WO2006043631A1 - Anisotropic conductive connector for inspecting wafer, manufacturing method thereof, waver inspection probe card, manufacturing method thereof, and wafer inspection device - Google Patents

Anisotropic conductive connector for inspecting wafer, manufacturing method thereof, waver inspection probe card, manufacturing method thereof, and wafer inspection device Download PDF

Info

Publication number
WO2006043631A1
WO2006043631A1 PCT/JP2005/019309 JP2005019309W WO2006043631A1 WO 2006043631 A1 WO2006043631 A1 WO 2006043631A1 JP 2005019309 W JP2005019309 W JP 2005019309W WO 2006043631 A1 WO2006043631 A1 WO 2006043631A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
wafer
inspection
layer
contact member
Prior art date
Application number
PCT/JP2005/019309
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyoshi Kimura
Fujio Hara
Daisuke Yamada
Sugiro Shimoda
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Publication of WO2006043631A1 publication Critical patent/WO2006043631A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07314Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips

Definitions

  • the present invention relates to an anisotropic conductive connector for wafer inspection used for performing electrical inspection of a plurality of integrated circuits formed on a wafer in a wafer state, a method for manufacturing the same, and a probe card for wafer inspection
  • the present invention relates to a manufacturing method and a wafer inspection apparatus. Background art
  • a large number of integrated circuits are formed on a wafer made of, for example, silicon, and then basic electrical characteristics of each of these integrated circuits are inspected. Thus, a probe test for selecting defective integrated circuits is performed.
  • the semiconductor chip is formed by cutting the wafer, and the semiconductor chip is housed in an appropriate package and sealed. Further, each packaged semiconductor integrated circuit device is subjected to a burn-in test for selecting a semiconductor integrated circuit device having a potential defect by examining electrical characteristics in a high temperature environment.
  • a probe card is used to electrically connect each of the electrodes to be inspected in the inspection object to a tester.
  • a probe card an inspection circuit board in which an inspection electrode is formed according to a pattern corresponding to the pattern of the test electrode, an anisotropic conductive elastomer sheet disposed on the inspection circuit board, and It is known that a sheet-like probe is disposed on the anisotropically conductive elastomer sheet.
  • Patent Document 1 discloses that metal particles are uniformly dispersed in an elastomer.
  • An anisotropic conductive elastomer sheet (hereinafter referred to as a “dispersed anisotropic conductive elastomer sheet”) is disclosed, and Patent Document 2 and others disclose a conductive magnetic sheet.
  • An anisotropic conductive elastomer sheet (hereinafter referred to as this) in which a large number of conductive parts extending in the thickness direction and insulating parts that insulate them from each other are formed by non-uniform distribution of the particles in the elastomer. Is referred to as “the unevenly distributed anisotropic conductive elastomer sheet”).
  • Patent Document 3 and the like disclose an unevenly distributed anisotropic conductive elastomer sheet in which a step is formed between the surface of the conductive portion and the insulating portion.
  • the unevenly distributed anisotropically conductive elastomer sheet has a conductive portion formed according to a pattern corresponding to the pattern of the electrode to be inspected of the integrated circuit to be inspected. More reliable electrical connection between electrodes compared to distributed anisotropic conductive elastomer sheet, even for integrated circuits where the arrangement pitch of the electrodes to be inspected, that is, the distance between the centers of adjacent electrodes to be inspected is small Is advantageous in that it can be achieved with Therefore, an unevenly distributed anisotropic conductive elastomer sheet is used in a probe test or burn-in test of a semiconductor integrated circuit device in which the pitch of electrodes to be inspected is small.
  • a wafer is placed in a plurality of areas in which, for example, 16 or 32 integrated circuits are formed.
  • a method is adopted in which a probe test is performed on all integrated circuits formed in this area at once, and a probe test is sequentially performed on integrated circuits formed in other areas.
  • 64 or 124 of all the integrated circuits formed on the wafer or all of the integrated circuits are collectively subjected to the probe test. It is requested to do.
  • the Ueno to be inspected is, for example, a large one having a diameter of 8 inches or more.
  • the number of electrodes to be inspected is, for example, 5000 or more, particularly 10000 or more, the pitch of the electrodes to be inspected in each integrated circuit is extremely small.
  • the anisotropically conductive elastomer sheet is used, there are the following problems.
  • anisotropically conductive elastomer sheets are flexible and easily deformable and have low handling properties. Therefore, when an electrical connection is made to an inspection target electrode of a wafer to be inspected. In addition, it is extremely difficult to align and hold and fix the unevenly distributed anisotropic conductive elastomer sheet.
  • the linear thermal expansion coefficient of the material for example silicon constituting the wafer 3. is about 3 X 10- 6 ZK, whereas linear thermal expansion coefficient of the material such as silicone rubber constituting the anisotropically conductive elastomer one sheet 2. is about 2 ⁇ 10- 4 ⁇ .
  • the change in wafer diameter is theoretically although it is only 0066 cm, the change in diameter of the anisotropically conductive elastomer sheet reaches 0.44 cm. in this way
  • the burn-in test Even if the required alignment and holding / fixing of the wafer and the unevenly distributed anisotropic conductive elastomer sheet is realized.
  • the electrical connection state changes as a result of displacement between the conductive part of the unevenly distributed anisotropically conductive elastomer sheet and the inspected electrode of the wafer. Is difficult to maintain.
  • a frame plate in which a plurality of openings are formed corresponding to an electrode region in which an inspection target electrode of an integrated circuit in a wafer to be inspected is formed, and the frame plate
  • An anisotropic conductive connector composed of a plurality of elastic anisotropic conductive films arranged so as to close each of the openings, and the anisotropic conductive connector and a sheet-like probe arranged on the anisotropic conductive connector.
  • Proposed probe cards have been proposed (for example, see Patent Document 4). According to such an anisotropic conductive connector, the following effects can be obtained.
  • Each of the openings formed in the frame plate has a size corresponding to the electrode region of the integrated circuit in the wafer to be inspected. Therefore, the anisotropic anisotropic conductive film disposed in each of the openings is Since a small size is sufficient, it is easy to form individual elastic anisotropic conductive films.
  • each of the elastic anisotropic conductive films is supported by the frame plate, it can be easily handled by being deformed, and it can be integrated by forming positioning marks (for example, holes) in the frame plate in advance. In the electrical connection work of the circuit device, it is possible to easily align and hold and fix the integrated circuit device.
  • the thermal expansion of the elastic anisotropic conductive film with a small size has a small absolute amount of thermal expansion even when it receives a thermal history
  • the thermal expansion of the elastic anisotropic conductive film is regulated by the frame plate, and the anisotropic conductive film
  • the thermal expansion of the entire connector depends on the thermal expansion of the material that makes up the frame plate, so if you use a material with a low coefficient of thermal expansion as the material that makes up the frame plate,
  • a favorable electrical connection state is stably maintained.
  • Such an anisotropic conductive connector 1 is manufactured as follows.
  • a mold for forming an elastic anisotropic conductive film comprising an upper mold 80 and a lower mold 85 as a pair as shown in FIG. 54 is prepared.
  • Each of the upper mold 80 and the lower mold 85 in this mold has a substrate 81 , 86, a plurality of ferromagnetic layers 82, 87 arranged according to a pattern corresponding to the pattern of the conductive portion of the anisotropic conductive elastomer sheet to be formed, and these ferromagnetic layers 82, 87 Nonmagnetic material layers 83 and 88 are provided at locations other than the formed location, and the ferromagnetic material layers 82 and 87 and the nonmagnetic material layers 83 and 88 form a molding surface.
  • the upper mold 80 and the lower mold 85 are arranged so that the corresponding ferromagnetic layers 82 and 87 face each other.
  • a frame plate 90 in which an opening 91 is formed corresponding to the electrode region in the wafer to be inspected is aligned and disposed, and is elasticized by a hardening process.
  • a molding material layer 95 ⁇ ⁇ formed by dispersing conductive particles ⁇ exhibiting magnetism in a polymer material forming material to be a polymer material is formed so as to close each opening 91 of the frame plate 90.
  • the conductive particles contained in the molding material layer 95 are dispersed in the molding material layer 95.
  • a pair of electromagnets are arranged on the upper surface of the upper die 80 and the lower surface of the lower die 85 to operate them, whereby the ferromagnetic material layer 82 of the upper die 80 is formed on the molding material layer 95 ⁇ .
  • the corresponding lower portion 85 of the ferromagnetic layer 87 of the lower mold 85 that is, the portion that becomes the conductive portion, a magnetic field that is larger and stronger than the other portions is applied in the thickness direction of the molding material layer 95 95.
  • the conductive particles P dispersed in the molding material layer 95A are, as shown in FIG. 56, the portion of the molding material layer 95A to which a strong magnetic field is applied, that is, the strength of the upper mold 80.
  • the molding material layer 95A is subjected to a curing process, whereby the plurality of conductive portions 96 contained in a state in which the conductive particles P are aligned in the thickness direction are mutually connected.
  • An elastic anisotropic conductive film 95 composed of an insulating part 97 and an insulating part 97 are formed in a state where the peripheral part is supported by the opening edge part of the frame plate 90, whereby an anisotropic conductive connector is manufactured.
  • anisotropic conductive connectors With a small pitch of the conductive parts and a high density. is required. Thus, in the manufacture of such anisotropically conductive connectors Of course, it is necessary to use the upper die 80 and the lower die 85 in which the ferromagnetic layers 82 and 87 are arranged at a very small pitch.
  • the ferromagnetic layer 87b is directed in the direction ( (Indicated by arrow Y), or a magnetic field also acts in the direction of the direction of force from the ferromagnetic layer 82b of the upper mold 80 to the ferromagnetic layer 87a adjacent to the corresponding ferromagnetic layer 87b of the lower mold 85.
  • a magnetic field also acts in the direction of the direction of force from the ferromagnetic layer 82b of the upper mold 80 to the ferromagnetic layer 87a adjacent to the corresponding ferromagnetic layer 87b of the lower mold 85.
  • the conductive particles P can be gathered in a portion located between the ferromagnetic layer 82a of the upper die 80 and the corresponding ferromagnetic layer 87a of the lower die 85.
  • conductive particles gather in the portion located between the upper layer 80 of the ferromagnetic layer 82a and the lower layer 85 of the ferromagnetic layer 87b, and the conductive particles P are formed. It becomes difficult to sufficiently orient the material layer 95A in the thickness direction, and as a result, an anisotropic conductive connector having a desired conductive portion and insulating portion cannot be obtained.
  • the above professional card has the following problems.
  • a probe card In order to construct a probe card, it requires three parts: a test circuit board, an anisotropic conductive connector, and a sheet-like probe, so the overall structure is complicated. When assembling, it is necessary to align the anisotropic conductive connector and the sheet-like probe.
  • the electrode probe is disposed on an insulating sheet made of, for example, polyimide
  • the sheet-like probe is subjected to a thermal history due to a temperature change, so that the position relative to the electrode to be inspected due to thermal expansion of the insulating sheet.
  • the electrical connection state changes and it is difficult to maintain a stable connection state.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 51-93393
  • Patent Document 2 Japanese Patent Laid-Open No. 53-147772
  • Patent Document 3 Japanese Patent Application Laid-Open No. 61-250906
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-334732
  • the present invention has been made based on the circumstances as described above, and a first object thereof is to provide a wafer even when the pitch of electrodes to be inspected in the wafer to be inspected is extremely small. It is an object to provide an anisotropic conductive connector for wafer inspection and a method for manufacturing the same, which can surely achieve a good electrical connection state to.
  • the second object of the present invention is to ensure required insulation between adjacent electrodes to be inspected even if the pitch of the electrodes to be inspected on the wafer to be inspected is extremely small.
  • a probe card for wafer inspection that can reliably achieve a good electrical connection state, and can maintain a good electrical connection state to the wafer stably even when subjected to thermal stress due to temperature changes. And providing a manufacturing method thereof.
  • the third object of the present invention is to perform wafer inspection that can reliably achieve a good electrical connection to the wafer even if the pitch of the electrodes to be inspected in the wafer to be inspected is extremely small. To provide an apparatus.
  • a method for manufacturing an anisotropic conductive connector for wafer inspection according to the present invention is provided in an electrode region in which electrodes to be inspected are arranged in all or part of integrated circuits formed on a wafer to be inspected.
  • a frame plate having a plurality of openings formed therein, and a plurality of conductive particles exhibiting magnetism contained in an elastic polymer material arranged according to a pattern corresponding to the pattern of the electrode to be inspected in the electrode region.
  • a plurality of elastic anisotropic conductive films having a conductive part for connection and an insulating part made of an elastic polymer material that insulates them from each other, and arranged and supported by the frame plate so as to close the opening;
  • a method for manufacturing an anisotropic conductive connector for wafer inspection comprising a plurality of contact members made of metal integrally provided on each connection conductive portion in an elastic anisotropic conductive film,
  • a conductive elastomer material layer in which conductive particles exhibiting magnetism are contained in a liquid polymer material forming material which is cured to become an elastic polymer material is formed on the releasable support plate.
  • a contact member made of a metal exhibiting magnetism is disposed on the surface of the material layer for the conductive elastomer according to a specific pattern corresponding to the pattern of the electrode to be inspected. In this state, a magnetic field is applied to the conductive elastomer material layer in the thickness direction, and the conductive elastomer material layer is cured to form a conductive elastomer layer.
  • the elastomer layer is laser processed to remove a portion other than the portion where the contact member is disposed, so that a plurality of the contact members disposed on the releasable support plate according to the specific pattern are provided.
  • each of the connecting conductive portions provided with the contact members is cured to form an elastic polymer substance that is cured to close the opening of the frame plate. It is characterized by having a step of forming an insulating part by infiltrating into the insulating part material layer made of the polymer substance forming material and curing the insulating part material layer.
  • a resist layer having openings formed in a specific pattern is formed on a metal foil, and the resist layer in the metal foil is formed. Opening force By subjecting the surface of the exposed portion to a magnetic treatment with a metal that exhibits magnetism, a contact member composite in which a contact member is formed in each opening of the resist layer is manufactured. It is preferable to arrange a contact member made of a metal exhibiting magnetism according to the specific pattern on the surface of the conductive elastomer material layer by stacking on the surface of the conductive elastomer material layer.
  • An anisotropic conductive connector for wafer inspection according to the present invention is obtained by the manufacturing method described above.
  • the probe card for wafer inspection has a plurality of inspection electrodes on the surface according to a pattern corresponding to the pattern of the electrode to be inspected in all or some of the integrated circuits formed on the wafer to be inspected. And the above-mentioned anisotropic conductive connector for wafer inspection disposed on the surface of the inspection circuit board.
  • a plurality of inspection electrodes are provided in accordance with a pattern corresponding to an inspection target electrode in all or some integrated circuits formed on a wafer to be inspected.
  • a test circuit board formed on the surface and a plurality of connecting conductive parts extending in the thickness direction, which are integrally provided on the surface of the test circuit board and are located on the surfaces of the test electrodes And the insulation that insulates them from each other
  • a method for producing a probe force probe for wafer inspection comprising: an anisotropic conductive elastomer layer, and a contact member made of metal integrally provided on a connecting conductive portion of the anisotropic conductive elastomer layer.
  • a contact member composite is prepared by forming a plurality of contact members made of metal each exhibiting magnetism according to a specific pattern relating to the inspection electrode on a metal plate, and is cured on the contact member composite.
  • a liquid polymer substance forming an elastic polymer substance and forming a conductive elastomer material layer containing conductive particles exhibiting magnetism in the forming material, and on each of the conductive elastomer material layers,
  • Each of the plurality of metal masks made of metal exhibiting magnetism is disposed so as to face the contact member with the conductive elastomer material layer interposed therebetween, and in this state, the conductive elastomer material layer is disposed on the conductive elastomer material layer.
  • a conductive elastomer layer is formed, and the conductive elastomer layer is formed.
  • each conductive part for connection is removed, and then the contact member composite formed with the conductive part for connection is insulated from an insulating material made of a material that becomes an elastic polymer substance.
  • an insulating material made of a material that becomes an elastic polymer substance.
  • each of the inspection electrodes of the inspection circuit board is brought into contact with the corresponding conductive part for connection, and in this state, the insulating part material It has the process of forming an insulating part by hardening the layer.
  • the probe card for wafer inspection of the present invention is obtained by the manufacturing method described above.
  • a wafer inspection apparatus of the present invention is a wafer inspection apparatus that performs an electrical inspection of a plurality of integrated circuits formed on a wafer in the state of a wafer. It is characterized by comprising a probe card.
  • the pattern of the electrode to be inspected on the wafer to be inspected is formed on the material layer for the conductive elastomer.
  • the conductive material obtained by applying a magnetic field in the thickness direction of the conductive elastomer material layer and curing the conductive elastomer material layer in a state where the magnetic contact member is arranged according to a specific pattern.
  • the conductive particles in the portion where the contact member is disposed are dense, and the conductive particles in the other portions are sparse.
  • the contact member as a mask and laser processing one layer of the conductive elastomer, the contact member in the one layer of the conductive elastomer can be disposed and the portion can be easily removed. It is possible to reliably form the conductive part for connection in the desired form according to a specific pattern. Then, after forming a plurality of connecting conductive portions arranged according to a specific pattern, an insulating portion material layer is formed between these connecting conductive portions and cured to form the insulating portions. As a result, an insulating part free from conductive particles can be obtained with certainty.
  • the pitch of the electrodes to be inspected on the wafer to be inspected is very small and densely arranged. Even so, the required electrical connection can be reliably achieved for each of the electrodes to be inspected, and the force can be manufactured at a low cost.
  • the contact member is provided on the connecting conductive portion of the elastic anisotropic conductive film, it is not necessary to use a sheet-like probe when inspecting the wafer. A probe card having a simple structure can be obtained, and connection failure due to misalignment of the sheet-like probe can be avoided.
  • the conductive elastomer layer is laser processed and a part thereof is removed to form the connection conductive portion.
  • the conductive part for connection which has property is obtained.
  • a conductive elastomer material layer is formed on a contact member composite in which a plurality of contact members each made of a metal exhibiting magnetism are formed according to a specific pattern related to the inspection electrode, and the conductive elastomer material is used.
  • the obtained conductive elastomer layer has contact points.
  • the conductive particles in the part located between the member and the metal mask become dense, and in the other parts The conductive particles are sparse. For this reason, by laser processing the conductive elastomer layer, it is possible to easily remove the portion of the conductive elastomer layer where the contact member is not arranged. It can be reliably formed according to the pattern.
  • each contact member in the contact member composite is bonded to the obtained conductive elastomer layer.
  • a conductive portion for connection in which the contact member is physically provided.
  • an insulating material layer is formed on each of the connecting conductive portions. In this state, the insulating part material layer is cured to be in contact with each of the inspection electrodes of the inspection circuit board, so that no insulating particles are formed at all.
  • the insulation part is integrally formed on the inspection circuit board.
  • An anisotropic conductive elastomer layer formed can be formed.
  • the probe card for wafer inspection of the present invention obtained by such a method, a plurality of connecting conductive portions having desired conductivity are not present at all in the conductive particles. Therefore, even if the pitch of the electrodes to be inspected in the wafer to be inspected is extremely small! /, The required insulation between the adjacent electrodes to be inspected is ensured, and the wafer has a good pitch. An electrical connection state can be reliably achieved.
  • the anisotropic conductive elastomer layer is integrally formed on the circuit board for inspection, and the contact force is integrated with the conductive part for connection, so that a sheet-like probe is used.
  • FIG. 1 is a plan view showing an anisotropic conductive connector for wafer inspection of a first example according to the present invention. is there.
  • FIG. 2 is an enlarged plan view showing a part of the anisotropic conductive connector for wafer inspection of the first example.
  • FIG. 3 An explanatory cross-sectional view showing an enlarged part of the anisotropic conductive connector for wafer inspection of the first example.
  • ⁇ 4 It is a sectional view for explanation showing a state in which a resist layer is formed on a metal foil.
  • FIG. 5 is an explanatory sectional view showing a state in which a contact member is formed in the opening of the resist layer.
  • FIG. 6 is an explanatory cross-sectional view showing a state in which a conductive elastomer material layer is formed on a releasable support plate.
  • FIG. 7 is an explanatory sectional view showing a state in which the contact member composite is disposed on the material layer for conductive elastomer.
  • FIG. 9 is an explanatory cross-sectional view showing a state in which a conductive elastomer layer is formed on a releasable support plate.
  • FIG. 10 is an explanatory cross-sectional view showing a state where the metal foil in the contact member composite is removed.
  • FIG. 11 is an explanatory cross-sectional view showing a state in which a connecting conductive portion is formed on a releasable support plate.
  • FIG. 12 is an explanatory cross-sectional view showing a state in which a frame plate is arranged on a releasable support plate and an insulating material layer is formed.
  • FIG. 13 is an explanatory cross-sectional view showing a state in which a releasable support plate on which a conductive part for connection is formed is superimposed on a releasable support plate on which an insulating material layer is formed.
  • FIG. 14 is an explanatory cross-sectional view showing a state in which an insulating portion is formed between adjacent connecting conductive portions.
  • FIG. 15 is a plan view showing a second example of the anisotropic conductive connector for wafer inspection according to the present invention.
  • FIG. 16 is an explanatory cross-sectional view showing the configuration of the first example of the probe card according to the present invention.
  • ⁇ 17 An explanatory cross-sectional view showing an enlarged configuration of a main part of the probe card of the first example.
  • FIG. 18 is a plan view showing an inspection circuit board in the probe card of the first example.
  • FIG. 19 is an explanatory diagram showing an enlarged view of the lead electrode portion of the circuit board for inspection.
  • FIG. 20 is a cross-sectional view illustrating the configuration of a second example of the probe card according to the present invention. ⁇ 21] An explanatory sectional view showing, in an enlarged manner, the configuration of the main part of the probe card of the second example
  • FIG. 22 is a plan view showing an inspection circuit board in the probe card of the second example.
  • FIG. 23 is a cross-sectional view illustrating the configuration of a third example of the probe card according to the present invention.
  • ⁇ 24 An explanatory cross-sectional view showing an enlarged configuration of a main part of the probe card of the third example.
  • ⁇ 25 An explanatory cross-sectional view showing an anisotropic conductive elastomer layer in an enlarged manner.
  • FIG. 26 is an explanatory cross-sectional view showing a state in which a resist layer having a plurality of openings formed according to a specific pattern is formed on a metal foil.
  • FIG. 27 is an explanatory sectional view showing a state in which a contact member is formed in each opening of the resist layer to form a metal mask composite.
  • FIG. 28 is an explanatory sectional view showing a state in which a conductive elastomer material layer is formed on a contact member composite.
  • FIG. 30 is an explanatory cross-sectional view showing a state in which a magnetic field is applied to the material layer for conductive elastomer in the thickness direction.
  • FIG. 31 is an explanatory cross-sectional view showing a state in which a conductive elastomer layer is formed on the contact member composite.
  • FIG. 32 is an explanatory cross-sectional view showing a state where the metal foil of the metal mask composite has been removed.
  • FIG. 33 is a cross-sectional view illustrating a state in which a plurality of conductive portions for connection are formed according to a specific pattern on the contact member composite.
  • FIG. 35 is an explanatory cross-sectional view showing a state in which the contact member composite having the connection conductive portion formed thereon is superimposed on the inspection circuit board on which the insulating layer material layer is formed.
  • a sectional view for explanation showing a state in which an insulating portion is formed between adjacent conductive portions for connection.
  • FIG. 37 is an explanatory cross-sectional view showing the configuration of the fourth example of the probe card according to the present invention.
  • ⁇ 38] is an explanatory cross-sectional view showing an enlarged configuration of the main part of the probe card of the fourth example.
  • ⁇ 39] is an explanatory cross-sectional view showing the configuration of the first example of the wafer inspection apparatus according to the present invention. is there.
  • ⁇ 40] is an explanatory sectional view showing an enlarged configuration of a main part of the wafer inspection apparatus of the first example.
  • ⁇ 41] An explanatory sectional view showing an enlarged connector of the wafer inspection apparatus of the first example. is there.
  • FIG. 42 is a cross-sectional view illustrating the configuration of a second example of the wafer inspection apparatus according to the present invention.
  • FIG. 43 A sectional view for explanation showing the configuration of a third example of the wafer inspection apparatus according to the present invention.
  • ⁇ 44 An explanatory cross-sectional view showing an enlarged configuration of a main part of the wafer inspection apparatus of the third example.
  • ⁇ 45 An explanatory cross-sectional view showing the configuration of the fourth example of the wafer inspection apparatus according to the present invention. It is.
  • FIG. 46 is an explanatory view showing a state in which the connecting conductive portion is formed by removing only the peripheral portion of the conductive elastomer layer in the conductive elastomer layer.
  • FIG. 47 is an explanatory cross-sectional view showing a state in which the conductive portion for connection is formed by removing only the peripheral portion of the portion that becomes the conductive portion for connection in the conductive elastomer layer.
  • FIG. 48 is an explanatory sectional view showing, in an enlarged manner, the configuration of the main part in another example of the probe card according to the present invention.
  • FIG. 49 is a top view of a test wafer used in Examples.
  • FIG. 50 is an explanatory view showing the position of the electrode region to be inspected of the integrated circuit formed on the test wafer shown in FIG.
  • FIG. 51 is an illustration showing an inspected electrode of an integrated circuit formed on the test wafer shown in FIG. 49.
  • FIG. 51 is an illustration showing an inspected electrode of an integrated circuit formed on the test wafer shown in FIG. 49.
  • FIG. 52 is a top view of the frame plate produced in the example.
  • FIG. 53 is an explanatory diagram showing an enlarged part of the frame plate shown in FIG. 52.
  • FIG. 54 is a cross-sectional view for explaining the structure of a mold for manufacturing a conventional anisotropically conductive connector.
  • FIG. 55 is an explanatory cross-sectional view showing a state in which a frame plate is arranged in a mold and a molding material layer is formed in a process of manufacturing a conventional anisotropically conductive connector.
  • FIG. 56 is an explanatory cross-sectional view showing a state in which a magnetic field is applied in the thickness direction of the molding material layer.
  • FIG. 57 is an explanatory cross-sectional view showing the direction of a magnetic field applied to a molding material layer in a conventional method for manufacturing an anisotropic conductive connector.
  • a Material layer for conductive elastomer B Conductive elastomer layer Insulation part
  • a Material layer for conductive elastomer B Conductive elastomer layer Insulation part
  • FIG. 1 is a plan view showing an anisotropic conductive connector for wafer inspection of a first example according to the present invention
  • FIG. 2 is an enlarged view of a part of the anisotropic conductive connector for wafer inspection shown in FIG. Plan view
  • Fig. 3 shows an enlarged part of the anisotropic conductive connector for wafer inspection shown in Fig. 1. It is sectional drawing for description.
  • the anisotropic conductive connector for wafer inspection (hereinafter, also simply referred to as "anisotropic conductive connector 1") 20 of the first example is an example of the integrated circuit on a wafer on which a plurality of integrated circuits are formed.
  • the frame plate 21 is used to perform each electrical inspection in the state of a wafer and has a plurality of openings 22 (shown by broken lines).
  • the opening 22 of the frame plate 21 is formed corresponding to an electrode region in which electrodes to be inspected in all integrated circuits formed on a wafer to be inspected.
  • a plurality of elastic anisotropic conductive films 23 having conductivity in the thickness direction are arranged on the frame plate 21 so as to close one opening 22 and supported by the opening edge.
  • the elastic anisotropic conductive film 23 is formed of an elastic polymer material, and is disposed so as to be positioned in the opening 22 of the frame plate 21 as shown in FIG. 2 (in FIG. 2, perpendicular to the paper surface).
  • Each of the connecting conductive parts 24 is arranged according to a pattern corresponding to the pattern of the electrode to be inspected in the integrated circuit formed on the wafer to be inspected, and is electrically connected to the electrode to be inspected in the inspection of the wafer. As shown in FIG.
  • the conductive particles 24 for connection in the anisotropic anisotropic conductive film 23 are densely contained in a state in which the conductive particles P exhibiting magnetism are aligned in the thickness direction. .
  • the insulating portion 25 does not contain the conductive particles P at all.
  • each of the connecting conductive portions 24 is formed so that one surface force of the insulating portion 25 protrudes, so that one surface of the elastic anisotropic conductive film 23 protrudes according to the connecting conductive portion 24.
  • Part 26 is formed.
  • connection conductive portion 24 is provided on one surface of the connection conductive portion 24 in the elastic anisotropic conductive film 23 in a state of being integrally bonded to the connection conductive portion 24.
  • the thickness of the frame plate 21 is preferably a force of 25 to 600 ⁇ m, and more preferably 40 to 400 ⁇ m, depending on the material. If this thickness is less than 25 m, the strength required when using the anisotropically conductive connector 20 is not obtained, the durability becomes low, and the shape of the frame plate 21 is maintained immediately. As a result, the anisotropic conductive connector 20 is poor in handling and performance. On the other hand, when the thickness exceeds 600 m, the elastic anisotropic conductive film 23 formed in the opening 22 becomes excessively thick and good electrical conductivity in the connecting conductive portion 24 can be obtained. It can be difficult.
  • the shape and size in the plane direction at the opening 22 of the frame plate 21 are designed according to the size, pitch, and pattern of the inspected electrode of the wafer to be inspected.
  • the material constituting the frame plate 21 is not particularly limited as long as the frame plate 21 is not easily deformed and has a rigidity that allows its shape to be stably maintained.
  • Various materials such as a metal material, a ceramic material, and a resin material can be used.
  • the frame plate 21 is made of, for example, a metal material, an insulating film is formed on the surface of the frame plate 21.
  • metal materials constituting the frame plate 21 include iron, copper, nickel, chromium, connort, magnesium, manganese, molybdenum, indium, lead, palladium, titanium, tantasten, aluminum, gold, platinum, silver, etc. Or an alloy or alloy steel in which two or more of these metals are combined.
  • resin material constituting the frame plate 21 include liquid crystal polymer and polyimide resin.
  • the frame plate 21 As a material for forming the frame plate 21, more preferably it is preferred instrument linear thermal expansion coefficient used the following 3 X 10- 5 ZK one 1 X 10- 7 ⁇ 1 X 10- 5 ⁇ , particularly preferably 1 X 10- 6 ⁇ 8 X 10- 6 / ⁇ .
  • Such materials include Invar type alloys such as Invar, Elinvar type alloys such as Elinvar, magnetic metal alloys such as Super Invar, Kovar, and 42 alloy, or alloy steel.
  • the total thickness of the elastic anisotropic conductive film 23 (in the illustrated example, the thickness of the connecting conductive portion 24) is preferably 50 to 2000 ⁇ m, more preferably 70 to: LOOO ⁇ m, particularly preferably. Is 80-500 / ⁇ ⁇ . If this thickness is 50 m or more, it has sufficient strength The conductive film 23 can be obtained reliably. On the other hand, if the thickness is 2000 m or less, the connecting conductive portion 24 having the required conductivity characteristics can be obtained with certainty.
  • the total height of the protrusions 26 is 10% or more of the thickness of the protrusions 26, and more preferably 20% or more.
  • the protrusion height of the protrusion 26 is preferably 100% or less of the shortest width or diameter of the protrusion 26, more preferably 70% or less.
  • the elastic high molecular weight material forming the connecting conductive portion 24 and the insulating portion 25 in the elastic anisotropic conductive film 23 a heat resistant high molecular weight material having a crosslinked structure is preferable.
  • a heat resistant high molecular weight material having a crosslinked structure is preferable.
  • the curable polymer material-forming material that can be used for obtaining such a crosslinked polymer material a liquid silicone rubber that can use various materials is preferable.
  • the liquid silicone rubber may be an addition type or a condensation type, but an addition type liquid silicone rubber is preferred.
  • This addition-type liquid silicone rubber is cured by the reaction between the bur group and the Si H bond, and is a one-pack type (one-component type) made of polysiloxane containing both vinyl groups and Si—H bonds.
  • the addition-type liquid silicone rubber it is preferable to use one having a viscosity of 100 to 1,250 Pa-s at 23 ° C, more preferably 150 to 800 Pa's, particularly preferably 250 to 500 Pa '. s thing.
  • this viscosity is less than lOOPa's
  • the conductive particles used for the conductive elastomer for obtaining the connection conductive portion 24 described later cause sedimentation of the conductive particles in the additional liquid silicone rubber.
  • good storage stability cannot be obtained, and when a parallel magnetic field is applied to the conductive elastomer material layer described later, the conductive particles are not aligned in the thickness direction and are in a uniform state. To form a chain of conductive particles May be difficult to do.
  • the resulting conductive elastomer material has a high viscosity, so that even when a parallel magnetic field is applied to the conductive elastomer material layer, the conductive material is conductive.
  • the conductive particles do not move sufficiently, and it may be difficult to orient the conductive particles so that they are aligned in the thickness direction.
  • the viscosity of such an addition type liquid silicone rubber can be measured with a B-type viscometer.
  • the elastic anisotropic conductive film 23 is formed from a cured liquid silicone rubber (hereinafter referred to as "silicone rubber cured product")
  • the cured silicone rubber has a compression set at 150 ° C. It is preferably 10% or less, more preferably 8% or less, and further preferably 6% or less. If this compression set exceeds 10%, the resulting conductive anisotropic connector 20 will be permanently set in the connecting conductive part 24 when used repeatedly or repeatedly in a high temperature environment. As a result, the chain of conductive particles in the connecting conductive portion 24 is disturbed, and it becomes difficult to maintain the required conductivity.
  • the compression set of the cured silicone rubber can be determined by a method according to JIS K 6249.
  • the cured silicone rubber forming the elastic anisotropic conductive film 23 preferably has a durometer A hardness of 10 to 60 at 23 ° C, more preferably 15 to 60, particularly Preferably it is 20-60. If this durometer A hardness is less than 10, the insulation 25 that insulates the connection conductive parts 24 from each other when pressed is excessively distorted or immediately required insulation between the conductive parts 24 for connection. May be difficult to maintain. On the other hand, if the durometer A hardness is more than 60, it is necessary to apply a considerably large load in order to give the connecting conductive part 24 an appropriate strain. For example, the wafer to be inspected is greatly deformed. Or breakage easily occurs.
  • the cured silicone rubber forming the elastic anisotropic conductive film 23 has a durometer A hardness of 25 at 23 ° C. It is preferable that it is ⁇ 40.
  • the durometer A hardness of the cured silicone rubber can be measured by a method based on JIS K 6249.
  • the cured silicone rubber forming the elastic anisotropic conductive film 23 preferably has a tear strength at 23 ° C of 8 kNZm or more, more preferably lOkNZ m or more, more preferably 15 kNZm. As mentioned above, it is particularly preferably 20 kNZm or more. If the tear strength is less than 8 kNZm, the durability tends to decrease when the elastic anisotropic conductive film 23 is excessively strained.
  • the tear strength of the cured silicone rubber can be determined by a method based on JIS K 6249.
  • liquid silicone rubbers “KE2000” series and “KE1950” series manufactured by Shin-Etsu Chemical Co., Ltd. are commercially available! Can do.
  • an appropriate curing catalyst can be used for curing the addition-type liquid silicone rubber.
  • a platinum-based catalyst can be used. Specific examples thereof include chloroplatinic acid and a salt thereof, a platinum-unsaturated group-containing siloxane complex, a complex of bursiloxane and platinum, Known complexes such as a complex of platinum and 1,3-dibule tetramethyldisiloxane, a triorganophosphine, a complex of phosphite and platinum, a acetyl acetate platinum chelate, a complex of cyclic gen and platinum, etc. .
  • the amount of the curing catalyst used is appropriately selected in consideration of the type of curing catalyst and other curing conditions, but is usually 3 to 15 parts by weight with respect to 100 parts by weight of the addition type liquid silicone rubber.
  • addition-type liquid silicone rubber a thixotropic property improvement of the addition-type liquid silicone rubber, viscosity adjustment, improvement in dispersion stability of the conductive particles, or a substrate having high strength is obtained.
  • an inorganic filler such as normal silica powder, colloidal silica, air-mouthed gel silica, alumina, or the like can be contained as necessary.
  • the amount of such an inorganic filler used is not particularly limited, but if used in a large amount, the orientation of the conductive particles by a magnetic field cannot be sufficiently achieved, which is not preferable.
  • magnetic core particle whose surface is coated with a highly conductive metal
  • the magnetic core particles for obtaining the conductive particles P preferably have a number average particle diameter of 3 to 40 ⁇ m.
  • the number average particle diameter of the magnetic core particles refers to that measured by a laser diffraction scattering method.
  • the number average particle diameter is 3 ⁇ m or more, it is easy to obtain a conductive part 24 for connection that is easily deformed under pressure, has a low resistance value, and high connection reliability.
  • the number average particle diameter is 40 ⁇ m or less, the fine connecting conductive portion 24 can be easily formed, and the obtained connecting conductive portion 24 has stable conductivity. It is easy to become.
  • the BET specific surface area of the magnetic core particles is preferably 10 to 500 m 2 / kg, more preferably 20 to 500 m 2 Zkg, and particularly preferably 50 to 400 m 2 Zkg.
  • the magnetic core particle has a sufficiently large area that can be measured, so that the required amount of plating can be reliably applied to the magnetic core particle. Therefore, the conductive particles P having high conductivity can be obtained, and the contact area between the conductive particles P is sufficiently large, so that stable and high conductivity can be obtained.
  • the BET specific surface area is 500 m 2 Zkg or less, the magnetic core particles are brittle. It does not become weak, and maintains stable and high conductivity with less damage when subjected to physical stress.
  • the magnetic core particles preferably have a coefficient of variation in particle diameter of 50% or less, more preferably 40% or less, still more preferably 30% or less, and particularly preferably 20% or less. Is.
  • the coefficient of variation of the particle diameter is expressed by the formula: ( ⁇ / Dn) X 100 (where ⁇ represents the standard deviation value of the particle diameter, and Dn represents the number average particle diameter of the particles). If the coefficient of variation of the particle diameter is 50% or less, the uniformity of the particle diameter is large, so that the connection conductive portion 24 with small variation in conductivity can be formed.
  • the magnetic core particles As a material constituting the magnetic core particles, iron, nickel, cobalt, a force obtained by coating these metals with copper, resin, etc. can be used.
  • the saturation magnetic field is 0.1 W b / m.
  • Two or more can be preferably used, more preferably 0.3 Wb / m 2 or more, and particularly preferably 0.5 WbZm 2 or more, specifically iron, nickel, cobalt or those And alloys thereof.
  • this saturation magnetic field is 0.1 lWbZm 2 or more, the conductive particles P can be easily formed in the material layer for conductive elastomer for forming the anisotropic anisotropic conductive film 23 by the method described later. In this way, the conductive particles P can be reliably moved to a portion that becomes the conductive portion for connection in the conductive elastomer material layer to form a chain of conductive particles P. Can do.
  • the conductive particles P used for obtaining the connecting conductive portion 24 are obtained by coating the surfaces of the magnetic core particles with a highly conductive metal.
  • the “highly conductive metal” means one having an electrical conductivity at 0 ° C. of 5 ⁇ 10 6 ⁇ — 1 !!! — 1 or more.
  • gold As such a highly conductive metal, gold, silver, rhodium, platinum, chromium, or the like can be used. Among these, gold is preferable because it is chemically stable and has high conductivity.
  • the conductive particle ⁇ is a ratio of the highly conductive metal to the core particle [(mass of highly conductive metal ⁇
  • the mass of the core particles) X 100] is 15% by mass or more, preferably 25 to 35% by mass.
  • the proportion of the highly conductive metal is less than 15% by mass, the conductivity of the conductive particles P is significantly reduced when the anisotropic conductive connector 20 obtained is repeatedly used in a high temperature environment. The required conductivity cannot be maintained.
  • the conductive particles P have a thickness t of the covering layer of highly conductive metal calculated by the following formula (1) of 50 nm or more, and preferably 100 to 200 nm.
  • the Formula (1) t [l / (Sw)] X [N / (l -N)]
  • t is the thickness of the coating layer made of a highly conductive metal (m)
  • Sw is the BET specific surface area of the core particle (m 2 / kg)
  • N is (high conductivity (Weight of conductive metal / weight of conductive particles as a whole).
  • V m / p formula (3)
  • N is the ratio of the mass of the coating layer to the mass of the entire conductive particle.
  • N (l + m / Mp) mZMp
  • N + N (m / Mp) mZMp, and when N (mZMp) is shifted to the right side,
  • the thickness t of the coating layer is 50 nm or more
  • the anisotropically conductive connector 20 is repeatedly used in a high temperature environment
  • the ferromagnetic material constituting the magnetic core particles is a high layer constituting the coating layer. Even if it is transferred to the conductive metal, a high proportion of highly conductive metal is present on the surface of the conductive particle P, so that the conductivity of the conductive particle P is not significantly reduced. The electrical conductivity of the period is maintained.
  • the number average particle diameter of the conductive particles P is preferably 3 to 40 ⁇ m, more preferably 6 to 25 ⁇ .
  • the resulting elastic anisotropic conductive film 23 can be easily deformed under pressure, and the conductive conductive portion 24 for connection in the elastic anisotropic conductive film 23 can be used.
  • the shape of the conductive particles is not particularly limited, but is spherical, star-shaped, or aggregated in that it can be easily dispersed in the polymer material-forming material. It is preferable that it is a lump with secondary particles.
  • Such conductive particles can be obtained, for example, by the following method.
  • a ferromagnetic material is made into particles by a conventional method or commercially available ferromagnetic particles are prepared, and the particles are classified to prepare magnetic core particles having a required particle diameter. To make.
  • the particle classification treatment can be performed by a classification device such as an air classification device or a sonic sieving device.
  • Specific conditions for the classification treatment are appropriately set according to the number average particle diameter of the target magnetic core particles, the type of the classification device, and the like.
  • the surface of the magnetic core particle is treated with an acid, and further washed with pure water, for example, to remove impurities such as dirt, foreign matter, and oxide film present on the surface of the magnetic core particle.
  • Conductive particles can be obtained by coating the surface of the core particles with a highly conductive metal.
  • hydrochloric acid can be used as the acid used to treat the surface of the magnetic core particles.
  • the method of coating the surface of the magnetic core particles with the highly conductive metal is not limited to these methods, which can use an electroless plating method, a replacement plating method, or the like.
  • the method of producing conductive particles by the electroless plating method or the substitution plating method will be described.
  • a magnetic core particle that has been subjected to acid treatment and washing treatment is added to a plating solution to prepare a slurry. While stirring the slurry, electroless plating or substitution plating of the magnetic core particles is performed.
  • the particles in the slurry are separated by MEC solution, and then the particles are washed with, for example, pure water to obtain conductive particles in which the surface of the magnetic core particles is coated with a highly conductive metal. It is done.
  • a finish layer made of a highly conductive metal may be formed on the surface of the undercoat layer.
  • the method for forming the base plating layer and the plating layer formed on the surface thereof is not particularly limited, but the base plating layer is formed on the surface of the magnetic core particles by the electroless plating method, and then the substitution plating method. It is preferable to form a plating layer made of a highly conductive metal on the surface of the base plating layer.
  • the plating solution used for the electroless plating or the substitution plating is not particularly limited, but variously sold products. Can be used.
  • the particles may aggregate. Since conductive particles having a larger particle size may be generated, it is preferable to classify the conductive particles as necessary. As a result, conductive particles having an intended particle size can be obtained. It is definitely obtained.
  • Examples of the classification device for performing the classification treatment of the conductive particles include those exemplified as the classification device used for the classification treatment for preparing the above-described magnetic core particles.
  • the conductive particles P in the connection conductive portion 24 are preferably used in such a ratio that the volume fraction is 10 to 60%, and preferably 15 to 50%. If this ratio is less than 10%, the connecting conductive part 24 having a sufficiently small electric resistance value may not be obtained. On the other hand, when this ratio exceeds 60%, the obtained conductive part 24 for connection becomes fragile, and the elasticity necessary for the conductive part 24 for connection may not be obtained immediately.
  • the material constituting the contact member 27 it is preferable to use a metal material exhibiting magnetism, and specific examples thereof include nickel, cobalt, and alloys thereof.
  • the thickness of the contact member 27 is preferably 1 to: LOO / zm, more preferably 5 to 40 / zm. If this thickness is too small, it may be difficult to use as a mask in laser processing in the manufacturing method described later. On the other hand, if this thickness is excessive, a large pressure may be required to compressively deform the connecting conductive portion 24 in the elastic anisotropic conductive film 23, which is preferable.
  • the anisotropic conductive connector 20 includes conductive particles exhibiting magnetism in a liquid polymer material-forming material that is cured to become an elastic polymer material on a releasable support plate.
  • a contact member made of a metal having a magnetic property according to a specific pattern corresponding to the pattern of the electrode to be inspected is formed on the surface of the conductive elastomer material layer.
  • a magnetic field is applied to the conductive elastomer material layer in the thickness direction, and the conductive elastomer material layer is cured to form one conductive elastomer layer. Then, this conductive elastomer layer is laser processed to remove portions other than the portion where the contact member 27 is disposed.
  • each of the connecting conductive portions 24 formed on the releasable support plate is attached to the frame plate 2. It penetrates into an insulating material layer made of a liquid polymer material forming material that is cured to become an elastic polymer material formed so as to close the opening of 1 and in this state, the insulating material layer is hardened. This is obtained by forming the insulating portion.
  • the anisotropic conductive connector 20 described above can be manufactured as follows.
  • a frame plate 21 in which an opening 22 is formed corresponding to an electrode region in which electrodes to be inspected are arranged in all integrated circuits formed on a wafer to be inspected is produced.
  • the method for forming the opening 22 of the frame plate 21 is appropriately selected according to the material constituting the frame plate 21, and for example, an etching method or the like can be used.
  • a contact member composite 27F having a plurality of contact members 27 arranged according to a specific pattern is manufactured.
  • the openings 31K are formed on the metal foil 30 according to a specific pattern corresponding to the pattern of the conductive part for connection to be formed, that is, the pattern of the electrode to be inspected, by a photolithography technique. Then, a resist layer 31 is formed. Thereafter, the surface of the exposed portion of the metal foil 30 through the opening 31K of the resist layer 31 is subjected to a plating treatment with a metal exhibiting magnetic properties, so that the opening 31K of the resist layer 31 is formed as shown in FIG. A contact member 27 is formed on each of the two. As a result, a contact member composite 27F in which the contact member 27 is formed on the metal foil 30 according to a specific pattern is obtained.
  • the metal foil 30 copper, nickel, or the like can be used. Further, the metal foil 30 may be laminated on a resin film.
  • the thickness of the metal foil 30 is preferably 0.05-2111, more preferably 0.1-1 ⁇ m. If this thickness is too small, a uniform thin layer may not be formed, which may be inappropriate as a plating electrode. On the other hand, if this thickness is excessive, it may be difficult to remove by, for example, etching.
  • the thickness of the resist layer 31 is set according to the thickness of the contact member 27 to be formed.
  • a conductive elastomer material is prepared on a releasable support plate 35 for forming a conductive part for connection, as shown in FIG. Is applied to form a conductive elastomer material layer 24A.
  • the contact member composite 27F is disposed on the conductive elastomer material layer 24A so that each of the contact members 27 is in contact with the conductive elastomer material layer 24A.
  • the conductive particles P exhibiting magnetism are contained in a dispersed state.
  • a magnetic field is applied to the conductive elastomer material layer 24A via the contact member 27 in the thickness direction of the conductive elastomer material layer 24A.
  • the contact member 27 is formed of a metal exhibiting magnetism, a magnetic field having a strength higher than that of the other portion is formed in the portion where the contact member 27 is disposed in the conductive elastomer material layer 24A. Is done.
  • the conductive particles P dispersed in the conductive elastomer material layer 24A gather at the portion where the contact member 27 is disposed, and further, the conductive elastomer material material. Oriented so as to be aligned in the thickness direction of the layer 24A.
  • a conductive elastomer layer 24B which is contained in an elastic polymer substance in a state in which the conductive particles P are aligned in the thickness direction, is formed in a state of being supported on the releasable support plate 35.
  • a material constituting the releasable support plate 35 metals, ceramics, resins, composite materials thereof and the like can be used.
  • a printing method such as screen printing, a roll coating method, a blade coating method, or the like can be used.
  • the thickness of the conductive elastomer material layer 24A is set according to the thickness of the connecting conductive portion to be formed.
  • an electromagnet As means for applying a magnetic field to the conductive elastomer material layer 24A, an electromagnet, a permanent magnet, or the like can be used.
  • the strength of the magnetic field applied to the conductive elastomer material layer 24A is 0.2 to 2.5 Tesla. Is preferred.
  • the curing treatment of the conductive elastomer material layer 24A is usually performed by heat treatment.
  • the specific heating temperature and heating time are appropriately set in consideration of the type of polymer substance forming material constituting the conductive elastomer material layer 24A, the time required to move the conductive particles, and the like.
  • the laser processing is preferably performed using a carbon dioxide laser, whereby the connection conductive portion 24 having a desired form can be reliably formed.
  • a releasable support plate 35A for forming an insulating portion is prepared, and a frame plate 21 is disposed on the surface of the releasable support plate 35A and cured to be an insulating elastic polymer.
  • the insulating material layer 25A is formed by applying a liquid polymer material forming material as a material.
  • the releasable support plate 35 on which the plurality of conductive portions 24 for connection, each provided with the contact member 27, is formed, and the releasability on which the insulating material layer 25A is formed.
  • each of the connecting conductive portions 24 is infiltrated into the insulating material layer 25A, brought into contact with the releasable support plate 35A, and further pressurized to connect the conductive portions for connection.
  • Each of the portions 24 is deformed to be compressed in the thickness direction, and an insulating portion material layer 25A is formed between the adjacent conductive portions 24 for connection. Thereafter, in this state, the insulating material layer 25A is cured, so that as shown in FIG. 14, the insulating portions 25 that insulate them from each other are provided around the conductive portions 24 for connection.
  • the elastic anisotropic conductive film 23 is formed integrally with the connecting conductive portion 24, thereby forming the elastic anisotropic conductive film 23.
  • each of the compressed connecting conductive parts 24 is restored to the original form, and as a result, it protrudes from both surfaces of the insulating part 25.
  • the anisotropic conductive connector 20 having the configuration shown in FIG. 1 is obtained.
  • the same material as the releasable support plate 35 for forming the connecting conductive portion can be used as the material constituting the releasable support plate 35A.
  • a printing method such as screen printing, a roll coating method, a blade coating method, or the like can be used.
  • the thickness of the insulating part material layer 25A is set according to the thickness of the insulating part to be formed.
  • the curing process of the insulating part material layer 25A is usually performed by a heating process.
  • the specific heating temperature and heating time are appropriately set in consideration of the type of polymer substance forming material constituting the insulating part material layer 25A.
  • the contact member 27 exhibiting magnetism is arranged on the conductive elastomer material layer 24A according to a specific pattern corresponding to the pattern of the electrode to be inspected in the wafer to be inspected.
  • the resulting conductive elastomer layer 24B has the contact member 27
  • the conductive particles P in the arranged portion become dense, and the conductive particles P in the other portions become sparse.
  • the contact member 27 as a mask to process the conductive elastomer layer 24B with a laser, the contact member 27 in the conductive elastomer layer 24B can be disposed and the portion can be easily removed. As a result, it is possible to reliably form the connecting conductive portion 24 in the desired form according to a specific pattern. Then, after forming a plurality of connecting conductive portions 24 arranged according to a specific pattern, an insulating portion material layer 25A is formed between the connecting conductive portions 24 and cured to form insulating portions. Therefore, it is possible to reliably obtain the insulating portion 25 in which the conductive particles P are not present.
  • the anisotropic conductive connector 20 obtained by such a method even when the pitch of the electrodes to be inspected on the wafer to be inspected is very small and densely arranged, The required electrical connection is reliably achieved for each of the electrodes. Therefore, the force can be manufactured at a low cost.
  • the contact member 27 is provided on the connecting conductive portion 24 in the elastic anisotropic conductive film 23, it is not necessary to use a sheet-like probe when inspecting the wafer. Therefore, it is possible to obtain a probe card having a simple structure and to avoid a connection failure due to a positional deviation of the sheet-like probe.
  • each of the elastic anisotropic conductive films 23 is supported by the opening edge of the frame plate 21, it is difficult to be deformed and in electrical connection work with a wafer that is to be handled and immediately inspected. Positioning and holding and fixing to the wafer can be easily performed. Further, each of the openings 22 of the frame plate 21 is formed corresponding to an electrode region in which the electrodes to be inspected of all the integrated circuits formed on the wafer to be inspected are arranged. Since the elastic anisotropic conductive film 23 to be arranged may have a small area, it is easy to form the individual elastic anisotropic conductive film 23.
  • the elastic anisotropic conductive film 23 having a small area has a small absolute amount of thermal expansion in the surface direction of the elastic anisotropic conductive film 23 even when subjected to a thermal history.
  • the thermal expansion in is reliably regulated by the frame plate 21.
  • the thermal expansion of the anisotropic conductive connector 20 as a whole depends on the thermal expansion of the material composing the frame plate 21, so that a material having a low coefficient of thermal expansion is used as the material composing the frame plate 21. Even when a thermal history due to change is received, the position of the conductive portion 24 for connection in the anisotropic conductive connector 20 and the electrode to be inspected on the wafer is prevented, so that a good electrical connection state is stable. Maintained.
  • FIG. 15 is a plan view showing a second example of the anisotropically conductive connector according to the present invention.
  • the anisotropic conductive connector 20 of the second example includes a rectangular plate-like frame plate 21 in which a plurality of openings 22 extending through the thickness direction are formed.
  • the opening 22 of the frame plate 21 corresponds to the pattern of the electrode region in which the electrodes to be inspected are formed in, for example, 32 (8 ⁇ 4) integrated circuits formed on the wafer to be inspected. Is formed.
  • a plurality of anisotropic anisotropic conductive films 23 having conductivity in the thickness direction are arranged on the frame plate 21 so as to be supported by the opening edges of the frame plate 21 so as to block the one opening 22 respectively.
  • the anisotropic conductive connector 20 of the second example Other configurations are the same as those of the anisotropic conductive connector 20 of the first example.
  • the anisotropic conductive connector 20 of the second example can be manufactured in the same manner as the anisotropic conductive connector 20 of the first example.
  • the same effect as that of the anisotropic conductive connector 20 of the first example can be obtained.
  • FIG. 16 is a cross-sectional view illustrating the configuration of a first example of a wafer inspection probe card (hereinafter simply referred to as a “probe card”) according to the present invention
  • FIG. 17 is a diagram of the first example. It is sectional drawing for description which shows the structure of the principal part of a lobe card.
  • the probe card 10 of the first example is used for performing a burn-in test of each integrated circuit in a wafer state on a wafer on which a plurality of integrated circuits are formed, for example.
  • the circuit board 11 and the anisotropic conductive connector 20 of the first example shown in FIG. 1 arranged on one surface (the upper surface in FIGS. 16 and 17) of the circuit board 11 for inspection are composed of .
  • the inspection circuit board 11 has a disk-shaped first substrate element 12, and the surface of the first substrate element 12 (the upper surface in FIGS. 16 and 17).
  • a regular octagonal plate-like second substrate element 15 is disposed, and this second substrate element 15 is held by a holder 14 fixed to the surface of the first substrate element 12.
  • a reinforcing member 17 is provided at the center of the back surface of the first substrate element 12.
  • connection electrodes are formed in an appropriate pattern at the center of the surface of the first substrate element 12.
  • a lead electrode portion in which a plurality of lead electrodes 13 are arranged along the circumferential direction of the first substrate element 12 at the peripheral edge portion on the back surface of the first substrate element 12. 13R is formed.
  • the pattern of the lead electrode 13 is a pattern corresponding to the pattern of the input / output terminal of the controller in the wafer inspection apparatus described later.
  • Each of the lead electrodes 13 is electrically connected to the connection electrode via an internal wiring (not shown).
  • a plurality of inspection electrodes 16 are inspected in all integrated circuits formed on the wafer to be inspected.
  • the inspection electrode portion 16R is formed in accordance with a pattern corresponding to the pole pattern.
  • a plurality of terminal electrodes are arranged according to an appropriate pattern, and each of the terminal electrodes is connected to the inspection electrode 16 via an internal wiring (not shown). It is electrically connected!
  • connection electrode of the first substrate element 12 and the terminal electrode of the second substrate element 15 are electrically connected by appropriate means.
  • a substrate material constituting the first substrate element 12 in the circuit board 11 for inspection conventionally known various materials can be used, and specific examples thereof include glass fiber reinforced epoxy resin.
  • specific examples thereof include composite resin substrate materials such as glass fiber reinforced phenol resin, glass fiber reinforced polyimide resin, and glass fiber reinforced bismaleimide triazine resin.
  • the second substrate element 15 in the circuit board for inspection 11 As a material for forming the second substrate element 15 in the circuit board for inspection 11, more preferably it is preferred instrument Sen'netsu ⁇ expansion coefficient is used the following 3 X 10- 5 ⁇ 1 X 10- 7 ⁇ 1 X 10 "VK, particularly preferably 1 X 10- 6 ⁇ 6 X 10- 6 ⁇ .
  • As tool body examples of such substrate materials Pyrex (registered trademark) glass, quartz glass, alumina, beryllia, carbide
  • the holder 14 has a regular octagonal opening 14K that fits the outer shape of the second substrate element 15, and the second substrate element 15 is accommodated in the opening 14K.
  • the outer edge of the holder 14 is circular.
  • the pitch of the electrodes to be inspected on the wafer to be inspected is very small and highly densely arranged. Even if it is, it is possible to reliably achieve the required electrical connection to each of the electrodes to be inspected. The connection state is kept stable. Therefore, in the wafer burn-in test, it is possible to stably maintain a good electrical connection to the wafer.
  • FIG. 20 is an explanatory cross section showing the configuration of the second example of the probe card according to the present invention.
  • FIG. 21 is an explanatory cross-sectional view showing a configuration of a main part of the probe card of the second example.
  • the probe card 10 of the second example is used for performing a probe test of each integrated circuit in the state of the wafer on a wafer on which a plurality of integrated circuits are formed, for example. 11 and an anisotropic conductive connector 20 of the second example shown in FIG. 15 arranged on one surface (the upper surface in FIGS. 20 and 21) of the circuit board 11 for inspection.
  • the integrated circuit formed on the wafer to be inspected is formed on the surface of the second substrate element 15.
  • an inspection electrode portion 16R in which a plurality of inspection electrodes 16 are arranged according to a pattern corresponding to the pattern of the electrode to be inspected in 32 (8 ⁇ 4) integrated circuits is formed.
  • Other configurations of the inspection circuit board 11 are basically the same as those of the inspection circuit board 11 in the probe card 10 of the first example.
  • the pitch of the electrodes to be inspected on the wafer to be inspected is very small and high density. Even if it is arranged, it is possible to reliably achieve the required electrical connection to each of the electrodes to be inspected, and even when it receives a thermal history due to a temperature change, good electrical connection can be achieved. Connection state is maintained stably. Therefore, it is possible to stably maintain a good electrical connection state to the wafer in the wafer probe test.
  • FIG. 23 is an explanatory cross-sectional view showing the configuration of the third example of the probe card according to the present invention
  • FIG. 24 is an explanatory cross-sectional view showing the configuration of the main part of the probe card of the third example. It is a figure.
  • the probe card 10 of the third example is used for performing a burn-in test of each of the integrated circuits in a batch on the wafer on which a plurality of integrated circuits are formed.
  • the circuit board for inspection 11 having the same configuration as the probe card 10 in the example of FIG. 14 and an anisotropic conductive elastomer layer integrally formed on one surface (the upper surface in FIG. 23) of the circuit board for inspection 40 And a contact member 27 provided integrally on the connecting conductive portion 41 in the anisotropic conductive elastomer layer 40.
  • the anisotropic conductive elastomer layer 40 is arranged in accordance with the same pattern as the pattern of the inspection electrode 16 on the inspection circuit board 11, and adjacent to the plurality of connection conductive portions 41 extending in the thickness direction. Insulating parts 42 are formed between the connecting conductive parts 41 to be connected to each other, and are integrally bonded to each of the connecting conductive parts 41.
  • the anisotropic conductive elastomer layer 40 is arranged such that each of the connecting conductive portions 41 is positioned on the inspection electrode 16 in the inspection circuit board 11.
  • each connection conductive portion 41 is configured to be contained in an insulating elastic polymer substance in a state in which the conductive particles P exhibiting magnetism are aligned in the thickness direction.
  • the insulating part 42 is made of an elastic polymer material that does not contain the conductive particles P at all.
  • the elastic polymer material constituting the connecting conductive portion 41 and the elastic polymer material constituting the insulating portion 42 may be of different types or the same type.
  • a protruding portion from which the connecting conductive portion 41 protrudes also the surface force of the insulating portion 42 is formed.
  • the degree of compression by pressurization is much larger than that of the insulating portion 42 to the connecting conductive portion 41, so that the resistance value is sufficiently low! ⁇
  • the conductive path is reliably formed in the connecting conductive portion 41, and this makes it possible to reduce the change in the resistance value against the change or fluctuation of the applied pressure, and as a result, acts on the anisotropic conductive elastomer layer 40. Even if the applied pressure is not uniform, it is possible to prevent variation in conductivity between the conductive portions 41 for connection.
  • the thickness of the connecting conductive portion 41 is preferably 50 to 3000 ⁇ m, more preferably 70 to 2500 ⁇ m, and particularly preferably ⁇ 100 to 2000 ⁇ m.
  • the thickness force is 50 ⁇ m or more, the conductive portion for connection 41 having sufficient strength can be obtained with certainty.
  • the thickness is 3 000 m or less, the connecting conductive portion 41 having the required conductive characteristics can be obtained with certainty.
  • the protruding height of the connecting conductive portion 41 from the insulating portion 42 is preferably 10% or more of the thickness of the connecting conductive portion 41, more preferably 20% or more. Such a bump By forming the connecting conductive portion 41 having a protruding height, the connecting conductive portion 41 is sufficiently compressed with a small applied pressure, so that good conductivity can be reliably obtained.
  • the protruding height is preferably 100% or less of the shortest width or diameter of the connecting conductive portion 41, more preferably 70% or less.
  • the elastic polymer material forming the conductive portion 41 for connection and the insulating portion 42 may be a high elastic material for forming the conductive portion 24 for connection and the insulating portion 25 in the anisotropic conductive connector 20 of the first example described above.
  • the thing similar to a molecular substance can be used.
  • the conductive particles P contained in the connecting conductive part 41 are the same as the conductive particles P contained in the connecting conductive part 21 in the anisotropic conductive connector 20 of the first example described above. Can be used.
  • the content ratio of the conductive particles P in the conductive part 41 for connection is preferably 10 to 60%, preferably 15 to 50% in terms of volume fraction. When this ratio is less than 10%, the connection conductive part 41 having a sufficiently small electric resistance value may not be obtained. On the other hand, when this ratio exceeds 60%, the obtained conductive part 41 for connection becomes fragile and the elasticity necessary for the conductive part 41 for connection may not be obtained immediately.
  • a flat contact member 27 made of metal is provided integrally with the connecting conductive portion 41.
  • a metal exhibiting magnetism is used, and specific examples thereof include nickel, cobalt, and alloys thereof.
  • the thickness of the contact member 27 is preferably 1 to: LOO / z m, more preferably 5 to 40 ⁇ m.
  • the probe card 10 of the first example is obtained through the following steps (a) to (d).
  • a contact member composite in which a plurality of contact members 27 each made of a metal exhibiting magnetism are formed on a metal foil in accordance with a specific pattern related to the inspection electrode 16 of the inspection circuit board 11 To do.
  • a material layer for a conductive elastomer is formed in which a liquid polymer material forming material that is cured to become an elastic polymer material contains conductive particles P exhibiting magnetism.
  • a plurality of metal masks each made of a metal exhibiting magnetism are disposed so as to face the contact member 27 with the conductive elastomer material layer interposed therebetween, In this state, a magnetic field is applied to the conductive elastomer material layer in the thickness direction, and the conductive elastomer material layer is cured to form a conductive elastomer layer.
  • a plurality of conductive portions 41 for connection arranged according to a specific pattern are formed by removing a portion other than the portion located between the contact member 27 and the metal mask by laser processing the conductive elastomer layer. To do.
  • connection conductive portion 41 The metal mask disposed on each connection conductive portion 41 is removed, and then the contact member composite formed with the connection conductive portion 41 is made of a material that is cured to become an elastic polymer substance.
  • Each of the inspection electrodes 16 of the inspection circuit board 11 and the corresponding connection conductive part 41 are brought into contact with each other by being superimposed on the inspection circuit board 11 on which the part material layer is formed.
  • the insulating portion 42 is integrally formed on the inspection circuit board 11 by curing the insulating portion material layer in this state.
  • the method for manufacturing the probe card of the third example will be specifically described below.
  • a contact member composite 27 F in which a plurality of contact members 27 are formed on a metal foil 30 in accordance with a specific pattern is manufactured in the same manner as the method for manufacturing the anisotropic conductive connector 10 of the first example described above (see FIG. 4 and Figure 5).
  • a resist layer 47 having an opening 47K formed in accordance with a specific pattern is formed on the metal foil 46 by a photolithography technique. Thereafter, the surface of the portion exposed through the opening 47K of the resist layer 47 in the metal foil 46 is subjected to a plating process using a metal exhibiting magnetism, thereby forming the opening 47K of the resist layer 47 as shown in FIG. A metal mask 48 is formed on each. As a result, a metal mask composite 48F in which a plurality of metal masks 48 are formed on the metal foil 46 in accordance with a specific pattern is obtained.
  • the metal foil 46 copper, nickel or the like can be used. Further, the metal foil 46 may be laminated on a resin film.
  • the thickness of the metal foil 46 is preferably 0.05-2111, more preferably 0.1-1 ⁇ m. If this thickness is too small, a uniform thin layer may not be formed, which may be inappropriate as a plating electrode. On the other hand, if this thickness is excessive, it may be difficult to remove by, for example, etching.
  • the thickness of the resist layer 47 is set according to the thickness of the metal mask 48 to be formed.
  • a material constituting the metal mask 48 nickel, cobalt, or an alloy thereof can be used.
  • a conductive elastomer material is prepared by dispersing conductive particles exhibiting magnetism in a liquid polymer material-forming material that is cured to become an elastic polymer material.
  • a conductive elastomer material layer 41A is formed by applying a conductive elastomer material on one surface of the body 27F on which the contact member 27 is formed. Then, as shown in FIG. 29, a metal mask composite 48F is formed on the conductive elastomer material layer 41A, and each of the metal masks 48 passes through the conductive elastomer material layer 41A.
  • the contact members 27 are arranged so as to face each other.
  • the conductive particles P exhibiting magnetism are contained in a dispersed state.
  • a magnetic field is applied to the conductive elastomer material layer 41A through the contact member 27 and the metal mask 48 in the thickness direction of the conductive elastomer material layer 41A.
  • the portion of the conductive elastomer material layer 41A located between the contact member 27 and the metal mask 48 is not provided.
  • a magnetic field having a larger intensity than that of other portions is formed. As a result, as shown in FIG.
  • the conductive particles P dispersed in the conductive elastomer material layer 41A gather in a portion located between the contact member 27 and the metal mask 48, and further, The conductive elastomer material layer 41A is aligned in the thickness direction. And while continuing the action of the magnetic field on the conductive elastomer material layer 41A, or After stopping the operation of the conductive elastomer material 41A, the conductive elastomer material layer 41A is cured so that the conductive particles P are aligned in the thickness direction in the elastic polymer substance as shown in FIG.
  • the contained conductive elastomer layer 41B is integrally formed on the contact member composite 27F. In the conductive elastomer layer 41B, the conductive particles in the portion located between the contact member 27 and the metal mask 48 are dense, and the conductive particles in the other portions are sparse.
  • a printing method such as screen printing, a roll coating method, a blade coating method, or the like can be used.
  • the thickness of the conductive elastomer material layer 41A is set in accordance with the thickness of the connecting conductive portion to be formed.
  • an electromagnet As means for applying a magnetic field to the conductive elastomer material layer 41A, an electromagnet, a permanent magnet, or the like can be used.
  • the strength of the magnetic field applied to the conductive elastomer material layer 41A is preferably 0.2 to 2.5 Tesla.
  • the curing process of the conductive elastomer material layer 41A is usually performed by a heating process.
  • the specific heating temperature and heating time are appropriately set in consideration of the type of polymer substance forming material constituting the conductive elastomer material layer 41A, the time required to move the conductive particles, and the like.
  • the metal mask 48 and the resist layer 47 are removed. Expose. Then, by performing laser processing on the conductive elastomer layer 41B and the resist layer 47, the resist layer 47, the conductive elastomer layer 41B, and the portions other than the portion located between the contact member 27 and the metal mask 48 and The resist layer 45 is removed, and as a result, as shown in FIG. 33, the connection conductive portion 41 is formed on each contact member 27 in the contact member composite 27F. Thereafter, the metal mask 48 is also peeled off from the surface force of the connecting conductive portion 41.
  • the laser processing is preferably a carbon dioxide laser or an ultraviolet laser. As a result, it is possible to reliably form the conductive part 41 for connection in the desired form.
  • the contact member composite body 27F in which the plurality of conductive portions for connection 41 are formed is placed on the second substrate element 15 in the circuit board for inspection in which the insulating layer material layer 42A is formed.
  • each of the inspection electrodes 16 of the second substrate element 15 is brought into contact with the connection conductive portion 41 corresponding thereto.
  • the insulating material layer 42A is formed between the adjacent connecting conductive parts 41.
  • the insulating part material layer 42A is cured, so that the insulating part 42 that insulates them from each other between the adjacent connecting conductive parts 41 as shown in FIG. It is formed integrally with the connecting conductive portion 41 and the second substrate element 15 in the inspection circuit board.
  • the probe card 10 having the configuration shown in FIG. 23 is obtained, in which the contact member 30 is provided on each surface of each of the connecting conductive portions 41 of the anisotropic conductive elastomer layer 40.
  • a printing method such as screen printing, a roll coating method, a blade coating method, or the like can be used.
  • the thickness of the insulating part material layer 42A is set according to the thickness of the insulating part to be formed.
  • the curing process of the insulating portion material layer 42A is usually performed by a heating process.
  • the specific heating temperature and heating time are appropriately set in consideration of the type of polymer substance forming material constituting the insulating part material layer 42A.
  • the conductive elastomer layer 41B is laser processed and a part thereof is removed to form the connection conductive portion 41. Therefore, the connection having the desired conductivity is achieved. A conductive part 41 is obtained. Further, a conductive elastomer material layer 41A is formed on a contact member composite 27F in which a plurality of contact members 27 each made of a metal exhibiting magnetism are formed according to a specific pattern related to the inspection electrode 16, It is obtained by applying a magnetic field in the thickness direction of the conductive elastomer material layer 41A in a state where the metal mask 48 showing magnetism is arranged on the conductive elastomer material layer 41A according to a specific pattern.
  • the conductive elastomer layer 41B becomes dense with the conductive particles P in a portion located between the contact member 27 and the metal mask 48, and the conductive particles P in other portions become sparse. Therefore, when the conductive elastomer layer 41B is laser-processed, the contact member 27 in the conductive elastomer layer 41B can be easily removed, so that the conductive conductor for connection in the expected form can be removed.
  • the portion 41 can be reliably formed according to a specific pattern.
  • the conductive elastomer layer 41A formed on the contact member composite 27F is hardened to obtain the conductive elastomer layer 40B, and each of the contact members 27 in the contact member composite 27F. Therefore, the connection conductive portion 41 in which the contact member 27 is physically provided can be formed.
  • connection conductive portions 41 After forming a plurality of connection conductive portions 41 arranged according to a specific pattern corresponding to the pattern of the electrode to be inspected, each of these connection conductive portions 41 is formed with an insulating material layer 42A. In this state, the insulating material layer 42A is cured so that it does not exist at all and the insulating portion 42 is used for inspection. An anisotropic conductive elastomer layer 40 integrally formed on the circuit board 11 can be formed.
  • the probe card 10 obtained by such a method a plurality of connecting conductive parts 41 having the desired conductivity are isolated by the insulating parts 42 in which no conductive particles are present. Even if the pitch of the electrodes to be inspected in the wafer is extremely small, the required insulation between the adjacent electrodes to be inspected is ensured, and a good electrical connection state to the wafer can be reliably achieved. it can.
  • the anisotropic conductive elastomer layer 40 is integrally formed on the inspection circuit board 11, and the contact force 27 is also provided integrally with the connecting conductive part 41. Since it is not necessary to use a sheet-like probe, it is possible to prevent poor connection due to misalignment between the connecting conductive part 41 and the inspection electrode 16 even when a thermal history due to a temperature change is received. Connection failure due to misalignment of the probe can be avoided, and therefore, a good electrical connection to the wafer can be stably maintained. Further, since it is not necessary to use a sheet-like probe, it is possible to obtain a probe card 10 having a simple structure that does not require assembling work.
  • FIG. 37 is an explanatory cross-sectional view showing the configuration of the fourth example of the probe card according to the present invention
  • FIG. 38 is an explanatory cross-sectional view showing the configuration of the main part of the probe card of the fourth example. .
  • the probe card 10 of the fourth example is used to perform a probe test of each integrated circuit in a wafer state on a wafer on which a plurality of integrated circuits are formed, for example.
  • An inspection circuit board 11 having the same configuration as the probe card 10 in the example, and an anisotropic conductive elastomer layer 40 integrally formed on one surface (the upper surface in FIGS. 37 and 38) of the inspection circuit board 11;
  • the anisotropic conductive elastomer layer 40 is formed of a contact member 27 provided integrally on the connecting conductive portion 41.
  • the anisotropic conductive elastomer layer 40 is arranged in accordance with the same pattern as the pattern of the inspection electrode 16 on the inspection circuit board 11 and each of the connection conductive portions 41 extending in the thickness direction and adjacent to the connection conductive portion 41.
  • the conductive portion 41 is formed by an insulating portion 42 that is integrally bonded to each of the connecting conductive portions 41 and insulates the connecting conductive portions 41 from each other.
  • the directionally conductive elastomer layer 40 is arranged such that each of the connecting conductive portions 41 is positioned on the inspection electrode 16 in the inspection circuit board 11.
  • Each of the connecting conductive portions 41 is configured by containing conductive particles P exhibiting magnetism in an insulating elastic polymer material in an aligned state in the thickness direction (see FIG.
  • the insulating part 42 is made of an elastic polymer material that does not contain the conductive particles P at all.
  • the elastic polymer material constituting the connecting conductive portion 41 and the elastic polymer material constituting the insulating portion 42 may be of different types or the same type.
  • the same elastic polymer substance and conductive particles that constitute the elastic anisotropic conductive film 23 in the anisotropic conductive connector 20 of the first example may be used. it can.
  • a flat contact member 27 made of a metal is integrally provided on the surface of each of the connecting conductive portions 41 in the anisotropic conductive elastomer layer 40.
  • the material and dimensions of the contact member 27 are the same as those of the probe card 10 according to the third example described above.
  • the probe card 10 of the fourth example can be manufactured in the same manner as the probe card 10 of the third example.
  • the probe card 10 of the fourth example is obtained through the following steps (a) to (d).
  • a material layer for a conductive elastomer is formed in which a liquid polymer material forming material that is cured to become an elastic polymer material contains conductive particles P exhibiting magnetism.
  • a plurality of metal masks each made of a metal exhibiting magnetism are disposed so as to face the contact member 27 with the conductive elastomer material layer interposed therebetween, In this state, a magnetic field is applied to the conductive elastomer material layer in the thickness direction, and the conductive elastomer material layer is cured to form a conductive elastomer layer.
  • a plurality of conductive portions 41 for connection arranged according to a specific pattern are formed by removing a portion other than the portion located between the contact member 27 and the metal mask by laser processing the conductive elastomer layer. To do.
  • connection conductive portion 41 The metal mask disposed on each connection conductive portion 41 is removed, and then the contact member composite formed with the connection conductive portion 41 is made of a material that is cured to become an elastic polymer substance.
  • Each of the inspection electrodes 16 of the inspection circuit board 11 is paired with the corresponding conductive portion 41 for connection by superimposing it on the inspection circuit board 11 on which the part material layer is formed. In this state, the insulating portion material layer is cured and the insulating portion 42 is integrally formed on the inspection circuit board 11.
  • the conductive conductive layer 41 is formed by laser processing of one layer of the conductive elastomer and removing a part thereof, and thus has the desired conductivity. A conductive part 41 for connection is obtained.
  • a conductive elastomer material layer is formed on a contact member composite in which a plurality of contact members 27 each made of a metal exhibiting magnetism are formed according to a specific pattern related to the inspection electrode 16, and the conductive material
  • the resulting conductive elastomer layer is obtained. Is dense with the conductive particles P in the portion located between the contact member 27 and the metal mask, and the conductive particles P in the other portions are sparse. Therefore, by processing one layer of the conductive elastomer with a laser, a portion of the conductive elastomer layer where the contact member 27 is not disposed can be easily removed. It can be reliably formed according to a specific pattern.
  • each contact member 27 in the contact member composite is bonded to the resulting conductive elastomer layer. After that, it is possible to form the connection conductive portion 41 in which the contact member 27 is physically provided.
  • connection conductive portions 41 After forming a plurality of connection conductive portions 41 arranged according to a specific pattern corresponding to the pattern of the electrode to be inspected, each of the connection conductive portions 41 was formed with an insulating material layer. Insulating circuit board 11 is in contact with each of inspection electrodes 16, and in this state, insulating material layer is hardened, so that insulation 22 without any conductive particles P is present at the inspection circuit board. An anisotropic conductive elastomer layer 40 integrally formed on the substrate 11 can be formed.
  • the plurality of connecting conductive portions 41 having the desired conductivity are isolated by the insulating portions 42 having no conductive particles.
  • the pitch of the electrodes to be inspected on the wafer to be inspected is extremely small Even if it is not necessary, the required insulation between the adjacent electrodes to be inspected is ensured, and a good electrical connection state to the wafer can be reliably achieved.
  • the anisotropic conductive elastomer layer 40 is formed integrally with the inspection circuit board 11, and the contact member 27 is also provided integrally with the connection conductive part 41, so that the sheet-like probe is formed. Therefore, even when a thermal history due to a temperature change is received, it is possible to prevent a connection failure due to misalignment between the connection conductive portion 41 and the inspection electrode 16, and the sheet-like probe. Connection failure due to misalignment can be avoided, and therefore a good electrical connection state to the wafer can be stably maintained. Further, since it is not necessary to use a sheet-like probe, it is possible to obtain a probe card 10 having a simple structure that does not require assembling work.
  • FIG. 39 is a cross-sectional view for explaining the outline of the configuration of the first example of the wafer inspection apparatus according to the present invention
  • FIG. 40 is an enlarged view of the main part of the wafer inspection apparatus of the first example. It is sectional drawing for description.
  • This first wafer inspection apparatus is for performing a burn-in test of the integrated circuit in a batch on the wafer for each of a plurality of integrated circuits formed on the wafer.
  • the wafer inspection apparatus of the first example detects the temperature of the wafer 6 to be inspected, power supply for detecting the wafer 6, signal input / output control, and output signal from the wafer 6 to detect the wafer. It has a controller 2 for judging whether the integrated circuit in 6 is good or bad. As shown in FIG. 41, the controller 2 has an input / output terminal portion 3R on the lower surface of which a large number of input / output terminals 3 are arranged along the circumferential direction.
  • the probe card 10 of the first example is held by appropriate holding means so that each force of the lead electrode 13 of the circuit board 11 for inspection faces the input / output terminal 3 of the controller 2 It is arranged in the state that was done.
  • a connector 4 is arranged between the input / output terminal portion 3R of the controller 2 and the lead electrode portion 13R of the inspection circuit board 11 1 in the probe card 10.
  • the connector 4 leads the lead electrode 13 of the inspection circuit board 11 Are electrically connected to each of the input / output terminals 3 of the controller 2.
  • the connector 4 in the example shown is
  • the conductive pin 4A is composed of a plurality of contractible conductive pins 4A and a support member 4B that supports these conductive pins 4A.
  • the conductive pins 4A are formed on the input / output terminal 3 of the controller 2 and the first substrate element 12.
  • the lead electrodes 13 are arranged so as to be positioned between them.
  • a wafer mounting table 5 on which a wafer 6 to be inspected is mounted is provided below the probe card 10.
  • the wafer 6 to be inspected is placed on the wafer mounting table 5, and then the probe card 10 is pressed downward, whereby its anisotropic conductivity is achieved.
  • Each force of the contact member 27 in the connector 20 comes into contact with each of the electrodes 7 to be inspected of the wafer 6, and each of the electrodes 7 to be inspected of the wafer 6 is pressurized by each of the contact members 27.
  • each of the connecting conductive parts 24 in the elastic anisotropic conductive film 23 of the anisotropic conductive connector 20 is sandwiched between the test electrode 16 and the contact member 27 of the test circuit board 11 and has a thickness. As a result, a conductive path is formed in the connecting conductive portion 24 in the thickness direction.
  • the inspection electrode 7 of the wafer 6 and the inspection electrode 16 of the inspection circuit board 11 are formed. Electrical connection with is achieved. Thereafter, the wafer 6 is heated to a predetermined temperature via the wafer mounting table 5, and in this state, a required electrical inspection is performed on each of the plurality of integrated circuits on the wafer 6.
  • electrical connection to the inspection target electrode 7 of the wafer 6 to be inspected is achieved via the probe card 10 of the first example.
  • a good electrical connection to the wafer can be reliably achieved, and the force can also stably maintain a good electrical connection to the wafer, so that in the wafer burn-in test, Ensure that the required electrical inspection is performed.
  • FIG. 42 is a cross-sectional view for explaining the outline of the configuration of the second example of the wafer inspection apparatus according to the present invention.
  • the wafer inspection apparatus includes a plurality of integrated circuits formed on the wafer. In order to conduct a probe test of the integrated circuit in a wafer state.
  • the wafer inspection apparatus of the second example is basically the same as the wafer inspection apparatus of the first example except that the probe card 10 of the second example is used instead of the probe card 10 of the first example. It is the same composition.
  • the probe card 10 is electrically connected to the inspected electrodes 7 of, for example, 32 integrated circuits in which the intermediate force of all the integrated circuits formed on the wafer 6 is also selected. Then, by repeating the process of inspecting the probe card 10 electrically connected to the electrodes 7 to be inspected of a plurality of integrated circuits selected from other integrated circuits, the wafer 6 is repeated. Probe testing is performed on all integrated circuits formed on the board.
  • the electrical connection to the inspection target electrode 7 of the wafer 6 to be inspected is achieved via the probe card 10 of the second example.
  • a good electrical connection state can be reliably achieved, and the force can also stably maintain a good electrical connection state to the wafer. Electrical inspection can be performed reliably.
  • FIG. 43 is a cross-sectional view for explaining the outline of the configuration of the third example of the wafer inspection apparatus according to the present invention
  • FIG. 44 shows an enlarged main part of the wafer inspection apparatus of the third example. It is sectional drawing for description.
  • the wafer inspection apparatus of the third example is for performing a burn-in test of the integrated circuit in a batch on the wafer for each of a plurality of integrated circuits formed on the wafer.
  • the wafer inspection apparatus of the third example is the same as the wafer inspection apparatus of the first example except that the probe card 10 of the third example is used instead of the probe force card 10 of the first example.
  • the configuration is basically the same.
  • the wafer 6 to be inspected is placed on the wafer mounting table 5, and then the probe card 10 is pressed downward, whereby the contact member 27
  • each of the connecting conductive portions 41 in the anisotropic conductive elastomer layer 40 is sandwiched between the test electrode 16 and the contact member 27 of the test circuit board 11 and compressed in the thickness direction.
  • a conductive path is formed in the connecting conductive portion 41 in the thickness direction, and as a result, electrical connection between the electrode 7 to be inspected 7 on the wafer 6 and the electrode 16 to be inspected on the circuit board 11 for inspection is performed. Is achieved. Thereafter, the wafer 6 is heated to a predetermined temperature via the wafer mounting table 5, and in this state, required electrical inspection is performed on each of the plurality of integrated circuits on the wafer 6.
  • the electrical connection to the electrode 7 to be inspected of the wafer 6 to be inspected is achieved via the probe card 10 of the third example. Even if the wafer 6 has a large area of 8 inches or more in diameter and the pitch of the electrodes 7 to be inspected is extremely small, the burn-in test reliably achieves good electrical connection to the wafer. In addition, it is possible to reliably prevent the displacement with respect to the electrode 7 to be inspected due to the temperature change, and thus it is possible to stably maintain a good electrical connection state to the wafer 6. Accordingly, in the wafer burn-in test, the required electrical inspection for the wafer can be reliably executed.
  • FIG. 45 is a cross-sectional view for explaining the outline of the configuration of the fourth example of the wafer inspection apparatus according to the present invention.
  • the wafer inspection apparatus includes a plurality of integrated circuits formed on the wafer. In order to conduct a probe test of the integrated circuit in a wafer state.
  • the wafer inspection apparatus of the fourth example is basically the same as the wafer inspection apparatus of the first example, except that the probe card 10 of the fourth example is used instead of the probe card 10 of the first example. It is the composition.
  • the probe card 10 is electrically connected to the electrodes 7 to be inspected of, for example, 32 integrated circuits in which the intermediate forces of all the integrated circuits formed on the wafer 6 are also selected. Then, by repeating the process of inspecting the probe card 10 electrically connected to the electrodes 7 to be inspected of a plurality of integrated circuits selected from other integrated circuits, the wafer 6 is repeated. Probe testing is performed on all integrated circuits formed on the board.
  • the protruding portion 26 is formed on the elastic anisotropic conductive film 23, even if the entire surface of the elastic anisotropic conductive film 23 is flat. Good.
  • the connecting conductive portion 41 is formed with a protrusion, and the entire surface of the anisotropic conductive elastomer layer 40 is flat. May be.
  • the elastic anisotropic conductive film 23 in the anisotropic conductive connector 20 is electrically connected to the electrode to be inspected in addition to the connecting conductive part 24 formed according to the pattern corresponding to the pattern of the electrode to be inspected.
  • a conductive part for non-connection may be formed without being connected.
  • the anisotropic conductive elastomer layer 40 of the probe card 10 is electrically connected to the electrode to be inspected in addition to the conductive portion 41 for connection formed according to the pattern corresponding to the pattern of the electrode to be inspected.
  • a conductive part for non-connection may be formed.
  • the anisotropic conductive elastomer layer 40 of the probe card 10 may be divided and formed for each inspection electrode portion 16R of the inspection circuit board 11, for example.
  • the connecting conductive portion 24 is formed by removing all portions of the conductive elastomer layer 24B other than the connecting conductive portion by laser processing.
  • the conductive portion 24 for connection can also be formed by removing only the peripheral portion of the conductive elastomer layer 24B that becomes the conductive portion for connection. .
  • the remaining portion of the conductive elastomer layer 24B can be removed by mechanically peeling from the releasable support plate 35.
  • the probe card 10 is integrated on the inspection circuit board 11 as shown in FIG.
  • a so-called dispersive anisotropic conductive elastomer sheet 45 containing the chain dispersed in the plane direction can be disposed.
  • the connector 4 for electrically connecting the controller 2 and the inspection circuit board 11 in the wafer inspection apparatus is not limited to the one shown in FIG. 41, and various structures can be used.
  • Test wafers having the configurations shown in FIGS. 49 to 51 were produced.
  • the wafer (6) the diameter is more than 8 inches silicon (coefficient of linear thermal expansion 3. 3 X 10- 6 ZK), on those said wafer (6) with dimensions respectively 9mm A total of 393 X 9mm square integrated circuits (L) are formed.
  • Each of the integrated circuits (L) formed on the wafer (6) has an inspected electrode region (A) in the center thereof, and the inspected electrode region (A) has a vertical direction (in FIG. 51).
  • 40 rectangular electrodes (7) with a dimension of 200 ⁇ m in the vertical direction and a horizontal dimension of 60 ⁇ m in the horizontal direction (Fig. 51!) Are laterally spaced at a pitch of 120 ⁇ m.
  • test wafer Wl Arranged in a row in the direction.
  • the total number of electrodes (7) to be inspected on the entire wafer (6) is 15720, and all the electrodes to be inspected (7) are electrically insulated from each other.
  • this wafer is referred to as “test wafer Wl”.
  • test wafer W2 instead of electrically insulating all the electrodes to be inspected (7) from each other, one of the 40 electrodes to be inspected in the integrated circuit (L) counted from the outermost electrode to be inspected (7)
  • this wafer is referred to as “test wafer W2.”
  • each of the openings (22) in the frame plate (21) has a horizontal dimension (horizontal direction in FIGS. 52 and 53) of 5.5 mm and a vertical dimension (vertical direction in FIGS. 52 and 53). Is 0.4 mm.
  • a circular air inflow hole (H) is formed at the center position between the vertically adjacent openings (22), and the diameter thereof is lmm.
  • Two spacers for forming an elastic anisotropic conductive film having a plurality of openings formed corresponding to the electrode area to be inspected in the test wafer W1 were produced under the following conditions.
  • the material of these spacers is stainless steel (SUS304), and its thickness is 20 ⁇ m.
  • Each of the spacer openings has a horizontal dimension of 7 mm and a vertical dimension force of 4 mm.
  • magnetic core particles [A] were prepared as follows.
  • the obtained magnetic core particle [A] has a number average particle diameter of 10 m, a particle diameter variation coefficient of 10%, a BET specific surface area of 0.2 X 10 3 m 2 / kg, and a saturation magnetization of 0.6 Wb / kg. It was m 2.
  • the conductive particles [a] thus obtained are charged with 2 L of pure water, stirred at room temperature for 2 minutes, and then allowed to stand for 1 minute to precipitate the conductive particles [a]. The liquid was removed. This operation was further repeated twice, and then 2 L of pure water heated to 90 ° C. was added and stirred, and the resulting slurry was filtered through a filter paper to collect the conductive particles [a]. The conductive particles [a] were dried by a dryer set at 90 ° C.
  • the obtained conductive particles [a] have a number average particle diameter of 12 m, a BET specific surface area of 0.15 X 10 3 mVkg, a coating layer thickness t of ll lnm, (the mass of gold forming the coating layer) ) / (Conductive particle [a] total mass) value N was 0.3.
  • a metal foil (30) made of copper with a thickness of S18 ⁇ m is peeled and laminated on one side of a 100 ⁇ m thick resin film made of polyethylene terephthalate.
  • a photolithography technique using a rectangular 15720 (31K) force test wafer W1 with dimensions of 60 m X 200 / zm.
  • a resist layer (31) having a thickness of 80 ⁇ m formed according to the pattern was formed (see FIG. 4).
  • a contact member composite (27F) was manufactured (see FIG. 5).
  • a conductive elastomer material was prepared by dispersing 70 parts by weight of the conductive particles [a] in 100 parts by weight of addition-type liquid silicone rubber.
  • the conductive elastomer material is applied to the surface of a releasable support plate (35) made of stainless steel having a thickness of 5 mm by screen printing, so that the thickness of the conductive elastomer material on the releasable support plate (35) is increased.
  • a conductive elastomer material layer (24A) with a thickness of 140 / zm was formed (see Fig. 6).
  • the contact member composite (27F) is arranged on the conductive elastomer material layer (24A) so that each of the contact members (27) is in contact with the conductive elastomer material layer (24A).
  • the conductive elastomer material layer (24A) is subjected to a curing treatment at 120 ° C for 1 hour while applying a magnetic field of 2 Tesla in the thickness direction by an electromagnet.
  • a conductive elastomer layer (21B) having a thickness of 140 m supported on the support plate (35) was formed (see FIGS. 7 to 9).
  • the addition-type liquid silicone rubber used is a two-component type consisting of liquid A and liquid B each having a viscosity of 250 Pa's, and the compression set of the cured product is 5%, Durometer A with a hardness of 32 and a tear strength of 25 kNZm.
  • the liquid A and liquid B in the two-component type addition type liquid silicone rubber were stirred and mixed at an equal ratio.
  • a curing treatment is performed at 120 ° C for 30 minutes, resulting in a thickness of 12.7 mm and a diameter of 29 mm.
  • a cylindrical body made of a cured silicone rubber was prepared, and post-curing was performed on this cylindrical body at 200 ° C. for 4 hours.
  • the cylindrical body thus obtained was used as a test piece, and compression set at 150 ⁇ 2 ° C. was measured according to JIS K 6249.
  • Talecent-shaped specimens were produced from this sheet by punching, and the bow I crack strength at 2 ° C for 23 persons was measured in accordance with JIS K 6249.
  • the durometer A hardness is set to 23 ⁇ 2 ° C according to JIS K 6249 by stacking five sheets prepared in the same manner as in (m) above and using the resulting stack as a test piece. The value was measured.
  • the laser processing conditions by the carbon dioxide laser device are as follows.
  • a carbon dioxide laser processing machine “ML-605GTX” manufactured by Mitsubishi Electric Corporation
  • the laser beam diameter was 60 m and the laser output was 0.8 mJ.
  • laser processing was performed by irradiating 10 shots of a laser beam at one processing point.o
  • a mold release support plate (35A) made of stainless steel with a thickness of 5mm is prepared, and one molding spacer is placed on the surface of the mold release support plate (35A).
  • the frame plate (21) was positioned and placed on the spacer for use in molding, and the other forming spacer was placed on the frame plate (21) in alignment.
  • an addition-type liquid silicone rubber used in the preparation of the conductive elastomer material is prepared, and the addition-type liquid silicone rubber is defoamed under reduced pressure, and then the addition-type liquid silicone rubber is screen-printed.
  • the additional liquid silicone rubber is filled into the openings of each of the two molding spacers and the opening (22) of the frame plate (21).
  • an insulating material layer (25A) was formed (see FIG. 12).
  • the release support plate (35) formed with 15720 connecting conductive portions (24) each provided with the contact member (27) is replaced with the release portion formed with the insulating material layer (25A).
  • the conductive support plate (35A) By superimposing on the conductive support plate (35A), each of the conductive parts for connection (24) enters the insulating material layer (25A), and the contact member (27) is placed on the release support plate (35A). ) (See FIG. 13).
  • the connecting conductive portion (24) is compressed in the thickness direction while the insulating portion
  • the material layer (25A) By hardening the material layer (25A), it is integrated with the connection conductive part (24) around each of the connection conductive parts (24) and the insulation part (25) force that insulates them from each other.
  • the formed elastic anisotropic conductive film (23) was formed (see FIG. 14).
  • the anisotropically conductive connector of the present invention is removed by releasing the moldable support plate (35), (35A) and the elastic anisotropically conductive film (23) and removing the forming spacer. Manufactured.
  • Each of the elastic anisotropic conductive films has a lateral dimension of 5.5 mm and a longitudinal dimension of 0.4. mm.
  • Each elastic anisotropic conductive film has 40 connecting conductive parts in the transverse direction at a pitch of 120 m
  • Each of the connecting conductive parts has a horizontal dimension of 60 m, a vertical dimension of 200 ⁇ m, a thickness of about 140 ⁇ m, and an insulating part thickness of 100 ⁇ m. m. Further, the thickness of the supported portion (one thickness of the bifurcated portion) in each elastic anisotropic conductive film is 20 ⁇ m.
  • the volume fraction was about 30% in all the connecting conductive portions.
  • Alumina ceramics (coefficient of linear thermal expansion 4.8 X 10-so-K) is used as the substrate material, and a test circuit board with test electrodes formed according to the pattern corresponding to the pattern of the test electrode in Weno for testing and W1 is manufactured. did.
  • the inspection circuit board has a rectangular shape with an overall dimension of 3 Ocm ⁇ 30 cm, and the inspection electrode has a lateral dimension force of 1 ⁇ 2 ⁇ m and a longitudinal dimension of 200 / zm.
  • this inspection circuit board is referred to as “inspection circuit board T”.
  • the inspection circuit board ⁇ is aligned and fixed so that each of the inspection electrodes is positioned on the connecting conductive portion of the anisotropic conductive connector.
  • the circuit board ⁇ was pressed downward with a load of 160 kg.
  • a sequential voltage is applied to each of the inspection electrodes on the inspection circuit board T, and the electrical resistance between the inspection electrode to which the voltage is applied and the inspection electrode adjacent thereto is applied.
  • the electrical resistance between the conductive parts for connection in the anisotropic conductive connector hereinafter referred to as “insulation resistance”
  • the number of conductive part pairs for connection having an insulation resistance of 5 ⁇ or less was determined.
  • the insulation resistance between the conductive parts for connection is 5 ⁇ or less, it may be difficult to actually use this in the electrical inspection of the integrated circuit formed on the wafer.
  • the test wafer W2 is placed on a test stand equipped with an electric heater, and an anisotropic conductive connector is placed on the test wafer W1 so that each of the conductive portions for connection is placed on the test electrode of the test wafer W2.
  • the inspection circuit board T is aligned on the anisotropic conductive connector so that each of the inspection electrodes is positioned on the conductive portion for connection of the anisotropic conductive connector. Furthermore, the circuit board for inspection T was pressed downward with a load of 32 kg (the load applied to each conductive part for connection was about 2 g on average).
  • test electrodes on the test circuit board T are electrically connected to each other via the anisotropic conductive connector, the test weno, and W1.
  • the electrical resistance between the two test electrodes is measured sequentially, and the half of the measured electrical resistance value is used as the electrical resistance of the conductive part for connection in the anisotropic conductive connector (hereinafter referred to as ⁇ conducting resistance '').
  • ⁇ conducting resistance '' the anisotropic conductive connector
  • the load to pressurize the inspection circuit board T is changed to 126 kg (the average load applied to each conductive part for connection is about 8 g), and then the test bench is heated to 125 ° C and the temperature of the test bench is After being stabilized, it was left in this state for 1 hour.
  • the above operation is referred to as “operation (2)”.
  • the test table was cooled to room temperature, and then the pressure applied to the inspection circuit board T was released. The above operation is referred to as “operation (3)”.
  • Example 2 By using the same frame plate as in Example 1 and forming an elastic anisotropic conductive film having the following specifications in each of the openings of the frame plate according to the method described in Japanese Patent Application Laid-Open No. 2002-334732, a comparatively different anisotropic plate is formed. A directionally conductive connector was produced. The elastic anisotropic conductive film in the comparative anisotropic conductive connector obtained will be described. Each of the elastic anisotropic conductive films has a lateral dimension of 5.5 mm and a longitudinal dimension of 0.4 mm. .
  • Each of the elastic anisotropic conductive films has 40 connecting conductive parts arranged in a row in the horizontal direction at a pitch of 120 m.
  • Each of the connecting conductive parts has a horizontal dimension of 60 m and a vertical length of The dimension in the direction is 200 ⁇ m, the thickness is about 140 ⁇ m, and the thickness of the insulating part is 100 ⁇ m. Further, the thickness of the supported portion (one thickness of the bifurcated portion) in each elastic anisotropic conductive film is 20 ⁇ m.
  • the volume fraction was about 20%.
  • the comparative anisotropic conductive connector was evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

There is disclosed an anisotropic conductive connector capable of surely achieving a preferable electric connection state even when electrodes to be inspected on a wafer have an extremely small pitch. There are also disclosed a manufacturing method of the anisotropic conductive connector, a probe card, a manufacturing method thereof, and a wafer inspection device. The anisotropic conductive connector manufacturing method includes: a step for arranging contact members formed by magnetic metal and arranged on the surface of conductive elastomer material layer formed on a detachable support plate; a step for applying a magnetic field to the conductive elastomer material layer in its thickness direction; a step for performing a hardening process to form a conductive elastomer layer; a step of machining the conductive elastomer layer by using laser; a step or removing portions other than the portion where the contact members are arranged, thereby forming connection conductive parts having the contact members; a step for introducing each of the connection conductive parts into the insulation part material layer formed so as to close the opening of the frame plate; and a step for hardening the insulation part material layer so as to form an insulation part.

Description

明 細 書  Specification
ウェハ検査用異方導電性コネクターおよびその製造方法、ウェハ検査用 プローブカードおよびその製造方法並びにウェハ検査装置  Anisotropic conductive connector for wafer inspection and manufacturing method thereof, probe card for wafer inspection and manufacturing method thereof, and wafer inspection apparatus
技術分野  Technical field
[0001] 本発明は、ウェハに形成された複数の集積回路の電気的検査をウェハの状態で 行うために用いられるウェハ検査用異方導電性コネクターおよびその製造方法、ゥェ ハ検査用プローブカードおよびその製造方法並びにウェハ検査装置に関する。 背景技術  The present invention relates to an anisotropic conductive connector for wafer inspection used for performing electrical inspection of a plurality of integrated circuits formed on a wafer in a wafer state, a method for manufacturing the same, and a probe card for wafer inspection The present invention relates to a manufacturing method and a wafer inspection apparatus. Background art
[0002] 一般に、半導体集積回路装置の製造工程においては、例えばシリコンよりなるゥェ ハに多数の集積回路を形成し、その後、これらの集積回路の各々について、基礎的 な電気特性を検査することによって、欠陥を有する集積回路を選別するプローブ試 験が行われる。次いで、このウェハを切断することによって半導体チップが形成され、 この半導体チップが適宜のパッケージ内に収納されて封止される。更に、パッケージ 化された半導体集積回路装置の各々について、高温環境下において電気特性を検 查することによって、潜在的欠陥を有する半導体集積回路装置を選別するバーンィ ン試験が行われる。  In general, in the manufacturing process of a semiconductor integrated circuit device, a large number of integrated circuits are formed on a wafer made of, for example, silicon, and then basic electrical characteristics of each of these integrated circuits are inspected. Thus, a probe test for selecting defective integrated circuits is performed. Next, the semiconductor chip is formed by cutting the wafer, and the semiconductor chip is housed in an appropriate package and sealed. Further, each packaged semiconductor integrated circuit device is subjected to a burn-in test for selecting a semiconductor integrated circuit device having a potential defect by examining electrical characteristics in a high temperature environment.
このようなプローブ試験またはバーンイン試験などの集積回路の電気的検査にお いては、検査対象物における被検査電極の各々をテスターに電気的に接続するた めにプローブカードが用いられている。このようなプローブカードとしては、被検查電 極のパターンに対応するパターンに従って検査電極が形成された検査用回路基板と 、この検査用回路基板上に配置された異方導電性エラストマ一シートと、この異方導 電性エラストマ一シート上に配置されたシート状プローブとよりなるものが知られてい る。  In such an electrical inspection of an integrated circuit such as a probe test or a burn-in test, a probe card is used to electrically connect each of the electrodes to be inspected in the inspection object to a tester. As such a probe card, an inspection circuit board in which an inspection electrode is formed according to a pattern corresponding to the pattern of the test electrode, an anisotropic conductive elastomer sheet disposed on the inspection circuit board, and It is known that a sheet-like probe is disposed on the anisotropically conductive elastomer sheet.
[0003] 力かるプローブカードにおける異方導電性エラストマ一シートとしては、従来、種々 の構造のものが知られており、例えば特許文献 1等には、金属粒子をエラストマ一中 に均一に分散して得られる異方導電性エラストマ一シート (以下、これを「分散型異方 導電性エラストマ一シート」という。)が開示され、また、特許文献 2等には、導電性磁 性体粒子をエラストマ一中に不均一に分布させることにより、厚み方向に伸びる多数 の導電部と、これらを相互に絶縁する絶縁部とが形成されてなる異方導電性エラスト マーシート (以下、これを「偏在型異方導電性エラストマ一シート」という。)が開示され[0003] Conventionally, anisotropic conductive elastomer sheets in a powerful probe card are known in various structures. For example, Patent Document 1 discloses that metal particles are uniformly dispersed in an elastomer. An anisotropic conductive elastomer sheet (hereinafter referred to as a “dispersed anisotropic conductive elastomer sheet”) is disclosed, and Patent Document 2 and others disclose a conductive magnetic sheet. An anisotropic conductive elastomer sheet (hereinafter referred to as this) in which a large number of conductive parts extending in the thickness direction and insulating parts that insulate them from each other are formed by non-uniform distribution of the particles in the elastomer. Is referred to as “the unevenly distributed anisotropic conductive elastomer sheet”).
、更に、特許文献 3等には、導電部の表面と絶縁部との間に段差が形成された偏在 型異方導電性エラストマ一シートが開示されている。 Furthermore, Patent Document 3 and the like disclose an unevenly distributed anisotropic conductive elastomer sheet in which a step is formed between the surface of the conductive portion and the insulating portion.
これらの異方導電性エラストマ一シートの中で、偏在型異方導電性エラストマーシ ートは、検査すべき集積回路の被検査電極のパターンに対応するパターンに従って 導電部が形成されているため、分散型異方導電性エラストマ一シートに比較して、被 検査電極の配列ピッチすなわち隣接する被検査電極の中心間距離が小さい集積回 路などに対しても電極間の電気的接続を高い信頼性で達成することができる点で、 有利である。従って、被検査電極のピッチが小さい半導体集積回路装置のプローブ 試験またはバーンイン試験においては、偏在型異方導電性エラストマ一シートが用 いられている。  Among these anisotropically conductive elastomer sheets, the unevenly distributed anisotropically conductive elastomer sheet has a conductive portion formed according to a pattern corresponding to the pattern of the electrode to be inspected of the integrated circuit to be inspected. More reliable electrical connection between electrodes compared to distributed anisotropic conductive elastomer sheet, even for integrated circuits where the arrangement pitch of the electrodes to be inspected, that is, the distance between the centers of adjacent electrodes to be inspected is small Is advantageous in that it can be achieved with Therefore, an unevenly distributed anisotropic conductive elastomer sheet is used in a probe test or burn-in test of a semiconductor integrated circuit device in which the pitch of electrodes to be inspected is small.
[0004] 而して、ウェハに形成された集積回路に対して行われるプローブ試験においては、 従来、多数の集積回路のうち例えば 16個または 32個の集積回路が形成された複数 のエリアにウェハを分割し、このエリアに形成された全ての集積回路について一括し てプローブ試験を行い、順次、その他のエリアに形成された集積回路についてプロ ーブ試験を行う方法が採用されている。そして、近年、検査効率を向上させ、検査コ ストの低減化を図るために、ウェハに形成された多数の集積回路のうち例えば 64個 若しくは 124個または全部の集積回路について一括してプローブ試験を行うことが要 請されている。  [0004] Thus, in a probe test performed on an integrated circuit formed on a wafer, conventionally, a wafer is placed in a plurality of areas in which, for example, 16 or 32 integrated circuits are formed. A method is adopted in which a probe test is performed on all integrated circuits formed in this area at once, and a probe test is sequentially performed on integrated circuits formed in other areas. In recent years, in order to improve the inspection efficiency and reduce the inspection cost, for example, 64 or 124 of all the integrated circuits formed on the wafer, or all of the integrated circuits are collectively subjected to the probe test. It is requested to do.
一方、バーンイン試験においては、検査対象である集積回路装置は微小なもので あってその取扱いが不便なものであるため、多数の集積回路装置の電気的検査を個 別的に行うためには,長い時間を要し、これにより、検査コストが相当に高いものとな る。このような理由から、ウェハ上に形成された多数の集積回路について、それらの バーンイン試験をウェハの状態で一括して行う WLBI (Wafer Lebel Burn -in) 試験が提案されている。  On the other hand, in the burn-in test, the integrated circuit device to be inspected is very small and inconvenient to handle, so in order to perform electrical inspection of many integrated circuit devices individually, It takes a long time, which makes the inspection costs considerably higher. For this reason, a WLBI (Wafer Lebel Burn-in) test has been proposed in which a burn-in test of a large number of integrated circuits formed on a wafer is performed in a wafer state.
[0005] し力しながら、検査対象であるウエノ、が、例えば直径が 8インチ以上の大型のもの であって、その被検査電極の数が例えば 5000以上、特に 10000以上のものである 場合には、各集積回路における被検査電極のピッチが極めて小さいものであるため 、プローブ試験または WLBI試験に偏在型異方導電性エラストマ一シートを用いると 、以下のような問題がある。 [0005] While the force is applied, the Ueno to be inspected is, for example, a large one having a diameter of 8 inches or more. When the number of electrodes to be inspected is, for example, 5000 or more, particularly 10000 or more, the pitch of the electrodes to be inspected in each integrated circuit is extremely small. When the anisotropically conductive elastomer sheet is used, there are the following problems.
(1)直径が例えば 8インチ (約 20cm)のウェハを検査するためには、偏在型異方導 電性エラストマ一シートとして、その直径が 8インチ程度のものを用いることが必要とな る。然るに、このような偏在型異方導電性エラストマ一シートは、全体の面積が相当に 大きいものであるが、各導電部は微細で、当該偏在型異方導電性エラストマ一シート 表面に占める導電部表面の面積の割合が小さいものであるため、当該偏在型異方 導電性エラストマ一シートを確実に製造することは極めて困難である。従って、異方 導電性エラストマ一シートの製造においては、歩留りが極端に低下する結果、異方導 電性エラストマ一シートの製造コストが増大し、延 、ては検査コストが増大する。  (1) In order to inspect a wafer with a diameter of, for example, 8 inches (about 20 cm), it is necessary to use an unevenly distributed anisotropically conductive elastomer sheet having a diameter of about 8 inches. However, such an unevenly distributed anisotropic conductive elastomer sheet has a considerably large overall area, but each conductive part is fine and the conductive part occupying the surface of the unevenly distributed anisotropic conductive elastomer sheet. Since the surface area ratio is small, it is extremely difficult to reliably manufacture the unevenly anisotropic anisotropic conductive elastomer sheet. Therefore, in the production of the anisotropic conductive elastomer sheet, the yield is drastically reduced, resulting in an increase in the production cost of the anisotropic conductive elastomer sheet, which in turn increases the inspection cost.
(2)偏在型異方導電性エラストマ一シートにぉ 、ては、検査用回路基板および検査 対象であるウェハとの電気的接続作業において、それらに対して特定の位置関係を もって保持固定することが必要である。然るに、異方導電性エラストマ一シートは柔軟 で容易に変形しやすいものであって、その取扱い性が低いものであるるため、検査対 象であるウェハの被検査電極に対する電気的接続を行う際に、偏在型異方導電性 エラストマ一シートの位置合わせおよび保持固定が極めて困難である。  (2) In the electrical connection work between the unevenly distributed anisotropic conductive elastomer sheet and the circuit board for inspection and the wafer to be inspected, it must be held and fixed with a specific positional relationship to them. is required. However, anisotropically conductive elastomer sheets are flexible and easily deformable and have low handling properties. Therefore, when an electrical connection is made to an inspection target electrode of a wafer to be inspected. In addition, it is extremely difficult to align and hold and fix the unevenly distributed anisotropic conductive elastomer sheet.
(3)ウェハを構成する材料例えばシリコンの線熱膨張係数は 3. 3 X 10— 6ZK程度で あり、一方、異方導電性エラストマ一シートを構成する材料例えばシリコーンゴムの線 熱膨張係数は 2. 2 Χ 10— 4ΖΚ程度である。従って、例えば 25°Cにおいて、それぞれ 直径が 20cmのウェハおよび異方導電性エラストマ一シートの各々を、 20°Cから 120 °Cまでに加熱した場合には、理論上、ウェハの直径の変化は 0. 0066cmにすぎな いが、異方導電性エラストマ一シートの直径の変化は 0. 44cmに達する。このように(3) the linear thermal expansion coefficient of the material for example silicon constituting the wafer 3. is about 3 X 10- 6 ZK, whereas linear thermal expansion coefficient of the material such as silicone rubber constituting the anisotropically conductive elastomer one sheet 2. is about 2 Χ 10- 4 ΖΚ. Thus, for example, at 25 ° C, if each wafer and anisotropic conductive elastomer sheet with a diameter of 20cm are heated from 20 ° C to 120 ° C, the change in wafer diameter is theoretically Although it is only 0066 cm, the change in diameter of the anisotropically conductive elastomer sheet reaches 0.44 cm. in this way
、検査対象である集積回路装置を構成する材料 (例えばシリコン)と偏在型異方導電 性エラストマ一シートを構成する材料 (例えばシリコーンゴム)との間で、熱膨張率が 大きく異なるため、バーンイン試験においては、ー且はウェハと偏在型異方導電性ェ ラストマーシートとの所要の位置合わせおよび保持固定が実現された場合であっても 、温度変化による熱履歴を受けると、偏在型異方導電性エラストマ一シートの導電部 とウェハの被検査電極との間に位置ずれが生じる結果、電気的接続状態が変化して 安定な接続状態を維持することが困難である。 Because the coefficient of thermal expansion differs greatly between the material constituting the integrated circuit device to be inspected (for example, silicon) and the material constituting the unevenly anisotropic conductive elastomer sheet (for example, silicone rubber), the burn-in test Even if the required alignment and holding / fixing of the wafer and the unevenly distributed anisotropic conductive elastomer sheet is realized. When a thermal history due to temperature changes is received, the electrical connection state changes as a result of displacement between the conductive part of the unevenly distributed anisotropically conductive elastomer sheet and the inspected electrode of the wafer. Is difficult to maintain.
[0006] 上記の問題を解決するため、検査対象であるウェハにおける集積回路の被検査電 極が形成された電極領域に対応して複数の開口が形成されたフレーム板と、このフ レーム板の開口の各々を塞ぐよう配置された複数の弾性異方導電膜とよりなる異方 導電性コネクター、およびこの異方導電性コネクターと、当該異方導電性コネクター 上に配置されたシート状プローブとを具えてなるプローブカードが提案されて 、る(例 えば特許文献 4参照。;)。 このような異方導電性コネクターによれば、以下のような効 果が得られる。  [0006] In order to solve the above problem, a frame plate in which a plurality of openings are formed corresponding to an electrode region in which an inspection target electrode of an integrated circuit in a wafer to be inspected is formed, and the frame plate An anisotropic conductive connector composed of a plurality of elastic anisotropic conductive films arranged so as to close each of the openings, and the anisotropic conductive connector and a sheet-like probe arranged on the anisotropic conductive connector. Proposed probe cards have been proposed (for example, see Patent Document 4). According to such an anisotropic conductive connector, the following effects can be obtained.
(1)フレーム板に形成された開口の各々は、検査対象であるウェハにおける集積回 路の電極領域に対応する寸法であり、従って、当該開口の各々に配置される弹性異 方導電膜は、サイズの小さいものでよいため、個々の弾性異方導電膜の形成が容易 である。  (1) Each of the openings formed in the frame plate has a size corresponding to the electrode region of the integrated circuit in the wafer to be inspected. Therefore, the anisotropic anisotropic conductive film disposed in each of the openings is Since a small size is sufficient, it is easy to form individual elastic anisotropic conductive films.
(2)弾性異方導電膜の各々がフレーム板に支持されているため、変形しに《て取扱 いやすぐまた、予めフレーム板に位置決め用マーク(例えば孔)を形成することによ り、集積回路装置の電気的接続作業において、当該集積回路装置に対する位置合 わせおよび保持固定を容易に行うことができる。  (2) Since each of the elastic anisotropic conductive films is supported by the frame plate, it can be easily handled by being deformed, and it can be integrated by forming positioning marks (for example, holes) in the frame plate in advance. In the electrical connection work of the circuit device, it is possible to easily align and hold and fix the integrated circuit device.
(3)サイズの小さい弾性異方導電膜は、熱履歴を受けた場合でも、熱膨張の絶対量 が少ないため、弾性異方導電膜の熱膨張がフレーム板によって規制され、しかも、異 方導電性コネクター全体の熱膨張は、フレーム板を構成する材料の熱膨張に依存す るので、フレーム板を構成する材料として熱膨張率の小さいものを用いることにより、 温度変化による熱履歴を受けた場合にも、当該異方導電性コネクターにおける導電 部とウェハにおける被検査電極との位置ずれが防止される結果、良好な電気的接続 状態が安定に維持される。  (3) Since the elastic anisotropic conductive film with a small size has a small absolute amount of thermal expansion even when it receives a thermal history, the thermal expansion of the elastic anisotropic conductive film is regulated by the frame plate, and the anisotropic conductive film The thermal expansion of the entire connector depends on the thermal expansion of the material that makes up the frame plate, so if you use a material with a low coefficient of thermal expansion as the material that makes up the frame plate, In addition, as a result of preventing the displacement between the conductive portion of the anisotropic conductive connector and the electrode to be inspected on the wafer, a favorable electrical connection state is stably maintained.
[0007] そして、このような異方導電性コネクタ一は、以下のようにして製造される。 [0007] Such an anisotropic conductive connector 1 is manufactured as follows.
図 54に示すような上型 80およびこれと対となる下型 85よりなる弾性異方導電膜成 形用の金型を用意する。この金型における上型 80および下型 85の各々は、基板 81 , 86上に、成形すべき異方導電性エラストマ一シートの導電部のパターンに対応す るパターンに従って配置された複数の強磁性体層 82, 87と、これらの強磁性体層 82 , 87が形成された個所以外の個所に配置された非磁性体層 83, 88とが設けられて おり、強磁性体層 82, 87および非磁性体層 83, 88により、成形面が形成されている 。そして、上型 80および下型 85は、対応する強磁性体層 82, 87が互いに対向する よう配置されている。 A mold for forming an elastic anisotropic conductive film comprising an upper mold 80 and a lower mold 85 as a pair as shown in FIG. 54 is prepared. Each of the upper mold 80 and the lower mold 85 in this mold has a substrate 81 , 86, a plurality of ferromagnetic layers 82, 87 arranged according to a pattern corresponding to the pattern of the conductive portion of the anisotropic conductive elastomer sheet to be formed, and these ferromagnetic layers 82, 87 Nonmagnetic material layers 83 and 88 are provided at locations other than the formed location, and the ferromagnetic material layers 82 and 87 and the nonmagnetic material layers 83 and 88 form a molding surface. The upper mold 80 and the lower mold 85 are arranged so that the corresponding ferromagnetic layers 82 and 87 face each other.
このような金型内に、図 55に示すように、検査対象であるウェハにおける電極領域 に対応して開口 91が形成されたフレーム板 90を位置合わせして配置すると共に、硬 化処理によって弾性高分子物質となる高分子物質形成材料中に磁性を示す導電性 粒子 Ρが分散されてなる成形材料層 95Αを、フレーム板 90の各開口 91を塞ぐようを 形成する。ここで、成形材料層 95Αに含有されている導電性粒子 Ρは、当該成形材 料層 95Α中に分散された状態である。  In such a mold, as shown in FIG. 55, a frame plate 90 in which an opening 91 is formed corresponding to the electrode region in the wafer to be inspected is aligned and disposed, and is elasticized by a hardening process. A molding material layer 95 な る formed by dispersing conductive particles 磁性 exhibiting magnetism in a polymer material forming material to be a polymer material is formed so as to close each opening 91 of the frame plate 90. Here, the conductive particles contained in the molding material layer 95 are dispersed in the molding material layer 95.
[0008] そして、上型 80の上面およひ下型 85の下面に例えば一対の電磁石を配置してこ れを作動させることにより、成形材料層 95Αには、上型 80の強磁性体層 82とこれに 対応する下型 85の強磁性体層 87との間の部分すなわち導電部となる部分において 、それ以外の部分より大き 、強度の磁場が当該成形材料層 95 Αの厚み方向に作用 される。その結果、成形材料層 95A中に分散されている導電性粒子 Pは、図 56に示 すように、当該成形材料層 95Aにおける大きい強度の磁場が作用されている部分、 すなわち上型 80の強磁性体層 82とこれに対応する下型 85の強磁性体層 87との間 の部分に集合し、更には厚み方向に並ぶよう配向する。そして、この状態で、成形材 料層 95Aの硬化処理を行うことにより、導電性粒子 Pが厚み方向に並ぶよう配向した 状態で含有された複数の導電部 96と、これらの導電部 96を相互に絶縁する絶縁部 97とよりなる弾性異方導電膜 95が、その周縁部がフレーム板 90の開口縁部に支持 された状態で成形され、以て異方導電性コネクターが製造される。  [0008] Then, for example, a pair of electromagnets are arranged on the upper surface of the upper die 80 and the lower surface of the lower die 85 to operate them, whereby the ferromagnetic material layer 82 of the upper die 80 is formed on the molding material layer 95Α. And the corresponding lower portion 85 of the ferromagnetic layer 87 of the lower mold 85, that is, the portion that becomes the conductive portion, a magnetic field that is larger and stronger than the other portions is applied in the thickness direction of the molding material layer 95 95. The As a result, the conductive particles P dispersed in the molding material layer 95A are, as shown in FIG. 56, the portion of the molding material layer 95A to which a strong magnetic field is applied, that is, the strength of the upper mold 80. They are gathered at a portion between the magnetic layer 82 and the corresponding ferromagnetic layer 87 of the lower mold 85, and are further aligned in the thickness direction. In this state, the molding material layer 95A is subjected to a curing process, whereby the plurality of conductive portions 96 contained in a state in which the conductive particles P are aligned in the thickness direction are mutually connected. An elastic anisotropic conductive film 95 composed of an insulating part 97 and an insulating part 97 are formed in a state where the peripheral part is supported by the opening edge part of the frame plate 90, whereby an anisotropic conductive connector is manufactured.
[0009] し力しながら、このような製造方法においては、以下のような問題がある。  However, such a manufacturing method has the following problems.
被検査電極が小さ ヽピッチで高密度に配置されたウェハにっ ヽて電気的検査を行 う場合には、導電部のピッチが小さくて高密度に配置された異方導電性コネクターを 用いることが必要である。而して、このような異方導電性コネクターの製造においては 、当然のことながら強磁性体層 82, 87が極めて小さいピッチで配置された上型 80お よび下型 85を用いることが必要である。 When electrical inspection is performed on a wafer in which the electrodes to be inspected are arranged at a high density with a small pitch, use anisotropic conductive connectors with a small pitch of the conductive parts and a high density. is required. Thus, in the manufacture of such anisotropically conductive connectors Of course, it is necessary to use the upper die 80 and the lower die 85 in which the ferromagnetic layers 82 and 87 are arranged at a very small pitch.
然るに、このような上型 80および下型 85を用い、上述のようにして弾性異方導電膜 95を形成する場合には、上型 80および下型 85の各々において、互いに隣接する強 磁性体層 82, 87の間の離間距離が小さいため、図 57に示すように、上型 80におけ る或る強磁性体層 82aからこれに対応する下型 85の強磁性体層 87aに向力 方向( 矢印 Xで示す)のみならず、例えば上型 80の強磁性体層 82aからこれに対応する下 型 85の強磁性体層 87aに隣接する強磁性体層 87bに向カゝぅ方向(矢印 Yで示す)、 或いは上型 80の強磁性体層 82bからこれに対応する下型 85の強磁性体層 87bに 隣接する強磁性体層 87aに向力 方向にも磁場が作用することとなる。そのため、成 形材料層 95Aにおいて、導電性粒子 Pを、上型 80の強磁性体層 82aとこれに対応 する下型 85の強磁性体層 87aとの間に位置する部分に集合させることが困難となり、 例えば上型 80の強磁性体層 82aと下型 85の強磁性体層 87bとの間に位置する部 分にも導電性粒子が集合してしまい、また、導電性粒子 Pを成形材料層 95Aの厚み 方向に十分に配向させることが困難となり、その結果、所期の導電部および絶縁部を 有する異方導電性コネクターが得られな ヽ。  However, when such an upper die 80 and lower die 85 are used to form the elastic anisotropic conductive film 95 as described above, in each of the upper die 80 and the lower die 85, ferromagnetic materials adjacent to each other are formed. Since the separation distance between the layers 82 and 87 is small, as shown in FIG. 57, the direction force from one ferromagnetic layer 82a in the upper mold 80 to the corresponding ferromagnetic layer 87a in the lower mold 85 is shown in FIG. In addition to the direction (indicated by the arrow X), for example, from the upper layer 80 of the ferromagnetic layer 82a to the corresponding lower layer 85 of the ferromagnetic layer 87a, the ferromagnetic layer 87b is directed in the direction ( (Indicated by arrow Y), or a magnetic field also acts in the direction of the direction of force from the ferromagnetic layer 82b of the upper mold 80 to the ferromagnetic layer 87a adjacent to the corresponding ferromagnetic layer 87b of the lower mold 85. Become. Therefore, in the molding material layer 95A, the conductive particles P can be gathered in a portion located between the ferromagnetic layer 82a of the upper die 80 and the corresponding ferromagnetic layer 87a of the lower die 85. For example, conductive particles gather in the portion located between the upper layer 80 of the ferromagnetic layer 82a and the lower layer 85 of the ferromagnetic layer 87b, and the conductive particles P are formed. It becomes difficult to sufficiently orient the material layer 95A in the thickness direction, and as a result, an anisotropic conductive connector having a desired conductive portion and insulating portion cannot be obtained.
[0010] また、上記のプロ一カードにおいては、以下のような問題がある。 [0010] Further, the above professional card has the following problems.
プローブカードを構成するためには、検査用回路基板、異方導電性コネクターおよ びシート状プローブの 3つの部品が必要であるため、全体の構造が複雑であり、しか も、これらの部品を組み立てる際には、異方導電性コネクターの位置合わせおよびシ ート状プローブの位置合わせが必要であるため、組み立て作業が極めて煩雑である  In order to construct a probe card, it requires three parts: a test circuit board, an anisotropic conductive connector, and a sheet-like probe, so the overall structure is complicated. When assembling, it is necessary to align the anisotropic conductive connector and the sheet-like probe.
また、シート状プローブは、例えばポリイミドよりなる絶縁性シートに電極構造体が配 置されてなるものであるため、温度変化による熱履歴を受けると、絶縁性シートの熱 膨張によって被検査電極に対する位置ずれが生じる結果、電気的接続状態が変化 して安定な接続状態を維持することが困難である。 In addition, since the electrode probe is disposed on an insulating sheet made of, for example, polyimide, the sheet-like probe is subjected to a thermal history due to a temperature change, so that the position relative to the electrode to be inspected due to thermal expansion of the insulating sheet. As a result of the deviation, the electrical connection state changes and it is difficult to maintain a stable connection state.
[0011] 特許文献 1 :特開昭 51— 93393号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 51-93393
特許文献 2:特開昭 53— 147772号公報 特許文献 3:特開昭 61 - 250906号公報 Patent Document 2: Japanese Patent Laid-Open No. 53-147772 Patent Document 3: Japanese Patent Application Laid-Open No. 61-250906
特許文献 4:特開 2002— 334732号公報  Patent Document 4: Japanese Patent Laid-Open No. 2002-334732
発明の開示  Disclosure of the invention
[0012] 本発明は、以上のような事情に基づいてなされたものであって、その第 1の目的は、 検査対象であるウェハにおける被検査電極のピッチが極めて小さいものであっても、 ウェハに対する良好な電気的接続状態を確実に達成することができるウェハ検査用 異方導電性コネクターおよびその製造方法を提供することにある。  [0012] The present invention has been made based on the circumstances as described above, and a first object thereof is to provide a wafer even when the pitch of electrodes to be inspected in the wafer to be inspected is extremely small. It is an object to provide an anisotropic conductive connector for wafer inspection and a method for manufacturing the same, which can surely achieve a good electrical connection state to.
本発明の第 2の目的は、検査対象であるウェハにおける被検査電極のピッチが極 めて小さいものであっても、隣接する被検査電極間の所要の絶縁性が確保され、ゥ ェハに対する良好な電気的接続状態を確実に達成することができ、し力も、温度変 化による熱履歴を受けたときにも、ウェハに対する良好な電気的接続状態が安定に 維持されるウェハ検査用プローブカードおよびその製造方法を提供することにある。 本発明の第 3の目的は、検査対象であるウェハにおける被検査電極のピッチが極 めて小さいものであっても、ウェハに対する良好な電気的接続状態を確実に達成す ることができるウェハ検査装置を提供することにある。  The second object of the present invention is to ensure required insulation between adjacent electrodes to be inspected even if the pitch of the electrodes to be inspected on the wafer to be inspected is extremely small. A probe card for wafer inspection that can reliably achieve a good electrical connection state, and can maintain a good electrical connection state to the wafer stably even when subjected to thermal stress due to temperature changes. And providing a manufacturing method thereof. The third object of the present invention is to perform wafer inspection that can reliably achieve a good electrical connection to the wafer even if the pitch of the electrodes to be inspected in the wafer to be inspected is extremely small. To provide an apparatus.
[0013] 本発明のウェハ検査用異方導電性コネクターの製造方法は、検査対象であるゥェ ハに形成された全てのまたは一部の集積回路における被検査電極が配置された電 極領域に対応して複数の開口が形成されたフレーム板と、前記電極領域における被 検査電極のパターンに対応するパターンに従って配置された弾性高分子物質中に 磁性を示す導電性粒子が含有されてなる複数の接続用導電部およびこれらを相互 に絶縁する弾性高分子物質よりなる絶縁部を有し、前記フレーム板にその開口を塞 ぐよう配置されて支持された複数の弾性異方導電膜と、これらの弾性異方導電膜に おける各接続用導電部上に一体的に設けられた金属よりなる複数の接点部材とを具 えてなるウェハ検査用異方導電性コネクターを製造する方法であって、 [0013] A method for manufacturing an anisotropic conductive connector for wafer inspection according to the present invention is provided in an electrode region in which electrodes to be inspected are arranged in all or part of integrated circuits formed on a wafer to be inspected. Correspondingly, a frame plate having a plurality of openings formed therein, and a plurality of conductive particles exhibiting magnetism contained in an elastic polymer material arranged according to a pattern corresponding to the pattern of the electrode to be inspected in the electrode region. A plurality of elastic anisotropic conductive films having a conductive part for connection and an insulating part made of an elastic polymer material that insulates them from each other, and arranged and supported by the frame plate so as to close the opening; A method for manufacturing an anisotropic conductive connector for wafer inspection, comprising a plurality of contact members made of metal integrally provided on each connection conductive portion in an elastic anisotropic conductive film,
離型性支持板上に、硬化されて弾性高分子物質となる液状の高分子物質形成材 料中に磁性を示す導電性粒子が含有されてなる導電性エラストマ一用材料層を形 成し、この導電性エラストマ一用材料層の表面に、前記被検査電極のパターンに対 応する特定のパターンに従って磁性を示す金属よりなる接点部材を配置し、この状 態で、当該導電性エラストマ一用材料層に対して、その厚み方向に磁場を作用させ ると共に、当該導電性エラストマ一用材料層を硬化処理して導電性エラストマ一層を 形成し、この導電性エラストマ一層をレーザー加工して前記接点部材が配置された 部分以外の部分を除去することにより、前記離型性支持板上に、前記特定のパター ンに従って配置され、前記接点部材が設けられた複数の接続用導電部を形成し、 この状態で、当該接点部材が設けられた接続用導電部の各々を、フレーム板の開 口を塞ぐよう形成された、硬化されて弾性高分子物質となる液状の高分子物質形成 材料よりなる絶縁部用材料層中に浸入させ、当該絶縁部用材料層を硬化処理するこ とにより絶縁部を形成する工程を有することを特徴とする。 On the releasable support plate, a conductive elastomer material layer in which conductive particles exhibiting magnetism are contained in a liquid polymer material forming material which is cured to become an elastic polymer material is formed. A contact member made of a metal exhibiting magnetism is disposed on the surface of the material layer for the conductive elastomer according to a specific pattern corresponding to the pattern of the electrode to be inspected. In this state, a magnetic field is applied to the conductive elastomer material layer in the thickness direction, and the conductive elastomer material layer is cured to form a conductive elastomer layer. The elastomer layer is laser processed to remove a portion other than the portion where the contact member is disposed, so that a plurality of the contact members disposed on the releasable support plate according to the specific pattern are provided. In this state, each of the connecting conductive portions provided with the contact members is cured to form an elastic polymer substance that is cured to close the opening of the frame plate. It is characterized by having a step of forming an insulating part by infiltrating into the insulating part material layer made of the polymer substance forming material and curing the insulating part material layer.
[0014] 本発明のウェハ検査用異方導電性コネクターの製造方法においては、金属箔上に 、特定のパターンに従って開口が形成されたレジスト層を形成し、前記金属箔におけ る前記レジスト層の開口力 露出した部分の表面に磁性を示す金属によるメツキ処理 を施すことにより、当該レジスト層の開口の各々に接点部材が形成されてなる接点部 材複合体を製造し、この接点部材複合体を導電性エラストマ一用材料層の表面に積 重することにより、当該導電性エラストマ一用材料層の表面に、前記特定のパターン に従って磁性を示す金属よりなる接点部材を配置することが好ましい。  [0014] In the method for manufacturing an anisotropic conductive connector for wafer inspection of the present invention, a resist layer having openings formed in a specific pattern is formed on a metal foil, and the resist layer in the metal foil is formed. Opening force By subjecting the surface of the exposed portion to a magnetic treatment with a metal that exhibits magnetism, a contact member composite in which a contact member is formed in each opening of the resist layer is manufactured. It is preferable to arrange a contact member made of a metal exhibiting magnetism according to the specific pattern on the surface of the conductive elastomer material layer by stacking on the surface of the conductive elastomer material layer.
[0015] 本発明のウェハ検査用異方導電性コネクタ一は、上記の製造方法によって得られ ることを特徴とする。  [0015] An anisotropic conductive connector for wafer inspection according to the present invention is obtained by the manufacturing method described above.
[0016] 本発明のウェハ検査用プローブカードは、検査対象であるウェハに形成された全 てのまたは一部の集積回路における被検査電極のパターンに対応するパターンに 従って複数の検査用電極が表面に形成された検査用回路基板と、この検査用回路 基板の表面上に配置された、上記のウェハ検査用異方導電性コネクターとを具えて なることを特徴とする。  The probe card for wafer inspection according to the present invention has a plurality of inspection electrodes on the surface according to a pattern corresponding to the pattern of the electrode to be inspected in all or some of the integrated circuits formed on the wafer to be inspected. And the above-mentioned anisotropic conductive connector for wafer inspection disposed on the surface of the inspection circuit board.
[0017] 本発明のウェハ検査用プローブカードの製造方法は、検査対象であるウェハに形 成された全てのまたは一部の集積回路における被検査電極に対応するパターンに 従って複数の検査用電極が表面に形成された検査用回路基板と、この検査用回路 基板の表面上に一体的に設けられた、前記検査用電極の各々の表面上に位置され た厚み方向に伸びる複数の接続用導電部およびこれらを相互に絶縁する絶縁部より なる異方導電性エラストマ一層と、この異方導電性エラストマ一層の接続用導電部上 に一体的に設けられた金属よりなる接点部材とを具えてなるウェハ検査用プローブ力 ードを製造する方法であって、 [0017] According to the method of manufacturing a probe card for wafer inspection of the present invention, a plurality of inspection electrodes are provided in accordance with a pattern corresponding to an inspection target electrode in all or some integrated circuits formed on a wafer to be inspected. A test circuit board formed on the surface and a plurality of connecting conductive parts extending in the thickness direction, which are integrally provided on the surface of the test circuit board and are located on the surfaces of the test electrodes And the insulation that insulates them from each other And a method for producing a probe force probe for wafer inspection, comprising: an anisotropic conductive elastomer layer, and a contact member made of metal integrally provided on a connecting conductive portion of the anisotropic conductive elastomer layer. Because
金属板上に、前記検査用電極に係る特定のパターンに従ってそれぞれ磁性を示 す金属よりなる複数の接点部材が形成されてなる接点部材複合体を用意し、 この接点部材複合体上に、硬化されて弾性高分子物質となる液状の高分子物質 形成材料中に磁性を示す導電性粒子が含有されてなる導電性エラストマ一用材料 層を形成し、この導電性エラストマ一用材料層上に、それぞれ磁性を示す金属よりな る複数の金属マスクの各々を、当該導電性エラストマ一用材料層を介して前記接点 部材と互いに対向するよう配置し、この状態で、当該導電性エラストマ一用材料層に 対して、その厚み方向に磁場を作用させると共に、当該導電性エラストマ一用材料層 を硬化処理することにより、導電性エラストマ一層を形成し、当該導電性エラストマ一 層をレーザー加工して前記接点部材と前記金属マスクとの間に位置する部分以外の 部分を除去することにより、前記特定のパターンに従って配置された複数の接続用 導電部を形成し、  A contact member composite is prepared by forming a plurality of contact members made of metal each exhibiting magnetism according to a specific pattern relating to the inspection electrode on a metal plate, and is cured on the contact member composite. A liquid polymer substance forming an elastic polymer substance and forming a conductive elastomer material layer containing conductive particles exhibiting magnetism in the forming material, and on each of the conductive elastomer material layers, Each of the plurality of metal masks made of metal exhibiting magnetism is disposed so as to face the contact member with the conductive elastomer material layer interposed therebetween, and in this state, the conductive elastomer material layer is disposed on the conductive elastomer material layer. On the other hand, by applying a magnetic field in the thickness direction and curing the material layer for conductive elastomer, a conductive elastomer layer is formed, and the conductive elastomer layer is formed. The by removing the portion other than the portion located between the contact member and the metal mask by laser machining, by forming a plurality of conductive parts for connection arranged in accordance with the specific pattern,
各接続用導電部上に配置された金属マスクを除去し、その後、当該接続用導電部 が形成された接点部材複合体を、硬化されて弾性高分子物質となる材料よりなる絶 縁部用材料層が形成された検査用回路基板上に重ね合わせることにより、当該検査 用回路基板の検査用電極の各々とこれに対応する接続用導電部とを対接させ、この 状態で前記絶縁部用材料層を硬化処理することにより絶縁部を形成する工程を有す ることを特徴とする。  The metal mask disposed on each conductive part for connection is removed, and then the contact member composite formed with the conductive part for connection is insulated from an insulating material made of a material that becomes an elastic polymer substance. Overlaying on the inspection circuit board on which the layer is formed, each of the inspection electrodes of the inspection circuit board is brought into contact with the corresponding conductive part for connection, and in this state, the insulating part material It has the process of forming an insulating part by hardening the layer.
[0018] 本発明のウェハ検査用プローブカードは、上記の製造方法によって得られることを 特徴とする。  [0018] The probe card for wafer inspection of the present invention is obtained by the manufacturing method described above.
[0019] 本発明のウェハ検査装置は、ウェハに形成された複数の集積回路の各々につい て、当該集積回路の電気的検査をウェハの状態で行うウェハ検査装置であって、 上記のウェハ検査用プローブカードを具えてなることを特徴とする。  [0019] A wafer inspection apparatus of the present invention is a wafer inspection apparatus that performs an electrical inspection of a plurality of integrated circuits formed on a wafer in the state of a wafer. It is characterized by comprising a probe card.
[0020] 本発明のウェハ検査用異方導電性コネクターの製造方法によれば、導電性エラス トマ一用材料層上に、検査対象であるウェハにおける被検査電極のパターンに対応 する特定のパターンに従って磁性を示す接点部材を配置した状態で、当該導電性 エラスマー用材料層の厚み方向に磁場を作用させると共に当該導電性エラストマ一 用材料層を硬化処理することにより、得られる導電性エラストマ一層は、接点部材が 配置された部分における導電性粒子が密となり、それ以外の部分における導電性粒 子が疎となる。そのため、接点部材をマスクとして利用して導電性エラストマ一層をレ 一ザ一加工することにより、当該導電性エラストマ一層における接点部材が配置され て 、な 、部分を容易に除去することができるので、所期の形態の接続用導電部を特 定のパターンに従って確実に形成することができる。そして、特定のパターンに従つ て配置された複数の接続用導電部を形成したうえで、これらの接続用導電部の間に 絶縁部用材料層を形成して硬化処理することにより絶縁部を形成するため、導電性 粒子が全く存在しない絶縁部を確実に得ることができる。 [0020] According to the method for manufacturing an anisotropic conductive connector for wafer inspection of the present invention, the pattern of the electrode to be inspected on the wafer to be inspected is formed on the material layer for the conductive elastomer. The conductive material obtained by applying a magnetic field in the thickness direction of the conductive elastomer material layer and curing the conductive elastomer material layer in a state where the magnetic contact member is arranged according to a specific pattern. In the conductive elastomer layer, the conductive particles in the portion where the contact member is disposed are dense, and the conductive particles in the other portions are sparse. Therefore, by using the contact member as a mask and laser processing one layer of the conductive elastomer, the contact member in the one layer of the conductive elastomer can be disposed and the portion can be easily removed. It is possible to reliably form the conductive part for connection in the desired form according to a specific pattern. Then, after forming a plurality of connecting conductive portions arranged according to a specific pattern, an insulating portion material layer is formed between these connecting conductive portions and cured to form the insulating portions. As a result, an insulating part free from conductive particles can be obtained with certainty.
[0021] 従って、このような方法によって得られる本発明のウェハ検査用異方導電性コネク ターによれば、検査対象であるウェハにおける被検査電極のピッチが微小で高密度 に配置されている場合であっても、当該被検査電極の各々に対して所要の電気的接 続が確実に達成され、し力も、小さいコストで製造することができる。  Therefore, according to the anisotropic conductive connector for wafer inspection of the present invention obtained by such a method, the pitch of the electrodes to be inspected on the wafer to be inspected is very small and densely arranged. Even so, the required electrical connection can be reliably achieved for each of the electrodes to be inspected, and the force can be manufactured at a low cost.
また、弾性異方導電膜における接続用導電部上には、接点部材がー体的に設けら れているため、ウェハの検査を行う際に、シート状プローブを用いることが不要となる ので、簡単な構造のプローブカードを得ることができると共に、シート状プローブの位 置ずれによる接続不良を回避することができる。  In addition, since the contact member is provided on the connecting conductive portion of the elastic anisotropic conductive film, it is not necessary to use a sheet-like probe when inspecting the wafer. A probe card having a simple structure can be obtained, and connection failure due to misalignment of the sheet-like probe can be avoided.
[0022] 本発明のウェハ検査用プローブカードの製造方法によれば、導電性エラストマ一 層をレーザー加工してその一部を除去することによって、接続用導電部を形成する ため、所期の導電性を有する接続用導電部が得られる。  [0022] According to the method for manufacturing a probe card for wafer inspection of the present invention, the conductive elastomer layer is laser processed and a part thereof is removed to form the connection conductive portion. The conductive part for connection which has property is obtained.
また、それぞれ磁性を示す金属よりなる複数の接点部材が検査用電極に係る特定 のパターンに従って形成されてなる接点部材複合体上に導電性エラストマ一用材料 層を形成し、当該導電性エラストマ一用材料層上に、特定のパターンに従ってそれ ぞれ磁性を示す金属マスクを配置した状態で、当該導電性エラスマー用材料層の厚 み方向に磁場を作用させるため、得られる導電性エラストマ一層は、接点部材と金属 マスクとの間に位置する部分における導電性粒子が密となり、それ以外の部分にお ける導電性粒子が疎となる。そのため、導電性エラストマ一層をレーザー加工するこ とにより、当該導電性エラストマ一層における接点部材が配置されていない部分を容 易に除去することができるので、所期の形態の接続用導電部を特定のパターンに従 つて確実に形成することができる。 In addition, a conductive elastomer material layer is formed on a contact member composite in which a plurality of contact members each made of a metal exhibiting magnetism are formed according to a specific pattern related to the inspection electrode, and the conductive elastomer material is used. In order to apply a magnetic field in the thickness direction of the conductive elastomer material layer in a state where metal masks each showing magnetism are arranged in accordance with a specific pattern on the material layer, the obtained conductive elastomer layer has contact points. The conductive particles in the part located between the member and the metal mask become dense, and in the other parts The conductive particles are sparse. For this reason, by laser processing the conductive elastomer layer, it is possible to easily remove the portion of the conductive elastomer layer where the contact member is not arranged. It can be reliably formed according to the pattern.
また、接点部材複合体上に形成された導電性エラストマ一用材料層を硬化処理す ることにより、得られる導電性エラストマ一層には、接点部材複合体における接点部 材の各々が接着されるので、接点部材がー体的に設けられた接続用導電部を形成 することができる。 また、被検査電極のパターンに対応する特定のパターンに従つ て配置された複数の接続用導電部を形成したうえで、これらの接続用導電部の各々 を、絶縁部用材料層が形成された検査用回路基板の検査用電極の各々に対接させ 、この状態で、絶縁部用材料層を硬化処理するため、導電性粒子が全く存在しない 絶縁部が検査用回路基板に一体的に形成された異方導電性エラストマ一層を形成 することができる。  Further, by curing the material layer for conductive elastomer formed on the contact member composite, each contact member in the contact member composite is bonded to the obtained conductive elastomer layer. Thus, it is possible to form a conductive portion for connection in which the contact member is physically provided. In addition, after forming a plurality of connecting conductive portions arranged according to a specific pattern corresponding to the pattern of the electrode to be inspected, an insulating material layer is formed on each of the connecting conductive portions. In this state, the insulating part material layer is cured to be in contact with each of the inspection electrodes of the inspection circuit board, so that no insulating particles are formed at all. The insulation part is integrally formed on the inspection circuit board. An anisotropic conductive elastomer layer formed can be formed.
[0023] 従って、このような方法によって得られる本発明のウェハ検査用プローブカードによ れば、所期の導電性を有する複数の接続用導電部が導電性粒子の全く存在しな ヽ 絶縁部によって絶縁されているため、検査対象であるウェハにおける被検査電極の ピッチが極めて小さ!/、ものであっても、隣接する被検査電極間の所要の絶縁性が確 保され、ウェハに対する良好な電気的接続状態を確実に達成することができる。 また、異方導電性エラストマ一層が検査用回路基板に一体的に形成されており、し 力も、接点部材が接続用導電部に一体的に設けられていることにより、シート状プロ ーブを用いることが不要となるため、温度変化による熱履歴を受けたときにも、接続用 導電部と検査用電極との位置ずれによる接続不良を防止することができると共に、シ ート状プローブの位置ずれによる接続不良を回避することができ、従って、ウェハに 対する良好な電気的接続状態を安定に維持することができる。  Therefore, according to the probe card for wafer inspection of the present invention obtained by such a method, a plurality of connecting conductive portions having desired conductivity are not present at all in the conductive particles. Therefore, even if the pitch of the electrodes to be inspected in the wafer to be inspected is extremely small! /, The required insulation between the adjacent electrodes to be inspected is ensured, and the wafer has a good pitch. An electrical connection state can be reliably achieved. In addition, the anisotropic conductive elastomer layer is integrally formed on the circuit board for inspection, and the contact force is integrated with the conductive part for connection, so that a sheet-like probe is used. Therefore, even when a thermal history due to a temperature change is received, it is possible to prevent poor connection due to misalignment between the conductive part for connection and the inspection electrode, and misalignment of the sheet-like probe. Therefore, it is possible to avoid a poor connection due to the above-mentioned, and thus it is possible to stably maintain a good electrical connection state to the wafer.
また、シート状プローブを用いることが不要であるため、組み立て作業が不要で簡 単な構造のプローブカードを得ることができる。  Further, since it is not necessary to use a sheet-like probe, an assembly work is not required and a probe card having a simple structure can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0024] [図 1]本発明に係る第 1の例のウェハ検査用異方導電性コネクターを示す平面図で ある。 FIG. 1 is a plan view showing an anisotropic conductive connector for wafer inspection of a first example according to the present invention. is there.
[図 2]第 1の例のウェハ検査用異方導電性コネクターの一部を拡大して示す平面図 である。  FIG. 2 is an enlarged plan view showing a part of the anisotropic conductive connector for wafer inspection of the first example.
圆 3]第 1の例のウェハ検査用異方導電性コネクターの一部を拡大して示す説明用 断面図である。 FIG. 3] An explanatory cross-sectional view showing an enlarged part of the anisotropic conductive connector for wafer inspection of the first example.
圆 4]金属箔上にレジスト層が形成された状態を示す説明用断面図である。 圆 4] It is a sectional view for explanation showing a state in which a resist layer is formed on a metal foil.
[図 5]レジスト層の開口に接点部材が形成された状態を示す説明用断面図である。 FIG. 5 is an explanatory sectional view showing a state in which a contact member is formed in the opening of the resist layer.
[図 6]離型性支持板上に導電性エラストマ一用材料層が形成された状態を示す説明 用断面図である。 FIG. 6 is an explanatory cross-sectional view showing a state in which a conductive elastomer material layer is formed on a releasable support plate.
[図 7]導電性エラストマ一用材料層上に接点部材複合体が配置された状態を示す説 明用断面図である。  FIG. 7 is an explanatory sectional view showing a state in which the contact member composite is disposed on the material layer for conductive elastomer.
圆 8]導電性エラストマ一用材料層の厚み方向に磁場が作用された状態を示す説明 用断面図である。 8] A sectional view for explanation showing a state in which a magnetic field is applied in the thickness direction of the material layer for conductive elastomer.
圆 9]離型性支持板上に導電性エラストマ一層が形成された状態を示す説明用断面 図である。 [9] FIG. 9 is an explanatory cross-sectional view showing a state in which a conductive elastomer layer is formed on a releasable support plate.
圆 10]接点部材複合体における金属箔が除去された状態を示す説明用断面図であ る。 [10] FIG. 10 is an explanatory cross-sectional view showing a state where the metal foil in the contact member composite is removed.
[図 11]離型性支持板上に接続用導電部が形成された状態を示す説明用断面図であ る。  FIG. 11 is an explanatory cross-sectional view showing a state in which a connecting conductive portion is formed on a releasable support plate.
圆 12]離型性支持板上にフレーム板が配置されると共に絶縁部用材料層が形成さ れた状態を示す説明用断面図である。 [12] FIG. 12 is an explanatory cross-sectional view showing a state in which a frame plate is arranged on a releasable support plate and an insulating material layer is formed.
[図 13]絶縁部用材料層が形成された離型性支持板上に、接続用導電部が形成され た離型性支持板が重ね合わされた状態を示す説明用断面図である。  FIG. 13 is an explanatory cross-sectional view showing a state in which a releasable support plate on which a conductive part for connection is formed is superimposed on a releasable support plate on which an insulating material layer is formed.
圆 14]隣接する接続用導電部間に絶縁部が形成された状態を示す説明用断面図で ある。 FIG. 14 is an explanatory cross-sectional view showing a state in which an insulating portion is formed between adjacent connecting conductive portions.
圆 15]本発明に係る第 2の例のウェハ検査用異方導電性コネクターを示す平面図で ある。 [15] FIG. 15 is a plan view showing a second example of the anisotropic conductive connector for wafer inspection according to the present invention.
圆 16]本発明に係るプローブカードの第 1の例の構成を示す説明用断面図である。 圆 17]第 1の例のプローブカードの要部の構成を拡大して示す説明用断面図である FIG. 16 is an explanatory cross-sectional view showing the configuration of the first example of the probe card according to the present invention. 圆 17] An explanatory cross-sectional view showing an enlarged configuration of a main part of the probe card of the first example.
[図 18]第 1の例のプローブカードにおける検査用回路基板を示す平面図である。 圆 19]検査用回路基板におけるリード電極部を拡大して示す説明図である。 FIG. 18 is a plan view showing an inspection circuit board in the probe card of the first example. FIG. 19 is an explanatory diagram showing an enlarged view of the lead electrode portion of the circuit board for inspection.
圆 20]本発明に係るプローブカードの第 2の例の構成を示す説明用断面図である。 圆 21]第 2の例のプローブカードの要部の構成を拡大して示す説明用断面図である FIG. 20 is a cross-sectional view illustrating the configuration of a second example of the probe card according to the present invention.圆 21] An explanatory sectional view showing, in an enlarged manner, the configuration of the main part of the probe card of the second example
[図 22]第 2の例のプローブカードにおける検査用回路基板を示す平面図である。 圆 23]本発明に係るプローブカードの第 3の例の構成を示す説明用断面図である。 圆 24]第 3の例のプローブカードの要部の構成を拡大して示す説明用断面図である 圆 25]異方導電性エラストマ一層を拡大して示す説明用断面図である。 FIG. 22 is a plan view showing an inspection circuit board in the probe card of the second example. FIG. 23 is a cross-sectional view illustrating the configuration of a third example of the probe card according to the present invention.圆 24] An explanatory cross-sectional view showing an enlarged configuration of a main part of the probe card of the third example. 圆 25] An explanatory cross-sectional view showing an anisotropic conductive elastomer layer in an enlarged manner.
[図 26]金属箔上に特定のパターンに従って形成された複数の開口を有するレジスト 層が形成された状態を示す説明用断面図である。  FIG. 26 is an explanatory cross-sectional view showing a state in which a resist layer having a plurality of openings formed according to a specific pattern is formed on a metal foil.
[図 27]レジスト層の各開口内に接点部材が形成されて金属マスク複合体が形成され た状態を示す説明用断面図である。  FIG. 27 is an explanatory sectional view showing a state in which a contact member is formed in each opening of the resist layer to form a metal mask composite.
[図 28]接点部材複合体上に導電性エラストマ一用材料層が形成された状態を示す 説明用断面図である。  FIG. 28 is an explanatory sectional view showing a state in which a conductive elastomer material layer is formed on a contact member composite.
圆 29]導電性エラストマ一用材料層の表面に金属マスク複合体が配置された状態を 示す説明用断面図である。 29] A sectional view for explanation showing a state in which a metal mask composite is disposed on the surface of a material layer for conductive elastomer.
圆 30]導電性エラストマ一用材料層にその厚み方向に磁場が作用された状態を示す 説明用断面図である。 FIG. 30 is an explanatory cross-sectional view showing a state in which a magnetic field is applied to the material layer for conductive elastomer in the thickness direction.
圆 31]接点部材複合体上に導電性エラストマ一層が形成された状態を示す説明用 断面図である。 [31] FIG. 31 is an explanatory cross-sectional view showing a state in which a conductive elastomer layer is formed on the contact member composite.
圆 32]金属マスク複合体の金属箔が除去された状態を示す説明用断面図である。 圆 33]接点部材複合体上に特定のパターンに従って複数の接続用導電部が形成さ れた状態を示す説明用断面図である。 FIG. 32 is an explanatory cross-sectional view showing a state where the metal foil of the metal mask composite has been removed. FIG. 33 is a cross-sectional view illustrating a state in which a plurality of conductive portions for connection are formed according to a specific pattern on the contact member composite.
圆 34]検査用回路基板上に絶縁部用材料層が形成された状態を示す説明用断面 図である。 圆 34] Cross section for explanation showing a state in which an insulating material layer is formed on the circuit board for inspection FIG.
圆 35]絶縁部用材料層が形成された検査用回路基板上に、接続用導電部が形成さ れた接点部材複合体が重ね合わされた状態を示す説明用断面図である。 FIG. 35 is an explanatory cross-sectional view showing a state in which the contact member composite having the connection conductive portion formed thereon is superimposed on the inspection circuit board on which the insulating layer material layer is formed.
圆 36]隣接する接続用導電部間に絶縁部が形成された状態を示す説明用断面図で ある。 36] A sectional view for explanation showing a state in which an insulating portion is formed between adjacent conductive portions for connection.
圆 37]本発明に係るプローブカードの第 4の例の構成を示す説明用断面図である。 圆 38]第 4の例のプローブカードの要部の構成を拡大して示す説明用断面図である 圆 39]本発明に係るウェハ検査装置の第 1の例の構成を示す説明用断面図である。 圆 40]第 1の例のウェハ検査装置の要部の構成を拡大して示す説明用断面図である 圆 41]第 1の例のウェハ検査装置におけるコネクターを拡大して示す説明用断面図 である。 [37] FIG. 37 is an explanatory cross-sectional view showing the configuration of the fourth example of the probe card according to the present invention.圆 38] is an explanatory cross-sectional view showing an enlarged configuration of the main part of the probe card of the fourth example. 圆 39] is an explanatory cross-sectional view showing the configuration of the first example of the wafer inspection apparatus according to the present invention. is there.圆 40] is an explanatory sectional view showing an enlarged configuration of a main part of the wafer inspection apparatus of the first example. 圆 41] An explanatory sectional view showing an enlarged connector of the wafer inspection apparatus of the first example. is there.
圆 42]本発明に係るウェハ検査装置の第 2の例の構成を示す説明用断面図である。 圆 43]本発明に係るウェハ検査装置の第 3の例の構成を示す説明用断面図である。 圆 44]第 3の例のウェハ検査装置の要部の構成を拡大して示す説明用断面図である 圆 45]本発明に係るウェハ検査装置の第 4の例の構成を示す説明用断面図である。 FIG. 42 is a cross-sectional view illustrating the configuration of a second example of the wafer inspection apparatus according to the present invention. FIG. 43] A sectional view for explanation showing the configuration of a third example of the wafer inspection apparatus according to the present invention.圆 44] An explanatory cross-sectional view showing an enlarged configuration of a main part of the wafer inspection apparatus of the third example. 圆 45] An explanatory cross-sectional view showing the configuration of the fourth example of the wafer inspection apparatus according to the present invention. It is.
[図 46]導電性エラストマ一層における接続用導電部となる部分の周辺部部のみが除 去されることにより、接続用導電部が形成された状態を示す説明図である。 FIG. 46 is an explanatory view showing a state in which the connecting conductive portion is formed by removing only the peripheral portion of the conductive elastomer layer in the conductive elastomer layer.
[図 47]導電性エラストマ一層における接続用導電部となる部分の周辺部部のみが除 去されることにより、接続用導電部が形成された状態を示す説明用断面図である。 FIG. 47 is an explanatory cross-sectional view showing a state in which the conductive portion for connection is formed by removing only the peripheral portion of the portion that becomes the conductive portion for connection in the conductive elastomer layer.
[図 48]本発明に係るプローブカードの他の例における要部の構成を拡大して示す説 明用断面図である。 FIG. 48 is an explanatory sectional view showing, in an enlarged manner, the configuration of the main part in another example of the probe card according to the present invention.
[図 49]実施例で使用した試験用ウェハの上面図である。  FIG. 49 is a top view of a test wafer used in Examples.
圆 50]図 49に示す試験用ウェハに形成された集積回路の被検査電極領域の位置を 示す説明図である。 FIG. 50 is an explanatory view showing the position of the electrode region to be inspected of the integrated circuit formed on the test wafer shown in FIG.
[図 51]図 49に示す試験用ウェハに形成された集積回路の被検査電極を示す説明 図である。 FIG. 51 is an illustration showing an inspected electrode of an integrated circuit formed on the test wafer shown in FIG. 49. FIG.
[図 52]実施例で作製したフレーム板の上面図である。  FIG. 52 is a top view of the frame plate produced in the example.
[図 53]図 52に示すフレーム板の一部を拡大して示す説明図である。  FIG. 53 is an explanatory diagram showing an enlarged part of the frame plate shown in FIG. 52.
圆 54]従来の異方導電性コネクターを製造するための金型の構成を示す説明用断 面図である。 [54] FIG. 54 is a cross-sectional view for explaining the structure of a mold for manufacturing a conventional anisotropically conductive connector.
[図 55]従来の異方導電性コネクターを製造する工程において、金型内にフレーム板 が配置されると共に、成形材料層が形成された状態を示す説明用断面図である。 圆 56]成形材料層の厚み方向に磁場が作用された状態を示す説明用断面図である  FIG. 55 is an explanatory cross-sectional view showing a state in which a frame plate is arranged in a mold and a molding material layer is formed in a process of manufacturing a conventional anisotropically conductive connector. [56] FIG. 56 is an explanatory cross-sectional view showing a state in which a magnetic field is applied in the thickness direction of the molding material layer.
[図 57]従来の異方導電性コネクターの製造方法において、成形材料層に作用される 磁場の方向を示す説明用断面図である。 FIG. 57 is an explanatory cross-sectional view showing the direction of a magnetic field applied to a molding material layer in a conventional method for manufacturing an anisotropic conductive connector.
符号の説明 Explanation of symbols
2 コントローラー  2 Controller
3 入出力端子  3 Input / output terminals
3R 入出力端子部  3R input / output terminal
4 コネクター  4 Connector
4A 導電ピン  4A conductive pin
4B 支持部材  4B Support member
5 ウェハ載置台  5 Wafer mounting table
6 ウエノヽ  6 Ueno coffee
7 被検査電極  7 Inspected electrode
10 プローブカード 10 Probe card
11 検査用回路基板 11 Circuit board for inspection
12 第 1の基板素子 12 First substrate element
13 リード電極 13 Lead electrode
13R リード電極部 13R Lead electrode
14 ホノレダ一 14 Honoreda
14K 開口 第 2の基板素子 14K opening Second substrate element
検査用電極 Inspection electrode
R 検査用電極部 R Inspection electrode
補強部材  Reinforcing member
異方導電性コネクター フレーム板  Anisotropic conductive connector Frame plate
開口  Opening
弾性異方導電膜  Elastic anisotropic conductive film
接続用導電部 Conductive part for connection
A 導電性エラストマ一用材料層B 導電性エラストマ一層 絶縁部A Material layer for conductive elastomer B Conductive elastomer layer Insulation part
A 絶縁部用材料層 A Insulation material layer
突出部  Protrusion
接点部材 Contact member
F 接点部材複合体 F contact member composite
金属箔  Metal foil
レジスト層 Resist layer
K 開口K opening
, 35A 離型性支持板 , 35A releasable support plate
異方導電性エラストマ一層 接続用導電部 Anisotropic conductive elastomer layer Conductive part for connection
A 導電性エラストマ一用材料層B 導電性エラストマ一層 絶縁部A Material layer for conductive elastomer B Conductive elastomer layer Insulation part
A 絶縁部用材料層 A Insulation material layer
異方導電性エラストマ一シート 金属箔 47 レジスト層 Anisotropic conductive elastomer sheet Metal foil 47 Resist layer
47K 開口 47K opening
48 金属マスク  48 Metal mask
48F 金属マスク複合体  48F metal mask composite
80 上型  80 Upper mold
81 基板  81 board
82, 82a, 82b 強磁性体層  82, 82a, 82b ferromagnetic layer
83 非磁性体層  83 Non-magnetic layer
85 下型  85 Lower mold
86 基板  86 PCB
87 87a, 87b 強磁性体層  87 87a, 87b Ferromagnetic layer
88 非磁性体層  88 Non-magnetic layer
90 フレーム板  90 frame board
91 開口  91 opening
95 弾性異方導電膜  95 Elastic anisotropic conductive film
95A 成形材料層  95A molding material layer
96 導電部 96 Conductive part
97 絶縁部 97 Insulation
A 被検査電極領域  A Inspected electrode area
P 導電性粒子  P conductive particles
H 空気流入孔  H Air inlet
L 集積回路  L Integrated circuit
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明を実施するための形態について詳細に説明する。  Hereinafter, embodiments for carrying out the present invention will be described in detail.
〔異方導電性コネクター〕 [Anisotropic conductive connector]
図 1は、本発明に係る第 1の例のウェハ検査用異方導電性コネクターを示す平面 図、図 2は、図 1に示すウェハ検査用異方導電性コネクターの一部を拡大して示す平 面図、図 3は、図 1に示すウェハ検査用異方導電性コネクターの一部を拡大して示す 説明用断面図である。 FIG. 1 is a plan view showing an anisotropic conductive connector for wafer inspection of a first example according to the present invention, and FIG. 2 is an enlarged view of a part of the anisotropic conductive connector for wafer inspection shown in FIG. Plan view, Fig. 3 shows an enlarged part of the anisotropic conductive connector for wafer inspection shown in Fig. 1. It is sectional drawing for description.
[0027] 第 1の例のウェハ検査用異方導電性コネクター(以下、単に「異方導電性コネクタ 一」ともいう。) 20は、例えば複数の集積回路が形成されたウェハについて当該集積 回路の各々の電気的検査をウェハの状態で行うために用いられるものであって、複 数の開口 22 (破線で示す)が形成されたフレーム板 21を有する。このフレーム板 21 の開口 22は、検査対象であるウェハに形成された全ての集積回路における被検査 電極が配置された電極領域に対応して形成されている。このフレーム板 21には、厚 み方向に導電性を有する複数の弾性異方導電膜 23が、それぞれ一の開口 22を塞 ぐよう配置されて当該開口縁部に支持されている。  [0027] The anisotropic conductive connector for wafer inspection (hereinafter, also simply referred to as "anisotropic conductive connector 1") 20 of the first example is an example of the integrated circuit on a wafer on which a plurality of integrated circuits are formed. The frame plate 21 is used to perform each electrical inspection in the state of a wafer and has a plurality of openings 22 (shown by broken lines). The opening 22 of the frame plate 21 is formed corresponding to an electrode region in which electrodes to be inspected in all integrated circuits formed on a wafer to be inspected. A plurality of elastic anisotropic conductive films 23 having conductivity in the thickness direction are arranged on the frame plate 21 so as to close one opening 22 and supported by the opening edge.
弾性異方導電膜 23は、弾性高分子物質によって形成されており、図 2に示すように 、フレーム板 21の開口 22内に位置するよう配置された、厚み方向(図 2において紙 面と垂直な方向)に伸びる複数の接続用導電部 24と、これらの接続用導電部 24の 各々の周囲に形成され、当該接続用導電部 24の各々を相互に絶縁する絶縁部 25 とにより構成されている。接続用導電部 24の各々は、検査対象であるウェハに形成 された集積回路における被検査電極のパターンに対応するパターンに従って配置さ れ、当該ウェハの検査において、その被検査電極に電気的に接続されるものである 弾性異方導電膜 23における接続用導電部 24には、図 3に示すように、磁性を示す 導電性粒子 Pが厚み方向に並ぶよう配向した状態で密に含有されている。これに対 して、絶縁部 25は、導電性粒子 Pが全く含有されていないものである。  The elastic anisotropic conductive film 23 is formed of an elastic polymer material, and is disposed so as to be positioned in the opening 22 of the frame plate 21 as shown in FIG. 2 (in FIG. 2, perpendicular to the paper surface). A plurality of connecting conductive portions 24 extending in the same direction) and insulating portions 25 that are formed around each of the connecting conductive portions 24 and insulate each of the connecting conductive portions 24 from each other. Yes. Each of the connecting conductive parts 24 is arranged according to a pattern corresponding to the pattern of the electrode to be inspected in the integrated circuit formed on the wafer to be inspected, and is electrically connected to the electrode to be inspected in the inspection of the wafer. As shown in FIG. 3, the conductive particles 24 for connection in the anisotropic anisotropic conductive film 23 are densely contained in a state in which the conductive particles P exhibiting magnetism are aligned in the thickness direction. . On the other hand, the insulating portion 25 does not contain the conductive particles P at all.
また、図示の例では、接続用導電部 24の各々は、絶縁部 25の一面力も突出するよ う形成され、これにより、弾性異方導電膜 23の一面には接続用導電部 24に係る突出 部 26が形成されている。  Further, in the illustrated example, each of the connecting conductive portions 24 is formed so that one surface force of the insulating portion 25 protrudes, so that one surface of the elastic anisotropic conductive film 23 protrudes according to the connecting conductive portion 24. Part 26 is formed.
また、弾性異方導電膜 23における接続用導電部 24の一面上には、磁性を示す金 属よりなる接点部材 27が当該接続用導電部 24に一体的に接着した状態で設けられ ている。  Further, a contact member 27 made of a metal exhibiting magnetism is provided on one surface of the connection conductive portion 24 in the elastic anisotropic conductive film 23 in a state of being integrally bonded to the connection conductive portion 24.
[0028] フレーム板 21の厚みは、その材質によって異なる力 25-600 μ mであることが好 ましく、より好ましくは 40〜400 μ mである。 この厚みが 25 m未満である場合には、異方導電性コネクター 20を使用する際に 必要な強度が得られず、耐久性が低いものとなりやすぐまた、当該フレーム板 21の 形状が維持される程度の剛性が得られず、異方導電性コネクター 20の取扱 、性が 低いものとなる。一方、厚みが 600 mを超える場合には、開口 22に形成される弾性 異方導電膜 23は、その厚みが過大なものとなって、接続用導電部 24における良好 な導電性を得ることが困難となることがある。 [0028] The thickness of the frame plate 21 is preferably a force of 25 to 600 µm, and more preferably 40 to 400 µm, depending on the material. If this thickness is less than 25 m, the strength required when using the anisotropically conductive connector 20 is not obtained, the durability becomes low, and the shape of the frame plate 21 is maintained immediately. As a result, the anisotropic conductive connector 20 is poor in handling and performance. On the other hand, when the thickness exceeds 600 m, the elastic anisotropic conductive film 23 formed in the opening 22 becomes excessively thick and good electrical conductivity in the connecting conductive portion 24 can be obtained. It can be difficult.
フレーム板 21の開口 22における面方向の形状および寸法は、検査対象であるゥ ェハの被検査電極の寸法、ピッチおよびパターンに応じて設計される。  The shape and size in the plane direction at the opening 22 of the frame plate 21 are designed according to the size, pitch, and pattern of the inspected electrode of the wafer to be inspected.
[0029] フレーム板 21を構成する材料としては、当該フレーム板 21が容易に変形せず、そ の形状が安定に維持される程度の剛性を有するものであれば特に限定されず、例え ば、金属材料、セラミックス材料、榭脂材料などの種々の材料を用いることができ、フ レーム板 21を例えば金属材料により構成する場合には、当該フレーム板 21の表面 に絶縁性被膜が形成されて 、てもよ 、。 [0029] The material constituting the frame plate 21 is not particularly limited as long as the frame plate 21 is not easily deformed and has a rigidity that allows its shape to be stably maintained. For example, Various materials such as a metal material, a ceramic material, and a resin material can be used. When the frame plate 21 is made of, for example, a metal material, an insulating film is formed on the surface of the frame plate 21. Anyway.
フレーム板 21を構成する金属材料の具体例としては、鉄、銅、ニッケル、クロム、コ ノルト、マグネシウム、マンガン、モリブデン、インジウム、鉛、パラジウム、チタン、タン ダステン、アルミニウム、金、白金、銀などの金属またはこれらを 2種以上組み合わせ た合金若しくは合金鋼などが挙げられる。  Specific examples of metal materials constituting the frame plate 21 include iron, copper, nickel, chromium, connort, magnesium, manganese, molybdenum, indium, lead, palladium, titanium, tantasten, aluminum, gold, platinum, silver, etc. Or an alloy or alloy steel in which two or more of these metals are combined.
フレーム板 21を構成する榭脂材料の具体例としては、液晶ポリマー、ポリイミド榭脂 などが挙げられる。  Specific examples of the resin material constituting the frame plate 21 include liquid crystal polymer and polyimide resin.
[0030] また、フレーム板 21を構成する材料としては、線熱膨張係数が 3 X 10— 5ZK以下の ものを用いることが好ましぐより好ましくは一 1 X 10—7〜1 X 10—5ΖΚ、特に好ましくは 1 X 10— 6〜8 X 10— 6/Κである。 [0030] As a material for forming the frame plate 21, more preferably it is preferred instrument linear thermal expansion coefficient used the following 3 X 10- 5 ZK one 1 X 10- 7 ~1 X 10- 5 ΖΚ, particularly preferably 1 X 10- 6 ~8 X 10- 6 / Κ.
このような材料の具体例としては、インバーなどのインバー型合金、エリンバーなど のエリンバー型合金、スーパーインバー、コバール、 42合金などの磁性金属の合金 または合金鋼などが挙げられる。  Specific examples of such materials include Invar type alloys such as Invar, Elinvar type alloys such as Elinvar, magnetic metal alloys such as Super Invar, Kovar, and 42 alloy, or alloy steel.
[0031] 弾性異方導電膜 23の全厚(図示の例では接続用導電部 24における厚み)は、 50 〜2000 μ mであること力好ましく、より好ましくは 70〜: LOOO μ m、特に好ましくは 80 〜500 /ζ πιである。この厚みが 50 m以上であれば、十分な強度を有する弹性異方 導電膜 23が確実に得られる。一方、この厚みが 2000 m以下であれば、所要の導 電性特性を有する接続用導電部 24が確実に得られる。 [0031] The total thickness of the elastic anisotropic conductive film 23 (in the illustrated example, the thickness of the connecting conductive portion 24) is preferably 50 to 2000 μm, more preferably 70 to: LOOO μm, particularly preferably. Is 80-500 / ζ πι. If this thickness is 50 m or more, it has sufficient strength The conductive film 23 can be obtained reliably. On the other hand, if the thickness is 2000 m or less, the connecting conductive portion 24 having the required conductivity characteristics can be obtained with certainty.
突出部 26の突出高さは、その合計が当該突出部 26における厚みの 10%以上で あることが好ましぐより好ましくは 20%以上である。このような突出高さを有する突出 部 26を形成することにより、小さい加圧力で接続用導電部 24が十分に圧縮されるた め、良好な導電性が確実に得られる。  It is preferable that the total height of the protrusions 26 is 10% or more of the thickness of the protrusions 26, and more preferably 20% or more. By forming the protruding portion 26 having such a protruding height, the connecting conductive portion 24 is sufficiently compressed with a small applied pressure, so that good conductivity can be reliably obtained.
また、突出部 26の突出高さは、当該突出部 26の最短幅または直径の 100%以下 であることが好ましぐより好ましくは 70%以下である。このような突出高さを有する突 出部 26を形成することにより、当該突出部 26が加圧されたときに座屈することがない ため、所期の導電性が確実に得られる。  The protrusion height of the protrusion 26 is preferably 100% or less of the shortest width or diameter of the protrusion 26, more preferably 70% or less. By forming the projecting portion 26 having such a projecting height, the projecting portion 26 is not buckled when pressed, and thus the desired conductivity can be reliably obtained.
[0032] 弾性異方導電膜 23における接続用導電部 24および絶縁部 25を形成する弾性高 分子物質としては、架橋構造を有する耐熱性の高分子物質が好ましい。かかる架橋 高分子物質を得るために用いることができる硬化性の高分子物質形成材料としては 、種々のものを用いることができる力 液状シリコーンゴムが好ましい。 [0032] As the elastic high molecular weight material forming the connecting conductive portion 24 and the insulating portion 25 in the elastic anisotropic conductive film 23, a heat resistant high molecular weight material having a crosslinked structure is preferable. As the curable polymer material-forming material that can be used for obtaining such a crosslinked polymer material, a liquid silicone rubber that can use various materials is preferable.
液状シリコーンゴムは、付加型のものであっても縮合型のものであってもよいが、付 加型液状シリコーンゴムが好ましい。この付加型液状シリコーンゴムは、ビュル基と Si H結合との反応によって硬化するものであって、ビニル基および Si— H結合の両 方を含有するポリシロキサンからなる一液型(一成分型)のものと、ビュル基を含有す るポリシロキサンおよび Si— H結合を含有するポリシロキサン力もなる二液型(二成分 型)のものがあるが、本発明においては、二液型の付加型液状シリコーンゴムを用い ることが好ましい。  The liquid silicone rubber may be an addition type or a condensation type, but an addition type liquid silicone rubber is preferred. This addition-type liquid silicone rubber is cured by the reaction between the bur group and the Si H bond, and is a one-pack type (one-component type) made of polysiloxane containing both vinyl groups and Si—H bonds. There are two-component type (two-component type) which also has polysiloxane power containing a butyl group and polysiloxane power containing Si—H bond. It is preferable to use silicone rubber.
[0033] 付加型液状シリコーンゴムとしては、その 23°Cにおける粘度が 100〜1, 250Pa- s のものを用いることが好ましぐさらに好ましくは 150〜800Pa' s、特に好ましくは 250 〜500Pa' sのものである。この粘度が lOOPa' s未満である場合には、後述する接続 用導電部 24を得るための導電性エラストマ一用材料にぉ 、て、当該付加型液状シリ コーンゴム中における導電性粒子の沈降が生じやすぐ良好な保存安定性が得られ ず、また、後述する導電性エラストマ一用材料層に平行磁場を作用させたときに、導 電性粒子が厚み方向に並ぶよう配向せず、均一な状態で導電性粒子の連鎖を形成 することが困難となることがある。一方、この粘度が 1, 250Pa' sを超える場合には、 得られる導電性エラストマ一用材料が粘度の高いものとなるため、導電性エラストマ 一用材料層に平行磁場を作用させても、導電性粒子が十分に移動せず、そのため、 導電性粒子を厚み方向に並ぶよう配向させることが困難となることがある。 [0033] As the addition-type liquid silicone rubber, it is preferable to use one having a viscosity of 100 to 1,250 Pa-s at 23 ° C, more preferably 150 to 800 Pa's, particularly preferably 250 to 500 Pa '. s thing. When this viscosity is less than lOOPa's, the conductive particles used for the conductive elastomer for obtaining the connection conductive portion 24 described later cause sedimentation of the conductive particles in the additional liquid silicone rubber. Immediately, good storage stability cannot be obtained, and when a parallel magnetic field is applied to the conductive elastomer material layer described later, the conductive particles are not aligned in the thickness direction and are in a uniform state. To form a chain of conductive particles May be difficult to do. On the other hand, when the viscosity exceeds 1,250 Pa's, the resulting conductive elastomer material has a high viscosity, so that even when a parallel magnetic field is applied to the conductive elastomer material layer, the conductive material is conductive. The conductive particles do not move sufficiently, and it may be difficult to orient the conductive particles so that they are aligned in the thickness direction.
このような付加型液状シリコーンゴムの粘度は、 B型粘度計によって測定することが できる。  The viscosity of such an addition type liquid silicone rubber can be measured with a B-type viscometer.
[0034] 弾性異方導電膜 23を液状シリコーンゴムの硬化物(以下、「シリコーンゴム硬化物」 という。)によって形成する場合において、当該シリコーンゴム硬化物は、その 150°C における圧縮永久歪みが 10%以下であることが好ましぐより好ましくは 8%以下、さ らに好ましくは 6%以下である。この圧縮永久歪みが 10%を超える場合には、得られ る異方導電性コネクター 20を多数回にわたって繰り返し使用したとき或いは高温環 境下において繰り返し使用したときには、接続用導電部 24に永久歪みが発生しやす ぐこれにより、接続用導電部 24における導電性粒子の連鎖に乱れが生じる結果、 所要の導電性を維持することが困難となる。  [0034] When the elastic anisotropic conductive film 23 is formed from a cured liquid silicone rubber (hereinafter referred to as "silicone rubber cured product"), the cured silicone rubber has a compression set at 150 ° C. It is preferably 10% or less, more preferably 8% or less, and further preferably 6% or less. If this compression set exceeds 10%, the resulting conductive anisotropic connector 20 will be permanently set in the connecting conductive part 24 when used repeatedly or repeatedly in a high temperature environment. As a result, the chain of conductive particles in the connecting conductive portion 24 is disturbed, and it becomes difficult to maintain the required conductivity.
ここで、シリコーンゴム硬化物の圧縮永久歪みは、 JIS K 6249に準拠した方法に よって柳』定することができる。  Here, the compression set of the cured silicone rubber can be determined by a method according to JIS K 6249.
[0035] また、弾性異方導電膜 23を形成するシリコーンゴム硬化物は、その 23°Cにおける デュロメーター A硬度が 10〜60のものであることが好ましぐさらに好ましくは 15〜6 0、特に好ましくは 20〜60のものである。このデュロメーター A硬度が 10未満である 場合には、加圧されたときに、接続用導電部 24を相互に絶縁する絶縁部 25が過度 に歪みやすぐ接続用導電部 24間の所要の絶縁性を維持することが困難となること がある。一方、このデュロメーター A硬度が 60を超える場合には、接続用導電部 24 に適正な歪みを与えるために相当に大きい荷重による加圧力が必要となるため、例 えば検査対象であるウェハに大きな変形や破壊が生じやすくなる。  [0035] Further, the cured silicone rubber forming the elastic anisotropic conductive film 23 preferably has a durometer A hardness of 10 to 60 at 23 ° C, more preferably 15 to 60, particularly Preferably it is 20-60. If this durometer A hardness is less than 10, the insulation 25 that insulates the connection conductive parts 24 from each other when pressed is excessively distorted or immediately required insulation between the conductive parts 24 for connection. May be difficult to maintain. On the other hand, if the durometer A hardness is more than 60, it is necessary to apply a considerably large load in order to give the connecting conductive part 24 an appropriate strain. For example, the wafer to be inspected is greatly deformed. Or breakage easily occurs.
また、シリコーンゴム硬化物として、デュロメーター A硬度が上記の範囲外のものを 用いる場合には、得られる異方導電性コネクター 20を多数回にわたって繰り返し使 用したときには、接続用導電部 24に永久歪みが発生しやすぐこれにより、接続用導 電部 24における導電性粒子の連鎖に乱れが生じる結果、所要の導電性を維持する ことが困難となる。 In addition, when a silicone rubber cured product having a durometer A hardness outside the above range is used, if the resulting anisotropic conductive connector 20 is repeatedly used many times, the connecting conductive portion 24 is permanently strained. As a result, the chain of conductive particles in the connecting conductive part 24 is disturbed, and the required conductivity is maintained. It becomes difficult.
更に、異方導電性コネクター 20を高温環境下における試験例えば WLBI試験に用 いる場合には、弾性異方導電膜 23を形成するシリコーンゴム硬化物は、その 23°Cに おけるデュロメーター A硬度が 25〜40のものであることが好ましい。  Further, when the anisotropic conductive connector 20 is used in a test under a high temperature environment, for example, a WLBI test, the cured silicone rubber forming the elastic anisotropic conductive film 23 has a durometer A hardness of 25 at 23 ° C. It is preferable that it is ˜40.
シリコーンゴム硬化物として、デュロメーター A硬度が上記の範囲外のものを用いる 場合には、得られる異方導電性コネクター 20を高温度環境下における試験に繰り返 し使用したときには、接続用導電部 24に永久歪みが発生しやすぐこれにより、接続 用導電部 24における導電性粒子の連鎖に乱れが生じる結果、所要の導電性を維持 することが困難となる。  When a cured silicone rubber with a durometer A hardness outside the above range is used, when the anisotropically conductive connector 20 obtained is repeatedly used in a test under a high temperature environment, the conductive part for connection 24 As a result, permanent distortion occurs immediately, and this causes disturbance in the chain of conductive particles in the conductive part 24 for connection. As a result, it becomes difficult to maintain the required conductivity.
ここで、シリコーンゴム硬化物のデュロメーター A硬度は、 JIS K 6249に準拠した 方法によって測定することができる。  Here, the durometer A hardness of the cured silicone rubber can be measured by a method based on JIS K 6249.
[0036] また、弾性異方導電膜 23を形成するシリコーンゴム硬化物は、その 23°Cにおける 引き裂き強度が 8kNZm以上のものであることが好ましぐさらに好ましくは lOkNZ m以上、より好ましくは 15kNZm以上、特に好ましくは 20kNZm以上のものである 。この引き裂き強度が 8kNZm未満である場合には、弾性異方導電膜 23に過度の 歪みが与えられたときに、耐久性の低下を起こしやす 、。 [0036] The cured silicone rubber forming the elastic anisotropic conductive film 23 preferably has a tear strength at 23 ° C of 8 kNZm or more, more preferably lOkNZ m or more, more preferably 15 kNZm. As mentioned above, it is particularly preferably 20 kNZm or more. If the tear strength is less than 8 kNZm, the durability tends to decrease when the elastic anisotropic conductive film 23 is excessively strained.
ここで、シリコーンゴム硬化物の引き裂き強度は、 JIS K 6249に準拠した方法に よって柳』定することができる。  Here, the tear strength of the cured silicone rubber can be determined by a method based on JIS K 6249.
[0037] このような特性を有する付加型液状シリコーンゴムとしては、信越ィ匕学工業株式会 社製の液状シリコーンゴム「KE2000」シリーズ、「KE1950」シリーズとして市販され て!、るものを用いることができる。 [0037] As an addition type liquid silicone rubber having such characteristics, liquid silicone rubbers “KE2000” series and “KE1950” series manufactured by Shin-Etsu Chemical Co., Ltd. are commercially available! Can do.
[0038] 本発明においては、付加型液状シリコーンゴムを硬化させるために適宜の硬化触 媒を用いることができる。このような硬化触媒としては、白金系のものを用いることがで き、その具体例としては、塩化白金酸およびその塩、白金—不飽和基含有シロキサ ンコンプレックス、ビュルシロキサンと白金とのコンプレックス、白金と 1, 3—ジビュル テトラメチルジシロキサンとのコンプレックス、トリオルガノホスフィンある 、はホスフアイ トと白金とのコンプレックス、ァセチルアセテート白金キレート、環状ジェンと白金との コンプレックスなどの公知のものが挙げられる。 硬化触媒の使用量は、硬化触媒の種類、その他の硬化処理条件を考慮して適宜 選択されるが、通常、付加型液状シリコーンゴム 100重量部に対して 3〜15重量部 である。 In the present invention, an appropriate curing catalyst can be used for curing the addition-type liquid silicone rubber. As such a curing catalyst, a platinum-based catalyst can be used. Specific examples thereof include chloroplatinic acid and a salt thereof, a platinum-unsaturated group-containing siloxane complex, a complex of bursiloxane and platinum, Known complexes such as a complex of platinum and 1,3-dibule tetramethyldisiloxane, a triorganophosphine, a complex of phosphite and platinum, a acetyl acetate platinum chelate, a complex of cyclic gen and platinum, etc. . The amount of the curing catalyst used is appropriately selected in consideration of the type of curing catalyst and other curing conditions, but is usually 3 to 15 parts by weight with respect to 100 parts by weight of the addition type liquid silicone rubber.
[0039] また、付加型液状シリコーンゴム中には、付加型液状シリコーンゴムのチクソトロピ 一性の向上、粘度調整、導電性粒子の分散安定性の向上、或いは高い強度を有す る基材を得ることなどを目的として、必要に応じて、通常のシリカ粉、コロイダルシリカ 、エア口ゲルシリカ、アルミナなどの無機充填材を含有させることができる。  [0039] Further, in the addition-type liquid silicone rubber, a thixotropic property improvement of the addition-type liquid silicone rubber, viscosity adjustment, improvement in dispersion stability of the conductive particles, or a substrate having high strength is obtained. For this purpose, an inorganic filler such as normal silica powder, colloidal silica, air-mouthed gel silica, alumina, or the like can be contained as necessary.
このような無機充填材の使用量は、特に限定されるものではないが、多量に使用す ると、磁場による導電性粒子の配向を十分に達成することができなくなるため、好まし くない。  The amount of such an inorganic filler used is not particularly limited, but if used in a large amount, the orientation of the conductive particles by a magnetic field cannot be sufficiently achieved, which is not preferable.
[0040] 弾性異方導電膜 23における接続用導電部 24に含有される導電性粒子 Pとしては [0040] As the conductive particles P contained in the conductive portion 24 for connection in the elastic anisotropic conductive film 23,
、磁性を示す芯粒子 (以下、「磁性芯粒子」ともいう。)の表面に高導電性金属が被覆 されてなるものを用いることが好まし!/、。 It is preferable to use a magnetic core particle (hereinafter also referred to as “magnetic core particle”) whose surface is coated with a highly conductive metal!
[0041] 導電性粒子 Pを得るための磁性芯粒子は、その数平均粒子径が 3〜40 μ mのもの であることが好ましい。 [0041] The magnetic core particles for obtaining the conductive particles P preferably have a number average particle diameter of 3 to 40 μm.
ここで、磁性芯粒子の数平均粒子径は、レーザー回折散乱法によって測定された ものをいう。  Here, the number average particle diameter of the magnetic core particles refers to that measured by a laser diffraction scattering method.
上記数平均粒子径が 3 μ m以上であれば、加圧変形が容易で、抵抗値が低くて接 続信頼性の高い接続用導電部 24が得られやすい。一方、上記数平均粒子径が 40 μ m以下であれば、微細な接続用導電部 24を容易に形成することができ、また、得 られる接続用導電部 24は、安定な導電性を有するものとなりやすい。  When the number average particle diameter is 3 μm or more, it is easy to obtain a conductive part 24 for connection that is easily deformed under pressure, has a low resistance value, and high connection reliability. On the other hand, when the number average particle diameter is 40 μm or less, the fine connecting conductive portion 24 can be easily formed, and the obtained connecting conductive portion 24 has stable conductivity. It is easy to become.
[0042] また、磁性芯粒子は、その BET比表面積が 10〜500m2 /kgであることが好ましく 、より好ましくは 20〜500m2 Zkg、特に好ましくは 50〜400m2 Zkgである。 [0042] The BET specific surface area of the magnetic core particles is preferably 10 to 500 m 2 / kg, more preferably 20 to 500 m 2 Zkg, and particularly preferably 50 to 400 m 2 Zkg.
この BET比表面積が 10m2 /kg以上であれば、当該磁性芯粒子はメツキ可能な領 域が十分に大きいものであるため、当該磁性芯粒子に所要の量のメツキを確実に行 うことができ、従って、導電性の大きい導電性粒子 Pを得ることができると共に、当該 導電性粒子 P間において、接触面積が十分に大きいため、安定で高い導電性が得ら れる。一方、この BET比表面積が 500m2 Zkg以下であれば、当該磁性芯粒子が脆 弱なものとならず、物理的な応力が加わった際に破壊することが少なぐ安定で高い 導電性が保持される。 If the BET specific surface area is 10 m 2 / kg or more, the magnetic core particle has a sufficiently large area that can be measured, so that the required amount of plating can be reliably applied to the magnetic core particle. Therefore, the conductive particles P having high conductivity can be obtained, and the contact area between the conductive particles P is sufficiently large, so that stable and high conductivity can be obtained. On the other hand, if the BET specific surface area is 500 m 2 Zkg or less, the magnetic core particles are brittle. It does not become weak, and maintains stable and high conductivity with less damage when subjected to physical stress.
[0043] また、磁性芯粒子は、その粒子径の変動係数が 50%以下のものであることが好ま しぐより好ましくは 40%以下、更に好ましくは 30%以下、特に好ましくは 20%以下 のものである。  [0043] Further, the magnetic core particles preferably have a coefficient of variation in particle diameter of 50% or less, more preferably 40% or less, still more preferably 30% or less, and particularly preferably 20% or less. Is.
ここで、粒子径の変動係数は、式:( σ /Dn) X 100 (但し、 σは、粒子径の標準偏 差の値を示し、 Dnは、粒子の数平均粒子径を示す。)によって求められるものである 上記粒子径の変動係数が 50%以下であれば、粒子径の均一性が大きいため、導 電性のバラツキの小さい接続用導電部 24を形成することかできる。  Here, the coefficient of variation of the particle diameter is expressed by the formula: (σ / Dn) X 100 (where σ represents the standard deviation value of the particle diameter, and Dn represents the number average particle diameter of the particles). If the coefficient of variation of the particle diameter is 50% or less, the uniformity of the particle diameter is large, so that the connection conductive portion 24 with small variation in conductivity can be formed.
[0044] 磁性芯粒子を構成する材料としては、鉄、ニッケル、コバルト、これらの金属を銅、 榭脂によってコーティングしたものなどを用いことができる力 その飽和磁ィ匕が 0. 1W b/m2以上のものを好ましく用いることができ、より好ましくは 0. 3Wb/m2以上、特 に好ましくは 0. 5WbZm2以上のものであり、具体的には、鉄、ニッケル、コバルトま たはそれらの合金などが挙げられる。 [0044] As a material constituting the magnetic core particles, iron, nickel, cobalt, a force obtained by coating these metals with copper, resin, etc. can be used. The saturation magnetic field is 0.1 W b / m. Two or more can be preferably used, more preferably 0.3 Wb / m 2 or more, and particularly preferably 0.5 WbZm 2 or more, specifically iron, nickel, cobalt or those And alloys thereof.
この飽和磁ィ匕が 0. lWbZm2以上であれば、後述する方法によって、当該弹性異 方導電膜 23を形成するための導電性エラストマ一用材料層中にお ヽて導電性粒子 Pを容易に移動させることができ、これにより、当該導電性エラストマ一用材料層にお ける接続用導電部となる部分に、導電性粒子 Pを確実に移動させて導電性粒子 Pの 連鎖を形成することができる。 If this saturation magnetic field is 0.1 lWbZm 2 or more, the conductive particles P can be easily formed in the material layer for conductive elastomer for forming the anisotropic anisotropic conductive film 23 by the method described later. In this way, the conductive particles P can be reliably moved to a portion that becomes the conductive portion for connection in the conductive elastomer material layer to form a chain of conductive particles P. Can do.
[0045] 接続用導電部 24を得るために用いられる導電性粒子 Pは、上記の磁性芯粒子の 表面に高導電性金属が被覆されてなるものである。 [0045] The conductive particles P used for obtaining the connecting conductive portion 24 are obtained by coating the surfaces of the magnetic core particles with a highly conductive metal.
ここで、「高導電性金属」とは、 0°Cにおける導電率が 5 X 106 Ω—1!!!—1以上のものを いう。 Here, the “highly conductive metal” means one having an electrical conductivity at 0 ° C. of 5 × 10 6 Ω— 1 !!! — 1 or more.
このような高導電性金属としては、金、銀、ロジウム、白金、クロムなどを用いることが でき、これらの中では、化学的に安定でかつ高い導電率を有する点で金を用いるが 好ましい。  As such a highly conductive metal, gold, silver, rhodium, platinum, chromium, or the like can be used. Among these, gold is preferable because it is chemically stable and has high conductivity.
[0046] 導電性粒子 Ρは、芯粒子に対する高導電性金属の割合〔 (高導電性金属の質量 Ζ 芯粒子の質量) X 100〕が 15質量%以上とされ、好ましくは 25〜35質量%とされる。 高導電性金属の割合が 15質量%未満である場合には、得られる異方導電性コネ クタ一 20を高温環境下に繰り返し使用したとき、当該導電性粒子 Pの導電性が著しく 低下する結果、所要の導電性を維持することができない。 [0046] The conductive particle Ρ is a ratio of the highly conductive metal to the core particle [(mass of highly conductive metal Ζ The mass of the core particles) X 100] is 15% by mass or more, preferably 25 to 35% by mass. When the proportion of the highly conductive metal is less than 15% by mass, the conductivity of the conductive particles P is significantly reduced when the anisotropic conductive connector 20 obtained is repeatedly used in a high temperature environment. The required conductivity cannot be maintained.
[0047] また、導電性粒子 Pは、下記の式(1)によって算出される、高導電性金属による被 覆層の厚み tが 50nm以上のものとされ、好ましくは 100〜200nmのものとされる。 式 (1) t= [l/ (Sw ) ] X [N/ (l -N) ] [0047] In addition, the conductive particles P have a thickness t of the covering layer of highly conductive metal calculated by the following formula (1) of 50 nm or more, and preferably 100 to 200 nm. The Formula (1) t = [l / (Sw)] X [N / (l -N)]
〔但し、 tは高導電性金属による被覆層の厚み (m)、 Swは芯粒子の BET比表面積( m2 /kg)、 は高導電性金属の比重 (kgZm3 )、 Nは(高導電性金属の重量/導電 性粒子全体の重量)の値を示す。〕 [Where t is the thickness of the coating layer made of a highly conductive metal (m), Sw is the BET specific surface area of the core particle (m 2 / kg), is the specific gravity of the highly conductive metal (kgZm 3 ), and N is (high conductivity (Weight of conductive metal / weight of conductive particles as a whole). ]
[0048] 上記の数式は、次のようにして導かれたものである。 [0048] The above mathematical formula is derived as follows.
(i)磁性芯粒子の重量を Mp (kg)とすると、磁性芯粒子の表面積 S (m2 )は、 S = Sw Mp 式(2) (i) When the weight of the magnetic core particle is Mp (kg), the surface area S (m 2 ) of the magnetic core particle is S = Sw Mp (2)
によって求められる。  Sought by.
(ii)高導電性金属による被覆層の重量を m (kg)とすると、当該被覆層の体積 V (m3 ) は、 (ii) When the weight of the coating layer made of highly conductive metal is m (kg), the volume V (m 3 ) of the coating layer is
V=m/ p 式(3)  V = m / p formula (3)
によって求められる。  Sought by.
(iii)ここで、被覆層の厚みが導電性粒子の表面全体にわたって均一なものであると 仮定すると、 t=VZSであり、これに上記式(2)および式(3)を代入すると、被覆層の 厚み tは、  (iii) Here, assuming that the thickness of the coating layer is uniform over the entire surface of the conductive particles, t = VZS. Substituting Equation (2) and Equation (3) above into The layer thickness t is
t= (m/ p ) / (Sw Mp) =m/ (Sw p - Mp) 式(4)  t = (m / p) / (Sw Mp) = m / (Sw p-Mp) Equation (4)
によって求められる。  Sought by.
(iv)また、 Nは、導電性粒子全体の質量に対する被覆層の質量の比であるから、この Nの値は、  (iv) Also, since N is the ratio of the mass of the coating layer to the mass of the entire conductive particle, the value of N is
N=m/ (Mp +m) 式(5)  N = m / (Mp + m) Equation (5)
によって求められる。  Sought by.
(V)この式(5)の右辺における分子 ·分母を Mpで割ると、 N = (m/Mp) Z ( 1 + m/Mp)となり、両辺に( 1 + m/Mp)を力 4ナると、 (V) Dividing the numerator and denominator on the right side of this equation (5) by Mp, N = (m / Mp) Z (1 + m / Mp), and when (1 + m / Mp) is applied to both sides,
N(l +m/Mp) =mZMp、更には、  N (l + m / Mp) = mZMp, and
N+N (m/Mp) =mZMpとなり、 N(mZMp)を右辺に移行すると、  N + N (m / Mp) = mZMp, and when N (mZMp) is shifted to the right side,
N = m/Mp -N (m/Mp) = (m/Mp) (1 N)となり、両辺を(1 N)で割ると、 N = m / Mp -N (m / Mp) = (m / Mp) (1 N), and when both sides are divided by (1 N),
N/ (l -N) =mZMpとなり、 N / (l -N) = mZMp
従って、磁性芯粒子の重量 Mpは、  Therefore, the weight Mp of the magnetic core particle is
Mp=m/ [N/ (1 -N) ] =m(l -N) /N 式(6)  Mp = m / [N / (1 -N)] = m (l -N) / N Equation (6)
によって求められる。  Sought by.
(vi)そして、式 (4)に式 (6)を代入すると、  (vi) And when substituting equation (6) into equation (4),
t= l/ [Sw p · (1 N) ZN〕 t = l / [Sw p (1 N) ZN]
Figure imgf000028_0001
Figure imgf000028_0001
が導かれる。  Is guided.
[0049] この被覆層の厚み tが 50nm以上であれば、当該異方導電性コネクター 20を高温 環境下に繰り返し使用した場合において、磁性芯粒子を構成する強磁性体が被覆 層を構成する高導電性金属中に移行しても、当該導電性粒子 Pの表面には、高導電 性金属が高 ヽ割合で存在するので、当該導電性粒子 Pの導電性が著しく低下するこ とがなぐ所期の導電性が維持される。  [0049] When the thickness t of the coating layer is 50 nm or more, when the anisotropically conductive connector 20 is repeatedly used in a high temperature environment, the ferromagnetic material constituting the magnetic core particles is a high layer constituting the coating layer. Even if it is transferred to the conductive metal, a high proportion of highly conductive metal is present on the surface of the conductive particle P, so that the conductivity of the conductive particle P is not significantly reduced. The electrical conductivity of the period is maintained.
[0050] また、導電性粒子 Pの数平均粒子径は、 3〜40 μ mであることが好ましぐより好ま しくは 6〜25 πιである。 [0050] Further, the number average particle diameter of the conductive particles P is preferably 3 to 40 µm, more preferably 6 to 25 πι.
このような導電性粒子 Ρを用いることにより、得られる弾性異方導電膜 23は、加圧変 形が容易なものとなり、また、当該弾性異方導電膜 23における接続用導電部 24にお By using such conductive particles, the resulting elastic anisotropic conductive film 23 can be easily deformed under pressure, and the conductive conductive portion 24 for connection in the elastic anisotropic conductive film 23 can be used.
Vヽて導電性粒子 Ρ間に十分な電気的接触が得られる。 Sufficient electrical contact can be obtained between V and conductive particles.
また、導電性粒子 Ρの形状は、特に限定されるものではないが、高分子物質形成材 料中に容易に分散させることができる点で、球状のもの、星形状のものあるいはこれ らが凝集した 2次粒子による塊状のものであることが好ましい。  The shape of the conductive particles is not particularly limited, but is spherical, star-shaped, or aggregated in that it can be easily dispersed in the polymer material-forming material. It is preferable that it is a lump with secondary particles.
[0051] このような導電性粒子 Ρは、例えは以下の方法によって得ることができる。 [0051] Such conductive particles can be obtained, for example, by the following method.
先ず、強磁性体材料を常法により粒子化し或いは市販の強磁性体粒子を用意し、 この粒子に対して分級処理を行うことにより、所要の粒子径を有する磁性芯粒子を調 製する。 First, a ferromagnetic material is made into particles by a conventional method or commercially available ferromagnetic particles are prepared, and the particles are classified to prepare magnetic core particles having a required particle diameter. To make.
ここで、粒子の分級処理は、例えば空気分級装置、音波ふるい装置などの分級装 置によって行うことができる。  Here, the particle classification treatment can be performed by a classification device such as an air classification device or a sonic sieving device.
また、分級処理の具体的な条件は、目的とする磁性芯粒子の数平均粒子径、分級 装置の種類などに応じて適宜設定される。  Specific conditions for the classification treatment are appropriately set according to the number average particle diameter of the target magnetic core particles, the type of the classification device, and the like.
次いで、磁性芯粒子の表面を酸によって処理し、更に、例えば純水によって洗浄す ることにより、磁性芯粒子の表面に存在する汚れ、異物、酸化膜などの不純物を除去 し、その後、当該磁性芯粒子の表面に高導電性金属を被覆することによって、導電 性粒子が得られる。  Next, the surface of the magnetic core particle is treated with an acid, and further washed with pure water, for example, to remove impurities such as dirt, foreign matter, and oxide film present on the surface of the magnetic core particle. Conductive particles can be obtained by coating the surface of the core particles with a highly conductive metal.
ここで、磁性芯粒子の表面を処理するために用いられる酸としては、塩酸などを挙 げることができる。  Here, hydrochloric acid can be used as the acid used to treat the surface of the magnetic core particles.
高導電性金属を磁性芯粒子の表面に被覆する方法としては、無電解メツキ法、置 換メツキ法等を用いることができる力 これらの方法に限定されるものではない。 無電解メツキ法または置換メツキ法によって導電性粒子を製造する方法にっ 、て説 明すると、先ず、メツキ液中に、酸処理および洗浄処理された磁性芯粒子を添加して スラリーを調製し、このスラリーを攪拌しながら当該磁性芯粒子の無電解メツキまたは 置換メツキを行う。次いで、スラリー中の粒子をメツキ液力 分離し、その後、当該粒 子を例えば純水によって洗浄処理することにより、磁性芯粒子の表面に高導電性金 属が被覆されてなる導電性粒子が得られる。  The method of coating the surface of the magnetic core particles with the highly conductive metal is not limited to these methods, which can use an electroless plating method, a replacement plating method, or the like. The method of producing conductive particles by the electroless plating method or the substitution plating method will be described. First, a magnetic core particle that has been subjected to acid treatment and washing treatment is added to a plating solution to prepare a slurry. While stirring the slurry, electroless plating or substitution plating of the magnetic core particles is performed. Next, the particles in the slurry are separated by MEC solution, and then the particles are washed with, for example, pure water to obtain conductive particles in which the surface of the magnetic core particles is coated with a highly conductive metal. It is done.
また、磁性芯粒子の表面に下地メツキを行って下地メツキ層を形成した後、当該下 地メツキ層の表面に高導電性金属よりなるメツキ層を形成してもよ ヽ。下地メツキ層お よびその表面に形成されるメツキ層を形成する方法は、特に限定されないが、無電解 メツキ法により、磁性芯粒子の表面に下地メツキ層を形成し、その後、置換メツキ法に より、下地メツキ層の表面に高導電性金属よりなるメツキ層を形成することが好ましい 無電解メツキまたは置換メツキに用いられるメツキ液としては、特に限定されるもので はなぐ種々の巿販のものを用いることができる。  Alternatively, after forming an undercoat layer on the surface of the magnetic core particles, a finish layer made of a highly conductive metal may be formed on the surface of the undercoat layer. The method for forming the base plating layer and the plating layer formed on the surface thereof is not particularly limited, but the base plating layer is formed on the surface of the magnetic core particles by the electroless plating method, and then the substitution plating method. It is preferable to form a plating layer made of a highly conductive metal on the surface of the base plating layer. The plating solution used for the electroless plating or the substitution plating is not particularly limited, but variously sold products. Can be used.
また、磁性芯粒子の表面に高導電性金属を被覆する際に、粒子が凝集すること〖こ より、粒子径の大きい導電性粒子が発生することがあるため、必要に応じて、導電性 粒子の分級処理を行うことが好ましぐこれにより、所期の粒子径を有する導電性粒 子が確実に得られる。 Also, when the surface of the magnetic core particles is coated with a highly conductive metal, the particles may aggregate. Since conductive particles having a larger particle size may be generated, it is preferable to classify the conductive particles as necessary. As a result, conductive particles having an intended particle size can be obtained. It is definitely obtained.
導電性粒子の分級処理を行うための分級装置としては、前述の磁性芯粒子を調製 するための分級処理に用いられる分級装置として例示したものを挙げることができる  Examples of the classification device for performing the classification treatment of the conductive particles include those exemplified as the classification device used for the classification treatment for preparing the above-described magnetic core particles.
[0054] 接続用導電部 24における導電性粒子 Pの含有割合は、体積分率で 10〜60%、好 ましくは 15〜50%となる割合で用いられることが好ましい。この割合が 10%未満の 場合には、十分に電気抵抗値の小さい接続用導電部 24が得られないことがある。一 方、この割合が 60%を超える場合には、得られる接続用導電部 24は脆弱なものとな りやすぐ接続用導電部 24として必要な弾性が得られないことがある。 [0054] The conductive particles P in the connection conductive portion 24 are preferably used in such a ratio that the volume fraction is 10 to 60%, and preferably 15 to 50%. If this ratio is less than 10%, the connecting conductive part 24 having a sufficiently small electric resistance value may not be obtained. On the other hand, when this ratio exceeds 60%, the obtained conductive part 24 for connection becomes fragile, and the elasticity necessary for the conductive part 24 for connection may not be obtained immediately.
[0055] 接点部材 27を構成する材料としては、磁性を示す金属材料を用いることが好ましく 、その具体例としては、ニッケル、コバルトまたはこれらの合金などが挙げられる。 また、接点部材 27の厚みは、 1〜: LOO /z mであることが好ましぐより好ましくは 5〜 40 /z mである。この厚みが過小である場合には、後述する製造方法において、レー ザ一加工におけるマスクとして利用することが困難となることがある。一方、この厚み が過大である場合には、弾性異方導電膜 23における接続用導電部 24を圧縮変形 するために大きな加圧力が必要となることがあり、好ましくな 、。  [0055] As the material constituting the contact member 27, it is preferable to use a metal material exhibiting magnetism, and specific examples thereof include nickel, cobalt, and alloys thereof. The thickness of the contact member 27 is preferably 1 to: LOO / zm, more preferably 5 to 40 / zm. If this thickness is too small, it may be difficult to use as a mask in laser processing in the manufacturing method described later. On the other hand, if this thickness is excessive, a large pressure may be required to compressively deform the connecting conductive portion 24 in the elastic anisotropic conductive film 23, which is preferable.
[0056] 本発明において、上記の異方導電性コネクター 20は、離型性支持板上に、硬化さ れて弾性高分子物質となる液状の高分子物質形成材料中に磁性を示す導電性粒 子が含有されてなる導電性エラストマ一用材料層を形成し、この導電性エラストマ一 用材料層の表面に、被検査電極のパターンに対応する特定のパターンに従って磁 性を示す金属よりなる接点部材 27を配置し、この状態で、当該導電性エラストマ一用 材料層に対して、その厚み方向に磁場を作用させると共に、当該導電性エラストマ一 用材料層を硬化処理して導電性エラストマ一層を形成し、この導電性エラストマ一層 をレーザー加工して接点部材 27が配置された部分以外の部分を除去することにより [0056] In the present invention, the anisotropic conductive connector 20 includes conductive particles exhibiting magnetism in a liquid polymer material-forming material that is cured to become an elastic polymer material on a releasable support plate. A contact member made of a metal having a magnetic property according to a specific pattern corresponding to the pattern of the electrode to be inspected is formed on the surface of the conductive elastomer material layer. In this state, a magnetic field is applied to the conductive elastomer material layer in the thickness direction, and the conductive elastomer material layer is cured to form one conductive elastomer layer. Then, this conductive elastomer layer is laser processed to remove portions other than the portion where the contact member 27 is disposed.
、離型性支持板上に、特定のパターンに従って配置された複数の接続用導電部 24 を形成し、この離型性支持板に形成された接続用導電部 24の各々を、フレーム板 2 1の開口を塞ぐよう形成された、硬化されて弾性高分子物質となる液状の高分子物質 形成材料よりなる絶縁部用材料層中に浸入させ、この状態で絶縁部用材料層を硬 化処理することにより絶縁部を形成することによって、得られる。 On the releasable support plate, a plurality of connecting conductive portions 24 arranged according to a specific pattern are formed, and each of the connecting conductive portions 24 formed on the releasable support plate is attached to the frame plate 2. It penetrates into an insulating material layer made of a liquid polymer material forming material that is cured to become an elastic polymer material formed so as to close the opening of 1 and in this state, the insulating material layer is hardened. This is obtained by forming the insulating portion.
以下、異方導電性コネクター 20の製造方法を具体的に説明する。  Hereinafter, a method for manufacturing the anisotropic conductive connector 20 will be specifically described.
[0057] 上記の異方導電性コネクター 20は、以下のようにして製造することができる。 [0057] The anisotropic conductive connector 20 described above can be manufactured as follows.
《フレーム板の作製》  <Production of frame plate>
検査対象であるウェハに形成された全ての集積回路における被検査電極が配置さ れた電極領域に対応して開口 22が形成されたフレーム板 21を作製する。ここで、フ レーム板 21の開口 22を形成する方法としては、当該フレーム板 21を構成する材料 に応じて適宜選択され、例えばエッチング法などを利用することができる。  A frame plate 21 in which an opening 22 is formed corresponding to an electrode region in which electrodes to be inspected are arranged in all integrated circuits formed on a wafer to be inspected is produced. Here, the method for forming the opening 22 of the frame plate 21 is appropriately selected according to the material constituting the frame plate 21, and for example, an etching method or the like can be used.
[0058] 《導電性エラストマ一層の形成》 [0058] << Formation of one layer of conductive elastomer >>
先ず、特定のパターンに従って配置された複数の接点部材 27を有する接点部材 複合体 27Fを製造する。  First, a contact member composite 27F having a plurality of contact members 27 arranged according to a specific pattern is manufactured.
具体的に説明すると、図 4に示すように、金属箔 30上に、フォトリソグラフィ一の手法 により、形成すべき接続用導電部のパターンすなわち被検査電極のパターンに対応 する特定のパターンに従って開口 31Kが形成されたレジスト層 31を形成する。その 後、金属箔 30におけるレジスト層 31の開口 31Kを介して露出した部分の表面に、磁 性を示す金属によるメツキ処理を施すことにより、図 5に示すように、レジスト層 31の開 口 31Kの各々に接点部材 27を形成する。これにより、金属箔 30上に特定のパター ンに従って接点部材 27が形成されてなる接点部材複合体 27Fが得られる。  More specifically, as shown in FIG. 4, the openings 31K are formed on the metal foil 30 according to a specific pattern corresponding to the pattern of the conductive part for connection to be formed, that is, the pattern of the electrode to be inspected, by a photolithography technique. Then, a resist layer 31 is formed. Thereafter, the surface of the exposed portion of the metal foil 30 through the opening 31K of the resist layer 31 is subjected to a plating treatment with a metal exhibiting magnetic properties, so that the opening 31K of the resist layer 31 is formed as shown in FIG. A contact member 27 is formed on each of the two. As a result, a contact member composite 27F in which the contact member 27 is formed on the metal foil 30 according to a specific pattern is obtained.
[0059] 以上において、金属箔 30としては、銅、ニッケルなどを用いることができる。また、金 属箔 30は、榭脂フィルム上に積層されたものであってもよい。 [0059] In the above, as the metal foil 30, copper, nickel, or the like can be used. Further, the metal foil 30 may be laminated on a resin film.
金属箔 30の厚みは、 0. 05〜2 111でぁることカ 子ましく、より好ましくは 0. 1〜1 μ mである。この厚みが過小である場合には、均一な薄層が形成されず、メツキ電極と して不適なものとなることがある。一方、この厚みが過大である場合には、例えばエツ チングによって除去することが困難となることがある。  The thickness of the metal foil 30 is preferably 0.05-2111, more preferably 0.1-1 μm. If this thickness is too small, a uniform thin layer may not be formed, which may be inappropriate as a plating electrode. On the other hand, if this thickness is excessive, it may be difficult to remove by, for example, etching.
レジスト層 31の厚みは、形成すべき接点部材 27の厚みに応じて設定される。  The thickness of the resist layer 31 is set according to the thickness of the contact member 27 to be formed.
[0060] 次 ヽで、硬化されて弾性高分子物質となる液状の高分子物質形成材料中に磁性 を示す導電性粒子が分散されてなる導電性エラストマ一用材料を調製し、図 6に示 すように、接続用導電部形成用の離型性支持板 35上に、導電性エラストマ一用材料 を塗布することによって導電性エラストマ一用材料層 24Aを形成する。そして、図 7に 示すように、この導電性エラストマ一用材料層 24A上に、接点部材複合体 27Fをそ の接点部材 27の各々が当該導電性エラストマ一用材料層 24Aに接するよう配置す る。ここで、導電性エラストマ一用材料層 24A中においては、磁性を示す導電性粒子 Pが分散された状態で含有されて 、る。 [0060] Next, magnetic properties are formed in the liquid polymer material forming material that is cured to become an elastic polymer material. As shown in FIG. 6, a conductive elastomer material is prepared on a releasable support plate 35 for forming a conductive part for connection, as shown in FIG. Is applied to form a conductive elastomer material layer 24A. Then, as shown in FIG. 7, the contact member composite 27F is disposed on the conductive elastomer material layer 24A so that each of the contact members 27 is in contact with the conductive elastomer material layer 24A. . Here, in the conductive elastomer material layer 24A, the conductive particles P exhibiting magnetism are contained in a dispersed state.
次いで、導電性エラストマ一用材料層 24Aに対し、接点部材 27を介して当該導電 性エラストマ一用材料層 24Aの厚み方向に磁場を作用させる。これにより、接点部材 27が磁性を示す金属により形成されているため、導電性エラストマ一用材料層 24A における接点部材 27が配置された部分には、それ以外の部分より大きい強度の磁 場が形成される。その結果、導電性エラストマ一用材料層 24A中に分散されていた 導電性粒子 Pは、図 8に示すように、接点部材 27が配置された部分に集合し、更に 当該導電性エラストマ一用材料層 24Aの厚み方向に並ぶよう配向する。そして、導 電性エラストマ一用材料層 24Aに対する磁場の作用を継続しながら、或いは磁場の 作用を停止した後、導電性エラストマ一用材料層 24Aの硬化処理を行うことにより、 図 9に示すように、弾性高分子物質中に導電性粒子 Pが厚み方向に並ぶよう配向し た状態で含有されてなる導電性エラストマ一層 24Bが、離型性支持板 35上に支持さ れた状態で形成される。  Next, a magnetic field is applied to the conductive elastomer material layer 24A via the contact member 27 in the thickness direction of the conductive elastomer material layer 24A. As a result, since the contact member 27 is formed of a metal exhibiting magnetism, a magnetic field having a strength higher than that of the other portion is formed in the portion where the contact member 27 is disposed in the conductive elastomer material layer 24A. Is done. As a result, as shown in FIG. 8, the conductive particles P dispersed in the conductive elastomer material layer 24A gather at the portion where the contact member 27 is disposed, and further, the conductive elastomer material material. Oriented so as to be aligned in the thickness direction of the layer 24A. Then, while continuing the action of the magnetic field on the conductive elastomer material layer 24A, or after stopping the action of the magnetic field, the conductive elastomer material layer 24A is cured, as shown in FIG. In addition, a conductive elastomer layer 24B, which is contained in an elastic polymer substance in a state in which the conductive particles P are aligned in the thickness direction, is formed in a state of being supported on the releasable support plate 35. The
以上において、離型性支持板 35を構成する材料としては、金属、セラミックス、榭 脂およびこれらの複合材などを用いることができる。  In the above, as a material constituting the releasable support plate 35, metals, ceramics, resins, composite materials thereof and the like can be used.
導電性エラストマ一用材料を塗布する方法としては、スクリーン印刷などの印刷法、 ロール塗布法、ブレード塗布法などを利用することができる。  As a method of applying the conductive elastomer material, a printing method such as screen printing, a roll coating method, a blade coating method, or the like can be used.
導電性エラストマ一用材料層 24Aの厚みは、形成すべき接続用導電部の厚みに 応じて設定される。  The thickness of the conductive elastomer material layer 24A is set according to the thickness of the connecting conductive portion to be formed.
導電性エラストマ一用材料層 24Aに磁場を作用させる手段としては、電磁石、永久 磁石などを用いることができる。  As means for applying a magnetic field to the conductive elastomer material layer 24A, an electromagnet, a permanent magnet, or the like can be used.
導電性エラストマ一用材料層 24Aに作用させる磁場の強度は、 0. 2〜2. 5テスラと なる大きさが好ましい。 The strength of the magnetic field applied to the conductive elastomer material layer 24A is 0.2 to 2.5 Tesla. Is preferred.
導電性エラストマ一用材料層 24Aの硬化処理は、通常、加熱処理によって行われ る。具体的な加熱温度および加熱時間は、導電性エラストマ一用材料層 24Aを構成 する高分子物質形成材料の種類、導電性粒子の移動に要する時間などを考慮して 適宜設定される。  The curing treatment of the conductive elastomer material layer 24A is usually performed by heat treatment. The specific heating temperature and heating time are appropriately set in consideration of the type of polymer substance forming material constituting the conductive elastomer material layer 24A, the time required to move the conductive particles, and the like.
[0062] 《接続用導電部の形成》 <Formation of conductive part for connection>
先ず、導電性エラストマ一層 24B上に配置された接点部材複合体 27Fにおける金 属箔 30に対して、エッチング処理を施して除去することにより、図 10に示すように、接 点部材 27およびレジスト層 31を露出させる。そして、導電性エラストマ一層 24Bおよ びレジスト層 31に対して、接点部材 27をマスクとしてレーザー加工を施すことにより、 レジスト層 31および導電性エラストマ一層 24Bの一部が除去され、その結果、図 11 に示すように、特定のパターンに従って配置され、それぞれ接点部材 27がー体的に 設けられた複数の接続用導電部 24が離型性支持板 35上に支持された状態で形成 される。  First, as shown in FIG. 10, by removing the metal foil 30 in the contact member composite 27F disposed on the conductive elastomer layer 24B by etching, the contact member 27 and the resist layer are removed. Expose 31. Then, laser processing is performed on the conductive elastomer layer 24B and the resist layer 31 using the contact member 27 as a mask, so that part of the resist layer 31 and the conductive elastomer layer 24B is removed. As shown in FIG. 11, a plurality of connection conductive portions 24 arranged according to a specific pattern and provided with contact members 27 are formed on the releasable support plate 35.
ここで、レーザー加工は、炭酸ガスレーザーによるものが好ましぐこれにより、目的 とする形態の接続用導電部 24を確実に形成することができる。  Here, the laser processing is preferably performed using a carbon dioxide laser, whereby the connection conductive portion 24 having a desired form can be reliably formed.
[0063] 《絶縁部の形成》 [0063] << Formation of Insulating Portion >>
図 12に示すように、絶縁部形成用の離型性支持板 35Aを用意し、この離型性支持 板 35Aの表面に、フレーム板 21を配置すると共に、硬化されて絶縁性の弾性高分子 物質となる液状の高分子物質形成材料を塗布することにより、絶縁部用材料層 25A を形成する。次いで、図 13に示すように、それぞれ接点部材 27が設けられた複数の 接続用導電部 24が形成された離型性支持板 35を、絶縁部用材料層 25Aが形成さ れた離型性支持板 35A上に重ね合わせることにより、接続用導電部 24の各々を絶 縁部用材料層 25A中に浸入させて離型性支持板 35Aに接触させ、更に加圧するこ とにより、接続用導電部 24の各々は厚み方向に圧縮した状態に変形されると共に、 隣接する接続用導電部 24の間には、絶縁部用材料層 25Aが形成された状態となる 。その後、この状態で、絶縁部用材料層 25Aの硬化処理を行うことにより、図 14に示 すように、接続用導電部 24の各々の周囲に、これらを相互に絶縁する絶縁部 25が、 接続用導電部 24に一体的に形成され、以て弾性異方導電膜 23が形成される。 そして、離型性支持板 35, 35A力ゝら離型させることにより、圧縮された接続用導電 部 24の各々は、元の形態に復元する結果、絶縁部 25の両面から突出した状態とな り、以て、図 1に示す構成の異方導電性コネクター 20が得られる。 As shown in FIG. 12, a releasable support plate 35A for forming an insulating portion is prepared, and a frame plate 21 is disposed on the surface of the releasable support plate 35A and cured to be an insulating elastic polymer. The insulating material layer 25A is formed by applying a liquid polymer material forming material as a material. Next, as shown in FIG. 13, the releasable support plate 35 on which the plurality of conductive portions 24 for connection, each provided with the contact member 27, is formed, and the releasability on which the insulating material layer 25A is formed. By superimposing on the support plate 35A, each of the connecting conductive portions 24 is infiltrated into the insulating material layer 25A, brought into contact with the releasable support plate 35A, and further pressurized to connect the conductive portions for connection. Each of the portions 24 is deformed to be compressed in the thickness direction, and an insulating portion material layer 25A is formed between the adjacent conductive portions 24 for connection. Thereafter, in this state, the insulating material layer 25A is cured, so that as shown in FIG. 14, the insulating portions 25 that insulate them from each other are provided around the conductive portions 24 for connection. The elastic anisotropic conductive film 23 is formed integrally with the connecting conductive portion 24, thereby forming the elastic anisotropic conductive film 23. Then, by releasing the mold from the releasable support plates 35 and 35A, each of the compressed connecting conductive parts 24 is restored to the original form, and as a result, it protrudes from both surfaces of the insulating part 25. Thus, the anisotropic conductive connector 20 having the configuration shown in FIG. 1 is obtained.
[0064] 以上にぉ ヽて、離型性支持板 35Aを構成する材料としては、接続用導電部形成用 の離型性支持板 35と同様のものを用いることができる。 [0064] As described above, as the material constituting the releasable support plate 35A, the same material as the releasable support plate 35 for forming the connecting conductive portion can be used.
高分子物質形成材料を塗布する方法としては、スクリーン印刷などの印刷法、ロー ル塗布法、ブレード塗布法などを利用することができる。  As a method for applying the polymer material forming material, a printing method such as screen printing, a roll coating method, a blade coating method, or the like can be used.
絶縁部用材料層 25Aの厚みは、形成すべき絶縁部の厚みに応じて設定される。 絶縁部用材料層 25Aの硬化処理は、通常、加熱処理によって行われる。具体的な 加熱温度および加熱時間は、絶縁部用材料層 25Aを構成する高分子物質形成材 料の種類などを考慮して適宜設定される。  The thickness of the insulating part material layer 25A is set according to the thickness of the insulating part to be formed. The curing process of the insulating part material layer 25A is usually performed by a heating process. The specific heating temperature and heating time are appropriately set in consideration of the type of polymer substance forming material constituting the insulating part material layer 25A.
[0065] 上記の製造方法によれば、導電性エラストマ一用材料層 24A上に、検査対象であ るウェハにおける被検査電極のパターンに対応する特定のパターンに従って磁性を 示す接点部材 27を配置した状態で、当該導電性エラスマー用材料層 24Aの厚み方 向に磁場を作用させると共に当該導電性エラストマ一用材料層 24Aを硬化処理する ことにより、得られる導電性エラストマ一層 24Bは、接点部材 27が配置された部分に おける導電性粒子 Pが密となり、その以外のの部分における導電性粒子 Pが疎となる 。そのため、接点部材 27をマスクとして利用して導電性エラストマ一層 24Bをレーザ 一加工することにより、当該導電性エラストマ一層 24Bにおける接点部材 27が配置さ れて 、な 、部分を容易に除去することができるので、所期の形態の接続用導電部 24 を特定のパターンに従って確実に形成することができる。そして、特定のパターンに 従って配置された複数の接続用導電部 24を形成したうえで、これらの接続用導電部 24の間に絶縁部用材料層 25Aを形成して硬化処理することにより絶縁部 25を形成 するため、導電性粒子 Pが全く存在しない絶縁部 25を確実に得ることができる。 従って、このような方法によって得られる異方導電性コネクター 20によれば、検査 対象であるウェハにおける被検査電極のピッチが微小で高密度に配置されている場 合であっても、当該被検査電極の各々に対して所要の電気的接続が確実に達成さ れ、し力も、小さいコストで製造することができる。 [0065] According to the above manufacturing method, the contact member 27 exhibiting magnetism is arranged on the conductive elastomer material layer 24A according to a specific pattern corresponding to the pattern of the electrode to be inspected in the wafer to be inspected. In this state, by applying a magnetic field in the thickness direction of the conductive elastomer material layer 24A and curing the conductive elastomer material layer 24A, the resulting conductive elastomer layer 24B has the contact member 27 The conductive particles P in the arranged portion become dense, and the conductive particles P in the other portions become sparse. Therefore, by using the contact member 27 as a mask to process the conductive elastomer layer 24B with a laser, the contact member 27 in the conductive elastomer layer 24B can be disposed and the portion can be easily removed. As a result, it is possible to reliably form the connecting conductive portion 24 in the desired form according to a specific pattern. Then, after forming a plurality of connecting conductive portions 24 arranged according to a specific pattern, an insulating portion material layer 25A is formed between the connecting conductive portions 24 and cured to form insulating portions. Therefore, it is possible to reliably obtain the insulating portion 25 in which the conductive particles P are not present. Therefore, according to the anisotropic conductive connector 20 obtained by such a method, even when the pitch of the electrodes to be inspected on the wafer to be inspected is very small and densely arranged, The required electrical connection is reliably achieved for each of the electrodes. Therefore, the force can be manufactured at a low cost.
また、弾性異方導電膜 23における接続用導電部 24上には、接点部材 27がー体 的に設けられているため、ウェハの検査を行う際に、シート状プローブを用いることが 不要となるので、簡単な構造のプローブカードを得ることができると共に、シート状プ ローブの位置ずれによる接続不良を回避することができる。  Further, since the contact member 27 is provided on the connecting conductive portion 24 in the elastic anisotropic conductive film 23, it is not necessary to use a sheet-like probe when inspecting the wafer. Therefore, it is possible to obtain a probe card having a simple structure and to avoid a connection failure due to a positional deviation of the sheet-like probe.
[0066] また、弾性異方導電膜 23の各々がフレーム板 21の開口縁部に支持されているた め、変形しにくくて取扱いやすぐ検査対象であるウェハとの電気的接続作業におい て、当該ウェハに対する位置合わせおよび保持固定を容易に行うことができる。 また、フレーム板 21の開口 22の各々は、検査対象であるウェハに形成された全て の集積回路の被検査電極が配置された電極領域に対応して形成されており、当該 開口 22の各々に配置される弾性異方導電膜 23は面積が小さいものでよいため、個 々の弾性異方導電膜 23の形成が容易である。 [0066] In addition, since each of the elastic anisotropic conductive films 23 is supported by the opening edge of the frame plate 21, it is difficult to be deformed and in electrical connection work with a wafer that is to be handled and immediately inspected. Positioning and holding and fixing to the wafer can be easily performed. Further, each of the openings 22 of the frame plate 21 is formed corresponding to an electrode region in which the electrodes to be inspected of all the integrated circuits formed on the wafer to be inspected are arranged. Since the elastic anisotropic conductive film 23 to be arranged may have a small area, it is easy to form the individual elastic anisotropic conductive film 23.
また、面積の小さい弾性異方導電膜 23は、熱履歴を受けた場合でも、当該弾性異 方導電膜 23の面方向における熱膨張の絶対量が少ないため、弾性異方導電膜 23 の面方向における熱膨張がフレーム板 21によって確実に規制される。し力も、異方 導電性コネクター 20全体の熱膨張は、フレーム板 21を構成する材料の熱膨張に依 存するので、フレーム板 21を構成する材料として熱膨張率の小さいものを用いること により、温度変化による熱履歴を受けた場合にも、当該異方導電性コネクター 20に おける接続用導電部 24とウェハにおける被検査電極との位置ずれが防止される結 果、良好な電気的接続状態が安定に維持される。  In addition, the elastic anisotropic conductive film 23 having a small area has a small absolute amount of thermal expansion in the surface direction of the elastic anisotropic conductive film 23 even when subjected to a thermal history. The thermal expansion in is reliably regulated by the frame plate 21. However, the thermal expansion of the anisotropic conductive connector 20 as a whole depends on the thermal expansion of the material composing the frame plate 21, so that a material having a low coefficient of thermal expansion is used as the material composing the frame plate 21. Even when a thermal history due to change is received, the position of the conductive portion 24 for connection in the anisotropic conductive connector 20 and the electrode to be inspected on the wafer is prevented, so that a good electrical connection state is stable. Maintained.
[0067] 図 15は、本発明に係る第 2の例の異方導電性コネクターを示す平面図である。 FIG. 15 is a plan view showing a second example of the anisotropically conductive connector according to the present invention.
この第 2の例の異方導電性コネクター 20は、それぞれ厚み方向に貫通して伸びる 複数の開口 22が形成された矩形の板状のフレーム板 21を有する。このフレーム板 2 1の開口 22は、検査対象であるウェハに形成された集積回路のうち例えば 32個(8 個 X 4個)の集積回路における被検査電極が形成された電極領域のパターンに対応 して形成されている。フレーム板 21には、厚み方向に導電性を有する複数の弹性異 方導電膜 23が、それぞれ一の開口 22を塞ぐよう、当該フレーム板 21の開口縁部に 支持された状態で配置されて 、る。第 2の例の異方導電性コネクター 20におけるそ の他の構成は、第 1の例の異方導電性コネクター 20と同様である。 The anisotropic conductive connector 20 of the second example includes a rectangular plate-like frame plate 21 in which a plurality of openings 22 extending through the thickness direction are formed. The opening 22 of the frame plate 21 corresponds to the pattern of the electrode region in which the electrodes to be inspected are formed in, for example, 32 (8 × 4) integrated circuits formed on the wafer to be inspected. Is formed. A plurality of anisotropic anisotropic conductive films 23 having conductivity in the thickness direction are arranged on the frame plate 21 so as to be supported by the opening edges of the frame plate 21 so as to block the one opening 22 respectively. The The anisotropic conductive connector 20 of the second example Other configurations are the same as those of the anisotropic conductive connector 20 of the first example.
また、第 2の例の異方導電性コネクター 20は、第 1の例の異方導電性コネクター 20 と同様にして製造することができる。  The anisotropic conductive connector 20 of the second example can be manufactured in the same manner as the anisotropic conductive connector 20 of the first example.
そして、第 2の例の異方導電性コネクター 20によれば、第 1の例の異方導電性コネ クタ一 20と同様の効果が得られる。  According to the anisotropic conductive connector 20 of the second example, the same effect as that of the anisotropic conductive connector 20 of the first example can be obtained.
[0068] 〈ウェハ検査用プローブカード〉 <Wafer Inspection Probe Card>
図 16は、本発明に係るウェハ検査用プローブカード(以下、単に「プローブカード」 という。)の第 1の例における構成を示す説明用断面図であり、図 17は、第 1の例のプ ローブカードの要部の構成を示す説明用断面図である。  FIG. 16 is a cross-sectional view illustrating the configuration of a first example of a wafer inspection probe card (hereinafter simply referred to as a “probe card”) according to the present invention, and FIG. 17 is a diagram of the first example. It is sectional drawing for description which shows the structure of the principal part of a lobe card.
この第 1の例のプローブカード 10は、例えば複数の集積回路が形成されたウェハ について当該集積回路の各々のバーンイン試験をウェハの状態で一括して行うため に用いられるものであって、検査用回路基板 11と、この検査用回路基板 11の一面( 図 16および図 17において上面)に配置された、図 1に示す第 1の例の異方導電性コ ネクター 20とにより構成されて 、る。  The probe card 10 of the first example is used for performing a burn-in test of each integrated circuit in a wafer state on a wafer on which a plurality of integrated circuits are formed, for example. The circuit board 11 and the anisotropic conductive connector 20 of the first example shown in FIG. 1 arranged on one surface (the upper surface in FIGS. 16 and 17) of the circuit board 11 for inspection are composed of .
[0069] 検査用回路基板 11は、図 18にも示すように、円板状の第 1の基板素子 12を有し、 この第 1の基板素子 12の表面(図 16および図 17において上面)における中央部に は、正八角形の板状の第 2の基板素子 15が配置され、この第 2の基板素子 15は、第 1の基板素子 12の表面に固定されたホルダー 14に保持されている。また、第 1の基 板素子 12の裏面における中央部には、補強部材 17が設けられている。 [0069] As shown in FIG. 18, the inspection circuit board 11 has a disk-shaped first substrate element 12, and the surface of the first substrate element 12 (the upper surface in FIGS. 16 and 17). In the central portion of FIG. 2, a regular octagonal plate-like second substrate element 15 is disposed, and this second substrate element 15 is held by a holder 14 fixed to the surface of the first substrate element 12. . In addition, a reinforcing member 17 is provided at the center of the back surface of the first substrate element 12.
第 1の基板素子 12の表面における中央部には、複数の接続用電極 (図示省略)が 適宜のパターンに従って形成されている。一方、第 1の基板素子 12の裏面における 周縁部には、図 19に示すように、複数のリード電極 13が当該第 1の基板素子 12の 周方向に沿って並ぶよう配置されたリード電極部 13Rが形成されている。リード電極 13のパターンは、後述するウェハ検査装置におけるコントローラーの入試出力端子 のパターンに対応するパターンである。そして、リード電極 13の各々は内部配線(図 示省略)を介して接続用電極に電気的に接続されている。  A plurality of connection electrodes (not shown) are formed in an appropriate pattern at the center of the surface of the first substrate element 12. On the other hand, as shown in FIG. 19, a lead electrode portion in which a plurality of lead electrodes 13 are arranged along the circumferential direction of the first substrate element 12 at the peripheral edge portion on the back surface of the first substrate element 12. 13R is formed. The pattern of the lead electrode 13 is a pattern corresponding to the pattern of the input / output terminal of the controller in the wafer inspection apparatus described later. Each of the lead electrodes 13 is electrically connected to the connection electrode via an internal wiring (not shown).
第 2の基板素子 15の表面(図 16および図 17において上面)には、複数の検査用 電極 16が、検査対象であるウェハに形成された全ての集積回路における被検査電 極のパターンに対応するパターンに従って配置された検査用電極部 16Rが形成され ている。一方、第 2の基板素子 15の裏面には、複数の端子電極(図示省略)が適宜 のパターンに従って配置されており、端子電極の各々は内部配線(図示省略)を介し て検査用電極 16に電気的に接続されて!ヽる。 On the surface of the second substrate element 15 (upper surface in FIGS. 16 and 17), a plurality of inspection electrodes 16 are inspected in all integrated circuits formed on the wafer to be inspected. The inspection electrode portion 16R is formed in accordance with a pattern corresponding to the pole pattern. On the other hand, on the back surface of the second substrate element 15, a plurality of terminal electrodes (not shown) are arranged according to an appropriate pattern, and each of the terminal electrodes is connected to the inspection electrode 16 via an internal wiring (not shown). It is electrically connected!
そして、第 1の基板素子 12の接続用電極と第 2の基板素子 15の端子電極とは適宜 の手段によって電気的に接続されている。  The connection electrode of the first substrate element 12 and the terminal electrode of the second substrate element 15 are electrically connected by appropriate means.
[0070] 検査用回路基板 11における第 1の基板素子 12を構成する基板材料としては、従 来公知の種々の材料を用いることができ、その具体例としては、ガラス繊維補強型ェ ポキシ榭脂、ガラス繊維補強型フエノール榭脂、ガラス繊維補強型ポリイミド榭脂、ガ ラス繊維補強型ビスマレイミドトリアジン榭脂等の複合榭脂基板材料などが挙げられ る。 [0070] As a substrate material constituting the first substrate element 12 in the circuit board 11 for inspection, conventionally known various materials can be used, and specific examples thereof include glass fiber reinforced epoxy resin. Examples thereof include composite resin substrate materials such as glass fiber reinforced phenol resin, glass fiber reinforced polyimide resin, and glass fiber reinforced bismaleimide triazine resin.
検査用回路基板 11における第 2の基板素子 15を構成する材料としては、線熱膨 張係数が 3 X 10— 5Ζκ以下のものを用いることが好ましぐより好ましくは 1 X 10— 7〜1 X 10" VK,特に好ましくは 1 X 10— 6〜6 X 10— 6Ζκである。このような基板材料の具 体例としては、パイレックス (登録商標)ガラス、石英ガラス、アルミナ、ベリリア、炭化 ケィ素、窒化アルミニウム、窒化ホウ素等よりなる無機系基板材料、 42合金、コバー ル、インバー等の鉄—ニッケル合金鋼よりなる金属板をコア材としてエポキシ榭脂ま たはポリイミド榭脂等の榭脂を積層した積層基板材料などが挙げられる。 As a material for forming the second substrate element 15 in the circuit board for inspection 11, more preferably it is preferred instrument Sen'netsu膨expansion coefficient is used the following 3 X 10- 5 Ζκ 1 X 10- 7 ~ 1 X 10 "VK, particularly preferably 1 X 10- 6 ~6 X 10- 6 Ζκ. as tool body examples of such substrate materials, Pyrex (registered trademark) glass, quartz glass, alumina, beryllia, carbide An inorganic substrate material made of silicon, aluminum nitride, boron nitride or the like, or a metal plate made of iron-nickel alloy steel such as 42 alloy, Kovar, or Invar as a core material, such as epoxy resin or polyimide resin. Examples include laminated substrate materials in which fat is laminated.
[0071] ホルダー 14は、第 2の基板素子 15の外形に適合する正八角形状の開口 14Kを有 し、この開口 14K内に第 2の基板素子 15が収容されている。また、ホルダー 14の外 縁は円形である。 [0071] The holder 14 has a regular octagonal opening 14K that fits the outer shape of the second substrate element 15, and the second substrate element 15 is accommodated in the opening 14K. The outer edge of the holder 14 is circular.
[0072] このような第 1の例のプローブカード 10によれば、図 1に示す異方導電性コネクター 20を有するため、検査対象であるウェハにおける被検査電極のピッチが微小で高密 度に配置されている場合であっても、当該被検査電極の各々に対して所要の電気的 接続を確実に達成することができ、また、温度変化による熱履歴を受けた場合にも、 良好な電気的接続状態が安定に維持される。従って、ウェハのバーンイン試験にお いて、ウェハに対する良好な電気的接続状態を安定に維持することができる。  [0072] According to the probe card 10 of the first example as described above, since the anisotropic conductive connector 20 shown in Fig. 1 is provided, the pitch of the electrodes to be inspected on the wafer to be inspected is very small and highly densely arranged. Even if it is, it is possible to reliably achieve the required electrical connection to each of the electrodes to be inspected. The connection state is kept stable. Therefore, in the wafer burn-in test, it is possible to stably maintain a good electrical connection to the wafer.
[0073] 図 20は、本発明に係るプローブカードの第 2の例における構成を示す説明用断面 図であり、図 21は、第 2の例のプローブカードの要部の構成を示す説明用断面図で ある。 FIG. 20 is an explanatory cross section showing the configuration of the second example of the probe card according to the present invention. FIG. 21 is an explanatory cross-sectional view showing a configuration of a main part of the probe card of the second example.
この第 2の例のプローブカード 10は、例えば複数の集積回路が形成されたウェハ について当該集積回路の各々のプローブ試験をウェハの状態で行うために用いら れるものであって、検査用回路基板 11と、この検査用回路基板 11の一面(図 20およ び図 21において上面)に配置された、図 15に示す第 2の例の異方導電性コネクター 20とにより構成されている。  The probe card 10 of the second example is used for performing a probe test of each integrated circuit in the state of the wafer on a wafer on which a plurality of integrated circuits are formed, for example. 11 and an anisotropic conductive connector 20 of the second example shown in FIG. 15 arranged on one surface (the upper surface in FIGS. 20 and 21) of the circuit board 11 for inspection.
第 2の例のプローブカード 10の検査用回路基板 11にお 、ては、図 22に示すように 、第 2の基板素子 15の表面に、検査対象であるウェハに形成された集積回路のうち 例えは 32個(8個 X 4個)の集積回路における被検査電極のパターンに対応するパ ターンに従って複数の検査用電極 16が配置された検査用電極部 16Rが形成されて いる。検査用回路基板 11におけるその他の構成は、第 1の例のプローブカード 10に おける検査用回路基板 11と基本的に同様である。  In the inspection circuit board 11 of the probe card 10 of the second example, as shown in FIG. 22, the integrated circuit formed on the wafer to be inspected is formed on the surface of the second substrate element 15. For example, an inspection electrode portion 16R in which a plurality of inspection electrodes 16 are arranged according to a pattern corresponding to the pattern of the electrode to be inspected in 32 (8 × 4) integrated circuits is formed. Other configurations of the inspection circuit board 11 are basically the same as those of the inspection circuit board 11 in the probe card 10 of the first example.
[0074] このような第 2の例のプローブカード 10によれば、図 15に示す異方導電性コネクタ 一 20を有するため、検査対象であるウェハにおける被検査電極のピッチが微小で高 密度に配置されている場合であっても、当該被検査電極の各々に対して所要の電気 的接続を確実に達成することができ、また、温度変化による熱履歴を受けた場合にも 、良好な電気的接続状態が安定に維持される。従って、ウェハのプローブ試験にお いて、ウェハに対する良好な電気的接続状態を安定に維持することができる。  [0074] According to the probe card 10 of the second example as described above, since the anisotropic conductive connector 20 shown in Fig. 15 is provided, the pitch of the electrodes to be inspected on the wafer to be inspected is very small and high density. Even if it is arranged, it is possible to reliably achieve the required electrical connection to each of the electrodes to be inspected, and even when it receives a thermal history due to a temperature change, good electrical connection can be achieved. Connection state is maintained stably. Therefore, it is possible to stably maintain a good electrical connection state to the wafer in the wafer probe test.
[0075] 図 23は、本発明に係るプローブカードの第 3の例における構成を示す説明用断面 図であり、図 24は、第 3の例のプローブカードの要部の構成を示す説明用断面図で ある。  FIG. 23 is an explanatory cross-sectional view showing the configuration of the third example of the probe card according to the present invention, and FIG. 24 is an explanatory cross-sectional view showing the configuration of the main part of the probe card of the third example. It is a figure.
この第 3の例のプローブカード 10は、例えば複数の集積回路が形成されたウェハ について当該集積回路の各々のバーンイン試験をウェハの状態で一括して行うため に用いられるものであって、第 1の例のプローブカード 10と同様の構成の検査用回 路基板 11と、この検査用回路基板 11の一面(図 23にお 、て上面)に一体的に形成 された異方導電性エラストマ一層 40と、この異方導電性エラストマ一層 40における接 続用導電部 41上に一体的に設けられた接点部材 27とにより構成されている。 [0076] 異方導電性エラストマ一層 40は、検査用回路基板 11における検査用電極 16のパ ターンと同一のパターンに従って配置された、それぞれ厚み方向に伸びる複数の接 続用導電部 41と、隣接する接続用導電部 41の間に当該接続用導電部 41の各々に 一体的に接着した状態で形成された、これらの接続用導電部 41を相互に絶縁する 絶縁部 42とにより構成されており、当該異方導電性ヱラストマー層 40は、接続用導 電部 41の各々が検査用回路基板 11における検査用電極 16上に位置されるよう配 置されている。 The probe card 10 of the third example is used for performing a burn-in test of each of the integrated circuits in a batch on the wafer on which a plurality of integrated circuits are formed. The circuit board for inspection 11 having the same configuration as the probe card 10 in the example of FIG. 14 and an anisotropic conductive elastomer layer integrally formed on one surface (the upper surface in FIG. 23) of the circuit board for inspection 40 And a contact member 27 provided integrally on the connecting conductive portion 41 in the anisotropic conductive elastomer layer 40. [0076] The anisotropic conductive elastomer layer 40 is arranged in accordance with the same pattern as the pattern of the inspection electrode 16 on the inspection circuit board 11, and adjacent to the plurality of connection conductive portions 41 extending in the thickness direction. Insulating parts 42 are formed between the connecting conductive parts 41 to be connected to each other, and are integrally bonded to each of the connecting conductive parts 41. The anisotropic conductive elastomer layer 40 is arranged such that each of the connecting conductive portions 41 is positioned on the inspection electrode 16 in the inspection circuit board 11.
図 25に拡大して示すように、各接続用導電部 41は、絶縁性の弾性高分子物質中 に磁性を示す導電性粒子 Pが厚み方向に並ぶよう配向した状態で含有されて構成さ れている。これに対し、絶縁部 42は、導電性粒子 Pを全く含有しない弾性高分子物 質により構成されている。接続用導電部 41を構成する弾性高分子物質と絶縁部 42 を構成する弾性高分子物質とは、互いに異なる種類のものであっても同じ種類のも のであってもよい。  As shown in an enlarged view in FIG. 25, each connection conductive portion 41 is configured to be contained in an insulating elastic polymer substance in a state in which the conductive particles P exhibiting magnetism are aligned in the thickness direction. ing. On the other hand, the insulating part 42 is made of an elastic polymer material that does not contain the conductive particles P at all. The elastic polymer material constituting the connecting conductive portion 41 and the elastic polymer material constituting the insulating portion 42 may be of different types or the same type.
図示の例においては、異方導電性エラストマ一層 40の表面(図 25において上面) には、接続用導電部 41が絶縁部 42の表面力も突出する突出部が形成されている。 このような例によれば、加圧による圧縮の程度が絶縁部 42より接続用導電部 41に ぉ ヽて大き 、ために十分に抵抗値の低!ヽ導電路が確実に接続用導電部 41に形成 され、これにより、加圧力の変化乃至変動に対して抵抗値の変化を小さくすることが でき、その結果、異方導電性エラストマ一層 40に作用される加圧力が不均一であつ ても、各接続用導電部 41間における導電性のバラツキの発生を防止することができ る。  In the illustrated example, on the surface of the anisotropic conductive elastomer layer 40 (upper surface in FIG. 25), a protruding portion from which the connecting conductive portion 41 protrudes also the surface force of the insulating portion 42 is formed. According to such an example, the degree of compression by pressurization is much larger than that of the insulating portion 42 to the connecting conductive portion 41, so that the resistance value is sufficiently low!ヽ The conductive path is reliably formed in the connecting conductive portion 41, and this makes it possible to reduce the change in the resistance value against the change or fluctuation of the applied pressure, and as a result, acts on the anisotropic conductive elastomer layer 40. Even if the applied pressure is not uniform, it is possible to prevent variation in conductivity between the conductive portions 41 for connection.
[0077] 接続用導電部 41の厚みは、 50-3000 μ mであることが好ましぐより好ましくは 70 〜2500 μ m、特に好まし <ίま 100〜2000 μ mである。この厚み力 50 μ m以上であ れば、十分な強度を有する接続用導電部 41が確実に得られる。一方、この厚みが 3 000 m以下であれば、所要の導電性特性を有する接続用導電部 41が確実に得ら れる。  [0077] The thickness of the connecting conductive portion 41 is preferably 50 to 3000 µm, more preferably 70 to 2500 µm, and particularly preferably <100 to 2000 µm. When the thickness force is 50 μm or more, the conductive portion for connection 41 having sufficient strength can be obtained with certainty. On the other hand, when the thickness is 3 000 m or less, the connecting conductive portion 41 having the required conductive characteristics can be obtained with certainty.
接続用導電部 41における絶縁部 42からの突出高さは、当該接続用導電部 41の 厚みの 10%以上であることが好ましぐより好ましくは 20%以上である。このような突 出高さを有する接続用導電部 41を形成することにより、小さい加圧力で接続用導電 部 41が十分に圧縮されるため、良好な導電性が確実に得られる。 The protruding height of the connecting conductive portion 41 from the insulating portion 42 is preferably 10% or more of the thickness of the connecting conductive portion 41, more preferably 20% or more. Such a bump By forming the connecting conductive portion 41 having a protruding height, the connecting conductive portion 41 is sufficiently compressed with a small applied pressure, so that good conductivity can be reliably obtained.
また、この突出高さは、接続用導電部 41の最短幅または直径の 100%以下である ことが好ましぐより好ましくは 70%以下である。このような突出高さを有する接続用導 電部 41を形成することにより、当該接続用導電部 41が加圧されたときに座屈すること がないため、所期の導電性が確実に得られる。  The protruding height is preferably 100% or less of the shortest width or diameter of the connecting conductive portion 41, more preferably 70% or less. By forming the connecting conductive portion 41 having such a protruding height, the connecting conductive portion 41 is not buckled when pressed, and thus the desired conductivity can be reliably obtained. .
[0078] 接続用導電部 41および絶縁部 42を形成する弾性高分子物質としては、前述の第 1の例の異方導電性コネクター 20における接続用導電部 24および絶縁部 25を形成 する弾性高分子物質と同様のものを用いることができる。 [0078] The elastic polymer material forming the conductive portion 41 for connection and the insulating portion 42 may be a high elastic material for forming the conductive portion 24 for connection and the insulating portion 25 in the anisotropic conductive connector 20 of the first example described above. The thing similar to a molecular substance can be used.
また、接続用導電部 41に含有される導電性粒子 Pとしては、前述の第 1の例の異方 導電性コネクター 20における接続用導電部 21に含有される導電性粒子 Pと同様のも のを用いることができる。  The conductive particles P contained in the connecting conductive part 41 are the same as the conductive particles P contained in the connecting conductive part 21 in the anisotropic conductive connector 20 of the first example described above. Can be used.
接続用導電部 41における導電性粒子 Pの含有割合は、体積分率で 10〜60%、好 ましくは 15〜50%となる割合で用いられることが好ましい。この割合が 10%未満の 場合には、十分に電気抵抗値の小さい接続用導電部 41が得られないことがある。一 方、この割合が 60%を超える場合には、得られる接続用導電部 41は脆弱なものとな りやすぐ接続用導電部 41として必要な弾性が得られないことがある。  The content ratio of the conductive particles P in the conductive part 41 for connection is preferably 10 to 60%, preferably 15 to 50% in terms of volume fraction. When this ratio is less than 10%, the connection conductive part 41 having a sufficiently small electric resistance value may not be obtained. On the other hand, when this ratio exceeds 60%, the obtained conductive part 41 for connection becomes fragile and the elasticity necessary for the conductive part 41 for connection may not be obtained immediately.
[0079] 異方導電性エラストマ一層 40における接続用導電部 41の各々の表面には、金属 よりなる平板状の接点部材 27が当該接続用導電部 41に一体的に設けられている。 接点部材 27を構成する金属としては、磁性を示すものが用いられ、その具体例とし ては、ニッケル、コバルトまたはこれらの合金などが挙げられる。 [0079] On each surface of the connecting conductive portion 41 in the anisotropic conductive elastomer layer 40, a flat contact member 27 made of metal is provided integrally with the connecting conductive portion 41. As the metal constituting the contact member 27, a metal exhibiting magnetism is used, and specific examples thereof include nickel, cobalt, and alloys thereof.
また、接点部材 27の厚みは、 1〜: LOO /z mであることが好ましぐより好ましくは 5〜 40 μ mである。  The thickness of the contact member 27 is preferably 1 to: LOO / z m, more preferably 5 to 40 μm.
[0080] 本発明において、上記の第 1の例のプローブカード 10は、以下の(a)〜(d)の工程 を経由して得られる。  [0080] In the present invention, the probe card 10 of the first example is obtained through the following steps (a) to (d).
(a)金属箔上に、検査用回路基板 11の検査用電極 16に係る特定のパターンに従つ てそれぞれ磁性を示す金属よりなる複数の接点部材 27が形成されてなる接点部材 複合体を製造する。 (b)接点部材複合体上に、硬化されて弾性高分子物質となる液状の高分子物質形 成材料中に磁性を示す導電性粒子 Pが含有されてなる導電性エラストマ一用材料層 を形成し、この導電性エラストマ一用材料層上に、それぞれ磁性を示す金属よりなる 複数の金属マスクの各々を、当該導電性エラストマ一用材料層を介して接点部材 27 と互いに対向するよう配置し、この状態で、導電性エラストマ一用材料層に対して、そ の厚み方向に磁場を作用させると共に、当該導電性エラストマ一用材料層を硬化処 理することにより、導電性エラストマ一層を形成する。 (a) Manufacturing a contact member composite in which a plurality of contact members 27 each made of a metal exhibiting magnetism are formed on a metal foil in accordance with a specific pattern related to the inspection electrode 16 of the inspection circuit board 11 To do. (b) On the contact member composite, a material layer for a conductive elastomer is formed in which a liquid polymer material forming material that is cured to become an elastic polymer material contains conductive particles P exhibiting magnetism. On the conductive elastomer material layer, a plurality of metal masks each made of a metal exhibiting magnetism are disposed so as to face the contact member 27 with the conductive elastomer material layer interposed therebetween, In this state, a magnetic field is applied to the conductive elastomer material layer in the thickness direction, and the conductive elastomer material layer is cured to form a conductive elastomer layer.
(c)導電性エラストマ一層をレーザー加工して接点部材 27と金属マスクとの間に位置 する部分以外の部分を除去することにより、特定のパターンに従って配置された複数 の接続用導電部 41を形成する。  (c) A plurality of conductive portions 41 for connection arranged according to a specific pattern are formed by removing a portion other than the portion located between the contact member 27 and the metal mask by laser processing the conductive elastomer layer. To do.
(d)各接続用導電部 41上に配置された金属マスクを除去し、その後、接続用導電部 41が形成された接点部材複合体を、硬化されて弾性高分子物質となる材料よりなる 絶縁部用材料層が形成された検査用回路基板 11上に重ね合わせることにより、検 查用回路基板 11の検査用電極 16の各々とこれに対応する接続用導電部 41とを対 接させ、この状態で絶縁部用材料層を硬化処理することにより、検査用回路基板 11 上に絶縁部 42を一体的に形成する。  (d) The metal mask disposed on each connection conductive portion 41 is removed, and then the contact member composite formed with the connection conductive portion 41 is made of a material that is cured to become an elastic polymer substance. Each of the inspection electrodes 16 of the inspection circuit board 11 and the corresponding connection conductive part 41 are brought into contact with each other by being superimposed on the inspection circuit board 11 on which the part material layer is formed. The insulating portion 42 is integrally formed on the inspection circuit board 11 by curing the insulating portion material layer in this state.
以下、第 3の例のプローブカードの製造方法を具体的に説明する。  The method for manufacturing the probe card of the third example will be specifically described below.
《接点部材複合体の製造》 <Manufacture of contact member composite>
前述の第 1の例の異方導電性コネクター 10の製造方法と同様にして金属箔 30上 に特定のパターンに従って複数の接点部材 27が形成されてなる接点部材複合体 27 Fを製造する(図 4および図 5参照)。  A contact member composite 27 F in which a plurality of contact members 27 are formed on a metal foil 30 in accordance with a specific pattern is manufactured in the same manner as the method for manufacturing the anisotropic conductive connector 10 of the first example described above (see FIG. 4 and Figure 5).
《金属マスク複合体の製造》 <Manufacture of metal mask composite>
図 26に示すように、金属箔 46上に、フォトリソグラフィ一の手法により、特定のパタ ーンに従って開口 47Kが形成されたレジスト層 47を形成する。その後、金属箔 46に おけるレジスト層 47の開口 47Kを介して露出した部分の表面に、磁性を示す金属に よるメツキ処理を施すことにより、図 27に示すように、レジスト層 47の開口 47Kの各々 に金属マスク 48を形成する。これにより、金属箔 46上に特定のパターンに従って複 数の金属マスク 48が形成されてなる金属マスク複合体 48Fが得られる。 以上において、金属箔 46としては、銅、ニッケルなどを用いることができる。また、金 属箔 46は、榭脂フィルム上に積層されたものであってもよい。 As shown in FIG. 26, a resist layer 47 having an opening 47K formed in accordance with a specific pattern is formed on the metal foil 46 by a photolithography technique. Thereafter, the surface of the portion exposed through the opening 47K of the resist layer 47 in the metal foil 46 is subjected to a plating process using a metal exhibiting magnetism, thereby forming the opening 47K of the resist layer 47 as shown in FIG. A metal mask 48 is formed on each. As a result, a metal mask composite 48F in which a plurality of metal masks 48 are formed on the metal foil 46 in accordance with a specific pattern is obtained. In the above, as the metal foil 46, copper, nickel or the like can be used. Further, the metal foil 46 may be laminated on a resin film.
金属箔 46の厚みは、 0. 05〜2 111でぁることカ 子ましく、より好ましくは 0. 1〜1 μ mである。この厚みが過小である場合には、均一な薄層が形成されず、メツキ電極と して不適なものとなることがある。一方、この厚みが過大である場合には、例えばエツ チングによって除去することが困難となることがある。  The thickness of the metal foil 46 is preferably 0.05-2111, more preferably 0.1-1 μm. If this thickness is too small, a uniform thin layer may not be formed, which may be inappropriate as a plating electrode. On the other hand, if this thickness is excessive, it may be difficult to remove by, for example, etching.
レジスト層 47の厚みは、形成すべき金属マスク 48の厚みに応じて設定される。 金属マスク 48を構成する材料としては、ニッケル、コバルトまたはこれらの合金など を用いることができる。  The thickness of the resist layer 47 is set according to the thickness of the metal mask 48 to be formed. As a material constituting the metal mask 48, nickel, cobalt, or an alloy thereof can be used.
《導電性エラストマ一層の形成》 <Formation of conductive elastomer layer>
硬化されて弾性高分子物質となる液状の高分子物質形成材料中に磁性を示す導 電性粒子が分散されてなる導電性エラストマ一用材料を調製し、図 28に示すように、 接点部材複合体 27Fにおける接点部材 27が形成された一面上に、導電性エラスト マー用材料を塗布することによって導電性エラストマ一用材料層 41Aを形成する。そ して、図 29に示すように、この導電性エラストマ一用材料層 41A上に、金属マスク複 合体 48Fを、その金属マスク 48の各々が当該導電性エラストマ一用材料層 41Aを介 して接点部材 27の各々と互いに対向するよう配置する。ここで、導電性エラストマ一 用材料層 41 A中にお ヽては、磁性を示す導電性粒子 Pが分散された状態で含有さ れている。  A conductive elastomer material is prepared by dispersing conductive particles exhibiting magnetism in a liquid polymer material-forming material that is cured to become an elastic polymer material. A conductive elastomer material layer 41A is formed by applying a conductive elastomer material on one surface of the body 27F on which the contact member 27 is formed. Then, as shown in FIG. 29, a metal mask composite 48F is formed on the conductive elastomer material layer 41A, and each of the metal masks 48 passes through the conductive elastomer material layer 41A. The contact members 27 are arranged so as to face each other. Here, in the conductive elastomer material layer 41A, the conductive particles P exhibiting magnetism are contained in a dispersed state.
次いで、導電性エラストマ一用材料層 41Aに対し、接点部材 27および金属マスク 4 8を介して当該導電性エラストマ一用材料層 41 Aの厚み方向に磁場を作用させる。こ れにより、接点部材 27および金属マスク 48の各々が磁性を示す金属により形成され ているため、導電性エラストマ一用材料層 41Aにおける接点部材 27と金属マスク 48 との間に位置する部分には、それ以外の部分より大きい強度の磁場が形成される。 その結果、導電性エラストマ一用材料層 41A中に分散されていた導電性粒子 Pは、 図 30に示すように、接点部材 27と金属マスク 48との間に位置する部分に集合し、更 に当該導電性エラストマ一用材料層 41Aの厚み方向に並ぶよう配向する。そして、 導電性エラストマ一用材料層 41Aに対する磁場の作用を継続しながら、或いは磁場 の作用を停止した後、導電性エラストマ一用材料層 41Aの硬化処理を行うことにより 、図 31に示すように、弾性高分子物質中に導電性粒子 Pが厚み方向に並ぶよう配向 した状態で含有されてなる導電性エラストマ一層 41Bが、接点部材複合体 27F上に 一体的に形成される。この導電性エラストマ一層 41Bにおいては、接点部材 27と金 属マスク 48との間に位置する部分における導電性粒子がが密となり、それ以外の部 分における導電性粒子が疎となって 、る。 Next, a magnetic field is applied to the conductive elastomer material layer 41A through the contact member 27 and the metal mask 48 in the thickness direction of the conductive elastomer material layer 41A. As a result, since each of the contact member 27 and the metal mask 48 is formed of a metal exhibiting magnetism, the portion of the conductive elastomer material layer 41A located between the contact member 27 and the metal mask 48 is not provided. A magnetic field having a larger intensity than that of other portions is formed. As a result, as shown in FIG. 30, the conductive particles P dispersed in the conductive elastomer material layer 41A gather in a portion located between the contact member 27 and the metal mask 48, and further, The conductive elastomer material layer 41A is aligned in the thickness direction. And while continuing the action of the magnetic field on the conductive elastomer material layer 41A, or After stopping the operation of the conductive elastomer material 41A, the conductive elastomer material layer 41A is cured so that the conductive particles P are aligned in the thickness direction in the elastic polymer substance as shown in FIG. The contained conductive elastomer layer 41B is integrally formed on the contact member composite 27F. In the conductive elastomer layer 41B, the conductive particles in the portion located between the contact member 27 and the metal mask 48 are dense, and the conductive particles in the other portions are sparse.
[0083] 以上において、導電性エラストマ一用材料を塗布する方法としては、スクリーン印刷 などの印刷法、ロール塗布法、ブレード塗布法などを利用することができる。 In the above, as a method for applying the material for conductive elastomer, a printing method such as screen printing, a roll coating method, a blade coating method, or the like can be used.
導電性エラストマ一用材料層 41Aの厚みは、形成すべき接続用導電部の厚みに 応じて設定される。  The thickness of the conductive elastomer material layer 41A is set in accordance with the thickness of the connecting conductive portion to be formed.
導電性エラストマ一用材料層 41Aに磁場を作用させる手段としては、電磁石、永久 磁石などを用いることができる。  As means for applying a magnetic field to the conductive elastomer material layer 41A, an electromagnet, a permanent magnet, or the like can be used.
導電性エラストマ一用材料層 41Aに作用させる磁場の強度は、 0. 2〜2. 5テスラと なる大きさが好ましい。  The strength of the magnetic field applied to the conductive elastomer material layer 41A is preferably 0.2 to 2.5 Tesla.
導電性エラストマ一用材料層 41Aの硬化処理は、通常、加熱処理によって行われ る。具体的な加熱温度および加熱時間は、導電性エラストマ一用材料層 41Aを構成 する高分子物質形成材料の種類、導電性粒子の移動に要する時間などを考慮して 適宜設定される。  The curing process of the conductive elastomer material layer 41A is usually performed by a heating process. The specific heating temperature and heating time are appropriately set in consideration of the type of polymer substance forming material constituting the conductive elastomer material layer 41A, the time required to move the conductive particles, and the like.
[0084] 《接続用導電部の形成》 [0084] <Formation of conductive portion for connection>
先ず、導電性エラストマ一層 41B上に配置された金属マスク複合体 48Fにおける 金属箔 46に対して、エッチング処理を施して除去することにより、図 32に示すように、 金属マスク 48およびレジスト層 47を露出させる。そして、導電性エラストマ一層 41B およびレジスト層 47に対してレーザー加工を施すことにより、レジスト層 47、導電性ェ ラストマー層 41Bにおける接点部材 27と金属マスク 48との間に位置する部分以外の 部分およびレジスト層 45が除去され、その結果、図 33に示すように、接点部材複合 体 27Fにおける各接点部材 27上に、接続用導電部 41が形成される。その後、接続 用導電部 41の表面力も金属マスク 48を剥離する。  First, as shown in FIG. 32, by removing the metal foil 46 in the metal mask composite 48F disposed on the conductive elastomer layer 41B by etching, the metal mask 48 and the resist layer 47 are removed. Expose. Then, by performing laser processing on the conductive elastomer layer 41B and the resist layer 47, the resist layer 47, the conductive elastomer layer 41B, and the portions other than the portion located between the contact member 27 and the metal mask 48 and The resist layer 45 is removed, and as a result, as shown in FIG. 33, the connection conductive portion 41 is formed on each contact member 27 in the contact member composite 27F. Thereafter, the metal mask 48 is also peeled off from the surface force of the connecting conductive portion 41.
ここで、レーザー加工は、炭酸ガスレーザーまたは紫外線レーザーによるものが好 ましぐこれにより、目的とする形態の接続用導電部 41を確実に形成することができる Here, the laser processing is preferably a carbon dioxide laser or an ultraviolet laser. As a result, it is possible to reliably form the conductive part 41 for connection in the desired form.
[0085] 《絶縁部の形成》 [0085] <Formation of insulating part>
図 34に示すように、検査用回路基板における第 2の基板素子 15の表面に、硬化さ れて絶縁性の弾性高分子物質となる液状の高分子物質形成材料を塗布すること〖こ より、絶縁部用材料層 42Aを形成する。次いで、図 35に示すように、複数の接続用 導電部 41が形成された接点部材複合体 27Fを、絶縁部用材料層 42Aが形成された 検査用回路基板における第 2の基板素子 15上に重ね合わせることにより、当該第 2 の基板素子 15の検査用電極 16の各々とこれに対応する接続用導電部 41とを対接 させる。これにより、隣接する接続用導電部 41の間に絶縁部用材料層 42Aが形成さ れた状態となる。その後、この状態で、絶縁部用材料層 42Aの硬化処理を行うこと〖こ より、図 36に示すように、隣接する接続用導電部 41の間にこれらを相互に絶縁する 絶縁部 42が、接続用導電部 41および検査用回路基板における第 2の基板素子 15 に一体的に形成される。  As shown in FIG. 34, by applying a liquid polymer substance forming material that is cured to become an insulating elastic polymer substance on the surface of the second substrate element 15 in the circuit board for inspection, The insulating part material layer 42A is formed. Next, as shown in FIG. 35, the contact member composite body 27F in which the plurality of conductive portions for connection 41 are formed is placed on the second substrate element 15 in the circuit board for inspection in which the insulating layer material layer 42A is formed. By superimposing, each of the inspection electrodes 16 of the second substrate element 15 is brought into contact with the connection conductive portion 41 corresponding thereto. As a result, the insulating material layer 42A is formed between the adjacent connecting conductive parts 41. Thereafter, in this state, the insulating part material layer 42A is cured, so that the insulating part 42 that insulates them from each other between the adjacent connecting conductive parts 41 as shown in FIG. It is formed integrally with the connecting conductive portion 41 and the second substrate element 15 in the inspection circuit board.
そして、接点部材複合体 27Fにおける金属箔 30を例えばエッチング処理によって 除去することにより、検査用回路基板 11における第 2の基板素子 15の表面に異方導 電性エラストマ一層 40がー体的に形成され、当該異方導電性エラストマ一層 40の接 続用導電部 41の各々の表面に接点部材 30がー体的に設けられてなる、図 23に示 す構成のプローブカード 10が得られる。  Then, by removing the metal foil 30 in the contact member composite 27F, for example, by etching, an anisotropically conductive elastomer layer 40 is formed on the surface of the second substrate element 15 in the circuit board 11 for inspection. Thus, the probe card 10 having the configuration shown in FIG. 23 is obtained, in which the contact member 30 is provided on each surface of each of the connecting conductive portions 41 of the anisotropic conductive elastomer layer 40.
[0086] 以上にぉ 、て、高分子物質形成材料を塗布する方法としては、スクリーン印刷など の印刷法、ロール塗布法、ブレード塗布法などを利用することができる。 As described above, as a method for applying the polymer substance-forming material, a printing method such as screen printing, a roll coating method, a blade coating method, or the like can be used.
絶縁部用材料層 42Aの厚みは、形成すべき絶縁部の厚みに応じて設定される。 絶縁部用材料層 42Aの硬化処理は、通常、加熱処理によって行われる。具体的な 加熱温度および加熱時間は、絶縁部用材料層 42Aを構成する高分子物質形成材 料の種類などを考慮して適宜設定される。  The thickness of the insulating part material layer 42A is set according to the thickness of the insulating part to be formed. The curing process of the insulating portion material layer 42A is usually performed by a heating process. The specific heating temperature and heating time are appropriately set in consideration of the type of polymer substance forming material constituting the insulating part material layer 42A.
[0087] このような製造方法によれば、導電性エラストマ一層 41Bをレーザー加工してその 一部を除去することによって、接続用導電部 41を形成するため、所期の導電性を有 する接続用導電部 41が得られる。 また、それぞれ磁性を示す金属よりなる複数の接点部材 27が検査用電極 16に係 る特定のパターンに従って形成されてなる接点部材複合体 27F上に導電性エラスト マー用材料層 41Aを形成し、当該導電性エラストマ一用材料層 41A上に、特定のパ ターンに従ってそれぞれ磁性を示す金属マスク 48を配置した状態で、当該導電性ェ ラスマー用材料層 41Aの厚み方向に磁場を作用させるため、得られる導電性エラス トマ一層 41Bは、接点部材 27と金属マスク 48との間に位置する部分における導電性 粒子 Pと密となり、それ以外の部分における導電性粒子 Pが疎となる。そのため、導電 性エラストマ一層 41Bをレーザー加工することにより、当該導電性エラストマ一層 41B における接点部材 27が配置されて ヽな 、部分を容易に除去することができるので、 所期の形態の接続用導電部 41を特定のパターンに従って確実に形成することがで きる。 [0087] According to such a manufacturing method, the conductive elastomer layer 41B is laser processed and a part thereof is removed to form the connection conductive portion 41. Therefore, the connection having the desired conductivity is achieved. A conductive part 41 is obtained. Further, a conductive elastomer material layer 41A is formed on a contact member composite 27F in which a plurality of contact members 27 each made of a metal exhibiting magnetism are formed according to a specific pattern related to the inspection electrode 16, It is obtained by applying a magnetic field in the thickness direction of the conductive elastomer material layer 41A in a state where the metal mask 48 showing magnetism is arranged on the conductive elastomer material layer 41A according to a specific pattern. The conductive elastomer layer 41B becomes dense with the conductive particles P in a portion located between the contact member 27 and the metal mask 48, and the conductive particles P in other portions become sparse. Therefore, when the conductive elastomer layer 41B is laser-processed, the contact member 27 in the conductive elastomer layer 41B can be easily removed, so that the conductive conductor for connection in the expected form can be removed. The portion 41 can be reliably formed according to a specific pattern.
また、接点部材複合体 27F上に形成された導電性エラストマ一用材料層 41Aを硬 化処理することにより、得られる導電性エラストマ一層 40Bには、接点部材複合体 27 Fにおける接点部材 27の各々が接着されるので、接点部材 27がー体的に設けられ た接続用導電部 41を形成することができる。  In addition, the conductive elastomer layer 41A formed on the contact member composite 27F is hardened to obtain the conductive elastomer layer 40B, and each of the contact members 27 in the contact member composite 27F. Therefore, the connection conductive portion 41 in which the contact member 27 is physically provided can be formed.
また、被検査電極のパターンに対応する特定のパターンに従って配置された複数 の接続用導電部 41を形成したうえで、これらの接続用導電部 41の各々を、絶縁部 用材料層 42Aが形成された検査用回路基板 11の検査用電極 16の各々に対接させ 、この状態で、絶縁部用材料層 42Aを硬化処理するため、導電性粒子 Pが全く存在 しな 、絶縁部 42が検査用回路基板 11に一体的に形成された異方導電性エラストマ 一層 40を形成することができる。  In addition, after forming a plurality of connection conductive portions 41 arranged according to a specific pattern corresponding to the pattern of the electrode to be inspected, each of these connection conductive portions 41 is formed with an insulating material layer 42A. In this state, the insulating material layer 42A is cured so that it does not exist at all and the insulating portion 42 is used for inspection. An anisotropic conductive elastomer layer 40 integrally formed on the circuit board 11 can be formed.
従って、このような方法によって得られるプローブカード 10によれば、所期の導電性 を有する複数の接続用導電部 41が導電性粒子全く存在しない絶縁部 42によって絶 縁されているため、検査対象であるウェハにおける被検査電極のピッチが極めて小さ いものであっても、隣接する被検査電極間の所要の絶縁性が確保され、ウェハに対 する良好な電気的接続状態を確実に達成することができる。  Therefore, according to the probe card 10 obtained by such a method, a plurality of connecting conductive parts 41 having the desired conductivity are isolated by the insulating parts 42 in which no conductive particles are present. Even if the pitch of the electrodes to be inspected in the wafer is extremely small, the required insulation between the adjacent electrodes to be inspected is ensured, and a good electrical connection state to the wafer can be reliably achieved. it can.
また、異方導電性エラストマ一層 40が検査用回路基板 11に一体的に形成されて おり、し力も、接点部材 27が接続用導電部 41に一体的に設けられていることにより、 シート状プローブを用いることが不要となるため、温度変化による熱履歴を受けたとき にも、接続用導電部 41と検査用電極 16との位置ずれによる接続不良を防止すること ができると共に、シート状プローブの位置ずれによる接続不良を回避することができ、 従って、ウェハに対する良好な電気的接続状態を安定に維持することができる。 また、シート状プローブを用いることが不要であるため、組み立て作業が不要で簡 単な構造のプローブカード 10を得ることができる。 In addition, the anisotropic conductive elastomer layer 40 is integrally formed on the inspection circuit board 11, and the contact force 27 is also provided integrally with the connecting conductive part 41. Since it is not necessary to use a sheet-like probe, it is possible to prevent poor connection due to misalignment between the connecting conductive part 41 and the inspection electrode 16 even when a thermal history due to a temperature change is received. Connection failure due to misalignment of the probe can be avoided, and therefore, a good electrical connection to the wafer can be stably maintained. Further, since it is not necessary to use a sheet-like probe, it is possible to obtain a probe card 10 having a simple structure that does not require assembling work.
図 37は、本発明に係るプローブカードの第 4の例における構成を示す説明用断面 図であり、図 38は、第 4の例のプローブカードの要部の構成を示す説明用断面図で ある。  FIG. 37 is an explanatory cross-sectional view showing the configuration of the fourth example of the probe card according to the present invention, and FIG. 38 is an explanatory cross-sectional view showing the configuration of the main part of the probe card of the fourth example. .
この第 4の例のプローブカード 10は、例えば複数の集積回路が形成されたウェハ について当該集積回路の各々のプローブ試験をウェハの状態で行うために用いら れるものであって、前述の第 2の例のプローブカード 10と同様の構成の検査用回路 基板 11と、この検査用回路基板 11の一面(図 37および図 38において上面)に一体 的に形成された異方導電性エラストマ一層 40と、この異方導電性エラストマ一層 40 の接続用導電部 41上に一体的に設けられた接点部材 27とにより構成されている。 異方導電性エラストマ一層 40は、検査用回路基板 11における検査用電極 16のパ ターンと同一のパターンに従って配置された、それぞれ厚み方向に伸びる複数の接 続用導電部 41と、隣接する接続用導電部 41の間に当該接続用導電部 41の各々に 一体的に接着した状態で形成された、これらの接続用導電部 41を相互に絶縁する 絶縁部 42とにより構成されており、当該異方導電性ヱラストマー層 40は、接続用導 電部 41の各々が検査用回路基板 11における検査用電極 16上に位置されるよう配 置されている。各接続用導電部 41は、絶縁性の弾性高分子物質中に磁性を示す導 電性粒子 Pが厚み方向に並ぶよう配向した状態で含有されて構成されて!ヽる(図 25 参照)。これに対し、絶縁部 42は、導電性粒子 Pを全く含有しない弾性高分子物質に より構成されている。接続用導電部 41を構成する弾性高分子物質と絶縁部 42を形 成する弾性高分子物質とは、互いに異なる種類のものであっても同じ種類のもので あってもよい。  The probe card 10 of the fourth example is used to perform a probe test of each integrated circuit in a wafer state on a wafer on which a plurality of integrated circuits are formed, for example. An inspection circuit board 11 having the same configuration as the probe card 10 in the example, and an anisotropic conductive elastomer layer 40 integrally formed on one surface (the upper surface in FIGS. 37 and 38) of the inspection circuit board 11; The anisotropic conductive elastomer layer 40 is formed of a contact member 27 provided integrally on the connecting conductive portion 41. The anisotropic conductive elastomer layer 40 is arranged in accordance with the same pattern as the pattern of the inspection electrode 16 on the inspection circuit board 11 and each of the connection conductive portions 41 extending in the thickness direction and adjacent to the connection conductive portion 41. The conductive portion 41 is formed by an insulating portion 42 that is integrally bonded to each of the connecting conductive portions 41 and insulates the connecting conductive portions 41 from each other. The directionally conductive elastomer layer 40 is arranged such that each of the connecting conductive portions 41 is positioned on the inspection electrode 16 in the inspection circuit board 11. Each of the connecting conductive portions 41 is configured by containing conductive particles P exhibiting magnetism in an insulating elastic polymer material in an aligned state in the thickness direction (see FIG. 25). On the other hand, the insulating part 42 is made of an elastic polymer material that does not contain the conductive particles P at all. The elastic polymer material constituting the connecting conductive portion 41 and the elastic polymer material constituting the insulating portion 42 may be of different types or the same type.
第 4の例のプローブカード 10における異方導電性エラストマ一層 40を構成する弹 性高分子物質および導電性粒子としては、第 1の例の異方導電性コネクター 20にお ける弾性異方導電膜 23を構成する弾性高分子物質および導電性粒子と同様のもの を用いることができる。 弹 constituting the anisotropic conductive elastomer layer 40 in the probe card 10 of the fourth example As the conductive polymer substance and the conductive particles, the same elastic polymer substance and conductive particles that constitute the elastic anisotropic conductive film 23 in the anisotropic conductive connector 20 of the first example may be used. it can.
異方導電性エラストマ一層 40における接続用導電部 41の各々の表面には、金属 よりなる平板状の接点部材 27が当該接続用導電部 41に一体的に設けられている。 接点部材 27の材質および寸法は、前述の第 3の例に係るプローブカード 10と同様 である。  A flat contact member 27 made of a metal is integrally provided on the surface of each of the connecting conductive portions 41 in the anisotropic conductive elastomer layer 40. The material and dimensions of the contact member 27 are the same as those of the probe card 10 according to the third example described above.
本発明にお!/、て、第 4の例のプローブカード 10は、前述の第 3の例のプローブカー ド 10と同様にして製造することができる。  In the present invention, the probe card 10 of the fourth example can be manufactured in the same manner as the probe card 10 of the third example.
すなわち、第 4の例のプローブカード 10は、以下の(a)〜(d)の工程を経由して得 られる。  That is, the probe card 10 of the fourth example is obtained through the following steps (a) to (d).
(a)金属箔上に、検査用回路基板 11の検査用電極 16に係る特定のパターンに従つ てそれぞれ磁性を示す金属よりなる複数の接点部材 27が形成されてなる接点部材 複合体を製造する。  (a) Manufacturing a contact member composite in which a plurality of contact members 27 each made of a metal exhibiting magnetism are formed on a metal foil in accordance with a specific pattern related to the inspection electrode 16 of the inspection circuit board 11 To do.
(b)接点部材複合体上に、硬化されて弾性高分子物質となる液状の高分子物質形 成材料中に磁性を示す導電性粒子 Pが含有されてなる導電性エラストマ一用材料層 を形成し、この導電性エラストマ一用材料層上に、それぞれ磁性を示す金属よりなる 複数の金属マスクの各々を、当該導電性エラストマ一用材料層を介して接点部材 27 と互いに対向するよう配置し、この状態で、導電性エラストマ一用材料層に対して、そ の厚み方向に磁場を作用させると共に、当該導電性エラストマ一用材料層を硬化処 理することにより、導電性エラストマ一層を形成する。  (b) On the contact member composite, a material layer for a conductive elastomer is formed in which a liquid polymer material forming material that is cured to become an elastic polymer material contains conductive particles P exhibiting magnetism. On the conductive elastomer material layer, a plurality of metal masks each made of a metal exhibiting magnetism are disposed so as to face the contact member 27 with the conductive elastomer material layer interposed therebetween, In this state, a magnetic field is applied to the conductive elastomer material layer in the thickness direction, and the conductive elastomer material layer is cured to form a conductive elastomer layer.
(c)導電性エラストマ一層をレーザー加工して接点部材 27と金属マスクとの間に位置 する部分以外の部分を除去することにより、特定のパターンに従って配置された複数 の接続用導電部 41を形成する。  (c) A plurality of conductive portions 41 for connection arranged according to a specific pattern are formed by removing a portion other than the portion located between the contact member 27 and the metal mask by laser processing the conductive elastomer layer. To do.
(d)各接続用導電部 41上に配置された金属マスクを除去し、その後、接続用導電部 41が形成された接点部材複合体を、硬化されて弾性高分子物質となる材料よりなる 絶縁部用材料層が形成された検査用回路基板 11上に重ね合わせることにより、検 查用回路基板 11の検査用電極 16の各々とこれに対応する接続用導電部 41とを対 接させ、この状態で絶縁部用材料層を硬化処理することにより、検査用回路基板 11 上に絶縁部 42を一体的に形成する。 (d) The metal mask disposed on each connection conductive portion 41 is removed, and then the contact member composite formed with the connection conductive portion 41 is made of a material that is cured to become an elastic polymer substance. Each of the inspection electrodes 16 of the inspection circuit board 11 is paired with the corresponding conductive portion 41 for connection by superimposing it on the inspection circuit board 11 on which the part material layer is formed. In this state, the insulating portion material layer is cured and the insulating portion 42 is integrally formed on the inspection circuit board 11.
[0091] そして、このような製造方法によれば、導電性エラストマ一層をレーザー加工してそ の一部を除去することによって、接続用導電部 41を形成するため、所期の導電性を 有する接続用導電部 41が得られる。 [0091] According to such a manufacturing method, the conductive conductive layer 41 is formed by laser processing of one layer of the conductive elastomer and removing a part thereof, and thus has the desired conductivity. A conductive part 41 for connection is obtained.
また、それぞれ磁性を示す金属よりなる複数の接点部材 27が検査用電極 16に係 る特定のパターンに従って形成されてなる接点部材複合体上に導電性エラストマ一 用材料層を形成し、当該導電性エラストマ一用材料層上に、特定のパターンに従つ てそれぞれ磁性を示す金属マスクを配置した状態で、当該導電性エラスマー用材料 層の厚み方向に磁場を作用させるため、得られる導電性エラストマ一層は、接点部 材 27と金属マスクとの間に位置する部分における導電性粒子 Pと密となり、それ以外 の部分における導電性粒子 Pが疎となる。そのため、導電性エラストマ一層をレーザ 一加工することにより、当該導電性エラストマ一層における接点部材 27が配置されて いない部分を容易に除去することができるので、所期の形態の接続用導電部 41を特 定のパターンに従って確実に形成することができる。  In addition, a conductive elastomer material layer is formed on a contact member composite in which a plurality of contact members 27 each made of a metal exhibiting magnetism are formed according to a specific pattern related to the inspection electrode 16, and the conductive material In order to apply a magnetic field in the thickness direction of the conductive elastomer material layer in a state where metal masks showing magnetism are arranged in accordance with a specific pattern on the elastomer material layer, the resulting conductive elastomer layer is obtained. Is dense with the conductive particles P in the portion located between the contact member 27 and the metal mask, and the conductive particles P in the other portions are sparse. Therefore, by processing one layer of the conductive elastomer with a laser, a portion of the conductive elastomer layer where the contact member 27 is not disposed can be easily removed. It can be reliably formed according to a specific pattern.
また、接点部材複合体上に形成された導電性エラストマ一用材料層を硬化処理す ることにより、得られる導電性エラストマ一層には、接点部材複合体における接点部 材 27の各々が接着されるのて、接点部材 27がー体的に設けられた接続用導電部 4 1を形成することができる。  Further, by curing the conductive elastomer material layer formed on the contact member composite, each contact member 27 in the contact member composite is bonded to the resulting conductive elastomer layer. After that, it is possible to form the connection conductive portion 41 in which the contact member 27 is physically provided.
また、被検査電極のパターンに対応する特定のパターンに従って配置された複数 の接続用導電部 41を形成したうえで、これらの接続用導電部 41の各々を、絶縁部 用材料層が形成された検査用回路基板 11の検査用電極 16の各々に対接させ、こ の状態で、絶縁部用材料層を硬化処理するため、導電性粒子 Pが全く存在しない絶 縁部 22が検査用回路基板 11に一体的に形成された異方導電性エラストマ一層 40 を形成することができる。  Further, after forming a plurality of connection conductive portions 41 arranged according to a specific pattern corresponding to the pattern of the electrode to be inspected, each of the connection conductive portions 41 was formed with an insulating material layer. Insulating circuit board 11 is in contact with each of inspection electrodes 16, and in this state, insulating material layer is hardened, so that insulation 22 without any conductive particles P is present at the inspection circuit board. An anisotropic conductive elastomer layer 40 integrally formed on the substrate 11 can be formed.
[0092] 従って、このような方法によって得られるプローブカード 10によれば、所期の導電性 を有する複数の接続用導電部 41が導電性粒子全く存在しない絶縁部 42によって絶 縁されているため、検査対象であるウェハにおける被検査電極のピッチが極めて小さ いものであっても、隣接する被検査電極間の所要の絶縁性が確保され、ウェハに対 する良好な電気的接続状態を確実に達成することができる。 Therefore, according to the probe card 10 obtained by such a method, the plurality of connecting conductive portions 41 having the desired conductivity are isolated by the insulating portions 42 having no conductive particles. The pitch of the electrodes to be inspected on the wafer to be inspected is extremely small Even if it is not necessary, the required insulation between the adjacent electrodes to be inspected is ensured, and a good electrical connection state to the wafer can be reliably achieved.
また、異方導電性エラストマ一層 40が検査用回路基板 11に一体的に形成されて おり、し力も、接点部材 27が接続用導電部 41に一体的に設けられていることにより、 シート状プローブを用いることが不要となるため、温度変化による熱履歴を受けたとき にも、接続用導電部 41と検査用電極 16との位置ずれによる接続不良を防止すること ができると共に、シート状プローブの位置ずれによる接続不良を回避することができ、 従って、ウェハに対する良好な電気的接続状態を安定に維持することができる。 また、シート状プローブを用いることが不要であるため、組み立て作業が不要で簡 単な構造のプローブカード 10を得ることができる。  Further, the anisotropic conductive elastomer layer 40 is formed integrally with the inspection circuit board 11, and the contact member 27 is also provided integrally with the connection conductive part 41, so that the sheet-like probe is formed. Therefore, even when a thermal history due to a temperature change is received, it is possible to prevent a connection failure due to misalignment between the connection conductive portion 41 and the inspection electrode 16, and the sheet-like probe. Connection failure due to misalignment can be avoided, and therefore a good electrical connection state to the wafer can be stably maintained. Further, since it is not necessary to use a sheet-like probe, it is possible to obtain a probe card 10 having a simple structure that does not require assembling work.
〔ウェハ検査装置〕 [Wafer inspection equipment]
図 39は、本発明に係るウェハ検査装置の第 1の例における構成の概略を示す説 明用断面図であり、図 40は、第 1の例のウェハ検査装置の要部を拡大して示す説明 用断面図である。この第 1のウェハ検査装置は、ウェハに形成された複数の集積回 路の各々について、当該集積回路のバーンイン試験をウェハの状態で一括して行う ためのものである。  FIG. 39 is a cross-sectional view for explaining the outline of the configuration of the first example of the wafer inspection apparatus according to the present invention, and FIG. 40 is an enlarged view of the main part of the wafer inspection apparatus of the first example. It is sectional drawing for description. This first wafer inspection apparatus is for performing a burn-in test of the integrated circuit in a batch on the wafer for each of a plurality of integrated circuits formed on the wafer.
第 1の例のウェハ検査装置は、検査対象であるウェハ 6の温度制御、ウェハ 6の検 查を行うための電源供給、信号の入出力制御およびウェハ 6からの出力信号を検出 して当該ウェハ 6における集積回路の良否の判定を行うためのコントローラー 2を有 する。図 41に示すように、コントローラー 2は、その下面に、多数の入出力端子 3が円 周方向に沿って配置された入出力端子部 3Rを有する。  The wafer inspection apparatus of the first example detects the temperature of the wafer 6 to be inspected, power supply for detecting the wafer 6, signal input / output control, and output signal from the wafer 6 to detect the wafer. It has a controller 2 for judging whether the integrated circuit in 6 is good or bad. As shown in FIG. 41, the controller 2 has an input / output terminal portion 3R on the lower surface of which a large number of input / output terminals 3 are arranged along the circumferential direction.
コントローラー 2の下方には、第 1の例のプローブカード 10が、その検査用回路基 板 11のリード電極 13の各々力 当該コントローラー 2の入出力端子 3に対向するよう 、適宜の保持手段によって保持された状態で配置されて 、る。  Below the controller 2, the probe card 10 of the first example is held by appropriate holding means so that each force of the lead electrode 13 of the circuit board 11 for inspection faces the input / output terminal 3 of the controller 2 It is arranged in the state that was done.
コントローラー 2の入出力端子部 3Rとプローブカード 10における検査用回路基板 1 1のリード電極部 13Rとの間には、コネクター 4が配置され、当該コネクター 4によって 、検査用回路基板 11のリード電極 13の各々がコントローラー 2の入出力端子 3の各 々に電気的に接続されている。図示の例のコネクター 4は、長さ方向に弹性的に圧 縮可能な複数の導電ピン 4Aと、これらの導電ピン 4Aを支持する支持部材 4Bとによ り構成され、導電ピン 4Aは、コントローラー 2の入出力端子 3と第 1の基板素子 12に 形成されたリード電極 13との間に位置するよう配列されている。 A connector 4 is arranged between the input / output terminal portion 3R of the controller 2 and the lead electrode portion 13R of the inspection circuit board 11 1 in the probe card 10. The connector 4 leads the lead electrode 13 of the inspection circuit board 11 Are electrically connected to each of the input / output terminals 3 of the controller 2. The connector 4 in the example shown is The conductive pin 4A is composed of a plurality of contractible conductive pins 4A and a support member 4B that supports these conductive pins 4A. The conductive pins 4A are formed on the input / output terminal 3 of the controller 2 and the first substrate element 12. The lead electrodes 13 are arranged so as to be positioned between them.
プローブカード 10の下方には、検査対象であるウェハ 6が載置されるウェハ載置台 5が設けられている。  Below the probe card 10, a wafer mounting table 5 on which a wafer 6 to be inspected is mounted is provided.
[0094] このようなウェハ検査装置においては、ウェハ載置台 5上に検査対象であるウェハ 6が載置され、次いで、プローブカード 10が下方に加圧されることにより、その異方導 電性コネクター 20における接点部材 27の各々力 ウェハ 6の被検査電極 7の各々に 接触し、更に、当該接点部材 27の各々によって、ウェハ 6の被検査電極 7の各々が 加圧される。この状態においては、異方導電性コネクター 20の弾性異方導電膜 23に おける接続用導電部 24の各々は、検査用回路基板 11の検査用電極 16と接点部材 27とによって挟圧されて厚み方向に圧縮されており、これにより、当該接続用導電部 24にはその厚み方向に導電路が形成され、その結果、ウェハ 6の被検査電極 7と検 查用回路基板 11の検査用電極 16との電気的接続が達成される。その後、ウェハ載 置台 5を介してウェハ 6が所定の温度に加熱され、この状態で、当該ウェハ 6におけ る複数の集積回路の各々につ 、て所要の電気的検査が実行される。  In such a wafer inspection apparatus, the wafer 6 to be inspected is placed on the wafer mounting table 5, and then the probe card 10 is pressed downward, whereby its anisotropic conductivity is achieved. Each force of the contact member 27 in the connector 20 comes into contact with each of the electrodes 7 to be inspected of the wafer 6, and each of the electrodes 7 to be inspected of the wafer 6 is pressurized by each of the contact members 27. In this state, each of the connecting conductive parts 24 in the elastic anisotropic conductive film 23 of the anisotropic conductive connector 20 is sandwiched between the test electrode 16 and the contact member 27 of the test circuit board 11 and has a thickness. As a result, a conductive path is formed in the connecting conductive portion 24 in the thickness direction. As a result, the inspection electrode 7 of the wafer 6 and the inspection electrode 16 of the inspection circuit board 11 are formed. Electrical connection with is achieved. Thereafter, the wafer 6 is heated to a predetermined temperature via the wafer mounting table 5, and in this state, a required electrical inspection is performed on each of the plurality of integrated circuits on the wafer 6.
[0095] このような第 1の例のウェハ検査装置によれば、第 1の例のプローブカード 10を介し て、検査対象であるウェハ 6の被検査電極 7に対する電気的接続が達成されるため、 ウェハに対する良好な電気的接続状態を確実に達成することができ、し力も、ウェハ に対する良好な電気的接続状態を安定に維持することができ、従って、ウェハのバ ーンイン試験において、当該ウェハに対する所要の電気的検査を確実に実行するこ とがでさる。  According to the wafer inspection apparatus of the first example as described above, electrical connection to the inspection target electrode 7 of the wafer 6 to be inspected is achieved via the probe card 10 of the first example. A good electrical connection to the wafer can be reliably achieved, and the force can also stably maintain a good electrical connection to the wafer, so that in the wafer burn-in test, Ensure that the required electrical inspection is performed.
[0096] 図 42は、本発明に係るウェハ検査装置の第 2の例における構成の概略を示す説 明用断面図であり、このウェハ検査装置は、ウェハに形成された複数の集積回路の 各々について、当該集積回路のプローブ試験をウェハの状態で行うためのものであ る。  FIG. 42 is a cross-sectional view for explaining the outline of the configuration of the second example of the wafer inspection apparatus according to the present invention. The wafer inspection apparatus includes a plurality of integrated circuits formed on the wafer. In order to conduct a probe test of the integrated circuit in a wafer state.
この第 2の例のウェハ検査装置は、第 1の例のプローブカード 10の代わりに第 2の 例のプローブカード 10を用いたこと以外は、第 1の例のウェハ検査装置と基本的に 同様の構成である。 The wafer inspection apparatus of the second example is basically the same as the wafer inspection apparatus of the first example except that the probe card 10 of the second example is used instead of the probe card 10 of the first example. It is the same composition.
この第 2の例のウェハ検査装置においては、ウェハ 6に形成された全ての集積回路 の中力も選択された例えば 32個の集積回路の被検査電極 7に、プローブカード 10を 電気的に接続して検査を行い、その後、他の集積回路の中から選択された複数の集 積回路の被検査電極 7に、プローブカード 10を電気的に接続して検査を行う工程を 繰り返すことにより、ウェハ 6に形成された全ての集積回路のプローブ試験が行われ る。  In the wafer inspection apparatus of the second example, the probe card 10 is electrically connected to the inspected electrodes 7 of, for example, 32 integrated circuits in which the intermediate force of all the integrated circuits formed on the wafer 6 is also selected. Then, by repeating the process of inspecting the probe card 10 electrically connected to the electrodes 7 to be inspected of a plurality of integrated circuits selected from other integrated circuits, the wafer 6 is repeated. Probe testing is performed on all integrated circuits formed on the board.
このような第 2の例のウェハ検査装置によれば、第 2の例のプローブカード 10を介し て、検査対象であるウェハ 6の被検査電極 7に対する電気的接続が達成されるため、 ウェハに対する良好な電気的接続状態を確実に達成することができ、し力も、ウェハ に対する良好な電気的接続状態を安定に維持することができ、従って、ウェハのプロ ーブ試験において、当該ウェハに対する所要の電気的検査を確実に実行することが できる。  According to the wafer inspection apparatus of the second example as described above, the electrical connection to the inspection target electrode 7 of the wafer 6 to be inspected is achieved via the probe card 10 of the second example. A good electrical connection state can be reliably achieved, and the force can also stably maintain a good electrical connection state to the wafer. Electrical inspection can be performed reliably.
図 43は、本発明に係るウェハ検査装置の第 3の例における構成の概略を示す説 明用断面図であり、図 44は、第 3の例のウェハ検査装置の要部を拡大して示す説明 用断面図である。この第 3の例のウェハ検査装置は、ウェハに形成された複数の集 積回路の各々について、当該集積回路のバーンイン試験をウェハの状態で一括し て行うためのものである。 この第 3の例のウェハ検査装置は、第 1の例のプローブ力 ード 10の代わりに第 3の例のプローブカード 10を用いたこと以外は、第 1の例のゥェ ハ検査装置と基本的に同様の構成である。  FIG. 43 is a cross-sectional view for explaining the outline of the configuration of the third example of the wafer inspection apparatus according to the present invention, and FIG. 44 shows an enlarged main part of the wafer inspection apparatus of the third example. It is sectional drawing for description. The wafer inspection apparatus of the third example is for performing a burn-in test of the integrated circuit in a batch on the wafer for each of a plurality of integrated circuits formed on the wafer. The wafer inspection apparatus of the third example is the same as the wafer inspection apparatus of the first example except that the probe card 10 of the third example is used instead of the probe force card 10 of the first example. The configuration is basically the same.
このようなウェハ検査装置にぉ 、ては、ウェハ載置台 5上に検査対象であるウェハ 6が載置され、次いで、プローブカード 10が下方に加圧されることにより、その接点部 材 27の各々力 ウェハ 6の被検査電極 7の各々に接触し、更に、当該接点部材 27の 各々によって、ウェハ 6の被検査電極 7の各々が加圧される。この状態においては、 異方導電性エラストマ一層 40における接続用導電部 41の各々は、検査用回路基板 11の検査用電極 16と接点部材 27とによって挟圧されて厚み方向に圧縮されており 、これにより、当該接続用導電部 41にはその厚み方向に導電路が形成され、その結 果、ウェハ 6の被検査電極 7と検査用回路基板 11の検査用電極 16との電気的接続 が達成される。その後、ウェハ載置台 5を介してウェハ 6が所定の温度に加熱され、こ の状態で、当該ウェハ 6における複数の集積回路の各々について所要の電気的検 查が実行される。 In such a wafer inspection apparatus, the wafer 6 to be inspected is placed on the wafer mounting table 5, and then the probe card 10 is pressed downward, whereby the contact member 27 Each force contacts each of the electrodes 7 to be inspected on the wafer 6, and further, each of the electrodes 7 to be inspected on the wafer 6 is pressurized by each of the contact members 27. In this state, each of the connecting conductive portions 41 in the anisotropic conductive elastomer layer 40 is sandwiched between the test electrode 16 and the contact member 27 of the test circuit board 11 and compressed in the thickness direction. As a result, a conductive path is formed in the connecting conductive portion 41 in the thickness direction, and as a result, electrical connection between the electrode 7 to be inspected 7 on the wafer 6 and the electrode 16 to be inspected on the circuit board 11 for inspection is performed. Is achieved. Thereafter, the wafer 6 is heated to a predetermined temperature via the wafer mounting table 5, and in this state, required electrical inspection is performed on each of the plurality of integrated circuits on the wafer 6.
[0098] このような第 3の例のウェハ検査装置によれば、第 3の例のプローブカード 10を介し て、検査対象であるウェハ 6の被検査電極 7に対する電気的接続が達成されるため、 ウェハ 6が、直径が 8インチ以上の大面積であって被検査電極 7のピッチが極めて小 さいものであっても、バーンイン試験において、当該ウェハに対する良好な電気的接 続状態を確実に達成することができ、しかも、温度変化による被検査電極 7に対する 位置ずれを確実に防止することができ、これにより、ウェハ 6に対する良好な電気的 接続状態を安定に維持することができる。従って、ウェハのバーンイン試験において 、当該ウェハに対する所要の電気的検査を確実に実行することができる。  According to the wafer inspection apparatus of the third example as described above, the electrical connection to the electrode 7 to be inspected of the wafer 6 to be inspected is achieved via the probe card 10 of the third example. Even if the wafer 6 has a large area of 8 inches or more in diameter and the pitch of the electrodes 7 to be inspected is extremely small, the burn-in test reliably achieves good electrical connection to the wafer. In addition, it is possible to reliably prevent the displacement with respect to the electrode 7 to be inspected due to the temperature change, and thus it is possible to stably maintain a good electrical connection state to the wafer 6. Accordingly, in the wafer burn-in test, the required electrical inspection for the wafer can be reliably executed.
[0099] 図 45は、本発明に係るウェハ検査装置の第 4の例における構成の概略を示す説 明用断面図であり、このウェハ検査装置は、ウェハに形成された複数の集積回路の 各々について、当該集積回路のプローブ試験をウェハの状態で行うためのものであ る。  FIG. 45 is a cross-sectional view for explaining the outline of the configuration of the fourth example of the wafer inspection apparatus according to the present invention. The wafer inspection apparatus includes a plurality of integrated circuits formed on the wafer. In order to conduct a probe test of the integrated circuit in a wafer state.
この第 4の例のウェハ検査装置は、第 1の例のプローブカード 10の代わりに第 4の 例のプローブカード 10を用いたこと以外は、第 1の例のウェハ検査装置と基本的に 同様の構成である。  The wafer inspection apparatus of the fourth example is basically the same as the wafer inspection apparatus of the first example, except that the probe card 10 of the fourth example is used instead of the probe card 10 of the first example. It is the composition.
この第 4の例のウェハ検査装置においては、ウェハ 6に形成された全ての集積回路 の中力も選択された例えば 32個の集積回路の被検査電極 7に、プローブカード 10を 電気的に接続して検査を行い、その後、他の集積回路の中から選択された複数の集 積回路の被検査電極 7に、プローブカード 10を電気的に接続して検査を行う工程を 繰り返すことにより、ウェハ 6に形成された全ての集積回路のプローブ試験が行われ る。  In the wafer inspection apparatus of the fourth example, the probe card 10 is electrically connected to the electrodes 7 to be inspected of, for example, 32 integrated circuits in which the intermediate forces of all the integrated circuits formed on the wafer 6 are also selected. Then, by repeating the process of inspecting the probe card 10 electrically connected to the electrodes 7 to be inspected of a plurality of integrated circuits selected from other integrated circuits, the wafer 6 is repeated. Probe testing is performed on all integrated circuits formed on the board.
このような第 4の例のウェハ検査装置によれば、第 4の例のプローブカード 10を介し て、検査対象であるウェハ 6の被検査電極 7に対する電気的接続が達成されるため、 ウェハ 6が、直径が 8インチ以上の大面積であって被検査電極 7のピッチが極めて小 さいものであっても、バーンイン試験において、当該ウェハに対する良好な電気的接 続状態を確実に達成することができ、しかも、温度変化による被検査電極 7に対する 位置ずれを確実に防止することができ、これにより、ウェハ 6に対する良好な電気的 接続状態を安定に維持することができる。従って、ウェハのプローブ試験において、 当該ウェハに対する所要の電気的検査を確実に実行することができる。 According to such a wafer inspection apparatus of the fourth example, since electrical connection to the inspection target electrode 7 of the wafer 6 to be inspected is achieved via the probe card 10 of the fourth example, the wafer 6 However, even in the case of a large area with a diameter of 8 inches or more and a very small pitch of the electrodes 7 to be inspected, a good electrical connection to the wafer in the burn-in test is possible. In addition, it is possible to reliably achieve a continuous state, and to reliably prevent misalignment with respect to the electrode 7 to be inspected due to a temperature change, thereby stably maintaining a good electrical connection state to the wafer 6. Can do. Therefore, the required electrical inspection for the wafer can be reliably executed in the probe test of the wafer.
本発明は、上記の実施の形態に限定されず、以下のように、種々の変更を加えるこ とが可能である。  The present invention is not limited to the above embodiment, and various modifications can be made as follows.
(1)異方導電性コネクター 20においては、弾性異方導電膜 23に突出部 26が形成さ れることは必須のことではなぐ弾性異方導電膜 23の表面全体が平坦なものであつ てもよい。  (1) In the anisotropic conductive connector 20, it is not indispensable that the protruding portion 26 is formed on the elastic anisotropic conductive film 23, even if the entire surface of the elastic anisotropic conductive film 23 is flat. Good.
また、プローブカード 10の異方導電性エラストマ一層 40においては、接続用導電 部 41に突出部が形成されることは必須のことではなぐ異方導電性エラストマ一層 40 の表面全体が平坦なものであってもよ 、。  Further, in the anisotropic conductive elastomer layer 40 of the probe card 10, it is not essential that the connecting conductive portion 41 is formed with a protrusion, and the entire surface of the anisotropic conductive elastomer layer 40 is flat. May be.
(2)異方導電性コネクター 20における弾性異方導電膜 23には、被検査電極のバタ ーンに対応するパターンに従って形成された接続用導電部 24の他に、被検査電極 に電気的に接続されな 、非接続用の導電部が形成されて 、てもよ 、。  (2) The elastic anisotropic conductive film 23 in the anisotropic conductive connector 20 is electrically connected to the electrode to be inspected in addition to the connecting conductive part 24 formed according to the pattern corresponding to the pattern of the electrode to be inspected. A conductive part for non-connection may be formed without being connected.
また、プローブカード 10の異方導電性エラストマ一層 40には、被検査電極のパタ ーンに対応するパターンに従つて形成された接続用導電部 41の他に、被検査電極 に電気的に接続されな 、非接続用の導電部が形成されて 、てもよ 、。  In addition, the anisotropic conductive elastomer layer 40 of the probe card 10 is electrically connected to the electrode to be inspected in addition to the conductive portion 41 for connection formed according to the pattern corresponding to the pattern of the electrode to be inspected. However, a conductive part for non-connection may be formed.
(3)プローブカード 10の異方導電性エラストマ一層 40は、例えば検査用回路基板 1 1の検査用電極部 16R毎に分割されて形成されていてもよい。  (3) The anisotropic conductive elastomer layer 40 of the probe card 10 may be divided and formed for each inspection electrode portion 16R of the inspection circuit board 11, for example.
(4)接続用導電部 24の形成においては、レーザー加工によって導電性エラストマ一 層 24Bにおける接続用導電部となる部分以外の部分の全部が除去されることにより、 接続用導電部 24を形成することもできるが、図 46および図 47に示すように、導電性 エラストマ一層 24Bにおける接続用導電部となる部分の周辺部分のみが除去される ことにより、接続用導電部 24を形成することもできる。この場合には、導電性エラスト マー層 24Bの残部は、離型性支持板 35から機械的に剥離することによって除去する ことができる。  (4) In the formation of the connecting conductive portion 24, the connecting conductive portion 24 is formed by removing all portions of the conductive elastomer layer 24B other than the connecting conductive portion by laser processing. However, as shown in FIG. 46 and FIG. 47, the conductive portion 24 for connection can also be formed by removing only the peripheral portion of the conductive elastomer layer 24B that becomes the conductive portion for connection. . In this case, the remaining portion of the conductive elastomer layer 24B can be removed by mechanically peeling from the releasable support plate 35.
(5)プローブカード 10においては、図 48に示すように、検査用回路基板 11上に一体 的に設けられた異方導電性エラストマ一層 40上に、更に、弾性高分子物質中に導 電性粒子 Pが厚み方向に並ぶよう配向して連鎖を形成した状態でかつ当該導電性 粒子 Pによる連鎖が面方向に分散した状態で含有されてなる、いわゆる分散型の異 方導電性エラストマ一シート 45を配置することができる。 (5) The probe card 10 is integrated on the inspection circuit board 11 as shown in FIG. On the anisotropically conductive elastomer layer 40 provided on the surface, and in a state in which the conductive particles P are further aligned in the elastic polymer material so as to be aligned in the thickness direction to form a chain. A so-called dispersive anisotropic conductive elastomer sheet 45 containing the chain dispersed in the plane direction can be disposed.
(6)ウェハ検査装置におけるコントローラー 2と検査用回路基板 11を電気的に接続 するコネクター 4は、図 41に示すものに限定されず、種々の構造のものを用いること ができる。  (6) The connector 4 for electrically connecting the controller 2 and the inspection circuit board 11 in the wafer inspection apparatus is not limited to the one shown in FIG. 41, and various structures can be used.
実施例  Example
[0101] 以下、本発明の具体的な実施例について説明する力 本発明はこれらの実施例に 限定されるものではない。  [0101] Hereinafter, the ability to describe specific examples of the present invention The present invention is not limited to these examples.
[0102] 〔試験用ウェハの作製〕  [0102] [Production of test wafer]
図 49〜図 51に示す構成の試験用のウェハを作製した。具体的に説明すると、この ウェハ(6)は、直径が 8インチのシリコン (線熱膨張係数 3. 3 X 10— 6ZK)よりなり、当 該ウェハ(6)上には、それぞれ寸法が 9mm X 9mmの正方形の集積回路 (L)が合 計で 393個形成されている。ウェハ(6)に形成された集積回路 (L)の各々は、その中 央に被検査電極領域 (A)を有し、この被検査電極領域 (A)には、それぞれ縦方向( 図 51において上下方向)の寸法が 200 μ mで横方向(図 51にお!/、て左右方向 )の 寸法が 60 μ mの矩形の 40個の被検査電極(7)が 120 μ mのピッチで横方向に一列 に配列されて 、る。このウェハ(6)全体の被検査電極 (7)の総数は 15720個であり、 全ての被検査電極(7)は互いに電気的に絶縁されている。以下、このウェハを「試験 用ウェハ Wl」という。 Test wafers having the configurations shown in FIGS. 49 to 51 were produced. When specifically described, the wafer (6), the diameter is more than 8 inches silicon (coefficient of linear thermal expansion 3. 3 X 10- 6 ZK), on those said wafer (6) with dimensions respectively 9mm A total of 393 X 9mm square integrated circuits (L) are formed. Each of the integrated circuits (L) formed on the wafer (6) has an inspected electrode region (A) in the center thereof, and the inspected electrode region (A) has a vertical direction (in FIG. 51). 40 rectangular electrodes (7) with a dimension of 200 μm in the vertical direction and a horizontal dimension of 60 μm in the horizontal direction (Fig. 51!) Are laterally spaced at a pitch of 120 μm. Arranged in a row in the direction. The total number of electrodes (7) to be inspected on the entire wafer (6) is 15720, and all the electrodes to be inspected (7) are electrically insulated from each other. Hereinafter, this wafer is referred to as “test wafer Wl”.
また、全ての被検査電極 (7)を互いに電気的に絶縁することに代えて、集積回路( L)における 40個の被検査電極のうち最も外側の被検査電極(7)から数えて 1個おき に 2個ずつを互 ヽに電気的に接続したこと以外は、上記試験用ウェハ W1と同様の 構成の 393個の集積回路 (L)を有するウェハ(6)を作製した。以下、このウェハを「 試験用ウェハ W2」という。  Instead of electrically insulating all the electrodes to be inspected (7) from each other, one of the 40 electrodes to be inspected in the integrated circuit (L) counted from the outermost electrode to be inspected (7) A wafer (6) having 393 integrated circuits (L) having the same configuration as the test wafer W1 was prepared except that every other two pieces were electrically connected to each other. Hereinafter, this wafer is referred to as “test wafer W2.”
[0103] 〈実施例 1〉 <Example 1>
〔フレーム板の作製〕 図 52および図 53に示す構成に従い、下記の条件により、上記の試験用ウェハ W1 における各被検査電極領域に対応して形成された 393の開口(22)を有する直径が 8インチのフレーム板(21)を作製した。 [Fabrication of frame plate] According to the configuration shown in FIG. 52 and FIG. 53, a frame plate (diameter 8 inches) having 393 openings (22) formed corresponding to each electrode area to be inspected in the test wafer W1 according to the following conditions ( 21) was produced.
このフレーム板(21)の材質はコバール (線熱膨張係数 5 X 10— 6ΖΚ)で、その厚み は、 60 mである。フレーム板(21)の開口(22)の各々は、その横方向(図 52およ び図 53において左右方向)の寸法が 5. 5mmで縦方向(図 52および図 53において 上下方向)の寸法が 0. 4mmである。 In the material of this frame plate (21) is Kovar (coefficient of linear thermal expansion 5 X 10- 6 ΖΚ), its thickness is 60 m. Each of the openings (22) in the frame plate (21) has a horizontal dimension (horizontal direction in FIGS. 52 and 53) of 5.5 mm and a vertical dimension (vertical direction in FIGS. 52 and 53). Is 0.4 mm.
また、縦方向に隣接する開口(22)の間の中央位置には、円形の空気流入孔 (H) が形成されており、その直径は lmmである。  In addition, a circular air inflow hole (H) is formed at the center position between the vertically adjacent openings (22), and the diameter thereof is lmm.
[0104] 〔成形用スぺーサ一の作製〕 [Fabrication of forming spacer 1]
下記の条件により、試験用ウェハ W1における被検査電極領域に対応して形成さ れた複数の開口を有する弾性異方導電膜成形用のスぺーサーを 2枚作製した。 これらのスぺーサ一の材質はステンレス(SUS304)で、その厚みは 20 μ mである 。スぺーサ一の開口の各々と、その横方向の寸法が 7mmで縦方向の寸法力 4mm である。  Two spacers for forming an elastic anisotropic conductive film having a plurality of openings formed corresponding to the electrode area to be inspected in the test wafer W1 were produced under the following conditions. The material of these spacers is stainless steel (SUS304), and its thickness is 20 μm. Each of the spacer openings has a horizontal dimension of 7 mm and a vertical dimension force of 4 mm.
[0105] 〔磁性芯粒子 [A]の調製〕  [Preparation of magnetic core particle [A]]
市販のニッケル粒子(Westaim社製, 「FC1000」)を用い、以下のようにして磁性 芯粒子 [A]を調製した。  Using commercially available nickel particles (Westaim, “FC1000”), magnetic core particles [A] were prepared as follows.
日清エンジニアリング株式会社製の空気分級機「ターボクラシファイア TC— 15N 」によって、ニッケル粒子 2kgを、比重が 8. 9、風量が 2. 5m3 Zmin、ローター回転 数が 1, 600rpm、分級点が 25 m、ニッケル粒子の供給速度が 16gZminの条件 で分級処理し、ニッケル粒子 1. 8kgを捕集し、更に、このニッケル粒子 1. 8kgを、比 重が 8. 9、風量が 2. 5m3 Zmin、ローター回転数が 3, 000rpm、分級点が 10 m 、ニッケル粒子の供給速度が 14gZminの条件で分級処理し、ニッケル粒子 1. 5kg を捕集した。 By Nisshin Engineering air classifier Co., Ltd. "Turbo Classifier TC- 15N" nickel particles 2 kg, specific gravity of 8.9, air flow rate 2. 5 m 3 Zmin, the rotor speed is 1, 600 rpm, a classification point of 25 m, the feed rate of the nickel particles classified under conditions of 16GZmin, collecting nickel particles 1. 8 kg, further, the nickel particles 1. 8 kg, specific gravity is 8.9, the air volume is 2. 5 m 3 Zmin Then, classification was performed under the conditions of a rotor speed of 3,000 rpm, a classification point of 10 m, and a nickel particle supply speed of 14 gZmin, and 1.5 kg of nickel particles were collected.
次いで、筒井理ィ匕学機器株式会社製の音波ふるい器「SW— 20AT形」によって、 空気分級機によって分級されたニッケル粒子 120gを更に分級処理した。具体的に は、それぞれ直径が 200mmで、開口径が 25 m、 20 m、 16 μ mおよび 8 μ mの 4つのふるいを上からこの順で 4段に重ね合わせ、ふるいの各々に直径が 2mmのセ ラミックボール 10gを投入し、最上段のふるい(開口径が 25 μ m)にニッケル粒子 20g を投入し、 55Hzで 12分間および 125Hzで 15分間の条件で分級処理し、最下段の ふるい(開口径が 8 μ m)に捕集されたニッケル粒子を回収した。この操作を合計で 2 5回行うことにより、磁性芯粒子 [A] 110gを調製した。 Next, 120 g of nickel particles classified by an air classifier were further classified by a sonic sieve “SW-20AT type” manufactured by Ritsuka Tsutsui Engineering Co., Ltd. Specifically, each has a diameter of 200 mm and an opening diameter of 25 m, 20 m, 16 μm and 8 μm. Four sieves are stacked in this order from the top, 10 g of ceramic balls with a diameter of 2 mm are introduced into each sieve, and 20 g of nickel particles are introduced into the top sieve (opening diameter is 25 μm). Classification was performed under conditions of 55 Hz for 12 minutes and 125 Hz for 15 minutes, and nickel particles collected in the bottom sieve (opening diameter: 8 μm) were collected. By performing this operation 25 times in total, 110 g of magnetic core particles [A] were prepared.
得られた磁性芯粒子 [A]は、数平均粒子径が 10 m、粒子径の変動係数が 10% 、 BET比表面積が 0. 2 X 103 m2 /kg、飽和磁化が 0. 6Wb/m2であった。 The obtained magnetic core particle [A] has a number average particle diameter of 10 m, a particle diameter variation coefficient of 10%, a BET specific surface area of 0.2 X 10 3 m 2 / kg, and a saturation magnetization of 0.6 Wb / kg. It was m 2.
〔導電性粒子 [a]の調製〕 [Preparation of conductive particles [a]]
粉末メツキ装置の処理槽内に、磁性芯粒子 [A] 100gを投入し、更に、 0. 32Nの 塩酸水溶液 2Lを加えて攪拌し、磁性芯粒子 [A]を含有するスラリーを得た。このスラ リーを常温で 30分間攪拌することにより、磁性芯粒子 [A]の酸処理を行い、その後、 1分間静置して磁性芯粒子 [A]を沈殿させ、上澄み液を除去した。  100 g of the magnetic core particle [A] was put into the treatment tank of the powder plating apparatus, and further 2 L of 0.32N hydrochloric acid aqueous solution was added and stirred to obtain a slurry containing the magnetic core particle [A]. The slurry was stirred at room temperature for 30 minutes to treat the magnetic core particles [A] with an acid, and then left to stand for 1 minute to precipitate the magnetic core particles [A], and the supernatant was removed.
次いで、酸処理が施された磁性芯粒子 [A]に純水 2Lを加え、常温で 2分間攪拌し 、その後、 1分間静置して磁性芯粒子 [A]を沈殿させ、上澄み液を除去した。この操 作を更に 2回繰り返すことにより、磁性芯粒子 [A]の洗浄処理を行った。  Next, 2 L of pure water is added to the acid-treated magnetic core particles [A], stirred at room temperature for 2 minutes, and then allowed to stand for 1 minute to precipitate the magnetic core particles [A] and remove the supernatant. did. By repeating this operation two more times, the magnetic core particles [A] were washed.
そして、酸処理および洗浄処理が施された磁性芯粒子 [A]に、金の含有割合が 20 g/Lの金メッキ液 2Lをカ卩え、処理層内の温度を 90°Cに昇温して攪拌することにより 、スラリーを調製した。この状態で、スラリーを攪拌しながら、磁性芯粒子 [A]に対して 金の置換メツキを行った。その後、スラリーを放冷しながら静置して粒子を沈殿させ、 上澄み液を除去することにより、本発明用の導電性粒子 [a]を調製した。  Then, add 2 L of a gold plating solution with a gold content of 20 g / L to the magnetic core particles [A] that have been subjected to acid treatment and washing treatment, and raise the temperature in the treatment layer to 90 ° C. The slurry was prepared by stirring. In this state, the magnetic core particles [A] were replaced with gold while stirring the slurry. Thereafter, the slurry was left standing to cool to precipitate the particles, and the supernatant liquid was removed to prepare conductive particles [a] for the present invention.
このようにして得られた導電性粒子 [a]に純水 2Lをカ卩え、常温で 2分間攪拌し、そ の後、 1分間静置して導電性粒子 [a]を沈殿させ、上澄み液を除去した。この操作を 更に 2回繰り返し、その後、 90°Cに加熱した純水 2Lをカ卩えて攪拌し、得られたスラリ 一を濾紙によって濾過して導電性粒子 [a]を回収した。そして、この導電性粒子 [a] を、 90°Cに設定された乾燥機によって乾燥処理した。  The conductive particles [a] thus obtained are charged with 2 L of pure water, stirred at room temperature for 2 minutes, and then allowed to stand for 1 minute to precipitate the conductive particles [a]. The liquid was removed. This operation was further repeated twice, and then 2 L of pure water heated to 90 ° C. was added and stirred, and the resulting slurry was filtered through a filter paper to collect the conductive particles [a]. The conductive particles [a] were dried by a dryer set at 90 ° C.
得られた導電性粒子 [a]は、数平均粒子径が 12 m、 BET比表面積が 0. 15 X 1 03 mVkg,被覆層の厚み tが l l lnm、(被覆層を形成する金の質量) / (導電性粒 子 [a]全体の質量)の値 Nが 0. 3であった。 [0107] 〔接点部材複合体の製造〕 The obtained conductive particles [a] have a number average particle diameter of 12 m, a BET specific surface area of 0.15 X 10 3 mVkg, a coating layer thickness t of ll lnm, (the mass of gold forming the coating layer) ) / (Conductive particle [a] total mass) value N was 0.3. [Manufacture of contact member composite]
ポリエチレンテレフタレートよりなる厚みが 100 μ mの榭脂フィルムの一面に、厚み 力 S18 μ mの銅よりなる金属箔(30)が剥離可能に積層されてなる積層材料を用意し、 この積層材料における金属箔(30)の表面に、フォトリソグラフィ一の手法により、それ ぞれ寸法が 60 m X 200 /z mの矩形の 15720個の開口(31K)力 試験用ウェハ W1の被検査電極のパターンに対応するパターンに従って形成された、厚みが 80 μ mのレジスト層(31)を形成した(図 4参照)。その後、金属箔(30)の表面に電解-ッ ケルメツキ処理を施すことにより、レジスト層(31)の各開口(31K)内に厚みが約 80 mのニッケルよりなる接点部材 (27)を形成し、以て、接点部材複合体 (27F)を製 造した(図 5参照)。  Prepare a laminated material in which a metal foil (30) made of copper with a thickness of S18 μm is peeled and laminated on one side of a 100 μm thick resin film made of polyethylene terephthalate. Corresponds to the pattern of the electrode to be inspected on the surface of the foil (30) by a photolithography technique using a rectangular 15720 (31K) force test wafer W1 with dimensions of 60 m X 200 / zm. A resist layer (31) having a thickness of 80 μm formed according to the pattern was formed (see FIG. 4). After that, the surface of the metal foil (30) is subjected to electrolytic-nickel plating to form a contact member (27) made of nickel having a thickness of about 80 m in each opening (31K) of the resist layer (31). Thus, a contact member composite (27F) was manufactured (see FIG. 5).
[0108] 〔導電性エラストマ一層の形成〕 [Formation of one layer of conductive elastomer]
付加型液状シリコーンゴム 100重量部中に、上記の導電性粒子 [a] 70重量部を分 散させること〖こより、導電性エラストマ一用材料を調製した。この導電性エラストマ一 用材料を、厚みが 5mmのステンレスよりなる離型性支持板(35)の表面に、スクリー ン印刷により塗布することにより、当該離型性支持板(35)上に、厚みが 140 /z mの 導電性エラストマ一用材料層 (24A)を形成した (図 6参照)。  A conductive elastomer material was prepared by dispersing 70 parts by weight of the conductive particles [a] in 100 parts by weight of addition-type liquid silicone rubber. The conductive elastomer material is applied to the surface of a releasable support plate (35) made of stainless steel having a thickness of 5 mm by screen printing, so that the thickness of the conductive elastomer material on the releasable support plate (35) is increased. A conductive elastomer material layer (24A) with a thickness of 140 / zm was formed (see Fig. 6).
次いで、導電性エラストマ一用材料層(24A)上に、接点部材複合体 (27F)をその 接点部材 (27)の各々が当該導電性エラストマ一用材料層 (24A)に接するよう配置 し、この状態で、導電性エラストマ一用材料層 (24A)に対して、電磁石によって厚み 方向に 2テスラの磁場を作用させながら、 120°C、 1時間の条件で硬化処理を行うこと により、離型性支持板(35)上に支持された厚みが 140 mの導電性エラストマ一層 (21B)を形成した (図 7乃至図 9参照)。  Next, the contact member composite (27F) is arranged on the conductive elastomer material layer (24A) so that each of the contact members (27) is in contact with the conductive elastomer material layer (24A). In this state, the conductive elastomer material layer (24A) is subjected to a curing treatment at 120 ° C for 1 hour while applying a magnetic field of 2 Tesla in the thickness direction by an electromagnet. A conductive elastomer layer (21B) having a thickness of 140 m supported on the support plate (35) was formed (see FIGS. 7 to 9).
[0109] 以上において、使用した付加型液状シリコーンゴムは、それぞれ粘度が 250Pa' s である A液および B液よりなる二液型のものであって、その硬化物の圧縮永久歪みが 5%、デュロメーター A硬度が 32、引裂強度が 25kNZmのものである。 [0109] In the above, the addition-type liquid silicone rubber used is a two-component type consisting of liquid A and liquid B each having a viscosity of 250 Pa's, and the compression set of the cured product is 5%, Durometer A with a hardness of 32 and a tear strength of 25 kNZm.
ここで、付加型液状シリコーンゴムおよびその硬化物の特性は、以下のようにして測 定されたものである。  Here, the properties of the addition-type liquid silicone rubber and its cured product were measured as follows.
(i)付加型液状シリコーンゴムの粘度は、 B型粘度計により、 23± 2°Cにおける値を測 定した。 (i) Viscosity of addition-type liquid silicone rubber was measured at 23 ± 2 ° C using a B-type viscometer. Set.
(ii)シリコーンゴム硬化物の圧縮永久歪みは、次のようにして測定した。  (ii) The compression set of the cured silicone rubber was measured as follows.
二液型の付加型液状シリコーンゴムにおける A液と B液とを等量となる割合で攪拌 混合した。次いで、この混合物を金型に流し込み、混合物に対して減圧による脱泡 処理を行った後、 120°C、 30分間の条件で硬化処理を行うことにより、厚みが 12. 7 mm、直径が 29mmのシリコーンゴム硬化物よりなる円柱体を作製し、この円柱体に 対して、 200°C、 4時間の条件でポストキュアを行った。このようにして得られた円柱体 を試験片として用い、 JIS K 6249に準拠して 150± 2°Cにおける圧縮永久歪みを 測定した。  The liquid A and liquid B in the two-component type addition type liquid silicone rubber were stirred and mixed at an equal ratio. Next, after pouring this mixture into a mold and subjecting the mixture to defoaming treatment under reduced pressure, a curing treatment is performed at 120 ° C for 30 minutes, resulting in a thickness of 12.7 mm and a diameter of 29 mm. A cylindrical body made of a cured silicone rubber was prepared, and post-curing was performed on this cylindrical body at 200 ° C. for 4 hours. The cylindrical body thus obtained was used as a test piece, and compression set at 150 ± 2 ° C. was measured according to JIS K 6249.
(iii)シリコーンゴム硬化物の引裂強度は、次のようにして測定した。  (iii) The tear strength of the cured silicone rubber was measured as follows.
上記 (ii)と同様の条件で付加型液状シリコーンゴムの硬化処理およびポストキュア を行うことにより、厚みが 2. 5mmのシートを作製した。  The addition type liquid silicone rubber was cured and post-cured under the same conditions as in (ii) above to produce a 2.5 mm thick sheet.
このシートから打ち抜きによってタレセント形の試験片を作製し、 JIS K 6249に準 拠して 23士 2°Cにおける弓 I裂強度を測定した。  Talecent-shaped specimens were produced from this sheet by punching, and the bow I crack strength at 2 ° C for 23 persons was measured in accordance with JIS K 6249.
(iv)デュロメーター A硬度は、上記 (m)と同様にして作製されたシートを 5枚重ね合わ せ、得られた積重体を試験片として用い、 JIS K 6249に準拠して 23± 2°Cにおけ る値を測定した。  (iv) The durometer A hardness is set to 23 ± 2 ° C according to JIS K 6249 by stacking five sheets prepared in the same manner as in (m) above and using the resulting stack as a test piece. The value was measured.
〔接続用導電部の形成〕 [Formation of conductive part for connection]
接点部材複合体 (27F)における金属箔 (30)の表面力 榭脂フィルムを剥離し、当 該金属箔(30)をエッチング処理によって除去することにより、接点部材(27)および レジスト層(31)を露出させた(図 10参照)。そして、この状態で、導電性ヱラストマー 層(24B)およびレジスト層(31)に対して、接点部材(27)をマスクとして炭酸ガスレ 一ザ一装置によってレーザー加工を施すことにより、それぞれ離型性支持板(35)上 に支持され、それぞれ接点部材 (27)がー体的に設けられた 15720個の接続用導 電部(24)を形成した(図 11参照)。  Surface force of the metal foil (30) in the contact member composite (27F) The resin film is peeled off, and the metal foil (30) is removed by etching treatment, whereby the contact member (27) and the resist layer (31) Was exposed (see Figure 10). In this state, the conductive rubber laster layer (24B) and the resist layer (31) are subjected to laser processing with a carbon dioxide gas laser device using the contact member (27) as a mask, thereby supporting the releasability. 15720 connecting conductive parts (24) each supported by a plate (35) and each having a contact member (27) were formed (see FIG. 11).
以上において、炭酸ガスレーザー装置によるレーザー加工条件は、以下の通りで ある。すなわち、装置として、炭酸ガスレーザー加工機「ML— 605GTX」(三菱電機 (株)製)を用い、レーザービーム径が直径 60 m,レーザー出力が 0. 8mJの条件 で、 1つの加工点にレーザービームを 10ショット照射することによりレーザー加工を行 つた o In the above, the laser processing conditions by the carbon dioxide laser device are as follows. In other words, a carbon dioxide laser processing machine “ML-605GTX” (manufactured by Mitsubishi Electric Corporation) was used as the equipment, and the laser beam diameter was 60 m and the laser output was 0.8 mJ. Then, laser processing was performed by irradiating 10 shots of a laser beam at one processing point.o
[0111] 〔絶縁部の形成〕  [0111] [Formation of insulating part]
厚みが 5mmのステンレスよりなる絶縁部形成用の離型性支持板(35A)を用意し、 この離型性支持板(35A)の表面に、一方の成形用スぺーサーを配置し、この成形 用スぺーサー上にフレーム板(21)を位置合わせして配置し、このフレーム板 (21)上 に他方の成形用スぺーサーを位置合わせして配置した。  A mold release support plate (35A) made of stainless steel with a thickness of 5mm is prepared, and one molding spacer is placed on the surface of the mold release support plate (35A). The frame plate (21) was positioned and placed on the spacer for use in molding, and the other forming spacer was placed on the frame plate (21) in alignment.
次いで、導電性エラストマ一材料の調製において使用した付加型液状シリコーンゴ ムを用意し、この付加型液状シリコーンゴムに対して減圧による脱泡処理を行つた後 、当該付加型液状シリコーンゴムをスクリーン印刷によって離型性支持板(35A)に塗 布することにより、 2枚の成形用スぺーサ一の各々の開口内およびフレーム板(21) の開口(22)内に付加型液状シリコーンゴムを充填することにより、絶縁部用材料層 ( 25A)を形成した(図 12参照)。  Next, an addition-type liquid silicone rubber used in the preparation of the conductive elastomer material is prepared, and the addition-type liquid silicone rubber is defoamed under reduced pressure, and then the addition-type liquid silicone rubber is screen-printed. By applying to the releasable support plate (35A), the additional liquid silicone rubber is filled into the openings of each of the two molding spacers and the opening (22) of the frame plate (21). As a result, an insulating material layer (25A) was formed (see FIG. 12).
次いで、それぞれ接点部材 (27)が設けられた 15720個の接続用導電部(24)が 形成された離型性支持板 (35)を、絶縁部用材料層 (25A)が形成された離型性支 持板 (35A)上に重ね合わせることにより、接続用導電部(24)の各々を絶縁部用材 料層 (25A)中に浸入させ、接点部材 (27)を離型性支持板 (35A)に接触させた (図 13参照)。その後、この状態で、離型性支持板 (35)および離型性支持板 (35A)に 1 500kgfの圧力を加えることにより、接続用導電部( 24)を厚み方向に圧縮しながら、 絶縁部用材料層 (25A)の硬化処理を行うことにより、接続用導電部(24)の各々の 周囲に、これらを相互に絶縁する絶縁部(25)力 接続用導電部(24)に一体的に形 成された弾性異方導電膜 (23)を形成した (図 14参照)。  Next, the release support plate (35) formed with 15720 connecting conductive portions (24) each provided with the contact member (27) is replaced with the release portion formed with the insulating material layer (25A). By superimposing on the conductive support plate (35A), each of the conductive parts for connection (24) enters the insulating material layer (25A), and the contact member (27) is placed on the release support plate (35A). ) (See FIG. 13). After that, in this state, by applying a pressure of 1 500 kgf to the releasable support plate (35) and the releasable support plate (35A), the connecting conductive portion (24) is compressed in the thickness direction while the insulating portion By hardening the material layer (25A), it is integrated with the connection conductive part (24) around each of the connection conductive parts (24) and the insulation part (25) force that insulates them from each other. The formed elastic anisotropic conductive film (23) was formed (see FIG. 14).
そして、離型性支持板 (35) , (35A)カゝら弾性異方導電膜 (23)を離型させ、成形 用スぺーサーを除去することにより、本発明の異方導電性コネクターを製造した。  Then, the anisotropically conductive connector of the present invention is removed by releasing the moldable support plate (35), (35A) and the elastic anisotropically conductive film (23) and removing the forming spacer. Manufactured.
[0112] 得られた異方導電性コネクターにおける弾性異方導電膜について具体的に説明 すると、弾性異方導電膜の各々は、横方向の寸法が 5. 5mm,縦方向の寸法が 0. 4 mmである。 [0112] The elastic anisotropic conductive film in the obtained anisotropic conductive connector will be described in detail. Each of the elastic anisotropic conductive films has a lateral dimension of 5.5 mm and a longitudinal dimension of 0.4. mm.
弾性異方導電膜の各々には、 40個の接続用導電部が 120 mのピッチで横方向 に一列に配列されており、接続用導電部の各々は、横方向の寸法が 60 m、縦方 向の寸法が 200 μ m、厚みが約 140 μ mであり、絶縁部の厚みが 100 μ mである。 また、弾性異方導電膜の各々における被支持部の厚み (二股部分の一方の厚み) は 20 μ mである。 Each elastic anisotropic conductive film has 40 connecting conductive parts in the transverse direction at a pitch of 120 m Each of the connecting conductive parts has a horizontal dimension of 60 m, a vertical dimension of 200 μm, a thickness of about 140 μm, and an insulating part thickness of 100 μm. m. Further, the thickness of the supported portion (one thickness of the bifurcated portion) in each elastic anisotropic conductive film is 20 μm.
また、弾性異方導電膜の各々における接続用導電部中の導電性粒子の含有割合 を調べたところ、全ての接続用導電部にっ 、て体積分率で約 30%であった。  Further, when the content ratio of the conductive particles in the connecting conductive portion in each of the elastic anisotropic conductive films was examined, the volume fraction was about 30% in all the connecting conductive portions.
[0113] 〔検査用回路基板の作製〕  [0113] [Production of circuit board for inspection]
基板材料としてアルミナセラミックス (線熱膨張係数 4. 8 X 10—ソ K)を用い、試験 用ウエノ、 W1における被検査電極のパターンに対応するパターンに従って検査電極 が形成された検査用回路基板を作製した。この検査用回路基板は、全体の寸法が3 Ocm X 30cmの矩形であり、その検査電極は、横方向の寸法力 ½0 μ mで縦方向の 寸法が 200 /z mである。以下、この検査用回路基板を「検査用回路基板 T」という。 Alumina ceramics (coefficient of linear thermal expansion 4.8 X 10-so-K) is used as the substrate material, and a test circuit board with test electrodes formed according to the pattern corresponding to the pattern of the test electrode in Weno for testing and W1 is manufactured. did. The inspection circuit board has a rectangular shape with an overall dimension of 3 Ocm × 30 cm, and the inspection electrode has a lateral dimension force of ½ μm and a longitudinal dimension of 200 / zm. Hereinafter, this inspection circuit board is referred to as “inspection circuit board T”.
[0114] 〔異方導電性コネクターの評価〕  [0114] [Evaluation of anisotropically conductive connector]
(1)試験 1 :  (1) Test 1:
試験用ウェハ W1を試験台に配置し、この試験用ウェハ W1上に、異方導電性コネ クタ一をその接続用導電部の各々が試験用ウェハ W1の被検査電極上に位置するよ う位置合わせして配置した。次いで、この異方導電製コネクター上に、検査用回路基 板 Τをその検査電極の各々が当該異方導電性コネクターの接続用導電部上に位置 するよう位置合わせして固定し、更に、検査用回路基板 Τを下方に 160kgの荷重で 加圧した。  Place the test wafer W1 on the test stand, and place the anisotropic conductive connector on the test wafer W1 so that each of the conductive parts for connection is located on the electrode to be inspected on the test wafer W1. Arranged together. Next, on this anisotropic conductive connector, the inspection circuit board Τ is aligned and fixed so that each of the inspection electrodes is positioned on the connecting conductive portion of the anisotropic conductive connector. The circuit board 用 was pressed downward with a load of 160 kg.
そして、室温(25°C)下において、検査用回路基板 Tにおける検査電極の各々に順 次電圧を印加すると共に、電圧が印加された検査電極とこれに隣接する検査電極と の間の電気抵抗を、異方導電性コネクターにおける接続用導電部間の電気抵抗 (以 下、「絶縁抵抗」という。)として測定し、絶縁抵抗が 5Μ Ω以下である接続用導電部 対の数を求めた。ここで、接続用導電部間の絶縁抵抗が 5Μ Ω以下のものについて は、ウェハに形成された集積回路の電気的検査において、これを実際上使用するこ とが困難な場合がある。  At room temperature (25 ° C), a sequential voltage is applied to each of the inspection electrodes on the inspection circuit board T, and the electrical resistance between the inspection electrode to which the voltage is applied and the inspection electrode adjacent thereto is applied. Was measured as the electrical resistance between the conductive parts for connection in the anisotropic conductive connector (hereinafter referred to as “insulation resistance”), and the number of conductive part pairs for connection having an insulation resistance of 5 Ω or less was determined. Here, when the insulation resistance between the conductive parts for connection is 5Ω or less, it may be difficult to actually use this in the electrical inspection of the integrated circuit formed on the wafer.
以上、結果を下記表 1に示す。 [0115] (2)試験 2 : The results are shown in Table 1 below. [0115] (2) Test 2:
試験用ウェハ W2を、電熱ヒーターを具えた試験台に配置し、この試験用ウェハ W 1上に異方導電性コネクターをその接続用導電部の各々が当該試験用ウェハ W2の 被検査電極上に位置するよう位置合わせして配置し、この異方導電製コネクター上 に、検査用回路基板 Tをその検査電極の各々が当該異方導電性コネクターの接続 用導電部上に位置するよう位置合わせして配置し、更に、検査用回路基板 Tを下方 に 32kgの荷重 (接続用導電部 1個当たりに加わる荷重が平均で約 2g)で加圧した。 そして、室温(25°C)下において、検査用回路基板 Tにおける 15720個の検査電 極にっ 、て、異方導電性コネクターおよび試験用ウエノ、 W1を介して互 ヽに電気的 に接続された 2個の検査電極の間の電気抵抗を順次測定し、測定された電気抵抗 値の 2分の 1の値を異方導電性コネクターにおける接続用導電部の電気抵抗 (以下、 「導通抵抗」 t 、う。)として記録し、導通抵抗が 0. 5 Ω以上である接続用導電部の数 を求めた。以上の操作を「操作(1)」とする。  The test wafer W2 is placed on a test stand equipped with an electric heater, and an anisotropic conductive connector is placed on the test wafer W1 so that each of the conductive portions for connection is placed on the test electrode of the test wafer W2. The inspection circuit board T is aligned on the anisotropic conductive connector so that each of the inspection electrodes is positioned on the conductive portion for connection of the anisotropic conductive connector. Furthermore, the circuit board for inspection T was pressed downward with a load of 32 kg (the load applied to each conductive part for connection was about 2 g on average). Then, at room temperature (25 ° C), 15720 test electrodes on the test circuit board T are electrically connected to each other via the anisotropic conductive connector, the test weno, and W1. The electrical resistance between the two test electrodes is measured sequentially, and the half of the measured electrical resistance value is used as the electrical resistance of the conductive part for connection in the anisotropic conductive connector (hereinafter referred to as `` conducting resistance ''). t), and the number of conductive parts for connection having a conduction resistance of 0.5 Ω or more was determined. The above operation is referred to as “operation (1)”.
次いで、検査用回路基板 Tを加圧する荷重を 126kgに変更し (接続用導電部 1個 当たりに加わる荷重が平均で約 8g)、その後、試験台を 125°Cに加熱し、試験台の 温度が安定した後、この状態で 1時間放置した。以上の操作を「操作 (2)」とする。 次いで、試験台を室温まで冷却し、その後、検査用回路基板 Tに対する加圧を解 除した。以上の操作を「操作 (3)」とする。  Next, the load to pressurize the inspection circuit board T is changed to 126 kg (the average load applied to each conductive part for connection is about 8 g), and then the test bench is heated to 125 ° C and the temperature of the test bench is After being stabilized, it was left in this state for 1 hour. The above operation is referred to as “operation (2)”. Next, the test table was cooled to room temperature, and then the pressure applied to the inspection circuit board T was released. The above operation is referred to as “operation (3)”.
そして、上記の操作(1)、操作(2)および操作(3)を 1サイクルとして、合計で 500サ イタル連続して行った。  Then, the above operation (1), operation (2) and operation (3) were performed as one cycle, and the operation was performed continuously for a total of 500 sites.
以上において、接続用導電部の導通抵抗が 0. 5 Ω以上のものについては、ウェハ に形成された集積回路の電気的検査において、これを実際上使用することが困難で ある。  As described above, it is difficult to actually use the conductive part having a conduction resistance of 0.5 Ω or more in the electrical inspection of the integrated circuit formed on the wafer.
以上の結果を下記表 2に示す。  The results are shown in Table 2 below.
[0116] 〈比較例 1〉 [0116] <Comparative Example 1>
実施例 1と同様のフレーム板を用い、特開 2002— 334732号公報に記載の方法 に従って、フレーム板の開口の各々に下記の仕様の弾性異方導電膜を形成すること により、比較用の異方導電性コネクターを製造した。 得られた比較用の異方導電性コネクターにおける弾性異方導電膜について説明 すると、弾性異方導電膜の各々は、横方向の寸法が 5. 5mm,縦方向の寸法が 0. 4 mmである。 By using the same frame plate as in Example 1 and forming an elastic anisotropic conductive film having the following specifications in each of the openings of the frame plate according to the method described in Japanese Patent Application Laid-Open No. 2002-334732, a comparatively different anisotropic plate is formed. A directionally conductive connector was produced. The elastic anisotropic conductive film in the comparative anisotropic conductive connector obtained will be described. Each of the elastic anisotropic conductive films has a lateral dimension of 5.5 mm and a longitudinal dimension of 0.4 mm. .
弾性異方導電膜の各々には、 40個の接続用導電部が 120 mのピッチで横方向 に一列に配列されており、接続用導電部の各々は、横方向の寸法が 60 m、縦方 向の寸法が 200 μ m、厚みが約 140 μ mであり、絶縁部の厚みが 100 μ mである。 また、弾性異方導電膜の各々における被支持部の厚み (二股部分の一方の厚み) は 20 μ mである。  Each of the elastic anisotropic conductive films has 40 connecting conductive parts arranged in a row in the horizontal direction at a pitch of 120 m. Each of the connecting conductive parts has a horizontal dimension of 60 m and a vertical length of The dimension in the direction is 200 μm, the thickness is about 140 μm, and the thickness of the insulating part is 100 μm. Further, the thickness of the supported portion (one thickness of the bifurcated portion) in each elastic anisotropic conductive film is 20 μm.
また、弾性異方導電膜の各々における接続用導電部中の導電性粒子の含有割合 を調べたところ、体積分率で約 20%であった。  Further, when the content ratio of the conductive particles in the conductive portion for connection in each of the elastic anisotropic conductive films was examined, the volume fraction was about 20%.
そして、この比較用の異方導電性コネクターにつ 、て実施例 1と同様にして評価を 行った。以上、結果を表 1および表 2に示す。  The comparative anisotropic conductive connector was evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2.
[0117] [表 1] [0117] [Table 1]
Figure imgf000062_0001
Figure imgf000062_0001
[0118] [表 2]  [0118] [Table 2]
Figure imgf000062_0002
Figure imgf000062_0002
表 1および表 2の結果から明らかなように、実施例 1に係る異方導電性コネクターに よれば、弾性異方導電膜における接続用導電部のピッチが小さいものであっても、当 該接続用導電部には良好な導電性が得られると共に、隣接する接続用導電部間に は十分な絶縁性が得られ、し力も、温度変化による熱履歴などの環境の変化に対し ても良好な電気的接続状態が安定に維持され、更に、高温環境下において繰り返し 使用した場合にも、全ての接続用導電部において長期間にわたって良好な導電性 が維持されることが確認された。 As is clear from the results in Tables 1 and 2, according to the anisotropic conductive connector according to Example 1, even when the pitch of the conductive portions for connection in the elastic anisotropic conductive film is small, the connection is possible. Good electrical conductivity is obtained in the conductive part for the connection, and sufficient insulation is obtained between the adjacent conductive parts for connection, and the force is also resistant to environmental changes such as thermal history due to temperature changes. However, it was confirmed that a good electrical connection state was stably maintained, and that even when repeatedly used in a high temperature environment, good conductivity was maintained over a long period of time in all the conductive parts for connection. .
これに対し、比較例 1の異方導電性コネクターにおいては、絶縁部に導電性粒子が 残存しているため、絶縁抵抗が低い接続用導電部対が存在し、また、各接続用導電 部における導電性粒子の含有割合のバラツキが大き 、ため、高温環境下にお!/、て 繰り返し使用した場合に、一部の接続用導電部について導電性の低下が認められ  On the other hand, in the anisotropic conductive connector of Comparative Example 1, conductive particles remain in the insulating portion, so there are connecting conductive portion pairs with low insulation resistance. Due to the large variation in the content ratio of conductive particles, this is a high temperature environment! / When repeated use, some conductive parts for connection show a decrease in conductivity.

Claims

請求の範囲 The scope of the claims
[1] 検査対象であるウェハに形成された全てのまたは一部の集積回路における被検査 電極が配置された電極領域に対応して複数の開口が形成されたフレーム板と、前記 電極領域における被検査電極のパターンに対応するパターンに従って配置された弹 性高分子物質中に磁性を示す導電性粒子が含有されてなる複数の接続用導電部 およびこれらを相互に絶縁する弾性高分子物質よりなる絶縁部を有し、前記フレーム 板にその開口を塞ぐよう配置されて支持された複数の弾性異方導電膜と、これらの弾 性異方導電膜における各接続用導電部上に一体的に設けられた金属よりなる複数 の接点部材とを具えてなるウェハ検査用異方導電性コネクターを製造する方法であ つて、  [1] A frame plate in which a plurality of openings are formed corresponding to an electrode region in which an electrode to be inspected in all or a part of an integrated circuit formed on a wafer to be inspected, and a target in the electrode region A plurality of conductive parts for connection in which conductive particles exhibiting magnetism are contained in a conductive polymer material arranged according to a pattern corresponding to the pattern of the inspection electrode, and an insulation made of an elastic polymer material that insulates them from each other A plurality of elastic anisotropic conductive films arranged and supported by the frame plate so as to close the openings, and integrally provided on each connection conductive part in these elastic anisotropic conductive films. A method for manufacturing an anisotropic conductive connector for wafer inspection, comprising a plurality of contact members made of metal,
離型性支持板上に、硬化されて弾性高分子物質となる液状の高分子物質形成材 料中に磁性を示す導電性粒子が含有されてなる導電性エラストマ一用材料層を形 成し、この導電性エラストマ一用材料層の表面に、前記被検査電極のパターンに対 応する特定のパターンに従って磁性を示す金属よりなる接点部材を配置し、この状 態で、当該導電性エラストマ一用材料層に対して、その厚み方向に磁場を作用させ ると共に、当該導電性エラストマ一用材料層を硬化処理して導電性エラストマ一層を 形成し、この導電性エラストマ一層をレーザー加工して前記接点部材が配置された 部分以外の部分を除去することにより、前記離型性支持板上に、前記特定のパター ンに従って配置され、前記接点部材が設けられた複数の接続用導電部を形成し、 この状態で、当該接点部材が設けられた接続用導電部の各々を、フレーム板の開 口を塞ぐよう形成された、硬化されて弾性高分子物質となる液状の高分子物質形成 材料よりなる絶縁部用材料層中に浸入させ、当該絶縁部用材料層を硬化処理するこ とにより絶縁部を形成する工程を有することを特徴とするウェハ検査用異方導電性コ ネクターの製造方法。  On the releasable support plate, a conductive elastomer material layer in which conductive particles exhibiting magnetism are contained in a liquid polymer material forming material which is cured to become an elastic polymer material is formed. A contact member made of a metal exhibiting magnetism is arranged on the surface of the conductive elastomer material layer according to a specific pattern corresponding to the pattern of the electrode to be inspected, and in this state, the conductive elastomer material A magnetic field is applied to the layer in the thickness direction, the conductive elastomer material layer is cured to form a conductive elastomer layer, and the conductive elastomer layer is laser processed to form the contact member. By removing the portions other than the portion where is disposed, a plurality of connection conductive portions are formed on the releasable support plate according to the specific pattern and provided with the contact member, In this state, each of the connecting conductive portions provided with the contact members is insulated from a liquid polymer material forming material that is cured to become an elastic polymer material so as to block the opening of the frame plate. A method for manufacturing an anisotropic conductive connector for wafer inspection, comprising: a step of forming an insulating portion by intrusion into a portion material layer and curing the insulating portion material layer.
[2] 金属箔上に、特定のパターンに従って開口が形成されたレジスト層を形成し、前記 金属箔における前記レジスト層の開口力 露出した部分の表面に磁性を示す金属に よるメツキ処理を施すことにより、当該レジスト層の開口の各々に接点部材が形成され てなる接点部材複合体を製造し、この接点部材複合体を導電性エラストマ一用材料 層の表面に積重することにより、当該導電性エラストマ一用材料層の表面に、前記特 定のパターンに従って磁性を示す金属よりなる接点部材を配置することを特徴とする 請求項 1に記載のウェハ検査用異方導電性コネクターの製造方法。 [2] A resist layer having openings formed according to a specific pattern is formed on the metal foil, and the opening force of the resist layer in the metal foil is subjected to a plating process with a metal exhibiting magnetism. To produce a contact member composite in which a contact member is formed in each of the openings of the resist layer, and this contact member composite is used as a material for a conductive elastomer. The contact member made of a metal exhibiting magnetism according to the specific pattern is disposed on the surface of the material layer for conductive elastomer by stacking on the surface of the layer. Manufacturing method of anisotropic conductive connector for wafer inspection.
[3] 請求項 1または請求項 2に記載の製造方法によって得られることを特徴とするゥェ ハ検査用異方導電性コネクター。 [3] An anisotropic conductive connector for wafer inspection obtained by the manufacturing method according to claim 1 or claim 2.
[4] 検査対象であるウェハに形成された全てのまたは一部の集積回路における被検査 電極のパターンに対応するパターンに従って複数の検査用電極が表面に形成され た検査用回路基板と、この検査用回路基板の表面上に配置された、請求項 3に記載 のウェハ検査用異方導電性コネクターとを具えてなることを特徴とするウェハ検査用 プローブカード。 [4] An inspection circuit board in which a plurality of inspection electrodes are formed on the surface according to a pattern corresponding to the pattern of the electrode to be inspected in all or some of the integrated circuits formed on the wafer to be inspected, and this inspection A probe card for wafer inspection comprising the anisotropic conductive connector for wafer inspection according to claim 3 disposed on the surface of a circuit board for operation.
[5] 検査対象であるウェハに形成された全てのまたは一部の集積回路における被検査 電極に対応するパターンに従って複数の検査用電極が表面に形成された検査用回 路基板と、この検査用回路基板の表面上に一体的に設けられた、前記検査用電極 の各々の表面上に位置された厚み方向に伸びる複数の接続用導電部およびこれら を相互に絶縁する絶縁部よりなる異方導電性エラストマ一層と、この異方導電性エラ ストマー層の接続用導電部上に一体的に設けられた金属よりなる接点部材とを具え てなるウェハ検査用プローブカードを製造する方法であって、  [5] An inspection circuit board having a plurality of inspection electrodes formed on the surface according to a pattern corresponding to the electrodes to be inspected in all or some of the integrated circuits formed on the wafer to be inspected, and the inspection circuit board Anisotropic conductivity composed of a plurality of connecting conductive parts extending in the thickness direction, which are integrally provided on the surface of the circuit board and extending on the surface of each of the inspection electrodes, and insulating parts which insulate them from each other. A method for manufacturing a probe card for wafer inspection comprising a single layer of elastomer and a contact member made of metal integrally provided on a conductive portion for connection of the anisotropic conductive elastomer layer,
金属板上に、前記検査用電極に係る特定のパターンに従ってそれぞれ磁性を示 す金属よりなる複数の接点部材が形成されてなる接点部材複合体を用意し、 この接点部材複合体上に、硬化されて弾性高分子物質となる液状の高分子物質 形成材料中に磁性を示す導電性粒子が含有されてなる導電性エラストマ一用材料 層を形成し、この導電性エラストマ一用材料層上に、それぞれ磁性を示す金属よりな る複数の金属マスクの各々を、当該導電性エラストマ一用材料層を介して前記接点 部材と互いに対向するよう配置し、この状態で、当該導電性エラストマ一用材料層に 対して、その厚み方向に磁場を作用させると共に、当該導電性エラストマ一用材料層 を硬化処理することにより、導電性エラストマ一層を形成し、当該導電性エラストマ一 層をレーザー加工して前記接点部材と前記金属マスクとの間に位置する部分以外の 部分を除去することにより、前記特定のパターンに従って配置された複数の接続用 導電部を形成し、 A contact member composite is prepared by forming a plurality of contact members made of metal each exhibiting magnetism according to a specific pattern relating to the inspection electrode on a metal plate, and is cured on the contact member composite. A liquid polymer substance forming an elastic polymer substance and forming a conductive elastomer material layer containing conductive particles exhibiting magnetism in the forming material, and on each of the conductive elastomer material layers, Each of the plurality of metal masks made of metal exhibiting magnetism is disposed so as to face the contact member with the conductive elastomer material layer interposed therebetween, and in this state, the conductive elastomer material layer is disposed on the conductive elastomer material layer. On the other hand, by applying a magnetic field in the thickness direction and curing the material layer for conductive elastomer, a conductive elastomer layer is formed, and the conductive elastomer layer is formed. By removing portions other than the portion located between the metal mask and the contact member by laser processing, a plurality of connections arranged according to the specific pattern Forming a conductive part,
各接続用導電部上に配置された金属マスクを除去し、その後、当該接続用導電部 が形成された接点部材複合体を、硬化されて弾性高分子物質となる材料よりなる絶 縁部用材料層が形成された検査用回路基板上に重ね合わせることにより、当該検査 用回路基板の検査用電極の各々とこれに対応する接続用導電部とを対接させ、この 状態で前記絶縁部用材料層を硬化処理することにより絶縁部を形成する工程を有す ることを特徴とするウェハ検査用プローブカードの製造方法。  The metal mask disposed on each conductive part for connection is removed, and then the contact member composite formed with the conductive part for connection is insulated from an insulating material made of a material that becomes an elastic polymer substance. Overlaying on the inspection circuit board on which the layer is formed, each of the inspection electrodes of the inspection circuit board is brought into contact with the corresponding conductive part for connection, and in this state, the insulating part material A method for producing a probe card for wafer inspection, comprising a step of forming an insulating portion by curing a layer.
[6] 請求項 5に記載の製造方法によって得られることを特徴とするウェハ検査用プロ一 ブカード。  [6] A probe card for wafer inspection, which is obtained by the manufacturing method according to claim 5.
[7] ウェハに形成された複数の集積回路の各々について、当該集積回路の電気的検 查をウェハの状態で行うウェハ検査装置であって、  [7] A wafer inspection apparatus that performs electrical inspection of a plurality of integrated circuits formed on a wafer in a wafer state,
請求項 4または請求項 6に記載のウェハ検査用プローブカードを具えてなることを 特徴とするウェハ検査装置。  A wafer inspection apparatus comprising the probe card for wafer inspection according to claim 4 or 6.
PCT/JP2005/019309 2004-10-22 2005-10-20 Anisotropic conductive connector for inspecting wafer, manufacturing method thereof, waver inspection probe card, manufacturing method thereof, and wafer inspection device WO2006043631A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-308963 2004-10-22
JP2004308963 2004-10-22
JP2005148067 2005-05-20
JP2005-148067 2005-05-20
JP2005250764 2005-08-31
JP2005-250764 2005-08-31

Publications (1)

Publication Number Publication Date
WO2006043631A1 true WO2006043631A1 (en) 2006-04-27

Family

ID=36203047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019309 WO2006043631A1 (en) 2004-10-22 2005-10-20 Anisotropic conductive connector for inspecting wafer, manufacturing method thereof, waver inspection probe card, manufacturing method thereof, and wafer inspection device

Country Status (2)

Country Link
TW (1) TW200625725A (en)
WO (1) WO2006043631A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102680301A (en) * 2012-06-07 2012-09-19 北京航空航天大学 Device for preparing magnetosensitive elastomers in which millimeter-sized particles are uniformly distributed and arranged in chain-like mode
CN105762580A (en) * 2016-04-19 2016-07-13 深圳市长盈精密技术股份有限公司 Card holder and manufacturing method thereof
US9759742B2 (en) 2012-06-18 2017-09-12 Isc Co., Ltd. Test socket including conductive particles in which through-holes are formed and method for manufacturing same
CN111999624A (en) * 2019-05-27 2020-11-27 东京毅力科创株式会社 Intermediate connecting member and inspection device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193393A (en) * 1975-02-12 1976-08-16 Erasuteitsuku kontakutoshiitonoseizohoho
JPS53147772A (en) * 1977-05-31 1978-12-22 Japan Synthetic Rubber Co Ltd Manufacture of pressure-conductive elastomer
JPS61250906A (en) * 1985-04-26 1986-11-08 ジェイエスアール株式会社 Conductive elastomer sheet
JP2001050983A (en) * 1999-08-09 2001-02-23 Jsr Corp Probe card
JP2002334732A (en) * 2001-02-09 2002-11-22 Jsr Corp Anisotropic conductive connector, its manufacturing method, and probe member
WO2004086062A1 (en) * 2003-03-26 2004-10-07 Jsr Corporation Connecteur de mesure de resistances electriques, dispositif de connecteur de mesure de resistances electriques et leur procede de fabrication, dispositif de mesure de la resistance electrique de circuits substrats, et methode de mesure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193393A (en) * 1975-02-12 1976-08-16 Erasuteitsuku kontakutoshiitonoseizohoho
JPS53147772A (en) * 1977-05-31 1978-12-22 Japan Synthetic Rubber Co Ltd Manufacture of pressure-conductive elastomer
JPS61250906A (en) * 1985-04-26 1986-11-08 ジェイエスアール株式会社 Conductive elastomer sheet
JP2001050983A (en) * 1999-08-09 2001-02-23 Jsr Corp Probe card
JP2002334732A (en) * 2001-02-09 2002-11-22 Jsr Corp Anisotropic conductive connector, its manufacturing method, and probe member
WO2004086062A1 (en) * 2003-03-26 2004-10-07 Jsr Corporation Connecteur de mesure de resistances electriques, dispositif de connecteur de mesure de resistances electriques et leur procede de fabrication, dispositif de mesure de la resistance electrique de circuits substrats, et methode de mesure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102680301A (en) * 2012-06-07 2012-09-19 北京航空航天大学 Device for preparing magnetosensitive elastomers in which millimeter-sized particles are uniformly distributed and arranged in chain-like mode
US9759742B2 (en) 2012-06-18 2017-09-12 Isc Co., Ltd. Test socket including conductive particles in which through-holes are formed and method for manufacturing same
CN105762580A (en) * 2016-04-19 2016-07-13 深圳市长盈精密技术股份有限公司 Card holder and manufacturing method thereof
CN105762580B (en) * 2016-04-19 2018-06-22 深圳市长盈精密技术股份有限公司 Kato and its manufacturing method
CN111999624A (en) * 2019-05-27 2020-11-27 东京毅力科创株式会社 Intermediate connecting member and inspection device

Also Published As

Publication number Publication date
TW200625725A (en) 2006-07-16

Similar Documents

Publication Publication Date Title
JP3685192B2 (en) Anisotropic conductive connector, conductive paste composition, probe member, wafer inspection apparatus and wafer inspection method
KR100756120B1 (en) Anisotropic conductive connector, conductive paste composition, probe member, wafer inspection device and wafer inspection method
US7131851B2 (en) Anisotropic conductivity connector, conductive paste composition, probe member, and wafer inspection device, and wafer inspecting method
KR100595787B1 (en) Sheet-form connector and production method and application therefor
WO2006025279A1 (en) Wafer inspection-use anisotropic conductive connector and production method and applications therefor
KR100715751B1 (en) Anisotropic conductivity connector, probe member, wafer inspecting device, and wafer inspecting method
JP2007085833A (en) Anisotropically conductive connector for wafer inspection, its manufacturing method, probe card for wafer inspection, and wafer inspection device
KR100741228B1 (en) Anisotropic conductive connector and probe member and wafer inspecting device and wafer inspecting method
WO2006043631A1 (en) Anisotropic conductive connector for inspecting wafer, manufacturing method thereof, waver inspection probe card, manufacturing method thereof, and wafer inspection device
EP1811310A1 (en) Probe member for wafer inspection, probe card for wafer inspection and wafer inspection apparatus
JP2006351504A (en) Anisotropic conductive connector for wafer inspection, manufacturing method of the same, probe card for wafer inspection, manufacturing method of the same, and wafer inspection device
JP5104265B2 (en) Probe member, manufacturing method thereof and application thereof
JP3788476B2 (en) Wafer inspection probe member, probe card for wafer inspection, and wafer inspection apparatus
JP4423991B2 (en) Anisotropic conductive connector, probe member, wafer inspection apparatus and wafer inspection method
JP3685191B2 (en) Anisotropic conductive connector, probe member, wafer inspection apparatus and wafer inspection method
JP3938117B2 (en) Anisotropic conductive connector, probe member, wafer inspection apparatus and wafer inspection method
JP2006098395A (en) Anisotropic conductive connector for wafer inspection, production method and application therefor
JP2009098065A (en) Probe member and manufacturing method thereof, and application of probe member
JP3685190B2 (en) Anisotropic conductive connector, conductive paste composition, probe member, wafer inspection apparatus and wafer inspection method
JP2006063399A (en) Solder resistant gold composition and its application
JP2006237242A (en) Probe card for wafer testing and wafer testing device
JP2006216502A (en) Anisotropic conductive connector, probe card, wafer inspection device and wafer inspection method
JP2006100391A (en) Wafer inspection probe card and wafer inspection device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05795851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP