
[図 2]回転炉床炉の炉床付近の様子を模式的に示す断面図である。
[図 3]床敷炭材の厚みと固体還元鉄の金属化率との関係を示すグラフ図である。 圆 4]固体還元鉄の、炭素含有量と圧潰強度との関係を示すグラフ図である。
[図 5]本発明に係る、回分式装入法の一実施形態を示すフロー図である。
[図 6]本発明に係る鉄浴式溶解炉内のガス流れの様子を説明する断面図であり、 (a) は基本構造、(b)は邪魔板を設置した例である。
[図 7]本発明に係る鉄浴式溶解炉内のガス流れの様子を説明する断面図であり、 (a) は案内板を設置した例、(b)は案内ダクトを設置した例である。
[図 8]固体粒子の粒度分布を示すグラフ図である。
[図 9]酸素ガス吹込み量と固体粒子の散逸率との関係を示すグラフ図である。
発明を実施するための最良の形態
[0011] 以下、本発明の一実施形態を示す図面を参照しつつ、本発明をより詳細に説明す る。
[0012] 〔実施形態 1〕
図 1は、本発明の一実施形態を示す溶鉄製造プロセスのフロー図であり、本溶鉄製 造プロセスは、移動炉床式還元炉としての回転炉床炉 14と鉄浴式溶解炉 16とが連 結されて構成されている。
[0013] 酸化鉄源としての鉄鉱石 aおよび炭素質還元剤としての石炭 bを必要に応じて別個 に粉砕し、それぞれ粒度 lmm未満程度の粉状とする。得られた粉状酸化鉄源として の粉状鉄鉱石 Aと粉状炭素質還元剤としての粉状石炭 Bを所定の割合で配合し、必 要に応じて適量のバインダゃ適量の水分を添加し (さらには鉄浴式溶解炉 16で添加 する造滓剤としての副原料 Iの全部または一部をここで添加してもよい)、これらを混 合機 8で混合したのち、造粒機 11で 6〜20mm径程度の粒径に造粒して炭材内装 塊成化物としての炭材内装ペレット Dとする。なお、石炭 (炭素質還元剤) bの揮発分 は、高すぎると炭材内装ペレット Dが回転炉床炉 14内で加熱された際に爆裂を起こ しゃすくなるので、 30質量%以下程度とするのが望ましい。
[0014] この炭材内装ペレット Dは、回転炉床炉 14内でのバースティング (爆裂)を防止する ため、乾燥機 13で水分量 1質量%程度以下となるまで乾燥しておくことが好ましい( 特開平 1卜 193423号公報の特許請求の範囲参照)。
[0015] (1)還元炉装入工程
ついで、図 2 (a)に模式的に示すように、回転炉床炉 14の炉床 32上に床敷炭材 E として例えば石炭を所定の厚みになるように装入し、この床敷炭材 Eの上に炭材内装 ペレット Dを 2層以下の厚さに載置する。
[0016] このように炉床 32上に床敷炭材 Eを装入する手段 (床敷装入手段)としては、例え ば回転炉床 14上に設けた中間ホツバから床敷炭材 Eを定量的に切り出し、装入パイ プを介して炉床 32上に供給し、これを分散スクリュで炉床 32の幅方向に分散させる 手段を用いることができる。そして、この床敷炭材 Eの上に炭材内装ペレット Dを載置 する手段 (原料装入手段)としては、上記床敷装入手段より炉床 32の移動方向下流 側に設けた、上記床敷装入手段と同様の構成である中間ホツバと装入パイプと分散 スクリュとからなる手段を用いることができる(特開平 11-279611号公報、図 4参照)
[0017] 炉床 32上に装入された床敷炭材 Eの厚みは 1〜: LOmmとするのが好ましい。 lmm 未満では床敷炭材 Eの厚みが薄すぎて炉床 32の表面全体を確実に覆うことが困難 になることに加え、再酸ィ匕防止効果が不十分となるおそれがあるためであり、いっぽう 10mmを超えると炉床 32の表面を介して炭材内装ペレット Dをその下面から加熱す る効果が少なくなることに加え、鉄浴式溶解炉 16に装入される炭材量が過剰となり、 燃料原単位が上昇するおそれが高 ヽためである。より好ま Uヽ床敷炭材 Eの厚みは 2 〜5mm" ¾ 。
[0018] 床敷炭材 Eの平均粒径は l〜5mmとするのが好ましい。 lmm未満では回転炉床 炉 14装入時および鉄浴式溶解炉 16装入時に飛散しやすくなるので、炭材歩留りが 低下するためであり、 Vヽっぼう 5mmを超えると上記床敷炭材 Eの厚みの好ま ヽ上 限に近づき床敷炭材 Eを均一な厚さに敷くことが困難となるうえ、炭材粒子間の隙間 が大きくなつてその隙間に炭材内装ペレット Dが嵌まり込むので、炭材内装ペレット D を床敷炭材 Eの層上に均一に敷き詰めることが困難となり、生産性や金属化率の低 下を来たすおそれが高まるためである。より好まし 、床敷炭材 Dの平均粒径は 2〜4 mmである。
[0019] なお、石炭 bを粉砕したのち、所定の粒径 (たとえば lmmの篩目)で篩 ヽ分けて、そ の篩下を粉状炭素質還元剤 Bに、篩上を床敷炭材 Eとしてもよ ヽ。
[0020] 床敷炭材 Eのギーセラ最高流動度 MFは logMF≤ 2とするのが好まし 、。 logMF 力 ^を超えると回転炉床炉 14内で加熱された際における炭材粒子の軟ィ匕溶融の度 合いが過剰となり炉床 32上に付着物が形成されやすくなるためである。より好ましい 床敷炭材 Eのギーセラ最高流動度 MFは logMF≤ 1である。
[0021] 床敷炭材 Eの揮発分は、乾量基準で 10質量%以上とするのが好ましい。揮発分が 少ない無煙炭等の石炭は組織が緻密で見掛け密度が高ぐ揮発分が少ないにもか かわらずバースティングを起こし粉ィ匕しやすいためである。
[0022] 床敷炭材 Eの揮発分は、乾量基準で 50質量%以下、さらには 40質量%以下とす るのが好ましい。床敷炭材 E中の揮発分は回転炉床炉 14内で加熱されてほぼ完全 に脱揮され、回転炉床炉 14内で燃料ガスとして利用できるが、揮発分が多すぎると、 回転炉床炉 14内の還元初期段階で、床敷炭材カも必要量以上の可燃性ガスが発 生し、消費しきれない可燃性ガスが回転炉床炉 14の排ガス中に残存したまま排出さ れるので、エネルギ効率が低下するためである。また、揮発分が多すぎると、加熱に よる揮発分の脱揮によって炭材が軽量ィ匕し、回転炉床炉 14から排出される際に飛散 しゃすくなって、炭材の歩留が低下するためである。さらに、床敷炭材 Eは回転炉床 炉 14に装入する前に乾燥しておくのが望ましいが、褐炭のように揮発分が 50質量% 程度ないしそれを超える炭材を乾燥させると多孔質となり発火しやすくなるためハンド リングが難しくなるためである。
[0023] なお、上記好ましい揮発分量を有する床敷炭材としては、単銘柄である必要はなく 、 2種類以上の揮発分量の異なる炭材を適宜混合して用いるようにしてもよい。混合 する炭材には、別プロセスで熱処理済みのもの、たとえばコータス粉、石油コータスな どを用いてもよい。
[0024] (2)還元工程
このようにして炉床 32上に層状に載置された炭材内装ペレット Dと床敷炭材 Eを、 1 100〜1450°C、より好ましくは 1250〜1450°Cの雰囲気温度に加熱された回転炉 床炉 14内を 6min以上、より好ましくは 8min以上の滞留時間で通過させる。これによ り、炭材内装ペレット Dは回転炉床炉 14内で加熱されて、炭材内装ペレット D中の酸 化鉄が炭素質還元剤で還元されて金属化し、固体還元鉄 Fとなるが、このようにして 得られる固体還元鉄 Fの金属化率は 92%以上、炭素含有量は好ましくは 10質量% 以下、より好ましくは 5質量%以下とする。いっぽう、床敷炭材 Eは回転炉床炉 14内 で加熱されて揮発分が脱揮され (乾留され)チヤ一 Gとなる。脱揮された揮発分は、回 転炉床炉 14内で燃焼し、燃料として有効に利用される。なお、上記炭材内装ペレット Dと床敷炭材 Eを加熱する手段 (加熱手段)としては、例えば、回転炉床炉 14の側壁 上部に設置した複数本のパーナ(図示せず)を用いることができる。
[0025] 雰囲気温度が 1350°C以上の場合、炭材内装ペレット Dは還元が終わると炉床上 3 2で溶解し、鉄分とスラグ成分の分離が生じる。溶解したままでは回転炉床炉 14から 排出しにくいので、回転炉床炉 14内で冷却し固化して力も排出することになる。この 場合の固体還元鉄 Fは粒鉄と固体スラグの混合物となる。しカゝしながら、回転炉床炉 14でヽつたん溶解したものを冷却固化し鉄浴式溶解炉 16で再度溶解することは、プ ロセス全体の生産性とエネルギ効率の観点からは好ましくない。したがって、プロセス 全体の生産性とエネルギ効率をより向上するため、回転炉床炉 14における還元中の 雰囲気温度を 1350°C以上にして回転炉床炉 14での生産性を高めつつ、炭材内装 ペレツト Dが炉床上で溶解する前に回転炉床炉 14から排出し、鉄浴式溶解炉 16で 溶解することが望ましい。
[0026] なお、万一炉床 32上で炭材内装ペレット Dが溶解してしまった場合に溶融鉄や溶 融スラグが炉床耐火物を損傷させるのを防止するため、図 2 (b)に示すように、炉床 3 2と床敷炭材 Eの間に溶融物の浸透を防ぐ微粒の炭材である炉床保護用炭材 Pまた は微粒の炭材を含有する炉床保護用炭材 Pの層を設けることも有効である。
[0027] ここで、固体還元鉄 Fの金属化率を 92%以上、炭素含有量を好ましくは 10質量% 以下、より好ましくは 5質量%以下としたのは以下の理由による。
[0028] まず、金属化率を 92%以上とした理由につ 、て述べる。すなわち、固体還元鉄 Fの 金属化率が高くなるほど、鉄浴式溶解炉 16にお 、て固体還元鉄 F中に残存する酸 化鉄 (FeOなど)を金属化するのに必要な炭素量が少なくてよぐ鉄浴式溶解炉 16 全体の炭材消費量が低減できるので、金属化率はできるだけ高くするのが望ましい( 特許文献 1の図 2、図 3参照)。しかしながら、従来、床敷炭材を用いないで回転炉床 炉により炭材内装ペレットを還元すると、固体還元鉄が回転炉床炉内の酸化性雰囲 気によって再酸ィ匕してしまうため、図 3 (a)に示すように、安定的に 90%以上の金属 化率を得ることは非常に困難であった。これに対し、床敷炭材 Eを用いると、上記酸 化性雰囲気中の酸化性ガス成分 COおよび H Oが、床敷炭材 Eから生じたチヤ
2 2 一 G によって、 CO +C→2COおよび H 0 + C→H +COの反応により還元性ガス成分
2 2 2
に改質され、固体還元鉄 Fの再酸ィ匕が抑制ないし防止されるので、図 3 (b)に示すよ うに、 92%以上の金属化率が容易に得られ、操業条件によっては 94%以上の金属 化率も達成可能である。よって、固体還元鉄 Fの金属化率は 92%以上とした。より好 ましい固体還元鉄 Fの金属化率は 94%以上である。
[0029] つぎに、炭素含有量を好ましくは 10質量%以下、より好ましくは 5質量%以下とした 理由について述べる。すなわち、固体還元鉄 F中の炭素含有量が高いほど、鉄浴式 溶解炉 16内において、固体還元鉄 F中に残存する酸化鉄 (FeOなど)を金属化する のに必要な炭素量を賄ったうえ、残りの炭素量が、固体還元鉄が溶解されてできた 溶鉄への加炭に利用されるので、鉄浴式溶解炉 16における炭材消費量の観点から は炭素含有量は高いほど好ましい。し力しながら、図 4に示すように、炭素含有量 (残 留炭素量)が高くなるほど固体還元鉄 Fの圧潰強度が低下して、回転炉床炉 14から の排出時や鉄浴式溶解炉への装入時等に粉化されやすくなり、ダストロスが増加す るので、鉄歩留および炭素歩留の観点からは炭素含有量は低いほど好ましい。よつ て、固体還元鉄 Fの炭素含有量の上限は、圧潰強度が過度に低下しない範囲で、か つ、できるだけ炭素含有量の高い、好ましくは 10質量%以下、より好ましくは 5質量 %以下とした。なお、固体還元鉄 Fの炭素含有量の好ましい下限は、金属化率 92% の場合、固体還元鉄 F中に残存する酸化鉄 (FeOなど)を金属化するのに必要な 1. 5質量%程度である。
[0030] なお、炭材内装ペレット Dに内装する粉状炭素質還元剤 Bとして流動性を有する石 炭を使用すると、固体還元鉄 Fの強度を維持しながら炭素含有量を 10質量%程度ま で高めることができる。し力しながら、流動性を有する石炭は、資源的にも豊富とはい えず一般に高価であるため、流動性を有しない石炭を使用し、固体還元鉄 F中の炭 素含有量を 5質量%以下にする製法を採用するのが望ましい。
[0031] このような固体還元鉄 Fの金属化率および炭素含有量は、炭材内装ペレット D中の 鉄鉱石 (酸化鉄源) aと石炭 (炭素質還元剤) bとの配合割合、床敷炭材 Eの厚みおよ び平均粒径、回転炉床炉 14の雰囲気温度、回転炉床炉 14内における炭材内装べ レット Dの滞留時間などを適宜調整することにより得られる。
[0032] (3)溶解炉装入工程
このようにして得られた固体還元鉄 Fおよびチヤ一 Gは、回転炉床炉 14から取り出 し、熱いまま (加熱'高温状態のまま)言い換えると、実質的に冷却することなく鉄浴式 溶解炉 16に間欠的に装入することが好ましぐその溶解炉装入手段の一例として、 以下のようなホツバとコンテナとを用いることができる。
[0033] すなわち、図 5に示すように、回転炉床炉 14の出口部に設けられた排出スクリュ 10 1により固体還元鉄 Fおよびチヤ一 Gを一緒に取り出し、還元鉄収容手段としてのコン テナ 102に収容する。コンテナ 102が満杯になったとき、別の空のコンテナ 102'に 切り替え、満杯になったコンテナ 102の上部に設けられたスライドゲートバルブ 103を 閉止した後、図示しない反転機でコンテナ 102を上下反転し、搬送車 104とクレーン 105にて鉄浴式溶解炉 16上に設けた還元鉄保持手段としてのホッパ 106上に搬送 する。ここで、スライドゲートバルブ 103を開け、コンテナ 102内の固体還元鉄 Fおよ びチヤ一 Gをホッパ 106に移し替え、いったん保持する。少なくともコンテナ 102とホ ッパ 106は、固体還元鉄 Fおよびチヤ一 Gを熱 、まま (加熱 ·高温状態のまま)鉄浴式 溶解炉 16に装入するため、耐火物張りとしておく。そして、ホッパ 106の下部に設け られた間欠切出し手段としてのスライドゲートバルブ 107を開閉して固体還元鉄 Fお よびチヤ一 Gを熱いまま一緒に (篩い分けることなく)間欠的に切り出し、装入パイプ 1 08を介して重力を利用して鉄浴式溶解炉 16に落とし込みにより装入する(このような 間欠的な装入方法を「回分式装入法」とよび、通常行うような連続的な装入方法を「 連続装入法」とよぶ。 ) oなお、コンテナ 102を回転炉床炉 14から切り離す際やコンテ ナ 102からホッパ 106へ内容物を移し替える際に固体還元鉄 Fが再酸ィ匕したりチヤ 一 Gが燃焼したりするのを回避するため、少なくともコンテナ 102とホッパ 106は窒素 ガスなどの不活性ガスによるパージが可能な構造としておく。なお、固体還元鉄 Fお よびチヤ一 Gは、鉄浴式溶解炉 16の内壁面に触れな 、ように装入するのが好ま ヽ
[0034] なお、造滓剤としての副原料 I、固体還元鉄 F中の炭素含有量とチヤ一 Gのみでは 鉄浴式溶解炉 16で必要とされる炭材消費量を賄えない場合に追加される別の炭材( 以下、「追加炭材」という。)Hなど (以下、「副原料その他の装入物」とよぶ。)は、固 体還元鉄 Fおよびチヤ一 Gとは別系統で鉄浴式溶解炉 16に添加する。なお、固体還 元鉄 Fおよびチヤ一 Gや副原料その他の装入物は、鉄浴式溶解炉 16の内壁面に接 触すると付着したり堆積したりするので、鉄浴式溶解炉 16の内壁面に接触しないよう に装入するのが好ましい。
[0035] このように固体還元鉄 Fおよびチヤ一 Gを熱 、まま (加熱 ·高温状態のまま)装入す ることにより、固体顕熱を有効に回収でき、鉄浴式溶解炉 16の炭材消費量を低減で きる。
[0036] また、固体還元鉄 Fおよびチヤ一 Gを間欠的に切り出し、鉄浴式溶解炉 16内へ短 時間にまとめて落とし込むことにより、チヤ一 Gなどの微粉の排ガス M中への飛散割 合を低減でき、プロセス全体における炭材の歩留を改善できる。
[0037] すなわち、仮に、従来のように固体還元鉄を連続的に装入するように、固体還元鉄 固体還元鉄 Fおよびチヤ一 G力 なる固体粒子を連続的に装入すると、単位時間あ たりの固体質量流量が小さいため、固体粒子は個別にばらばらになって落下する確 率が高い。このため、軽量で小粒径のチヤ一粒子は、溶湯力 発生してくるガスの流 れによって飛散され、排ガス中へ散逸しやすい。これに対し、固体還元鉄 Fおよびチ ヤー Gを一緒に間欠的に装入すると、単位時間あたりの固体質量流量が大きくなるた め、チヤ一 Gの粒子がチヤ一より重く大粒径の他の固体粒子とともに集合体として落 下することとなり、この集合体周辺のガスに下降するガス流れが生じる。この結果、単 一粒子としては飛散されやすいチヤ一 Gの粒子もこの下降するガス流れに乗って下 降するので、溶湯カゝら発生してくるガスの流れに打ち勝ち、飛散されることなぐ溶湯 中に歩留良く添加されることとなるからである。
[0038] 固体粒子(固体還元鉄 Fおよびチヤ一 G)の間欠的な切出し (鉄浴式溶解炉 16へ の装入)は、後記実施例 2の結果等より、 1〜: LOminごと、さらには 2〜5minごと程度 の頻度で行うのが推奨される。その理由は以下の通りである。すなわち、装入頻度を 上げすぎると、単位時間あたりの固体質量流量が十分に大きくならず、上記飛散防 止効果が得られに《なることにカ卩え、スライドゲートバルブ 107の開閉が頻繁になり 、設備トラブルが発生しやすくなる。いっぽう、装入頻度を下げすぎると、上記飛散防 止効果が飽和してしまうことにカ卩え、一度に大量の固体還元鉄 Fおよびチヤ一 Gが添 加されるので、鉄浴式溶解炉 16の熱変動が大きくなり制御が困難になること、下記の 鉄浴式溶解炉 16に装入する際の固体還元鉄 Fおよびチヤ一 Gの温度が低下して、 固体顕熱回収の効果が小さくなること、ホッパ 106の容量を大きくする必要が生じ、 設備コストが増大すること等の問題が生じる力 である。
[0039] また、鉄浴式溶解炉 16に装入する際の固体還元鉄 Fおよびチヤ一 Gの温度は、以 下の点からも、 500〜: L 100°Cとするの力 S好ましい。すなわち、 500°C未満では固体 顕熱回収の効果が小さぐ V、っぽう 1100°Cを超えると上記排出スクリュの耐熱性等 が問題となり、操業トラブルが発生しやすくなるためである。
[0040] 固体還元鉄 F中の炭素含有量とチヤ一 Gのみでは、鉄浴式溶解炉で必要とされる 炭材消費量を賄えない場合は、上述したように、追加炭材 Hを追加して鉄浴式溶解 炉 16に装入してもよい。
[0041] 鉄浴式溶解炉 16に装入する全炭材 (ただし、前記固体還元鉄 F中の含有炭素は 除く)の平均揮発分は、乾量基準で 15質量%以下とするのが好ましい。追加炭材 H を装入する場合には、追加炭材 Hの揮発分は、この追加炭材 Hの揮発分とチヤ一 G の揮発分 (通常、ほぼ 0質量%)とを加重平均して得た平均揮発分が乾量基準で 15 質量%以下となるように、炭種を選定するのが望ましい。平均揮発分が 15質量%を 超えると、鉄浴式溶解炉 16内での揮発分の燃焼により気相側温度が過度に上昇し、 耐火物損傷のおそれが高まるためである。 [0042] (4)溶解工程
鉄浴式溶解炉 16に酸素含有ガスとしての酸素ガス Jを、酸素吹込み手段としての複 数本のランスで吹き込み、炭材 (チヤ一 G、追加炭材 H)を燃焼させ、固体還元鉄 Fを 溶解してスラグ Lを分離することにより溶鉄 Kが得られる。なお、鉄浴式溶解炉 16は、 傾動式でもよいし、固定式でもよい。
[0043] 本溶解工程においては、二次燃焼率 40%以下の条件で溶解を行うことが好ましい 。二次燃焼率が 40%を超えると、固体還元鉄 Fの金属化率 92%以上では炭材消費 量の低減効果がほとんど認められなくなる(たとえば、特許文献 1の図 2および図 3参 照)ことに加え、鉄浴式溶解炉 16の気相側温度が過度に上昇して耐火物が損傷す るおそれが高まるなど鉄浴式溶解炉 16への負荷が高まるためである。二次燃焼率の より好ましい範囲は、炭材消費量が十分に低くなる 10〜40%、さらに好ましい範囲 は、鉄浴式溶解炉 16の負荷をより軽くする 15〜30%である。
[0044] (5)溶解炉排ガス循環工程
鉄浴式溶解炉 16の排ガス (溶解炉排ガス) Mは、高濃度に COおよび H2成分を含 んでいるので、ガス冷却除塵装置 24で冷却 '除塵した後、その少なくとも一部を回転 炉床炉 14に送り、必要により外部燃料 Nを追加して、回転炉床炉 14の燃料ガスとし て使用するのが望ましい。
[0045] このようにして、この実施形態 1によれば、床敷炭材 Eを用いたことにより炉床 32が より確実に保護されて炉床剥離などのトラブルが回避され、より長期的な回転炉床炉 14の連続操業が可能となる。また、床敷炭材 Eが回転炉床炉 14内で加熱されて脱 揮された揮発分は、鉄浴式溶解炉 16の排ガスの少なくとも一部とともに、回転炉床炉 の燃料ガスとして有効に利用され、回転炉床炉 14の燃料消費量を低減できる。さら に、脱揮後のチヤ一 Gは揮発分を含まないので、鉄浴式溶解炉 16内での揮発分の 燃焼による耐火物損傷が防止され、鉄浴式溶解炉 16の耐火物寿命が延長される。 また、床敷炭材 Eを用いたことにより、回転炉床炉 14内における固体還元鉄 Fの再酸 化が防止されて、 92%以上という高い金属化率が達成され、鉄浴式溶解炉 16にお ける炭材消費量を大幅に低減できる。さらに、固体還元鉄 Fの金属化率と床敷炭材 E の使用量や揮発分量を調整し、鉄浴式溶解炉 16から発生する排ガスの全熱量を回 転炉床炉 14で必要かつ十分な熱量に一致させることにより、還元と溶解を含めた全 体プロセスをエネルギ的に自己完結したプロセスとすることができる。さらにまた、固 体還元鉄 Fおよびチヤ一 Gを間欠的に切り出し、鉄浴式溶解炉 16内へその上方から 短時間にまとめて落とし込むことにより、チヤ一 Gなどの微粉の排ガス M中への飛散 割合を低減でき、プロセス全体における炭材の歩留を改善できる。
[0046] 〔実施形態 2〕
還元工程 (上記(2)の工程)および溶解炉装入工程 (上記(3)の工程)の間に、下 記 (6)の工程を設けてもよい。
(6)固体還元鉄 Fおよびチヤ一 Gを熱 、まま一緒に成形する熱間成形工程。
[0047] 具体的には、たとえば、上記ホッパ 106から固体還元鉄 Fおよびチヤ一 Gを熱いま ま一緒に切り出し、熱間成形機により加圧成形してホットプリケットアイアン (HBI)とし 、この HBIを冷却することなぐたとえば 500〜: L 100°Cの温度で、鉄浴式溶解炉 16 に落とし込みにより装入するとよ 、。
[0048] これにより、鉄浴式溶解炉 16への装入時における微粉の飛散が防止され、鉄浴式 溶解炉 16からの排ガス中のダスト量を大幅に低減できるので、鉄歩留、炭素歩留を 大幅に改善できる。
[0049] なお、ここでの成形の目的は微粉をなくすことにあるので、成形体の形状はプリケッ ト状に限定されるものではなぐ板状、不揃いの塊状等であってもよい。また、鉄浴式 溶解炉 16に装入するまでのハンドリングの衝撃により再び微粉に戻らない限り、成形 体の強度は不要である。
[0050] 〔実施形態 3〕
溶解炉装入工程 (上記 (3)の工程)に代えて、下記 (7)〜(9)の工程を設けてもよ い。
(7)回転炉床炉 14から固体還元鉄 Fおよびチヤ一 Gを一緒に取り出した後、熱いま ま粗粒と細粒とに分級する熱間分級工程
(8)上記粗粒を鉄浴式溶解炉 16に重力により装入する粗粒装入工程
( 9)上記細粒を鉄浴式溶解炉 16にインジェクションにより装入する細粒インジェクショ ン工程。 [0051] 具体的には、たとえば、以下のような設備構成を採用すればよい。すなわち、回転 炉床炉 14の固体還元鉄 Fおよびチヤ一 Gの排出部に 2〜5mm程度の篩目のスクリ ーンを設け、固体還元鉄 Fおよびチヤ一 Gを熱いまま篩い分けて、篩上の粗粒と篩下 の細粒とを別々の中間ホツバにー且保持する。そして、粗粒は重力を利用した落とし 込みにより、たとえば 500〜: L 100°Cの温度で、鉄浴式溶解炉 16の上部から装入す る。いっぽう、細粒は N2等の不活性ガスをキャリアガスとしてインジェクションランスや 鉄浴式溶解炉 16の炉側および Zまたは炉底に設けた羽口を介して鉄浴式溶解炉 1 6内の溶鉄中および Zまたは溶鉄の上に形成された溶融スラグ中に吹き込む。
[0052] これにより、微粉は溶鉄および Zまたは溶融スラグ中に捕捉されるので、上記実施 形態 2と同様に、鉄浴式溶解炉 16への装入時における微粉の飛散が防止され、鉄 浴式溶解炉 16からの排ガス中のダスト量を大幅に低減できるので、鉄歩留、炭素歩 留を大幅に改善できる。
[0053] 〔実施形態 4〕
上述した (4)溶解工程において、以下のようにするのが好ましい。すなわち、鉄浴 式溶解炉 16への固体還元鉄 Fおよびチヤ一 Gの装入時に、酸素ガスの吹込み量( 複数本のランスからの吹込み総量)を減少させるのが好ましい。これにより、溶湯から の発生ガス量が減少し、チヤ一 Gの飛散量をさらに減少させることができる。
[0054] なお、チヤ一 Gの飛散量を確実に低減するためには、後述の実施例 2より、固体還 元鉄 Fおよびチヤ一 Gの装入時における酸素ガスの吹込み量 (総量)は、固体還元鉄 Fおよびチヤ一 Gを装入して!/、な!/、時における酸素ガスの吹き込み量(総量)の 80% 以下、さらには 60%以下、ただし、吹込み量を減少させすぎると炉内の燃焼が停止 する場合があるため、 30%以上とするのが望ましい。
[0055] この場合、上記複数本のランスのうち、例えば、固体還元鉄 Fおよびチヤ一 Gを装 入する位置の近くに設置された一部(1または複数本)のランスからの酸素吹込み量 を優先的に減少、または停止するようにしてもよい。これにより、固体還元鉄 Fおよび チヤ一 Gを装入する位置の近くの溶湯力 のガス発生量が局所的に大幅に減少する ので、チヤ一 Gの飛散量をより 、つそう減少させることができる。
[0056] さらに、図 6 (b)に示すように、鉄浴式溶解炉 16の天井部 111であって、固体還元 鉄 Fおよびチヤ一 Gの装入部である還元鉄装入口 112と鉄浴式溶解炉 16の排ガス ( 溶解炉排ガス) Mの排出部である排ガス排出口 113の間に、邪魔板 114を設けてお くことが好ましい。邪魔板 114を設けない場合は、図 6 (a)に示すように、還元鉄装入 口 112から天井部 111に沿って排ガス排出口 113へ短絡するガス流れに乗ってチヤ 一 Gが溶解炉排ガス Mとともに排出されやすい。これに対し、邪魔板 114を設けた場 合は、図 6 (b)に示すように、還元鉄装入口 112から天井部 111に沿うガス流れは邪 魔板 114によって下降流となるため、このガス流れに乗って運ばれてきたチヤ一 Gは 下降流によって溶湯表面に到達しやすくなり、溶解炉排ガス M中への散逸が効果的 に抑制されることとなる。
[0057] この溶解工程においても、二次燃焼率 40%以下の条件で溶解を行うことが好まし い。そして、二次燃焼率のより好ましい範囲は、炭材消費量が十分に低くなる 10〜4 0%、さらに好ましい範囲は、鉄浴式溶解炉 16の負荷をより軽くする 15〜30%である
[0058] 〔変形例〕
上記実施形態では、固体還元鉄およびチヤ一を一緒に間欠的に鉄浴式溶解炉に 装入する例を示したが、これらを回転炉床炉カも取り出した後、熱いままスクリーン等 で固体還元鉄とチヤ一とに分級し、別個に鉄浴式溶解炉に装入することもできる。こ の場合、固体還元鉄は、連続的でも間欠的でもよいが、チヤ一は間欠的に装入する 。ただし、チヤ一単独で装入するよりも、上記実施形態 1のように、固体還元鉄と一緒 に装入するほうが単位時間あたりの固体質量流量が大きくなり、チヤ一の飛散がより 確実に防止されるので、より好ましい。
[0059] また、副原料その他の装入物は、固体還元鉄およびチヤ一とは別系統で鉄浴式溶 解炉に添加する例を示したが、同一系統で一緒に装入してもよい。また、固体還元 鉄とチヤ一とを分級して別個に鉄浴式溶解炉に装入する場合は、チヤ一に副原料そ の他の装入物を添加して同一系統で一緒に装入してもょ 、。チヤ一を副原料その他 の装入物と一緒に装入することによって、単位時間あたりの固体質量流量が大きくな り、チヤ一の飛散がより確実に防止されるので、より好ましい。
[0060] また、回分式装入法として、ともにスライドゲートバルブを備えた、コンテナとホツバと を用いて装入する例を示したが、回転炉床炉と鉄浴式溶解炉とを近接して設置でき る場合は、コンテナを省略し、回転炉床炉力 切り出した固体還元鉄 Fおよびチヤ一 Gを直接、スライドゲートバルブを備えたホツバに装入し、スライドゲートバルブの開閉 操作により固体還元鉄 Fおよびチヤ一 Gを間欠的に切り出すようにしてもよ!、。
[0061] また、鉄浴式溶解炉への固体還元鉄およびチヤ一の装入時における酸素ガス吹込 み量の低減は、鉄浴式溶解炉に複数本のランスを設け、その全部または一部のラン スからの酸素吹込み量を減少ないし停止することにより行う例を示したが、鉄浴式溶 解炉に 1本のランスのみを設け、そのランスからの酸素吹込み量を減少させるようにし てもよい。
[0062] また、鉄浴式溶解炉の天井部に邪魔板を設けた例を示したが、邪魔板に代えて、 または加えて、図 7 (a)、(b)に示すように、還元鉄装入口 112に案内板 115'や案内 ダクト 115' 'などの案内手段 115を設けてもよい。これらの案内手段 115により、鉄浴 式溶解炉 16内における下向きの固体流れが確保されて、チヤ一 Gが溶湯表面に到 達しやすくなるため、チヤ一 Gが天井部 111に沿うガス流れにトラップされて溶解炉排 ガス Mとともに排出されるのを防止できる。
[0063] また、酸化鉄源として鉄鉱石を例示したが、酸化鉄を含む高炉ダスト、ミルスケール 等を併用してもよぐさらには酸ィ匕鉄とともに非鉄金属やその酸ィ匕物を含むもの、たと えば金属精鍊設備カゝら排出されるダストゃスラグ等を使用することもできる。
[0064] また、炭素質還元剤、床敷炭材、および追加炭材として石炭を例示したが、コーク ス、オイルコータス、木炭、木材チップ、廃プラスチック、古タイヤ等を用いることもでき る。
[0065] また、炭材内装塊成化物として炭材内装ペレットを例示し、造粒機で造粒する例を 示したが、炭材内装ペレットの代わりに炭材内装プリケットとし、加圧成形機で圧縮成 形するようにしてもよい。この場合は、バインダの種類によっては成形時に水分を添 加するのではなぐむしろ乾燥させた原料を使用することがある。また、加圧成形機の 加圧力を増すことにより、炭材内装プリケットの強度を高めて加熱時の爆裂を抑制で きるので、 30質量%以上の揮発分を含有する炭材も内装炭材として使用できるよう になる。 [0066] また、床敷炭材の炉床への供給手段として装入パイプと分散スクリュの組合せを例 示したが、振動フィーダで炉床上に分散させてもよい。
[0067] また、酸素含有ガスとして酸素ガスを例示したが、高温空気や、高温空気に酸素富 化したものを用いてもよい。
[0068] また、移動炉床式還元炉として回転炉床炉を例示したが、直線炉を用いてもょ 、。
[0069] また、鉄浴式溶解炉のエネルギ源として炭材を酸素含有ガスで燃焼する例を示し た力 電気工ネルギを併用してもよい。
[0070] また、熱間分級工程における分級手段としてスクリーンを例示したが、斜面から自 由空間に落下させて粒度による到達距離の相違で分級する手段や、流動層で分級 する手段などを用いることもできる。
実施例 1
[0071] 図 1に示したプロセスフロー図に基づいて、表 1に示す化学組成の鉄鉱石と石炭を 用い、床敷炭材を用いる場合 (発明例 1, 2)と床敷炭材を用いない場合 (比較例 1) のそれぞれについて表 2に示す条件で試験操業を行い、表 2に併記する操業結果を 得た。ここに、発明例 1は追加炭材をまったく用いずに床敷炭材由来のチヤ一のみを 鉄浴式溶解炉に装入する例、発明例 2は床敷炭材由来のチヤ一に加えて追加炭材 を鉄浴式溶解炉に装入する例、比較例 1は鉄浴式溶解炉に装入する全炭材 (ただし 、固体還元鉄中の含有炭素は除く)を回転炉床炉を経由させずに直接、鉄浴式溶解 炉に装入する例である。参考として、表 3に、表 2の操業結果の欄に示した回転炉床 炉と鉄浴式溶解炉の合計石炭消費量の内訳を示す。なお、本試験操業においては 、発明例 1, 2および比較例 1とも、鉄鉱石は粉砕して lmm未満として用い、上記石 炭は、篩い分けと粉砕の操作を組み合わせて粒度調整し、 lmm未満を炭素質還元 剤に、 l〜5mm (平均粒径 2. 2mm)を床敷炭材に、 5mm超を追加炭材に用いた。 また、炭材内装ペレットの粒径範囲は 6〜20mmとし、炉床上に載置する炭材内装 ペレットの層数は平均 0. 9層とした。
[0072] [表 1] T. Fe FeO Si02 Al203 CaO 鉄鉱石
67.2 26.9 5.7 0.4 0.1 固定炭素
石灰 ft '刀' 灰分 logMF
74.0 15.9 10.1 0.0
[0073] [表 2]
Figure imgf000019_0001
[0074] [表 3]
(単位: kg/thm)
Figure imgf000019_0002
[0075] 表 2に示すように、床敷炭材を用いない比較例 1に対し、床敷炭材を用いる発明例 1 , 2では、固体還元鉄の金属化率は 85% (90%未満)から 95% (92%超)へと上昇 し、回転炉床炉と鉄浴式溶解炉の合計石炭消費量は溶鉄 1トン当たり 150kgな ヽし 1 87kg低減できた。
[0076] また、比較例 1では回転炉床炉の炉床保護のため、定期的に炉床表面の付着物を 肖 IJり取るための休転を必要とした力 発明例 1 , 2では炉床表面への付着物の生成は ほとんど認められず、このような目的の休転は実質的に不要であった。
[0077] さらに、比較例 1に対し、発明例 1 , 2では、鉄浴式溶解炉に装入する炭材 (チヤ一
+追加炭材)の平均揮発分は 15. 9質量%(15質量%超)から 1 1. 9質量%ないし 1 質量%未満(15質量%以下)に減少でき、鉄浴式溶解炉の上部鉄皮温度があきらか に低下することが認められ、熱負荷の低減効果が確認された。
実施例 2
[0078] 〔その 1:固体粒子装入時における酸素ガス吹込み量減少による効果〕
まず、固体粒子(固体還元鉄およびチヤ一)装入時における酸素ガス吹込み量低 下による効果を確認するため、図 6 (a)の構成力もなる (邪魔板、案内手段を有しない )鉄浴式溶解炉を模擬した数式モデルを作成し、固体粒子の排ガス中への散逸量を 予測するシミュレーション計算を実施した。
(計算条件)
•鉄浴式溶解炉の寸法:内径 2. Om (高さ方向で一定)、フリーボード高さ 2. Om •還元鉄装入口内径: 0. 4m
'排ガス排出口内径 : 0. 8m
•固体粒子の見掛け密度:1. 4gZcm3 (下記注参照)
•固体粒子の粒度分布:図 8 (下記注参照)
•固体粒子装入量: 300kgZh (連続装入時)
•酸素吹込み量: 800Nm3Zh (通常操業時 =固体粒子を装入して 、な 、時) '溶解炉排ガス量: 1700Nm3Zh
'溶解炉排ガス温度: 1650°C
•溶湯表面からの単位断面あたりの発生ガス量は一定と仮定
(注)固体粒子の散逸率は、その見掛け密度と粒度分布によって変化するが、本シ ミュレーシヨン計算では固体粒子の見掛け密度は 1. 4gZcm3、粒度分布は図 8に示 すものに設定した。
[0079] なお、固体還元鉄とチヤ一を一緒に装入する場合、固体粒子を構成する固体還元 鉄とチヤ一の質量割合は 90 : 10〜80: 20程度で、見掛け密度は、固体還元鉄が 2 〜3gZcm3、チヤ一が約 1. OgZcm3であり、固体粒子は lmm以下の粒子を 4質量 %程度以上含むと想定される。
(計算結果)
固体粒子を連続装入する場合について、酸素ガス吹込み量を、通常操業時の酸 素ガス吹込み量を 100%として、 100%から 33%まで順次減少させてシミュレーショ ン計算を実施した。計算結果を図 9に示す。同図より、固体粒子の散逸率は、酸素ガ ス吹込み量 100%のときに 41. 7%であったのが、酸素ガス吹込み量を 80%以下に 減ずることにより 30. 3%以下に低下しており、 10%以上改善されることが認められる 。ここに、固体粒子の散逸率とは、鉄浴式溶解炉に装入した固体粒子の全質量に対 する溶解炉排ガス中に散逸した固体粒子の質量の割合 (%)で表した値である。
[0080] 〔その 2:回分式装入法による効果〕
つぎに、回分式装入の影響はシミュレーション計算での確認は困難であったので、 上記数式モデルに対応する鉄浴式溶解炉の冷間模型を作製し、模型実験にて確認 を行った。
[0081] 模型実験は、固体粒子を連続的に装入する場合を基準として、固体粒子を間欠的 に装入する場合にっ ヽて固体粒子の装入頻度および酸素ガス吹込み量を種々変化 させて実施した。実験結果を表 4に示す。同表より明らかなように、一定時間ごとに間 欠的に装入することにより、酸素ガス吹込み量を減じなくとも、固体粒子の散逸率は、 33. 4%力 20. 1〜22. 3%へと低下し、間欠装入(回分式装入)と酸素ガス吹込み 量減少とを同時に行うことにより 8. 6〜8. 9%へとさらに低下しているのが認められた
[0082] [表 4]
Figure imgf000021_0001
実施例 3
[0083] 図 1に示したプロセスフロー図に基づいて、表 1に示した化学糸且成の鉄鉱石と石炭を 用い、回転炉床炉に床敷炭材を用い、固体還元鉄とチヤ一を 5minごとに間欠的に 装入する場合 (発明例 3、 4)と連続的に装入する場合 (比較例 2)のそれぞれにつ 、 て表 5に示す条件で試験操業を行った。なお、発明例 3、 4および比較例 2とも、固体 還元鉄とチヤ一は一緒に鉄浴式溶解炉に装入したが、副原料と追加炭材は、固体還 元鉄およびチヤ一とは別系統から装入した。また、鉄浴式溶解炉には、邪魔板およ び案内手段は設けな力つた。操業結果を同表に併記する。同表に示すように、回転 炉床炉の操業条件および鉄浴式溶解炉の二次燃焼率は、発明例 3、 4および比較 例 2とも同一としたが、発明例 3、 4では、追加炭材をまったく用いずに床敷炭材由来 のチヤ一のみを鉄浴式溶解炉に装入することにより操業できたのに対し、比較例 2で は、チヤ一に加えて追加炭材の装入を必要とした。参考として、表 6に、表 5の操業結 果の欄に示した回転炉床炉と鉄浴式溶解炉の合計石炭消費量の内訳を示す。なお 、本試験操業においては、発明例 3、 4および比較例 2とも、鉄鉱石は粉砕して lmm 未満として用い、上記石炭は、篩い分けと粉砕の操作を組み合わせて粒度調整し、 1 mm未満を炭素質還元剤に、 l〜5mm (平均粒径 2. 2mm)を床敷炭材に、 5mm超 を追加炭材に用いた。また、炭材内装ペレットの粒径範囲は 6〜20mmとし、炉床上 に載置する炭材内装ペレットの層数は平均 0. 9層とした。
[0084] [表 5]
Figure imgf000022_0001
(注 1 )固体粒子装入開始から 30秒間、酸素吹込み量を 50%に低下させた。
(注 2)固体粒子装入時においても、酸素吹込み量を 1 00%に維持した。
[0085] [表 6] (単位: kg/thm)
Figure imgf000023_0001
[0086] 表 5に示すように、連続装入法による比較例 2に対し、回分式で固体粒子装入時に 酸素吹込み量を減少しない装入法を採用した発明例 4でも炭材歩留改善の効果が 認められるが、回分式で固体粒子装入時に酸素吹込み量を減少する装入法を採用 した発明例 3では、鉄浴式溶解炉からの排ガスダスト中に含まれる炭素量は溶鉄 1ト ン当たり 50kgから 13kgへと減少して炭材歩留が大幅に改善され、表 6に示すように 、追加炭材量が不要となることによって回転炉床炉と鉄浴式溶解炉の合計石炭消費 量は溶鉄 1トン当たり 49kg低減できた。
[0087] 上述したように、本発明の溶鉄の製造方法は、移動炉床式還元炉と鉄浴式溶解炉 とを組み合わせてなる溶鉄製造プロセスを用いて溶鉄を製造する方法であって、下 記(1)〜 (4)の工程を備えたことを特徴とする。
(1)前記移動炉床式還元炉の炉床上に床敷炭材を装入し、この床敷炭材の上に粉 状酸化鉄源と粉状炭素質還元剤とを含む炭材内装塊成化物を載置する還元炉装入 工程
(2)前記炉床を前記移動炉床式還元炉内で移動させて前記炭材内装塊成化物を加 熱還元して固体還元鉄となすとともに、前記床敷炭材を加熱乾留してチヤ一となす還 元工程
(3)前記固体還元鉄およびチヤ一を熱いまま前記鉄浴式溶解炉に装入する溶解炉 装入工程
(4)前記鉄浴式溶解炉に酸素含有ガスを吹き込み、前記固体還元鉄を溶解して溶 鉄となす溶解工程。
[0088] この方法によって、床敷炭材を用いたことによって炉床がより確実に保護されて炉 床剥離などのトラブルが回避され、より長期的な移動炉床式還元炉の連続操業が可 能となる。また、脱揮後のチヤ一は揮発分を含まないので、鉄浴式溶解炉内での揮 発分の燃焼による耐火物損傷が防止され、鉄浴式溶解炉の耐火物寿命が延長され る。更に、床敷炭材を用いたことにより、移動炉床式還元炉内における固体還元鉄の 再酸化が防止されて高い金属化率が達成され、鉄浴式溶解炉における炭材消費量 が大幅に減少する。この結果、移動炉床式還元炉および鉄浴式溶解炉の操業をより 安定化しつつ、燃料原単位のさらなる低減が実現できる。
[0089] また、本発明方法によると、 92%以上という高い金属化率を達成することが可能と なる。
[0090] また、本発明方法にお!ヽて、前記鉄浴式溶解炉の排ガスの少なくとも一部を前記 移動炉床式還元炉の燃料ガスとして使用することも可能である。このようにすることに より、床敷炭材が移動炉床式還元炉内で加熱されて脱揮された揮発分は、鉄浴式溶 解炉の排ガスの少なくとも一部とともに、移動炉床式還元炉の燃料として有効に利用 され、移動炉床式還元炉の燃料消費量を低減できる。
[0091] また、本発明方法にぉ 、て、前記(3)の工程にぉ 、て、別の炭材を追加して鉄浴 式溶解炉に装入することも可能である。このようにすることにより、固体還元鉄 F中の 炭素含有量とチヤ一 Gのみでは、鉄浴式溶解炉で必要とされる炭材消費量を賄えな い場合にも対応し得る。
[0092] また、本発明方法において、前記(2)および(3)の工程の間に、固体還元鉄および チヤ一を熱 ヽまま一緒に成形する熱間成形工程を入れるようにすることも可能である 。このようにすることにより、鉄浴式溶解炉への装入時における微粉の飛散が防止さ れ、鉄浴式溶解炉力 の排ガス中のダスト量を大幅に低減できるので、鉄歩留、炭素 歩留を大幅に改善できる。
[0093] また、本発明方法において、前記(3)の工程に代えて、下記(7)〜(9)の工程を行 うようにすることも可能である。
(7)前記移動炉床式還元炉から前記固体還元鉄およびチヤ一を一緒に取り出した 後、熱いまま粗粒と細粒とに分級する熱間分級工程
(8)前記粗粒を前記鉄浴式溶解炉に重力により装入する粗粒装入工程 (9)前記細粒を前記鉄浴式溶解炉にインジヱクシヨンにより装入する細粒インジエタ シヨン工程。
[0094] このようにすることにより、微粉が溶鉄および Zまたは溶融スラグ中に捕捉されるの で、鉄浴式溶解炉への装入時における微粉の飛散が防止され、鉄浴式溶解炉から の排ガス中のダスト量を大幅に低減できるので、鉄歩留、炭素歩留を大幅に改善で きる。
[0095] また、本発明方法にぉ 、て、前記(3)の工程にぉ 、て、固体還元鉄およびチヤ一を 熱いまま鉄浴式溶解炉にその上方力も装入するようにすることも可能である。このよう にすることにより、チヤ一などの微粉の排ガス中への飛散割合を低減でき、プロセス 全体における炭材の歩留を改善できる。
[0096] 上記のように固体還元鉄およびチヤ一を熱いまま鉄浴式溶解炉にその上方力 装 入する方式として、チヤ一および固体還元鉄を、移動炉床式還元炉力 排出してコン テナに収容し、ついでこのコンテナ力も鉄浴式溶解炉の上方に設けられたホツバに 移送して!/、つたん保持したのち、このホッパから間欠的に切り出して熱 、まま前記鉄 浴式溶解炉に装入する方式、或いは、チヤ一および固体還元鉄を、移動炉床式還 元炉力 排出していったんホツバに保持し、ついでこのホツバから間欠的に切り出し て熱いまま前記鉄浴式溶解炉に装入する方式などが含まれる。

Claims

請求の範囲 [1] 移動炉床式還元炉と鉄浴式溶解炉とを組み合わせてなる溶鉄製造プロセスを用い て溶鉄を製造する方法であって、下記(1)〜 (4)の工程を備えたことを特徴とする溶 鉄の製造方法。
(1)前記移動炉床式還元炉の炉床上に床敷炭材を装入し、この床敷炭材の上に粉 状酸化鉄源と粉状炭素質還元剤とを含む炭材内装塊成化物を載置する還元炉装入 工程
(2)前記炉床を前記移動炉床式還元炉内で移動させて前記炭材内装塊成化物を加 熱還元して固体還元鉄となすとともに、前記床敷炭材を加熱乾留してチヤ一となす還 元工程
(3)前記固体還元鉄およびチヤ一を実質的に冷却することなく前記鉄浴式溶解炉に 装入する溶解炉装入工程
(4)前記鉄浴式溶解炉に酸素含有ガスを吹き込み、前記固体還元鉄を溶解して溶 鉄となす溶解工程。
[2] 前記(2)の工程にぉ 、て、前記炭材内装塊成化物を加熱還元して金属化率 92% 以上の固体還元鉄となす請求項 1に記載の溶鉄の製造方法。
[3] 前記 (4)の工程のあとに、下記(5)の工程を設けた請求項 1または 2に記載の溶鉄 の製造方法。
(5)前記鉄浴式溶解炉の排ガスの少なくとも一部を前記移動炉床式還元炉の燃料 ガスとして使用する溶解炉排ガス循環工程。
[4] 前記(2)の工程において、前記固体還元鉄の炭素含有量を 10質量%以下とする 請求項 1〜3のいずれか 1項に記載の溶鉄の製造方法。
[5] 前記 (4)の工程において、二次燃焼率 40%以下の条件下で溶解を行う請求項 1〜
4の 、ずれか 1項に記載の溶鉄の製造方法。
[6] 前記炉床上に装入された前記床敷炭材の厚みを 1〜: LOmmとする請求項 1〜5の いずれか 1項に記載の溶鉄の製造方法。
[7] 前記床敷炭材の平均粒径を l〜5mmとする請求項 1〜6のいずれか 1項に記載の 溶鉄の製造方法。
[8] 前記床敷炭材のギ一セラ最高流動度 MFを logMF≤2とする請求項 1〜7のいず れか 1項に記載の溶鉄の製造方法。
[9] 前記床敷炭材の揮発分を、乾量基準で 10質量%以上とする請求項 1〜8のいずれ 力 1項に記載の溶鉄の製造方法。
[10] 前記床敷炭材の揮発分を、乾量基準で 50質量%以下とする請求項 1〜9のいずれ 力 1項に記載の溶鉄の製造方法。
[11] 前記(3)の工程において、別の炭材を追加して前記鉄浴式溶解炉に装入する請求 項 1〜: LOのいずれか 1項に記載の溶鉄の製造方法。
[12] 前記鉄浴式溶解炉に装入する全炭材の平均揮発分を、前記固体還元鉄中の含有 炭素を除く状態において、乾量基準で 15質量%以下とする請求項 1〜11のいずれ 力 1項に記載の溶鉄の製造方法。
[13] 前記(2)および(3)の工程の間に、下記(6)の工程を設けた請求項 1〜12のいず れか 1項に記載の溶鉄の製造方法。
(6)前記固体還元鉄およびチヤ一を実質的に冷却することなく一緒に成形する熱間 成形工程。
[14] 前記(3)の工程において、前記固体還元鉄およびチヤ一の温度を 500〜: L 100°C とする請求項 1〜13のいずれか 1項に記載の溶鉄の製造方法。
[15] 前記(3)の工程に代えて、下記(7)〜(9)の工程を設けた請求項 1〜12のいずれ 力 1項に記載の溶鉄の製造方法。
(7)前記移動炉床式還元炉から前記固体還元鉄およびチヤ一を一緒に取り出した 後、実質的に冷却することなく粗粒と細粒とに分級する熱間分級工程
(8)前記粗粒を前記鉄浴式溶解炉に重力により装入する粗粒装入工程
(9)前記細粒を前記鉄浴式溶解炉にインジヱクシヨンにより装入する細粒インジエタ シヨン工程。
[16] 前記(8)の工程において、前記粗粒の温度を 500〜: L 100°Cとする請求項 15に記 載の溶鉄の製造方法。
[17] 前記(3)の工程において、前記固体還元鉄およびチヤ一を実質的に冷却すること なく前記鉄浴式溶解炉にその上方力 装入することを特徴とする請求項 1〜14のい ずれか 1項に記載の溶鉄製造方法。
[18] 前記(3)の工程において、前記チヤ一を前記固体還元鉄および Zまたは副原料そ の他の装入物と一緒に前記鉄浴式溶解炉に装入する、請求項 17に記載の溶鉄製 造方法。
[19] 前記(3)の工程は、前記チヤ一および固体還元鉄を、前記移動炉床式還元炉から 排出してコンテナに収容し、っ 、でこのコンテナから前記鉄浴式溶解炉の上方に設 けられたホツバに移送していったん保持したのち、このホツバから間欠的に切り出して 実質的に冷却することなく前記鉄浴式溶解炉に装入する、請求項 17に記載の溶鉄 製造方法。
[20] 前記(3)の工程は、前記チヤ一および固体還元鉄を、前記移動炉床式還元炉から 排出して前記鉄浴式溶解炉の上方に設けられたホツバにいったん保持し、ついでこ のホッパから間欠的に切り出して実質的に冷却することなく前記鉄浴式溶解炉に装 入する、請求項 17に記載の溶鉄製造方法。
[21] 前記(3)の工程において、前記チヤ一の装入時に、前記鉄浴式溶解炉への酸素含 有ガスの吹き込み量を減少させる、請求項 17〜20のいずれか 1項に記載の溶鉄製 造方法。
[22] 前記チヤ一装入時における酸素含有ガスの吹き込み量を、前記チヤ一を装入して Vヽな 、時における酸素含有ガスの吹き込み量の 80%以下とする、請求項 21に記載 の溶鉄製造方法。
[23] 前記酸素含有ガスを吹き込むランスを複数本備え、その一部のランスからの吹込み 量を減少する、または吹き込みを停止する、請求項 21または 22に記載の溶鉄製造 方法。
[24] 移動炉床式還元炉と鉄浴式溶解炉とを組み合わせてなる溶鉄製造装置であって、 下記(1)〜 (5)の手段を備えたことを特徴とする溶鉄製造装置。
(1)前記移動炉床式還元炉の炉床上に床敷炭材を装入する床敷装入手段
(2)前記床敷炭材の上に粉状酸化鉄源と粉状炭素質還元剤とを含む炭材内装塊成 化物を載置する原料装入手段
(3)前記炉床を前記移動炉床式還元炉内で移動させる間に、前記炭材内装塊成化 物を加熱還元して固体還元鉄となすとともに、前記床敷炭材を加熱乾留してチヤ一と なす加熱手段
(4)前記固体還元鉄およびチヤ一を実質的に冷却することなく前記鉄浴式溶解炉に 上方から装入する手段であって、少なくとも前記チヤ一の装入を間欠的に行う溶解炉 装入手段
(5)前記鉄浴式溶解炉に酸素含有ガスを吹き込み、前記固体還元鉄を溶解して溶 鉄となす酸素吹込み手段。
[25] 移動炉床式還元炉と鉄浴式溶解炉とを組み合わせてなる溶鉄製造装置であって、 下記(1)〜 (6)の手段を備えたことを特徴とする溶鉄製造装置。
(1)前記移動炉床式還元炉の炉床上に床敷炭材を装入する床敷装入手段
(2)前記床敷炭材の上に粉状酸化鉄源と粉状炭素質還元剤とを含む炭材内装塊成 化物を載置する原料装入手段
(3)前記炉床を前記移動炉床式還元炉内で移動させる間に、前記炭材内装塊成化 物を加熱還元して固体還元鉄となすとともに、前記床敷炭材を加熱乾留してチヤ一と なす加熱手段
(4)前記移動炉床式還元炉から排出された前記固体還元鉄およびチヤ一を実質的 に冷却することなく収容する還元鉄収容手段
(5)前記鉄浴式溶解炉の上方に設けられ、前記還元鉄収容手段から移送された前 記固体還元鉄およびチヤーを 、つたん保持する還元鉄保持手段であって、前記固 体還元鉄およびチヤ一を間欠的に切り出して実質的に冷却することなく鉄浴式溶解 炉に装入する間欠切出し手段を備えた還元鉄保持手段
(6)前記鉄浴式溶解炉に酸素含有ガスを吹き込み、前記固体還元鉄を溶解して溶 鉄となす酸素吹込み手段。
[26] 移動炉床式還元炉と鉄浴式溶解炉とを組み合わせてなる溶鉄製造装置であって、 下記(1)〜 (5)の手段を備えたことを特徴とする溶鉄製造装置。
(1)前記移動炉床式還元炉の炉床上に床敷炭材を装入する床敷装入手段
(2)前記床敷炭材の上に粉状酸化鉄源と粉状炭素質還元剤とを含む炭材内装塊成 化物を載置する原料装入手段 (3)前記炉床を前記移動炉床式還元炉内で移動させる間に、前記炭材内装塊成化 物を加熱還元して固体還元鉄となすとともに、前記床敷炭材を加熱乾留してチヤ一と なす加熱手段
(4)前記移動炉床式還元炉から排出された前記固体還元鉄およびチヤ一をいつた ん保持する還元鉄保持手段であって、前記固体還元鉄およびチヤ一を間欠的に切 り出して実質的に冷却することなく鉄浴式溶解炉に装入する間欠切出し手段を備え た還元鉄保持手段
(5)前記鉄浴式溶解炉に酸素含有ガスを吹き込み、前記固体還元鉄を溶解して溶 鉄となす酸素吹込み手段。
[27] 前記鉄浴式溶解炉の天井部であって、前記チヤ一の装入部と前記鉄浴式溶解炉 力もの排ガスの排出部との間に、前記チヤ一の排ガス中への散逸を抑制する邪魔板 を備えた、請求項 24〜26のいずれか 1項に記載の溶鉄製造装置。
[28] 前記チヤ一の装入部に、前記チヤ一を前記鉄浴式溶解炉内の溶湯表面に案内す る案内手段を備えた、請求項 24〜27のいずれか 1項に記載の溶鉄製造装置。
PCT/JP2005/019701 2004-10-29 2005-10-26 溶鉄の製造方法およびその製造装置 WO2006046606A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
MX2007005031A MX2007005031A (es) 2004-10-29 2005-10-26 Metodo y aparato para producir hierro fundido.
RU2007119767/02A RU2007119767A (ru) 2004-10-29 2005-10-26 Способ и устройство для получения расплавленного железа
US11/666,830 US20070295165A1 (en) 2004-10-29 2005-10-26 Process for Producing Molten Iron and Apparatus Therefor
AU2005297906A AU2005297906A1 (en) 2004-10-29 2005-10-26 Process for producing molten iron and apparatus therefor
CA002584600A CA2584600A1 (en) 2004-10-29 2005-10-26 Method and apparatus for producing molten iron
EP05805211A EP1808498A4 (en) 2004-10-29 2005-10-26 PROCESS FOR PRODUCING MOLTEN IRON AND APPARATUS THEREFOR
BRPI0517252-7A BRPI0517252A (pt) 2004-10-29 2005-10-26 processo e dispositivos de produção de ferro fundido

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004316532 2004-10-29
JP2004-316532 2004-10-29
JP2005-042716 2005-02-18
JP2005042716 2005-02-18

Publications (1)

Publication Number Publication Date
WO2006046606A1 true WO2006046606A1 (ja) 2006-05-04

Family

ID=36227848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019701 WO2006046606A1 (ja) 2004-10-29 2005-10-26 溶鉄の製造方法およびその製造装置

Country Status (10)

Country Link
US (1) US20070295165A1 (ja)
EP (1) EP1808498A4 (ja)
KR (1) KR20070058675A (ja)
AU (1) AU2005297906A1 (ja)
BR (1) BRPI0517252A (ja)
CA (1) CA2584600A1 (ja)
MX (1) MX2007005031A (ja)
RU (1) RU2007119767A (ja)
TW (1) TW200613566A (ja)
WO (1) WO2006046606A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007122928A1 (ja) * 2006-04-25 2007-11-01 Kabushiki Kaisha Kobe Seiko Sho 溶鉄製造方法および溶鉄製造装置
WO2009119843A1 (ja) * 2008-03-28 2009-10-01 株式会社神戸製鋼所 溶鉄製造用原料投入装置および溶鉄製造用原料投入方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5059379B2 (ja) 2006-11-16 2012-10-24 株式会社神戸製鋼所 高炉装入原料用ホットブリケットアイアンおよびその製造方法
PL2247759T3 (pl) 2008-01-30 2015-08-31 Nu Iron Tech Llc Sposób i układ do wytwarzania bryłek metalicznego żelaza
US9073195B2 (en) 2010-04-29 2015-07-07 Black & Decker Inc. Universal accessory for oscillating power tool
US9186770B2 (en) 2010-04-29 2015-11-17 Black & Decker Inc. Oscillating tool attachment feature
US8925931B2 (en) 2010-04-29 2015-01-06 Black & Decker Inc. Oscillating tool
JP2011252226A (ja) * 2010-05-06 2011-12-15 Kobe Steel Ltd 金属鉄の製造方法
US9149923B2 (en) 2010-11-09 2015-10-06 Black & Decker Inc. Oscillating tools and accessories
CN102162017B (zh) * 2011-03-18 2012-10-10 北京科技大学 一种运用转底炉珠铁工艺综合利用硼铁矿的方法
CN102719587A (zh) * 2012-06-29 2012-10-10 中冶南方工程技术有限公司 一种转底炉熔融还原炉联合炼铁工艺
USD832666S1 (en) 2012-07-16 2018-11-06 Black & Decker Inc. Oscillating saw blade
WO2017052112A1 (ko) * 2015-09-21 2017-03-30 주식회사 포스코 용철 제조장치 및 용철 제조방법
US10265778B2 (en) 2017-01-16 2019-04-23 Black & Decker Inc. Accessories for oscillating power tools
USD814900S1 (en) 2017-01-16 2018-04-10 Black & Decker Inc. Blade for oscillating power tools
KR102073832B1 (ko) * 2017-12-18 2020-02-05 재단법인 포항산업과학연구원 커피박을 활용한 직접환원철 제조용 펠렛 및 이를 이용한 직접환원철 제조방법
KR102112635B1 (ko) * 2017-12-19 2020-05-19 재단법인 포항산업과학연구원 다단 환원을 통한 직접환원철 제조방법
EP3770279B1 (en) * 2018-03-19 2022-08-10 JFE Steel Corporation Molten metal component estimation device, molten metal component estimation method, and molten metal production method
TWI781626B (zh) * 2021-05-18 2022-10-21 中國鋼鐵股份有限公司 高爐鐵水溫度預測方法與系統

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164807A (ja) * 1984-09-03 1986-04-03 Nippon Steel Corp 鉄鉱石の溶融還元方法
JPH01129916A (ja) * 1987-11-13 1989-05-23 Kawasaki Heavy Ind Ltd 溶融還元炉における鉱石の装入方法
JPH01195227A (ja) * 1988-01-29 1989-08-07 Nkk Corp 鉄鉱石の溶融還元法
JPH01195220A (ja) * 1988-01-30 1989-08-07 Nippon Steel Corp 溶融還元炉
JP2002339009A (ja) * 2001-05-15 2002-11-27 Midrex Internatl Bv Zurich Branch 粒状金属鉄
JP2003239008A (ja) * 2002-02-18 2003-08-27 Jfe Steel Kk 移動型炉床炉の操業方法および炉床耐火物保護用固体還元材
JP2004176170A (ja) * 2002-01-24 2004-06-24 Kobe Steel Ltd 溶鉄の製法
JP2004183070A (ja) * 2002-12-05 2004-07-02 Kobe Steel Ltd 溶鉄の製法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701214A (en) * 1986-04-30 1987-10-20 Midrex International B.V. Rotterdam Method of producing iron using rotary hearth and apparatus
ZA995438B (en) * 1998-08-27 2000-03-20 Kobe Steel Ltd Method for operating moving hearth reducing furnace.
JP2001279313A (ja) * 2000-03-30 2001-10-10 Midrex Internatl Bv 溶融金属鉄の製法
US6669756B2 (en) * 2000-07-31 2003-12-30 Kabushiki Kaisha Kobe Seiko Sho Discharge apparatus for movable hearth type heat-treatment furnace, its operation method, and method and apparatus for manufacturing molten iron using the same
MY133537A (en) * 2002-01-24 2007-11-30 Kobe Steel Ltd Method for making molten iron

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164807A (ja) * 1984-09-03 1986-04-03 Nippon Steel Corp 鉄鉱石の溶融還元方法
JPH01129916A (ja) * 1987-11-13 1989-05-23 Kawasaki Heavy Ind Ltd 溶融還元炉における鉱石の装入方法
JPH01195227A (ja) * 1988-01-29 1989-08-07 Nkk Corp 鉄鉱石の溶融還元法
JPH01195220A (ja) * 1988-01-30 1989-08-07 Nippon Steel Corp 溶融還元炉
JP2002339009A (ja) * 2001-05-15 2002-11-27 Midrex Internatl Bv Zurich Branch 粒状金属鉄
JP2004176170A (ja) * 2002-01-24 2004-06-24 Kobe Steel Ltd 溶鉄の製法
JP2003239008A (ja) * 2002-02-18 2003-08-27 Jfe Steel Kk 移動型炉床炉の操業方法および炉床耐火物保護用固体還元材
JP2004183070A (ja) * 2002-12-05 2004-07-02 Kobe Steel Ltd 溶鉄の製法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1808498A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007122928A1 (ja) * 2006-04-25 2007-11-01 Kabushiki Kaisha Kobe Seiko Sho 溶鉄製造方法および溶鉄製造装置
US7993430B2 (en) 2006-04-25 2011-08-09 Kobe Steel, Ltd. Process for producing molten iron and apparatus for producing molten iron
US8277536B2 (en) 2006-04-25 2012-10-02 Kobe Steel, Ltd. Process for producing molten iron and apparatus for producing molten iron
WO2009119843A1 (ja) * 2008-03-28 2009-10-01 株式会社神戸製鋼所 溶鉄製造用原料投入装置および溶鉄製造用原料投入方法
JP2009243708A (ja) * 2008-03-28 2009-10-22 Kobe Steel Ltd 溶鉄製造用原料投入装置および溶鉄製造用原料投入方法

Also Published As

Publication number Publication date
BRPI0517252A (pt) 2008-10-07
RU2007119767A (ru) 2008-12-10
EP1808498A1 (en) 2007-07-18
CA2584600A1 (en) 2006-05-04
US20070295165A1 (en) 2007-12-27
TW200613566A (en) 2006-05-01
MX2007005031A (es) 2007-06-19
AU2005297906A1 (en) 2006-05-04
EP1808498A4 (en) 2008-10-15
KR20070058675A (ko) 2007-06-08

Similar Documents

Publication Publication Date Title
WO2006046606A1 (ja) 溶鉄の製造方法およびその製造装置
JP4757982B2 (ja) 粒状金属鉄の歩留まり向上方法
US6413295B2 (en) Iron production method of operation in a rotary hearth furnace and improved furnace apparatus
US8262766B2 (en) Method for reducing chromium containing raw material
US8277536B2 (en) Process for producing molten iron and apparatus for producing molten iron
KR20080014438A (ko) 용철제조장치 및 이를 이용한 용철제조방법
US20130098202A1 (en) Process for producing molten steel using granular metallic iron
JP5334240B2 (ja) 製鋼用還元鉄塊成鉱の製造方法
JP5303727B2 (ja) 製鋼用還元鉄塊成鉱の製造方法
JP2006152432A (ja) 溶鉄の製造方法
JP4976701B2 (ja) 溶鉄製造方法および溶鉄製造装置
JP4572435B2 (ja) 鉄含有物からの還元鉄の製造方法
JP2003239008A (ja) 移動型炉床炉の操業方法および炉床耐火物保護用固体還元材
JPS59170212A (ja) 還元鉄ブリケツトの製造方法
JP3735016B2 (ja) 溶鉄製造方法および溶鉄製造装置
JP2009091664A (ja) 粒状金属鉄の製法
JP3451901B2 (ja) 移動型炉床炉の操業方法
JP2006022408A (ja) 溶鉄製造方法
JPH01129916A (ja) 溶融還元炉における鉱石の装入方法
WO1999051783A1 (en) Method and apparatus for producing molten iron from iron oxides
JPH04285106A (ja) 溶融還元法における石炭・鉄鉱石の予備処理法
JP2003239007A (ja) 金属含有物からの還元金属の製造方法
ZA200103413B (en) Iron production method of operation in a rotary hearth furnace and improved furnace apparatus.
JPS59176579A (ja) 溶融還元装置
KR20100028260A (ko) 산화철이 함유된 물질로부터 환원철을 제조하는 장치 및 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV LY MD MG MK MN MW MX MZ NA NG NO NZ OM PG PH PL PT RO RU SC SD SG SK SL SM SY TJ TM TN TR TT TZ UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1200700653

Country of ref document: VN

WWE Wipo information: entry into national phase

Ref document number: 2584600

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005805211

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/005031

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1020077009643

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580037287.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11666830

Country of ref document: US

Ref document number: 1811/CHENP/2007

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005297906

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 555300

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2007119767

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2005297906

Country of ref document: AU

Date of ref document: 20051026

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005297906

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2005805211

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWP Wipo information: published in national office

Ref document number: 11666830

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0517252

Country of ref document: BR