WO2006025279A1 - Wafer inspection-use anisotropic conductive connector and production method and applications therefor - Google Patents

Wafer inspection-use anisotropic conductive connector and production method and applications therefor Download PDF

Info

Publication number
WO2006025279A1
WO2006025279A1 PCT/JP2005/015539 JP2005015539W WO2006025279A1 WO 2006025279 A1 WO2006025279 A1 WO 2006025279A1 JP 2005015539 W JP2005015539 W JP 2005015539W WO 2006025279 A1 WO2006025279 A1 WO 2006025279A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
wafer
anisotropic conductive
inspected
inspection
Prior art date
Application number
PCT/JP2005/015539
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyoshi Kimura
Fujio Hara
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Publication of WO2006025279A1 publication Critical patent/WO2006025279A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/0735Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card arranged on a flexible frame or film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/7076Coupling devices for connection between PCB and component, e.g. display
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/7082Coupling device supported only by cooperation with PCB
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/712Coupling devices for rigid printing circuits or like structures co-operating with the surface of the printed circuit or with a coupling device exclusively provided on the surface of the printed circuit
    • H01R12/714Coupling devices for rigid printing circuits or like structures co-operating with the surface of the printed circuit or with a coupling device exclusively provided on the surface of the printed circuit with contacts abutting directly the printed circuit; Button contacts therefore provided on the printed circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2407Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means
    • H01R13/2414Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means conductive elastomers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/007Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for elastomeric connecting elements

Definitions

  • the present invention relates to an anisotropic conductive connector for wafer inspection used for performing electrical inspection of a plurality of integrated circuits formed on a wafer in a wafer state, a method for manufacturing the same, and an anisotropic conductive for wafer inspection.
  • BACKGROUND OF THE INVENTION 1 Field of the Invention The present invention relates to a wafer inspection probe member provided with a conductive connector, a wafer inspection apparatus including the probe member, and a wafer inspection method using the probe member.
  • a large number of integrated circuits are formed on a wafer made of, for example, silicon, and then basic electrical characteristics of each of these integrated circuits are inspected. Thus, a probe test for selecting defective integrated circuits is performed.
  • the semiconductor chip is formed by cutting the wafer, and the semiconductor chip is housed in an appropriate package and sealed. Further, each packaged semiconductor integrated circuit device is subjected to a burn-in test for selecting a semiconductor integrated circuit device having a potential defect by examining electrical characteristics in a high temperature environment.
  • a probe member is used to electrically connect each of the electrodes to be inspected in the inspection object to a tester.
  • a probe member includes an inspection circuit board on which an inspection electrode is formed according to a pattern corresponding to the pattern of the electrode to be inspected, and an anisotropic conductive elastomer sheet disposed on the inspection circuit board. Things are known.
  • Patent Document 1 As a powerful anisotropic conductive elastomer sheet, there are conventionally known various structures.
  • Patent Document 1 and the like are obtained by uniformly dispersing metal particles in an elastomer.
  • An anisotropic conductive elastomer sheet (hereinafter referred to as “dispersed anisotropic conductive elastomer sheet”). It is called.
  • Patent Document 2 and the like disclose a large number of conductive parts extending in the thickness direction by distributing the conductive magnetic particles non-uniformly in the elastomer and insulation that insulates them from each other.
  • An anisotropic conductive elastomer sheet (hereinafter, referred to as an “unevenly anisotropic conductive elastomer sheet”) is disclosed, and Patent Document 3 and the like further describe the surface of the conductive part.
  • An unevenly distributed anisotropic conductive elastomer sheet in which a step is formed between the insulating portion and the insulating portion is disclosed.
  • the unevenly distributed anisotropically conductive elastomer sheet has a conductive portion formed according to a pattern corresponding to the pattern of the electrode to be inspected of the integrated circuit to be inspected. More reliable electrical connection between electrodes compared to distributed anisotropic conductive elastomer sheet, even for integrated circuits where the arrangement pitch of the electrodes to be inspected, that is, the distance between the centers of adjacent electrodes to be inspected is small Is advantageous in that it can be achieved with Therefore, an unevenly distributed anisotropic conductive elastomer sheet is used in a probe test or burn-in test of a semiconductor integrated circuit device in which the pitch of electrodes to be inspected is small.
  • a wafer is divided into a plurality of areas in which, for example, 16 or 32 integrated circuits are formed among many integrated circuits.
  • a method is adopted in which a probe test is collectively performed on all integrated circuits formed in this area, and a probe test is sequentially performed on integrated circuits formed in other areas.
  • 64 or 124 of all the integrated circuits formed on the wafer or all of the integrated circuits are collectively subjected to the probe test. It is requested to do.
  • the Ueno to be inspected is a large one having a diameter of, for example, 8 inches or more and the number of electrodes to be inspected is, for example, 5000 or more, particularly 10,000 or more, Since the pitch of the electrodes to be inspected in the integrated circuit is extremely small, there are the following problems when using an unevenly distributed anisotropic conductive elastomer sheet in the probe test or WLBI test.
  • anisotropically conductive elastomer sheet To an unevenly distributed anisotropically conductive elastomer sheet!
  • anisotropically conductive elastomer sheets are flexible and easily deformable and have low handling properties. Therefore, when an electrical connection is made to an inspection target electrode of a wafer to be inspected. In addition, it is extremely difficult to align and hold and fix the unevenly distributed anisotropic conductive elastomer sheet.
  • the linear thermal expansion coefficient of the material for example silicon constituting the wafer 3. is about 3 X 10- 6 ⁇
  • linear thermal expansion coefficient of the material such as silicone rubber constituting the anisotropically conductive elastomer one sheet 2. is about 2 ⁇ 10- 4 ⁇ .
  • the coefficient of thermal expansion differs greatly between the material constituting the integrated circuit device to be inspected (for example, silicon) and the material constituting the unevenly anisotropic conductive elastomer sheet (for example, silicone rubber), the burn-in test In and Even when the required alignment and holding / fixing with the laster sheet is realized, if the thermal history due to the temperature change is received, the conductive portion of the unevenly anisotropic conductive elastomer sheet and the integrated circuit device are inspected. As a result of positional displacement with the electrode, it is difficult to maintain a stable connection state by changing the electrical connection state.
  • Each of the openings formed in the frame plate has a size corresponding to the electrode region of the integrated circuit in the wafer to be inspected. Therefore, the anisotropic anisotropic conductive film disposed in each of the openings is Since a small size is sufficient, it is easy to form individual elastic anisotropic conductive films.
  • each of the elastic anisotropic conductive films is supported by the frame plate, it can be easily handled by being deformed, and it can be integrated by forming positioning marks (for example, holes) in the frame plate in advance. In the electrical connection work of the circuit device, it is possible to easily align and hold and fix the integrated circuit device.
  • the thermal expansion of the elastic anisotropic conductive film with a small size has a small absolute amount of thermal expansion even when it receives a thermal history
  • the thermal expansion of the elastic anisotropic conductive film is regulated by the frame plate, and the anisotropic conductive film
  • the thermal expansion of the entire connector depends on the thermal expansion of the material that makes up the frame plate, so if you use a material with a low coefficient of thermal expansion as the material that makes up the frame plate,
  • a favorable electrical connection state is stably maintained.
  • Such an anisotropic conductive connector 1 is manufactured as follows.
  • a mold for forming an elastic anisotropic conductive film comprising an upper mold 80 and a lower mold 85 as a pair as shown in FIG. 28 is prepared.
  • Each of the upper mold 80 and the lower mold 85 in this mold corresponds to the pattern of the conductive portion of the anisotropic conductive elastomer sheet to be molded on the substrates 81 and 86.
  • a molding surface is formed by the ferromagnetic layers 82 and 87 and the nonmagnetic layers 83 and 88.
  • the upper mold 80 and the lower mold 85 are arranged so that the ferromagnetic layer 82 of the upper mold 80 and the corresponding ferromagnetic layer 87 of the lower mold 85 face each other.
  • a frame plate 90 in which an opening 91 is formed corresponding to the electrode region in the wafer to be inspected is aligned and disposed, and elasticized by a hardening process.
  • a molding material layer 95A in which conductive particles P exhibiting magnetism are dispersed in a polymer substance-forming material to be a polymer substance is formed so as to close each opening 91 of the frame plate 90.
  • the conductive particles P contained in the molding material layer 95A are in a state of being dispersed in the molding material layer 95A.
  • a pair of electromagnets are arranged on the upper surface of the upper die 80 and the lower surface of the lower die 85 to operate them, whereby the ferromagnetic material layer 82 of the upper die 80 is formed on the molding material layer 95A.
  • the magnetic layer 87 of the lower mold 85 corresponding thereto, that is, the portion that becomes the conductive portion, a magnetic field that is larger and stronger than the other portions is applied in the thickness direction of the molding material layer 95A.
  • the conductive particles P dispersed in the molding material layer 95A correspond to the portion of the molding material layer 95A where a high-intensity magnetic field is applied, that is, the ferromagnetic layer 82 of the upper mold 80.
  • the lower mold 85 is gathered at a portion between the lower layer 85 and the ferromagnetic layer 87, and is further aligned in the thickness direction of the molding material layer 95A.
  • a plurality of conductive portions 96 contained in a state in which the conductive particles P are aligned in the thickness direction
  • An elastic anisotropic conductive film 95 comprising an insulating portion 97 and insulating portions 97 that insulate these conductive portions 96 from each other is molded in a state in which the peripheral portion thereof is supported by the opening edge portion of the frame plate 90. Connectors are manufactured
  • anisotropic conductive connectors With a small pitch of the conductive parts and a high density. is required. Thus, in the manufacture of such anisotropically conductive connectors Of course, it is necessary to use the upper die 80 and the lower die 85 in which the ferromagnetic layers 82 and 87 are arranged at a very small pitch.
  • the ferromagnetic layer 87b is directed in the direction ( (Indicated by arrow Y), or a magnetic field also acts in the direction of the direction of force from the ferromagnetic layer 82b of the upper mold 80 to the ferromagnetic layer 87a adjacent to the corresponding ferromagnetic layer 87b of the lower mold 85.
  • a magnetic field also acts in the direction of the direction of force from the ferromagnetic layer 82b of the upper mold 80 to the ferromagnetic layer 87a adjacent to the corresponding ferromagnetic layer 87b of the lower mold 85.
  • the conductive particles P can be gathered in a portion located between the ferromagnetic layer 82a of the upper die 80 and the corresponding ferromagnetic layer 87a of the lower die 85. It becomes difficult, and the conductive particles P also gather at the portion located between the ferromagnetic layer 82a of the upper mold 80 and the ferromagnetic layer 87b of the lower mold 85, and the conductive particles P are formed. It becomes difficult to sufficiently orient the material layer 95A in the thickness direction, and as a result, an anisotropic conductive connector having a desired conductive portion and insulating portion cannot be obtained.
  • a special mold including the upper mold 80 and the lower mold 85 is necessary as described above. This mold is manufactured individually according to the wafer to be inspected, and the manufacturing process is complicated, so the manufacturing cost of the anisotropic conductive connector becomes extremely high. As a result, wafer inspection costs increase.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 51-93393
  • Patent Document 2 Japanese Patent Laid-Open No. 53-147772
  • Patent Document 3 Japanese Patent Application Laid-Open No. 61-250906
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-334732
  • the present invention has been made based on the above situation, and the first object of the present invention is that the electrode force to be inspected in the wafer to be inspected is arranged at a high density with a small pitch.
  • the anisotropic conductive connector for wafer inspection which can reliably achieve the required electrical connection for the wafer, and can be manufactured at low cost, and a method for manufacturing the same There is to do.
  • the second object of the present invention is to reliably achieve the required electrical connection for the wafer even if the electrodes to be inspected on the wafer to be inspected are arranged with high density with small pitches. It is another object of the present invention to provide a probe member for wafer inspection that can be manufactured at a low cost.
  • a third object of the present invention is to provide a wafer inspection apparatus and wafer inspection method for performing electrical inspection of a plurality of integrated circuits formed on a wafer in the state of a wafer using the probe member. .
  • a method for manufacturing an anisotropic conductive connector for wafer inspection is provided in an electrode region in which electrodes to be inspected in all or some integrated circuits formed on a wafer to be inspected are arranged.
  • a frame plate having a plurality of openings formed therein and a plurality of elastic anisotropic conductive films arranged so as to close each of the openings of the frame plate, each of the elastic anisotropic conductive films being A plurality of conductive parts for connection extending in the thickness direction, which are arranged corresponding to the electrodes to be inspected in the integrated circuit formed on the substrate, and are formed of elastic particles containing conductive particles exhibiting magnetism, and A method for manufacturing an anisotropic conductive connector for wafer inspection comprising an insulating portion made of an elastic polymer material that insulates the connecting conductive portions from each other,
  • a plurality of connections can be made on the releasable support plate by laser processing a conductive elastomer layer in which conductive particles exhibiting magnetism are contained in an elastic polymer material supported on the releasable support plate. Forming a conductive part for
  • the insulating portion made of a liquid polymer material forming material that is cured to become an elastic polymer material is formed so as to close the opening of the frame plate. It has the process of forming an insulating part by making it infiltrate into a material layer and carrying out the hardening process of the said insulating part material layer in this state.
  • the laser treatment is preferably performed by a carbon dioxide laser or an ultraviolet laser.
  • a metal mask is formed on the surface of the conductive elastomer layer according to the pattern of the conductive part for connection to be formed, and then the conductive elastomer layer is laser processed to form a plurality of conductive parts for connection. It is preferable to form.
  • a metal mask by subjecting the surface of the conductive elastomer layer to a plating treatment.
  • a thin metal layer is formed on the surface of the conductive elastomer layer, a resist layer having an opening formed in accordance with a specific pattern is formed on the surface of the thin metal layer, and the resist layer in the thin metal layer is formed. Opening force It is preferable that the metal mask is formed by subjecting the surface of the exposed part to a plating treatment.
  • a conductive elastomer containing magnetic particles in a liquid elastomer material that is cured to become an elastic polymer substance a conductive elastomer containing magnetic particles in a liquid elastomer material that is cured to become an elastic polymer substance.
  • a conductive elastomer layer can be formed by applying a magnetic field to the single material layer in the thickness direction and curing the conductive elastomer single material layer.
  • a frame plate having a coefficient of linear thermal expansion of 3 ⁇ ⁇ 5— ⁇ or less.
  • An anisotropic conductive connector for wafer inspection according to the present invention is obtained by the manufacturing method described above.
  • the probe member of the present invention is a probe member used for performing an electrical inspection of the integrated circuit in a wafer state for each of the plurality of integrated circuits formed on the wafer,
  • An inspection circuit board having inspection electrodes formed on the surface according to a pattern corresponding to the pattern of the electrode to be inspected in the integrated circuit formed on the wafer to be inspected, and the above-mentioned circuit board disposed on the surface of the inspection circuit board And an anisotropic conductive connector for wafer inspection.
  • an insulating sheet and an insulating sheet extend through the thickness direction on the anisotropic conductive connector for wafer inspection, and the pattern of the electrode to be inspected.
  • a sheet-like profile consisting of a plurality of electrode structures arranged according to the corresponding pattern A robe is placed, okay! /.
  • a wafer inspection apparatus includes the above-described probe member in a wafer inspection apparatus that performs an electrical inspection of each of the plurality of integrated circuits formed on the wafer in a wafer state.
  • the electrical connection to the integrated circuit formed on the wafer to be inspected is achieved through the probe member.
  • each of the plurality of integrated circuits formed on the wafer is electrically connected to the tester via the probe member, and the electrical circuit of the integrated circuit formed on the wafer is electrically connected. It is characterized by performing an inspection.
  • the conductive elastomer layer is laser-processed to form the conductive portion for connection, and thus has the desired conductivity.
  • the connecting lead can be obtained with certainty.
  • the conductive part for connection is infiltrated into the material layer for insulating part, and the insulating part material layer is cured to cure the insulating part. Therefore, it is possible to reliably obtain an insulating portion in which no conductive particles are present.
  • the anisotropic conductive connector for wafer inspection of the present invention obtained by such a method, even if the pitch of the electrode to be inspected in the wafer to be inspected is small, the pitch is arranged with high density. The required electrical connection can be reliably achieved for each of the electrodes to be inspected, and the force can be manufactured at a low cost.
  • the electrode force to be inspected on the wafer to be inspected is arranged at a high density with a small pitch. Even so, the required electrical connection can be reliably achieved for the wafer, and the force can be manufactured at low cost.
  • the electrode force to be inspected on the wafer to be inspected is arranged with a small pitch and high density.
  • the required electrical inspection can be reliably performed on the wafer.
  • FIG. 1 is a plan view showing an example of an anisotropic conductive connector according to the present invention.
  • FIG. 2 is an enlarged plan view showing a part of the anisotropic conductive connector shown in FIG.
  • FIG. 3 is an enlarged plan view showing an elastic anisotropic conductive film in the anisotropic conductive connector shown in FIG. 1.
  • FIG. 4 is a cross-sectional view illustrating an enlarged elastic anisotropic conductive film in the anisotropic conductive connector shown in FIG. 1.
  • FIG. 4 is a cross-sectional view illustrating an enlarged elastic anisotropic conductive film in the anisotropic conductive connector shown in FIG. 1.
  • FIG. 5 is an explanatory cross-sectional view showing a state in which a conductive elastomer material layer is formed on a releasable support plate.
  • FIG. 6 is an explanatory cross-sectional view showing an enlarged conductive elastomer material layer.
  • FIG. 7 is an explanatory sectional view showing a state in which a magnetic field is applied to the conductive elastomer material layer in the thickness direction.
  • FIG. 8 is an explanatory sectional view showing a state in which a conductive elastomer layer is formed on a releasable support plate.
  • FIG. 9 is an explanatory sectional view showing a state in which a thin metal layer is formed on one conductive elastomer layer.
  • FIG. 10 is an explanatory cross-sectional view showing a state in which a resist layer having an opening is formed on a thin metal layer.
  • FIG. 11 is an explanatory sectional view showing a state in which a metal mask is formed in the opening of the resist layer.
  • FIG. 12 is an explanatory cross-sectional view showing a state in which a plurality of connecting conductive portions are formed according to a specific pattern on a releasable support.
  • FIG. 13 is an explanatory sectional view showing a state in which a frame plate is disposed on a releasable support and an insulating material layer is formed.
  • FIG. 14 is an explanatory cross-sectional view showing a state in which a releasable support plate on which a conductive part for connection is formed is superimposed on a releasable support plate on which an insulating material layer is formed.
  • FIG. 15 is an explanatory cross-sectional view showing a state in which an integral insulating portion is formed around the conductive portion for connection.
  • FIG. 16 is a cross-sectional view illustrating the configuration of an example of a wafer inspection apparatus using an anisotropic conductive connector according to the present invention.
  • FIG. 17 is a cross-sectional view illustrating the configuration of the main part of an example of the probe member according to the present invention.
  • FIG. 18 is an explanatory cross-sectional view showing a configuration in another example of a wafer inspection apparatus using the anisotropic conductive connector according to the present invention.
  • FIG. 19 is an enlarged plan view showing an elastic anisotropic conductive film in another example of the anisotropic conductive connector according to the present invention.
  • FIG. 20 is an enlarged plan view showing an elastic anisotropic conductive film in still another example of the anisotropic conductive connector according to the present invention.
  • FIG. 21 is an explanatory view showing a state in which a connecting conductive portion is formed by removing only a peripheral portion of a conductive elastomer layer in a portion that becomes a connecting conductive portion.
  • FIG. 22 is an explanatory cross-sectional view showing a state in which the conductive portion for connection is formed by removing only the peripheral portion of the conductive elastomer layer in the conductive elastomer layer.
  • FIG. 23 is a top view of a test wafer used in Examples.
  • FIG. 25 is an explanatory diagram showing an inspected electrode of the integrated circuit formed on the test wafer shown in FIG. 23.
  • FIG. 26 is a top view of the frame plate produced in the example.
  • FIG. 27 is an explanatory view showing a part of the frame plate shown in FIG. 26 in an enlarged manner.
  • FIG. 28 is an explanatory sectional view showing a configuration of a mold for manufacturing a conventional anisotropically conductive connector.
  • FIG. 29 is an explanatory cross-sectional view showing a state in which a frame plate is arranged in a mold and a molding material layer is formed in a process for manufacturing a conventional anisotropic conductive connector.
  • ⁇ 30] is a sectional view for explanation showing a state in which a magnetic field is applied in the thickness direction of the molding material layer.
  • ⁇ 31] In the conventional method for manufacturing an anisotropic conductive connector, the molding material layer is acted on. It is sectional drawing for description which shows the direction of a magnetic field.
  • FIG. 1 is a plan view showing an example of an anisotropic conductive connector for wafer inspection according to the present invention
  • FIG. 2 is an enlarged plan view showing a part of the anisotropic conductive connector shown in FIG. 1
  • FIG. FIG. 4 is an enlarged plan view showing the elastic anisotropic conductive film in the anisotropic conductive connector shown in FIG. 1
  • FIG. 4 is an enlarged view showing the elastic anisotropic conductive film in the anisotropic conductive connector shown in FIG. FIG.
  • anisotropic conductive connector 1 is, for example, each of the integrated circuits for a wafer on which a plurality of integrated circuits are formed.
  • FIG. 2 it has a frame plate 10 in which a plurality of openings 11 (shown by broken lines) are formed.
  • the opening 11 of the frame plate 10 is formed so as to correspond to the electrode region where the electrodes to be inspected are arranged in all the integrated circuits formed on the wafer to be inspected.
  • a plurality of elastic anisotropic conductive films 20 having conductivity in the thickness direction are arranged so as to close one opening 11 and supported by the opening edge.
  • the frame plate 10 in this example when a pressure reducing means is used in a wafer inspection apparatus to be described later, air between the anisotropic conductive connector and a member adjacent to the anisotropic conductive connector is discharged.
  • An air circulation hole 12 for circulation is formed, and a positioning hole 13 for positioning the wafer to be inspected and the circuit board for inspection is further formed.
  • the elastic anisotropic conductive film 20 is made of an elastic polymer material, and is disposed so as to be positioned in the opening 11 of the frame plate 10 as shown in FIG.
  • Each of the connecting conductive portions 21 is arranged according to a pattern corresponding to the pattern of the electrode to be inspected in the integrated circuit formed on the wafer to be inspected, and is electrically connected to the electrode to be inspected in the inspection of the wafer. As shown in FIG.
  • the conductive conductive part 21 for magnetism in the elastic anisotropic conductive film 20 is densely contained in a state of being oriented so as to be aligned in the thickness direction.
  • the insulating part 22 does not contain the conductive particles P at all.
  • each of the connecting conductive portions 21 is formed so that one surface force of the insulating portion 22 protrudes, and thus, one surface of the elastic anisotropic conductive film 20 protrudes according to the connecting conductive portion 21.
  • Part 23 is formed.
  • the thickness of the frame plate 10 is preferably a force of 25 to 600 ⁇ m, and more preferably 40 to 400 ⁇ m, depending on the material.
  • this thickness is less than 25 m, the strength required when using anisotropically conductive connectors will not be obtained, and the durability will be low. As a result, the anisotropically conductive connector cannot be handled with sufficient rigidity.
  • the thickness exceeds 600 m, the anisotropic anisotropic conductive film 20 formed in the opening 11 becomes excessively thick, and good conductivity in the connecting conductive part 21 can be obtained. May be difficult.
  • the shape and size in the plane direction at the opening 11 of the frame plate 10 are designed according to the size, pitch, and pattern of the inspected electrode of the wafer to be inspected.
  • the material constituting the frame plate 10 is not particularly limited as long as the frame plate 10 is not easily deformed and has a rigidity that allows its shape to be stably maintained.
  • Various materials such as a metal material, a ceramic material, and a resin material can be used.
  • the frame plate 10 is made of, for example, a metal material, an insulating film is formed on the surface of the frame plate 10; practically.
  • the metal material constituting the frame plate 10 include iron, copper, nickel, chrome, Examples include metals such as Nord, magnesium, manganese, molybdenum, indium, lead, palladium, titanium, tandastene, aluminum, gold, platinum, silver, and alloys or alloy steels in which two or more of these are combined.
  • resin material constituting the frame plate 10 include liquid crystal polymer and polyimide resin.
  • the material for forming the frame plate 10 preferably be linear thermal expansion coefficient used the following 3 X 10- 5 ⁇ instrument more preferably - 1 X 10- 7 ⁇ 1 X 10 "5 / ⁇ , particularly preferably Ru 1 X 10- 6 ⁇ 8 X 10- 6 ⁇ der.
  • Such materials include Invar type alloys such as Invar, Elinvar type alloys such as Elinvar, magnetic metal alloys such as Super Invar, Kovar, and 42 alloy, or alloy steel.
  • the total thickness of the elastic anisotropic conductive film 20 is preferably 50 to 2000 ⁇ m, more preferably 70 to: LOOO ⁇ m, particularly preferably. Is 80-500 / ⁇ ⁇ . If this thickness is 50 m or more, the anisotropic anisotropic conductive film 20 having sufficient strength can be obtained reliably. On the other hand, if the thickness is 2000 m or less, the connecting conductive portion 21 having the required conductivity characteristics can be obtained with certainty.
  • the total projecting height of the projecting portions 23 is preferably 20% or more, more preferably 10% or more of the total thickness of the projecting portions 23.
  • the protrusion height of the protrusion 23 is preferably 100% or less of the shortest width or diameter of the protrusion 23, more preferably 70% or less.
  • the elastic polymer material forming the elastic anisotropic conductive film 20 a heat-resistant polymer material having a crosslinked structure is preferred.
  • Various materials can be used as the curable polymer material-forming material that can be used to obtain a strong crosslinked polymer material. Ricorn rubber is preferred.
  • the liquid silicone rubber may be an addition type or a condensation type, but an addition type liquid silicone rubber is preferred.
  • This addition-type liquid silicone rubber is cured by the reaction between the bur group and the Si H bond, and is a one-pack type (one-component type) made of polysiloxane containing both vinyl groups and Si—H bonds.
  • an addition-type liquid silicone rubber having a viscosity at 23 ° C of 100 to 1,250 Pa-s, more preferably 150 to 800 Pa's, particularly preferably 250 to 500 Pa '. s thing.
  • this viscosity is less than lOOPa's
  • the molding material for obtaining the elastic anisotropic conductive film 20 described later sedimentation of the conductive particles in the addition-type liquid silicone rubber occurs immediately and good storage stability.
  • a parallel magnetic field is applied to the forming material layer, the conductive particles are not aligned so as to be aligned in the thickness direction, and it is difficult to form a chain of conductive particles in a uniform state. It may become.
  • this viscosity exceeds 1,250 Pa's, the resulting molding material has a high viscosity, which may make it difficult to form a molding material layer in the mold. Even when a parallel magnetic field is applied to the molding material layer, the conductive particles do not move sufficiently, and it may be difficult to orient the conductive particles so that they are aligned in the thickness direction.
  • the viscosity of such an addition type liquid silicone rubber can be measured with a B-type viscometer.
  • the elastic anisotropic conductive film 20 is formed from a cured liquid silicone rubber (hereinafter referred to as "silicone rubber cured product")
  • the cured silicone rubber has a compression set at 150 ° C. It is preferably 10% or less, more preferably 8% or less, and further preferably 6% or less. If this compression set exceeds 10%, when the anisotropically conductive connector obtained is repeatedly used many times or repeatedly in a high temperature environment, the connection conductive part 21 is permanently set. As a result, the chain of conductive particles in the connecting conductive part 21 is disturbed. It becomes difficult to maintain the necessary conductivity.
  • the compression set of the cured silicone rubber can be determined by a method according to JIS K 6249.
  • the cured silicone rubber forming the elastic anisotropic conductive film 20 preferably has a durometer A hardness of 10 to 60 at 23 ° C, more preferably 15 to 60, particularly Preferably it is 20-60. If the durometer A hardness is less than 10, the insulation 22 that insulates the connection conductive parts 21 from each other when pressed is excessively distorted or immediately has the required insulation between the connection conductive parts 21. May be difficult to maintain. On the other hand, if the durometer A hardness exceeds 60, a pressing force with a considerably large load is required to give an appropriate distortion to the conductive part 21 for connection. For example, the wafer to be inspected is greatly deformed. Or breakage easily occurs.
  • the connecting conductive portion 21 is permanently strained. As soon as it occurs, this results in disturbance of the chain of conductive particles in the connecting conductive portion 21, and it becomes difficult to maintain the required conductivity.
  • the anisotropic conductive connector is used in a test under a high temperature environment, for example, a W LBI test, the cured silicone rubber forming the elastic anisotropic conductive film 20 has a durometer A hardness of 25 to 40 at 23 ° C. It is preferable that.
  • the anisotropic conductive connector obtained will be permanently strained in the conductive part for connection 21 when repeatedly used in tests at high temperatures. As a result, the chain of conductive particles in the connection conductive portion 21 is disturbed, and it becomes difficult to maintain the required conductivity.
  • the durometer A hardness of the cured silicone rubber can be measured by a method based on JIS K 6249.
  • the cured silicone rubber forming the elastic anisotropic conductive film 20 preferably has a tear strength at 23 ° C of 8 kNZm or more, more preferably lOkNZ m or more, more preferably 15 kNZm. Above, particularly preferably 20 kNZm or more . If the tear strength is less than 8 kNZm, the durability tends to decrease when the elastic anisotropic conductive film 20 is excessively strained.
  • the tear strength of the cured silicone rubber can be determined by a method based on JIS K 6249.
  • liquid silicone rubbers "KE2000” series and “KE1950” series manufactured by Shin-Etsu Chemical Co., Ltd. are commercially available! Can do.
  • an appropriate curing catalyst can be used for curing the addition type liquid silicone rubber.
  • a platinum-based catalyst can be used. Specific examples thereof include chloroplatinic acid and a salt thereof, a platinum-unsaturated group-containing siloxane complex, a complex of bursiloxane and platinum, Known complexes such as a complex of platinum and 1,3-dibule tetramethyldisiloxane, a triorganophosphine, a complex of phosphite and platinum, a acetyl acetate platinum chelate, a complex of cyclic gen and platinum, etc. .
  • the amount of the curing catalyst used is appropriately selected in consideration of the type of curing catalyst and other curing conditions, but is usually 3 to 15 parts by weight with respect to 100 parts by weight of the addition type liquid silicone rubber.
  • addition-type liquid silicone rubber a thixotropic improvement of the addition-type liquid silicone rubber, viscosity adjustment, improvement of dispersion stability of the conductive particles, or a base material having high strength is obtained.
  • an inorganic filler such as normal silica powder, colloidal silica, air-mouthed gel silica, alumina, or the like can be contained as necessary.
  • the amount of such an inorganic filler used is not particularly limited, but if used in a large amount, the orientation of the conductive particles by a magnetic field cannot be sufficiently achieved, which is not preferable.
  • the conductive particles P contained in the connecting conductive portion 21 of the elastic anisotropic conductive film 20 include a highly conductive metal on the surface of magnetic core particles (hereinafter also referred to as “magnetic core particles"). It is preferable to use the one coated with!
  • the magnetic core particles for obtaining the conductive particles P have a number average particle diameter of 3 to 40 ⁇ m. It is preferable that
  • the number average particle diameter of the magnetic core particles refers to that measured by a laser diffraction scattering method.
  • the number average particle diameter is 3 ⁇ m or more, it is easy to obtain a conductive part 21 for connection that is easily deformed under pressure, has a low resistance value, and high connection reliability. On the other hand, if the number average particle diameter is 40 ⁇ m or less, the fine connecting conductive part 21 can be easily formed, and the obtained connecting conductive part 21 has stable conductivity. It is easy to become.
  • the BET specific surface area of the magnetic core particles is preferably 10 to 500 m 2 / kg, more preferably 20 to 500 m 2 Zkg, and particularly preferably 50 to 400 m 2 Zkg.
  • the magnetic core particle has a sufficiently large area that can be measured, so that the required amount of plating can be reliably applied to the magnetic core particle. Therefore, the conductive particles P having high conductivity can be obtained, and the contact area between the conductive particles P is sufficiently large, so that stable and high conductivity can be obtained.
  • the BET specific surface area is 500 m 2 Zkg or less, the magnetic core particles will not be brittle, and will retain stable and high conductivity with little damage when subjected to physical stress. Is done.
  • the magnetic core particles preferably have a coefficient of variation in particle diameter of 50% or less, more preferably 40% or less, still more preferably 30% or less, and particularly preferably 20% or less. Is.
  • the coefficient of variation of the particle diameter is determined by the formula: ( ⁇ ZDn) X 100 (where ⁇ is the standard deviation value of the particle diameter, and Dn is the number average particle diameter of the particles). If the coefficient of variation of the particle diameter is 50% or less, the uniformity of the particle diameter is large, and thus the conductive portion 21 for connection with a small variation in conductivity can be formed.
  • iron, nickel, cobalt a force obtained by coating these metals with copper, resin, and the like can be used.
  • the saturation magnetic field is 0.1 W b / m.
  • Two or more can be preferably used, more preferably 0.3 Wb / m 2 or more, and particularly preferably 0.5 WbZm 2 or more.
  • iron, nickel, cobalt or the like Or alloys thereof.
  • this saturation magnetic field is 0.1 lWbZm 2 or more, the conductive particles P can be easily moved in the molding material layer for forming the anisotropic anisotropic conductive film 20 by the method described later. As a result, the conductive particles P can be reliably moved to the portion to be the conductive portion for connection in the molding material layer to form a chain of the conductive particles P.
  • the conductive particles P used to obtain the conductive portion 21 for connection are obtained by coating the surfaces of the magnetic core particles with a highly conductive metal.
  • the “highly conductive metal” means one having an electrical conductivity at 0 ° C. of 5 ⁇ 10 6 ⁇ — 1 !!! — 1 or more.
  • gold As such a highly conductive metal, gold, silver, rhodium, platinum, chromium, or the like can be used. Among these, gold is preferable because it is chemically stable and has high conductivity.
  • the ratio of the highly conductive metal to the core particle [(mass of high conductive metal ⁇ mass of core particle) X 100] in the conductive particle ⁇ is 15 mass% or more, preferably 25 to 35 mass%. It is said.
  • the proportion of the highly conductive metal is less than 15% by mass, the conductivity of the conductive particles ⁇ decreases significantly when the anisotropically conductive connector obtained is repeatedly used in a high temperature environment. The required conductivity cannot be maintained.
  • the conductive particles ⁇ have a thickness t of the covering layer of a highly conductive metal, calculated by the following formula (1), of 50 nm or more, and preferably 100 to 200 nm.
  • the Formula (1) t [l / (Sw)] X [N / (l -N)]
  • t is the thickness of the coating layer made of a highly conductive metal (m)
  • Sw is the BET specific surface area of the core particle (m 2 / kg)
  • N is (high conductivity
  • the weight of the conductive metal is the value of the total weight of the Z conductive particles).
  • N is the ratio of the mass of the coating layer to the mass of the entire conductive particle.
  • N (m / Mp) m / Mp).
  • N (l + m / Mp) mZMp
  • N + N (m / Mp) mZMp, and when N (mZMp) is shifted to the right side,
  • the ferromagnetic material constituting the magnetic core particles forms the coating layer when the anisotropically conductive connector is repeatedly used under a high temperature environment. Even if it moves inside, the surface of the conductive particles P has high conductivity. Since the metal is present in a high proportion, the intended conductivity that the conductivity of the conductive particles P is not significantly reduced is maintained.
  • the number average particle diameter of the conductive particles P is preferably 3 to 40 ⁇ m, more preferably 6 to 25 ⁇ .
  • the resulting elastic anisotropic conductive film 20 can be easily deformed under pressure, and the connecting conductive portion 21 of the elastic anisotropic conductive film 20 can be made V As a result, sufficient electrical contact can be obtained between the conductive particles.
  • the shape of the conductive particles is not particularly limited, but is spherical, star-shaped, or aggregated in that it can be easily dispersed in the polymer material-forming material. It is preferable that it is a lump with secondary particles.
  • Such conductive particles can be obtained, for example, by the following method.
  • magnetic core particles having a required particle diameter are prepared by making a ferromagnetic material into particles by a conventional method or preparing commercially available ferromagnetic particles and classifying the particles.
  • the particle classification treatment can be performed by a classification device such as an air classification device or a sonic sieving device.
  • Specific conditions for the classification treatment are appropriately set according to the number average particle diameter of the target magnetic core particles, the type of the classification device, and the like.
  • the surface of the magnetic core particle is treated with an acid, and further washed with pure water, for example, to remove impurities such as dirt, foreign matter, and oxide film present on the surface of the magnetic core particle.
  • Conductive particles can be obtained by coating the surface of the core particles with a highly conductive metal.
  • hydrochloric acid can be used as the acid used to treat the surface of the magnetic core particles.
  • the method of coating the surface of the magnetic core particles with the highly conductive metal is not limited to these methods, which can use an electroless plating method, a replacement plating method, or the like.
  • the method for producing conductive particles by the electroless plating method or the substitution plating method will be described.
  • acid-treated and washed magnetic core particles are added to the plating solution.
  • a slurry is prepared, and the magnetic core particles are subjected to electroless plating or substitution plating while stirring the slurry.
  • the particles in the slurry are separated by MEC solution, and then the particles are washed with, for example, pure water to obtain conductive particles in which the surface of the magnetic core particles is coated with a highly conductive metal. It is done.
  • a finish layer made of a highly conductive metal may be formed on the surface of the undercoat layer.
  • the method for forming the base plating layer and the plating layer formed on the surface thereof is not particularly limited, but the base plating layer is formed on the surface of the magnetic core particles by the electroless plating method, and then the substitution plating method. It is preferable to form a plating layer made of a highly conductive metal on the surface of the base plating layer.
  • the plating solution used for the electroless plating or the substitution plating is not particularly limited, but variously sold products. Can be used.
  • the particles when the surface of the magnetic core particles is coated with a highly conductive metal, the particles may be aggregated, so that conductive particles having a large particle diameter may be generated. It is preferable to classify the conductive particles, so that conductive particles having the desired particle diameter can be obtained with certainty.
  • Examples of the classification device for performing the classification treatment of the conductive particles include those exemplified as the classification device used for the classification treatment for preparing the above-described magnetic core particles.
  • the content ratio of the conductive particles P in the connecting conductive portion 21 is preferably 10 to 60%, preferably 15 to 50% in terms of volume fraction. When this ratio is less than 10%, the connection conductive part 21 having a sufficiently small electric resistance value may not be obtained. On the other hand, when this ratio exceeds 60%, the obtained conductive part 21 for connection becomes fragile, and the elasticity necessary for the conductive part 21 for connection may not be obtained immediately.
  • the anisotropic conductive connector 1 can be manufactured as follows.
  • a frame plate 10 in which an opening 11 is formed corresponding to an electrode region in which electrodes to be inspected in all integrated circuits formed on a wafer to be inspected is formed.
  • the method for forming the opening 11 of the lam plate 10 is appropriately selected according to the material constituting the frame plate 10, and for example, an etching method or the like can be used.
  • a liquid elastomer material that is cured to become an elastic polymer substance, preferably a conductive elastomer material, in which conductive particles exhibiting magnetism are dispersed in addition-type liquid silicone rubber is prepared.
  • a conductive elastomer material layer 21A is formed by applying a conductive elastomer material on the releasable support plate 16 for forming a conductive portion.
  • the conductive particles P exhibiting magnetism are contained in a dispersed state.
  • the conductive particles P dispersed in the conductive elastomer material layer 21A as shown in FIG. Are aligned in the thickness direction of the conductive elastomer material layer 21A. Then, while continuing the action of the magnetic field on the conductive elastomer material layer 21A, or after stopping the action of the magnetic field, the conductive elastomer material layer 21A is hardened and shown in FIG.
  • the conductive elastomer layer 21B which is contained in the elastic polymer material in a state in which the conductive particles P are aligned in the thickness direction, is formed in a state where it is supported on the releasable support plate 16. Is done.
  • a printing method such as screen printing, a roll coating method, a blade coating method, or the like can be used.
  • the thickness of the conductive elastomer material layer 21A is set in accordance with the thickness of the connecting conductive portion to be formed.
  • an electromagnet As means for applying a magnetic field to the conductive elastomer material layer 21A, an electromagnet, a permanent magnet, or the like can be used.
  • the strength of the magnetic field applied to the conductive elastomer material layer 21A is preferably 0.2 to 2.5 Tesla.
  • the curing process for the conductive elastomer material layer 21A is usually performed by heat treatment.
  • the specific heating temperature and heating time are appropriately set in consideration of the type of material for the elastomer constituting the conductive elastomer material layer 21A, the time required for the movement of the conductive particles, and the like.
  • a thin metal layer 17 for a plating electrode is formed on the surface of the conductive elastomer layer 21 B supported on the releasable support plate 16.
  • the pattern of the conductive part to be formed to be formed that is, the pattern of the electrode to be inspected in the wafer to be inspected, is applied by a photolithography technique.
  • a resist layer 18 in which a plurality of openings 18a are formed is formed according to a specific pattern.
  • the resist layer is subjected to electrolytic plating treatment on the exposed portion of the thin metal layer 17 through the opening 18a of the resist layer 18.
  • a metal mask 19 is formed in the 18 openings 18a.
  • the thin metal layer 17 and the resist layer 18 by applying laser processing to the conductive elastomer layer 21B, the thin metal layer 17 and the resist layer 18, a part of the resist layer 18, the thin metal layer 17 and the conductive elastomer layer 21B is removed.
  • a plurality of connection conductive portions 21 arranged according to a specific pattern are formed on the releasable support plate 16. Thereafter, the remaining thin metal layer 17 and metal mask 19 are peeled off from the surface of the connecting conductive portion 21.
  • an electroless plating method, a sputtering method, or the like can be used as a method for forming the metal thin layer 17 on the surface of the conductive elastomer layer 21 B.
  • metal thin layer 17 As a material constituting the metal thin layer 17, copper, gold, aluminum, rhodium, or the like can be used.
  • the thickness of the thin metal layer 17 is preferably 0.05-2111, and more preferably 0.1-1 / z m. If this thickness is too small, a uniform thin layer may not be formed, which may be inappropriate as a plating electrode. On the other hand, if this thickness is excessive, it may be difficult to remove by laser processing.
  • the thickness of the resist layer 18 is set according to the thickness of the metal mask 19 to be formed.
  • a material constituting the metal mask 19 copper, iron, aluminum, gold, rhodium, or the like can be used.
  • the thickness of the metal mask 19 is preferably 2 ⁇ m or more, more preferably 5 to 20 ⁇ m. If this thickness is too small, it may be unsuitable as a mask for the laser.
  • the laser processing is preferably performed using a carbon dioxide laser or an ultraviolet laser, so that the connection conductive portion 21 having a desired form can be reliably formed.
  • a releasable support plate 16A for forming an insulating portion is prepared, and a frame plate 10 is disposed on the surface of the releasable support plate 16A and cured to be an insulating elastic polymer.
  • the insulating material layer 22A is formed by applying a liquid elastomer material that is a substance.
  • the insulating part material layer 22A In the formation of the insulating part material layer 22A, two plate-like spacers having openings that conform to the contour shape of the surface of the insulating part to be formed are prepared, and the mold release property On the support plate 16A, one spacer, the frame plate 10 and the other spacer are overlapped in this order, and the elastomer is used in the opening of each spacer and the opening of the frame plate 10. By filling the material, the insulating material layer 22A can be formed. According to such a method, it is possible to reliably form the insulating portion 22 having the desired form.
  • the releasable support plate 16 formed with a plurality of connecting conductive portions 21 is overlaid on the releasable support plate 16A formed with the insulating portion material layer 22A.
  • each of the connecting conductive portions 21 is infiltrated into the insulating portion material layer 22A and brought into contact with the releasable support plate 16A.
  • the insulating material layer 22A is formed between the adjacent connecting conductive portions 21.
  • the insulating portion 22 that mutually insulates each of the connecting conductive portions 21 is provided.
  • the anisotropic anisotropic conductive film 20 is formed integrally with the connecting conductive portion 21, thereby forming the anisotropic conductive film 20.
  • the anisotropic conductive connector having the configuration shown in FIG. 1 is obtained.
  • the same material as the releasable support plate 16 for forming the conductive portion can be used.
  • a method of applying the elastomer material a printing method such as screen printing, a roll coating method, a blade coating method, or the like can be used.
  • the thickness of the insulating part material layer 22A is set according to the thickness of the insulating part to be formed.
  • the curing process of the insulating part material layer 22A is usually performed by a heat treatment.
  • the specific heating temperature and heating time are appropriately set in consideration of the type of the material for the elastomer constituting the insulating portion material layer 22A.
  • the conductive elastomer layer 21B in which the conductive particles P are dispersed so as to be aligned in the thickness direction is laser-processed to remove a part thereof, thereby removing the object.
  • the connection conductive portion 21 having the desired conductivity filled with a required amount of the conductive particles P can be obtained with certainty.
  • a plurality of connection conductive portions 21 arranged according to a specific pattern are formed on the releasable support plate 16, and an insulating material layer 22A is formed between the connection conductive portions 21. Since the insulating part 22 is formed by performing the curing process, the insulating part 22 can be reliably obtained without any conductive particles P.
  • each of the electrodes to be inspected even if the electrodes to be inspected on the wafer to be inspected are arranged at a high density with a small pitch. Therefore, the required electrical connection can be reliably achieved, and the manufacturing force can be reduced.
  • each of the elastic anisotropic conductive films 20 is supported by the opening edge of the frame plate 10, it is difficult to be deformed and in electrical connection work with a wafer to be handled and immediately inspected. Positioning and holding and fixing to the wafer can be easily performed.
  • each of the openings 11 of the frame plate 10 is formed corresponding to an electrode region in which the electrodes to be inspected of all integrated circuits formed on the wafer to be inspected are arranged. Since the elastic anisotropic conductive film 20 to be arranged may have a small area, it is easy to form the individual elastic anisotropic conductive films 20.
  • the elastic anisotropic conductive film 20 having a small area has the elastic anisotropy even when it receives a thermal history. Since the absolute amount of thermal expansion in the plane direction of the anisotropic conductive film 20 is small, the thermal expansion in the plane direction of the elastic anisotropic conductive film 20 is reliably regulated by the frame plate.
  • the thermal expansion of the anisotropically conductive connector as a whole depends on the thermal expansion of the material constituting the frame plate 10, the use of a material having a low thermal expansion coefficient as the material constituting the frame plate 10 Even when a thermal history due to temperature changes is received, displacement of the conductive part for connection in the anisotropic conductive connector and the electrode to be inspected on the wafer is prevented, so that a good electrical connection state is stably maintained.
  • the positioning hole 13 is formed in the frame plate 10, the alignment with respect to the wafer to be inspected or the circuit board for inspection can be easily performed.
  • the air flow holes 12 are formed in the frame plate 10, in the wafer inspection apparatus to be described later, when the pressure reducing method is used as a means for pressing the probe member, the inside of the chamber is decompressed. In addition, the air existing between the anisotropic conductive connector and the inspection circuit board is exhausted through the air flow hole 12 of the frame plate 10, which ensures that the anisotropic conductive connector and the inspection circuit board are connected. The required electrical connection can be reliably achieved.
  • FIG. 16 is an explanatory sectional view showing an outline of a configuration in an example of a wafer inspection apparatus using the anisotropic conductive connector according to the present invention.
  • This wafer inspection apparatus is for performing electrical inspection of a plurality of integrated circuits formed on a wafer in the state of the wafer.
  • the wafer inspection apparatus shown in FIG. 16 has a probe member 1 that electrically connects each of the electrodes to be inspected 7 of the wafer 6 to be inspected and a tester.
  • this probe member 1 as shown in an enlarged view in FIG. 17, a plurality of inspection electrodes 31 are formed on the surface (FIG. 17) according to a pattern corresponding to the pattern of the inspection target electrode 7 of the wafer 6 to be inspected.
  • the anisotropic conductive connector 2 having the configuration shown in FIGS. 1 to 4 is provided on the surface of the inspection circuit board 30 with its elastic anisotropic conductivity.
  • Each of the conductive portions 21 for connection in the membrane 20 is provided so as to be in contact with each of the inspection electrodes 31 of the circuit board 30 for inspection, and on the surface (the lower surface in FIGS. 16 and 17) of this anisotropic conductive connector 2 , Insulation
  • the sheet-like probe 40 in which a plurality of electrode structures 42 are arranged according to a pattern corresponding to the pattern of the electrode 7 to be inspected on the wafer 6 to be inspected on the conductive sheet 41 is different from each other in the electrode structure 42. It is provided so as to be in contact with each of the connecting conductive portions 21 in the elastic anisotropic conductive film 20 of the two-way conductive connector 2.
  • a pressure plate 3 for pressing the probe member 1 downward is provided on the back surface of the inspection circuit board 30 in the probe member 1 (upper surface in FIG. 16).
  • a wafer mounting table 4 on which a certain wafer 6 is mounted is provided, and a heater 5 is connected to each of the caloric pressure plate 3 and the wafer mounting table 4.
  • a substrate material constituting the inspection circuit board 30 various conventionally known substrate materials can be used. Specific examples thereof include glass fiber reinforced epoxy resin, glass fiber reinforced phenol resin. And composite fiber materials such as glass fiber reinforced polyimide resin, glass fiber reinforced bimaleimide triazine resin, and ceramic materials such as glass, silicon dioxide, and alumina.
  • linear thermal expansion coefficient is 3 X 10- 5 ⁇ is preferably from preferably instrument using the following items 1 X 10- 7 to 1 X 10 "VK, particularly preferably 1 X 10- 6 ⁇ 6 X 10- 6 ⁇ .
  • Such a substrate material include Pyrex (registered trademark) glass, quartz glass, alumina, beryllia, silicon carbide, aluminum nitride, and boron nitride.
  • the sheet-like probe 40 in the probe member 1 will be specifically described.
  • the sheet-like probe 40 includes a flexible insulating sheet 41, and the insulating sheet 41 includes the insulating sheet 41.
  • the electrode structures 42 made of a plurality of metals extending in the thickness direction of 41 are separated from each other in the surface direction of the insulating sheet 41 according to the pattern corresponding to the pattern of the electrode 7 to be inspected on the wafer 6 to be inspected. Arranged.
  • Each of the electrode structures 42 includes a protruding surface electrode portion 43 exposed on the surface (lower surface in the figure) of the insulating sheet 41 and a plate-like back surface electrode portion 44 exposed on the back surface of the insulating sheet 41.
  • the insulating sheet 41 is configured to be integrally connected to each other by a short-circuit portion 45 extending through the thickness direction of the insulating sheet 41.
  • the insulating sheet 41 is not particularly limited as long as it is flexible and has insulating properties.
  • a sheet obtained by impregnating the above-mentioned coffin with a knitted cloth can be used.
  • the thickness of the insulating sheet 41 is not particularly limited as long as the insulating sheet 41 is flexible, but is preferably 10 to 50 ⁇ m, more preferably 10 to 25 ⁇ m. .
  • the electrode structure 42 As the metal constituting the electrode structure 42 , nickel, copper, gold, silver, palladium, iron, or the like can be used.
  • the electrode structure 42 is made of a single metal as a whole. Alternatively, it may be made of an alloy of two or more kinds of metals or a laminate of two or more kinds of metals.
  • the surface of the front electrode portion 43 and the back electrode portion 44 in the electrode structure 42 is prevented from being oxidized by the electrode portion, and an electrode portion having a low contact resistance can be obtained. It is preferable that a chemically stable and highly conductive metal film such as palladium is formed.
  • the protruding height of the surface electrode portion 43 in the electrode structure 42 is 15 to 50 m in that stable electrical connection can be achieved to the electrode 7 to be inspected on the wafer 6. More preferably, it is 15-30 / ⁇ ⁇ .
  • the diameter of the surface electrode portion 43 is a force set according to the size and pitch of the electrode to be inspected of the wafer 6, for example, 30 to 80 / ⁇ ⁇ , and preferably 30 to 50 ⁇ m.
  • the diameter of the back electrode portion 44 in the electrode structure 42 is larger than the diameter of the short-circuit portion 45 and smaller than the arrangement pitch of the electrode structure 42, but is as large as possible! / As a result, it is possible to reliably achieve a stable electrical connection to the connection conductive portion 21 in the elastic anisotropic conductive film 20 of the anisotropic conductive connector 2. Further, the thickness of the back electrode part 44 is preferably 20 to 50 ⁇ m, more preferably 35 to 50 ⁇ m, from the viewpoint that the strength is sufficiently high and excellent repeated durability can be obtained.
  • the diameter of the short-circuit portion 45 in the electrode structure 42 is preferably 30 to 80 ⁇ m, more preferably 30 to 50 ⁇ m, from the viewpoint that sufficiently high strength can be obtained.
  • the sheet-like probe 40 can be manufactured, for example, as follows.
  • a laminated material in which a metal layer is laminated on the insulating sheet 41 is prepared, and the insulating sheet 41 is laminated on the insulating sheet 41 by laser processing, dry etching or the like.
  • a plurality of through holes penetrating in the thickness direction are formed according to a pattern corresponding to the pattern of the electrode structure 42 to be formed.
  • the laminated material is subjected to photolithography and plating treatment to form a short-circuit portion 45 integrally connected to the metal layer in the through hole of the insulating sheet 41, and the insulating sheet 41
  • a protruding surface electrode portion 43 integrally connected to the short-circuit portion 45 is formed.
  • the metal layer in the laminated material is subjected to a photo-etching process to remove a part thereof, thereby forming the back electrode portion 44 to form the electrode structure 42, thereby obtaining the sheet-like probe 40.
  • the wafer 6 to be inspected is placed on the wafer mounting table 4, and then the probe member 1 is pressed downward by the pressure plate 3.
  • Each of the surface electrode portions 43 in the electrode structure 42 of the sheet-like probe 40 is in contact with each of the electrodes 7 to be inspected 6, and each of the surface electrode portions 43 is further in contact with the wafer 6
  • Each of the inspection electrodes 7 is pressurized.
  • each of the connection conductive portions 21 in the elastic anisotropic conductive film 20 of the anisotropic conductive connector 1 is connected to the test electrode 31 of the test circuit board 30 and the electrode structure 42 of the sheet-like probe 40.
  • a conductive path is formed in the connecting conductive part 21 in the thickness direction. Electrical connection between the inspection electrode 7 and the inspection electrode 31 of the inspection circuit board 30 is achieved. Thereafter, the wafer 6 is heated to a predetermined temperature by the caloheater 5 via the wafer mounting table 4 and the pressure plate 3, and in this state, a predetermined electrical circuit is provided for each of the plurality of integrated circuits on the wafer 6. A check is performed.
  • the thermal expansion in the plane direction of the elastic anisotropic conductive film 20 is reliably regulated by the frame plate by using a material having a small linear thermal expansion coefficient as a material constituting the frame plate 10. . Therefore, even when performing a WLBI test on a large-area wafer, it is possible to stably maintain a good electrical connection state.
  • FIG. 18 is an explanatory cross-sectional view showing an outline of a configuration in another example of a wafer inspection apparatus using the anisotropic conductive connector according to the present invention.
  • This wafer inspection apparatus has a box-shaped chamber 50 having an open top surface in which a wafer 6 to be inspected is stored.
  • An exhaust pipe 51 for exhausting the air inside the chamber 150 is provided on the side wall of the chamber 50.
  • the exhaust pipe 51 includes an exhaust device (not shown) such as a vacuum pump. Is connected.
  • a probe member 1 having the same configuration as the probe member 1 in the wafer inspection apparatus shown in FIG. 16 is disposed on the chamber 150 so as to airtightly close the opening of the chamber 150.
  • an elastic O-ring 55 is disposed in close contact with the upper end surface of the side wall of the chamber 50, and the probe member 1 includes the anisotropic conductive connector 2 and the sheet-like probe 40.
  • Is placed in the chamber 50 and the peripheral portion of the circuit board 30 for inspection is in close contact with the 0-ring 55, and the circuit board 30 for inspection is disposed on the back surface (see FIG. The upper surface is pressed downward by the pressure plate 3 provided! /
  • a heater 5 is connected to the chamber 50 and the pressure plate 3.
  • each of the connecting conductive portions 21 in the elastic anisotropic conductive film 20 of the anisotropic conductive connector 2 is connected to the test electrode 31 of the test circuit board 30 and the electrode structure 42 of the sheet-like probe 40.
  • the front surface electrode portion 43 is compressed and compressed in the thickness direction.
  • a conductive path is formed in the connection conductive portion 21 in the thickness direction.
  • electrical connection between the test electrode 31 and the test electrode 31 of the test circuit board 30 are achieved.
  • the calorie heater 5 heats the wafer 6 to a predetermined temperature through the chamber 50 and the pressure plate 3, and in this state, a required electric power is supplied to each of the plurality of integrated circuits on the wafer 6. Inspection is performed.
  • the same effect as that of the wafer inspection apparatus shown in FIG. 16 can be obtained, and furthermore, since a large pressurizing mechanism is unnecessary, the entire inspection apparatus can be reduced in size.
  • the entire wafer 6 can be pressed with a uniform force. Since the air flow hole 12 is formed in the frame plate 10 of the anisotropic conductive connector 2, the anisotropic conductive connector 2 and the inspection circuit board 30 are reduced when the pressure in the chamber 50 is reduced.
  • the elastic anisotropic conductive film 20 has a non-connection conductive portion that is not electrically connected to the electrode to be inspected on the wafer, in addition to the connection conductive portion 21. Also good.
  • an anisotropic conductive connector having an elastic anisotropic conductive film in which a non-connection conductive portion is formed will be described.
  • FIG. 19 is an enlarged plan view showing an elastic anisotropic conductive film in another example of the anisotropic conductive connector according to the present invention.
  • the thickness direction (FIG. 19) is electrically connected to the inspection target electrode of the wafer to be inspected.
  • the connection conductive portions 21 has magnetism.
  • the conductive particles shown are densely contained in an aligned state in the thickness direction, and are insulated from each other by an insulating portion 22 containing no conductive particles.
  • the thickness between the connecting conductive portion 21 located on the outermost side and the frame plate 10 is not electrically connected to the electrode to be inspected of the wafer to be inspected.
  • a non-connection conductive portion 26 extending in the direction is formed.
  • the non-connection conductive portion 26 is densely contained in a state in which the conductive particles exhibiting magnetism are aligned so as to be aligned in the thickness direction, and the conductive portion for connection is formed by the insulating portion 22 containing no conductive particles. Isolated from part 21.
  • each of the non-connecting conductive portions 26 is formed so as to protrude from one surface of the insulating portion 22, whereby the non-connecting conductive portion 26 is formed on one surface of the elastic anisotropic conductive film 20.
  • a projecting portion 27 is formed.
  • FIG. 20 is an enlarged plan view showing an elastic anisotropic conductive film in still another example of the anisotropic conductive connector according to the present invention.
  • the anisotropic anisotropic conductive film 20 of this anisotropically conductive connector is used for a plurality of connections extending in the thickness direction (direction perpendicular to the paper surface in FIG. 20) electrically connected to the inspection target electrode of the wafer to be inspected.
  • Conductive portions 21 are arranged so as to be arranged according to a pattern corresponding to the pattern of the electrode to be inspected, and each of these conductive portions 21 for connection is densely arranged in a state where conductive particles exhibiting magnetism are aligned in the thickness direction. They are contained and insulated from each other by insulating parts 22 that do not contain any conductive particles.
  • connection conductive parts 21 two adjacent connection conductive parts 21 located in the center are arranged at a separation distance larger than the separation distance between the other adjacent connection conductive parts 21. And between the two adjacent conductive parts for connection 21 located in the center, they are not electrically connected to the inspection electrode of the wafer to be inspected.
  • a non-connection conductive portion 26 extending in the thickness direction is formed.
  • the non-connection conductive portion 26 is densely contained in a state in which the conductive particles exhibiting magnetism are aligned so as to be aligned in the thickness direction, and the conductive portion for connection is formed by the insulating portion 22 containing no conductive particles. 21 and are mutually insulated.
  • each of the non-connection conductive portions 26 is formed so as to protrude from one surface of the insulating portion 22, whereby the both sides of the elastic anisotropic conductive film 20 are connected to the non-connection conductive portions 26.
  • a projecting portion 27 is formed.
  • the other specific configurations are basically the same as the anisotropic conductive connector configurations shown in FIGS.
  • each of the connecting conductive portions 21 is formed so that each force on both surfaces of the insulating portion 22 also protrudes.
  • the protrusion part which concerns on the electroconductive part 21 for an object may be formed.
  • Such an elastic anisotropic conductive film 21 can be obtained as follows. That is, in forming the insulating portion 22, the connecting conductive portion 21 is pressed and compressed in the thickness direction by the releasable support plates 16 and 16A, and the insulating portion material layer 22A is cured in this state, thereby insulating the insulating portion 22. Form part 22.
  • the protrusions 23 in the elastic anisotropic conductive film 20 are not essential, and both surfaces of the elastic anisotropic conductive film 20 may be flat or may be formed with recesses.
  • a conductive particle exhibiting magnetism in an insulating elastic polymer material manufactured in advance is used as a method for forming the conductive elastomer layer 21B supported on the releasable support plate 16.
  • the conductive elastomer sheet dispersed in a state of being aligned in the thickness direction is adhered on the releasable support plate 16 by the adhesive property of the conductive elastomer sheet or by an appropriate adhesive. It is also possible to use a method of supporting them.
  • the conductive elastomer sheet is formed, for example, by forming a conductive elastomer material layer between two resin sheets, and applying a magnetic field in the thickness direction to the conductive elastomer layer.
  • Orienting the conductive particles in the material layer for the conductive elastomer so that they are aligned in the thickness direction It can be manufactured by curing the conductive elastomer material layer while continuing the action of the magnetic field or after stopping the action of the magnetic field.
  • the conductive portion for connection 21 is formed by removing all of the conductive elastomer layer 21B other than the portion to be the conductive portion for connection by laser processing. However, as shown in FIG. 21 and FIG. 22, only the peripheral portion of the conductive elastomer layer 21B that becomes the conductive portion for connection can be removed to form the conductive portion for connection 21. . In this case, the remaining portion of the conductive elastomer layer 21B can be removed by mechanically peeling from the releasable support plate 16.
  • the sheet-like probe 40 is not indispensable.
  • the elastic anisotropic conductive film 20 in the anisotropic conductive connector 2 contacts the wafer to be inspected and is electrically connected. Even a configuration that achieves ⁇ .
  • the anisotropic conductive connector according to the present invention includes an electrode region in which an electrode to be inspected is arranged in a part of an integrated circuit formed on a wafer to be inspected for opening force of the frame plate. Correspondingly, an elastic anisotropic conductive film is arranged in each of these openings.
  • a wafer can be divided into two or more areas, and for each divided area, a probe test can be collectively performed on the integrated circuit formed in the area.
  • the time required for each integrated circuit is as long as several hours. Therefore, if all the integrated circuits formed on the wafer are inspected at once, high time efficiency can be obtained. Since the inspection time required for each integrated circuit is as short as several minutes, the wafer is divided into two or more areas, and the integrated circuits formed in the areas are collectively probed for each divided area. Even when tested, a sufficiently high time efficiency can be obtained.
  • the integrated circuit formed on the wafer having a diameter of 8 inches or 12 inches with a high degree of integration is electrically
  • the anisotropic conductive connector of the present invention or the probe member of the present invention is not only for inspecting a wafer on which an integrated circuit having planar electrodes made of aluminum is formed, but also from gold or solder. It can also be used for inspection of a wafer on which an integrated circuit having protruding electrodes (bumps) is formed.
  • an electrode made of gold or solder is less likely to form an oxide film on its surface compared to an electrode made of aluminum, inspection of a wafer on which an integrated circuit having such a protruding electrode is formed In this case, it is not necessary to pressurize with a large load necessary to break through the oxide film, and the conductive part for connecting the anisotropically conductive connector is brought into direct contact with the electrode to be inspected without using a sheet-like probe. The inspection can be performed in the state.
  • each of the integrated circuits L formed on the wafer 6 has an electrode area A to be inspected at the center thereof as shown in FIG. 24, and each of the electrode areas A to be inspected has an electrode area A as shown in FIG. 40 rectangular electrodes 7 with a vertical dimension (vertical direction in FIG. 25) of 200 ⁇ m and a horizontal dimension (horizontal direction in FIG. 25) of 60 ⁇ m with a pitch of 120 ⁇ m They are arranged in a row in the direction.
  • test wafer Wl The total number of electrodes 7 to be inspected on the entire wafer 6 is 15720, and all the electrodes 7 to be inspected are electrically insulated from each other.
  • this wafer is referred to as “test wafer Wl”.
  • test wafer W1 393 integrated circuits (L) having the same configuration as the above-described test wafer W1 were formed on the wafer (6) except that every other two pieces were electrically connected to each other.
  • test wafer W2 393 integrated circuits
  • an 8 inch diameter frame plate having 393 openings (11) formed corresponding to each electrode area to be inspected in the test wafer W1 according to the following conditions ( 10) was produced.
  • each of the openings (11) in the frame plate (10) has a horizontal dimension (horizontal direction in FIGS. 26 and 27) of 5.5 mm and a vertical dimension (vertical direction in FIGS. 26 and 27). Is 0.4 mm.
  • a circular air inflow hole (12) is formed at a central position between the vertically adjacent openings (11), and its diameter is lmm.
  • Two spacers for forming an elastic anisotropic conductive film having a plurality of openings formed corresponding to the electrode area to be inspected in the test wafer W1 were produced under the following conditions.
  • the material of these spacers is stainless steel (SUS304), and its thickness is 20 ⁇ m.
  • Each of the spacer openings has a horizontal dimension of 7 mm and a vertical dimension force of 4 mm.
  • magnetic core particles [A] were prepared as follows.
  • Nisshin Engineering air classifier Co., Ltd. "Turbo Classifier TC- 15N" nickel particles 2 kg, specific gravity of 8.9, air flow rate 2. 5 m 3 Zmin, the rotor speed is 1, 600 rpm, a classification point of 25 m, Nickel particle supply speed is 16gZmin Then, 1.8 kg of nickel particles were collected, and 1.8 kg of these nickel particles were collected. Specific gravity was 8.9, air volume was 2.5 m 3 Zmin, rotor speed was 3, OOOrpm, classification point. Was 10 m and the nickel particle supply rate was 14 gZmin, and 1.5 kg of nickel particles were collected.
  • the obtained magnetic core particle [A] has a number average particle diameter of 10 m, a particle diameter variation coefficient of 10%, a BET specific surface area of 0.2 X 10 3 m 2 / kg, and a saturation magnetization of 0.6 Wb / kg. It was m 2.
  • the obtained conductive particles [a] have a number average particle diameter of 12 m, a BET specific surface area of 0.15 X 10 3 mVkg, a coating layer thickness t of ll lnm, (the mass of gold forming the coating layer) ) / (Conductive particle [a] total mass) value N was 0.3.
  • a conductive elastomer material was prepared by dispersing 400 parts by weight of the conductive particles [a] in 100 parts by weight of addition-type liquid silicone rubber. By applying this material for conductive elastomer to the surface of a releasable support plate (16) made of stainless steel having a thickness of 5 mm by screen printing, on the releasable support plate (16), A conductive elastomer material layer (21A) having a thickness of 0.15 mm was formed (see FIGS. 5 and 6).
  • the conductive elastomer material layer (21A) is subjected to a curing treatment at 120 ° C for 1 hour while applying a magnetic field of 2 Tesla in the thickness direction by an electromagnet, thereby releasing the mold.
  • a conductive elastomer layer (21B) having a thickness of 0.15 mm supported on the conductive support plate 16 was formed (see FIGS. 7 and 8).
  • the addition-type liquid silicone rubber used is a two-component type consisting of liquid A and liquid B each having a viscosity of 250 Pa's, and the cured product has a compression set of 5%, Durometer A with a hardness of 32 and a tear strength of 25 kNZm.
  • the liquid A and liquid B in the two-component type addition type liquid silicone rubber were stirred and mixed at an equal ratio.
  • a curing treatment is performed at 120 ° C for 30 minutes, resulting in a thickness of 12.7.
  • a cylindrical body made of a cured silicone rubber having a diameter of 29 mm was prepared, and post-curing was performed on the cylindrical body at 200 ° C. for 4 hours.
  • the cylindrical body thus obtained was used as a test piece, and compression set at 150 ⁇ 2 ° C. was measured according to JIS K 6249.
  • Talecent-shaped specimens were produced from this sheet by punching, and the bow I crack strength at 2 ° C for 23 persons was measured in accordance with JIS K 6249.
  • the durometer A hardness is set to 23 ⁇ 2 ° C according to JIS K 6249 by stacking five sheets prepared in the same manner as in (m) above and using the resulting stack as a test piece. The value was measured.
  • a thin metal layer (17) made of copper with a thickness of 0.3 ⁇ m is applied to the surface of the conductive elastomer layer (21B) supported on the releasable support plate (16) by electroless plating. (See Fig. 9).
  • 15720 openings (18a) each having a rectangular size of 60 / zm X 200 m are formed on the test wafer W1 by a photolithography technique.
  • a resist layer (18) with a thickness of 25 ⁇ m was formed according to the pattern corresponding to the pattern (see Fig. 10).
  • the surface of the metal thin layer (17) was subjected to an electrolytic copper plating process to form a metal mask (19) made of copper having a thickness of 20 ⁇ m in the opening (18a) of the resist layer (18) ( (See Figure 11).
  • the conductive elastomer layer (21B), the metal thin layer (17), and the resist layer (18) are subjected to laser processing with a carbon dioxide laser device, thereby supporting the releasability.
  • a conductive part for connection (21) of 15720 supported on the plate (16) is formed, and then a thin metal layer (17) and a metal mask (19) remaining from the surface of the conductive part for connection (21) are formed.
  • the surface strength of the releasable support (16) is also reduced The remainder was mechanically peeled off (see Figure 12).
  • the laser processing conditions by the carbon dioxide laser device are as follows.
  • a carbon dioxide laser processing machine “ML-605GTX” manufactured by Mitsubishi Electric Corporation
  • the laser beam diameter was 60 m and the laser output was 0.8 mJ.
  • Laser processing was performed by irradiating 10 shots of the beam o
  • the frame plate (10) was positioned and arranged on the spacer for use, and the other forming spacer was positioned and arranged on the frame plate (10).
  • an addition-type liquid silicone rubber used in the preparation of the conductive elastomer material is prepared, and the addition-type liquid silicone rubber is defoamed under reduced pressure, and then the addition-type liquid silicone rubber is screen-printed.
  • additional liquid silicone rubber is filled in the openings of each of the two molding spacers and the opening (11) of the frame plate (10).
  • an insulating material layer (22A) was formed (see FIG. 13).
  • the releasable support plate (16) on which a plurality of conductive portions (21) for connection are formed is overlaid on the releasable support plate (16A) on which the insulating layer material layer (22A) is formed.
  • each of the conductive parts for connection (21) entered the insulating part material layer (22A) and brought into contact with the releasable support plate (16A) (see FIG. 14).
  • the conductive part for connection (21) is compressed in the thickness direction, and for the insulating part.
  • the material layer (22A) is cured to form an integral part of the connecting conductive part (21) around each of the connecting conductive parts (21).
  • An elastic anisotropic conductive film (20) was formed (see FIG. 15).
  • the anisotropically conductive connector of the present invention is removed by releasing the moldable support plate (16), (16A) and the elastic anisotropically conductive film (20) and removing the molding spacer. Manufactured.
  • each elastic anisotropic conductive film in the anisotropic conductive connector obtained will be specifically described. Then, each elastic anisotropic conductive film has a horizontal dimension of 5.5 mm and a vertical dimension of 0.4 mm.
  • Each of the elastic anisotropic conductive films has 40 connecting conductive parts arranged in a row in the horizontal direction at a pitch of 120 m.
  • Each of the connecting conductive parts has a horizontal dimension of 60 m and a vertical length of The dimension in the direction is 200 ⁇ m, the thickness is about 140 ⁇ m, and the thickness of the insulating part is 100 ⁇ m. Further, the thickness of the supported portion (one thickness of the bifurcated portion) in each elastic anisotropic conductive film is 20 ⁇ m.
  • the volume fraction was about 30% in all the connecting conductive portions.
  • Alumina ceramics (coefficient of linear thermal expansion 4.8 X 10-so-K) is used as the substrate material, and a test circuit board with test electrodes formed according to the pattern corresponding to the pattern of the test electrode in Weno for testing and W1 is manufactured. did.
  • the inspection circuit board has a rectangular shape with an overall dimension of 3 Ocm ⁇ 30 cm, and the inspection electrode has a lateral dimension force of 1 ⁇ 2 ⁇ m and a longitudinal dimension of 200 / zm.
  • this inspection circuit board is referred to as “inspection circuit board T”.
  • the laminated material is subjected to photolithography and nickel plating treatment to form a short-circuit portion integrally connected to the copper layer in the through hole of the insulating sheet, and on the surface of the insulating sheet, A protruding surface electrode portion integrally connected to the short-circuit portion was formed.
  • the diameter of the surface electrode portion was 50 m
  • the height of the surface strength of the insulating sheet was 20 m.
  • the copper layer in the laminated material is subjected to a photo-etching process and a part thereof is removed to form a 70 m ⁇ 210 m rectangular back electrode part, and further, the front electrode part and the back electrode part
  • An electrode structure is formed by applying gold plating to the sheet-like probe. Manufactured.
  • this sheet-like probe is referred to as “sheet-like probe M”.
  • the inspection circuit board T is aligned and fixed on the anisotropic conductive connector so that each of the inspection electrodes is positioned on the connecting conductive portion of the anisotropic conductive connector.
  • the circuit board T was pressed downward with a load of 160 kg.
  • a sequential voltage is applied to each of the inspection electrodes on the inspection circuit board T, and the electrical resistance between the inspection electrode to which the voltage is applied and the inspection electrode adjacent thereto is applied.
  • the electrical resistance between the conductive parts for connection in the anisotropic conductive connector hereinafter referred to as “insulation resistance”
  • the number of conductive part pairs for connection having an insulation resistance of 5 ⁇ or less was determined.
  • the insulation resistance between the conductive parts for connection is 5 ⁇ or less, it may be difficult to actually use this in the electrical inspection of the integrated circuit formed on the wafer.
  • the test wafer W2 is placed on a test stand equipped with an electric heater, and an anisotropic conductive connector is placed on the test wafer W1 so that each of the conductive portions for connection is placed on the test electrode of the test wafer W2.
  • the inspection circuit board T is aligned on the anisotropic conductive connector so that each of the inspection electrodes is positioned on the conductive portion for connection of the anisotropic conductive connector. Furthermore, the circuit board for inspection T was pressed downward with a load of 32 kg (the load applied to each conductive part for connection was about 2 g on average).
  • test electrodes on the test circuit board T are electrically connected to each other via the anisotropic conductive connector, the test weno, and W1.
  • the electrical resistance between the two test electrodes is measured sequentially, and the half of the measured electrical resistance value is calculated as the electrical resistance of the connecting conductive part in the anisotropic conductive connector (hereinafter referred to as "Conduction resistance" t. )
  • Conduction resistance the electrical resistance of the connecting conductive part in the anisotropic conductive connector
  • the load to pressurize the inspection circuit board T is changed to 126 kg (the average load applied to each conductive part for connection is about 8 g), and then the test bench is heated to 125 ° C and the temperature of the test bench is After being stabilized, it was left in this state for 1 hour.
  • the above operation is referred to as “operation (2)”.
  • the test table was cooled to room temperature, and then the pressure applied to the inspection circuit board T was released. The above operation is referred to as “operation (3)”.
  • the sheet-like probe M On the test wafer W2 placed on the test bench, the sheet-like probe M is positioned so that its surface electrode portion is located on the electrode to be inspected on the test wafer W2, and the sheet-like probe M is placed on the test wafer W2.
  • An anisotropic conductive connector is placed so that the conductive part for connection is positioned on the back electrode part of the sheet-like probe M, and the inspection circuit board T is loaded downward with a load of 126 kg (for connection).
  • the conductive resistance of the connecting conductive part was measured in the same manner as in Test 2 above, except that the load applied to each conductive part was about 8 g on average, and the conductive resistance was 0.5 ⁇ or more. The number of the conductive parts for connection which were was calculated
  • Example 2 By using the same frame plate as in Example 1 and forming an elastic anisotropic conductive film having the following specifications in each of the openings of the frame plate according to the method described in Japanese Patent Application Laid-Open No. 2002-334732, a comparatively different anisotropic plate is formed. A directionally conductive connector was produced.
  • the elastic anisotropic conductive film in the comparative anisotropic conductive connector obtained will be described.
  • Each of the elastic anisotropic conductive films has a lateral dimension of 5.5 mm and a longitudinal dimension of 0.4. mm.
  • Each of the elastic anisotropic conductive films has 40 connecting conductive parts arranged in a row in the horizontal direction at a pitch of 120 m.
  • Each of the connecting conductive parts has a horizontal dimension of 60 m and a vertical length of The dimension in the direction is 200 ⁇ m, the thickness is about 140 ⁇ m, and the thickness of the insulating part is 100 ⁇ m. Further, the thickness of the supported portion (one thickness of the bifurcated portion) in each elastic anisotropic conductive film is 20 ⁇ m.
  • the volume fraction was about 20%.
  • the comparative anisotropic conductive connector was evaluated in the same manner as in Example 1. The results are shown in Tables 1 to 3.
  • the anisotropic conductive connector according to Example 1 For example, even if the pitch of the conductive portions for connection in the elastic anisotropic conductive film is small, the conductive portion for connection has good conductivity, and sufficient insulation is provided between the adjacent conductive portions for connection. Even when used repeatedly in a high-temperature environment, all electrical power is stably maintained even against environmental changes such as thermal history due to temperature changes. It was confirmed that good conductivity was maintained over a long period in the conductive part for connection.
  • the insulating part is made to penetrate into the insulating part material layer and the insulating part material layer is cured. Therefore, no conductive particles are present in the insulating portion, and therefore an insulating portion having sufficient insulating properties can be obtained with certainty.
  • connection conductive portion Since the conductive elastomer layer is laser processed to form the connection conductive portion, the variation in the content ratio of the conductive particles in each connection conductive portion is extremely small. Thus, good and stable conductivity can be obtained.
  • each elastic anisotropic conductive film has a small area and a small absolute amount of thermal expansion in the surface direction, the thermal expansion in the surface direction of the elastic anisotropic conductive film is reliably controlled by the frame plate.
  • the thermal expansion of the anisotropically conductive connector as a whole depends on the thermal expansion of the materials that make up the frame plate. As a result of preventing displacement from the electrode, a good electrical connection state is stably maintained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

A wafer inspection-use anisotropic conductive connector capable of positively ensuring a required electrical connection even if the electrodes to be inspected of the wafer are disposed at small pitches and high density, and being produced at low costs, and a production method and applications therefore. The connector comprises a frame plate formed with a plurality of openings corresponding to electrode areas where the electrodes to be inspected of the wafer are disposed, and a plurality of elastic, anisotropic conductive films so disposed as to close the respective openings, wherein the elastic, anisotropic conductive films comprise a plurality of connecting conductive units disposed in conjunction with the electrodes to be inspected, extending in the thickness direction, and being mutually insulated by insulating units, and can be obtained by laser-processing a conductive elastomer layer supported on a releasing type support plate to form a plurality of connecting conductive units, allowing the respective connecting conductive units to impregnate into a liquid insulating unit-use material layer formed so as to close the openings of the frame plate, and hardening the insulating unit-use material layer.

Description

明 細 書  Specification
ウェハ検査用異方導電性コネクターおよびその製造方法並びにその応 用  Anisotropic conductive connector for wafer inspection, its manufacturing method and application
技術分野  Technical field
[0001] 本発明は、ウェハに形成された複数の集積回路の電気的検査をウェハの状態で 行うために用いられるウェハ検査用異方導電性コネクターおよびその製造方法、この ウェハ検査用異方導電性コネクターを具えたウェハ検査用のプローブ部材、並びに このプローブ部材を具えたウェハ検査装置およびこのプローブ部材を使用したゥェ ハ検査方法に関する。  The present invention relates to an anisotropic conductive connector for wafer inspection used for performing electrical inspection of a plurality of integrated circuits formed on a wafer in a wafer state, a method for manufacturing the same, and an anisotropic conductive for wafer inspection. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wafer inspection probe member provided with a conductive connector, a wafer inspection apparatus including the probe member, and a wafer inspection method using the probe member.
背景技術  Background art
[0002] 一般に、半導体集積回路装置の製造工程においては、例えばシリコンよりなるゥェ ハに多数の集積回路を形成し、その後、これらの集積回路の各々について、基礎的 な電気特性を検査することによって、欠陥を有する集積回路を選別するプローブ試 験が行われる。次いで、このウェハを切断することによって半導体チップが形成され、 この半導体チップが適宜のパッケージ内に収納されて封止される。更に、パッケージ 化された半導体集積回路装置の各々について、高温環境下において電気特性を検 查することによって、潜在的欠陥を有する半導体集積回路装置を選別するバーンィ ン試験が行われる。  In general, in the manufacturing process of a semiconductor integrated circuit device, a large number of integrated circuits are formed on a wafer made of, for example, silicon, and then basic electrical characteristics of each of these integrated circuits are inspected. Thus, a probe test for selecting defective integrated circuits is performed. Next, the semiconductor chip is formed by cutting the wafer, and the semiconductor chip is housed in an appropriate package and sealed. Further, each packaged semiconductor integrated circuit device is subjected to a burn-in test for selecting a semiconductor integrated circuit device having a potential defect by examining electrical characteristics in a high temperature environment.
このようなプローブ試験またはバーンイン試験などの集積回路の電気的検査にお いては、検査対象物における被検査電極の各々をテスターに電気的に接続するた めにプローブ部材が用いられている。このようなプローブ部材としては、被検査電極 のパターンに対応するパターンに従って検査電極が形成された検査用回路基板と、 この検査用回路基板上に配置された異方導電性エラストマ一シートとよりなるものが 知られている。  In such an electrical inspection of an integrated circuit such as a probe test or a burn-in test, a probe member is used to electrically connect each of the electrodes to be inspected in the inspection object to a tester. Such a probe member includes an inspection circuit board on which an inspection electrode is formed according to a pattern corresponding to the pattern of the electrode to be inspected, and an anisotropic conductive elastomer sheet disposed on the inspection circuit board. Things are known.
[0003] 力かる異方導電性エラストマ一シートとしては、従来、種々の構造のものが知られて おり、例えば特許文献 1等には、金属粒子をエラストマ一中に均一に分散して得られ る異方導電性エラストマ一シート (以下、これを「分散型異方導電性エラストマーシー ト」という。)が開示され、また、特許文献 2等には、導電性磁性体粒子をエラストマ一 中に不均一に分布させることにより、厚み方向に伸びる多数の導電部と、これらを相 互に絶縁する絶縁部とが形成されてなる異方導電性エラストマ一シート(以下、これ を「偏在型異方導電性エラストマ一シート」という。)が開示され、更に、特許文献 3等 には、導電部の表面と絶縁部との間に段差が形成された偏在型異方導電性エラスト マーシートが開示されている。 [0003] As a powerful anisotropic conductive elastomer sheet, there are conventionally known various structures. For example, Patent Document 1 and the like are obtained by uniformly dispersing metal particles in an elastomer. An anisotropic conductive elastomer sheet (hereinafter referred to as “dispersed anisotropic conductive elastomer sheet”). It is called. In addition, Patent Document 2 and the like disclose a large number of conductive parts extending in the thickness direction by distributing the conductive magnetic particles non-uniformly in the elastomer and insulation that insulates them from each other. An anisotropic conductive elastomer sheet (hereinafter, referred to as an “unevenly anisotropic conductive elastomer sheet”) is disclosed, and Patent Document 3 and the like further describe the surface of the conductive part. An unevenly distributed anisotropic conductive elastomer sheet in which a step is formed between the insulating portion and the insulating portion is disclosed.
これらの異方導電性エラストマ一シートの中で、偏在型異方導電性エラストマーシ ートは、検査すべき集積回路の被検査電極のパターンに対応するパターンに従って 導電部が形成されているため、分散型異方導電性エラストマ一シートに比較して、被 検査電極の配列ピッチすなわち隣接する被検査電極の中心間距離が小さい集積回 路などに対しても電極間の電気的接続を高い信頼性で達成することができる点で、 有利である。従って、被検査電極のピッチが小さい半導体集積回路装置のプローブ 試験またはバーンイン試験においては、偏在型異方導電性エラストマ一シートが用 いられている。  Among these anisotropically conductive elastomer sheets, the unevenly distributed anisotropically conductive elastomer sheet has a conductive portion formed according to a pattern corresponding to the pattern of the electrode to be inspected of the integrated circuit to be inspected. More reliable electrical connection between electrodes compared to distributed anisotropic conductive elastomer sheet, even for integrated circuits where the arrangement pitch of the electrodes to be inspected, that is, the distance between the centers of adjacent electrodes to be inspected is small Is advantageous in that it can be achieved with Therefore, an unevenly distributed anisotropic conductive elastomer sheet is used in a probe test or burn-in test of a semiconductor integrated circuit device in which the pitch of electrodes to be inspected is small.
而して、ウェハに形成された集積回路に対して行われるプローブ試験においては、 従来、多数の集積回路のうち例えば 16個または 32個の集積回路が形成された複数 のエリアにウェハを分割し、このエリアに形成された全ての集積回路について一括し てプローブ試験を行い、順次、その他のエリアに形成された集積回路についてプロ ーブ試験を行う方法が採用されている。そして、近年、検査効率を向上させ、検査コ ストの低減化を図るために、ウェハに形成された多数の集積回路のうち例えば 64個 若しくは 124個または全部の集積回路について一括してプローブ試験を行うことが要 請されている。  Thus, in a probe test performed on an integrated circuit formed on a wafer, conventionally, a wafer is divided into a plurality of areas in which, for example, 16 or 32 integrated circuits are formed among many integrated circuits. A method is adopted in which a probe test is collectively performed on all integrated circuits formed in this area, and a probe test is sequentially performed on integrated circuits formed in other areas. In recent years, in order to improve the inspection efficiency and reduce the inspection cost, for example, 64 or 124 of all the integrated circuits formed on the wafer, or all of the integrated circuits are collectively subjected to the probe test. It is requested to do.
一方、バーンイン試験においては、検査対象である集積回路装置は微小なもので あってその取扱いが不便なものであるため、多数の集積回路装置の電気的検査を個 別的に行うためには,長い時間を要し、これにより、検査コストが相当に高いものとな る。このような理由から、ウェハ上に形成された多数の集積回路について、それらの バーンイン試験をウェハの状態で一括して行う WLBI (Wafer Level Burn -in) 試験が提案されている。 し力しながら、検査対象であるウエノ、が、例えば直径が 8インチ以上の大型のもの であって、その被検査電極の数が例えば 5000以上、特に 10000以上のものである 場合には、各集積回路における被検査電極のピッチが極めて小さいものであるため 、プローブ試験または WLBI試験に偏在型異方導電性エラストマ一シートを用いると 、以下のような問題がある。 On the other hand, in the burn-in test, the integrated circuit device to be inspected is very small and inconvenient to handle, so in order to perform electrical inspection of many integrated circuit devices individually, It takes a long time, which makes the inspection costs considerably higher. For this reason, a WLBI (Wafer Level Burn-in) test has been proposed in which a burn-in test is performed on a large number of integrated circuits formed on a wafer in a batch. However, if the Ueno to be inspected is a large one having a diameter of, for example, 8 inches or more and the number of electrodes to be inspected is, for example, 5000 or more, particularly 10,000 or more, Since the pitch of the electrodes to be inspected in the integrated circuit is extremely small, there are the following problems when using an unevenly distributed anisotropic conductive elastomer sheet in the probe test or WLBI test.
(1)直径が例えば 8インチ (約 20cm)のウェハを検査するためには、偏在型異方導 電性エラストマ一シートとして、その直径が 8インチ程度のものを用いることが必要とな る。然るに、このような偏在型異方導電性エラストマ一シートは、全体の面積が相当に 大きいものであるが、各導電部は微細で、当該偏在型異方導電性エラストマ一シート 表面に占める導電部表面の面積の割合が小さいものであるため、当該偏在型異方 導電性エラストマ一シートを確実に製造することは極めて困難である。従って、異方 導電性エラストマ一シートの製造においては、歩留りが極端に低下する結果、異方導 電性エラストマ一シートの製造コストが増大し、延 、ては検査コストが増大する。  (1) In order to inspect a wafer with a diameter of, for example, 8 inches (about 20 cm), it is necessary to use an unevenly distributed anisotropically conductive elastomer sheet having a diameter of about 8 inches. However, such an unevenly distributed anisotropic conductive elastomer sheet has a considerably large overall area, but each conductive part is fine and the conductive part occupying the surface of the unevenly distributed anisotropic conductive elastomer sheet. Since the surface area ratio is small, it is extremely difficult to reliably manufacture the unevenly anisotropic anisotropic conductive elastomer sheet. Therefore, in the production of the anisotropic conductive elastomer sheet, the yield is drastically reduced, resulting in an increase in the production cost of the anisotropic conductive elastomer sheet, which in turn increases the inspection cost.
(2)偏在型異方導電性エラストマ一シートにお!、ては、検査用回路基板および検査 対象であるウェハとの電気的接続作業において、それらに対して特定の位置関係を もって保持固定することが必要である。然るに、異方導電性エラストマ一シートは柔軟 で容易に変形しやすいものであって、その取扱い性が低いものであるるため、検査対 象であるウェハの被検査電極に対する電気的接続を行う際に、偏在型異方導電性 エラストマ一シートの位置合わせおよび保持固定が極めて困難である。  (2) To an unevenly distributed anisotropically conductive elastomer sheet! In the electrical connection work between the inspection circuit board and the wafer to be inspected, it is held and fixed with a specific positional relationship to them. It is necessary. However, anisotropically conductive elastomer sheets are flexible and easily deformable and have low handling properties. Therefore, when an electrical connection is made to an inspection target electrode of a wafer to be inspected. In addition, it is extremely difficult to align and hold and fix the unevenly distributed anisotropic conductive elastomer sheet.
(3)ウェハを構成する材料例えばシリコンの線熱膨張係数は 3. 3 X 10— 6ΖΚ程度で あり、一方、異方導電性エラストマ一シートを構成する材料例えばシリコーンゴムの線 熱膨張係数は 2. 2 Χ 10— 4ΖΚ程度である。従って、例えば 25°Cにおいて、それぞれ 直径が 20cmのウェハおよび異方導電性エラストマ一シートの各々を、 25°C力 125 °Cまでに加熱した場合には、理論上、ウェハの直径の変化は 0. 0066cmにすぎな いが、異方導電性エラストマ一シートの直径の変化は 0. 44cmに達する。このように(3) the linear thermal expansion coefficient of the material for example silicon constituting the wafer 3. is about 3 X 10- 6 ΖΚ, whereas linear thermal expansion coefficient of the material such as silicone rubber constituting the anisotropically conductive elastomer one sheet 2. is about 2 Χ 10- 4 ΖΚ. Thus, for example, at 25 ° C, if each wafer and anisotropic conductive elastomer sheet with a diameter of 20cm are heated to 25 ° C force up to 125 ° C, the change in wafer diameter is theoretically Although the diameter is only 0066 cm, the change in diameter of the anisotropically conductive elastomer sheet reaches 0.44 cm. in this way
、検査対象である集積回路装置を構成する材料 (例えばシリコン)と偏在型異方導電 性エラストマ一シートを構成する材料 (例えばシリコーンゴム)との間で、熱膨張率が 大きく異なるため、バーンイン試験においては、ー且はウェハと偏在型異方導電性ェ ラストマーシートとの所要の位置合わせおよび保持固定が実現された場合であっても 、温度変化による熱履歴を受けると、偏在型異方導電性エラストマ一シートの導電部 と集積回路装置の被検査電極との間に位置ずれが生じる結果、電気的接続状態が 変化して安定な接続状態を維持することが困難である。 Because the coefficient of thermal expansion differs greatly between the material constituting the integrated circuit device to be inspected (for example, silicon) and the material constituting the unevenly anisotropic conductive elastomer sheet (for example, silicone rubber), the burn-in test In and Even when the required alignment and holding / fixing with the laster sheet is realized, if the thermal history due to the temperature change is received, the conductive portion of the unevenly anisotropic conductive elastomer sheet and the integrated circuit device are inspected. As a result of positional displacement with the electrode, it is difficult to maintain a stable connection state by changing the electrical connection state.
[0006] 上記の問題を解決するため、検査対象であるウェハにおける集積回路の被検査電 極が形成された電極領域に対応して複数の開口が形成されたフレーム板と、このフ レーム板の開口の各々を塞ぐよう配置された複数の弾性異方導電膜とよりなる異方 導電性コネクターが提案されている(例えば特許文献 4参照。;)。  [0006] In order to solve the above problem, a frame plate in which a plurality of openings are formed corresponding to an electrode region in which an inspection target electrode of an integrated circuit in a wafer to be inspected is formed, and the frame plate An anisotropic conductive connector comprising a plurality of elastic anisotropic conductive films arranged so as to close each of the openings has been proposed (for example, see Patent Document 4).
このような異方導電性コネクターによれば、以下のような効果が得られる。 According to such an anisotropic conductive connector, the following effects can be obtained.
(1)フレーム板に形成された開口の各々は、検査対象であるウェハにおける集積回 路の電極領域に対応する寸法であり、従って、当該開口の各々に配置される弹性異 方導電膜は、サイズの小さいものでよいため、個々の弾性異方導電膜の形成が容易 である。 (1) Each of the openings formed in the frame plate has a size corresponding to the electrode region of the integrated circuit in the wafer to be inspected. Therefore, the anisotropic anisotropic conductive film disposed in each of the openings is Since a small size is sufficient, it is easy to form individual elastic anisotropic conductive films.
(2)弾性異方導電膜の各々がフレーム板に支持されているため、変形しに《て取扱 いやすぐまた、予めフレーム板に位置決め用マーク(例えば孔)を形成することによ り、集積回路装置の電気的接続作業において、当該集積回路装置に対する位置合 わせおよび保持固定を容易に行うことができる。  (2) Since each of the elastic anisotropic conductive films is supported by the frame plate, it can be easily handled by being deformed, and it can be integrated by forming positioning marks (for example, holes) in the frame plate in advance. In the electrical connection work of the circuit device, it is possible to easily align and hold and fix the integrated circuit device.
(3)サイズの小さい弾性異方導電膜は、熱履歴を受けた場合でも、熱膨張の絶対量 が少ないため、弾性異方導電膜の熱膨張がフレーム板によって規制され、しかも、異 方導電性コネクター全体の熱膨張は、フレーム板を構成する材料の熱膨張に依存す るので、フレーム板を構成する材料として熱膨張率の小さいものを用いることにより、 温度変化による熱履歴を受けた場合にも、当該異方導電性コネクターにおける導電 部とウェハにおける被検査電極との位置ずれが防止される結果、良好な電気的接続 状態が安定に維持される。  (3) Since the elastic anisotropic conductive film with a small size has a small absolute amount of thermal expansion even when it receives a thermal history, the thermal expansion of the elastic anisotropic conductive film is regulated by the frame plate, and the anisotropic conductive film The thermal expansion of the entire connector depends on the thermal expansion of the material that makes up the frame plate, so if you use a material with a low coefficient of thermal expansion as the material that makes up the frame plate, In addition, as a result of preventing the displacement between the conductive portion of the anisotropic conductive connector and the electrode to be inspected on the wafer, a favorable electrical connection state is stably maintained.
[0007] そして、このような異方導電性コネクタ一は、以下のようにして製造される。 [0007] Such an anisotropic conductive connector 1 is manufactured as follows.
図 28に示すような上型 80およびこれと対となる下型 85よりなる弾性異方導電膜成 形用の金型を用意する。この金型における上型 80および下型 85の各々は、基板 81 , 86上に、成形すべき異方導電性エラストマ一シートの導電部のパターンに対応す るパターンに従って配置された複数の強磁性体層 82, 87と、これらの強磁性体層 82 , 87が形成された個所以外の個所に配置された非磁性体層 83, 88とが設けられて おり、強磁性体層 82, 87および非磁性体層 83, 88により、成形面が形成されている 。そして、上型 80および下型 85は、上型 80の強磁性体層 82とこれに対応する下型 85の強磁性体層 87とが互いに対向するよう配置されている。 A mold for forming an elastic anisotropic conductive film comprising an upper mold 80 and a lower mold 85 as a pair as shown in FIG. 28 is prepared. Each of the upper mold 80 and the lower mold 85 in this mold corresponds to the pattern of the conductive portion of the anisotropic conductive elastomer sheet to be molded on the substrates 81 and 86. A plurality of ferromagnetic layers 82 and 87 arranged according to a pattern, and nonmagnetic layers 83 and 88 arranged at locations other than the locations where these ferromagnetic layers 82 and 87 are formed. In addition, a molding surface is formed by the ferromagnetic layers 82 and 87 and the nonmagnetic layers 83 and 88. The upper mold 80 and the lower mold 85 are arranged so that the ferromagnetic layer 82 of the upper mold 80 and the corresponding ferromagnetic layer 87 of the lower mold 85 face each other.
このような金型内に、図 29に示すように、検査対象であるウェハにおける電極領域 に対応して開口 91が形成されたフレーム板 90を位置合わせして配置すると共に、硬 化処理によって弾性高分子物質となる高分子物質形成材料中に磁性を示す導電性 粒子 Pが分散されてなる成形材料層 95Aを、フレーム板 90の各開口 91を塞ぐようを 形成する。ここで、成形材料層 95Aに含有されている導電性粒子 Pは、当該成形材 料層 95A中に分散された状態である。  In such a mold, as shown in FIG. 29, a frame plate 90 in which an opening 91 is formed corresponding to the electrode region in the wafer to be inspected is aligned and disposed, and elasticized by a hardening process. A molding material layer 95A in which conductive particles P exhibiting magnetism are dispersed in a polymer substance-forming material to be a polymer substance is formed so as to close each opening 91 of the frame plate 90. Here, the conductive particles P contained in the molding material layer 95A are in a state of being dispersed in the molding material layer 95A.
[0008] そして、上型 80の上面およひ下型 85の下面に例えば一対の電磁石を配置してこ れを作動させることにより、成形材料層 95Aには、上型 80の強磁性体層 82とこれに 対応する下型 85の強磁性体層 87との間の部分すなわち導電部となる部分において 、それ以外の部分より大き 、強度の磁場が当該成形材料層 95 Aの厚み方向に作用 される。その結果、成形材料層 95A中に分散されている導電性粒子 Pは、当該成形 材料層 95Aにおける大きい強度の磁場が作用されている部分、すなわち上型 80の 強磁性体層 82とこれに対応する下型 85の強磁性体層 87との間の部分に集合し、更 には成形材料層 95Aの厚み方向に並ぶよう配向する。そして、この状態で、成形材 料層 95Aの硬化処理を行うことにより、図 30に示すように、導電性粒子 Pが厚み方向 に並ぶよう配向した状態で含有された複数の導電部 96と、これらの導電部 96を相互 に絶縁する絶縁部 97とよりなる弾性異方導電膜 95が、その周縁部がフレーム板 90 の開口縁部に支持された状態で成形され、以て異方導電性コネクターが製造される [0008] Then, for example, a pair of electromagnets are arranged on the upper surface of the upper die 80 and the lower surface of the lower die 85 to operate them, whereby the ferromagnetic material layer 82 of the upper die 80 is formed on the molding material layer 95A. And the magnetic layer 87 of the lower mold 85 corresponding thereto, that is, the portion that becomes the conductive portion, a magnetic field that is larger and stronger than the other portions is applied in the thickness direction of the molding material layer 95A. The As a result, the conductive particles P dispersed in the molding material layer 95A correspond to the portion of the molding material layer 95A where a high-intensity magnetic field is applied, that is, the ferromagnetic layer 82 of the upper mold 80. The lower mold 85 is gathered at a portion between the lower layer 85 and the ferromagnetic layer 87, and is further aligned in the thickness direction of the molding material layer 95A. In this state, by performing the curing treatment of the molding material layer 95A, as shown in FIG. 30, a plurality of conductive portions 96 contained in a state in which the conductive particles P are aligned in the thickness direction, An elastic anisotropic conductive film 95 comprising an insulating portion 97 and insulating portions 97 that insulate these conductive portions 96 from each other is molded in a state in which the peripheral portion thereof is supported by the opening edge portion of the frame plate 90. Connectors are manufactured
[0009] し力しながら、このような製造方法においては、以下のような問題がある。 However, such a manufacturing method has the following problems.
被検査電極が小さ ヽピッチで高密度に配置されたウェハにっ ヽて電気的検査を行 う場合には、導電部のピッチが小さくて高密度に配置された異方導電性コネクターを 用いることが必要である。而して、このような異方導電性コネクターの製造においては 、当然のことながら強磁性体層 82, 87が極めて小さいピッチで配置された上型 80お よび下型 85を用いることが必要である。 When electrical inspection is performed on a wafer in which the electrodes to be inspected are arranged at a high density with a small pitch, use anisotropic conductive connectors with a small pitch of the conductive parts and a high density. is required. Thus, in the manufacture of such anisotropically conductive connectors Of course, it is necessary to use the upper die 80 and the lower die 85 in which the ferromagnetic layers 82 and 87 are arranged at a very small pitch.
然るに、このような上型 80および下型 85を用い、上述のようにして弾性異方導電膜 95を形成する場合には、上型 80および下型 85の各々において、互いに隣接する強 磁性体層 82, 87の間の離間距離が小さいため、図 31に示すように、上型 80におけ る或る強磁性体層 82aからこれに対応する下型 85の強磁性体層 87aに向力 方向( 矢印 Xで示す)のみならず、例えば上型 80の強磁性体層 82aからこれに対応する下 型 85の強磁性体層 87aに隣接する強磁性体層 87bに向カゝぅ方向(矢印 Yで示す)、 或いは上型 80の強磁性体層 82bからこれに対応する下型 85の強磁性体層 87bに 隣接する強磁性体層 87aに向力 方向にも磁場が作用することとなる。そのため、成 形材料層 95Aにおいて、導電性粒子 Pを、上型 80の強磁性体層 82aとこれに対応 する下型 85の強磁性体層 87aとの間に位置する部分に集合させることが困難となり、 上型 80の強磁性体層 82aと下型 85の強磁性体層 87bとの間に位置する部分にも導 電性粒子 Pが集合してしまい、また、導電性粒子 Pを成形材料層 95Aの厚み方向に 十分に配向させることが困難となり、その結果、所期の導電部および絶縁部を有する 異方導電性コネクターが得られな 、。  However, when such an upper die 80 and lower die 85 are used to form the elastic anisotropic conductive film 95 as described above, in each of the upper die 80 and the lower die 85, ferromagnetic materials adjacent to each other are formed. Since the separation distance between the layers 82 and 87 is small, as shown in FIG. 31, there is a direction force from one ferromagnetic layer 82a in the upper mold 80 to the corresponding ferromagnetic layer 87a in the lower mold 85. In addition to the direction (indicated by the arrow X), for example, from the upper layer 80 of the ferromagnetic layer 82a to the corresponding lower layer 85 of the ferromagnetic layer 87a, the ferromagnetic layer 87b is directed in the direction ( (Indicated by arrow Y), or a magnetic field also acts in the direction of the direction of force from the ferromagnetic layer 82b of the upper mold 80 to the ferromagnetic layer 87a adjacent to the corresponding ferromagnetic layer 87b of the lower mold 85. Become. Therefore, in the molding material layer 95A, the conductive particles P can be gathered in a portion located between the ferromagnetic layer 82a of the upper die 80 and the corresponding ferromagnetic layer 87a of the lower die 85. It becomes difficult, and the conductive particles P also gather at the portion located between the ferromagnetic layer 82a of the upper mold 80 and the ferromagnetic layer 87b of the lower mold 85, and the conductive particles P are formed. It becomes difficult to sufficiently orient the material layer 95A in the thickness direction, and as a result, an anisotropic conductive connector having a desired conductive portion and insulating portion cannot be obtained.
また、弾性異方導電膜の形成においては、前述したように、上型 80および下型 85 よりなる特殊な金型が必要である。この金型は、検査対象であるウェハに応じて個別 的に製造されるものであり、また、その製造工程が煩雑なものであるため、異方導電 性コネクターの製造コストが極めて高いものとなり、延いてはウェハの検査コストの増 大を招く。  Further, in forming the elastic anisotropic conductive film, a special mold including the upper mold 80 and the lower mold 85 is necessary as described above. This mold is manufactured individually according to the wafer to be inspected, and the manufacturing process is complicated, so the manufacturing cost of the anisotropic conductive connector becomes extremely high. As a result, wafer inspection costs increase.
[0010] 特許文献 1 :特開昭 51— 93393号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 51-93393
特許文献 2:特開昭 53— 147772号公報  Patent Document 2: Japanese Patent Laid-Open No. 53-147772
特許文献 3:特開昭 61 - 250906号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 61-250906
特許文献 4:特開 2002— 334732号公報  Patent Document 4: Japanese Patent Laid-Open No. 2002-334732
発明の開示  Disclosure of the invention
[0011] 本発明は、以上のような事情に基づいてなされたものであって、その第 1の目的は、 検査対象であるウェハにおける被検査電極力 小さいピッチで高密度に配置されて いるものであっても、当該ウェハについて所要の電気的接続を確実に達成することが でき、し力も、小さいコストで製造することができるウェハ検査用異方導電性コネクタ 一およびその製造方法を提供することにある。 [0011] The present invention has been made based on the above situation, and the first object of the present invention is that the electrode force to be inspected in the wafer to be inspected is arranged at a high density with a small pitch. The anisotropic conductive connector for wafer inspection, which can reliably achieve the required electrical connection for the wafer, and can be manufactured at low cost, and a method for manufacturing the same There is to do.
本発明の第 2の目的は,検査対象であるウェハにおける被検査電極が、小さいピッ チで高密度に配置されているものであっても、当該ウェハについて所要の電気的接 続を確実に達成することができ、しかも、小さいコストで製造することができるウェハ検 查用のプローブ部材を提供することにある。  The second object of the present invention is to reliably achieve the required electrical connection for the wafer even if the electrodes to be inspected on the wafer to be inspected are arranged with high density with small pitches. It is another object of the present invention to provide a probe member for wafer inspection that can be manufactured at a low cost.
本発明の第 3の目的は、上記のプローブ部材を使用して、ウェハに形成された複数 の集積回路の電気的検査をウェハの状態で行うウェハ検査装置およびウェハ検査 方法を提供することにある。  A third object of the present invention is to provide a wafer inspection apparatus and wafer inspection method for performing electrical inspection of a plurality of integrated circuits formed on a wafer in the state of a wafer using the probe member. .
[0012] 本発明のウェハ検査用異方導電性コネクターの製造方法は、検査対象であるゥェ ハに形成された全てのまたは一部の集積回路における被検査電極が配置された電 極領域に対応して複数の開口が形成されたフレーム板と、このフレーム板の開口の 各々を塞ぐよう配置された複数の弾性異方導電膜とよりなり、前記弾性異方導電膜の 各々は、前記ウェハに形成された集積回路における被検査電極に対応して配置さ れた、弾性高分子物質中に磁性を示す導電性粒子が含有されてなる厚み方向に伸 びる複数の接続用導電部と、これらの接続用導電部を相互に絶縁する弾性高分子 物質よりなる絶縁部とを有してなるウェハ検査用異方導電性コネクターを製造する方 法であって、 [0012] A method for manufacturing an anisotropic conductive connector for wafer inspection according to the present invention is provided in an electrode region in which electrodes to be inspected in all or some integrated circuits formed on a wafer to be inspected are arranged. Correspondingly, a frame plate having a plurality of openings formed therein and a plurality of elastic anisotropic conductive films arranged so as to close each of the openings of the frame plate, each of the elastic anisotropic conductive films being A plurality of conductive parts for connection extending in the thickness direction, which are arranged corresponding to the electrodes to be inspected in the integrated circuit formed on the substrate, and are formed of elastic particles containing conductive particles exhibiting magnetism, and A method for manufacturing an anisotropic conductive connector for wafer inspection comprising an insulating portion made of an elastic polymer material that insulates the connecting conductive portions from each other,
離型性支持板上に支持された弾性高分子物質中に磁性を示す導電性粒子が含 有されてなる導電性エラストマ一層をレーザー加工することにより、当該離型性支持 板上に複数の接続用導電部を形成し、  A plurality of connections can be made on the releasable support plate by laser processing a conductive elastomer layer in which conductive particles exhibiting magnetism are contained in an elastic polymer material supported on the releasable support plate. Forming a conductive part for
この離型性支持板に形成された接続用導電部の各々を、フレーム板の開口を塞ぐ よう形成された、硬化されて弾性高分子物質となる液状の高分子物質形成材料より なる絶縁部用材料層中に浸入させ、この状態で前記絶縁部用材料層を硬化処理す ることにより絶縁部を形成する工程を有することを特徴とする。  For each of the connecting conductive portions formed on the releasable support plate, the insulating portion made of a liquid polymer material forming material that is cured to become an elastic polymer material is formed so as to close the opening of the frame plate. It has the process of forming an insulating part by making it infiltrate into a material layer and carrying out the hardening process of the said insulating part material layer in this state.
[0013] 本発明のウェハ検査用異方導電性コネクターの製造方法においては、レーザー加 ェは、炭酸ガスレーザーまたは紫外線レーザーによるものであることが好ましい。 また、導電性エラストマ一層の表面に、形成すべき接続用導電部のパターンに従つ て金属マスクを形成し、その後、当該導電性エラストマ一層をレーザー加工すること により、複数の接続用導電部を形成することが好ましい。 In the method for producing an anisotropic conductive connector for wafer inspection according to the present invention, the laser treatment is preferably performed by a carbon dioxide laser or an ultraviolet laser. In addition, a metal mask is formed on the surface of the conductive elastomer layer according to the pattern of the conductive part for connection to be formed, and then the conductive elastomer layer is laser processed to form a plurality of conductive parts for connection. It is preferable to form.
また、導電性エラストマ一層の表面をメツキ処理することにより、金属マスクを形成す ることが好ましい。  Further, it is preferable to form a metal mask by subjecting the surface of the conductive elastomer layer to a plating treatment.
また、導電性エラストマ一層の表面に金属薄層を形成し、この金属薄層の表面に特 定のパターンに従って開口が形成されたレジスト層を形成し、前記金属薄層におけ る前記レジスト層の開口力 露出した部分の表面をメツキ処理することにより、金属マ スクを形成することを特徴とすることが好まし 、。  In addition, a thin metal layer is formed on the surface of the conductive elastomer layer, a resist layer having an opening formed in accordance with a specific pattern is formed on the surface of the thin metal layer, and the resist layer in the thin metal layer is formed. Opening force It is preferable that the metal mask is formed by subjecting the surface of the exposed part to a plating treatment.
また、本発明のウェハ検査用異方導電性コネクターの製造方法においては、硬化 されて弾性高分子物質となる液状のエラストマ一用材料中に磁性を示す導電性粒子 が含有されてなる導電性エラストマ一用材料層に対して、その厚み方向に磁場を作 用させると共に、当該導電性エラストマ一用材料層を硬化処理することにより、導電 性エラストマ一層を形成することができる。  In the method for producing an anisotropic conductive connector for wafer inspection according to the present invention, a conductive elastomer containing magnetic particles in a liquid elastomer material that is cured to become an elastic polymer substance. A conductive elastomer layer can be formed by applying a magnetic field to the single material layer in the thickness direction and curing the conductive elastomer single material layer.
また、本発明のウェハ検査用異方導電性コネクターの製造方法においては、フレ ーム板として、線熱膨張係数が 3 X ιο—5Ζκ以下のものを用いることが好ましい。 In the method for manufacturing an anisotropic conductive connector for wafer inspection according to the present invention, it is preferable to use a frame plate having a coefficient of linear thermal expansion of 3 × ι− 5— κ or less.
[0014] 本発明のウェハ検査用異方導電性コネクタ一は、上記の製造方法によって得られ ることを特徴とする。 [0014] An anisotropic conductive connector for wafer inspection according to the present invention is obtained by the manufacturing method described above.
[0015] 本発明のプローブ部材は、ウェハに形成された複数の集積回路の各々について、 当該集積回路の電気的検査をウェハの状態で行うために用いられるプローブ部材で あって、  [0015] The probe member of the present invention is a probe member used for performing an electrical inspection of the integrated circuit in a wafer state for each of the plurality of integrated circuits formed on the wafer,
検査対象であるウェハに形成された集積回路における被検査電極のパターンに対 応するパターンに従って検査電極が表面に形成された検査用回路基板と、この検査 用回路基板の表面に配置された、上記のウェハ検査用異方導電性コネクターとを具 えてなることを特徴とする。  An inspection circuit board having inspection electrodes formed on the surface according to a pattern corresponding to the pattern of the electrode to be inspected in the integrated circuit formed on the wafer to be inspected, and the above-mentioned circuit board disposed on the surface of the inspection circuit board And an anisotropic conductive connector for wafer inspection.
[0016] 本発明のプローブ部材においては、ウェハ検査用異方導電性コネクター上に、絶 縁性シートと、この絶縁性シートをその厚み方向に貫通して伸び、被検査電極のパタ ーンに対応するパターンに従って配置された複数の電極構造体とよりなるシート状プ ローブが配置されて 、てもよ!/、。 [0016] In the probe member of the present invention, an insulating sheet and an insulating sheet extend through the thickness direction on the anisotropic conductive connector for wafer inspection, and the pattern of the electrode to be inspected. A sheet-like profile consisting of a plurality of electrode structures arranged according to the corresponding pattern A robe is placed, okay! /.
[0017] 本発明のウェハ検査装置は、ウェハに形成された複数の集積回路の各々につい て、当該集積回路の電気的検査をウェハの状態で行うウェハ検査装置において、 上記のプローブ部材を具えてなり、当該プローブ部材を介して、検査対象であるゥ ェハに形成された集積回路に対する電気的接続が達成されることを特徴とする。  [0017] A wafer inspection apparatus according to the present invention includes the above-described probe member in a wafer inspection apparatus that performs an electrical inspection of each of the plurality of integrated circuits formed on the wafer in a wafer state. Thus, the electrical connection to the integrated circuit formed on the wafer to be inspected is achieved through the probe member.
[0018] 本発明のウェハ検査方法は、ウェハに形成された複数の集積回路の各々を、上記 のプローブ部材を介してテスターに電気的に接続し、当該ウェハに形成された集積 回路の電気的検査を実行することを特徴とする。  [0018] In the wafer inspection method of the present invention, each of the plurality of integrated circuits formed on the wafer is electrically connected to the tester via the probe member, and the electrical circuit of the integrated circuit formed on the wafer is electrically connected. It is characterized by performing an inspection.
[0019] 本発明に係るウェハ検査用異方導電性コネクターの製造方法によれば、導電性ェ ラストマー層をレーザー加工することにより、接続用導電部を形成するため、所期の 導電性を有する接続用導部を確実に得ることができる。また、離型性支持板上に接 続用導電部を形成したうえで、当該接続用導電部を絶縁部用材料層中に浸入させ、 当該絶縁部用材料層を硬化処理することにより絶縁部を形成するため、導電性粒子 が全く存在しない絶縁部を確実に得ることができる。しかも、従来の異方導電性コネ クタ一を製造するために使用されていた多数の強磁性体層が配列されてなる特殊な 金型を用いることが不要である。  [0019] According to the method for manufacturing an anisotropic conductive connector for wafer inspection according to the present invention, the conductive elastomer layer is laser-processed to form the conductive portion for connection, and thus has the desired conductivity. The connecting lead can be obtained with certainty. In addition, after forming a conductive part for connection on the releasable support plate, the conductive part for connection is infiltrated into the material layer for insulating part, and the insulating part material layer is cured to cure the insulating part. Therefore, it is possible to reliably obtain an insulating portion in which no conductive particles are present. In addition, it is not necessary to use a special mold in which a large number of ferromagnetic layers used to manufacture a conventional anisotropic conductive connector are arranged.
従って、このような方法によって得られる本発明のウェハ検査用異方導電性コネク ターによれば、検査対象であるウェハにおける被検査電極力 小さいピッチが高密 度に配置されているものであっても、当該被検査電極の各々に対して所要の電気的 接続が確実に達成され、し力も、小さいコストで製造することができる。  Therefore, according to the anisotropic conductive connector for wafer inspection of the present invention obtained by such a method, even if the pitch of the electrode to be inspected in the wafer to be inspected is small, the pitch is arranged with high density. The required electrical connection can be reliably achieved for each of the electrodes to be inspected, and the force can be manufactured at a low cost.
[0020] 本発明に係るプローブ部材によれば、上記のウェハ検査用異方導電性コネクター を具えてなるため、検査対象であるウェハにおける被検査電極力 小さいピッチで高 密度に配置されているものであっても、当該ウェハについて所要の電気的接続を確 実に達成することができ、し力も、小さいコストで製造することができる。  [0020] According to the probe member of the present invention, since the anisotropic conductive connector for wafer inspection is provided, the electrode force to be inspected on the wafer to be inspected is arranged at a high density with a small pitch. Even so, the required electrical connection can be reliably achieved for the wafer, and the force can be manufactured at low cost.
[0021] 本発明に係るウェハ検査装置およびウェハ検査方法によれば、上記のプローブ部 材を用いるため、検査対象であるウェハにおける被検査電極力 小さいピッチで高密 度に配置されているものであっても、当該ウェハについて所要の電気的検査を確実 に実行することができる。 図面の簡単な説明 [0021] According to the wafer inspection apparatus and the wafer inspection method of the present invention, since the probe member described above is used, the electrode force to be inspected on the wafer to be inspected is arranged with a small pitch and high density. However, the required electrical inspection can be reliably performed on the wafer. Brief Description of Drawings
[図 1]本発明に係る異方導電性コネクターの一例を示す平面図である。 FIG. 1 is a plan view showing an example of an anisotropic conductive connector according to the present invention.
[図 2]図 1に示す異方導電性コネクターの一部を拡大して示す平面図である。  FIG. 2 is an enlarged plan view showing a part of the anisotropic conductive connector shown in FIG.
[図 3]図 1に示す異方導電性コネクターにおける弾性異方導電膜を拡大して示す平 面図である。  FIG. 3 is an enlarged plan view showing an elastic anisotropic conductive film in the anisotropic conductive connector shown in FIG. 1.
[図 4]図 1に示す異方導電性コネクターにおける弾性異方導電膜を拡大して示す説 明用断面図である。  4 is a cross-sectional view illustrating an enlarged elastic anisotropic conductive film in the anisotropic conductive connector shown in FIG. 1. FIG.
[図 5]離型性支持板上に導電性エラストマ一用材料層が形成された状態を示す説明 用断面図である。  FIG. 5 is an explanatory cross-sectional view showing a state in which a conductive elastomer material layer is formed on a releasable support plate.
[図 6]導電性エラストマ一用材料層を拡大して示す説明用断面図である。  FIG. 6 is an explanatory cross-sectional view showing an enlarged conductive elastomer material layer.
[図 7]導電性エラストマ一用材料層にその厚み方向に磁場が作用された状態を示す 説明用断面図である。  FIG. 7 is an explanatory sectional view showing a state in which a magnetic field is applied to the conductive elastomer material layer in the thickness direction.
[図 8]離型性支持板上に導電性エラストマ一層が形成された状態を示す説明用断面 図である。  FIG. 8 is an explanatory sectional view showing a state in which a conductive elastomer layer is formed on a releasable support plate.
[図 9]導電性エラストマ一層上に金属薄層が形成された状態を示す説明用断面図で ある。  FIG. 9 is an explanatory sectional view showing a state in which a thin metal layer is formed on one conductive elastomer layer.
[図 10]金属薄層上に開口を有するレジスト層が形成された状態を示す説明用断面図 である。  FIG. 10 is an explanatory cross-sectional view showing a state in which a resist layer having an opening is formed on a thin metal layer.
[図 11]レジスト層の開口内に金属マスクが形成された状態を示す説明用断面図であ る。  FIG. 11 is an explanatory sectional view showing a state in which a metal mask is formed in the opening of the resist layer.
[図 12]離型性支持体上に特定のパターンに従って複数の接続用導電部が形成され た状態を示す説明用断面図である。  FIG. 12 is an explanatory cross-sectional view showing a state in which a plurality of connecting conductive portions are formed according to a specific pattern on a releasable support.
[図 13]離型性支持体上に、フレーム板が配置されると共に、絶縁部用材料層が形成 された状態を示す説明用断面図である。  FIG. 13 is an explanatory sectional view showing a state in which a frame plate is disposed on a releasable support and an insulating material layer is formed.
[図 14]絶縁部用材料層が形成された離型性支持板上に、接続用導電部が形成され た離型性支持板が重ね合わされた状態を示す説明用断面図である。  FIG. 14 is an explanatory cross-sectional view showing a state in which a releasable support plate on which a conductive part for connection is formed is superimposed on a releasable support plate on which an insulating material layer is formed.
[図 15]接続用導電部の周囲に一体の絶縁部が形成された状態を示す説明用断面図 である。 圆 16]本発明に係る異方導電性コネクターを使用したウェハ検査装置の一例におけ る構成を示す説明用断面図である。 FIG. 15 is an explanatory cross-sectional view showing a state in which an integral insulating portion is formed around the conductive portion for connection. FIG. 16 is a cross-sectional view illustrating the configuration of an example of a wafer inspection apparatus using an anisotropic conductive connector according to the present invention.
圆 17]本発明に係るプローブ部材の一例における要部の構成を示す説明用断面図 である。 FIG. 17 is a cross-sectional view illustrating the configuration of the main part of an example of the probe member according to the present invention.
圆 18]本発明に係る異方導電性コネクターを使用したウェハ検査装置の他の例にお ける構成を示す説明用断面図である。 [18] FIG. 18 is an explanatory cross-sectional view showing a configuration in another example of a wafer inspection apparatus using the anisotropic conductive connector according to the present invention.
圆 19]本発明に係る異方導電性コネクターの他の例における弾性異方導電膜を拡 大して示す平面図である。 FIG. 19 is an enlarged plan view showing an elastic anisotropic conductive film in another example of the anisotropic conductive connector according to the present invention.
圆 20]本発明に係る異方導電性コネクターの更に他の例における弾性異方導電膜 を拡大して示す平面図である。 FIG. 20 is an enlarged plan view showing an elastic anisotropic conductive film in still another example of the anisotropic conductive connector according to the present invention.
[図 21]導電性エラストマ一層における接続用導電部となる部分の周辺部部のみが除 去されることにより、接続用導電部が形成された状態を示す説明図である。  FIG. 21 is an explanatory view showing a state in which a connecting conductive portion is formed by removing only a peripheral portion of a conductive elastomer layer in a portion that becomes a connecting conductive portion.
[図 22]導電性エラストマ一層における接続用導電部となる部分の周辺部部のみが除 去されることにより、接続用導電部が形成された状態を示す説明用断面図である。 FIG. 22 is an explanatory cross-sectional view showing a state in which the conductive portion for connection is formed by removing only the peripheral portion of the conductive elastomer layer in the conductive elastomer layer.
[図 23]実施例で使用した試験用ウェハの上面図である。 FIG. 23 is a top view of a test wafer used in Examples.
圆 24]図 23に示す試験用ウェハに形成された集積回路の被検査電極領域の位置を 示す説明図である。 24] An explanatory diagram showing the positions of the electrode regions to be inspected of the integrated circuit formed on the test wafer shown in FIG.
[図 25]図 23に示す試験用ウェハに形成された集積回路の被検査電極を示す説明 図である。  FIG. 25 is an explanatory diagram showing an inspected electrode of the integrated circuit formed on the test wafer shown in FIG. 23.
[図 26]実施例で作製したフレーム板の上面図である。  FIG. 26 is a top view of the frame plate produced in the example.
[図 27]図 26に示すフレーム板の一部を拡大して示す説明図である。  FIG. 27 is an explanatory view showing a part of the frame plate shown in FIG. 26 in an enlarged manner.
圆 28]従来の異方導電性コネクターを製造するための金型の構成を示す説明用断 面図である。 [28] FIG. 28 is an explanatory sectional view showing a configuration of a mold for manufacturing a conventional anisotropically conductive connector.
[図 29]従来の異方導電性コネクターを製造する工程において、金型内にフレーム板 が配置されると共に、成形材料層が形成された状態を示す説明用断面図である。 圆 30]成形材料層の厚み方向に磁場が作用された状態を示す説明用断面図である 圆 31]従来の異方導電性コネクターの製造方法において、成形材料層に作用される 磁場の方向を示す説明用断面図である 符号の説明 FIG. 29 is an explanatory cross-sectional view showing a state in which a frame plate is arranged in a mold and a molding material layer is formed in a process for manufacturing a conventional anisotropic conductive connector.圆 30] is a sectional view for explanation showing a state in which a magnetic field is applied in the thickness direction of the molding material layer. 圆 31] In the conventional method for manufacturing an anisotropic conductive connector, the molding material layer is acted on. It is sectional drawing for description which shows the direction of a magnetic field.
1 プローブ部材 2 異方導電性コネクタ 1 Probe member 2 Anisotropic conductive connector
3 加圧板 4 ウェハ載置台3 Pressure plate 4 Wafer mounting table
5 加熱器 6 ウエノヽ 5 Heater 6 Ueno coffee
7 被検査電極 10 フレーム板  7 Electrode to be inspected 10 Frame plate
11 開口 11 opening
13 位置決め孔 13 Positioning hole
16, 16A 離型性支持板 16, 16A releasable support plate
17 金属薄層 18 レジスト層 17 Thin metal layer 18 Resist layer
18a 開口 19 金属マスク  18a opening 19 metal mask
20 弾性異方導電膜  20 Elastic anisotropic conductive film
21 接続用導電部 21 Conductive part for connection
21A 導電性エラストマ一用材料層 21A Material layer for conductive elastomer
21B 導電性エラストマ一層 21B conductive elastomer layer
22 絶縁部 22 Insulation part
22A 絶縁部用材料層 23 突出部  22A Material layer for insulation 23 Projection
26 非接続用導電部 27 突出部  26 Non-connection conductive part 27 Protruding part
30 検査用回路基板 31 検査電極  30 Circuit board for inspection 31 Inspection electrode
41 絶縁性シート 40 シート状プロ 41 Insulating sheet 40 Sheet pro
42 電極構造体 43 表面電極部42 Electrode structure 43 Surface electrode part
44 裏面電極部 45 短絡部 44 Back electrode 45 Short circuit
50 チャンバ一 51 排気管  50 chamber 51 exhaust pipe
55 O—リング  55 O-ring
80 上型 81 基板  80 Upper 81 substrate
82, 82a, 82b 強磁性体層  82, 82a, 82b ferromagnetic layer
83 非磁性体層  83 Non-magnetic layer
85 下型 86 基板 87 87a, 87b 強磁性体層 85 Lower mold 86 Substrate 87 87a, 87b Ferromagnetic layer
88 非磁性体層  88 Non-magnetic layer
90 フレーム板 91 開口  90 Frame plate 91 Opening
95 弾性異方導電膜 95A 成形材料層  95 Elastic anisotropic conductive film 95A Molding material layer
96 導電部 97 絶縁部  96 Conductive part 97 Insulating part
P 導電性粒子  P conductive particles
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下、本発明を実施するための形態について詳細に説明する。 [0024] Hereinafter, embodiments for carrying out the present invention will be described in detail.
〔異方導電性コネクター〕  [Anisotropic conductive connector]
図 1は、本発明に係るウェハ検査用異方導電性コネクターの一例を示す平面図、 図 2は、図 1に示す異方導電性コネクターの一部を拡大して示す平面図、図 3は、図 1に示す異方導電性コネクターにおける弾性異方導電膜を拡大して示す平面図、図 4は、図 1に示す異方導電性コネクターにおける弾性異方導電膜を拡大して示す説 明用断面図である。  FIG. 1 is a plan view showing an example of an anisotropic conductive connector for wafer inspection according to the present invention, FIG. 2 is an enlarged plan view showing a part of the anisotropic conductive connector shown in FIG. 1, and FIG. FIG. 4 is an enlarged plan view showing the elastic anisotropic conductive film in the anisotropic conductive connector shown in FIG. 1, and FIG. 4 is an enlarged view showing the elastic anisotropic conductive film in the anisotropic conductive connector shown in FIG. FIG.
[0025] 図 1に示すウェハ検査用異方導電性コネクター(以下、単に「異方導電性コネクタ 一」ともいう。)は、例えば複数の集積回路が形成されたウェハについて当該集積回 路の各々の電気的検査をウェハの状態で行うために用いられるものであって、図 2に 示すように、複数の開口 11 (破線で示す)が形成されたフレーム板 10を有する。この フレーム板 10の開口 11は、検査対象であるウェハに形成された全ての集積回路に おける被検査電極が配置された電極領域に対応して形成されて ヽる。このフレーム 板 10には、厚み方向に導電性を有する複数の弾性異方導電膜 20が、それぞれ一 の開口 11を塞ぐよう配置されて当該開口縁部に支持されている。また、この例におけ るフレーム板 10には、後述するウェハ検査装置において、減圧方式の加圧手段を用 いる場合に、当該異方導電性コネクターとこれに隣接する部材との間の空気を流通 させるための空気流通孔 12が形成され、更に、検査対象であるウェハおよび検査用 回路基板との位置決めを行うための位置決め孔 13が形成されている。  [0025] The anisotropic conductive connector for wafer inspection shown in FIG. 1 (hereinafter also simply referred to as "anisotropic conductive connector 1") is, for example, each of the integrated circuits for a wafer on which a plurality of integrated circuits are formed. As shown in FIG. 2, it has a frame plate 10 in which a plurality of openings 11 (shown by broken lines) are formed. The opening 11 of the frame plate 10 is formed so as to correspond to the electrode region where the electrodes to be inspected are arranged in all the integrated circuits formed on the wafer to be inspected. On the frame plate 10, a plurality of elastic anisotropic conductive films 20 having conductivity in the thickness direction are arranged so as to close one opening 11 and supported by the opening edge. Further, in the frame plate 10 in this example, when a pressure reducing means is used in a wafer inspection apparatus to be described later, air between the anisotropic conductive connector and a member adjacent to the anisotropic conductive connector is discharged. An air circulation hole 12 for circulation is formed, and a positioning hole 13 for positioning the wafer to be inspected and the circuit board for inspection is further formed.
[0026] 弾性異方導電膜 20は、弾性高分子物質によって形成されており、図 3に示すように 、フレーム板 10の開口 11内に位置するよう配置された、厚み方向(図 3において紙 面と垂直な方向)に伸びる複数の接続用導電部 21と、これらの接続用導電部 21の 各々の周囲に形成され、当該接続用導電部 21の各々を相互に絶縁する絶縁部 22 とにより構成されている。接続用導電部 21の各々は、検査対象であるウェハに形成 された集積回路における被検査電極のパターンに対応するパターンに従って配置さ れ、当該ウェハの検査において、その被検査電極に電気的に接続されるものである 弾性異方導電膜 20における接続用導電部 21には、図 4に示すように、磁性を示す 導電性粒子 Pが厚み方向に並ぶよう配向した状態で密に含有されている。これに対 して、絶縁部 22は、導電性粒子 Pが全く含有されていないものである。 [0026] The elastic anisotropic conductive film 20 is made of an elastic polymer material, and is disposed so as to be positioned in the opening 11 of the frame plate 10 as shown in FIG. A plurality of connecting conductive portions 21 extending in a direction perpendicular to the surface) and insulating portions 22 formed around each of the connecting conductive portions 21 and insulating each of the connecting conductive portions 21 from each other. It is configured. Each of the connecting conductive portions 21 is arranged according to a pattern corresponding to the pattern of the electrode to be inspected in the integrated circuit formed on the wafer to be inspected, and is electrically connected to the electrode to be inspected in the inspection of the wafer. As shown in FIG. 4, the conductive conductive part 21 for magnetism in the elastic anisotropic conductive film 20 is densely contained in a state of being oriented so as to be aligned in the thickness direction. . On the other hand, the insulating part 22 does not contain the conductive particles P at all.
また、図示の例では、接続用導電部 21の各々は、絶縁部 22の一面力も突出するよ う形成され、これにより、弾性異方導電膜 20の一面には接続用導電部 21に係る突出 部 23が形成されている。  Further, in the illustrated example, each of the connecting conductive portions 21 is formed so that one surface force of the insulating portion 22 protrudes, and thus, one surface of the elastic anisotropic conductive film 20 protrudes according to the connecting conductive portion 21. Part 23 is formed.
[0027] フレーム板 10の厚みは、その材質によって異なる力 25-600 μ mであることが好 ましく、より好ましくは 40〜400 μ mである。 [0027] The thickness of the frame plate 10 is preferably a force of 25 to 600 µm, and more preferably 40 to 400 µm, depending on the material.
この厚みが 25 m未満である場合には、異方導電性コネクターを使用する際に必 要な強度が得られず、耐久性が低いものとなりやすぐまた、当該フレーム板 10の形 状が維持される程度の剛性が得られず、異方導電性コネクターの取扱 、性が低 、も のとなる。一方、厚みが 600 mを超える場合には、開口 11に形成される弹性異方 導電膜 20は、その厚みが過大なものとなって、接続用導電部 21における良好な導 電性を得ることが困難となることがある。  If this thickness is less than 25 m, the strength required when using anisotropically conductive connectors will not be obtained, and the durability will be low. As a result, the anisotropically conductive connector cannot be handled with sufficient rigidity. On the other hand, when the thickness exceeds 600 m, the anisotropic anisotropic conductive film 20 formed in the opening 11 becomes excessively thick, and good conductivity in the connecting conductive part 21 can be obtained. May be difficult.
フレーム板 10の開口 11における面方向の形状および寸法は、検査対象であるゥ ェハの被検査電極の寸法、ピッチおよびパターンに応じて設計される。  The shape and size in the plane direction at the opening 11 of the frame plate 10 are designed according to the size, pitch, and pattern of the inspected electrode of the wafer to be inspected.
[0028] フレーム板 10を構成する材料としては、当該フレーム板 10が容易に変形せず、そ の形状が安定に維持される程度の剛性を有するものであれば特に限定されず、例え ば、金属材料、セラミックス材料、榭脂材料などの種々の材料を用いることができ、フ レーム板 10を例えば金属材料により構成する場合には、当該フレーム板 10の表面 に絶縁性被膜が形成されて 、てもよ 、。 [0028] The material constituting the frame plate 10 is not particularly limited as long as the frame plate 10 is not easily deformed and has a rigidity that allows its shape to be stably maintained. For example, Various materials such as a metal material, a ceramic material, and a resin material can be used. When the frame plate 10 is made of, for example, a metal material, an insulating film is formed on the surface of the frame plate 10; Anyway.
フレーム板 10を構成する金属材料の具体例としては、鉄、銅、ニッケル、クロム、コ ノルト、マグネシウム、マンガン、モリブデン、インジウム、鉛、パラジウム、チタン、タン ダステン、アルミニウム、金、白金、銀などの金属またはこれらを 2種以上組み合わせ た合金若しくは合金鋼などが挙げられる。 Specific examples of the metal material constituting the frame plate 10 include iron, copper, nickel, chrome, Examples include metals such as Nord, magnesium, manganese, molybdenum, indium, lead, palladium, titanium, tandastene, aluminum, gold, platinum, silver, and alloys or alloy steels in which two or more of these are combined.
フレーム板 10を構成する榭脂材料の具体例としては、液晶ポリマー、ポリイミド榭脂 などが挙げられる。  Specific examples of the resin material constituting the frame plate 10 include liquid crystal polymer and polyimide resin.
[0029] また、異方導電性コネクターを WLBI試験に用いる場合には、フレーム板 10を構成 する材料としては、線熱膨張係数が 3 X 10— 5Ζκ以下のものを用いることが好ましぐ より好ましくは— 1 X 10— 7〜1 X 10" 5/Κ,特に好ましくは 1 X 10— 6〜8 X 10— 6Ζκであ る。 [0029] In the case of using the anisotropically conductive connector WLBI test, as the material for forming the frame plate 10, preferably be linear thermal expansion coefficient used the following 3 X 10- 5 Ζκ instrument more preferably - 1 X 10- 7 ~1 X 10 "5 / Κ, particularly preferably Ru 1 X 10- 6 ~8 X 10- 6 Ζκ der.
このような材料の具体例としては、インバーなどのインバー型合金、エリンバーなど のエリンバー型合金、スーパーインバー、コバール、 42合金などの磁性金属の合金 または合金鋼などが挙げられる。  Specific examples of such materials include Invar type alloys such as Invar, Elinvar type alloys such as Elinvar, magnetic metal alloys such as Super Invar, Kovar, and 42 alloy, or alloy steel.
[0030] 弾性異方導電膜 20の全厚(図示の例では接続用導電部 21における厚み)は、 50 〜2000 μ mであること力好ましく、より好ましくは 70〜: LOOO μ m、特に好ましくは 80 〜500 /ζ πιである。この厚みが 50 m以上であれば、十分な強度を有する弹性異方 導電膜 20が確実に得られる。一方、この厚みが 2000 m以下であれば、所要の導 電性特性を有する接続用導電部 21が確実に得られる。 [0030] The total thickness of the elastic anisotropic conductive film 20 (thickness in the connecting conductive portion 21 in the illustrated example) is preferably 50 to 2000 μm, more preferably 70 to: LOOO μm, particularly preferably. Is 80-500 / ζ πι. If this thickness is 50 m or more, the anisotropic anisotropic conductive film 20 having sufficient strength can be obtained reliably. On the other hand, if the thickness is 2000 m or less, the connecting conductive portion 21 having the required conductivity characteristics can be obtained with certainty.
突出部 23の突出高さは、その合計が当該突出部 23における厚みの 10%以上で あることが好ましぐより好ましくは 20%以上である。このような突出高さを有する突出 部 23を形成することにより、小さい加圧力で接続用導電部 21が十分に圧縮されるた め、良好な導電性が確実に得られる。  The total projecting height of the projecting portions 23 is preferably 20% or more, more preferably 10% or more of the total thickness of the projecting portions 23. By forming the protruding portion 23 having such a protruding height, the connecting conductive portion 21 is sufficiently compressed with a small applied pressure, so that good conductivity can be reliably obtained.
また、突出部 23の突出高さは、当該突出部 23の最短幅または直径の 100%以下 であることが好ましぐより好ましくは 70%以下である。このような突出高さを有する突 出部 23を形成することにより、当該突出部 23が加圧されたときに座屈することがない ため、所期の導電性が確実に得られる。  Further, the protrusion height of the protrusion 23 is preferably 100% or less of the shortest width or diameter of the protrusion 23, more preferably 70% or less. By forming the protruding portion 23 having such a protruding height, the projecting portion 23 is not buckled when pressed, so that the desired conductivity can be obtained with certainty.
[0031] 弾性異方導電膜 20を形成する弾性高分子物質としては、架橋構造を有する耐熱 性の高分子物質が好まし 、。力かる架橋高分子物質を得るために用いることができる 硬化性の高分子物質形成材料としては、種々のものを用いることができる力 液状シ リコーンゴムが好ましい。 [0031] As the elastic polymer material forming the elastic anisotropic conductive film 20, a heat-resistant polymer material having a crosslinked structure is preferred. Various materials can be used as the curable polymer material-forming material that can be used to obtain a strong crosslinked polymer material. Ricorn rubber is preferred.
液状シリコーンゴムは、付加型のものであっても縮合型のものであってもよいが、付 加型液状シリコーンゴムが好ましい。この付加型液状シリコーンゴムは、ビュル基と Si H結合との反応によって硬化するものであって、ビニル基および Si— H結合の両 方を含有するポリシロキサンからなる一液型(一成分型)のものと、ビュル基を含有す るポリシロキサンおよび Si— H結合を含有するポリシロキサン力もなる二液型(二成分 型)のものがあるが、本発明においては、二液型の付加型液状シリコーンゴムを用い ることが好ましい。  The liquid silicone rubber may be an addition type or a condensation type, but an addition type liquid silicone rubber is preferred. This addition-type liquid silicone rubber is cured by the reaction between the bur group and the Si H bond, and is a one-pack type (one-component type) made of polysiloxane containing both vinyl groups and Si—H bonds. There are two-component type (two-component type) which also has polysiloxane power containing a butyl group and polysiloxane power containing Si—H bond. It is preferable to use silicone rubber.
[0032] 付加型液状シリコーンゴムとしては、その 23°Cにおける粘度が 100〜1, 250Pa- s のものを用いることが好ましぐさらに好ましくは 150〜800Pa' s、特に好ましくは 250 〜500Pa' sのものである。この粘度が lOOPa' s未満である場合には、後述する弾性 異方導電膜 20を得るための成形材料において、当該付加型液状シリコーンゴム中 における導電性粒子の沈降が生じやすぐ良好な保存安定性が得られず、また、成 形材料層に平行磁場を作用させたときに、導電性粒子が厚み方向に並ぶよう配向せ ず、均一な状態で導電性粒子の連鎖を形成することが困難となることがある。一方、 この粘度が 1, 250Pa' sを超える場合には、得られる成形材料が粘度の高いものとな るため、金型内に成形材料層を形成しにくいものとなることがあり、また、成形材料層 に平行磁場を作用させても、導電性粒子が十分に移動せず、そのため、導電性粒子 を厚み方向に並ぶよう配向させることが困難となることがある。  [0032] It is preferable to use an addition-type liquid silicone rubber having a viscosity at 23 ° C of 100 to 1,250 Pa-s, more preferably 150 to 800 Pa's, particularly preferably 250 to 500 Pa '. s thing. When this viscosity is less than lOOPa's, in the molding material for obtaining the elastic anisotropic conductive film 20 described later, sedimentation of the conductive particles in the addition-type liquid silicone rubber occurs immediately and good storage stability. In addition, when a parallel magnetic field is applied to the forming material layer, the conductive particles are not aligned so as to be aligned in the thickness direction, and it is difficult to form a chain of conductive particles in a uniform state. It may become. On the other hand, if this viscosity exceeds 1,250 Pa's, the resulting molding material has a high viscosity, which may make it difficult to form a molding material layer in the mold. Even when a parallel magnetic field is applied to the molding material layer, the conductive particles do not move sufficiently, and it may be difficult to orient the conductive particles so that they are aligned in the thickness direction.
このような付加型液状シリコーンゴムの粘度は、 B型粘度計によって測定することが できる。  The viscosity of such an addition type liquid silicone rubber can be measured with a B-type viscometer.
[0033] 弾性異方導電膜 20を液状シリコーンゴムの硬化物(以下、「シリコーンゴム硬化物」 という。)によって形成する場合において、当該シリコーンゴム硬化物は、その 150°C における圧縮永久歪みが 10%以下であることが好ましぐより好ましくは 8%以下、さ らに好ましくは 6%以下である。この圧縮永久歪みが 10%を超える場合には、得られ る異方導電性コネクターを多数回にわたって繰り返し使用したとき或いは高温環境 下において繰り返し使用したときには、接続用導電部 21に永久歪みが発生しやすく 、これにより、接続用導電部 21における導電性粒子の連鎖に乱れが生じる結果、所 要の導電性を維持することが困難となる。 [0033] When the elastic anisotropic conductive film 20 is formed from a cured liquid silicone rubber (hereinafter referred to as "silicone rubber cured product"), the cured silicone rubber has a compression set at 150 ° C. It is preferably 10% or less, more preferably 8% or less, and further preferably 6% or less. If this compression set exceeds 10%, when the anisotropically conductive connector obtained is repeatedly used many times or repeatedly in a high temperature environment, the connection conductive part 21 is permanently set. As a result, the chain of conductive particles in the connecting conductive part 21 is disturbed. It becomes difficult to maintain the necessary conductivity.
ここで、シリコーンゴム硬化物の圧縮永久歪みは、 JIS K 6249に準拠した方法に よって柳』定することができる。  Here, the compression set of the cured silicone rubber can be determined by a method according to JIS K 6249.
[0034] また、弾性異方導電膜 20を形成するシリコーンゴム硬化物は、その 23°Cにおける デュロメーター A硬度が 10〜60のものであることが好ましぐさらに好ましくは 15〜6 0、特に好ましくは 20〜60のものである。このデュロメーター A硬度が 10未満である 場合には、加圧されたときに、接続用導電部 21を相互に絶縁する絶縁部 22が過度 に歪みやすぐ接続用導電部 21間の所要の絶縁性を維持することが困難となること がある。一方、このデュロメーター A硬度が 60を超える場合には、接続用導電部 21 に適正な歪みを与えるために相当に大きい荷重による加圧力が必要となるため、例 えば検査対象であるウェハに大きな変形や破壊が生じやすくなる。 [0034] Further, the cured silicone rubber forming the elastic anisotropic conductive film 20 preferably has a durometer A hardness of 10 to 60 at 23 ° C, more preferably 15 to 60, particularly Preferably it is 20-60. If the durometer A hardness is less than 10, the insulation 22 that insulates the connection conductive parts 21 from each other when pressed is excessively distorted or immediately has the required insulation between the connection conductive parts 21. May be difficult to maintain. On the other hand, if the durometer A hardness exceeds 60, a pressing force with a considerably large load is required to give an appropriate distortion to the conductive part 21 for connection. For example, the wafer to be inspected is greatly deformed. Or breakage easily occurs.
また、シリコーンゴム硬化物として、デュロメーター A硬度が上記の範囲外のものを 用いる場合には、得られる異方導電性コネクターを多数回にわたって繰り返し使用し たときには、接続用導電部 21に永久歪みが発生しやすぐこれにより、接続用導電 部 21における導電性粒子の連鎖に乱れが生じる結果、所要の導電性を維持するこ とが困難となる。 更に、異方導電性コネクターを高温環境下における試験例えば W LBI試験に用いる場合には、弾性異方導電膜 20を形成するシリコーンゴム硬化物は 、その 23°Cにおけるデュロメーター A硬度が 25〜40のものであることが好ましい。 シリコーンゴム硬化物として、デュロメーター A硬度が上記の範囲外のものを用いる 場合には、得られる異方導電性コネクターを高温度環境下における試験に繰り返し 使用したときには、接続用導電部 21に永久歪みが発生しやすぐこれにより、接続用 導電部 21における導電性粒子の連鎖に乱れが生じる結果、所要の導電性を維持す ることが困難となる。  In addition, when a silicone rubber cured product having a durometer A hardness outside the above range is used, if the anisotropically conductive connector obtained is repeatedly used many times, the connecting conductive portion 21 is permanently strained. As soon as it occurs, this results in disturbance of the chain of conductive particles in the connecting conductive portion 21, and it becomes difficult to maintain the required conductivity. Furthermore, when the anisotropic conductive connector is used in a test under a high temperature environment, for example, a W LBI test, the cured silicone rubber forming the elastic anisotropic conductive film 20 has a durometer A hardness of 25 to 40 at 23 ° C. It is preferable that. If a cured silicone rubber with a durometer A hardness outside the above range is used, the anisotropic conductive connector obtained will be permanently strained in the conductive part for connection 21 when repeatedly used in tests at high temperatures. As a result, the chain of conductive particles in the connection conductive portion 21 is disturbed, and it becomes difficult to maintain the required conductivity.
ここで、シリコーンゴム硬化物のデュロメーター A硬度は、 JIS K 6249に準拠した 方法によって測定することができる。  Here, the durometer A hardness of the cured silicone rubber can be measured by a method based on JIS K 6249.
[0035] また、弾性異方導電膜 20を形成するシリコーンゴム硬化物は、その 23°Cにおける 引き裂き強度が 8kNZm以上のものであることが好ましぐさらに好ましくは lOkNZ m以上、より好ましくは 15kNZm以上、特に好ましくは 20kNZm以上のものである 。この引き裂き強度が 8kNZm未満である場合には、弾性異方導電膜 20に過度の 歪みが与えられたときに、耐久性の低下を起こしやす 、。 [0035] Further, the cured silicone rubber forming the elastic anisotropic conductive film 20 preferably has a tear strength at 23 ° C of 8 kNZm or more, more preferably lOkNZ m or more, more preferably 15 kNZm. Above, particularly preferably 20 kNZm or more . If the tear strength is less than 8 kNZm, the durability tends to decrease when the elastic anisotropic conductive film 20 is excessively strained.
ここで、シリコーンゴム硬化物の引き裂き強度は、 JIS K 6249に準拠した方法に よって柳』定することができる。  Here, the tear strength of the cured silicone rubber can be determined by a method based on JIS K 6249.
[0036] このような特性を有する付加型液状シリコーンゴムとしては、信越ィ匕学工業株式会 社製の液状シリコーンゴム「KE2000」シリーズ、「KE1950」シリーズとして市販され て!、るものを用いることができる。 [0036] As the addition type liquid silicone rubber having such characteristics, liquid silicone rubbers "KE2000" series and "KE1950" series manufactured by Shin-Etsu Chemical Co., Ltd. are commercially available! Can do.
[0037] 本発明においては、付加型液状シリコーンゴムを硬化させるために適宜の硬化触 媒を用いることができる。このような硬化触媒としては、白金系のものを用いることがで き、その具体例としては、塩化白金酸およびその塩、白金—不飽和基含有シロキサ ンコンプレックス、ビュルシロキサンと白金とのコンプレックス、 白金と 1, 3—ジビュル テトラメチルジシロキサンとのコンプレックス、トリオルガノホスフィンある 、はホスフアイ トと白金とのコンプレックス、ァセチルアセテート白金キレート、環状ジェンと白金との コンプレックスなどの公知のものが挙げられる。 In the present invention, an appropriate curing catalyst can be used for curing the addition type liquid silicone rubber. As such a curing catalyst, a platinum-based catalyst can be used. Specific examples thereof include chloroplatinic acid and a salt thereof, a platinum-unsaturated group-containing siloxane complex, a complex of bursiloxane and platinum, Known complexes such as a complex of platinum and 1,3-dibule tetramethyldisiloxane, a triorganophosphine, a complex of phosphite and platinum, a acetyl acetate platinum chelate, a complex of cyclic gen and platinum, etc. .
硬化触媒の使用量は、硬化触媒の種類、その他の硬化処理条件を考慮して適宜 選択されるが、通常、付加型液状シリコーンゴム 100重量部に対して 3〜15重量部 である。  The amount of the curing catalyst used is appropriately selected in consideration of the type of curing catalyst and other curing conditions, but is usually 3 to 15 parts by weight with respect to 100 parts by weight of the addition type liquid silicone rubber.
[0038] また、付加型液状シリコーンゴム中には、付加型液状シリコーンゴムのチクソトロピ 一性の向上、粘度調整、導電性粒子の分散安定性の向上、或いは高い強度を有す る基材を得ることなどを目的として、必要に応じて、通常のシリカ粉、コロイダルシリカ 、エア口ゲルシリカ、アルミナなどの無機充填材を含有させることができる。  [0038] Further, in the addition-type liquid silicone rubber, a thixotropic improvement of the addition-type liquid silicone rubber, viscosity adjustment, improvement of dispersion stability of the conductive particles, or a base material having high strength is obtained. For this purpose, an inorganic filler such as normal silica powder, colloidal silica, air-mouthed gel silica, alumina, or the like can be contained as necessary.
このような無機充填材の使用量は、特に限定されるものではないが、多量に使用す ると、磁場による導電性粒子の配向を十分に達成することができなくなるため、好まし くない。  The amount of such an inorganic filler used is not particularly limited, but if used in a large amount, the orientation of the conductive particles by a magnetic field cannot be sufficiently achieved, which is not preferable.
[0039] 弾性異方導電膜 20における接続用導電部 21に含有される導電性粒子 Pとしては 、磁性を示す芯粒子 (以下、「磁性芯粒子」ともいう。)の表面に高導電性金属が被覆 されてなるものを用いることが好まし!/、。  [0039] The conductive particles P contained in the connecting conductive portion 21 of the elastic anisotropic conductive film 20 include a highly conductive metal on the surface of magnetic core particles (hereinafter also referred to as "magnetic core particles"). It is preferable to use the one coated with!
[0040] 導電性粒子 Pを得るための磁性芯粒子は、その数平均粒子径が 3〜40 μ mのもの であることが好ましい。 [0040] The magnetic core particles for obtaining the conductive particles P have a number average particle diameter of 3 to 40 μm. It is preferable that
ここで、磁性芯粒子の数平均粒子径は、レーザー回折散乱法によって測定された ものをいう。  Here, the number average particle diameter of the magnetic core particles refers to that measured by a laser diffraction scattering method.
上記数平均粒子径が 3 μ m以上であれば、加圧変形が容易で、抵抗値が低くて接 続信頼性の高い接続用導電部 21が得られやすい。一方、上記数平均粒子径が 40 μ m以下であれば、微細な接続用導電部 21を容易に形成することができ、また、得 られる接続用導電部 21は、安定な導電性を有するものとなりやすい。  If the number average particle diameter is 3 μm or more, it is easy to obtain a conductive part 21 for connection that is easily deformed under pressure, has a low resistance value, and high connection reliability. On the other hand, if the number average particle diameter is 40 μm or less, the fine connecting conductive part 21 can be easily formed, and the obtained connecting conductive part 21 has stable conductivity. It is easy to become.
[0041] また、磁性芯粒子は、その BET比表面積が 10〜500m2 /kgであることが好ましく 、より好ましくは 20〜500m2 Zkg、特に好ましくは 50〜400m2 Zkgである。 [0041] The BET specific surface area of the magnetic core particles is preferably 10 to 500 m 2 / kg, more preferably 20 to 500 m 2 Zkg, and particularly preferably 50 to 400 m 2 Zkg.
この BET比表面積が 10m2 /kg以上であれば、当該磁性芯粒子はメツキ可能な領 域が十分に大きいものであるため、当該磁性芯粒子に所要の量のメツキを確実に行 うことができ、従って、導電性の大きい導電性粒子 Pを得ることができると共に、当該 導電性粒子 P間において、接触面積が十分に大きいため、安定で高い導電性が得ら れる。一方、この BET比表面積が 500m2 Zkg以下であれば、当該磁性芯粒子が脆 弱なものとならず、物理的な応力が加わった際に破壊することが少なぐ安定で高い 導電性が保持される。 If the BET specific surface area is 10 m 2 / kg or more, the magnetic core particle has a sufficiently large area that can be measured, so that the required amount of plating can be reliably applied to the magnetic core particle. Therefore, the conductive particles P having high conductivity can be obtained, and the contact area between the conductive particles P is sufficiently large, so that stable and high conductivity can be obtained. On the other hand, if the BET specific surface area is 500 m 2 Zkg or less, the magnetic core particles will not be brittle, and will retain stable and high conductivity with little damage when subjected to physical stress. Is done.
[0042] また、磁性芯粒子は、その粒子径の変動係数が 50%以下のものであることが好ま しぐより好ましくは 40%以下、更に好ましくは 30%以下、特に好ましくは 20%以下 のものである。  [0042] Further, the magnetic core particles preferably have a coefficient of variation in particle diameter of 50% or less, more preferably 40% or less, still more preferably 30% or less, and particularly preferably 20% or less. Is.
ここで、粒子径の変動係数は、式:( σ ZDn) X 100 (但し、 σは、粒子径の標準偏 差の値を示し、 Dnは、粒子の数平均粒子径を示す。)によって求められるものである 上記粒子径の変動係数が 50%以下であれば、粒子径の均一性が大きいため、導 電性のバラツキの小さい接続用導電部 21を形成することかできる。  Here, the coefficient of variation of the particle diameter is determined by the formula: (σ ZDn) X 100 (where σ is the standard deviation value of the particle diameter, and Dn is the number average particle diameter of the particles). If the coefficient of variation of the particle diameter is 50% or less, the uniformity of the particle diameter is large, and thus the conductive portion 21 for connection with a small variation in conductivity can be formed.
[0043] 磁性芯粒子を構成する材料としては、鉄、ニッケル、コバルト、これらの金属を銅、 榭脂によってコーティングしたものなどを用いことができる力 その飽和磁ィ匕が 0. 1W b/m2以上のものを好ましく用いることができ、より好ましくは 0. 3Wb/m2以上、特 に好ましくは 0. 5WbZm2以上のものであり、具体的には、鉄、ニッケル、コバルトま たはそれらの合金などが挙げられる。 [0043] As a material constituting the magnetic core particle, iron, nickel, cobalt, a force obtained by coating these metals with copper, resin, and the like can be used. The saturation magnetic field is 0.1 W b / m. Two or more can be preferably used, more preferably 0.3 Wb / m 2 or more, and particularly preferably 0.5 WbZm 2 or more. Specifically, iron, nickel, cobalt or the like. Or alloys thereof.
この飽和磁ィ匕が 0. lWbZm2以上であれば、後述する方法によって、当該弹性異 方導電膜 20を形成するための成形材料層中にお ヽて導電性粒子 Pを容易に移動さ せることができ、これにより、当該成形材料層における接続用導電部となる部分に、 導電性粒子 Pを確実に移動させて導電性粒子 Pの連鎖を形成することができる。 If this saturation magnetic field is 0.1 lWbZm 2 or more, the conductive particles P can be easily moved in the molding material layer for forming the anisotropic anisotropic conductive film 20 by the method described later. As a result, the conductive particles P can be reliably moved to the portion to be the conductive portion for connection in the molding material layer to form a chain of the conductive particles P.
[0044] 接続用導電部 21を得るために用いられる導電性粒子 Pは、上記の磁性芯粒子の 表面に高導電性金属が被覆されてなるものである。 [0044] The conductive particles P used to obtain the conductive portion 21 for connection are obtained by coating the surfaces of the magnetic core particles with a highly conductive metal.
ここで、「高導電性金属」とは、 0°Cにおける導電率が 5 X 106 Ω—1!!!—1以上のものを いう。 Here, the “highly conductive metal” means one having an electrical conductivity at 0 ° C. of 5 × 10 6 Ω— 1 !!! — 1 or more.
このような高導電性金属としては、金、銀、ロジウム、白金、クロムなどを用いることが でき、これらの中では、化学的に安定でかつ高い導電率を有する点で金を用いるが 好ましい。  As such a highly conductive metal, gold, silver, rhodium, platinum, chromium, or the like can be used. Among these, gold is preferable because it is chemically stable and has high conductivity.
[0045] 導電性粒子 Ρは、芯粒子に対する高導電性金属の割合〔 (高導電性金属の質量 Ζ 芯粒子の質量) X 100〕が 15質量%以上とされ、好ましくは 25〜35質量%とされる。 高導電性金属の割合が 15質量%未満である場合には、得られる異方導電性コネ クタ一を高温環境下に繰り返し使用したとき、当該導電性粒子 Ρの導電性が著しく低 下する結果、所要の導電性を維持することができない。  [0045] The ratio of the highly conductive metal to the core particle [(mass of high conductive metal 質量 mass of core particle) X 100] in the conductive particle Ρ is 15 mass% or more, preferably 25 to 35 mass%. It is said. When the proportion of the highly conductive metal is less than 15% by mass, the conductivity of the conductive particles Ρ decreases significantly when the anisotropically conductive connector obtained is repeatedly used in a high temperature environment. The required conductivity cannot be maintained.
[0046] また、導電性粒子 Ρは、下記の式(1)によって算出される、高導電性金属による被 覆層の厚み tが 50nm以上のものとされ、好ましくは 100〜200nmのものとされる。 式 (1) t= [l/ (Sw ) ] X [N/ (l -N) ] [0046] In addition, the conductive particles 算出 have a thickness t of the covering layer of a highly conductive metal, calculated by the following formula (1), of 50 nm or more, and preferably 100 to 200 nm. The Formula (1) t = [l / (Sw)] X [N / (l -N)]
〔但し、 tは高導電性金属による被覆層の厚み (m)、 Swは芯粒子の BET比表面積( m2 /kg)、 は高導電性金属の比重 (kgZm3 )、 Nは(高導電性金属の重量 Z導電 性粒子全体の重量)の値を示す。〕 [Where t is the thickness of the coating layer made of a highly conductive metal (m), Sw is the BET specific surface area of the core particle (m 2 / kg), is the specific gravity of the highly conductive metal (kgZm 3 ), and N is (high conductivity The weight of the conductive metal is the value of the total weight of the Z conductive particles). ]
[0047] 上記の数式は、次のようにして導かれたものである。 The above mathematical formula is derived as follows.
(i)磁性芯粒子の重量を Mp (kg)とすると、磁性芯粒子の表面積 S (m2 )は、 S = SwMp 式(2) (i) When the weight of the magnetic core particle is Mp (kg), the surface area S (m 2 ) of the magnetic core particle is S = SwMp (2)
によって求められる。  Sought by.
(ii)高導電性金属による被覆層の重量を m (kg)とすると、当該被覆層の体積 V (m3 ) は、(ii) When the weight of the coating layer made of a highly conductive metal is m (kg), the volume V (m 3 ) of the coating layer Is
Figure imgf000023_0001
式(3)
Figure imgf000023_0001
Formula (3)
によって求められる。 Sought by.
(iii)ここで、被覆層の厚みが導電性粒子の表面全体にわたって均一なものであると 仮定すると、 t=VZSであり、これに上記式(2)および式(3)を代入すると、被覆層の 厚み tは、  (iii) Here, assuming that the thickness of the coating layer is uniform over the entire surface of the conductive particles, t = VZS. Substituting Equation (2) and Equation (3) above into The layer thickness t is
t= (m/ p ) / (SwMp) =m/ (Sw p ·Μρ) 式(4)  t = (m / p) / (SwMp) = m / (Sw p · Μρ) Equation (4)
によって求められる。 Sought by.
(iv)また、 Nは、導電性粒子全体の質量に対する被覆層の質量の比であるから、この Nの値は、  (iv) Also, since N is the ratio of the mass of the coating layer to the mass of the entire conductive particle, the value of N is
N=m/(Mp+m) 式(5)  N = m / (Mp + m) Equation (5)
によって求められる。 Sought by.
(V)この式(5)の右辺における分子 ·分母を Mpで割ると、  (V) Dividing the numerator and denominator on the right side of this equation (5) by Mp,
N = (m/Mp) m/Mp)となり、両辺に( 1 + m/Mp)を力 4ナると、  N = (m / Mp) m / Mp). When (1 + m / Mp) is applied to both sides,
N(l+m/Mp) =mZMp、更には、  N (l + m / Mp) = mZMp, and
N+N(m/Mp) =mZMpとなり、 N(mZMp)を右辺に移行すると、  N + N (m / Mp) = mZMp, and when N (mZMp) is shifted to the right side,
N = m/Mp -N (m/Mp) = (m/Mp) (1 N)となり、両辺を(1 N)で割ると、 N = m / Mp -N (m / Mp) = (m / Mp) (1 N), and when both sides are divided by (1 N),
N/(l-N) =mZMpとなり、 N / (l-N) = mZMp
従って、磁性芯粒子の重量 Mpは、  Therefore, the weight Mp of the magnetic core particle is
Mp=m/ [N/(1-N)]=m(l-N) /N 式(6)  Mp = m / [N / (1-N)] = m (l-N) / N formula (6)
によって求められる。 Sought by.
(vi)そして、式 (4)に式 (6)を代入すると、  (vi) And when substituting equation (6) into equation (4),
t=l/[Sw p · (1 N)ZN〕  t = l / [Sw p (1 N) ZN]
= [l/(Sw )] X [N/(l-N)]  = [l / (Sw)] X [N / (l-N)]
が導かれる。 Is guided.
この被覆層の厚み tが 50nm以上であれば、当該異方導電性コネクターを高温環 境下に繰り返し使用した場合において、磁性芯粒子を構成する強磁性体が被覆層 を構成する高導電性金属中に移行しても、当該導電性粒子 Pの表面には、高導電性 金属が高 ヽ割合で存在するので、当該導電性粒子 Pの導電性が著しく低下すること がなぐ所期の導電性が維持される。 If the thickness t of the coating layer is 50 nm or more, the ferromagnetic material constituting the magnetic core particles forms the coating layer when the anisotropically conductive connector is repeatedly used under a high temperature environment. Even if it moves inside, the surface of the conductive particles P has high conductivity. Since the metal is present in a high proportion, the intended conductivity that the conductivity of the conductive particles P is not significantly reduced is maintained.
[0049] また、導電性粒子 Pの数平均粒子径は、 3〜40 μ mであることが好ましぐより好ま しくは 6〜25 πιである。  [0049] The number average particle diameter of the conductive particles P is preferably 3 to 40 µm, more preferably 6 to 25 πι.
このような導電性粒子 Ρを用いることにより、得られる弾性異方導電膜 20は、加圧変 形が容易なものとなり、また、当該弾性異方導電膜 20における接続用導電部 21にお Vヽて導電性粒子 Ρ間に十分な電気的接触が得られる。  By using such conductive particles, the resulting elastic anisotropic conductive film 20 can be easily deformed under pressure, and the connecting conductive portion 21 of the elastic anisotropic conductive film 20 can be made V As a result, sufficient electrical contact can be obtained between the conductive particles.
また、導電性粒子 Ρの形状は、特に限定されるものではないが、高分子物質形成材 料中に容易に分散させることができる点で、球状のもの、星形状のものあるいはこれ らが凝集した 2次粒子による塊状のものであることが好ましい。  The shape of the conductive particles is not particularly limited, but is spherical, star-shaped, or aggregated in that it can be easily dispersed in the polymer material-forming material. It is preferable that it is a lump with secondary particles.
[0050] このような導電性粒子 Ρは、例えは以下の方法によって得ることができる。 [0050] Such conductive particles can be obtained, for example, by the following method.
先ず、強磁性体材料を常法により粒子化し或いは市販の強磁性体粒子を用意し、 この粒子に対して分級処理を行うことにより、所要の粒子径を有する磁性芯粒子を調 製する。  First, magnetic core particles having a required particle diameter are prepared by making a ferromagnetic material into particles by a conventional method or preparing commercially available ferromagnetic particles and classifying the particles.
ここで、粒子の分級処理は、例えば空気分級装置、音波ふるい装置などの分級装 置によって行うことができる。  Here, the particle classification treatment can be performed by a classification device such as an air classification device or a sonic sieving device.
また、分級処理の具体的な条件は、目的とする磁性芯粒子の数平均粒子径、分級 装置の種類などに応じて適宜設定される。  Specific conditions for the classification treatment are appropriately set according to the number average particle diameter of the target magnetic core particles, the type of the classification device, and the like.
次いで、磁性芯粒子の表面を酸によって処理し、更に、例えば純水によって洗浄す ることにより、磁性芯粒子の表面に存在する汚れ、異物、酸化膜などの不純物を除去 し、その後、当該磁性芯粒子の表面に高導電性金属を被覆することによって、導電 性粒子が得られる。  Next, the surface of the magnetic core particle is treated with an acid, and further washed with pure water, for example, to remove impurities such as dirt, foreign matter, and oxide film present on the surface of the magnetic core particle. Conductive particles can be obtained by coating the surface of the core particles with a highly conductive metal.
ここで、磁性芯粒子の表面を処理するために用いられる酸としては、塩酸などを挙 げることができる。  Here, hydrochloric acid can be used as the acid used to treat the surface of the magnetic core particles.
高導電性金属を磁性芯粒子の表面に被覆する方法としては、無電解メツキ法、置 換メツキ法等を用いることができる力 これらの方法に限定されるものではない。  The method of coating the surface of the magnetic core particles with the highly conductive metal is not limited to these methods, which can use an electroless plating method, a replacement plating method, or the like.
[0051] 無電解メツキ法または置換メツキ法によって導電性粒子を製造する方法にっ 、て説 明すると、先ず、メツキ液中に、酸処理および洗浄処理された磁性芯粒子を添加して スラリーを調製し、このスラリーを攪拌しながら当該磁性芯粒子の無電解メツキまたは 置換メツキを行う。次いで、スラリー中の粒子をメツキ液力 分離し、その後、当該粒 子を例えば純水によって洗浄処理することにより、磁性芯粒子の表面に高導電性金 属が被覆されてなる導電性粒子が得られる。 [0051] The method for producing conductive particles by the electroless plating method or the substitution plating method will be described. First, acid-treated and washed magnetic core particles are added to the plating solution. A slurry is prepared, and the magnetic core particles are subjected to electroless plating or substitution plating while stirring the slurry. Next, the particles in the slurry are separated by MEC solution, and then the particles are washed with, for example, pure water to obtain conductive particles in which the surface of the magnetic core particles is coated with a highly conductive metal. It is done.
また、磁性芯粒子の表面に下地メツキを行って下地メツキ層を形成した後、当該下 地メツキ層の表面に高導電性金属よりなるメツキ層を形成してもよ ヽ。下地メツキ層お よびその表面に形成されるメツキ層を形成する方法は、特に限定されないが、無電解 メツキ法により、磁性芯粒子の表面に下地メツキ層を形成し、その後、置換メツキ法に より、下地メツキ層の表面に高導電性金属よりなるメツキ層を形成することが好ましい 無電解メツキまたは置換メツキに用いられるメツキ液としては、特に限定されるもので はなぐ種々の巿販のものを用いることができる。  Alternatively, after forming an undercoat layer on the surface of the magnetic core particles, a finish layer made of a highly conductive metal may be formed on the surface of the undercoat layer. The method for forming the base plating layer and the plating layer formed on the surface thereof is not particularly limited, but the base plating layer is formed on the surface of the magnetic core particles by the electroless plating method, and then the substitution plating method. It is preferable to form a plating layer made of a highly conductive metal on the surface of the base plating layer. The plating solution used for the electroless plating or the substitution plating is not particularly limited, but variously sold products. Can be used.
[0052] また、磁性芯粒子の表面に高導電性金属を被覆する際に、粒子が凝集すること〖こ より、粒子径の大きい導電性粒子が発生することがあるため、必要に応じて、導電性 粒子の分級処理を行うことが好ましぐこれにより、所期の粒子径を有する導電性粒 子が確実に得られる。  [0052] Further, when the surface of the magnetic core particles is coated with a highly conductive metal, the particles may be aggregated, so that conductive particles having a large particle diameter may be generated. It is preferable to classify the conductive particles, so that conductive particles having the desired particle diameter can be obtained with certainty.
導電性粒子の分級処理を行うための分級装置としては、前述の磁性芯粒子を調製 するための分級処理に用いられる分級装置として例示したものを挙げることができる  Examples of the classification device for performing the classification treatment of the conductive particles include those exemplified as the classification device used for the classification treatment for preparing the above-described magnetic core particles.
[0053] 接続用導電部 21における導電性粒子 Pの含有割合は、体積分率で 10〜60%、好 ましくは 15〜50%となる割合で用いられることが好ましい。この割合が 10%未満の 場合には、十分に電気抵抗値の小さい接続用導電部 21が得られないことがある。一 方、この割合が 60%を超える場合には、得られる接続用導電部 21は脆弱なものとな りやすぐ接続用導電部 21として必要な弾性が得られないことがある。 [0053] The content ratio of the conductive particles P in the connecting conductive portion 21 is preferably 10 to 60%, preferably 15 to 50% in terms of volume fraction. When this ratio is less than 10%, the connection conductive part 21 having a sufficiently small electric resistance value may not be obtained. On the other hand, when this ratio exceeds 60%, the obtained conductive part 21 for connection becomes fragile, and the elasticity necessary for the conductive part 21 for connection may not be obtained immediately.
[0054] 上記の異方導電性コネクタ一は、以下のようにして製造することができる。  [0054] The anisotropic conductive connector 1 can be manufactured as follows.
《フレーム板の作製》  <Production of frame plate>
検査対象であるウェハに形成された全ての集積回路における被検査電極が配置さ れた電極領域に対応して開口 11が形成されたフレーム板 10を作製する。ここで、フ レーム板 10の開口 11を形成する方法としては、当該フレーム板 10を構成する材料 に応じて適宜選択され、例えばエッチング法などを利用することができる。 A frame plate 10 in which an opening 11 is formed corresponding to an electrode region in which electrodes to be inspected in all integrated circuits formed on a wafer to be inspected is formed. Where The method for forming the opening 11 of the lam plate 10 is appropriately selected according to the material constituting the frame plate 10, and for example, an etching method or the like can be used.
[0055] 《導電性エラストマ一層の形成》  [0055] << Formation of one layer of conductive elastomer >>
硬化されて弾性高分子物質となる液状のエラストマ一用材料好ましくは付加型液状 シリコーンゴム中に磁性を示す導電性粒子が分散されてなる導電性エラストマ一用 材料を調製する。次いで、図 5に示すように、導電部形成用の離型性支持板 16上に 、導電性エラストマ一用材料を塗布することによって導電性エラストマ一用材料層 21 Aを形成する。ここで、導電性エラストマ一用材料層 21A中においては、図 6に示す ように、磁性を示す導電性粒子 Pが分散された状態で含有されて!ヽる。  A liquid elastomer material that is cured to become an elastic polymer substance, preferably a conductive elastomer material, in which conductive particles exhibiting magnetism are dispersed in addition-type liquid silicone rubber is prepared. Next, as shown in FIG. 5, a conductive elastomer material layer 21A is formed by applying a conductive elastomer material on the releasable support plate 16 for forming a conductive portion. Here, in the conductive elastomer material layer 21A, as shown in FIG. 6, the conductive particles P exhibiting magnetism are contained in a dispersed state.
次いで、導電性エラストマ一用材料層 21Aに対してその厚み方向に磁場を作用さ せることにより、図 7に示すように、導電性エラストマ一用材料層 21A中に分散されて いた導電性粒子 Pを当該導電性エラストマ一用材料層 21Aの厚み方向に並ぶよう配 向させる。そして、導電性エラストマ一用材料層 21Aに対する磁場の作用を継続しな がら、或いは磁場の作用を停止した後、導電性エラストマ一用材料層 21Aの硬化処 理を行うことにより、図 8に示すように、弾性高分子物質中に導電性粒子 Pが厚み方 向に並ぶよう配向した状態で含有されてなる導電性エラストマ一層 21Bが、離型性支 持板 16上に支持された状態で形成される。  Next, by applying a magnetic field in the thickness direction to the conductive elastomer material layer 21A, the conductive particles P dispersed in the conductive elastomer material layer 21A as shown in FIG. Are aligned in the thickness direction of the conductive elastomer material layer 21A. Then, while continuing the action of the magnetic field on the conductive elastomer material layer 21A, or after stopping the action of the magnetic field, the conductive elastomer material layer 21A is hardened and shown in FIG. In this way, the conductive elastomer layer 21B, which is contained in the elastic polymer material in a state in which the conductive particles P are aligned in the thickness direction, is formed in a state where it is supported on the releasable support plate 16. Is done.
[0056] 以上において、離型性支持板 16を構成する材料としては、金属、セラミックス、榭 脂およびこれらの複合材などを用いることができる。 [0056] In the above, as a material constituting the releasable support plate 16, metals, ceramics, resins, composite materials thereof, and the like can be used.
導電性エラストマ一用材料を塗布する方法としては、スクリーン印刷などの印刷法、 ロール塗布法、ブレード塗布法などを利用することができる。  As a method of applying the conductive elastomer material, a printing method such as screen printing, a roll coating method, a blade coating method, or the like can be used.
導電性エラストマ一用材料層 21Aの厚みは、形成すべき接続用導電部の厚みに 応じて設定される。  The thickness of the conductive elastomer material layer 21A is set in accordance with the thickness of the connecting conductive portion to be formed.
導電性エラストマ一用材料層 21Aに磁場を作用させる手段としては、電磁石、永久 磁石などを用いることができる。  As means for applying a magnetic field to the conductive elastomer material layer 21A, an electromagnet, a permanent magnet, or the like can be used.
導電性エラストマ一用材料層 21Aに作用させる磁場の強度は、 0. 2〜2. 5テスラと なる大きさが好ましい。  The strength of the magnetic field applied to the conductive elastomer material layer 21A is preferably 0.2 to 2.5 Tesla.
導電性エラストマ一用材料層 21Aの硬化処理は、通常、加熱処理によって行われ る。具体的な加熱温度および加熱時間は、導電性エラストマ一用材料層 21Aを構成 するエラストマ一用材料の種類、導電性粒子の移動に要する時間などを考慮して適 宜設定される。 The curing process for the conductive elastomer material layer 21A is usually performed by heat treatment. The The specific heating temperature and heating time are appropriately set in consideration of the type of material for the elastomer constituting the conductive elastomer material layer 21A, the time required for the movement of the conductive particles, and the like.
[0057] 《接続用導電部の形成》  [0057] <Formation of conductive portion for connection>
図 9に示すように、離型性支持板 16上に支持された導電性エラストマ一層 21 Bの 表面に、メツキ電極用の金属薄層 17を形成する。次いで、図 10に示すように、この金 属薄層 17上に、フォトリソグラフィ一の手法により、形成すべき接続用導電部のバタ ーンすなわち検査対象であるウェハにおける被検査電極のパターンに対応する特定 のパターンに従って複数の開口 18aが形成されたレジスト層 18を形成する。その後、 図 11に示すように、金属薄層 17をメツキ電極として、当該金属薄層 17におけるレジ スト層 18の開口 18aを介して露出した部分に、電解メツキ処理を施すことにより、当該 レジスト層 18の開口 18a内に金属マスク 19を形成する。そして、この状態で、導電性 エラストマ一層 21B、金属薄層 17およびレジスト層 18に対してレーザー加工を施す ことにより、レジスト層 18、金属薄層 17および導電性エラストマ一層 21Bの一部が除 去され、その結果、図 12に示すように、特定のパターンに従って配置された複数の 接続用導電部 21が離型性支持板 16上に支持された状態で形成される。その後、接 続用導電部 21の表面から残存する金属薄層 17および金属マスク 19を剥離する。  As shown in FIG. 9, a thin metal layer 17 for a plating electrode is formed on the surface of the conductive elastomer layer 21 B supported on the releasable support plate 16. Next, as shown in FIG. 10, on the thin metal layer 17, the pattern of the conductive part to be formed to be formed, that is, the pattern of the electrode to be inspected in the wafer to be inspected, is applied by a photolithography technique. A resist layer 18 in which a plurality of openings 18a are formed is formed according to a specific pattern. Thereafter, as shown in FIG. 11, by using the thin metal layer 17 as a plating electrode, the resist layer is subjected to electrolytic plating treatment on the exposed portion of the thin metal layer 17 through the opening 18a of the resist layer 18. A metal mask 19 is formed in the 18 openings 18a. In this state, by applying laser processing to the conductive elastomer layer 21B, the thin metal layer 17 and the resist layer 18, a part of the resist layer 18, the thin metal layer 17 and the conductive elastomer layer 21B is removed. As a result, as shown in FIG. 12, a plurality of connection conductive portions 21 arranged according to a specific pattern are formed on the releasable support plate 16. Thereafter, the remaining thin metal layer 17 and metal mask 19 are peeled off from the surface of the connecting conductive portion 21.
[0058] 以上において、導電性エラストマ一層 21 Bの表面に金属薄層 17を形成する方法と しては、無電解メツキ法、スパッタ法などを利用することができる。  In the above, as a method for forming the metal thin layer 17 on the surface of the conductive elastomer layer 21 B, an electroless plating method, a sputtering method, or the like can be used.
金属薄層 17を構成する材料としては、銅、金、アルミニウム、ロジウムなどを用いる ことができる。  As a material constituting the metal thin layer 17, copper, gold, aluminum, rhodium, or the like can be used.
金属薄層 17の厚みは、 0. 05〜2 111でぁることが好ましぐょり好ましくは0. 1〜1 /z mである。この厚みが過小である場合には、均一な薄層が形成されず、メツキ電極 として不適なものとなることがある。一方、この厚みが過大である場合には、レーザー 加工によって除去することが困難となることがある。  The thickness of the thin metal layer 17 is preferably 0.05-2111, and more preferably 0.1-1 / z m. If this thickness is too small, a uniform thin layer may not be formed, which may be inappropriate as a plating electrode. On the other hand, if this thickness is excessive, it may be difficult to remove by laser processing.
レジスト層 18の厚みは、形成すべき金属マスク 19の厚みに応じて設定される。 金属マスク 19を構成する材料としては、銅、鉄、アルミゥニム、金、ロジウムなどを用 いることがでさる。 金属マスク 19の厚みは、 2 μ m以上であることが好ましぐより好ましくは 5〜20 μ m である。この厚みが過小である場合には、レーザーに対するマスクとして不適なものと なることがある。 The thickness of the resist layer 18 is set according to the thickness of the metal mask 19 to be formed. As a material constituting the metal mask 19, copper, iron, aluminum, gold, rhodium, or the like can be used. The thickness of the metal mask 19 is preferably 2 μm or more, more preferably 5 to 20 μm. If this thickness is too small, it may be unsuitable as a mask for the laser.
レーザー加工は、炭酸ガスレーザーまたは紫外線レーザーによるものが好ましぐこ れにより、目的とする形態の接続用導電部 21を確実に形成することができる。  The laser processing is preferably performed using a carbon dioxide laser or an ultraviolet laser, so that the connection conductive portion 21 having a desired form can be reliably formed.
[0059] 《絶縁部の形成》 [0059] << Formation of Insulating Portion >>
図 13に示すように、絶縁部形成用の離型性支持板 16Aを用意し、この離型性支持 板 16Aの表面に、フレーム板 10を配置すると共に、硬化されて絶縁性の弾性高分子 物質となる液状のエラストマ一用材料を塗布することにより、絶縁部用材料層 22Aを 形成する。ここで、絶縁部用材料層 22Aの形成においては、形成すべき絶縁部の表 面の輪郭形状に適合する形状の開口が形成された板状のスぺーサーを 2枚用意し、 離型性支持板 16A上に、一方のスぺーサ一、フレーム板 10および他方のスぺーサ 一をこの順で重ね合わせ、各スぺーサ一の開口内およびフレーム板 10の開口内に 、エラストマ一用材料を充填することにより、絶縁部用材料層 22Aを形成することがで きる。このような方法によれば、所期の形態の絶縁部 22を確実に形成することができ る。  As shown in FIG. 13, a releasable support plate 16A for forming an insulating portion is prepared, and a frame plate 10 is disposed on the surface of the releasable support plate 16A and cured to be an insulating elastic polymer. The insulating material layer 22A is formed by applying a liquid elastomer material that is a substance. Here, in the formation of the insulating part material layer 22A, two plate-like spacers having openings that conform to the contour shape of the surface of the insulating part to be formed are prepared, and the mold release property On the support plate 16A, one spacer, the frame plate 10 and the other spacer are overlapped in this order, and the elastomer is used in the opening of each spacer and the opening of the frame plate 10. By filling the material, the insulating material layer 22A can be formed. According to such a method, it is possible to reliably form the insulating portion 22 having the desired form.
次いで、図 14に示すように、複数の接続用導電部 21が形成された離型性支持板 1 6を、絶縁部用材料層 22Aが形成された離型性支持板 16A上に重ね合わせることに より、接続用導電部 21の各々を絶縁部用材料層 22A中に浸入させて離型性支持板 16Aに接触させる。これ〖こより、隣接する接続用導電部 21の間に絶縁部用材料層 2 2Aが形成された状態となる。その後、この状態で、絶縁部用材料層 22Aの硬化処理 を行うことにより、図 15に示すように、接続用導電部 21の各々の周囲に、これらを相 互に絶縁する絶縁部 22が、接続用導電部 21に一体的に形成され、以て弹性異方 導電膜 20が形成される。  Next, as shown in FIG. 14, the releasable support plate 16 formed with a plurality of connecting conductive portions 21 is overlaid on the releasable support plate 16A formed with the insulating portion material layer 22A. Thus, each of the connecting conductive portions 21 is infiltrated into the insulating portion material layer 22A and brought into contact with the releasable support plate 16A. Thus, the insulating material layer 22A is formed between the adjacent connecting conductive portions 21. Thereafter, in this state, by performing the curing process of the insulating portion material layer 22A, as shown in FIG. 15, the insulating portion 22 that mutually insulates each of the connecting conductive portions 21 is provided. The anisotropic anisotropic conductive film 20 is formed integrally with the connecting conductive portion 21, thereby forming the anisotropic conductive film 20.
そして、離型性支持板 16, 16Aカゝら弾性異方導電膜 20を離型させることにより、図 1に示す構成の異方導電性コネクターが得られる。  Then, by releasing the elastic anisotropic conductive film 20 such as the releasable support plates 16 and 16A, the anisotropic conductive connector having the configuration shown in FIG. 1 is obtained.
[0060] 以上にぉ ヽて、離型性支持板 16Aを構成する材料としては、導電部形成用の離型 性支持板 16と同様のものを用いることができる。 エラストマ一用材料を塗布する方法としては、スクリーン印刷などの印刷法、ロール 塗布法、ブレード塗布法などを利用することができる。 As described above, as the material constituting the releasable support plate 16A, the same material as the releasable support plate 16 for forming the conductive portion can be used. As a method of applying the elastomer material, a printing method such as screen printing, a roll coating method, a blade coating method, or the like can be used.
絶縁部用材料層 22Aの厚みは、形成すべき絶縁部の厚みに応じて設定される。 絶縁部用材料層 22Aの硬化処理は、通常、加熱処理によって行われる。具体的な 加熱温度および加熱時間は、絶縁部用材料層 22Aを構成するエラストマ一用材料 の種類などを考慮して適宜設定される。  The thickness of the insulating part material layer 22A is set according to the thickness of the insulating part to be formed. The curing process of the insulating part material layer 22A is usually performed by a heat treatment. The specific heating temperature and heating time are appropriately set in consideration of the type of the material for the elastomer constituting the insulating portion material layer 22A.
[0061] 上記の製造方法によれば、導電性粒子 Pが厚み方向に並ぶよう配向した状態で分 散されてなる導電性エラストマ一層 21Bをレーザー加工してその一部を除去すること により、目的とする形態の接続用導電部 21を形成するため、所要の量の導電性粒子 Pが充填された所期の導電性を有する接続用導電部 21を確実に得ることができる。 また、離型性支持板 16上に特定のパターンに従って配置された複数の接続用導 電部 21を形成したうえで、これらの接続用導電部 21の間に絶縁部用材料層 22Aを 形成して硬化処理することにより絶縁部 22を形成するため、導電性粒子 Pが全く存 在しな 、絶縁部 22を確実に得ることができる。 [0061] According to the above manufacturing method, the conductive elastomer layer 21B in which the conductive particles P are dispersed so as to be aligned in the thickness direction is laser-processed to remove a part thereof, thereby removing the object. Thus, the connection conductive portion 21 having the desired conductivity filled with a required amount of the conductive particles P can be obtained with certainty. In addition, a plurality of connection conductive portions 21 arranged according to a specific pattern are formed on the releasable support plate 16, and an insulating material layer 22A is formed between the connection conductive portions 21. Since the insulating part 22 is formed by performing the curing process, the insulating part 22 can be reliably obtained without any conductive particles P.
し力も、従来の異方導電性コネクターを製造するために使用されていた多数の強磁 性体層が配列されてなる高価な金型を用いることが不要である。  In addition, it is not necessary to use an expensive mold in which a large number of ferromagnetic layers used to manufacture a conventional anisotropically conductive connector are arranged.
従って、このような方法によって得られる異方導電性コネクターによれば、検査対象 であるウェハにおける被検査電極力 小さいピッチで高密度に配置されているもので あっても、当該被検査電極の各々に対して所要の電気的接続を確実に達成すること ができ、し力も、製造コストの低減ィ匕を図ることができる。  Therefore, according to the anisotropic conductive connector obtained by such a method, each of the electrodes to be inspected, even if the electrodes to be inspected on the wafer to be inspected are arranged at a high density with a small pitch. Therefore, the required electrical connection can be reliably achieved, and the manufacturing force can be reduced.
[0062] また、弾性異方導電膜 20の各々がフレーム板 10の開口縁部に支持されているた め、変形しにくくて取扱いやすぐ検査対象であるウェハとの電気的接続作業におい て、当該ウェハに対する位置合わせおよび保持固定を容易に行うことができる。 また、フレーム板 10の開口 11の各々は、検査対象であるウェハに形成された全て の集積回路の被検査電極が配置された電極領域に対応して形成されており、当該 開口 11の各々に配置される弾性異方導電膜 20は面積が小さいものでよいため、個 々の弾性異方導電膜 20の形成が容易である。 [0062] Further, since each of the elastic anisotropic conductive films 20 is supported by the opening edge of the frame plate 10, it is difficult to be deformed and in electrical connection work with a wafer to be handled and immediately inspected. Positioning and holding and fixing to the wafer can be easily performed. In addition, each of the openings 11 of the frame plate 10 is formed corresponding to an electrode region in which the electrodes to be inspected of all integrated circuits formed on the wafer to be inspected are arranged. Since the elastic anisotropic conductive film 20 to be arranged may have a small area, it is easy to form the individual elastic anisotropic conductive films 20.
また、面積の小さい弾性異方導電膜 20は、熱履歴を受けた場合でも、当該弾性異 方導電膜 20の面方向における熱膨張の絶対量が少ないため、弾性異方導電膜 20 の面方向における熱膨張がフレーム板によって確実に規制される。し力も、異方導電 性コネクター全体の熱膨張は、フレーム板 10を構成する材料の熱膨張に依存するの で、フレーム板 10を構成する材料として熱膨張率の小さいものを用いることにより、温 度変化による熱履歴を受けた場合にも、当該異方導電性コネクターにおける接続用 導電部とウェハにおける被検査電極との位置ずれが防止される結果、良好な電気的 接続状態が安定に維持される。 In addition, the elastic anisotropic conductive film 20 having a small area has the elastic anisotropy even when it receives a thermal history. Since the absolute amount of thermal expansion in the plane direction of the anisotropic conductive film 20 is small, the thermal expansion in the plane direction of the elastic anisotropic conductive film 20 is reliably regulated by the frame plate. However, since the thermal expansion of the anisotropically conductive connector as a whole depends on the thermal expansion of the material constituting the frame plate 10, the use of a material having a low thermal expansion coefficient as the material constituting the frame plate 10 Even when a thermal history due to temperature changes is received, displacement of the conductive part for connection in the anisotropic conductive connector and the electrode to be inspected on the wafer is prevented, so that a good electrical connection state is stably maintained. The
また、フレーム板 10に位置決め孔 13が形成されているため、検査対象であるゥェ ハまたは検査用回路基板に対する位置合わせを容易に行うことができる。  Further, since the positioning hole 13 is formed in the frame plate 10, the alignment with respect to the wafer to be inspected or the circuit board for inspection can be easily performed.
また、フレーム板 10に空気流通孔 12が形成されているため、後述するウェハ検査 装置において、プローブ部材を押圧する手段として減圧方式によるものを利用した場 合には、チャンバ一内を減圧したときに、異方導電性コネクターと検査用回路基板と の間に存在する空気がフレーム板 10の空気流通孔 12を介して排出され、これにより 、異方導電性コネクターと検査用回路基板とを確実に密着させることができるので、 所要の電気的接続を確実に達成することができる。  In addition, since the air flow holes 12 are formed in the frame plate 10, in the wafer inspection apparatus to be described later, when the pressure reducing method is used as a means for pressing the probe member, the inside of the chamber is decompressed. In addition, the air existing between the anisotropic conductive connector and the inspection circuit board is exhausted through the air flow hole 12 of the frame plate 10, which ensures that the anisotropic conductive connector and the inspection circuit board are connected. The required electrical connection can be reliably achieved.
[0063] 〔ウェハ検査装置〕 [Wafer Inspection Equipment]
図 16は、本発明に係る異方導電性コネクターを用いたウェハ検査装置の一例にお ける構成の概略を示す説明用断面図である。このウェハ検査装置は、ウェハに形成 された複数の集積回路の各々について、当該集積回路の電気的検査をウェハの状 態で行うためのものである。  FIG. 16 is an explanatory sectional view showing an outline of a configuration in an example of a wafer inspection apparatus using the anisotropic conductive connector according to the present invention. This wafer inspection apparatus is for performing electrical inspection of a plurality of integrated circuits formed on a wafer in the state of the wafer.
[0064] 図 16に示すウェハ検査装置は、検査対象であるウェハ 6の被検査電極 7の各々と テスターとの電気的接続を行うプローブ部材 1を有する。このプローブ部材 1にお ヽ ては、図 17にも拡大して示すように、検査対象であるウェハ 6の被検査電極 7のパタ ーンに対応するパターンに従って複数の検査電極 31が表面(図において下面)に形 成された検査用回路基板 30を有し、この検査用回路基板 30の表面には、図 1〜図 4 に示す構成の異方導電性コネクター 2が、その弾性異方導電膜 20における接続用 導電部 21の各々が検査用回路基板 30の検査電極 31の各々に対接するよう設けら れ、この異方導電性コネクター 2の表面(図 16および図 17において下面)には、絶縁 性シート 41に検査対象であるウェハ 6の被検査電極 7のパターンに対応するパター ンに従って複数の電極構造体 42が配置されてなるシート状プローブ 40が、当該電 極構造体 42の各々が異方導電性コネクター 2の弾性異方導電膜 20における接続用 導電部 21の各々に対接するよう設けられている。 The wafer inspection apparatus shown in FIG. 16 has a probe member 1 that electrically connects each of the electrodes to be inspected 7 of the wafer 6 to be inspected and a tester. In this probe member 1, as shown in an enlarged view in FIG. 17, a plurality of inspection electrodes 31 are formed on the surface (FIG. 17) according to a pattern corresponding to the pattern of the inspection target electrode 7 of the wafer 6 to be inspected. In FIG. 1, the anisotropic conductive connector 2 having the configuration shown in FIGS. 1 to 4 is provided on the surface of the inspection circuit board 30 with its elastic anisotropic conductivity. Each of the conductive portions 21 for connection in the membrane 20 is provided so as to be in contact with each of the inspection electrodes 31 of the circuit board 30 for inspection, and on the surface (the lower surface in FIGS. 16 and 17) of this anisotropic conductive connector 2 , Insulation The sheet-like probe 40 in which a plurality of electrode structures 42 are arranged according to a pattern corresponding to the pattern of the electrode 7 to be inspected on the wafer 6 to be inspected on the conductive sheet 41 is different from each other in the electrode structure 42. It is provided so as to be in contact with each of the connecting conductive portions 21 in the elastic anisotropic conductive film 20 of the two-way conductive connector 2.
また、プローブ部材 1における検査用回路基板 30の裏面(図 16において上面)に は、当該プローブ部材 1を下方に加圧する加圧板 3が設けられ、プローブ部材 1の下 方には、検査対象であるウェハ 6が載置されるウェハ載置台 4が設けられており、カロ 圧板 3およびウェハ載置台 4の各々には、加熱器 5が接続されている。  Further, a pressure plate 3 for pressing the probe member 1 downward is provided on the back surface of the inspection circuit board 30 in the probe member 1 (upper surface in FIG. 16). A wafer mounting table 4 on which a certain wafer 6 is mounted is provided, and a heater 5 is connected to each of the caloric pressure plate 3 and the wafer mounting table 4.
[0065] 検査用回路基板 30を構成する基板材料としては、従来公知の種々の基板材料を 用いることができ、その具体例としては、ガラス繊維補強型エポキシ榭脂、ガラス繊維 補強型フエノール榭脂、ガラス繊維補強型ポリイミド榭脂、ガラス繊維補強型ビスマレ イミドトリアジン榭脂等の複合榭脂材料、ガラス、二酸化珪素、アルミナ等のセラミック ス材料などが挙げられる。 [0065] As a substrate material constituting the inspection circuit board 30, various conventionally known substrate materials can be used. Specific examples thereof include glass fiber reinforced epoxy resin, glass fiber reinforced phenol resin. And composite fiber materials such as glass fiber reinforced polyimide resin, glass fiber reinforced bimaleimide triazine resin, and ceramic materials such as glass, silicon dioxide, and alumina.
また、 WLBI試験を行うためのウェハ検査装置を構成する場合には、線熱膨張係 数が 3 X 10— 5Ζκ以下のものを用いることが好ましぐより好ましくは 1 X 10— 7〜1 X 10 "VK,特に好ましくは 1 X 10— 6〜6 X 10— 6Ζκである。 Further, when configuring a wafer inspection apparatus for conducting a WLBI test, linear thermal expansion coefficient is 3 X 10- 5 Ζκ is preferably from preferably instrument using the following items 1 X 10- 7 to 1 X 10 "VK, particularly preferably 1 X 10- 6 ~6 X 10- 6 Ζκ.
このような基板材料の具体例としては、パイレックス (登録商標)ガラス、石英ガラス、 アルミナ、ベリリア、炭化ケィ素、窒化アルミニウム、窒化ホウ素などが挙げられる。  Specific examples of such a substrate material include Pyrex (registered trademark) glass, quartz glass, alumina, beryllia, silicon carbide, aluminum nitride, and boron nitride.
[0066] プローブ部材 1におけるシート状プローブ 40について具体的に説明すると、このシ ート状プローブ 40は、柔軟な絶縁性シート 41を有し、この絶縁性シート 41には、当 該絶縁性シート 41の厚み方向に伸びる複数の金属よりなる電極構造体 42が、検査 対象であるウェハ 6の被検査電極 7のパターンに対応するパターンに従って、当該絶 縁性シート 41の面方向に互いに離間して配置されて 、る。 [0066] The sheet-like probe 40 in the probe member 1 will be specifically described. The sheet-like probe 40 includes a flexible insulating sheet 41, and the insulating sheet 41 includes the insulating sheet 41. The electrode structures 42 made of a plurality of metals extending in the thickness direction of 41 are separated from each other in the surface direction of the insulating sheet 41 according to the pattern corresponding to the pattern of the electrode 7 to be inspected on the wafer 6 to be inspected. Arranged.
電極構造体 42の各々は、絶縁性シート 41の表面(図において下面)に露出する突 起状の表面電極部 43と、絶縁性シート 41の裏面に露出する板状の裏面電極部 44と 力 絶縁性シート 41の厚み方向に貫通して伸びる短絡部 45によって互いに一体に 連結されて構成されて ヽる。 [0067] 絶縁性シート 41としては、絶縁性を有する柔軟なものであれば特に限定されるもの ではなぐ例えばポリイミド榭脂、液晶ポリマー、ポリエステル、フッ素系榭脂などよりな る榭脂シート、繊維を編んだクロスに上記の榭脂を含浸したシートなどを用いることが できる。 Each of the electrode structures 42 includes a protruding surface electrode portion 43 exposed on the surface (lower surface in the figure) of the insulating sheet 41 and a plate-like back surface electrode portion 44 exposed on the back surface of the insulating sheet 41. The insulating sheet 41 is configured to be integrally connected to each other by a short-circuit portion 45 extending through the thickness direction of the insulating sheet 41. [0067] The insulating sheet 41 is not particularly limited as long as it is flexible and has insulating properties. For example, a resin sheet made of polyimide resin, liquid crystal polymer, polyester, fluorine resin, fiber, etc. A sheet obtained by impregnating the above-mentioned coffin with a knitted cloth can be used.
また、絶縁性シート 41の厚みは、当該絶縁性シート 41が柔軟なものであれば特に 限定されないが、 10〜50 μ mであることが好ましぐより好ましくは 10〜25 μ mであ る。  Further, the thickness of the insulating sheet 41 is not particularly limited as long as the insulating sheet 41 is flexible, but is preferably 10 to 50 μm, more preferably 10 to 25 μm. .
[0068] 電極構造体 42を構成する金属としては、ニッケル、銅、金、銀、パラジウム、鉄など を用いることができ、電極構造体 42としては、全体が単一の金属よりなるものであつ ても、 2種以上の金属の合金よりなるものまたは 2種以上の金属が積層されてなるもの であってもよい。  [0068] As the metal constituting the electrode structure 42, nickel, copper, gold, silver, palladium, iron, or the like can be used. The electrode structure 42 is made of a single metal as a whole. Alternatively, it may be made of an alloy of two or more kinds of metals or a laminate of two or more kinds of metals.
また、電極構造体 42における表面電極部 43および裏面電極部 44の表面には、当 該電極部の酸ィ匕が防止されると共に、接触抵抗の小さい電極部が得られる点で、金 、銀、パラジウムなどの化学的に安定で高導電性を有する金属被膜が形成されてい ることが好ましい。  Further, the surface of the front electrode portion 43 and the back electrode portion 44 in the electrode structure 42 is prevented from being oxidized by the electrode portion, and an electrode portion having a low contact resistance can be obtained. It is preferable that a chemically stable and highly conductive metal film such as palladium is formed.
[0069] 電極構造体 42における表面電極部 43の突出高さは、ウェハ 6の被検査電極 7に 対して安定な電気的接続を達成することができる点で、 15〜50 mであることが好 ましぐより好ましくは 15〜30 /ζ πιである。また、表面電極部 43の径は、ウェハ 6の被 検査電極の寸法およびピッチに応じて設定される力 例えば 30〜80 /ζ πιであり、好 ましくは 30〜50 μ mである。  [0069] The protruding height of the surface electrode portion 43 in the electrode structure 42 is 15 to 50 m in that stable electrical connection can be achieved to the electrode 7 to be inspected on the wafer 6. More preferably, it is 15-30 / ζ πι. The diameter of the surface electrode portion 43 is a force set according to the size and pitch of the electrode to be inspected of the wafer 6, for example, 30 to 80 / ζ πι, and preferably 30 to 50 μm.
電極構造体 42における裏面電極部 44の径は、短絡部 45の径より大きぐかつ、電 極構造体 42の配置ピッチより小さ 、ものであればょ 、が、可能な限り大き!/、ものであ ることが好ましぐこれにより、異方導電性コネクター 2の弾性異方導電膜 20における 接続用導電部 21に対しても安定な電気的接続を確実に達成することができる。また 、裏面電極部 44の厚みは、強度が十分に高くて優れた繰り返し耐久性が得られる点 で、 20〜50 μ mであること力好ましく、より好ましくは 35〜50 μ mである。  The diameter of the back electrode portion 44 in the electrode structure 42 is larger than the diameter of the short-circuit portion 45 and smaller than the arrangement pitch of the electrode structure 42, but is as large as possible! / As a result, it is possible to reliably achieve a stable electrical connection to the connection conductive portion 21 in the elastic anisotropic conductive film 20 of the anisotropic conductive connector 2. Further, the thickness of the back electrode part 44 is preferably 20 to 50 μm, more preferably 35 to 50 μm, from the viewpoint that the strength is sufficiently high and excellent repeated durability can be obtained.
電極構造体 42における短絡部 45の径は、十分に高い強度が得られる点で、 30〜 80 μ mであることが好ましぐより好ましくは 30〜50 μ mである。 [0070] シート状プローブ 40は、例えば以下のようにして製造することができる。 The diameter of the short-circuit portion 45 in the electrode structure 42 is preferably 30 to 80 μm, more preferably 30 to 50 μm, from the viewpoint that sufficiently high strength can be obtained. [0070] The sheet-like probe 40 can be manufactured, for example, as follows.
すなわち、絶縁性シート 41上に金属層が積層されてなる積層材料を用意し、この 積層材料における絶縁性シート 41に対して、レーザ加工、ドライエッチングカ卩ェ等に よって、当該絶縁性シート 41の厚み方向に貫通する複数の貫通孔を、形成すべき電 極構造体 42のパターンに対応するパターンに従って形成する。次いで、この積層材 料に対してフォトリソグラフィーおよびメツキ処理を施すことによって、絶縁性シート 41 の貫通孔内に金属層に一体に連結された短絡部 45を形成すると共に、当該絶縁性 シート 41の表面に、短絡部 45に一体に連結された突起状の表面電極部 43を形成 する。その後、積層材料における金属層に対してフォトエッチング処理を施してその 一部を除去することにより、裏面電極部 44を形成して電極構造体 42を形成し、以て シート状プローブ 40が得られる。  That is, a laminated material in which a metal layer is laminated on the insulating sheet 41 is prepared, and the insulating sheet 41 is laminated on the insulating sheet 41 by laser processing, dry etching or the like. A plurality of through holes penetrating in the thickness direction are formed according to a pattern corresponding to the pattern of the electrode structure 42 to be formed. Next, the laminated material is subjected to photolithography and plating treatment to form a short-circuit portion 45 integrally connected to the metal layer in the through hole of the insulating sheet 41, and the insulating sheet 41 On the surface, a protruding surface electrode portion 43 integrally connected to the short-circuit portion 45 is formed. Thereafter, the metal layer in the laminated material is subjected to a photo-etching process to remove a part thereof, thereby forming the back electrode portion 44 to form the electrode structure 42, thereby obtaining the sheet-like probe 40. .
[0071] このような電気的検査装置においては、ウェハ載置台 4上に検査対象であるウェハ 6が載置され、次いで、加圧板 3によってプローブ部材 1が下方に加圧されることによ り、そのシート状プローブ 40の電極構造体 42における表面電極部 43の各々力 ゥ ェハ 6の被検査電極 7の各々に接触し、更に、当該表面電極部 43の各々によって、 ウエノ、 6の被検査電極 7の各々が加圧される。この状態においては、異方導電性コネ クタ一 2の弾性異方導電膜 20における接続用導電部 21の各々は、検査用回路基板 30の検査電極 31とシート状プローブ 40の電極構造体 42の表面電極部 43とによつ て挟圧されて厚み方向に圧縮されており、これにより、当該接続用導電部 21にはそ の厚み方向に導電路が形成され、その結果、ウェハ 6の被検査電極 7と検査用回路 基板 30の検査電極 31との電気的接続が達成される。その後、カロ熱器 5によって、ゥ ェハ載置台 4および加圧板 3を介してウェハ 6が所定の温度に加熱され、この状態で 、当該ウェハ 6における複数の集積回路の各々について所要の電気的検査が実行 される。  In such an electrical inspection apparatus, the wafer 6 to be inspected is placed on the wafer mounting table 4, and then the probe member 1 is pressed downward by the pressure plate 3. Each of the surface electrode portions 43 in the electrode structure 42 of the sheet-like probe 40 is in contact with each of the electrodes 7 to be inspected 6, and each of the surface electrode portions 43 is further in contact with the wafer 6 Each of the inspection electrodes 7 is pressurized. In this state, each of the connection conductive portions 21 in the elastic anisotropic conductive film 20 of the anisotropic conductive connector 1 is connected to the test electrode 31 of the test circuit board 30 and the electrode structure 42 of the sheet-like probe 40. By being sandwiched between the surface electrode parts 43 and compressed in the thickness direction, a conductive path is formed in the connecting conductive part 21 in the thickness direction. Electrical connection between the inspection electrode 7 and the inspection electrode 31 of the inspection circuit board 30 is achieved. Thereafter, the wafer 6 is heated to a predetermined temperature by the caloheater 5 via the wafer mounting table 4 and the pressure plate 3, and in this state, a predetermined electrical circuit is provided for each of the plurality of integrated circuits on the wafer 6. A check is performed.
[0072] このようなウェハ検査装置によれば、前述の異方導電性コネクター 2を有するプロ一 ブ部材 1を介して、検査対象であるウェハ 6の被検査電極 7に対する電気的接続が 達成されるため、被検査電極 7のピッチが小さいものであっても、当該ウェハに対す る位置合わせおよび保持固定を容易に行うことができ、し力も、多数回にわたって繰 り返し使用した場合や高温環境下における試験例えば WLBI試験に繰り返し使用し た場合にも、所要の電気的検査を長期間にわたって安定して実行することができる。 また、異方導電性コネクター 2における弾性異方導電膜 20は、それ自体の面積が 小さいものであり、熱履歴を受けた場合でも、当該弾性異方導電膜 20の面方向にお ける熱膨張の絶対量が少な ヽため、フレーム板 10を構成する材料として線熱膨張係 数の小さいものを用いることにより、弾性異方導電膜 20の面方向における熱膨張が フレーム板によって確実に規制される。従って、大面積のウェハに対して WLBI試験 を行う場合においても、良好な電気的接続状態を安定に維持することができる。 [0072] According to such a wafer inspection apparatus, electrical connection to the inspection target electrode 7 of the wafer 6 to be inspected is achieved via the probe member 1 having the anisotropic conductive connector 2 described above. Therefore, even if the pitch of the electrodes 7 to be inspected is small, the alignment and holding / fixing with respect to the wafer can be easily performed, and the force is repeated many times. The required electrical inspection can be performed stably over a long period of time even when used repeatedly or when used repeatedly in high temperature environments such as WLBI tests. Further, the elastic anisotropic conductive film 20 in the anisotropic conductive connector 2 has a small area, and even when subjected to a thermal history, thermal expansion in the surface direction of the elastic anisotropic conductive film 20 is performed. Therefore, the thermal expansion in the plane direction of the elastic anisotropic conductive film 20 is reliably regulated by the frame plate by using a material having a small linear thermal expansion coefficient as a material constituting the frame plate 10. . Therefore, even when performing a WLBI test on a large-area wafer, it is possible to stably maintain a good electrical connection state.
[0073] 図 18は、本発明に係る異方導電性コネクターを用いたウェハ検査装置の他の例に おける構成の概略を示す説明用断面図である。 FIG. 18 is an explanatory cross-sectional view showing an outline of a configuration in another example of a wafer inspection apparatus using the anisotropic conductive connector according to the present invention.
このウェハ検査装置は、検査対象であるウェハ 6が収納される、上面が開口した箱 型のチャンバ一 50を有する。このチャンバ一 50の側壁には、当該チャンバ一 50の内 部の空気を排気するための排気管 51が設けられており、この排気管 51には、例えば 真空ポンプ等の排気装置 (図示省略)が接続されている。  This wafer inspection apparatus has a box-shaped chamber 50 having an open top surface in which a wafer 6 to be inspected is stored. An exhaust pipe 51 for exhausting the air inside the chamber 150 is provided on the side wall of the chamber 50. The exhaust pipe 51 includes an exhaust device (not shown) such as a vacuum pump. Is connected.
チャンバ一 50上には、図 16に示すウェハ検査装置におけるプローブ部材 1と同様 の構成のプローブ部材 1が、当該チャンバ一 50の開口を気密に塞ぐよう配置されて いる。具体的には、チャンバ一 50における側壁の上端面上には、弾性を有する O— リング 55が密着して配置され、プローブ部材 1は、その異方導電性コネクター 2およ びシート状プローブ 40がチャンバ一 50内に収容され、かつ、その検査用回路基板 3 0における周辺部が 0—リング 55に密着した状態で配置されており、更に、検査用回 路基板 30が、その裏面(図において上面)には設けられた加圧板 3によって下方に 加圧された状態とされて!/、る。  A probe member 1 having the same configuration as the probe member 1 in the wafer inspection apparatus shown in FIG. 16 is disposed on the chamber 150 so as to airtightly close the opening of the chamber 150. Specifically, an elastic O-ring 55 is disposed in close contact with the upper end surface of the side wall of the chamber 50, and the probe member 1 includes the anisotropic conductive connector 2 and the sheet-like probe 40. Is placed in the chamber 50 and the peripheral portion of the circuit board 30 for inspection is in close contact with the 0-ring 55, and the circuit board 30 for inspection is disposed on the back surface (see FIG. The upper surface is pressed downward by the pressure plate 3 provided! /
また、チャンバ一 50および加圧板 3には、加熱器 5が接続されている。  A heater 5 is connected to the chamber 50 and the pressure plate 3.
[0074] このようなウェハ検査装置においては、チャンバ一 50の排気管 51に接続された排 気装置を駆動させることにより、チャンバ一 50内が例えば lOOOPa以下に減圧される 結果、大気圧によって、プローブ部材 1が下方に加圧される。これにより、 O—リング 5 5が弾性変形するため、プローブ部材 1が下方に移動する結果、シート状プローブ 40 の電極構造体 42における表面電極部 43の各々によって、ウェハ 6の被検査電極 7 の各々が加圧される。この状態においては、異方導電性コネクター 2の弾性異方導 電膜 20における接続用導電部 21の各々は、検査用回路基板 30の検査電極 31とシ ート状プローブ 40の電極構造体 42の表面電極部 43とによって挟圧されて厚み方向 に圧縮されており、これにより、当該接続用導電部 21にはその厚み方向に導電路が 形成され、その結果、ウェハ 6の被検査電極 7と検査用回路基板 30の検査電極 31と の電気的接続が達成される。その後、カロ熱器 5によって、チャンバ一 50および加圧 板 3を介してウェハ 6が所定の温度に加熱され、この状態で、当該ウェハ 6における 複数の集積回路の各々につ 、て所要の電気的検査が実行される。 [0074] In such a wafer inspection apparatus, by driving the exhaust device connected to the exhaust pipe 51 of the chamber 50, the inside of the chamber 50 is depressurized to, for example, lOOOPa or less, so that the atmospheric pressure The probe member 1 is pressed downward. As a result, since the O-ring 55 is elastically deformed, the probe member 1 moves downward. As a result, each of the surface electrode portions 43 in the electrode structure 42 of the sheet-like probe 40 causes each of the electrodes 7 to be inspected on the wafer 6. Each of these is pressurized. In this state, each of the connecting conductive portions 21 in the elastic anisotropic conductive film 20 of the anisotropic conductive connector 2 is connected to the test electrode 31 of the test circuit board 30 and the electrode structure 42 of the sheet-like probe 40. The front surface electrode portion 43 is compressed and compressed in the thickness direction. As a result, a conductive path is formed in the connection conductive portion 21 in the thickness direction. And electrical connection between the test electrode 31 and the test electrode 31 of the test circuit board 30 are achieved. Thereafter, the calorie heater 5 heats the wafer 6 to a predetermined temperature through the chamber 50 and the pressure plate 3, and in this state, a required electric power is supplied to each of the plurality of integrated circuits on the wafer 6. Inspection is performed.
[0075] このようなウェハ検査装置によれば、図 16に示すウェハ検査装置と同様の効果が 得られ、更に、大型の加圧機構が不要であるため、検査装置全体の小型化を図るこ とができると共に、検査対象であるウェハ 6が例えば直径が 8インチ以上の大面積の ものであっても、当該ウェハ 6全体を均一な力で押圧することができる。し力も、異方 導電性コネクター 2におけるフレーム板 10には、空気流通孔 12が形成されているた め、チャンバ一 50内を減圧したときに、異方導電性コネクター 2と検査用回路基板 30 との間に存在する空気力 異方導電性コネクター 2におけるフレーム板 10の空気流 通孔 12を介して排出され、これにより、異方導電性コネクター 2と検査用回路基板 30 とを確実に密着させることができるので、所要の電気的接続を確実に達成することが できる。  According to such a wafer inspection apparatus, the same effect as that of the wafer inspection apparatus shown in FIG. 16 can be obtained, and furthermore, since a large pressurizing mechanism is unnecessary, the entire inspection apparatus can be reduced in size. In addition, even if the wafer 6 to be inspected has a large area of, for example, a diameter of 8 inches or more, the entire wafer 6 can be pressed with a uniform force. Since the air flow hole 12 is formed in the frame plate 10 of the anisotropic conductive connector 2, the anisotropic conductive connector 2 and the inspection circuit board 30 are reduced when the pressure in the chamber 50 is reduced. Between the anisotropic conductive connector 2 and the air flow hole 12 of the frame plate 10 in the anisotropic conductive connector 2 so that the anisotropic conductive connector 2 and the circuit board 30 for inspection are securely adhered to each other. Therefore, the required electrical connection can be reliably achieved.
[0076] 〔他の実施の形態〕  [Other Embodiments]
本発明は、上記の実施の形態に限定されず、次のような種々の変更を加えることが 可能である。  The present invention is not limited to the above-described embodiment, and various modifications can be made as follows.
(1)異方導電性コネクターにおいては、弾性異方導電膜 20には、接続用導電部 21 以外に、ウェハにおける被検査電極に電気的に接続されない非接続用導電部が形 成されていてもよい。以下、非接続用導電部が形成された弾性異方導電膜を有する 異方導電性コネクターについて説明する。  (1) In the anisotropic conductive connector, the elastic anisotropic conductive film 20 has a non-connection conductive portion that is not electrically connected to the electrode to be inspected on the wafer, in addition to the connection conductive portion 21. Also good. Hereinafter, an anisotropic conductive connector having an elastic anisotropic conductive film in which a non-connection conductive portion is formed will be described.
[0077] 図 19は、本発明に係る異方導電性コネクターの他の例における弾性異方導電膜を 拡大して示す平面図である。この異方導電性コネクターの弾性異方導電膜 20にお いては、検査対象であるウェハの被検査電極に電気的に接続される厚み方向(図 19 において紙面と垂直な方向)に伸びる複数の接続用導電部 21が、被検査電極のパ ターンに対応するパターンに従って 2列に並ぶよう配置され、これらの接続用導電部 21の各々は、磁性を示す導電性粒子が厚み方向に並ぶよう配向した状態で密に含 有されてなり、導電性粒子が全く含有されていない絶縁部 22によって相互に絶縁さ れている。 FIG. 19 is an enlarged plan view showing an elastic anisotropic conductive film in another example of the anisotropic conductive connector according to the present invention. In the anisotropic anisotropic conductive film 20 of this anisotropically conductive connector, the thickness direction (FIG. 19) is electrically connected to the inspection target electrode of the wafer to be inspected. Are arranged in two rows according to a pattern corresponding to the pattern of the electrode to be inspected, and each of these connection conductive portions 21 has magnetism. The conductive particles shown are densely contained in an aligned state in the thickness direction, and are insulated from each other by an insulating portion 22 containing no conductive particles.
そして、接続用導電部 21が並ぶ方向において、最も外側に位置する接続用導電 部 21とフレーム板 10との間には、検査対象であるウェハの被検査電極に電気的に 接続されな ヽ厚み方向に伸びる非接続用導電部 26が形成されて ヽる。この非接続 用導電部 26は、磁性を示す導電性粒子が厚み方向に並ぶよう配向した状態で密に 含有されてなり、導電性粒子が全く含有されていない絶縁部 22によって、接続用導 電部 21と相互に絶縁されている。  In the direction in which the connecting conductive portions 21 are arranged, the thickness between the connecting conductive portion 21 located on the outermost side and the frame plate 10 is not electrically connected to the electrode to be inspected of the wafer to be inspected. A non-connection conductive portion 26 extending in the direction is formed. The non-connection conductive portion 26 is densely contained in a state in which the conductive particles exhibiting magnetism are aligned so as to be aligned in the thickness direction, and the conductive portion for connection is formed by the insulating portion 22 containing no conductive particles. Isolated from part 21.
また、図示の例では、非接続用導電部 26の各々は、絶縁部 22の一面から突出す るよう形成され、これにより、弾性異方導電膜 20の一面には非接続用導電部 26に係 る突出部 27が形成されている。  Further, in the illustrated example, each of the non-connecting conductive portions 26 is formed so as to protrude from one surface of the insulating portion 22, whereby the non-connecting conductive portion 26 is formed on one surface of the elastic anisotropic conductive film 20. A projecting portion 27 is formed.
その他の構成は、基本的に図 1〜図 4に示す異方導電性コネクターの構成と同様 である。  Other configurations are basically the same as those of the anisotropic conductive connector shown in FIGS.
図 20は、本発明に係る異方導電性コネクターの更に他の例における弾性異方導 電膜を拡大して示す平面図である。この異方導電性コネクターの弾性異方導電膜 20 においては、検査対象であるウェハの被検査電極に電気的に接続される厚み方向( 図 20において紙面と垂直な方向)に伸びる複数の接続用導電部 21が、被検査電極 のパターンに対応するパターンに従って並ぶよう配置され、これらの接続用導電部 2 1の各々は、磁性を示す導電性粒子が厚み方向に並ぶよう配向した状態で密に含有 されてなり、導電性粒子が全く含有されていない絶縁部 22によって相互に絶縁され ている。  FIG. 20 is an enlarged plan view showing an elastic anisotropic conductive film in still another example of the anisotropic conductive connector according to the present invention. The anisotropic anisotropic conductive film 20 of this anisotropically conductive connector is used for a plurality of connections extending in the thickness direction (direction perpendicular to the paper surface in FIG. 20) electrically connected to the inspection target electrode of the wafer to be inspected. Conductive portions 21 are arranged so as to be arranged according to a pattern corresponding to the pattern of the electrode to be inspected, and each of these conductive portions 21 for connection is densely arranged in a state where conductive particles exhibiting magnetism are aligned in the thickness direction. They are contained and insulated from each other by insulating parts 22 that do not contain any conductive particles.
これらの接続用導電部 21のうち中央に位置する互いに隣接する 2つの接続用導電 部 21は、その他の互いに隣接する接続用導電部 21間における離間距離より大きい 離間距離で配置されている。そして、中央に位置する互いに隣接する 2つの接続用 導電部 21の間には、検査対象であるウェハの被検査電極に電気的に接続されない 厚み方向に伸びる非接続用導電部 26が形成されて ヽる。この非接続用導電部 26は 、磁性を示す導電性粒子が厚み方向に並ぶよう配向した状態で密に含有されてなり 、導電性粒子が全く含有されていない絶縁部 22によって、接続用導電部 21と相互 に絶縁されている。 Of these connection conductive parts 21, two adjacent connection conductive parts 21 located in the center are arranged at a separation distance larger than the separation distance between the other adjacent connection conductive parts 21. And between the two adjacent conductive parts for connection 21 located in the center, they are not electrically connected to the inspection electrode of the wafer to be inspected. A non-connection conductive portion 26 extending in the thickness direction is formed. The non-connection conductive portion 26 is densely contained in a state in which the conductive particles exhibiting magnetism are aligned so as to be aligned in the thickness direction, and the conductive portion for connection is formed by the insulating portion 22 containing no conductive particles. 21 and are mutually insulated.
また、図示の例では、非接続用導電部 26の各々は、絶縁部 22の一面から突出す るよう形成され、これにより、弾性異方導電膜 20の両面には非接続用導電部 26に係 る突出部 27が形成されている。  Further, in the illustrated example, each of the non-connection conductive portions 26 is formed so as to protrude from one surface of the insulating portion 22, whereby the both sides of the elastic anisotropic conductive film 20 are connected to the non-connection conductive portions 26. A projecting portion 27 is formed.
その他の具体的な構成は、基本的に図 1〜図 4に示す異方導電性コネクターの構 成と同様である。  The other specific configurations are basically the same as the anisotropic conductive connector configurations shown in FIGS.
[0079] (2)異方導電性コネクターにおいては、接続用導電部 21の各々が絶縁部 22の両面 の各々力も突出するよう形成され、これにより、弾性異方導電膜 20の両面には接続 用導電部 21に係る突出部が形成された構成であってもよい。このような弾性異方導 電膜 21は、以下のようにして得ることができる。すなわち、絶縁部 22の形成において 、離型性支持板 16, 16Aによって接続用導電部 21を厚み方向に加圧して圧縮させ 、この状態で絶縁部用材料層 22Aを硬化処理することにより、絶縁部 22を形成する 。その後、離型性支持板 16, 16Aによる接続用導電部 21に対する加圧を解除する ことによって、圧縮された接続用導電部 21を元の形態に復元させ、これにより、絶縁 部 22の両面力も突出する突出部を有する接続用導電部 21が得られる。  [0079] (2) In the anisotropically conductive connector, each of the connecting conductive portions 21 is formed so that each force on both surfaces of the insulating portion 22 also protrudes. The protrusion part which concerns on the electroconductive part 21 for an object may be formed. Such an elastic anisotropic conductive film 21 can be obtained as follows. That is, in forming the insulating portion 22, the connecting conductive portion 21 is pressed and compressed in the thickness direction by the releasable support plates 16 and 16A, and the insulating portion material layer 22A is cured in this state, thereby insulating the insulating portion 22. Form part 22. After that, by releasing the pressure applied to the connecting conductive part 21 by the releasable support plates 16 and 16A, the compressed connecting conductive part 21 is restored to the original form, and thereby the double-sided force of the insulating part 22 is also increased. A connecting conductive portion 21 having a protruding portion is obtained.
(3)弾性異方導電膜 20における突出部 23は必須のものではなぐ弾性異方導電膜 20の両面が平坦面のもの、或いは凹所が形成されたものであってもよい。  (3) The protrusions 23 in the elastic anisotropic conductive film 20 are not essential, and both surfaces of the elastic anisotropic conductive film 20 may be flat or may be formed with recesses.
[0080] (4)離型性支持板 16上に支持された導電性エラストマ一層 21Bを形成する方法とし ては、予め製造された、絶縁性の弾性高分子物質中に磁性を示す導電性粒子が厚 み方向に並ぶよう配向した状態で分散されてなる導電性エラストマ一シートを、当該 導電性エラストマ一シートの有する粘着性によって或いは適宜の粘着剤によって、離 型性支持板 16上に粘着して支持させる方法を利用することもできる。ここで、導電性 エラストマ一シートは、例えば 2枚の榭脂シートの間に導電性エラストマ一用材料層を 形成し、この導電性エラストマ一層に対してその厚み方向に磁場を作用させることに より、導電性エラストマ一用材料層中の導電性粒子を厚み方向に並ぶよう配向させ、 磁場の作用を継続しながら、或いは磁場の作用を停止した後、導電性エラストマ一 用材料層の硬化処理を行うことによって、製造することができる。 [0080] (4) As a method for forming the conductive elastomer layer 21B supported on the releasable support plate 16, a conductive particle exhibiting magnetism in an insulating elastic polymer material manufactured in advance is used. The conductive elastomer sheet dispersed in a state of being aligned in the thickness direction is adhered on the releasable support plate 16 by the adhesive property of the conductive elastomer sheet or by an appropriate adhesive. It is also possible to use a method of supporting them. Here, the conductive elastomer sheet is formed, for example, by forming a conductive elastomer material layer between two resin sheets, and applying a magnetic field in the thickness direction to the conductive elastomer layer. , Orienting the conductive particles in the material layer for the conductive elastomer so that they are aligned in the thickness direction, It can be manufactured by curing the conductive elastomer material layer while continuing the action of the magnetic field or after stopping the action of the magnetic field.
(5)接続用導電部 21の形成においては、レーザー加工によって導電性エラストマ一 層 21Bにおける接続用導電部となる部分以外の部分の全部が除去されることにより、 接続用導電部を形成することもできるが、図 21および図 22に示すように、導電性エラ ストマー層 21Bにおける接続用導電部となる部分の周辺部分のみが除去されること により、接続用導電部 21を形成することもできる。この場合には、導電性エラストマ一 層 21Bの残部は、離型性支持板 16から機械的に剥離することによって除去すること ができる。  (5) In forming the conductive portion for connection 21, the conductive portion for connection is formed by removing all of the conductive elastomer layer 21B other than the portion to be the conductive portion for connection by laser processing. However, as shown in FIG. 21 and FIG. 22, only the peripheral portion of the conductive elastomer layer 21B that becomes the conductive portion for connection can be removed to form the conductive portion for connection 21. . In this case, the remaining portion of the conductive elastomer layer 21B can be removed by mechanically peeling from the releasable support plate 16.
[0081] (6)プローブ部材においては、シート状プローブ 40は、必須のものではなぐ異方導 電性コネクター 2における弾性異方導電膜 20が検査対象であるウェハに接触して電 気的接続を達成する構成であってもよ ヽ。  [0081] (6) In the probe member, the sheet-like probe 40 is not indispensable. The elastic anisotropic conductive film 20 in the anisotropic conductive connector 2 contacts the wafer to be inspected and is electrically connected. Even a configuration that achieves ヽ.
[0082] (7)本発明の異方導電性コネクタ一は、そのフレーム板の開口力 検査対象であるゥ ェハに形成された一部の集積回路における被検査電極が配置された電極領域に対 応して形成され、これらの開口の各々に弾性異方導電膜が配置されたものであって ちょい。  (7) The anisotropic conductive connector according to the present invention includes an electrode region in which an electrode to be inspected is arranged in a part of an integrated circuit formed on a wafer to be inspected for opening force of the frame plate. Correspondingly, an elastic anisotropic conductive film is arranged in each of these openings.
このような異方導電性コネクターによれば、ウェハを 2以上のエリアに分割し、分割 されたエリア毎に、当該エリアに形成された集積回路について一括してプローブ試験 を行うことができる。  According to such an anisotropic conductive connector, a wafer can be divided into two or more areas, and for each divided area, a probe test can be collectively performed on the integrated circuit formed in the area.
すなわち、本発明の異方導電性コネクターまたは本発明のプローブ部材を使用し たウェハの検査方法においては、ウェハに形成された全ての集積回路について一 括して行うことは必須のことではな!/、。  That is, in the method of inspecting a wafer using the anisotropic conductive connector of the present invention or the probe member of the present invention, it is not essential to perform all integrated circuits formed on the wafer together! /.
バーンイン試験においては、集積回路の各々に必要な検査時間が数時間と長いた め、ウェハに形成された全ての集積回路について一括して検査を行えば高い時間 的効率が得られる力 プローブ試験においては、集積回路の各々に必要な検査時 間が数分間と短いため、ウェハを 2以上のエリアに分割し、分割されたエリア毎に、当 該エリアに形成された集積回路について一括してプローブ試験を行っても、十分に 高い時間的効率が得られる。 このように、ウェハに形成された集積回路について、分割されたエリア毎に電気的 検査を行う方法によれば、直径が 8インチまたは 12インチのウェハに高い集積度で 形成された集積回路について電気的検査を行う場合において、全ての集積回路に っ 、て一括して検査を行う方法と比較して、用いられる検査用回路基板の検査電極 数や配線数を少なくすることができ、これにより、検査装置の製造コストの低減化を図 ることがでさる。 In the burn-in test, the time required for each integrated circuit is as long as several hours. Therefore, if all the integrated circuits formed on the wafer are inspected at once, high time efficiency can be obtained. Since the inspection time required for each integrated circuit is as short as several minutes, the wafer is divided into two or more areas, and the integrated circuits formed in the areas are collectively probed for each divided area. Even when tested, a sufficiently high time efficiency can be obtained. As described above, according to the method of performing the electrical inspection for each divided area on the integrated circuit formed on the wafer, the integrated circuit formed on the wafer having a diameter of 8 inches or 12 inches with a high degree of integration is electrically When performing a physical inspection, it is possible to reduce the number of inspection electrodes and the number of wirings on the circuit board to be used, compared to the method of performing the inspection collectively for all integrated circuits. It is possible to reduce the manufacturing cost of inspection equipment.
[0083] (8)本発明の異方導電性コネクターまたは本発明のプローブ部材は、アルミニウムよ りなる平面状の電極を有する集積回路が形成されたウェハの検査の他に、金または はんだなどよりなる突起状電極 (バンプ)を有する集積回路が形成されたウェハの検 查に用いることもできる。  [0083] (8) The anisotropic conductive connector of the present invention or the probe member of the present invention is not only for inspecting a wafer on which an integrated circuit having planar electrodes made of aluminum is formed, but also from gold or solder. It can also be used for inspection of a wafer on which an integrated circuit having protruding electrodes (bumps) is formed.
金やはんだなどよりなる電極は、アルミニウムよりなる電極に比較して、表面に酸ィ匕 膜が形成されにくいものであるため、このような突起状電極を有する集積回路が形成 されたウェハの検査においては、酸ィ匕膜を突き破るために必要な大きな荷重で加圧 することが不要となり、シート状プローブを用いずに、異方導電性コネクターの接続用 導電部を被検査電極に直接接触させた状態で検査を実行することができる。  Since an electrode made of gold or solder is less likely to form an oxide film on its surface compared to an electrode made of aluminum, inspection of a wafer on which an integrated circuit having such a protruding electrode is formed In this case, it is not necessary to pressurize with a large load necessary to break through the oxide film, and the conductive part for connecting the anisotropically conductive connector is brought into direct contact with the electrode to be inspected without using a sheet-like probe. The inspection can be performed in the state.
実施例  Example
[0084] 以下、本発明の具体的な実施例について説明する力 本発明はこれらの実施例に 限定されるものではない。  [0084] Hereinafter, the ability to describe specific examples of the present invention. The present invention is not limited to these examples.
[0085] 〔試験用ウェハの作製〕  [0085] [Production of test wafer]
図 23に示すように、直径が 8インチのシリコン (線熱膨張係数 3. 3 X 10— 6ZK)製の ウェハ 6上に、それぞれ寸法が 9mm X 9mmの正方形の集積回路 Lを合計で 393個 形成した。ウェハ 6に形成された集積回路 Lの各々は、図 24に示すように、その中央 に被検査電極領域 Aを有し、この被検査電極領域 Aには、図 25に示すように、それ ぞれ縦方向(図 25において上下方向)の寸法が 200 μ mで横方向(図 25において 左右方向)の寸法が 60 μ mの矩形の 40個の被検査電極 7が 120 μ mのピッチで横 方向に一列に配列されている。このウェハ 6全体の被検査電極 7の総数は 15720個 であり、全ての被検査電極 7は互いに電気的に絶縁されている。以下、このウェハを「 試験用ウェハ Wl」という。 また、全ての被検査電極 (7)を互いに電気的に絶縁することに代えて、集積回路( L)における 40個の被検査電極のうち最も外側の被検査電極(7)から数えて 1個おき に 2個ずつを互 ヽに電気的に接続したこと以外は、上記試験用ウェハ W1と同様の 構成の 393個の集積回路 (L)をウェハ(6)上に形成した。以下、このウェハを「試験 用ウェハ W2」という。 As shown in FIG. 23, a diameter of 8 inch silicon (coefficient of linear thermal expansion 3. 3 X 10- 6 ZK) made on the wafer 6, dimensions respectively integrated circuits L square 9 mm X 9 mm in total 393 Individually formed. Each of the integrated circuits L formed on the wafer 6 has an electrode area A to be inspected at the center thereof as shown in FIG. 24, and each of the electrode areas A to be inspected has an electrode area A as shown in FIG. 40 rectangular electrodes 7 with a vertical dimension (vertical direction in FIG. 25) of 200 μm and a horizontal dimension (horizontal direction in FIG. 25) of 60 μm with a pitch of 120 μm They are arranged in a row in the direction. The total number of electrodes 7 to be inspected on the entire wafer 6 is 15720, and all the electrodes 7 to be inspected are electrically insulated from each other. Hereinafter, this wafer is referred to as “test wafer Wl”. Instead of electrically insulating all the electrodes to be inspected (7) from each other, one of the 40 electrodes to be inspected in the integrated circuit (L) counted from the outermost electrode to be inspected (7) 393 integrated circuits (L) having the same configuration as the above-described test wafer W1 were formed on the wafer (6) except that every other two pieces were electrically connected to each other. Hereinafter, this wafer is referred to as “test wafer W2.”
[0086] 〈実施例 1〉 <Example 1>
〔フレーム板の作製〕  [Production of frame plate]
図 26および図 27に示す構成に従い、下記の条件により、上記の試験用ウェハ W1 における各被検査電極領域に対応して形成された 393の開口(11)を有する直径が 8インチのフレーム板(10)を作製した。  According to the configuration shown in FIG. 26 and FIG. 27, an 8 inch diameter frame plate having 393 openings (11) formed corresponding to each electrode area to be inspected in the test wafer W1 according to the following conditions ( 10) was produced.
このフレーム板(10)の材質はコバール (線熱膨張係数 5 X 10— 6Ζκ)で、その厚み は、 60 mである。フレーム板(10)の開口(11)の各々は、その横方向(図 26およ び図 27において左右方向)の寸法が 5. 5mmで縦方向(図 26および図 27において 上下方向)の寸法が 0. 4mmである。 In the material of this frame plate (10) is Kovar (coefficient of linear thermal expansion 5 X 10- 6 Ζκ), its thickness is 60 m. Each of the openings (11) in the frame plate (10) has a horizontal dimension (horizontal direction in FIGS. 26 and 27) of 5.5 mm and a vertical dimension (vertical direction in FIGS. 26 and 27). Is 0.4 mm.
また、縦方向に隣接する開口(11)の間の中央位置には、円形の空気流入孔(12) が形成されており、その直径は lmmである。  In addition, a circular air inflow hole (12) is formed at a central position between the vertically adjacent openings (11), and its diameter is lmm.
[0087] 〔成形用スぺーサ一の作製〕 [Preparation of forming spacer 1]
下記の条件により、試験用ウェハ W1における被検査電極領域に対応して形成さ れた複数の開口を有する弾性異方導電膜成形用のスぺーサーを 2枚作製した。 これらのスぺーサ一の材質はステンレス(SUS304)で、その厚みは 20 μ mである 。スぺーサ一の開口の各々と、その横方向の寸法が 7mmで縦方向の寸法力4mm である。  Two spacers for forming an elastic anisotropic conductive film having a plurality of openings formed corresponding to the electrode area to be inspected in the test wafer W1 were produced under the following conditions. The material of these spacers is stainless steel (SUS304), and its thickness is 20 μm. Each of the spacer openings has a horizontal dimension of 7 mm and a vertical dimension force of 4 mm.
[0088] 〔磁性芯粒子 [A]の調製〕  [Preparation of magnetic core particle [A]]
市販のニッケル粒子(Westaim社製, 「FC1000」)を用い、以下のようにして磁性 芯粒子 [A]を調製した。  Using commercially available nickel particles (Westaim, “FC1000”), magnetic core particles [A] were prepared as follows.
日清エンジニアリング株式会社製の空気分級機「ターボクラシファイア TC— 15N 」によって、ニッケル粒子 2kgを、比重が 8. 9、風量が 2. 5m3 Zmin、ローター回転 数が 1, 600rpm、分級点が 25 m、ニッケル粒子の供給速度が 16gZminの条件 で分級処理し、ニッケル粒子 1. 8kgを捕集し、更に、このニッケル粒子 1. 8kgを、比 重が 8. 9、風量が 2. 5m3 Zmin、ローター回転数が 3, OOOrpm、分級点が 10 m 、ニッケル粒子の供給速度が 14gZminの条件で分級処理し、ニッケル粒子 1. 5kg を捕集した。 By Nisshin Engineering air classifier Co., Ltd. "Turbo Classifier TC- 15N" nickel particles 2 kg, specific gravity of 8.9, air flow rate 2. 5 m 3 Zmin, the rotor speed is 1, 600 rpm, a classification point of 25 m, Nickel particle supply speed is 16gZmin Then, 1.8 kg of nickel particles were collected, and 1.8 kg of these nickel particles were collected. Specific gravity was 8.9, air volume was 2.5 m 3 Zmin, rotor speed was 3, OOOrpm, classification point. Was 10 m and the nickel particle supply rate was 14 gZmin, and 1.5 kg of nickel particles were collected.
次いで、筒井理ィ匕学機器株式会社製の音波ふるい器「SW—20AT形」によって、 空気分級機によって分級されたニッケル粒子 120gを更に分級処理した。具体的に は、それぞれ直径が 200mmで、開口径が 25 m、 20 m、 16 μ mおよび 8 μ mの 4つのふるいを上からこの順で 4段に重ね合わせ、ふるいの各々に直径が 2mmのセ ラミックボール 10gを投入し、最上段のふるい(開口径が 25 μ m)にニッケル粒子 20g を投入し、 55Hzで 12分間および 125Hzで 15分間の条件で分級処理し、最下段の ふるい(開口径が 8 μ m)に捕集されたニッケル粒子を回収した。この操作を合計で 2 5回行うことにより、磁性芯粒子 [A] 110gを調製した。  Next, 120 g of nickel particles classified by an air classifier were further classified by a sonic sieve “SW-20AT type” manufactured by Ritsutsu Tsutsui Instruments Co., Ltd. Specifically, four sieves each with a diameter of 200 mm and opening diameters of 25 m, 20 m, 16 μm, and 8 μm are stacked in this order from the top in this order, and each sieve has a diameter of 2 mm. 10 g of ceramic ball was added, 20 g of nickel particles were added to the top sieve (opening diameter 25 μm), classification was performed at 55 Hz for 12 minutes and 125 Hz for 15 minutes, and the bottom sieve ( Nickel particles collected at an opening diameter of 8 μm were recovered. By performing this operation 25 times in total, 110 g of magnetic core particles [A] were prepared.
得られた磁性芯粒子 [A]は、数平均粒子径が 10 m、粒子径の変動係数が 10% 、 BET比表面積が 0. 2 X 103 m2 /kg、飽和磁化が 0. 6Wb/m2であった。 The obtained magnetic core particle [A] has a number average particle diameter of 10 m, a particle diameter variation coefficient of 10%, a BET specific surface area of 0.2 X 10 3 m 2 / kg, and a saturation magnetization of 0.6 Wb / kg. It was m 2.
〔導電性粒子 [a]の調製〕 [Preparation of conductive particles [a]]
粉末メツキ装置の処理槽内に、磁性芯粒子 [A] 100gを投入し、更に、 0. 32Nの 塩酸水溶液 2Lを加えて攪拌し、磁性芯粒子 [A]を含有するスラリーを得た。このスラ リーを常温で 30分間攪拌することにより、磁性芯粒子 [A]の酸処理を行い、その後、 1分間静置して磁性芯粒子 [A]を沈殿させ、上澄み液を除去した。  100 g of the magnetic core particle [A] was put into the treatment tank of the powder plating apparatus, and further 2 L of 0.32N hydrochloric acid aqueous solution was added and stirred to obtain a slurry containing the magnetic core particle [A]. The slurry was stirred at room temperature for 30 minutes to treat the magnetic core particles [A] with an acid, and then left to stand for 1 minute to precipitate the magnetic core particles [A], and the supernatant was removed.
次いで、酸処理が施された磁性芯粒子 [A]に純水 2Lを加え、常温で 2分間攪拌し 、その後、 1分間静置して磁性芯粒子 [A]を沈殿させ、上澄み液を除去した。この操 作を更に 2回繰り返すことにより、磁性芯粒子 [A]の洗浄処理を行った。  Next, 2 L of pure water is added to the acid-treated magnetic core particles [A], stirred at room temperature for 2 minutes, and then allowed to stand for 1 minute to precipitate the magnetic core particles [A] and remove the supernatant. did. By repeating this operation two more times, the magnetic core particles [A] were washed.
そして、酸処理および洗浄処理が施された磁性芯粒子 [A]に、金の含有割合が 20 g/Lの金メッキ液 2Lをカ卩え、処理層内の温度を 90°Cに昇温して攪拌することにより 、スラリーを調製した。この状態で、スラリーを攪拌しながら、磁性芯粒子 [A]に対して 金の置換メツキを行った。その後、スラリーを放冷しながら静置して粒子を沈殿させ、 上澄み液を除去することにより、本発明用の導電性粒子 [a]を調製した。  Then, add 2 L of a gold plating solution with a gold content of 20 g / L to the magnetic core particles [A] that have been subjected to acid treatment and washing treatment, and raise the temperature in the treatment layer to 90 ° C. The slurry was prepared by stirring. In this state, the magnetic core particles [A] were replaced with gold while stirring the slurry. Thereafter, the slurry was left standing to cool to precipitate the particles, and the supernatant liquid was removed to prepare conductive particles [a] for the present invention.
このようにして得られた導電性粒子 [a]に純水 2Lをカ卩え、常温で 2分間攪拌し、そ の後、 1分間静置して導電性粒子 [a]を沈殿させ、上澄み液を除去した。この操作を 更に 2回繰り返し、その後、 90°Cに加熱した純水 2Lをカ卩えて攪拌し、得られたスラリ 一を濾紙によって濾過して導電性粒子 [a]を回収した。そして、この導電性粒子 [a] を、 90°Cに設定された乾燥機によって乾燥処理した。 To the conductive particles [a] obtained in this way, 2 L of pure water was added and stirred at room temperature for 2 minutes. Thereafter, the mixture was allowed to stand for 1 minute to precipitate the conductive particles [a], and the supernatant was removed. This operation was further repeated twice, and then 2 L of pure water heated to 90 ° C. was added and stirred, and the resulting slurry was filtered through a filter paper to collect the conductive particles [a]. The conductive particles [a] were dried by a dryer set at 90 ° C.
得られた導電性粒子 [a]は、数平均粒子径が 12 m、 BET比表面積が 0. 15 X 1 03 mVkg,被覆層の厚み tが l l lnm、(被覆層を形成する金の質量) / (導電性粒 子 [a]全体の質量)の値 Nが 0. 3であった。 The obtained conductive particles [a] have a number average particle diameter of 12 m, a BET specific surface area of 0.15 X 10 3 mVkg, a coating layer thickness t of ll lnm, (the mass of gold forming the coating layer) ) / (Conductive particle [a] total mass) value N was 0.3.
[0090] 〔導電性エラストマ一層の形成〕  [Formation of one layer of conductive elastomer]
付加型液状シリコーンゴム 100重量部中に、上記の導電性粒子 [a] 400重量部を 分散させることにより、導電性エラストマ一用材料を調製した。この導電性エラストマ 一用材料を、厚みが 5mmのステンレスよりなる離型性支持板(16)の表面に、スクリ ーン印刷により塗布することにより、当該離型性支持板(16)上に、厚みが 0. 15mm の導電性エラストマ一用材料層(21A)を形成した(図 5および図 6参照)。  A conductive elastomer material was prepared by dispersing 400 parts by weight of the conductive particles [a] in 100 parts by weight of addition-type liquid silicone rubber. By applying this material for conductive elastomer to the surface of a releasable support plate (16) made of stainless steel having a thickness of 5 mm by screen printing, on the releasable support plate (16), A conductive elastomer material layer (21A) having a thickness of 0.15 mm was formed (see FIGS. 5 and 6).
次いで、導電性エラストマ一用材料層 (21A)に対して、電磁石によって厚み方向 に 2テスラの磁場を作用させながら、 120°C、 1時間の条件で硬化処理を行うことによ り、離型性支持板 16上に支持された厚みが 0. 15mmの導電性エラストマ一層(21B )を形成した(図 7および図 8参照)。  Next, the conductive elastomer material layer (21A) is subjected to a curing treatment at 120 ° C for 1 hour while applying a magnetic field of 2 Tesla in the thickness direction by an electromagnet, thereby releasing the mold. A conductive elastomer layer (21B) having a thickness of 0.15 mm supported on the conductive support plate 16 was formed (see FIGS. 7 and 8).
[0091] 以上において、使用した付加型液状シリコーンゴムは、それぞれ粘度が 250Pa' s である A液および B液よりなる二液型のものであって、その硬化物の圧縮永久歪みが 5%、デュロメーター A硬度が 32、引裂強度が 25kNZmのものである。  [0091] In the above, the addition-type liquid silicone rubber used is a two-component type consisting of liquid A and liquid B each having a viscosity of 250 Pa's, and the cured product has a compression set of 5%, Durometer A with a hardness of 32 and a tear strength of 25 kNZm.
ここで、付加型液状シリコーンゴムおよびその硬化物の特性は、以下のようにして測 定されたものである。  Here, the properties of the addition-type liquid silicone rubber and its cured product were measured as follows.
(i)付加型液状シリコーンゴムの粘度は、 B型粘度計により、 23± 2°Cにおける値を測 し 7こ。  (i) The viscosity of addition-type liquid silicone rubber is 7 using a B-type viscometer measured at 23 ± 2 ° C.
(ii)シリコーンゴム硬化物の圧縮永久歪みは、次のようにして測定した。  (ii) The compression set of the cured silicone rubber was measured as follows.
二液型の付加型液状シリコーンゴムにおける A液と B液とを等量となる割合で攪拌 混合した。次いで、この混合物を金型に流し込み、混合物に対して減圧による脱泡 処理を行った後、 120°C、 30分間の条件で硬化処理を行うことにより、厚みが 12. 7 mm、直径が 29mmのシリコーンゴム硬化物よりなる円柱体を作製し、この円柱体に 対して、 200°C、 4時間の条件でポストキュアを行った。このようにして得られた円柱体 を試験片として用い、 JIS K 6249に準拠して 150± 2°Cにおける圧縮永久歪みを 測定した。 The liquid A and liquid B in the two-component type addition type liquid silicone rubber were stirred and mixed at an equal ratio. Next, after pouring this mixture into a mold and subjecting the mixture to defoaming treatment under reduced pressure, a curing treatment is performed at 120 ° C for 30 minutes, resulting in a thickness of 12.7. A cylindrical body made of a cured silicone rubber having a diameter of 29 mm was prepared, and post-curing was performed on the cylindrical body at 200 ° C. for 4 hours. The cylindrical body thus obtained was used as a test piece, and compression set at 150 ± 2 ° C. was measured according to JIS K 6249.
(iii)シリコーンゴム硬化物の引裂強度は、次のようにして測定した。  (iii) The tear strength of the cured silicone rubber was measured as follows.
上記 (ii)と同様の条件で付加型液状シリコーンゴムの硬化処理およびポストキュア を行うことにより、厚みが 2. 5mmのシートを作製した。  The addition type liquid silicone rubber was cured and post-cured under the same conditions as in (ii) above to produce a 2.5 mm thick sheet.
このシートから打ち抜きによってタレセント形の試験片を作製し、 JIS K 6249に準 拠して 23士 2°Cにおける弓 I裂強度を測定した。  Talecent-shaped specimens were produced from this sheet by punching, and the bow I crack strength at 2 ° C for 23 persons was measured in accordance with JIS K 6249.
(iv)デュロメーター A硬度は、上記 (m)と同様にして作製されたシートを 5枚重ね合わ せ、得られた積重体を試験片として用い、 JIS K 6249に準拠して 23± 2°Cにおけ る値を測定した。  (iv) The durometer A hardness is set to 23 ± 2 ° C according to JIS K 6249 by stacking five sheets prepared in the same manner as in (m) above and using the resulting stack as a test piece. The value was measured.
〔接続用導電部の形成〕 [Formation of conductive part for connection]
離型性支持板(16)上に支持された導電性エラストマ一層(21B)の表面に、無電 解メツキ処理を施すことによって、厚みが 0. 3 μ mの銅よりなる金属薄層(17)を形成 した(図 9参照)。  A thin metal layer (17) made of copper with a thickness of 0.3 μm is applied to the surface of the conductive elastomer layer (21B) supported on the releasable support plate (16) by electroless plating. (See Fig. 9).
この金属薄層(17)上に、フォトリソグラフィ一の手法により、それぞれ寸法が 60 /z m X 200 mの矩形の 15720個の開口(18a)が試験用ウェハ W1に形成された被検 查電極のパターンに対応するパターンに従って形成された、厚みが 25 μ mのレジス ト層(18)を形成した (図 10参照)。  On this thin metal layer (17), 15720 openings (18a) each having a rectangular size of 60 / zm X 200 m are formed on the test wafer W1 by a photolithography technique. A resist layer (18) with a thickness of 25 μm was formed according to the pattern corresponding to the pattern (see Fig. 10).
その後、金属薄層(17)の表面に電解銅メツキ処理を施すことにより、レジスト層 (18 )の開口(18a)内に厚みが 20 μ mの銅よりなる金属マスク(19)を形成した(図 11参 照)。  Thereafter, the surface of the metal thin layer (17) was subjected to an electrolytic copper plating process to form a metal mask (19) made of copper having a thickness of 20 μm in the opening (18a) of the resist layer (18) ( (See Figure 11).
そして、この状態で、導電性エラストマ一層(21B)、金属薄層(17)およびレジスト 層(18)に対して、炭酸ガスレーザー装置によってレーザー加工を施すことにより、そ れぞれ離型性支持板(16)上に支持された 15720の接続用導電部(21)を形成し、 その後、接続用導電部(21)の表面から残存する金属薄層(17)および金属マスク(1 9)を剥離すると共に、離型性支持体(16)の表面力も導電性エラストマ一層(21B)の 残部を機械的に剥離した (図 12参照)。 In this state, the conductive elastomer layer (21B), the metal thin layer (17), and the resist layer (18) are subjected to laser processing with a carbon dioxide laser device, thereby supporting the releasability. A conductive part for connection (21) of 15720 supported on the plate (16) is formed, and then a thin metal layer (17) and a metal mask (19) remaining from the surface of the conductive part for connection (21) are formed. In addition to peeling, the surface strength of the releasable support (16) is also reduced The remainder was mechanically peeled off (see Figure 12).
以上において、炭酸ガスレーザー装置によるレーザー加工条件は、以下の通りで ある。すなわち、装置として、炭酸ガスレーザー加工機「ML— 605GTX」(三菱電機 (株)製)を用い、レーザービーム径が直径 60 m,レーザー出力が 0. 8mJの条件 で、 1つの加工点にレーザービームを 10ショット照射することによりレーザー加工を行 つた o  In the above, the laser processing conditions by the carbon dioxide laser device are as follows. In other words, a carbon dioxide laser processing machine “ML-605GTX” (manufactured by Mitsubishi Electric Corporation) was used as the equipment, and the laser beam diameter was 60 m and the laser output was 0.8 mJ. Laser processing was performed by irradiating 10 shots of the beam o
[0093] 〔絶縁部の形成〕  [Insulation part formation]
厚みが 5mmのステンレスよりなる絶縁部形成用の離型性支持板(16A)を用意し、 この離型性支持板(16A)の表面に、一方の成形用スぺーサーを配置し、この成形 用スぺーサー上にフレーム板(10)を位置合わせして配置し、このフレーム板(10)上 に他方の成形用スぺーサーを位置合わせして配置した。  Prepare a releasable support plate (16A) made of stainless steel with a thickness of 5mm and place one molding spacer on the surface of this releasable support plate (16A). The frame plate (10) was positioned and arranged on the spacer for use, and the other forming spacer was positioned and arranged on the frame plate (10).
次いで、導電性エラストマ一材料の調製において使用した付加型液状シリコーンゴ ムを用意し、この付加型液状シリコーンゴムに対して減圧による脱泡処理を行つた後 、当該付加型液状シリコーンゴムをスクリーン印刷によって離型性支持板(16A)に塗 布することにより、 2枚の成形用スぺーサ一の各々の開口内およびフレーム板(10) の開口(11)内に付加型液状シリコーンゴムを充填することにより、絶縁部用材料層 ( 22A)を形成した(図 13参照)。  Next, an addition-type liquid silicone rubber used in the preparation of the conductive elastomer material is prepared, and the addition-type liquid silicone rubber is defoamed under reduced pressure, and then the addition-type liquid silicone rubber is screen-printed. By applying to the releasable support plate (16A), additional liquid silicone rubber is filled in the openings of each of the two molding spacers and the opening (11) of the frame plate (10). As a result, an insulating material layer (22A) was formed (see FIG. 13).
次いで、複数の接続用導電部 (21)が形成された離型性支持板 (16)を、絶縁部用 材料層(22A)が形成された離型性支持板(16A)上に重ね合わせることにより、接続 用導電部(21)の各々を絶縁部用材料層 (22A)中に浸入させて離型性支持板(16 A)に接触させた (図 14参照)。その後、この状態で、離型性支持板(16)および離型 性支持板(16A)に 1500kgfの圧力を加えることにより、接続用導電部(21)を厚み 方向に圧縮しながら、絶縁部用材料層(22A)の硬化処理を行うことにより、接続用 導電部(21)の各々の周囲に、これらを相互に絶縁する絶縁部(22)力 接続用導電 部 (21)に一体的に形成された弾性異方導電膜 (20)を形成した (図 15参照)。  Next, the releasable support plate (16) on which a plurality of conductive portions (21) for connection are formed is overlaid on the releasable support plate (16A) on which the insulating layer material layer (22A) is formed. As a result, each of the conductive parts for connection (21) entered the insulating part material layer (22A) and brought into contact with the releasable support plate (16A) (see FIG. 14). After that, in this state, by applying a pressure of 1500 kgf to the releasable support plate (16) and the releasable support plate (16A), the conductive part for connection (21) is compressed in the thickness direction, and for the insulating part. The material layer (22A) is cured to form an integral part of the connecting conductive part (21) around each of the connecting conductive parts (21). An elastic anisotropic conductive film (20) was formed (see FIG. 15).
そして、離型性支持板 (16) , (16A)カゝら弾性異方導電膜 (20)を離型させ、成形 用スぺーサーを除去することにより、本発明の異方導電性コネクターを製造した。  Then, the anisotropically conductive connector of the present invention is removed by releasing the moldable support plate (16), (16A) and the elastic anisotropically conductive film (20) and removing the molding spacer. Manufactured.
[0094] 得られた異方導電性コネクターにおける弾性異方導電膜について具体的に説明 すると、弾性異方導電膜の各々は、横方向の寸法が 5. 5mm,縦方向の寸法が 0. 4 mmである。 [0094] The elastic anisotropic conductive film in the anisotropic conductive connector obtained will be specifically described. Then, each elastic anisotropic conductive film has a horizontal dimension of 5.5 mm and a vertical dimension of 0.4 mm.
弾性異方導電膜の各々には、 40個の接続用導電部が 120 mのピッチで横方向 に一列に配列されており、接続用導電部の各々は、横方向の寸法が 60 m、縦方 向の寸法が 200 μ m、厚みが約 140 μ mであり、絶縁部の厚みが 100 μ mである。 また、弾性異方導電膜の各々における被支持部の厚み (二股部分の一方の厚み) は 20 μ mである。  Each of the elastic anisotropic conductive films has 40 connecting conductive parts arranged in a row in the horizontal direction at a pitch of 120 m. Each of the connecting conductive parts has a horizontal dimension of 60 m and a vertical length of The dimension in the direction is 200 μm, the thickness is about 140 μm, and the thickness of the insulating part is 100 μm. Further, the thickness of the supported portion (one thickness of the bifurcated portion) in each elastic anisotropic conductive film is 20 μm.
また、弾性異方導電膜の各々における接続用導電部中の導電性粒子の含有割合 を調べたところ、全ての接続用導電部にっ 、て体積分率で約 30%であった。  Further, when the content ratio of the conductive particles in the connecting conductive portion in each of the elastic anisotropic conductive films was examined, the volume fraction was about 30% in all the connecting conductive portions.
[0095] 〔検査用回路基板の作製〕 [Fabrication of circuit board for inspection]
基板材料としてアルミナセラミックス (線熱膨張係数 4. 8 X 10—ソ K)を用い、試験 用ウエノ、 W1における被検査電極のパターンに対応するパターンに従って検査電極 が形成された検査用回路基板を作製した。この検査用回路基板は、全体の寸法が3 Ocm X 30cmの矩形であり、その検査電極は、横方向の寸法力 ½0 μ mで縦方向の 寸法が 200 /z mである。以下、この検査用回路基板を「検査用回路基板 T」という。 Alumina ceramics (coefficient of linear thermal expansion 4.8 X 10-so-K) is used as the substrate material, and a test circuit board with test electrodes formed according to the pattern corresponding to the pattern of the test electrode in Weno for testing and W1 is manufactured. did. The inspection circuit board has a rectangular shape with an overall dimension of 3 Ocm × 30 cm, and the inspection electrode has a lateral dimension force of ½ μm and a longitudinal dimension of 200 / zm. Hereinafter, this inspection circuit board is referred to as “inspection circuit board T”.
[0096] 〔シート状プローブの作製〕 [0096] [Production of sheet-like probe]
厚みが 20 μ mのポリイミドよりなる絶縁性シートの一面に厚みが 15 μ mの銅層が積 層されてなる積層材料を用意し、この積層材料における絶縁性シートに対してレーザ 一加工を施すことによって、当該絶縁性シートの厚み方向に貫通する、それぞれ直 径が 40 μ mの 15720個の貫通孔を、試験用ウェハ W1における被検査電極のパタ ーンに対応するパターンに従って形成した。次いで、この積層材料に対してフォトリソ グラフィーおよびニッケルメツキ処理を施すことによって、絶縁性シートの貫通孔内に 銅層に一体に連結された短絡部を形成すると共に、当該絶縁性シートの表面に、短 絡部に一体に連結された突起状の表面電極部を形成した。この表面電極部の径は 5 0 mであり、絶縁性シートの表面力もの高さは 20 mであった。その後、積層材料 における銅層に対してフォトエッチング処理を施してその一部を除去することにより、 70 m X 210 mの矩形の裏面電極部を形成し、更に、表面電極部および裏面電 極部に金メッキ処理を施すことによって電極構造体を形成し、以てシート状プローブ を製造した。以下、このシート状プローブを「シート状プローブ M」という。 Prepare a laminated material in which a copper layer with a thickness of 15 μm is stacked on one side of an insulating sheet made of polyimide with a thickness of 20 μm, and apply laser processing to the insulating sheet in this laminated material. Thus, 15720 through-holes each having a diameter of 40 μm and penetrating in the thickness direction of the insulating sheet were formed according to a pattern corresponding to the pattern of the electrode to be inspected in the test wafer W1. Next, the laminated material is subjected to photolithography and nickel plating treatment to form a short-circuit portion integrally connected to the copper layer in the through hole of the insulating sheet, and on the surface of the insulating sheet, A protruding surface electrode portion integrally connected to the short-circuit portion was formed. The diameter of the surface electrode portion was 50 m, and the height of the surface strength of the insulating sheet was 20 m. Thereafter, the copper layer in the laminated material is subjected to a photo-etching process and a part thereof is removed to form a 70 m × 210 m rectangular back electrode part, and further, the front electrode part and the back electrode part An electrode structure is formed by applying gold plating to the sheet-like probe. Manufactured. Hereinafter, this sheet-like probe is referred to as “sheet-like probe M”.
[0097] 〔異方導電性コネクターの評価〕 [Evaluation of anisotropic conductive connector]
(1)試験 1 :  (1) Test 1:
試験用ウェハ W1を試験台に配置し、この試験用ウェハ W1上に、異方導電性コネ クタ一をその接続用導電部の各々が試験用ウェハ W1の被検査電極上に位置するよ う位置合わせして配置した。次いで、この異方導電製コネクター上に、検査用回路基 板 Tをその検査電極の各々が当該異方導電性コネクターの接続用導電部上に位置 するよう位置合わせして固定し、更に、検査用回路基板 Tを下方に 160kgの荷重で 加圧した。  Place the test wafer W1 on the test stand, and place the anisotropic conductive connector on the test wafer W1 so that each of the conductive parts for connection is located on the electrode to be inspected on the test wafer W1. Arranged together. Next, the inspection circuit board T is aligned and fixed on the anisotropic conductive connector so that each of the inspection electrodes is positioned on the connecting conductive portion of the anisotropic conductive connector. The circuit board T was pressed downward with a load of 160 kg.
そして、室温(25°C)下において、検査用回路基板 Tにおける検査電極の各々に順 次電圧を印加すると共に、電圧が印加された検査電極とこれに隣接する検査電極と の間の電気抵抗を、異方導電性コネクターにおける接続用導電部間の電気抵抗 (以 下、「絶縁抵抗」という。)として測定し、絶縁抵抗が 5Μ Ω以下である接続用導電部 対の数を求めた。ここで、接続用導電部間の絶縁抵抗が 5Μ Ω以下のものについて は、ウェハに形成された集積回路の電気的検査において、これを実際上使用するこ とが困難な場合がある。  At room temperature (25 ° C), a sequential voltage is applied to each of the inspection electrodes on the inspection circuit board T, and the electrical resistance between the inspection electrode to which the voltage is applied and the inspection electrode adjacent thereto is applied. Was measured as the electrical resistance between the conductive parts for connection in the anisotropic conductive connector (hereinafter referred to as “insulation resistance”), and the number of conductive part pairs for connection having an insulation resistance of 5 Ω or less was determined. Here, when the insulation resistance between the conductive parts for connection is 5Ω or less, it may be difficult to actually use this in the electrical inspection of the integrated circuit formed on the wafer.
以上、結果を下記表 1に示す。  The results are shown in Table 1 below.
[0098] (2)試験 2 : [0098] (2) Test 2:
試験用ウェハ W2を、電熱ヒーターを具えた試験台に配置し、この試験用ウェハ W 1上に異方導電性コネクターをその接続用導電部の各々が当該試験用ウェハ W2の 被検査電極上に位置するよう位置合わせして配置し、この異方導電製コネクター上 に、検査用回路基板 Tをその検査電極の各々が当該異方導電性コネクターの接続 用導電部上に位置するよう位置合わせして配置し、更に、検査用回路基板 Tを下方 に 32kgの荷重 (接続用導電部 1個当たりに加わる荷重が平均で約 2g)で加圧した。 そして、室温(25°C)下において、検査用回路基板 Tにおける 15720個の検査電 極にっ 、て、異方導電性コネクターおよび試験用ウエノ、 W1を介して互 ヽに電気的 に接続された 2個の検査電極の間の電気抵抗を順次測定し、測定された電気抵抗 値の 2分の 1の値を異方導電性コネクターにおける接続用導電部の電気抵抗 (以下、 「導通抵抗」 t 、う。)として記録し、導通抵抗が 0. 5 Ω以上である接続用導電部の数 を求めた。以上の操作を「操作(1)」とする。 The test wafer W2 is placed on a test stand equipped with an electric heater, and an anisotropic conductive connector is placed on the test wafer W1 so that each of the conductive portions for connection is placed on the test electrode of the test wafer W2. The inspection circuit board T is aligned on the anisotropic conductive connector so that each of the inspection electrodes is positioned on the conductive portion for connection of the anisotropic conductive connector. Furthermore, the circuit board for inspection T was pressed downward with a load of 32 kg (the load applied to each conductive part for connection was about 2 g on average). Then, at room temperature (25 ° C), 15720 test electrodes on the test circuit board T are electrically connected to each other via the anisotropic conductive connector, the test weno, and W1. In addition, the electrical resistance between the two test electrodes is measured sequentially, and the half of the measured electrical resistance value is calculated as the electrical resistance of the connecting conductive part in the anisotropic conductive connector (hereinafter referred to as "Conduction resistance" t. ) And the number of conductive parts for connection having a conduction resistance of 0.5 Ω or more was determined. The above operation is referred to as “operation (1)”.
次いで、検査用回路基板 Tを加圧する荷重を 126kgに変更し (接続用導電部 1個 当たりに加わる荷重が平均で約 8g)、その後、試験台を 125°Cに加熱し、試験台の 温度が安定した後、この状態で 1時間放置した。以上の操作を「操作 (2)」とする。 次いで、試験台を室温まで冷却し、その後、検査用回路基板 Tに対する加圧を解 除した。以上の操作を「操作 (3)」とする。  Next, the load to pressurize the inspection circuit board T is changed to 126 kg (the average load applied to each conductive part for connection is about 8 g), and then the test bench is heated to 125 ° C and the temperature of the test bench is After being stabilized, it was left in this state for 1 hour. The above operation is referred to as “operation (2)”. Next, the test table was cooled to room temperature, and then the pressure applied to the inspection circuit board T was released. The above operation is referred to as “operation (3)”.
そして、上記の操作(1)、操作(2)および操作(3)を 1サイクルとして、合計で 500サ イタル連続して行った。  Then, the above operation (1), operation (2) and operation (3) were performed as one cycle, and the operation was performed continuously for a total of 500 sites.
以上において、接続用導電部の導通抵抗が 0. 5 Ω以上のものについては、ウェハ に形成された集積回路の電気的検査において、これを実際上使用することが困難で ある。  As described above, it is difficult to actually use the conductive part having a conduction resistance of 0.5 Ω or more in the electrical inspection of the integrated circuit formed on the wafer.
以上の結果を下記表 2に示す。  The results are shown in Table 2 below.
[0099] (3)試験 3 : [0099] (3) Test 3:
試験台に配置された試験用ウェハ W2上に、シート状プローブ Mをその表面電極 部が当該試験用ウェハ W2の被検査電極上に位置するよう位置合わせして配置し、 このシート状プローブ M上に異方導電性コネクターをその接続用導電部がシート状 プローブ Mにおける裏面電極部上に位置するよう位置合わせして配置し、更に、検 查用回路基板 Tを下方に 126kgの荷重 (接続用導電部 1個当たりに加わる荷重が平 均で約 8g)で加圧したこと以外は、上記試験 2と同様にして接続用導電部の導通抵 抗を測定し、導通抵抗が 0. 5 Ω以上である接続用導電部の数を求めた。  On the test wafer W2 placed on the test bench, the sheet-like probe M is positioned so that its surface electrode portion is located on the electrode to be inspected on the test wafer W2, and the sheet-like probe M is placed on the test wafer W2. An anisotropic conductive connector is placed so that the conductive part for connection is positioned on the back electrode part of the sheet-like probe M, and the inspection circuit board T is loaded downward with a load of 126 kg (for connection The conductive resistance of the connecting conductive part was measured in the same manner as in Test 2 above, except that the load applied to each conductive part was about 8 g on average, and the conductive resistance was 0.5 Ω or more. The number of the conductive parts for connection which were was calculated | required.
以上の結果を下記表 3に示す。  The above results are shown in Table 3 below.
[0100] 〈比較例 1〉 [0100] <Comparative Example 1>
実施例 1と同様のフレーム板を用い、特開 2002— 334732号公報に記載の方法 に従って、フレーム板の開口の各々に下記の仕様の弾性異方導電膜を形成すること により、比較用の異方導電性コネクターを製造した。  By using the same frame plate as in Example 1 and forming an elastic anisotropic conductive film having the following specifications in each of the openings of the frame plate according to the method described in Japanese Patent Application Laid-Open No. 2002-334732, a comparatively different anisotropic plate is formed. A directionally conductive connector was produced.
得られた比較用の異方導電性コネクターにおける弾性異方導電膜について説明 すると、弾性異方導電膜の各々は、横方向の寸法が 5. 5mm,縦方向の寸法が 0. 4 mmである。 The elastic anisotropic conductive film in the comparative anisotropic conductive connector obtained will be described. Each of the elastic anisotropic conductive films has a lateral dimension of 5.5 mm and a longitudinal dimension of 0.4. mm.
弾性異方導電膜の各々には、 40個の接続用導電部が 120 mのピッチで横方向 に一列に配列されており、接続用導電部の各々は、横方向の寸法が 60 m、縦方 向の寸法が 200 μ m、厚みが約 140 μ mであり、絶縁部の厚みが 100 μ mである。 また、弾性異方導電膜の各々における被支持部の厚み (二股部分の一方の厚み) は 20 μ mである。  Each of the elastic anisotropic conductive films has 40 connecting conductive parts arranged in a row in the horizontal direction at a pitch of 120 m. Each of the connecting conductive parts has a horizontal dimension of 60 m and a vertical length of The dimension in the direction is 200 μm, the thickness is about 140 μm, and the thickness of the insulating part is 100 μm. Further, the thickness of the supported portion (one thickness of the bifurcated portion) in each elastic anisotropic conductive film is 20 μm.
また、弾性異方導電膜の各々における接続用導電部中の導電性粒子の含有割合 を調べたところ、体積分率で約 20%であった。  Further, when the content ratio of the conductive particles in the conductive portion for connection in each of the elastic anisotropic conductive films was examined, the volume fraction was about 20%.
そして、この比較用の異方導電性コネクターにつ 、て実施例 1と同様にして評価を 行った。以上、結果を表 1〜表 3に示す。  The comparative anisotropic conductive connector was evaluated in the same manner as in Example 1. The results are shown in Tables 1 to 3.
[0101] [表 1] [0101] [Table 1]
Figure imgf000048_0001
Figure imgf000048_0001
[0102] [表 2]  [0102] [Table 2]
Figure imgf000048_0002
Figure imgf000048_0002
[0103] [表 3]  [0103] [Table 3]
Figure imgf000048_0003
Figure imgf000048_0003
[0104] 表 1〜表 3の結果から明らかなように、実施例 1に係る異方導電性コネクターによれ ば、弾性異方導電膜における接続用導電部のピッチが小さいものであっても、当該 接続用導電部には良好な導電性が得られると共に、隣接する接続用導電部間には 十分な絶縁性が得られ、し力も、温度変化による熱履歴などの環境の変化に対して も良好な電気的接続状態が安定に維持され、更に、高温環境下において繰り返し使 用した場合にも、全ての接続用導電部において長期間にわたって良好な導電性が 維持されることが確認された。 [0104] As is apparent from the results of Tables 1 to 3, the anisotropic conductive connector according to Example 1 For example, even if the pitch of the conductive portions for connection in the elastic anisotropic conductive film is small, the conductive portion for connection has good conductivity, and sufficient insulation is provided between the adjacent conductive portions for connection. Even when used repeatedly in a high-temperature environment, all electrical power is stably maintained even against environmental changes such as thermal history due to temperature changes. It was confirmed that good conductivity was maintained over a long period in the conductive part for connection.
このような特性が得られるのは、以下の理由によるものと考えられる。  The reason why such characteristics are obtained is considered to be as follows.
(1)離型性支持板上に接続用導電部を形成したうえで、当該接続用導電部を絶縁 部用材料層中に浸入させ、当該絶縁部用材料層を硬化処理することにより絶縁部を 形成するため、絶縁部において導電性粒子が全く存在せず、従って、十分な絶縁性 を有する絶縁部が確実に得られる。  (1) After forming the conductive part for connection on the releasable support plate, the insulating part is made to penetrate into the insulating part material layer and the insulating part material layer is cured. Therefore, no conductive particles are present in the insulating portion, and therefore an insulating portion having sufficient insulating properties can be obtained with certainty.
(2)導電性エラストマ一層をレーザー加工することにより、接続用導電部を形成する ため、各接続用導電部における導電性粒子の含有割合のバラツキが極めて小さい ため、全ての接続用導電部にぉ 、て良好で安定した導電性が得られる。  (2) Since the conductive elastomer layer is laser processed to form the connection conductive portion, the variation in the content ratio of the conductive particles in each connection conductive portion is extremely small. Thus, good and stable conductivity can be obtained.
(3)各弾性異方導電膜は、その面積が小さくて面方向における熱膨張の絶対量が少 ないため、弾性異方導電膜の面方向における熱膨張がフレーム板によって確実に規 制される。しカゝも、異方導電性コネクター全体の熱膨張は、フレーム板を構成する材 料の熱膨張に依存するので、温度変化による熱履歴を受けた場合にも、接続用導電 部と被検査電極との位置ずれが防止される結果、良好な電気的接続状態が安定に 維持される。  (3) Since each elastic anisotropic conductive film has a small area and a small absolute amount of thermal expansion in the surface direction, the thermal expansion in the surface direction of the elastic anisotropic conductive film is reliably controlled by the frame plate. . However, the thermal expansion of the anisotropically conductive connector as a whole depends on the thermal expansion of the materials that make up the frame plate. As a result of preventing displacement from the electrode, a good electrical connection state is stably maintained.
これに対し、比較例 1の異方導電性コネクターにおいては、絶縁部に導電性粒子が 残存しているため、絶縁抵抗が低い接続用導電部対が存在し、また、各接続用導電 部における導電性粒子の含有割合のバラツキが大き 、ため、高温環境下にお!/、て 繰り返し使用した場合に、一部の接続用導電部について導電性の低下が認められ  On the other hand, in the anisotropic conductive connector of Comparative Example 1, conductive particles remain in the insulating portion, so there are connecting conductive portion pairs with low insulation resistance. Due to the large variation in the content ratio of conductive particles, this is a high temperature environment! / When repeated use, some conductive parts for connection show a decrease in conductivity.

Claims

請求の範囲 The scope of the claims
[1] 検査対象であるウェハに形成された全てのまたは一部の集積回路における被検査 電極が配置された電極領域に対応して複数の開口が形成されたフレーム板と、この フレーム板の開口の各々を塞ぐよう配置された複数の弾性異方導電膜とよりなり、前 記弾性異方導電膜の各々は、前記ウェハに形成された集積回路における被検査電 極に対応して配置された、弾性高分子物質中に磁性を示す導電性粒子が含有され てなる厚み方向に伸びる複数の接続用導電部と、これらの接続用導電部を相互に絶 縁する弾性高分子物質よりなる絶縁部とを有してなるウェハ検査用異方導電性コネ クタ一を製造する方法であって、  [1] A frame plate in which a plurality of openings are formed corresponding to an electrode region where an electrode to be inspected in all or a part of an integrated circuit formed on a wafer to be inspected, and an opening of the frame plate A plurality of elastic anisotropic conductive films arranged so as to cover each of the plurality of elastic anisotropic conductive films, each of the elastic anisotropic conductive films arranged corresponding to the electrodes to be inspected in the integrated circuit formed on the wafer. A plurality of connecting conductive parts extending in the thickness direction, wherein the elastic polymer substance contains conductive particles exhibiting magnetism, and an insulating part made of an elastic polymer substance that insulates the connecting conductive parts from each other A method for manufacturing an anisotropic conductive connector for wafer inspection, comprising:
離型性支持板上に支持された弾性高分子物質中に磁性を示す導電性粒子が含 有されてなる導電性エラストマ一層をレーザー加工することにより、当該離型性支持 板上に複数の接続用導電部を形成し、  A plurality of connections can be made on the releasable support plate by laser processing a conductive elastomer layer in which conductive particles exhibiting magnetism are contained in an elastic polymer material supported on the releasable support plate. Forming a conductive part for
この離型性支持板に形成された接続用導電部の各々を、フレーム板の開口を塞ぐ よう形成された、硬化されて弾性高分子物質となる液状の高分子物質形成材料より なる絶縁部用材料層中に浸入させ、この状態で前記絶縁部用材料層を硬化処理す ることにより絶縁部を形成する工程を有することを特徴とするウェハ検査用異方導電 性コネクターの製造方法。  For each of the connecting conductive portions formed on the releasable support plate, the insulating portion made of a liquid polymer material forming material that is cured to become an elastic polymer material is formed so as to close the opening of the frame plate. A method for producing an anisotropic conductive connector for wafer inspection, comprising the step of forming an insulating portion by intrusion into a material layer and curing the insulating material layer in this state.
[2] レーザー加工は、炭酸ガスレーザーまたは紫外線レーザーによるものであることを 特徴とする請求項 1に記載のウェハ検査用異方導電性コネクターの製造方法。  [2] The method for producing an anisotropic conductive connector for wafer inspection according to [1], wherein the laser processing is performed by a carbon dioxide laser or an ultraviolet laser.
[3] 導電性エラストマ一層の表面に、形成すべき接続用導電部のパターンに従って金 属マスクを形成し、その後、当該導電性エラストマ一層をレーザー加工することにより 、複数の接続用導電部を形成することを特徴とする請求項 1または請求項 2に記載の ウェハ検査用異方導電性コネクターの製造方法。  [3] A metal mask is formed on the surface of the conductive elastomer layer in accordance with the pattern of the conductive part for connection to be formed, and then the conductive elastomer layer is laser processed to form a plurality of conductive parts for connection. The method for producing an anisotropic conductive connector for wafer inspection according to claim 1 or 2, wherein:
[4] 導電性エラストマ一層の表面をメツキ処理することにより、金属マスクを形成すること を特徴とする請求項 3に記載のウェハ検査用異方導電性コネクターの製造方法。  [4] The method for producing an anisotropic conductive connector for wafer inspection according to [3], wherein the metal mask is formed by subjecting the surface of one layer of the conductive elastomer to a plating treatment.
[5] 導電性エラストマ一層の表面に金属薄層を形成し、この金属薄層の表面に特定の ノターンに従って開口が形成されたレジスト層を形成し、前記金属薄層における前 記レジスト層の開口力 露出した部分の表面をメツキ処理することにより、金属マスク を形成することを特徴とする請求項 3に記載のウェハ検査用異方導電性コネクターの 製造方法。 [5] A thin metal layer is formed on the surface of the conductive elastomer layer, a resist layer is formed on the surface of the thin metal layer according to a specific pattern, and the opening of the resist layer in the thin metal layer is formed. Force the metal mask by polishing the surface of the exposed part 4. The method for producing an anisotropic conductive connector for wafer inspection according to claim 3, wherein: is formed.
[6] 硬化されて弾性高分子物質となる液状のエラストマ一用材料中に磁性を示す導電 性粒子が含有されてなる導電性エラストマ一用材料層に対して、その厚み方向に磁 場を作用させると共に、当該導電性エラストマ一用材料層を硬化処理することにより、 導電性エラストマ一層を形成することを特徴とする請求項 1乃至請求項 5のいずれか に記載のウェハ検査用異方導電性コネクターの製造方法。  [6] A magnetic field is applied in the thickness direction to a conductive elastomer material layer in which conductive particles exhibiting magnetism are contained in a liquid elastomer material that is cured to become an elastic polymer substance. The anisotropic conductive material for wafer inspection according to any one of claims 1 to 5, wherein a conductive elastomer layer is formed by curing the material layer for the conductive elastomer. A method for manufacturing a connector.
[7] フレーム板として、線熱膨張係数が 3 X 10— 5ZK以下のものを用いることを特徴とす る請求項 1乃至請求項 6のいずれかに記載のウェハ検査用異方導電性コネクターの 製造方法。 [7] as the frame plate, anisotropically conductive connector for wafer inspection according to any one of claims 1 to 6 you, characterized in that the linear thermal expansion coefficient used the following 3 X 10- 5 ZK The manufacturing method.
[8] 請求項 1乃至請求項 7のいずれかに記載の製造方法によって得られることを特徴と するウェハ検査用異方導電性コネクター。  [8] An anisotropic conductive connector for wafer inspection, which is obtained by the manufacturing method according to any one of claims 1 to 7.
[9] ウェハに形成された複数の集積回路の各々について、当該集積回路の電気的検 查をウェハの状態で行うために用いられるプローブ部材であって、  [9] For each of a plurality of integrated circuits formed on a wafer, a probe member used to perform electrical inspection of the integrated circuit in the state of the wafer,
検査対象であるウェハに形成された集積回路における被検査電極のパターンに対 応するパターンに従って検査電極が表面に形成された検査用回路基板と、この検査 用回路基板の表面に配置された、請求項 8に記載のウェハ検査用異方導電性コネク ターとを具えてなることを特徴とするプローブ部材。  An inspection circuit board having inspection electrodes formed on the surface according to a pattern corresponding to the pattern of the electrode to be inspected in the integrated circuit formed on the wafer to be inspected, and disposed on the surface of the inspection circuit board. Item 9. A probe member comprising the anisotropic conductive connector for wafer inspection according to Item 8.
[10] 異方導電性コネクター上に、絶縁性シートと、この絶縁性シートをその厚み方向に 貫通して伸び、被検査電極のパターンに対応するパターンに従って配置された複数 の電極構造体とよりなるシート状プローブが配置されていることを特徴とする請求項 9 に記載のプローブ部材。 [10] On the anisotropic conductive connector, an insulating sheet, and a plurality of electrode structures extending through the insulating sheet in the thickness direction and arranged according to a pattern corresponding to the pattern of the electrode to be inspected The probe member according to claim 9, wherein a sheet-like probe is disposed.
[11] ウェハに形成された複数の集積回路の各々について、当該集積回路の電気的検 查をウェハの状態で行うウェハ検査装置において、  [11] In a wafer inspection apparatus that performs electrical inspection of a plurality of integrated circuits formed on a wafer in a wafer state,
請求項 9または請求項 10に記載のプローブ部材を具えてなり、当該プローブ部材 を介して、検査対象であるウェハに形成された集積回路に対する電気的接続が達成 されることを特徴とするウェハ検査装置。  A wafer inspection comprising the probe member according to claim 9 or 10, wherein electrical connection to an integrated circuit formed on a wafer to be inspected is achieved via the probe member. apparatus.
[12] ウェハに形成された複数の集積回路の各々を、請求項 9または請求項 10に記載の プローブ部材を介してテスターに電気的に接続し、当該ウェハに形成された集積回 路の電気的検査を実行することを特徴とするウェハ検査方法。 [12] Each of the plurality of integrated circuits formed on the wafer is defined in claim 9 or claim 10. A wafer inspection method comprising: electrically connecting to a tester via a probe member; and performing an electrical inspection of an integrated circuit formed on the wafer.
PCT/JP2005/015539 2004-08-31 2005-08-26 Wafer inspection-use anisotropic conductive connector and production method and applications therefor WO2006025279A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004252621 2004-08-31
JP2004-252621 2004-08-31

Publications (1)

Publication Number Publication Date
WO2006025279A1 true WO2006025279A1 (en) 2006-03-09

Family

ID=35999934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015539 WO2006025279A1 (en) 2004-08-31 2005-08-26 Wafer inspection-use anisotropic conductive connector and production method and applications therefor

Country Status (4)

Country Link
KR (1) KR20070046033A (en)
CN (1) CN1989606A (en)
TW (1) TW200625724A (en)
WO (1) WO2006025279A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210359434A1 (en) * 2018-10-11 2021-11-18 Sekisui Polymatech Co., Ltd. Electrical connection sheet and terminal-equipped glass plate structure

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101013553B1 (en) * 2008-10-08 2011-02-14 주식회사 하이닉스반도체 Semiconductor package and method of manufacturing the same
CN101769911B (en) * 2008-12-29 2014-09-03 北京卫星环境工程研究所 Low temperature frequency curve testing device for quartz wafer
CN105845204A (en) * 2016-04-12 2016-08-10 京东方科技集团股份有限公司 Method using anisotropic conductive adhesives to bond display, substrate and external circuit
CN112585748A (en) * 2018-11-05 2021-03-30 Nok株式会社 Method for manufacturing conductive member
KR102175797B1 (en) * 2019-03-25 2020-11-06 주식회사 아이에스시 Electrical test socket
KR20210041661A (en) * 2019-10-07 2021-04-16 삼성디스플레이 주식회사 Display module manufacturing apparatus and display module manufacturing method
WO2021162314A1 (en) * 2020-02-10 2021-08-19 주식회사 아이에스시 Test socket for testing device under test
WO2023219357A1 (en) * 2022-05-09 2023-11-16 주식회사 마이다스에이치앤티 Stretchable anisotropic conductive film containing liquid metal particles and manufacturing method therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186169A (en) * 1994-12-28 1996-07-16 Matsushita Electric Ind Co Ltd Packaging method of flip chip
JPH11154550A (en) * 1997-11-19 1999-06-08 Jsr Corp Connector
JP2000082511A (en) * 1998-09-07 2000-03-21 Jsr Corp Anisotropic conductive sheet
JP2000100495A (en) * 1998-09-18 2000-04-07 Jsr Corp Adapter device, its manufacture, circuit board check device and circuit board check method
JP2002334732A (en) * 2001-02-09 2002-11-22 Jsr Corp Anisotropic conductive connector, its manufacturing method, and probe member
JP2004342597A (en) * 2003-04-21 2004-12-02 Jsr Corp Anisotropic conductive sheet and its manufacturing method, adapter device and its manufacturing method as well as electrical testing device of circuit device
JP2005166534A (en) * 2003-12-04 2005-06-23 Polymatech Co Ltd Manufacturing method of anisotropic conductive connector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186169A (en) * 1994-12-28 1996-07-16 Matsushita Electric Ind Co Ltd Packaging method of flip chip
JPH11154550A (en) * 1997-11-19 1999-06-08 Jsr Corp Connector
JP2000082511A (en) * 1998-09-07 2000-03-21 Jsr Corp Anisotropic conductive sheet
JP2000100495A (en) * 1998-09-18 2000-04-07 Jsr Corp Adapter device, its manufacture, circuit board check device and circuit board check method
JP2002334732A (en) * 2001-02-09 2002-11-22 Jsr Corp Anisotropic conductive connector, its manufacturing method, and probe member
JP2004342597A (en) * 2003-04-21 2004-12-02 Jsr Corp Anisotropic conductive sheet and its manufacturing method, adapter device and its manufacturing method as well as electrical testing device of circuit device
JP2005166534A (en) * 2003-12-04 2005-06-23 Polymatech Co Ltd Manufacturing method of anisotropic conductive connector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210359434A1 (en) * 2018-10-11 2021-11-18 Sekisui Polymatech Co., Ltd. Electrical connection sheet and terminal-equipped glass plate structure

Also Published As

Publication number Publication date
KR20070046033A (en) 2007-05-02
TW200625724A (en) 2006-07-16
CN1989606A (en) 2007-06-27

Similar Documents

Publication Publication Date Title
KR100756120B1 (en) Anisotropic conductive connector, conductive paste composition, probe member, wafer inspection device and wafer inspection method
JP3685192B2 (en) Anisotropic conductive connector, conductive paste composition, probe member, wafer inspection apparatus and wafer inspection method
WO2004015761A1 (en) Anisotropic conductivity connector, conductive paste composition, probe member, wafer inspecting device, and wafer inspecting method
WO2006025279A1 (en) Wafer inspection-use anisotropic conductive connector and production method and applications therefor
KR100715751B1 (en) Anisotropic conductivity connector, probe member, wafer inspecting device, and wafer inspecting method
WO2005103733A1 (en) Sheet-like probe, method of producing the probe, and application of the probe
WO2004102208A1 (en) Sheet-like probe, process for producing the same and its application
WO2006046650A1 (en) Probe member for wafer inspection, probe card for wafer inspection and wafer inspection equipment
JP2007085833A (en) Anisotropically conductive connector for wafer inspection, its manufacturing method, probe card for wafer inspection, and wafer inspection device
KR100741228B1 (en) Anisotropic conductive connector and probe member and wafer inspecting device and wafer inspecting method
WO2006043631A1 (en) Anisotropic conductive connector for inspecting wafer, manufacturing method thereof, waver inspection probe card, manufacturing method thereof, and wafer inspection device
JP2006351504A (en) Anisotropic conductive connector for wafer inspection, manufacturing method of the same, probe card for wafer inspection, manufacturing method of the same, and wafer inspection device
JP4423991B2 (en) Anisotropic conductive connector, probe member, wafer inspection apparatus and wafer inspection method
JP3685191B2 (en) Anisotropic conductive connector, probe member, wafer inspection apparatus and wafer inspection method
JP3938117B2 (en) Anisotropic conductive connector, probe member, wafer inspection apparatus and wafer inspection method
JP3685190B2 (en) Anisotropic conductive connector, conductive paste composition, probe member, wafer inspection apparatus and wafer inspection method
JP2006098395A (en) Anisotropic conductive connector for wafer inspection, production method and application therefor
JP2006063399A (en) Solder resistant gold composition and its application
JP2006216502A (en) Anisotropic conductive connector, probe card, wafer inspection device and wafer inspection method
JP2004309465A (en) Anisotropically conductive connector and conductive paste composition, probe member, and wafer inspection device and method therefor
JP2006100391A (en) Wafer inspection probe card and wafer inspection device
WO2005103735A1 (en) Sheet-shaped probe, manufacturing method thereof and application thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067027250

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580025046.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP