WO2006033333A1 - アルドン酸類の製造方法およびアルドース脱水素酵素 - Google Patents

アルドン酸類の製造方法およびアルドース脱水素酵素 Download PDF

Info

Publication number
WO2006033333A1
WO2006033333A1 PCT/JP2005/017334 JP2005017334W WO2006033333A1 WO 2006033333 A1 WO2006033333 A1 WO 2006033333A1 JP 2005017334 W JP2005017334 W JP 2005017334W WO 2006033333 A1 WO2006033333 A1 WO 2006033333A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
dehydrogenase
aldose
nadh oxidase
enzyme
Prior art date
Application number
PCT/JP2005/017334
Other languages
English (en)
French (fr)
Inventor
Akira Iwasaki
Junzou Hasegawa
Motohisa Washida
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2006536381A priority Critical patent/JPWO2006033333A1/ja
Publication of WO2006033333A1 publication Critical patent/WO2006033333A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0036Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/58Aldonic, ketoaldonic or saccharic acids

Definitions

  • the present invention relates to a method for enzymatically producing aldonic acid from monosaccharide aldose as a raw material.
  • Aldonic acid for example, darconic acid
  • a food additive such as a seasoning, a pH adjuster, and a quality improver
  • uses such as a detergent, a metal surface treatment and a concrete admixture.
  • intestinal regulation has been reported and attracts attention as a health-oriented food material.
  • it is used in a wide range of applications such as feed additives and additives in pharmaceutical preparations.
  • aldonic acid for example, darconic acid
  • a fermentation method using glucose as a raw material mainly using microorganisms such as Aspergillus has been conventionally carried out by a fermentation method using glucose as a raw material mainly using microorganisms such as Aspergillus.
  • Patent Documents 1, 2, and 3, Non-Patent Document 1 An enzymatic method using glucose oxidase and catalase has been reported as a method for producing darconic acid.
  • the basic method of this method is to convert glucose into darconic acid with glucose oxidase and at the same time to decompose the hydrogen peroxide, which is the other product produced by the reaction, with catalase.
  • Patent Document 1 Japanese Translation of Special Publication 2000-502904
  • Patent Document 2 Japanese Patent Publication No. 10-502825
  • Patent Document 3 Japanese Patent Laid-Open No. 6-70785
  • Non-Patent Document 1 Biotech. Lett., Vol.5, 743-748, (1983)
  • an object of the present invention is to provide an efficient biochemical production method of aldonic acids such as darconic acid.
  • aldonic acid can also efficiently produce aldonic acid, and the present invention has been completed.
  • One feature of the present invention is a method for producing aldonic acids comprising the following (1) and (2):
  • NAD + nicotinamide adenine dinucleotide
  • Another feature of the present invention is a vector comprising a gene encoding aldonic acid dehydrogenase and a gene encoding NADH oxidase.
  • Another feature of the present invention is that a gene encoding aldonic acid dehydrogenase and NADH It is a transformant microorganism into which both genes encoding sidase have been introduced.
  • composition comprising an aldose dehydrogenase having NAD + as a coenzyme and NA DH oxidase.
  • Another feature of the present invention is a method for regenerating NAD +, which comprises converting NADH produced by the acid-oxidation reaction of aldoses by aldose dehydrogenase to NAD + by water-generating NADH oxidase. It is.
  • a method for producing aldonic acids as an embodiment of the present invention includes a conversion reaction in which aldoses are converted into aldonic acids by aldose dehydrogenase using NAD + (nicotinamide adenine dinucleotide) as a coenzyme. Furthermore, (a) a water-producing NADH oxidase characterized by being stable without an enzyme protective agent even in the presence of oxygen in order to reconvert NADH produced by the conversion reaction to NAD +, (b) A method for producing aldonic acids, comprising using a combination of a hydrolase that converts aldonolatatone produced by the conversion reaction into aldonic acids.
  • NAD + nicotinamide adenine dinucleotide
  • the aldose dehydrogenase of the present invention catalyzes an oxidation reaction for converting aldose shown in the following reaction formula a to aldonolatathone.
  • Aldonoratatone produced by the above reaction is converted to aldonic acid by spontaneous hydrolysis in the presence of water, as shown in the following reaction formula b.
  • Such a hydrolysis reaction of aldonolatatone to aldonic acid can also be carried out enzymatically with a hydrolase such as lactonase.
  • aldonic acid is produced as a whole by the reaction shown in the following reaction formula c.
  • the conversion of the aldose to aldonic acid using the aldose dehydrogenase according to the present invention for example, the conversion reaction of glucose to darconic acid, is carried out in the same manner as in the conventional method using glucose oxidase. Since hydrogen is not produced, this reaction is very advantageous from the viewpoint of enzyme stability.
  • a stoichiometric amount of NAD + is required.
  • the present invention provides a NAD + stoichiometry by conjugating a reaction (NAD + regeneration system) for converting NADH to NAD + by NADH oxidase to the above aldose dehydrogenase reaction. Avoid using the amount and reduce the amount of use. Therefore, according to the present invention, aldonic acid such as darconic acid can be produced very efficiently (Chemical Formula 1).
  • aldonic acids used in a wide range of applications such as food additives, feed additives, and pharmaceutical additives can be efficiently produced by a simple method.
  • Fig. 1 shows the production method and structure of a recombinant vector pNTNX.
  • FIG. 2 is a view showing a method for producing a recombinant vector pNTGl and its structure.
  • aldose as used in the present invention means a monosaccharide having an aldehyde carboxylic group or a latent aldehyde carbonyl group.
  • Aldose used in the present invention is not particularly limited as long as aldose dehydrogenase such as glucose dehydrogenase acts, but it is aldose hexose, which is 6 monosaccharide, and 5 monosaccharide. Aldo pentose and it And N-acetyl forms of amino acids and amino sugars.
  • the "aldonic acid” as a reaction product in the present invention means a carboxylic acid obtained by the acid of the aldehyde group used for the substrate, and is referred to as a sugar acid. There is also.
  • aldose dehydrogenase as used in the present invention means an enzyme that catalyzes the oxidation reaction of aldoose to aldonoratatone using NAD + as a coenzyme.
  • Examples of the “aldose dehydrogenase” used in the present invention include glucose dehydrogenase (Glucose 1-dehydrogenase) classified into EC 1. 1. 1. 47 or EC 1. 1. 1. 118. Glucose-6-phosphate 1-dehydrogenase classified as EC 1. 1. 1. 49 ⁇ ⁇ Aldose 1 dehydrogenase classified as EC 1. 1. 1. 1. 121 ( Aldose 1-dehydroge nase), threoaldose 1 dehydrogenase classified as EC 1. 1.
  • glucose dehydrogenase is not particularly limited as long as it catalyzes the acid-oxidation reaction to glucose force darconoraton by using NAD + as a coenzyme.
  • Genus Bacillus genus Acetoba cter, genus Gluconobacter, genus Pseudomonas, genus Xanthomonas, genus Thermoplasma Mention may be made of glucose dehydrogenase.
  • microorganism examples include Bacillus megaterium, Bacillus cereus, Bad llus subtilis, Acetobacter suboxydans, (Gluconobacter suboxydans), Xanthomonas pnaseoli, Sa ⁇ mopufusman! ) You can list IAM1030.
  • glucose dehydrogenase is known to have an oxidative activity against various aldoses in addition to glucose.
  • glucose dehydrogenase derived from Bacillus megaterium has been reported to have oxidative activity against aldoses such as 2-deoxy-glucose, mannose, galactose, xylose and darcosamine in addition to glucose ( Eur. J. Biochem. 186, 389-393, (1989)).
  • these aldoses are treated with glucose dehydrogenase in the presence of water to give the corresponding aldonic acids, namely 2-deoxydarconic acid, mannonic acid, galactonic acid, xylonic acid, It is possible to produce darcosamic acid and the like.
  • glucose dehydrogenase the aldose dehydrogenases listed above are known to act on various aldoses. By using these aldose dehydrogenases, various aldose dehydrogenases can be used. It is possible to produce the corresponding aldonic acid from aldose.
  • NADH oxidase of the present invention is an enzyme that catalyzes a reaction of converting NADH into NAD + using oxygen as an electron acceptor. There are two types of enzymes.
  • NADH oxidase both hydrogen peroxide-generating and water-generating enzymes can be used.
  • water-generating NADH oxidase in that hydrogen peroxide that damages the enzyme is not generated.
  • peroxyhydrogen generating NADH oxidase it is preferable to add catalase to decompose the peroxyhydrogen generated.
  • NADH oxidase used in the present invention is not particularly limited as long as it has the ability to convert NADH into NAD +.
  • water-generating NADH oxidase includes, for example, Streptococcus.
  • microorganism examples are not particularly limited, and examples thereof include Streptococcus mutans and Smachining. Streptococcus faecalis, Streptococcus thermophilus, Streptococcus equi, Streptococcus equi, Lactobacillus brevis, Lactobacillus cilvis, Lactobacillus cenlacto Fukutono ⁇ N'noresu Anorebunoreetsu 3 r (Lactobacillus aeloruec kii), Lactobacillus Ashidofirasu (Lactobacillus acidophilus), Lactobacillus Mali (Lactobacillus mali), Rakutono Shinoresu Roh bend (Lactobacillus bachneri), Rakutono Shinoresu Purantanoremu (Lactobacillus plantarum), Rakutonoku Shinoresu Sulfur lactofermentum ( Lactobacill
  • examples of microorganisms belonging to Streptococcus mutans include Streptococcus mutans NCIB11723.
  • the amino acid sequence of the water-producing NADH oxidase derived from Streptococcus mutans NCIB 11723 and the base sequence of the DNA encoding it have already been reported (JP-A-8-196281).
  • the "water-generating NADH oxidase" used in the NAD + regeneration system of the present invention is stable under acidic conditions, that is, does not deactivate or has significant inactivation suppressed. May be used.
  • stable under oxidative conditions means that, for example, a test tube containing an enzyme solution is shaken in the presence of oxygen, for example, in a buffer solution not specifically degassed. It is a concept that includes the case of catalyzing the reaction of converting NADH, which is significantly deactivated under oxygen supply conditions, into NAD +.
  • an enzyme protective agent for example, DTT (dithiothreitol)
  • the state of being stable as in the case of using an enzyme protective agent is also ⁇ stable under acid conditions. '' It is included in the concept of “is”.
  • the “water-generating NADH oxidase that is stable under acid conditions” used in the present invention is about 70 at about 20 ° C. for about 3 hours in the absence of an enzyme protective agent such as DTT in the presence of oxygen. % Or more, preferably about 80% or more, more preferably about 90% or more.
  • Examples of the origin of such "water-generating NADH oxidase” include Streptococcus microorganisms, preferably Streptococcus mutans, and more preferably Streptococcus mutans NCIB11723.
  • the Streptococcus genus may be a wild strain or a mutant strain.
  • the microorganism may be a wild strain or a mutant strain.
  • Mutant strains can be obtained by UV irradiation or treatment with a mutagen such as N-methyl N, -tro-N-trosoguanidine (NTG) or methyl ethane sulfonate (EMS) according to a conventional method.
  • NTG N-methyl N, -tro-N-trosoguanidine
  • EMS methyl ethane sulfonate
  • Mutant strain ability As long as it has a function equivalent to that of the wild strain, ie, aldose dehydrogenation activity or NADH acid activity, it can be used for the purpose of the present invention.
  • the acid-oxidation reaction by aldose aldose dehydrogenase Most of the resulting aldonolatatones are converted to aldonic acid by spontaneous hydrolysis in the presence of water.
  • the hydrolysis reaction from aldonolatatone to aldonic acid can also be carried out enzymatically using a hydrolase. If such a hydrolase is used, for example, in the case of a compound that is difficult to convert by spontaneous hydrolysis, it is very effective in that aldonic acid can be produced efficiently.
  • the hydrolase used is not particularly limited as long as it is an enzyme having an activity of hydrolyzing aldonolatone to aldonic acid.
  • darconolactate classified as EC3. 1. 1. 17 6 Phosphogluconolactonase, classified as EC 3. 1. 1.31, 1, 4 Lactonase (1,4- L-rhamnono-1, 4-lactonase (L-Rhamnono-1, 1, classified as Lactonase), EC 3. 1. 1. 30, D-arabinonolactonase, EC 3. 1. 1. 65 4-Lactonase), EC 3.1.68, and other lactonases such as Xylono-1, 4 lactonase.
  • substantially the same enzyme or protein as the above enzyme can be used.
  • An “substantially identical” enzyme or protein is one, two, three, four, five, six, seven, eight, nine, ten or more substitutions, deletions and deletions in the amino acid sequence of the enzyme or protein. If a Z or insertion is introduced and the protein or enzyme then has an equivalent function, the enzyme or protein can be said to be substantially identical.
  • the NHDH oxidase (or aldose dehydrogenase) used in the present invention is 60% or more, preferably 80% or more, more preferably 90%, with the amino acid sequence shown in SEQ ID NO: 2 (or SEQ ID NO: 7). More preferably, the enzyme protein has substantially the same amino acid sequence identity of 99% or more and has substantially the same function as the enzyme protein consisting of the amino acid sequence shown in SEQ ID NO: 2 (or SEQ ID NO: 7) Can be said to be identical.
  • the “identity” of the amino acid sequences is determined by comparing the sequences to be compared in an optimally aligned state. The sequences to be compared may have additions or deletions when aligned optimally.
  • the identity of amino acid sequences can be determined by, for example, the homology search program FASTA (WR Pearson & DJ Lipman PNAS (1 988) 85: 2444- 2448) and BLAST (Altschul et. Al, J. Mol. Biol. (1990) 215: 403-410) are used to calculate the Identity value. be able to.
  • Software for performing BLAST analyzes is available to the public through the National Center for Biotechnology Information (http: ⁇ www.ncbi.nih.gov/).
  • Enzyme proteins having equivalent functions herein are encoded by DNA containing a nucleotide sequence that is hybridized under stringent conditions to a nucleotide chain having a sequence complementary to the nucleotide sequence encoding them. obtain.
  • the hybridization under stringent conditions is about 7% sodium dodecyl sulfate (SDS), about 0.5M sodium phosphate, about ImM EDTA at about 50 ° C.
  • SDS sodium dodecyl sulfate
  • 0.5M sodium phosphate about 0.5M sodium phosphate
  • ImM EDTA about 50 ° C.
  • the hybridization is performed in the same manner as described above, followed by washing at about 50 ° C in about 1 X SSC and about 0.1% SDS. More preferably, after performing hybridization in the same manner as described above, about 0.5 X SSC, 3 ⁇ 4 0.1%, 3.3, about 50. . This is a condition of cleaning. More preferably, after hybridization is carried out in the same manner as described above, washing is performed at about 50 ° C. in about 0.1 IX SSC and about 0.1% SDS. Most preferably, the hybridization is performed in the same manner as described above, followed by washing at about 65 ° C. in about 0.1 ⁇ SSC, 3 ⁇ 40.1% SDS.
  • the conditions can vary depending on the length of the nucleotide chain, the sequence, and different environmental parameters. Longer sequences hybridize specifically at higher temperatures.
  • the aldose dehydrogenase such as glucose dehydrogenase and NADH oxidase used in the present invention not only prepare the above-mentioned culture fluid enzyme such as the microorganism, but also incorporate the DNA encoding this enzyme into a vector. Transformation introduced into the host This enzyme can be obtained easily and in large quantities by expressing the enzyme gene in the recombinant body.
  • the vector used for obtaining the transformant any one can be used as long as it can express the enzyme gene in an appropriate host. Examples of such a vector include a plasmid vector, a phage vector, and a cosmid vector. A shuttle vector capable of exchanging genes with other hosts can also be used.
  • Such a vector contains control elements such as an operably linked promoter (lacUV5 promoter, trp promoter, trc promoter, tac promoter, lpp promoter, tufB promoter, recA promoter, pL promoter), etc. It can be suitably used as an expression vector comprising an expression unit operably linked to the DNA of the invention.
  • pUCNT International Publication No. WO94Z03613 pamphlet
  • pUCNT International Publication No. WO94Z03613 pamphlet
  • the term “regulatory element” refers to a base sequence having a functional promoter and any associated transcription element (eg, enhancer, CCAAT box, TATA box, SPI site, etc.).
  • the term “operably linked” refers to the condition in which DNA and various regulatory elements such as promoters, enhancers, etc., are operable in the host cell so that the gene is expressed. It is connected. It is a matter well known to those skilled in the art that the type and kind of the regulator can vary depending on the host.
  • Examples of the host into which the recombinant vector containing the DNA of the present invention is introduced include bacteria, yeast, filamentous fungi, plant cells, animal cells and the like, and Escherichia coli is particularly preferred.
  • the DNA of the present invention can be introduced into a host cell by a conventional method. When Escherichia coli is used as a host cell, the DNA of the present invention can be introduced by, for example, the salted calcium method.
  • Such a transformant can be produced by incorporating the DNA encoding the aldose dehydrogenase and the DNA encoding NADH oxidase to be used into the same vector and introducing it into the host. It can also be produced by incorporating different types of DNA into two different vectors of different incompatibility groups and introducing them into the same host. That is, a transformant containing a recombinant vector containing DNA encoding the aldose dehydrogenase to be used and DNA encoding NADH oxidase, or the first group containing DNA encoding the dehydrogenase to be used A transformant comprising a replacement vector and a second recombinant vector containing DNA encoding NADH oxidase can be used.
  • an aldose dehydrogenase such as glucose dehydrogenase, and NADH oxidase may be a single or partially purified enzyme, or a microorganism that produces these enzymes. It is also possible to use cultures.
  • the “microorganism culture” means a culture solution containing bacterial cells, cultured bacterial cells, or the like, and may be a processed product thereof.
  • the processed product means, for example, a crude extract, freeze-dried cells, acetone-dried cells, or a ground product thereof, a mixture thereof, or the like.
  • they can be used as a fixed enzyme or a fixed bacterial cell after being fixed by a known means (for example, cross-linking method, physical adsorption method, inclusion method, etc.).
  • aldonic acids such as glucose of the present invention can be carried out as follows. First, it can be carried out by adding aldose such as glucose, glucose dehydrogenase, NADH oxidase and NAD + (or NADH) in a suitable solvent and stirring. Reaction conditions vary depending on the enzyme used, etc. Usually, the reaction is performed at a temperature of about 5 to 80 ° C, preferably about 10 to 50 ° C, and the pH is about 4 to 10, preferably 5 to 9. . The concentration of the substrate aldose is about 0.1-80% (WZV), preferably about 1-60%. NAD + concentration is about 0.00001 to 1 mole relative to the substrate 0/0, preferably about 0. 00001-0. 1% (wZv) . As the reaction progresses, aldonic acid such as darconic acid is produced. The ability to lower the pH of the solution If necessary, adjust the pH with an alkaline solution such as aqueous sodium hydroxide or aqueous ammonia.
  • an alkaline solution such
  • the reaction solution is preferably carried out in the presence of air or relatively pure oxygen.
  • the reaction is preferably performed under shaking or stirring conditions. Furthermore, by reacting under a pressure higher than atmospheric pressure, the solubility of oxygen in the reaction solution is improved, and the reaction may proceed more efficiently.
  • primer— 1 combination of synthetic primers 3) and 3 -atgaaaacat gtgaattcccattgacatatc-3 '(primer-2: SEQ ID NO: 4); , Primer—d: ⁇ c ⁇ U number ⁇ ) and 5— tttctg cagttatcatttagcttttaatgct-3 ′ (primer—4: combination [J number 6) synthetic primer combination, plasmid pSSW61 containing a water-producing NADH oxidase gene (Biosci. Biotech.
  • the obtained DNA fragment was digested with Ndel and Pstl and inserted into the Ndel-Pstl site downstream of the lac promoter of plasmid pUCNT (see pamphlet of International Publication No. W09 4Z03613). As a result, a thread-replaceable plasmid pNTNX was obtained.
  • FIG. 1 shows the preparation method and structure of pNTNX.
  • E. coli HB101 (Takara Shuzo Co., Ltd.) was transformed with this recombinant vector pNTNX to obtain recombinant E. coli HB101 (pNTNX).
  • Example 2 Buffalo by recombinant Escherichia coli. Expression and non-fineness of molded NADH oxidase
  • Recombinant Escherichia coli HB 101 (pNTNX) obtained in Example 1 was mixed with 2 XYT medium (Bacto tryptone l. 6% (wZv), Batata 'containing 100 ⁇ gZml ampicillin and 0.8% (wZv). Yeast extract 1.0% (w / v), NaClO. 5% (w / v), ⁇ 7.0) 30. C, shake culture for 32 hours, collect 500 ml of culture broth by centrifugation, suspend in lOOmM phosphate buffer (PH7), disrupt the cells by ultrasonic disruption, and remove the cell-free extract. Obtained. The specific activity of the water-producing NADH oxidase in this cell-free was 30UZmg protein.
  • glucose dehydrogenase (SEQ ID NO: 7 and 8) derived from Bacillus megaterium IAM 1030 strain in E. coli
  • a recombinant vector used for transformation was prepared.
  • double-stranded DNA in which an Ndel site was added to the start of the structural gene of glucose dehydrogenase and a Sail site was added immediately after the stop codon was obtained by the following method.
  • FIG. 2 shows the preparation method and structure of pNT G1.
  • Escherichia coli HB101 (Takara Shuzo Co., Ltd.) was transformed with this recombinant vector pNTGl to obtain recombinant Escherichia coli HB101 (pNTNX).
  • Recombinant Escherichia coli HB 101 (pNTGl) obtained in Example 3 was added to 2 XYT medium containing 100 ⁇ g / ml ampicillin (batato 'tryptone 1.6% (w / v), butato' yeast extract 1.0% ( (W / v), NaClO. 5% (w / v), pH 7.0), shake culture at 37 ° C for 26 hours, and then collect 500 ml of culture medium by centrifugation, and lOOmM phosphate buffer The suspension was suspended in 50 ml of a solution (pH 7), and the cells were disrupted by ultrasonic disruption to obtain a cell-free extract. The specific activity of dalcos dehydrogenase in this cell-free was 55UZmg protein.
  • Cell-free extract of HB101 (pNTGl) prepared in Example 4 glucose dehydrogenase solution
  • 8 ml of 300 mM phosphate buffer containing 300 mg of glucose were used.
  • a reaction solution to which 1 ml of cell extract (water-producing NADH oxidase solution) was added and a reaction solution to which 1 ml of water were added were prepared, and the reaction was performed by shaking in a large test tube.
  • the reaction was carried out at 30 ° C. for 5 hours with shaking (300 rpm) while adjusting the ⁇ of the reaction solution to 7 with a 5N sodium hydroxide aqueous solution every 30 minutes.
  • Example 7 Gluconic acid cattle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 本発明は、ニコチンアミドアデニンジヌクレオチド(NAD+)を補酵素とするアルドース脱水素酵素によるアルドースの酸化反応に、NADHオキシダーゼを用いたNAD+再生系を共役させ、効率的にアルドン酸を製造することに関する。本発明はまた、NADHオキシダーゼとアルドン酸脱水素酵素を同一宿主内で発現させた組換え微生物、およびNADを補酵素とするアルドース脱水素酵素、およびNADHオキシダーゼを含む組成物を提供する。  本発明によれば、食品添加物、飼料添加物、医薬品製用添加物などの広い用途で利用されるアルドン酸類を、簡便な方法で効率よく製造することができる。                                                                                     

Description

明 細 書
アルドン酸類の製造方法およびアルドース脱水素酵素
技術分野
[0001] 本発明は、単糖アルドースを原料としたアルドン酸の酵素的製造方法に関する。
関連出願の相互参照
[0002] 曰本国特許 2004— 277579号(2004年 9月 24曰出願)の明細書、請求の範囲、 図面および要約を含む全開示内容は、これら全開示内容を参照することによって本 出願に合体される。
背景技術
[0003] アルドン酸、例えばダルコン酸は、洗浄剤、金属表面処理 やコンクリート用混和 剤などの用途とともに、調味料、 pH調整剤、品質改善剤等の食品添加物として利用 されている。また、最近、整腸作用が報告され、健康志向型食品素材として注目され ている。更に、飼料添加物、医薬品製剤中への添加物など幅広い用途に利用されて いる。
[0004] アルドン酸、例えばダルコン酸の工業的製造は、従来より主にァスペルギルス (Asp ergillus)などの微生物を利用したグルコースを原料とした発酵法により行われてきた
[0005] ダルコン酸の製法としては、上記発酵法以外に、グルコースォキシダーゼとカタラー ゼを用いた酵素法が報告されている (特許文献 1、 2、 3、非特許文献 1)。本方法は、 グルコースをグルコースォキシダーゼによりダルコン酸へと変換すると同時に、反応 により生成するもう一方の生成物である過酸ィ匕水素をカタラーゼにより分解することを 基本的方法としている。
特許文献 1:特表 2000 - 502904号公報
特許文献 2:特表平 10 - 502825号公報
特許文献 3:特開平 6 - 70785号公報
非特許文献 1 : Biotech. Lett., Vol.5, 743-748, (1983)
発明の開示 発明が解決しょうとする課題
[0006] 上記発酵生産法においては、グルコースのほかに、微生物の増殖のための各種栄 養源が必要である。また、原料として用いたグルコースは、ダルコン酸へ変換される 以外にも、菌体増殖のための炭素源としても利用されるため、使用したグルコースに 対するダルコン酸の収率はあまり高くない。これらの点は工業的生産法としては経済 的に大きな問題である。また、反応液中には、ダルコン酸以外に、例えばクェン酸、 シユウ酸、 5—ケトグルコン酸などの発酵の過程で生じた多くの有機酸が存在するた め、反応液カゝらダルコン酸を複雑な工程を経て精製する必要がある。
[0007] 上記酵素法にお!、ては、過酸ィヒ水素によって、グルコースォキシダーゼ(ダルコ一 ス酸ィ匕酵素)、カタラーゼの不活性ィ匕が生ずる。この不活性ィ匕の問題点の解決のた め、基質であるグルコース添加濃度を低くする、反応温度を低くする、グルコースォキ シダーゼに対し過剰量のカタラーゼを使用するなどの改良が行われている力 現在 のところ、経済的に実施可能なダルコン酸の製造方法とは言いがたい。
[0008] 上記に鑑み、本発明の目的は、ダルコン酸などのアルドン酸類の効率的な生化学 的製造方法を提供することにある。
課題を解決するための手段
[0009] 本発明者らは、上記課題につき鋭意検討を行った結果、アルドース脱水素酵素と
NADHォキシダーゼとを利用した酵素法により、アルド一スカもアルドン酸が効率的 に製造できることを見出し、本発明を完成するに至った。
[0010] 本発明の一つの特徴は、以下の(1)および(2)を含むアルドン酸類の製造方法で ある:
(1)アルドースに NAD + (ニコチンアミドアデニンジヌクレオチド)を補酵素とするアル ドース脱水素酵素を接触させ、アルドン酸へと転化する;
(2) (1)の反応により生成した NADHを NADHォキシダーゼと接触させ、 NAD +へ と変換する。
[0011] 本発明の別の特徴は、アルドン酸脱水素酵素をコードする遺伝子と、 NADHォキ シダーゼをコードする遺伝子とを含むベクターである。
[0012] 本発明の別の特徴は、アルドン酸脱水素酵素をコードする遺伝子と、 NADHォキ シダーゼをコードする遺伝子の両方を導入された形質転換体微生物である。
[0013] 本発明の別の特徴は、 NAD +を補酵素とするアルドース脱水素酵素、および NA DHォキシダーゼを含む組成物である。
[0014] 本発明の別の特徴は、アルドース脱水素酵素によるアルドース類の酸ィ匕反応伴つ て生ずる NADHを水生成型 NADHォキシダーゼにより NAD +へ変換することを特 徴とする NAD +の再生方法である。
[0015] 本発明の実施形態としてのアルドン酸類の製造方法は、 NAD+ (ニコチンアミドア デニンジヌクレオチド)を補酵素とするアルドース脱水素酵素によってアルド一ス類を アルドン酸類へと転化する転化反応において、さらに、(a)前記転化反応に伴って生 ずる NADHを NAD+に再変換するために、酸素存在下であっても酵素保護剤なし で安定であることを特徴とする水生成型 NADHォキシダーゼと、 (b)前記転化反応 によって生ずるアルドノラタトンをアルドン酸類へ変換する加水分解酵素、とを組合わ せて使用することを特徴とするアルドン酸類の製造方法である。
[0016] 本発明の前記アルドース脱水素酵素は、下記反応式 aに示すアルドースをアルドノ ラタトンヘと変換する酸化反応を触媒する。
(反応式 a)アルドース + NAD+→アルドノラタトン + NADH
上記反応によって生じたアルドノラタトンは、下記反応式 bに示すように、水存在下 で自発的な加水分解によりアルドン酸へと変換される。また、このようなアルドノラタト ンのアルドン酸への加水分解反応は、ラクトナーゼなどの加水分解酵素により酵素的 に行うことも可能である。
(反応式 b)アルドノラタトン + H O→アルドン酸
2
したがって、アルド一スを水存在下、アルドース脱水素酵素で処理すると、全体とし て下記反応式 cに示す反応によりアルドン酸が生成する。
(反応式 c)アルドース + NAD+ + H O→アルドン酸 + NADH
2
本発明に係る前記アルドース脱水素酵素を利用した上記アルドースのアルドン酸 への変換、例えばグルコースのダルコン酸への変換反応は、グルコースォキシダー ゼを利用した従来の方法のように過酸ィ匕水素が生成しないため、酵素の安定性の観 点からも非常に有利な反応である。 [0017] また、上記アルドース脱水素酵素による反応では、化学量論量の NAD +が必要で ある。この点、本発明は、上記アルドース脱水素酵素の反応に対して、 NADHォキ シダーゼによる NADHを NAD +へ変換する反応(NAD +再生系)を共役させるこ とにより、 NAD +の化学量論量の使用を避け、その使用量を減らすことができる。し たがって、本発明によれば、ダルコン酸などのアルドン酸が非常に効率的に製造する ことが可能となる (化学式 1)。
[0018] [化 1]
(化学式 1 ) アルドース脱水素酵素
Figure imgf000005_0001
NADHォキシダーゼ
(NAD+再生系) 発明の効果
[0019] 本発明によれば、食品添加物、飼料添加物、医薬品製用添加物などの広い用途 で利用されるアルドン酸類を、簡便な方法で効率よく製造することができる。
図面の簡単な説明
[0020] [図 1]図 1は、組み換えベクター pNTNXの作製方法および構造を示す図である。
[図 2]図 2は、組み換えベクター pNTGlの作製方法および構造を示す図である。 発明を実施するための最良の形態
[0021] 1.アルドースおよびアルドン酸
本発明で言う「アルドース」とは、アルデヒド性カルボ-ル基、または潜在アルデヒド 性カルボ二ル基をもつ単糖を意味する。本発明で使用する「アルドース」としては、グ ルコース脱水素酵素などのアルドース脱水素酵素が作用するものであれば、特に限 定しないが、 6単糖であるアルドへキソース、 5単糖であるアルドペントースおよびそれ らのデォキシ体、アミノ糖、ァミノ糖の N ァセチル体などを挙げる事が出来る。具体 的には、グルコース、グルコース一 6リン酸、 2 デォキシグルコース、マンノース、ガ ラタトース、ァロース、アルトロース、グロース、イドース、タロース、リボース、ァラビノー ス、キシロース、リキソース、ダルコサミン、マンノサミン、ガラクトサミン、 N ァセチノレ ダルコサミン、 N ァセチルマンノサミン、 N ァセチルガラタトサミンが挙げられ、好 ましくはグルコース、 2—デォキシグルコース、マンノース、ガラクトース、キシロース、 ダルコサミン、 N ァセチルダルコサミンであり、更に好ましくはグルコースが挙げられ る。
[0022] 本発明で言う反応生成物である「アルドン酸」とは、基質に使用したアルド一スのァ ルデヒド基の酸ィ匕によって得られるカルボン酸を意味し、糖酸と称される場合もある。
[0023] 例えば、ダルコン酸、ダルコン酸ー 6リン酸、 2 デォキシダルコン酸、マンノン酸、 ガラクトン酸、ァロン酸、アルトロン酸、ダロン酸、イドン酸、タロン酸、リボン酸、ァラビ ノン酸、キシロン酸、リキソン酸、ダルコサミン酸、マンノサミン酸、ガラクトサミン酸、 N ーァセチルダルコサミン酸、 N ァセチルマンノサミン酸、 N ァセチルガラタトサミン 酸などが挙げられ、好ましくはダルコン酸、 2—デォキシダルコン酸、マンノン酸、ガラ タトン酸、キシロン酸、ダルコサミン酸、 N ァセチルダルコサミン酸、更に好ましくは ダルコン酸が挙げられる。
[0024] 2.アルドース脱水素酵素
本発明で言う「アルドース脱水素酵素」とは、 NAD +を補酵素とし、アルド一スのァ ルドノラタトンへの酸化反応を触媒する酵素を意味する。本発明で使用する「アルド ース脱水素酵素」としては、例えば、 EC 1. 1. 1. 47または EC 1. 1. 1. 118に分 類されるグルコース脱水素酵素(Glucose 1- dehydrogenase)、 EC 1. 1. 1. 49に分 類されるグルコース 6リン酸脱水素酵素(Glucose- 6- phosphate 1- dehydrogenase) ゝ EC 1. 1. 1. 121に分類されるアルドース 1 脱水素酵素(Aldose 1- dehydroge nase)、 EC 1. 1. 1. 122に分類されるスレオーアルドース 1 脱水素酵素、 EC 1 . 1. 1. 116に分類されるァラビノース脱水素酵素(Arabinose 1- dehydrogenase)、 E C 1. 1. 1. 48に分類されるガラタトース 1 脱水素酵素(Galactose 1- dehydrogen ase)などが挙げられる力 特に限定されるものではない。 [0025] 上記アルドース脱水素酵素のうち、例えばグルコース脱水素酵素としては、 NAD +を補酵素として、グルコース力 ダルコノラタトンへの酸ィ匕反応を触媒するものであ れば、特に限定されないが、例えば、バシルス(Bacillus)属、ァセトパクター(Acetoba cter)属、グノレコノノ クタ一 (Gluconobacter)属、シユードモナス (Pseudomonas)属、キ サントモナス (Xanthomonas)属、サーモプラズマ(Thermoplasma)属等に属する微生 物が生産するグルコース脱水素酵素を挙げることができる。
[0026] 上記微生物の具体例としては特に限定されず、例えば、バシルス メガテリゥム (Ba cillus megaterium)、バシノレス セレウス(Bacillus cereus)、バシノレス サブチリス(Bad llus subtilis)、ァセトパクター サブォキシダンス (Acetobacter suboxydans)、グノレコノ パクター サブォキシダンス (Gluconobacter suboxydans)、キサントモナス ファセオリ (Xanthomonas pnaseoli 、サ ~~モプフスマ ン! ^フィフム (Thermoplasma acidophiiu m)などを挙げることができる。さらに、バシルス メガテリゥム(Bacillus megaterium)に 属する微生物としては、バシルス メガテリゥム(Bacillus megaterium) IAM1030を挙 げることができる。
[0027] 従来より、グルコース脱水素酵素はグルコース以外にも種々のアルドースに対し酸 化活性を有することが知られている。例えばバチルス 'メガテリゥム(Bacillus megateri um)由来のグルコース脱水素酵素はグルコース以外に 2—デォキシ—グルコース、マ ンノース、ガラクトース、キシロース、ダルコサミンなどのアルドースに対して酸化活性 を有することが報告されている(Eur. J. Biochem. 186, 389-393, (1989))。従って、グ ルコースの場合と同様に、これらのアルド一スを水存在下、グルコース脱水素酵素で 処理することにより、対応するアルドン酸、即ち 2—デォキシダルコン酸、マンノン酸、 ガラクトン酸、キシロン酸、ダルコサミン酸などを製造することが可能である。また、グ ルコース脱水素酵素以外にも上記に挙げたアルドース脱水素酵素は、種々のアルド ースに作用することが知られており、これらのアルドース脱水素酵素を使用することに より、種々のアルドースより対応するアルドン酸を製造することが可能である。
[0028] 3. NADHォキシダーゼ
本発明の「NADHォキシダーゼ」は、酸素を電子受容体として、 NADHを NAD + へと変換する反応を触媒する酵素であり、以下に示す過酸化水素生成型、水生成型 の 2種類の酵素が存在する。
[0029] NADH + H++ O → NAD+ + H O (過酸化水素生成型)
2 2 2
2NADH + 2H+ +02→ 2NAD+ + 2H O (水生成型)
2
本発明の「NADHォキシダーゼ」としては、過酸化水素生成型、水生成型のいず れの酵素も使用し得る。 NAD +再生系に使用するには、酵素にダメージを与える過 酸化水素を生成しない点で、水生成型 NADHォキシダーゼの利用が好ましい。一 方、過酸ィ匕水素生成型 NADHォキシダーゼを利用する場合には、生成する過酸ィ匕 水素を分解するためにカタラーゼを添加するのが好まし 、。
[0030] 本発明で用いる「NADHォキシダーゼ」は、 NADHを NAD +へ変換する能力を 有するものであれば特に限定されな 、が、そのうち水生成型 NADHォキシダーゼと しては、例えば、ストレプトコッカス(Streptococcus)属、ラクトバシルス(Lactobacillus) 属、ェンテロコッカス (Enterococcus)属、ロイコノストック (Leuconostoc)属、ぺディォコ ッカス(Pediococcus)属等に属する微生物が生産する NADHォキシダーゼを挙げる ことができる。
[0031] 上記微生物の具体例としては特に限定されず、例えば、ストレプトコッカス ミュータ ンス (Streptococcus mutans)、ストレフ。トコッカス フィカリス (Streptococcus faecalis)、 ストレプトコッカス サーモフィラス (Streptococcus thermophilus)、ストレプトコッカス ィクイ (Streptococcus equi)、ラクトノ シノレス ブレヒ、、ス (Lactobacillus brevis)、ラクトノ シルス ラクテイス(Lactobacillus lactis)、ラクトバシルス サンフランシッセンシス(Lac tobacillus sanfranciscensis)、フクトノヽンノレス ァノレブノレエツ3 r (Lactobacillus aeloruec kii)、ラクトバチルス ァシドフィラス(Lactobacillus acidophilus)、ラクトバシルス マリ( Lactobacillus mali)、ラクトノ シノレス ノ クネリ (Lactobacillus bachneri)、ラクトノ シノレス プランタノレム (Lactobacillus plantarum)、ラクトノくシノレス フアーメンタム (Lactobacill us fermentum)、フクトノヽシノレス コリニフォノレ^ス (Lactobacillus corniformis)、フクトノ シノレス カゼィ (Lactobacillus casei)、ラクトノくシノレス ラムノサス (Lactobacillus rhamn osus)、ェンテロコッカス フイシゥム (Enterococcus faecium)、ロイコノストック メセン ァロイァス (Leuconostoc mesenteroides)、ロイコノストツク フクアイス (Leuconostoc la ctis)、ぺディォコッカス ァシデイラクテイシ (Pediococcus acidilactici)、ペティォコッ カス ペントサシウス(Pediococcus pentosaceus)などを挙げることができる。
[0032] 更に、ストレプトコッカス'ミュータンスに属する微生物としては、ストレプトコッカス 'ミ ユータンス NCIB11723を挙げることができる。ストレプトコッカス'ミュータンス NCIB 11723由来の水生成型 NADHォキシダーゼのアミノ酸配列、およびそれをコードす る DNAの塩基配列は、既に報告されている(特開平 8— 196281)。
[0033] 本発明の NAD +再生系に使用する「水生成型 NADHォキシダーゼ」は、酸ィ匕的 条件下で安定である、すなわち、失活しないもの、または顕著な失活が抑制されるも のを使用してもよい。
[0034] 本明細書における「酸化的条件で安定である」とは、酸素存在下、例えば、特に脱 気操作をしていない緩衝液中、又は酵素液を含んだ試験管を振盪するなどの酸素 供給条件下において顕著な失活なぐ NADHを NAD +へと変換する反応を触媒す る場合を含む概念である。また、酸素存在下において、酵素保護剤 (例えば DTT (ジ チォスレイトール))を利用しない場合であっても酵素保護剤を利用する場合と同様に 安定である状態も、「酸ィ匕的条件で安定である」という概念に含まれる。本発明で使 用する「酸ィ匕的条件で安定である水生成型 NADHォキシダーゼ」としては、 DTTな どの酵素保護剤非存在下で、酸素存在下、約 20°C、約 3時間で約 70%以上、好ま しくは約 80%以上、更に好ましくは約 90%以上の活性が保持される。
[0035] そのような「水生成型 NADHォキシダーゼ」の起源の例として、ストレプトコッカス属 微生物が挙げられ、好ましくはストレプトコッカス'ミュータンス、さらに好ましくはストレ プトコッカス.ミュータンス NCIB11723を挙げることが出来る。当該ストレプトコッカス 属は、野生株であってもよぐまた変異株であってもよい。
[0036] 上記微生物は、野生株であってもよぐまた変異株であってもよ 、。変異株は、定法 に従い、 UV照射や、 N—メチル N,-トロ一 N -トロソグァ-ジン(NTG)、メチル エタンスルホネート (EMS)等の変異剤による処理により取得することができる。変異 株力 野生株と同等の機能、すなわちアルドース脱水素活性または NADH酸ィ匕活 性を有する限り、本発明の目的のために使用し得る。
[0037] 4.アルドノラタトンの加水分解
また、先に述べたように、アルドースのアルドース脱水素酵素による酸ィ匕反応により 生じたアルドノラタトンは、その多くが、水存在下で自発的な加水分解によりアルドン 酸へと変換される。ただし、アルドノラタトンからのアルドン酸への加水分解反応を、 加水分解酵素を用いて酵素的に行うことも可能である。そのような加水分解酵素を利 用すれば、例えば上記自発的な加水分解による変換がされ難い化合物の場合、ァ ルドン酸を効率的に製造することができる点で非常に有効である。
[0038] 使用する加水分解酵素としては、アルドノラタトンをアルドン酸へと加水分解する活 性を有する酵素であれば、特に限定しないが、例えば、 EC3. 1. 1. 17に分類される ダルコノラクトナーゼ(Gluconolactonase)、 EC 3. 1. 1. 31に分類される 6 ホスホ ダルコノラクトナーゼ(6- Phosphogluconolactonase)、 EC 3. 1. 1. 25に分類される 1 , 4 ラクトナーゼ(1,4- Lactonase)、 EC 3. 1. 1. 30に分類される D ァラビノノラタ トナーゼ(D- Arabinonolactonase) , EC 3. 1. 1. 65に分類される L—ラムノノー 1, 4 ーラクトナーゼ(L- Rhamnono- 1,4- lactonase)、 EC 3. 1. 1. 68に分類されるキシロ ノー 1 , 4 ラクトナーゼ(Xylono- 1 ,4- lactonase)などのラクトナーゼが挙げられる。
[0039] 5.実質的に同一の酵素等
本発明では、前記の酵素と実質的に同一の酵素またはタンパクを使用できる。「実 質的に同一」の酵素またはタンパクとは、酵素またはタンパクのアミノ酸配列において 、 1、 2、 3、 4、 5、 6、 7、 8、 9、 10またはそれ以上の置換、欠失および Zまたは挿入 を導入し、そのとき該タンパクまたは酵素が同等の機能を有する場合、当該酵素また はタンパクは実質的に同一であるといえる。
[0040] また、本発明で使用する NHDHォキシダーゼ (またはアルドース脱水素酵素)は配 列番号 2 (または配列番号 7)に示すアミノ酸配列と 60%以上、好ましくは 80%以上、 より好ましくは 90%以上、そして最も好ましくは 99%以上のアミノ酸配列の同一性を 有し、配列番号 2 (または配列番号 7)に示すアミノ酸配列からなる酵素タンパク質と 同等の機能を有する場合、当該酵素タンパク質は実質的に同一であると言える。上 記アミノ酸配列の「同一性」とは、比較対象となる配列を最適な状態にアラインメントさ れた状態で比較することにより決定される。比較対象となる配列は、最適な状態にァ ラインメントされた場合に、付加または欠失を有していてもよい。アミノ酸配列の同一 性は、例えば相同検索プログラム FASTA (W.R. Pearson & D.J. Lipman P.N.A.S. (1 988) 85:2444- 2448)や BLAST (Altschul et. al, J. Mol. Biol. (1990) 215:403-410) を用いて 2つのアミノ酸配列を比較した場合に、 Identityの値で算出することができ る。 BLAST分析を実施するためのソフトウェアは、 National Center for Biotechnolog y Information(http:〃 www.ncbi.nih.gov/)を通じて公衆に利用可能である。
[0041] ここでいう同等の機能を有する酵素タンパク質は、それらをコードするヌクレオチド 配列に相補的な配列を有するヌクレオチド鎖に、ストリンジヱントな条件下でノ、イブリ ダイズするヌクレオチド配列を含む DNAによりコードされ得る。
[0042] 該ストリンジェントな条件下のハイブリダィゼーシヨンとしては、約 7%のドデシル硫 酸ナトリウム(SDS)、約 0. 5Mの Sodium phosphate,約 ImMの EDTA中で約 50°C でハイブリダィゼーシヨンを行った後、約 2 X SSC、約 0. 1%の SDS中 50°Cで洗浄 する条件をが挙げられる。
[0043] 好ましくは前記と同様にハイブリダィゼーシヨンを行った後、約 1 X SSC、約 0. 1% の SDS中約 50°Cで洗浄を行う条件である。より好ましくは前記と同様にハイブリダィ ゼーシヨンを行った後、約 0. 5 X SSC, ¾0. 1%の3。3中約50。。で洗浄を行ぅ条 件である。更に好ましくは前記と同様にハイブリダィゼーシヨンを行った後、約 0. I X SSC、約 0. 1%の SDS中約 50°Cで洗浄する条件である。最も好ましくは前記と同様 にハイブリダィゼーシヨンを行った後、約 0. 1 X SSC, ¾0. 1%の SDS中約 65°Cで 洗浄で洗浄する条件である。もっとも、該条件は、ヌクレオチド鎖の長さ、該配列、お よび異なる環境パラメーターに依存して異なり得る。より長い配列は、より高い温度で 特異的にハイブリダィズする。
[0044] 核酸のハイブリダィゼーシヨンの詳細なガイドは、例えば Tijssen(1993) Laboratory Tecnniques in Biochemistry and Molecular Biology— Hybridization with Nucleic Acia Probes part I chapter 2 Overview of principles of hybridization and the strategy of nucleic acid probe assay Elsvier, New Yorkに見出され 。
[0045] 6.ベクター
本発明で使用するグルコース脱水素酵素などのアルドース脱水素酵素、および N ADHォキシダーゼは、上記微生物などの培養液力 酵素を調製するのみならず、 本酵素をコードする DNAをベクターに組込み、これを宿主内に導入してなる形質転 換体内で酵素遺伝子を発現させることにより、本酵素を容易かつ大量に得る事が可 能である。上記形質転転換体を得るために用いられるベクターとしては、適切な宿主 内で該酵素遺伝子を発現できるものであれば 、ずれもが使用できる。このようなベタ ターとしては、例えば、プラスミドベクター、ファージベクター、コスミドベクターなどが 挙げられる。また、他の宿主との間での遺伝子交換が可能なシャトルベクターも使用 できる。
[0046] このようなベクターは、作動可能に連結されたプロモーター(lacUV5プロモーター 、 trpプロモーター、 trcプロモーター、 tacプロモーター、 lppプロモーター、 tufBプロ モーター、 recAプロモーター、 pLプロモーター)等の制御因子を含み、本発明の D NAと作動可能に連結された発現単位を含む発現ベクターとして好適に使用できる。 例えば、 pUCNT (国際公開第 WO94Z03613号パンフレット)等が好適に使用でき る。
[0047] 本明細書で用いる用語「制御因子」は、機能的プロモーター及び、任意の関連する 転写要素(例えばェンハンサー、 CCAATボックス、 TATAボックス、 SPI部位など) を有する塩基配列をいう。本明細書で用いる用語「作動可能に連結」は、遺伝子が発 現するように、 DNAと、その発現を調節するプロモーター、ェンハンサ一等の種々の 調節エレメントとが宿主細胞中で作動できる状態で連結されることをいう。制御因子 のタイプ及び種類力 宿主に応じて変わり得ることは、当業者に周知の事項である。
[0048] 7.形質転換体
本発明の DNAを含有する組換えベクターを導入する宿主としては、細菌、酵母、 糸状菌、植物細胞、動物細胞などが挙げられるが、大腸菌が特に好ましい。本発明 の DNAは定法により宿主細胞に導入できる。宿主細胞として大腸菌を用いる場合、 例えば塩ィ匕カルシウム法により、本発明の DNAを導入できる。
[0049] また、反応を行う際、アルドース脱水素酵素と NADHォキシダーゼの両者を同一 宿主細胞内に導入した形質転換微生物の培養物を用いれば、別々に両酵素を発現 する微生物を培養する必要はないため、より低コストでアルドン酸類が製造できる。さ らに、両酵素を同一細胞内に発現した形質転換微生物を用いれば、微生物細胞内 の NAD +を使用し、反応が進行することも可能となり、従って、外部カゝら別途 NAD +を添加する必要がない、または添加する NAD +の量を大幅に減らす事が可能と なる。このような形質転換体は、使用するアルドース脱水素酵素をコードする DNA及 び NADHォキシダーゼをコードする DNAを、同一のベクターに組込み、これを宿主 に導入することにより製造できるし、また、これら 2種類の DNAを不和合性グループ の異なる 2種のベクターにそれぞれ組込み、それらを同一の宿主に導入することによ つても製造できる。すなわち、使用するアルドース脱水素酵素をコードする DNAと N ADHォキシダーゼをコードする DNAとを含有する組換えベクターを含む形質転換 体や、使用する脱水素酵素をコードする DNAを含有する第 1の組換えベクターと、 N ADHォキシダーゼをコードする DNAを含有する第 2の組換えベクターとを含む形質 転換体を使用できる。
[0050] 8.酵素
本発明に使用する酵素、例えばグルコース脱水素酵素などのアルドース脱水素酵 素、および NADHォキシダーゼは、単一にまたは部分的に精製された酵素であって もよいし、これら酵素を産生する微生物の培養物を使用することも可能である。ここで 、「微生物の培養物」とは、菌体を含む培養液あるいは培養菌体等を意味し、また、 その処理物であってもよい。ここで、「その処理物」とは、例えば、粗抽出液、凍結乾 燥菌体、アセトン乾燥菌体、あるいはそれらの磨砕物、これらの混合物などを意味す る。更にそれらは、公知の手段 (例えば、架橋法、物理的吸着法、包括法など)で固 定ィ匕して、固定ィ匕酵素または固定ィ匕菌体としても使用できる。
[0051] 9.アルドン酸の製造
本発明のグルコースなどのアルドン酸の製造は、以下のように行うことができる。ま ず、適当な溶媒中にグルコースなどのアルドース、グルコース脱水素酵素、 NADH ォキシダーゼおよび NAD+ (又は NADH)を添カ卩し攪拌することにより行うことがで きる。反応条件は、使用する酵素などにより異なる力 通常、約 5〜80°C、好ましくは 約 10〜50°Cの温度で行われ、また、 pHは約 4〜10、好ましくは 5〜9で行う。基質で あるアルドースの濃度は約 0. 1〜80% (WZV)、好ましくは約 1〜60%である。 NAD +の濃度は基質に対して約 0. 00001〜1モル0 /0、好ましくは約 0. 00001-0. 1% (wZv)である。反応の進行によるダルコン酸などのアルドン酸の生成に伴い、反応 液の pHは低下する力 必要に応じて、水酸ィ匕ナトリウム水溶液やアンモニア水など のアルカリ溶液で pHを調整する。
[0052] NADHォキシダーゼの反応には、酸素が必要であるため、反応液が空気または比 較的純粋な酸素存在下で行われる事が好ましい。また、酸素の反応液への溶解を促 進するため、反応は、振盪あるいは攪拌条件下で行われる事が好ましい。さらに大気 圧以上の加圧下で反応する事により、反応液への酸素の溶解度が向上し、反応がよ り効率に進む場合もある。
実施例
[0053] 以下に、実施例により本発明をさらに詳しく説明するが、本発明はこれら実施例に なんら限定されるものではな 、。
[0054] m-i)水 成型 NADHォキシダーゼ遣伝早 含む鉬. ¾ ベクターの作成及 び糸 ¾ のィ乍
大腸菌にお 、てストレプトコッカス ·ミュータンス NCIB 11723由来の水生成型 NA DHォキシダーゼ (配列番号 1および 2)を発現させるために、形質転換に用いる組換 えベクターを作成した。まず NADHォキシダーゼの構造遺伝子の開始部分に Ndel 部位を付加し、かつ終止コドンの直後に新たな終止コドンと Pstl部位を付加した二本 鎖 DNAを以下の方法により取得した。
[0055] 5 -gaggatttgcatatgagtaaaatcgttattg-3 primer— 1:酉己列 号 3)及び 3 -atgaaaacat gtgaattcccattgacatatc-3 ' (primer- 2:配列番号 4)の合成プライマーの組み合わせ 、更【こ 5— gatatgtcaatgggaattcacatgttttcat— 3'、primer— d :酉 c歹 U番号 ό)及び 5— tttctg cagttatcatttagcttttaatgct-3 ' (primer— 4:配歹 [J番号 6)の合成プライマーの組み合わ せで、水生成型 NADHォキシダーゼ遺伝子を含有するプラスミド pSSW61 (Biosci. Biotech. Biochem., 60(1), 39-43, 1996)を铸型として PCRを行い、それぞれ二本鎖 の DNA1、 2を合成した。更に前記 2種の合成プライマー(primer— 1、 primer— 4) を用い、上記で得た二本鎖 NAD1、 2の混合物を铸型に PCRを行い、二本鎖 DNA を得た。
[0056] 得られた DNA断片を Ndel及び Pstl消化し、プラスミド pUCNT (国際公報第 W09 4Z03613号パンフレット参照)の lacプロモーターの下流の Ndel— Pstl部位に挿入 することにより、糸且換えプラスミド pNTNXを得た。
[0057] 図 1は、 pNTNXの作製法及び構造を示す。本組換えベクター pNTNXを用いて大 腸菌 HB101 (宝酒造株式会社製)を形質転換し、組換え大腸菌 HB101 (pNTNX) を得た。
[0058] (実施例 2)組換え大腸菌による水牛.成型 NADHォキシダーゼの発現および無細
¾1出 の調
実施例 1で得た組換え大腸菌 HB 101 (pNTNX)を 100 μ gZmlのアンピシリン及 びグリセリン 0. 8% (wZv)を含む2 XYT培地(バクト·トリプトンl. 6% (wZv)、バタ ト 'イーストエキス 1. 0% (w/v) , NaClO. 5% (w/v) , ρΗ7. 0)で 30。C、 32時間 の振盪培養を行い、その後、培養液 500ml力も遠心分離により集菌後、 lOOmMリン 酸緩衝液 (PH7)に懸濁し、超音波破砕法により菌体を破砕し無細胞抽出液を得た。 本無細胞中の水生成型 NADHォキシダーゼの比活性は 30UZmgタンパクであつ た。
[0059] (実施例 3)バシラス ·メガテリゥム(Bacillus megaterium) IAM1030株由来のグルコ 一ス^ 7kま ま遣伝^ 含む ¾ ^ベクターのィ乍 び のィ乍
大腸菌にお 、てバシラス ·メガテリゥム(Bacillus megaterium) IAM 1030株由来のグ ルコース脱水素酵素(配列番号 7および 8)を発現させるために、形質転換に用いる 組換えベクターを作成した。まずグルコース脱水素酵素の構造遺伝子の開始部分に Ndel部位を付カ卩し、かつ終止コドンの直後に Sail部位を付カ卩した二本鎖 DNAを以 下の方法により取得した。
[0060] 5 - gcgcatatgtataaagatttagaagg- 3 (primer— 5 :目 c列 号 9)及び ΰ - gcggtcgacttatc cgcgtcctgcttgg-3' (primer— 6:配列番号 10)の合成プライマーの組み合わせで、ノ シルス'メガテリゥム IAM1030株由来のグルコース脱水素酵素の構造遺伝子を含有 するプラスミド pGDKl (Eur. J. Biochem., 186, 389 (1989))を铸型として PCRを行い 、二本鎖 DNAを合成した。得られた DNA断片を Ndel及び Sail消化し、プラスミド p UCNT (国際公開第 WO94Z03613号パンフレット)の lacプロモーターの下流の N del— Pstl部位に挿入することにより、組換えプラスミド pNTGlを得た。図 2は、 pNT G 1の作製法及び構造を示す。 [0061] 本組換えベクター pNTGlを用いて大腸菌 HB101 (宝酒造株式会社製)を形質転 換し、組換え大腸菌 HB 101 (pNTNX)を得た。
[0062] (実施例 4)組椽ぇ大腸菌によるグルコース脱 7k素酵素の発現,および無細朐柚出液 の調製
実施例 3で得た組換え大腸菌 HB 101 (pNTGl)を 100 μ g/mlのアンピシリンを 含む 2 XYT培地(バタト 'トリプトン 1. 6% (w/v)、バタト 'イーストエキス 1. 0% (w/ v)、 NaClO. 5% (w/v) , pH7. 0)で 37°C、 26時間の振盪培養を行い、その後、培 養液 500ml力も遠心分離により集菌後、 lOOmMリン酸緩衝液 (pH7) 50mlに懸濁 し、超音波破砕法により菌体を破砕し無細胞抽出液を得た。本無細胞中のダルコ一 ス脱水素酵素の比活性は 55UZmgタンパクであった。
[0063] (実施例 5)グルコン酸の牛.成 (水牛.成型 NADHォキシダーゼ添加および非添加の
.
実施例 4で調製した HB101 (pNTGl)の無細胞抽出液 (グルコース脱水素酵素液 ) 1mlおよびグルコース 300mgを含む 300mMリン酸緩衝液 8mlに対して、実施例 2 で調製した HB101 (pNTNX)の無細胞抽出液 (水生成型 NADHォキシダーゼ液) lmlを添加した反応液、および水 lmlを添加した反応液をそれぞれ作製し、大型試 験管中で振盪し反応を行った。反応は、 30分おきに 5規定の水酸ィ匕ナトリウム水溶 液で反応液の ρΗを 7に調整しながら、 20°Cで、 5時間、振盪(300rpm)しつつ行つ た。
[0064] 反応終了後、高速液体クロマトグラフィーによりダルコン酸を定量した結果、反応液 中には、 HB101 (pNTNX)無細胞抽出液 (NADHォキシダーゼ液)をカ卩えた場合、 変換率 96%でダルコン酸が生成していた。一方、 HBlOl (pNTNX)の無細胞抽出 液 (水生成型 NADHォキシダーゼ液)を加えなカゝつた場合、変換率 4%でダルコン 酸が生成していた。このように、グルコース脱水素酵素によるグルコースの酸ィ匕反応 に水生成型 NADHォキシダーゼを用 ヽた NAD +再生系を共役させることが、ダル コン酸の生産性の上で非常に有効であった。
[0065] [ダルコン酸の分析条件]
高速クロマトグラフィーにより行った。 カラム: Shodex Ionpak KC— 811カラム(昭和電工株式会社製)を 2本繋げる。 溶離液: 2mMの HCIO水溶液
4
流速: lml/ mm
カラム温度: 40°C
検出: 示差屈折率を測定
溶出時間: 13min (ダルコン酸)
[0066] (実施例 6)グルコン酸の牛.成 ( 10%什认み反 )
実施例 4で調製した HB101 (pNTGl)の無細胞抽出液 (グルコース脱水素酵素液 ) 20mlと実施例 2で調製した HB 101 (pNTNX)の無細胞抽出液 (NADHォキシダ ーゼ液) 20ml、グルコース 40g、 300mMリン酸緩衝液を含む反応液 200mlを卓上 ミニ培養装置 MDS— U50 (500ml容、丸菱バイオェンジ社製)で、 5規定の水酸 化ナトリウム水溶液を滴下することにより PH6. 5に調整し、空気を供給(1WM)しな がら、 20°C、 200rpmで攪拌しつつ反応を行った。反応 10時間目に、実施例 5と同 様な方法でダルコン酸を定量した結果、反応液中には、変換率 97%でダルコン酸が 生成していた。
[0067] (実施例 7)グルコン酸の牛.成(ThermoDlasma acidoDhilum由来のグルコース脱水素 P まの ffl)
Thermoplasma acidophilum由来のグルコース脱水素酵素(Sigma社製) 500unit、 実施例 2で調製した HB101 (pNTNX)無細胞抽出液 (水生成型 NADHォキシダー ゼ液) 1mlおよびグルコース 300mgを含む 300mMリン酸緩衝液 10mlを試験管中 で反応を行った。反応は、 30分おきに 5規定の水酸ィ匕ナトリウム水溶液で反応液の p Hを 7に調整しながら、 20°Cで、 5時間、振盪(300rpm)しつつ行った。実施例 5と同 様な方法で反応液中のダルコン酸を定量した結果、反応液中には、変換率 95%で ダルコン酸が生成して 、た。
[0068] (実施例 8)酸素存在下での水牛.成型 NADHォキシダーゼの安定性
実施例 2で調製した水生成型 NADHォキシダーゼを含む HB101 (pNTNX)無細 胞抽出液 0. 1mlを lOOmMリン酸緩衝液または 5mMの DTTを含む lOOmMリン酸 緩衝液 0. 9mlに添加し、小型試験管中で静置または 300rpmでの振盪条件下 (酸 素供給条件下)、 20°C、 3時間保存し、残存する NADHォキシダーゼ活性を測定し た。その結果を表 1に示す。いずれの条件においても、 90%以上の活性が保持され ていた。
[表 1] 残存する NADHォキシダーゼ活性
残存活性 (%)
条件
静置 振盪
100mMリン酸緩衝液 92 93
100mMリン酸緩衝液 (+5mM DTT) 94 93

Claims

請求の範囲 [1] 以下の(1)および (2)を含むアルドン酸類の製造方法:
(1)アルドースに NAD + (ニコチンアミドアデニンジヌクレオチド)を補酵素とするアル ドース脱水素酵素を接触させ、アルドン酸へと転化する;
(2) (1)の反応により生成した NADHを NADHォキシダーゼと接触させ、 NAD +へ と変換する。
[2] 以下の(3)の工程をさらに含む請求項 1記載のアルドン酸の製造方法:
(3)アルド一スカも変換されたアルドノラタトンを加水分解酵素によってアルドン酸へ と変換する。
[3] 前記アルドース脱水素酵素力 グルコース脱水素酵素(Glucose 1-dehydrogenase)、 グルコースー6リン酸脱水素酵素(Glucose- 6- phosphate 1- dehydrogenase)、アルド ース 1 脱水素酵素(Aldose 1- dehydrogenase)、スレオーアルドース 1 脱水素 酵素(D-threo- aldose 1-dehydrogenase)、ァラビノース脱水素酵素 (Arabinose 1- deh ydrogenase)、およびガラクトース 1 脱水素酵素(Galactose 1-dehydrogenase)から なる群より選ばれる少なくとも 1種以上である請求項 1または 2記載の製造方法。
[4] 前記グルコース脱水素酵素が、バシルス (Bacillus)属、ァセトパクター(Acetobacter) 属、グノレコノノ クタ一 (Gluconobacter)属、シユードモナス (Pseudomonas)属、キサント モナス(Xanthomonas)属、およびサーモプラズマ(Thermoplasma)属カらなる群により 選ばれる少なくとも 1種以上の微生物由来の酵素またはその酵素と実質的に同一の 酵素である請求項 3記載の製造方法。
[5] 前記 NADHォキシダーゼが、水生成型 NADHォキシダーゼである請求項 1〜4の V、ずれかに記載の製造方法。
[6] 前記水生成型 NADHォキシダーゼが、酸素存在下であっても酵素保護剤なしで安 定な水生成型 NADHォキシダーゼである請求項 5記載の製造方法。
[7] 前記水生成型 NADHォキシダーゼが、ストレプトコッカス(Streptococcus)属、ラクト バシノレス (Lactobacillus)属、ェンテロコッカス (Enterococcus)属、ロイコノストック (Leu conostoc)属、およびべディォコッカス(Pediococcus)属からなる群より選ばれた少なく とも 1種以上の微生物由来の酵素またはその酵素と実質的に同一の酵素である請求 項 5〜6の 、ずれかに記載の製造方法。
[8] 前記アルドース脱水素酵素の酵素源が、本酵素を生産し得る組換え微生物の培養 物である請求項 1〜7のいずれかに記載の製造方法。
[9] 前記 NADHォキシダーゼの酵素源力 本酵素を生産し得る組換え微生物の培養物 である請求項 1〜8のいずれかに記載の製造方法。
[10] 前記アルドース脱水素酵素の酵素源および NADHォキシダーゼの酵素源力 当該 アルドース酸脱水素酵素と当該 NADHォキシダーゼとを同一宿主内で発現し得る 組換え微生物の培養物である請求項 1〜9のいずれかに記載の製造方法。
[11] 前記アルドースが、グルコース、グルコースー6リン酸、 2—デォキシグルコース、マン ノース、ガラクトース、ァロース、ァノレトロース、グロース、イドース、タロース、リボース、 ァラビノース、キシロース、リキソース、グノレコサミン、マンノサミン、ガラクトサミン、 N— ァセチルダルコサミン、 N—ァセチルマンノサミン、 N—ァセチルガラタトサミンであり、 アルドン酸がダルコン酸、ダルコン酸ー 6リン酸、 2—デォキシダルコン酸、マンノン酸 、ガラクトン酸、ァロン酸、アルトロン酸、ダロン酸、イドン酸、タロン酸、リボン酸、ァラ ビノン酸、キシロン酸、リキソン酸、ダルコサミン酸、マンノサミン酸、ガラクトサミン酸、 N—ァセチルダルコサミン酸、 N—ァセチルマンノサミン酸、または N—ァセチルガラ クトサミン酸である請求項 1〜10のいずれかに記載の製造方法。
[12] アルドン酸脱水素酵素をコードする遺伝子と、 NADHォキシダーゼをコードする遺 伝子とを含むベクター。
[13] アルドン酸脱水素酵素をコードする遺伝子と、 NADHォキシダーゼをコードする遺 伝子の両方を導入された形質転換微生物。
[14] アルドン酸脱水素酵素をコードする遺伝子および NADHォキシダーゼをコードする 遺伝子の両方を含むベクターによって形質転換された請求項 13記載の形質転換体 微生物。
[15] NAD +を補酵素とするアルドース脱水素酵素、および NADHォキシダーゼを含む 組成物。
[16] アルドース脱水素酵素によるアルドース類の酸ィ匕反応伴って生ずる NADHを水生 成型 NADHォキシダーゼにより NAD +へ変換することを特徴とする NAD +の再生
££LlO/SOOZd /13d 03 £££££0/9001 OAV
PCT/JP2005/017334 2004-09-24 2005-09-21 アルドン酸類の製造方法およびアルドース脱水素酵素 WO2006033333A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006536381A JPWO2006033333A1 (ja) 2004-09-24 2005-09-21 アルドン酸類の製造方法およびアルドース脱水素酵素

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-277579 2004-09-24
JP2004277579 2004-09-24

Publications (1)

Publication Number Publication Date
WO2006033333A1 true WO2006033333A1 (ja) 2006-03-30

Family

ID=36090091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017334 WO2006033333A1 (ja) 2004-09-24 2005-09-21 アルドン酸類の製造方法およびアルドース脱水素酵素

Country Status (2)

Country Link
JP (1) JPWO2006033333A1 (ja)
WO (1) WO2006033333A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1801228A4 (en) * 2004-08-06 2008-08-20 Kaneka Corp METHOD FOR PRODUCING ENANTIOMENE-ENRICHED COMPOUNDS
JP2008245536A (ja) * 2007-03-29 2008-10-16 Unitika Ltd 乳酸菌によるアルドン酸の製造方法
WO2010106230A1 (en) * 2009-03-18 2010-09-23 Valtion Teknillinen Tutkimuskeskus Manufacture of xylonic acid
WO2011090054A1 (ja) 2010-01-20 2011-07-28 株式会社カネカ 安定性が向上したnadhオキシダーゼ変異体とその利用法
WO2012063843A1 (ja) 2010-11-09 2012-05-18 株式会社カネカ ハロゲン化インデノン類及びそれを用いた光学活性インダノン類又は光学活性インダノール類の製造方法
JP2012184190A (ja) * 2011-03-04 2012-09-27 Yamaguchi Univ 4−ケト−d−リボン酸、4−ケト−d−リボース及びそれらの製造方法
US9416350B2 (en) 2011-06-28 2016-08-16 Kaneka Corporation Enzyme function modification method and enzyme variant thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08196281A (ja) * 1995-01-30 1996-08-06 Nippon Paint Co Ltd 水生成型nadhオキシダーゼをコードするdna
JP2003061668A (ja) * 2001-08-24 2003-03-04 Kanegafuchi Chem Ind Co Ltd 新規グリセロール脱水素酵素およびその利用法
JP2003116585A (ja) * 2001-08-16 2003-04-22 Degussa Ag ラクトバシルスからのnadhオキシダーゼ
JP2004065049A (ja) * 2002-08-02 2004-03-04 Daicel Chem Ind Ltd D−マンデル酸脱水素酵素をコードするポリヌクレオチド、及びその用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08196281A (ja) * 1995-01-30 1996-08-06 Nippon Paint Co Ltd 水生成型nadhオキシダーゼをコードするdna
JP2003116585A (ja) * 2001-08-16 2003-04-22 Degussa Ag ラクトバシルスからのnadhオキシダーゼ
JP2003061668A (ja) * 2001-08-24 2003-03-04 Kanegafuchi Chem Ind Co Ltd 新規グリセロール脱水素酵素およびその利用法
JP2004065049A (ja) * 2002-08-02 2004-03-04 Daicel Chem Ind Ltd D−マンデル酸脱水素酵素をコードするポリヌクレオチド、及びその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAGAO T ET AL: "Cloning, nucleotide sequences, and enzymatic properties of glucose dehydrogenase isozymes from Bacillus megaterium IAM1030.", J BACTERIOL., vol. 174, no. 15, 1992, pages 5013 - 5020, XP000933848 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1801228A4 (en) * 2004-08-06 2008-08-20 Kaneka Corp METHOD FOR PRODUCING ENANTIOMENE-ENRICHED COMPOUNDS
JP2008245536A (ja) * 2007-03-29 2008-10-16 Unitika Ltd 乳酸菌によるアルドン酸の製造方法
WO2010106230A1 (en) * 2009-03-18 2010-09-23 Valtion Teknillinen Tutkimuskeskus Manufacture of xylonic acid
US9315834B2 (en) 2009-03-18 2016-04-19 Teknologian Tutkimuskeskus Vtt Manufacture of xylonic acid
WO2011090054A1 (ja) 2010-01-20 2011-07-28 株式会社カネカ 安定性が向上したnadhオキシダーゼ変異体とその利用法
US9315782B2 (en) 2010-01-20 2016-04-19 Kaneka Corporation Isolated DNA encoding protein having improved stability
JP5908729B2 (ja) * 2010-01-20 2016-04-26 株式会社カネカ 安定性が向上したnadhオキシダーゼ変異体とその利用法
US9376667B2 (en) 2010-01-20 2016-06-28 Kaneka Corporation Protein having NADH and/or NADPH oxidase activity
WO2012063843A1 (ja) 2010-11-09 2012-05-18 株式会社カネカ ハロゲン化インデノン類及びそれを用いた光学活性インダノン類又は光学活性インダノール類の製造方法
JP2012184190A (ja) * 2011-03-04 2012-09-27 Yamaguchi Univ 4−ケト−d−リボン酸、4−ケト−d−リボース及びそれらの製造方法
US9416350B2 (en) 2011-06-28 2016-08-16 Kaneka Corporation Enzyme function modification method and enzyme variant thereof

Also Published As

Publication number Publication date
JPWO2006033333A1 (ja) 2008-05-15

Similar Documents

Publication Publication Date Title
Geueke et al. NADH oxidase from Lactobacillus brevis: a new catalyst for the regeneration of NAD
JP4757804B2 (ja) 新規カルボニル還元酵素、その遺伝子、およびその利用法
WO2006033333A1 (ja) アルドン酸類の製造方法およびアルドース脱水素酵素
WO2006013801A1 (ja) 新規カルボニル還元酵素、その遺伝子、およびその利用法
Klein et al. Influence of hydrogenase overexpression on hydrogen production of Clostridium acetobutylicum DSM 792
JP4360786B2 (ja) ラクトバシルスからのnadhオキシダーゼ
Brünker et al. Cloning, nucleotide sequence and expression of a mannitol dehydrogenase gene from Pseudomonas fluorescens DSM 50106 in Escherichia coli
Mohamed et al. Reinvestigation of a new type of aerobic benzoate metabolism in the proteobacterium Azoarcus evansii
Fujii et al. Biotransformation of various alkanes using the Escherichia coli expressing an alkane hydroxylase system from Gordonia sp. TF6
Talarico et al. Production of the Gram-positive Sarcina ventriculi pyruvate decarboxylase in Escherichia coli
Gescher et al. Aerobic benzoyl-coenzyme A (CoA) catabolic pathway in Azoarcus evansii: conversion of ring cleavage product by 3, 4-dehydroadipyl-CoA semialdehyde dehydrogenase
Shen et al. Isolation and characterization of a novel Arthrobacter nitroguajacolicus ZJUTB06-99, capable of converting acrylonitrile to acrylic acid
CN109072264A (zh) 不饱和氨基酸
Abdel-Hady et al. Engineering cofactor specificity of a thermostable phosphite dehydrogenase for a highly efficient and robust NADPH regeneration system
JPWO2007094178A1 (ja) 新規な(s,s)−ブタンジオール脱水素酵素、その遺伝子、及びその利用法
Zhu et al. Production of 3-hydroxypropionic acid by recombinant Klebsiella pneumoniae based on aeration and ORP controlled strategy
Precigou et al. Rhodococcus pyridinovorans MW3, a bacterium producing a nitrile hydratase
WO2006013802A1 (ja) エナンチオマー豊富化化合物の製造方法
Li et al. Cloning, protein sequence clarification, and substrate specificity of a leucine dehydrogenase from Bacillus sphaericus ATCC4525
WO2016006521A1 (ja) 酸化酵素、それをコードするポリヌクレオチド、及びそれらの利用
JP5115708B2 (ja) 新規過酸化水素生成型nadhオキシダーゼ及びそれをコードするdna
WO2007099994A1 (ja) 新規カルボニル還元酵素、その遺伝子、ベクター、形質転換体、およびそれらを利用した光学活性アルコールの製造方法
WO2005123921A1 (ja) 新規グリセロール脱水素酵素、その遺伝子、及びその利用法
US20050239180A1 (en) Nucleotide sequence coding for a mannitol-2 dehydrogenase and method for the production of d-mannitol
JP4116349B2 (ja) 補酵素依存型を改変したギ酸脱水素酵素

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006536381

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase