WO2006029561A1 - Electrode negative pour accumulateur au lithium-ion, son procede de fabrication, et accumulateur au lithium-ion comprenant ladite electrode - Google Patents

Electrode negative pour accumulateur au lithium-ion, son procede de fabrication, et accumulateur au lithium-ion comprenant ladite electrode Download PDF

Info

Publication number
WO2006029561A1
WO2006029561A1 PCT/CN2005/001267 CN2005001267W WO2006029561A1 WO 2006029561 A1 WO2006029561 A1 WO 2006029561A1 CN 2005001267 W CN2005001267 W CN 2005001267W WO 2006029561 A1 WO2006029561 A1 WO 2006029561A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
lithium ion
negative electrode
secondary battery
ion secondary
Prior art date
Application number
PCT/CN2005/001267
Other languages
English (en)
Chinese (zh)
Inventor
Junjie Zhou
Original Assignee
Chen, Guanzong
Zhang, Cuiping
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chen, Guanzong, Zhang, Cuiping filed Critical Chen, Guanzong
Publication of WO2006029561A1 publication Critical patent/WO2006029561A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode of a lithium ion secondary battery, a method of producing the same, and a lithium ion secondary battery including the same. More particularly, it relates to an artificially applied inorganic solid electrolyte crystal film which has good lithium ion conductivity and is effective in forming an existing lithium ion carbonate electrolyte.
  • a method for producing a negative electrode of a lithium ion secondary battery of an SEI film, and a lithium ion secondary battery including the negative electrode is a method for producing a negative electrode of a lithium ion secondary battery of an SEI film, and a lithium ion secondary battery including the negative electrode.
  • the commercial lithium ion secondary battery anode material is usually made of graphite-based carbon material, and its disadvantages are: 1), its theoretical specific capacity is only 372 mAh / g, thus limiting the further increase of the specific capacity of the lithium ion secondary battery; 2) the tap density is lower than the energy of a small volume causing its tap density is generally 0. 8g / cm: i.
  • the technical problem to be solved by the present invention is to provide a negative electrode of a lithium ion secondary battery, a preparation method thereof, and a lithium ion secondary battery including the same, the negative electrode comprising a layer having good lithium ion conductivity and reacting with carbonate An inorganic solid electrolyte crystal film with good liquid compatibility.
  • the negative electrode of the lithium ion secondary battery can be prepared by a simple method.
  • a negative electrode of a lithium ion secondary battery comprising: orthorhombic black phosphorus having an orthogonal structure; artificially applying an inorganic solid electrolyte crystal film on black phosphorus, the crystal film having a thickness of 20 to 5000 A and including a Ionic conductivity of at least 1 X 10 - 1 ( 's/cm lithium ion conductive material.
  • the lithium ion conductive substance is Li x P0 Y , wherein 2 ⁇ X ⁇ 4 and 3 ⁇ Y ⁇ 5.
  • the lithium ion conductive substance is Li 3 P0 4 .
  • the lithium ion-conducting material is Li a P0, where a is 2 - 4, b is 3 - 5, c is 0. 1 - 0.
  • the lithium ion conductive material is Li 2 . 9 P0 3 . . 4 «.
  • a method for preparing a negative electrode of a lithium ion secondary battery wherein black phosphorus is subjected to oxidation treatment in a strong oxidizing agent solution, and a solid electrolyte crystal film is deposited by reacting with a lithium-containing compound, the crystal film containing an ionic conductivity a lithium ion conductive material of at least 1 X l (T n S / C m;
  • the strong oxidizing agent is selected from the group consisting of ammonium persulfate, nitric acid, hydrogen peroxide, and sulfuric acid;
  • the lithium-containing compound is selected from the group consisting of n-butyl lithium, t-butyl lithium Lithium hexafluorophosphate, lithium tetrafluoroborate, lithium citrate, lithium naphthalene and lithium hydroxide.
  • the above lithium ion conductive substance is Li x P0 Y , wherein 2 ⁇ X ⁇ 4 and 3 ⁇ Y ⁇ 5.
  • the above lithium ion conductive substance is Li 3 P0 4 .
  • a lithium ion secondary battery having a negative electrode deposited on a black phosphorus substrate with a crystal having a thickness of 20 to 5000 A and containing a lithium ion conductive material having an ionic conductivity of at least 1 X 10" n s/cm.
  • the positive electrode includes a combination of any one or a combination of two or more selected from the group consisting of lithium cobaltate, lithium nickelate, lithium manganate, lithium cobalt nickelate, lithium nickel manganese oxide, lithium iron phosphate, and lithium cobalt phosphate.
  • the main salt of the electrolyte may be lithium hexafluorophosphate, lithium tetrafluoroborate, lithium hexafluoroarsenate, lithium perchlorate or lithium perfluorodecyl sulfonate;
  • the solvent component may be ethylene carbonate or dimethyl carbonate;
  • the outstanding effect of the present invention is as follows: 1) Compared with the conventional carbon negative electrode, its specific capacity can be greatly increased to 700 mAh/g; 2), the tap density is large, and the density is generally 1.27 g/cm. Increase volumetric energy.
  • DRAWINGS 1 is a graph showing charge and discharge curves of a black phosphorus anode amorphous film of the present invention
  • FIG. 2 is a second charge and discharge curve of the black phosphorus anode deposited with the LLPOJ crystal film of the present invention
  • FIG. 3 is an XRD pattern of the black phosphorus anode amorphous film after charging and discharging according to the present invention
  • Fig. 5 is a graph showing the second charge and discharge curve after the Li ⁇ crystal film is deposited on the black phosphorus anode of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION 5 g of black phosphorus powder sieved through 200 mesh was placed in 100 ml of a 10% strong nitric acid solution (10 3 ) to be oxidized at room temperature for 10 hours, and then washed with distilled water, and then It was placed in a dry box and dried at 120 ° C for 12 hours.
  • the lithium ion secondary battery negative electrode prepared above the positive electrode material is lithium cobaltate, the electrolyte solution is lithium hexafluorophosphate, the solvent is ethylene carbonate and diethyl carbonate, and the volume ratio is 1:1, and the separator is CeLgrd 2300 microporous film.
  • the capacity of the battery was determined to be 1385 mAh.
  • the lithium ion secondary battery negative electrode prepared above, the positive electrode material is lithium manganate, the electrolyte solution is lithium hexafluoroborate, the solvent is ethylene carbonate and diethyl carbonate in a volume ratio of 1 ⁇ 3, and the separator is CeLgrd 2300 micropores.
  • Membrane made of 063048 battery. The capacity of the battery was determined to be 1345 mAh.
  • the lithium ion secondary battery negative electrode prepared above, the positive electrode material is lithium nickelate, the electrolytic solution is lithium chlorate, the solvent is ethylene carbonate and diethyl carbonate, and the volume ratio is 1:1, and the separator is CeLgrd 2300 micropores.
  • the film was made into a 063048 battery, and the capacity of the battery was measured to be 1425 mAh.
  • the crystal is deposited onto the black phosphorus electrode by a target under an inert gas atmosphere, and the crystal film comprises a lithium ion conductive material having a lithium ion conductivity of at least 1 x 10 s/cm.
  • the lithium ion conductive substance is Li x P0 Y , wherein 2 ⁇ X ⁇ 4 and 3 ⁇ Y ⁇ 5, and it is stable under a nitrogen atmosphere.
  • the lithium ion-conducting material is Li a P0 h N, where a is 2 - 4, b is 3 - 5, c is 0. 1 - 0.
  • the inert gas is selected from the group consisting of helium, neon, and argon because none of the above gases chemically react with black phosphorus to produce by-products.
  • the target may be Li :i P04 or a mixture of Li 2 0 and mixed in a suitable mixing ratio.
  • a Li :i P0 4 crystal film was formed by depositing a Li 3 P0 4 target having a diameter of 4 inches at a black phosphorus electrode for 10 minutes at a pressure of 5 mTorr, an RF power of 300 W, and an argon atmosphere.
  • the deposition process is carried out by a suitable method such as plating, electron beam evaporation, vacuum thermal evaporation, laser ablation, chemical vapor deposition, thermal evaporation, plasma chemical vapor deposition, laser chemical vapor deposition or jet vapor phase. Deposition. Those skilled in the relevant art will appreciate that the deposition is not limited to the above methods and includes any conventional methods.
  • the untreated black phosphorus was used as the negative electrode, the lithium metal plate was used as the counter electrode, the separator was CeLgrd 2300 microporous film, and the electrolyte was 1.0 mol/L, LiPF6/EC: DEC, and the solvent volume ratio was 1: 1, in relative humidity.
  • a simulated battery was fabricated in a small 1% glove box, and the results of black phosphorus charge and discharge were measured. In Fig. 1, since an effective SEI film is not formed at 0.8 volts, solvent molecules are co-embedded in the discharge capacity map. It is not zero.
  • the black phosphorus electrode prepared by the above method is a negative electrode, the lithium metal plate is a counter electrode, and the separator is
  • CeLgrd2300 microporous membrane, electrolyte is 1. Omol / LiPF6 / EC: DEC, solvent volume ratio of 1: 1, in a glove box with a relative humidity of 1% in a glove box, the determination of black phosphorus charge and discharge performance The results are shown in Figure 2 and Figure 5. It can be seen from Figs. 2 and 5 that the negative electrode of the present invention can perform an effective charge and discharge cycle, and the discharge capacity is 630 mAh/g in Fig. 2. In Fig. 5, V represents voltage and C represents specific capacity.
  • Black phosphorus has a layered structure like graphite.
  • the atoms in the layer are superimposed by ⁇ covalent bonds, which are firmly bonded to each other.
  • the two layers are only connected by weak van der Waals force.
  • the crystal structure of this mixed bond type makes it The special chemical properties, that is, some atoms and molecules can be embedded between such crystal layers without destroying the covalent bonds of the stack, and only the interlayer spacing is changed to form inter-layer compounds.
  • one carbon atom is formed with a coordination number of three.
  • the orthorhombic black phosphorus of the orthogonal structure Manually applying a film of an inorganic solid electrolyte crystal having a thickness of 20 to 5000 A and including a lithium ion conductive substance having an ionic conductivity of at least 1 X 10 s/cm, the experiment proves that the first charge is in the black phosphorus group.
  • the negative electrode on which the crystal film is deposited on the surface of the material can form an effective SEI film, preventing the occurrence of black phosphorus structure collapse due to co-intercalation of solvent lithium ions. And it allows lithium ions to pass through it.
  • the black phosphorus powder forms a phosphorus oxide and an acid under the action of a strong oxidizing agent, and after washing with distilled water, the oxide remaining on the surface of the black phosphorus is dried by heating under water and oxygen.
  • a small amount of phosphoric acid is formed on the surface, and a crystal film of Li 3 P0 4 is formed on the surface of the black phosphorus particles due to the action of phosphoric acid and a lithium-containing compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Cette invention porte sur une électrode négative pour accumulateur à lithium-ion, sur son procédé de fabrication, et sur un accumulateur à lithium-ion comprenant ladite électrode. L'électrode négative comporte : un luminophore orthorombique noir possédant une structure orthorhombique ; une pellicule cristalline d'électrolyte solide inorganique appliquée manuellement sur le luminophore noir, ladite pellicule ayant une épaisseur de 20-5000Å et comprenant une substance conductrice à lithium ion ayant une conductivité ionique de plus de 1x10-10 S/cm. L'électrode négative peut être aisément réalisée par un procédé de dépôt. Un accumulateur à lithium-ion comprenant ladite électrode négative peut être réalisé par combinaison de ladite électrode négative avec l'électrode positive correspondante et la solution électrolytique. L'électrode négative est facile à fabriquer et est constituée d'un matériau de substitution du graphite idéal, ce qui augmente la capacité de l'accumulateur. La capacité spécifique du matériau négatif dans cette invention est de plus de 700mAh/g.
PCT/CN2005/001267 2004-09-16 2005-08-16 Electrode negative pour accumulateur au lithium-ion, son procede de fabrication, et accumulateur au lithium-ion comprenant ladite electrode WO2006029561A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200410051493.8 2004-09-16
CNA2004100514938A CN1750296A (zh) 2004-09-16 2004-09-16 锂离子二次电池的负极及其制备方法以及包含该负极的锂离子二次电池

Publications (1)

Publication Number Publication Date
WO2006029561A1 true WO2006029561A1 (fr) 2006-03-23

Family

ID=36059696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/001267 WO2006029561A1 (fr) 2004-09-16 2005-08-16 Electrode negative pour accumulateur au lithium-ion, son procede de fabrication, et accumulateur au lithium-ion comprenant ladite electrode

Country Status (2)

Country Link
CN (1) CN1750296A (fr)
WO (1) WO2006029561A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3264503A4 (fr) * 2015-10-12 2018-08-29 LG Chem, Ltd. Électrode pour élément électrochimique, son procédé de fabrication, et élément électrochimique la comprenant

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148401A (zh) * 2010-02-04 2011-08-10 深圳市比克电池有限公司 一种锂离子电池制备方法及制备得到的电池
CN107482173A (zh) * 2017-06-21 2017-12-15 深圳大学 锂离子电池负极活性材料及其制备方法、锂离子电池负极片和锂离子电池
CN114975863B (zh) * 2022-08-01 2022-09-30 深圳市汉嵙新材料技术有限公司 黑磷负极、其制备方法及锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1212473A (zh) * 1997-09-25 1999-03-31 中国科学院长春应用化学研究所 锂离子电池碳材料负极的制备
US20030024994A1 (en) * 2001-08-03 2003-02-06 Ladyansky Stephen Joseph Media cipher smart card
CN1481040A (zh) * 2003-08-07 2004-03-10 中信国安盟固利电源技术有限公司 黑磷作为锂离子蓄电池负极材料的应用及其制成的蓄电池
CN1508893A (zh) * 2002-10-18 2004-06-30 ����Sdi��ʽ���� 锂硫电池的负极及其制备方法以及包含该负极的锂硫电池
CN1511351A (zh) * 2001-05-23 2004-07-07 分子技术股份有限公司 电化学电池的锂阳极

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1212473A (zh) * 1997-09-25 1999-03-31 中国科学院长春应用化学研究所 锂离子电池碳材料负极的制备
CN1511351A (zh) * 2001-05-23 2004-07-07 分子技术股份有限公司 电化学电池的锂阳极
US20030024994A1 (en) * 2001-08-03 2003-02-06 Ladyansky Stephen Joseph Media cipher smart card
CN1508893A (zh) * 2002-10-18 2004-06-30 ����Sdi��ʽ���� 锂硫电池的负极及其制备方法以及包含该负极的锂硫电池
CN1481040A (zh) * 2003-08-07 2004-03-10 中信国安盟固利电源技术有限公司 黑磷作为锂离子蓄电池负极材料的应用及其制成的蓄电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3264503A4 (fr) * 2015-10-12 2018-08-29 LG Chem, Ltd. Électrode pour élément électrochimique, son procédé de fabrication, et élément électrochimique la comprenant
US10511015B2 (en) 2015-10-12 2019-12-17 Lg Chem, Ltd. Electrode for electrochemical device, method for preparing the same, and electrochemical device comprising the same

Also Published As

Publication number Publication date
CN1750296A (zh) 2006-03-22

Similar Documents

Publication Publication Date Title
JP7148150B2 (ja) 再充電可能なバッテリのための2次元物質によるリチウム金属のパッシベーション
TW535313B (en) Anode for secondary battery and secondary battery therewith
WO2020019392A1 (fr) Composite électrolyte solide-lithium, son procédé de préparation, et accumulateur au lithium tout solide le comprenant
TWI458154B (zh) 鋰二次電池
KR102378583B1 (ko) 리튬-함유 복합체의 코팅층을 구비한 세퍼레이터, 이를 포함하는 리튬 이차전지 및 상기 이차전지의 제조방법
CN110707287B (zh) 一种金属锂负极及其制备方法和锂电池
WO2013099267A1 (fr) Batterie secondaire à électrolyte non aqueux
Im et al. Two-dimensional, P-doped Si/SiOx alternating veneer-like microparticles for high-capacity lithium-ion battery composite
WO2019007225A1 (fr) Batterie d'alimentation au lithium-ion et son procédé de fabrication, un diaphragme et son procédé de fabrication, et bouillie pour former un diaphragme
TW201414059A (zh) 鋰離子電池正極複合材料及鋰離子電池
CN111682181A (zh) 一种具有核壳结构的正极补锂材料及其制备与应用
JP2010529593A (ja) リチウムイオン電池用のリチウムリン酸鉄正極活物質及びその調製方法
TW200820475A (en) Separator for non-aqueous secondary battery, making method, and non-aqueous electrolyte secondary battery
JP6394253B2 (ja) 非水系二次電池用電極、その製造方法及び非水系二次電池
CN207993958U (zh) 一种石墨负极结构组合、锂电池电芯
JP2015122218A (ja) 二次電池用負極及びその製造方法
TWI623132B (zh) 鋰離子二次電池用負極材料及其製造方法、鋰離子二次電池負極與鋰離子二次電池
JP7203304B2 (ja) 水系二次電池
WO2018059180A1 (fr) Alimentation électrique chimique haute puissance et à haute énergie, et son procédé de préparation
JP2012164481A (ja) 非水電解質二次電池及びその製造方法
JP5058381B1 (ja) 集電体及び電極、これを用いた蓄電素子
JP6567289B2 (ja) リチウムイオン二次電池
WO2006029561A1 (fr) Electrode negative pour accumulateur au lithium-ion, son procede de fabrication, et accumulateur au lithium-ion comprenant ladite electrode
US20180175385A1 (en) Graphene-Vanadium Oxide Nanowire, Method for Preparation Thereof, Positive Active Material Comprising the Same and Lithium Battery Comprising the Positive Active Material
WO2024016940A1 (fr) Plaque d'électrode positive, batterie secondaire, module de batterie, bloc-batterie et dispositif électrique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase