WO2006028212A1 - 表面実装型アンテナおよびそれを備えた無線通信機 - Google Patents

表面実装型アンテナおよびそれを備えた無線通信機 Download PDF

Info

Publication number
WO2006028212A1
WO2006028212A1 PCT/JP2005/016620 JP2005016620W WO2006028212A1 WO 2006028212 A1 WO2006028212 A1 WO 2006028212A1 JP 2005016620 W JP2005016620 W JP 2005016620W WO 2006028212 A1 WO2006028212 A1 WO 2006028212A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
ground
feeding
circuit board
width
Prior art date
Application number
PCT/JP2005/016620
Other languages
English (en)
French (fr)
Inventor
Yuichi Kushihi
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to US11/575,012 priority Critical patent/US20080018538A1/en
Publication of WO2006028212A1 publication Critical patent/WO2006028212A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the present invention relates to a surface mount antenna having a configuration in which a radiation electrode is provided on a base, and a radio communication device including the same.
  • the antenna 30 includes a ground plate 31 made of a circular conductor plate and a radiation electrode 32 erected on the ground plate 31.
  • the radiation electrode 32 functions as a monopole antenna.
  • the radiation electrode 32 has a configuration in which a conical portion 32a and a spherical portion 32b are connected.
  • the radiation electrode 32 is erected on the ground plate 31 with the tip of the conical portion 32a facing the ground plate 31 side.
  • the pointed end of the radiation electrode 32 is connected to a coaxial cable 33 disposed on the lower side of the ground plate 31 through a through hole formed in the ground plate 31.
  • the coaxial cable 33 is connected to a radio communication high frequency circuit 34 provided in the radio communication device, and the radiation electrode 32 is electrically connected to the radio communication high frequency circuit 34.
  • the radiation electrode 32 when a transmission signal is supplied from the high-frequency circuit 34 through the coaxial cable 33 to the radiation electrode 32, the radiation electrode 32 is excited (operates as an antenna) to transmit the transmission signal wirelessly.
  • the radiation electrode 32 when a signal arrives at the radiation electrode 32 from the outside and the radiation electrode 32 is excited (antenna operation) and receives the signal, the received signal is transmitted to the high-frequency circuit 34 through the coaxial cable 33. Is signal processed.
  • the antenna 30 as described above can have omnidirectionality in a horizontal plane in a frequency band preset for wireless communication. Moreover, the antenna 30 can easily improve the VSWR (voltage standing wave ratio) toward the ideal “1”. In other words, the antenna 30 can easily perform impedance matching between the radiation electrode 32 and the high-frequency circuit 34 side.
  • VSWR voltage standing wave ratio
  • Non-Patent Document 1 Tatsuro Taniro, Takehiko Kobayashi, “Unfingering in horizontal plane for UWB wireless system Oriented and Low VSWR Antenna ”, 2002 IEICE Communication Society Summary, SB— 1-5
  • the size of the radiation electrode 32 is substantially determined by the wavelength of the frequency band set for wireless communication.
  • the radiation electrode 32 has a bulky aspect in which a conical portion 32a and a spherical portion 32b are combined. For these reasons, it is difficult to reduce the size of the antenna 30.
  • the radiation electrode 32 has a shape composed of a tip portion and a curved surface in which a conical portion 32a and a spherical portion 32b are combined. It is difficult to stand the radiation electrode 32 having such a shape on the ground plate 31 which is a flat plate. For this reason, the work of assembling the radiation electrode 32 in the wireless communication device is troublesome, and there is a problem that the manufacturing cost is increased.
  • the present invention has the following configuration as means for solving the above problems.
  • the surface mount antenna of the present invention is
  • a surface mount antenna having a structure in which a radiation electrode connected to a radio frequency circuit for wireless communication and performing antenna operation is formed on a substrate.
  • One end of the radiating electrode forms a power supply unit connected to a radio communication high-frequency circuit, the other end of the radiating electrode forms an open end, and the radiating electrode moves toward the open end from the power supply unit. It has a part that is wide,
  • the base is provided with a belt-like power supply electrode for connecting to the power supply part of the radiation electrode and connecting the power supply part to a radio frequency circuit for wireless communication, and on both sides or one side of the power supply electrode, A ground electrode is provided with a gap between the power supply electrode and the power supply electrode, and the distance between the ground electrode and the power supply electrode is narrower than the width of the power supply electrode.
  • the wireless communication device of the present invention includes a circuit board having a ground region in which a ground electrode is provided and a non-ground region in which no ground electrode is provided.
  • a surface mount antenna having a unique configuration is disposed in the non-ground region of the circuit board, and the circuit board has connection means for connecting the ground electrode of the surface mount antenna to the ground electrode of the circuit board. It is characterized by being provided.
  • the radiation electrode is configured to have a portion in which the width of the radiation electrode is increased as it is directed toward the open end from the power feeding portion.
  • This radiating electrode can be formed as a monopole antenna, and depending on its form, it can have omnidirectionality in the horizontal plane.
  • the radiating electrode is provided on the surface of a base made entirely of a dielectric or magnetic material. For this reason, the entire radiation electrode is affected by the substrate, resulting in a wavelength shortening effect corresponding to the dielectric constant of the substrate. This facilitates downsizing of the radiation electrode (that is, downsizing of the surface mount antenna).
  • the surface-mounted antenna can be wirelessly communicated only by disposing the base on which the radiation electrode is provided, for example, on a circuit board of a wireless communication device. It can be installed in the machine easily and in a short time. For example, when the surface mount type antenna base is fixed to the circuit board of a wireless communication device using solder, the surface mounting process is performed using the surface mounting process of fixing electrical components etc. to the circuit board using solder.
  • the type antenna can also be fixed (surface mounted) to the circuit board of the wireless communication device at the same time. For this reason, it is not necessary to provide a process for assembling the surface-mounted antenna on the circuit board separately from the process for mounting the electrical components on the circuit board, which simplifies the manufacturing process of the wireless communication device. it can.
  • the configuration of the present invention it is easy to widen the frequency band of the surface-mounted antenna and to improve and downsize the VSWR.
  • the surface mount antenna can be easily incorporated into the wireless communication device.
  • the base of the surface mount antenna is provided with a belt-like power supply electrode for connecting the radiation electrode to a radio frequency circuit for wireless communication.
  • a ground electrode is provided on both sides or one side of the power supply electrode with a gap from the power supply electrode.
  • the ground electrode is provided on the substrate, and the ground electrode is disposed close to the feeding electrode.
  • a capacitance capable of affecting the resonance frequency of the radiation electrode can be formed between the feeding portion side of the radiation electrode and the ground. For this reason, when the magnitude of the capacitance between the feeding electrode side of the radiation electrode and the ground by the power feeding electrode and the ground electrode is varied, the resonance frequencies of the plurality of resonance modes of the radiation electrode can be varied.
  • the capacity between the radiation electrode feeding portion side and the ground has a greater influence on the resonance operation (for example, the resonance frequency) of the radiation electrode as the frequency increases.
  • the resonance operation for example, the resonance frequency
  • the capacitance between the feeding part side of the radiation electrode and the ground is varied, the amount of change in the resonance frequency of the fundamental mode having the lowest frequency among the plurality of resonance modes of the radiation electrode is larger.
  • the amount of change in the resonance frequency of the higher-order mode having a higher frequency than that of the fundamental mode is increased.
  • the amount of change in the resonance frequency of the fundamental mode of the radiation electrode is suppressed to a small level by changing the size of the capacitance between the power feeding portion side of the radiation electrode and the ground by the power feeding electrode and the ground electrode.
  • the resonance frequency of the higher order mode can be greatly varied.
  • the distance between the ground electrode and the power feeding electrode is smaller than the width of the power feeding electrode.
  • the capacitance between the feeding portion side of the radiation electrode and the ground becomes larger than when the distance between the ground electrode and the feeding electrode is wider than the width of the feeding electrode.
  • the large capacitance between the radiating electrode side of the radiating electrode and the ground suppresses variations in the resonant frequency of the fundamental mode of the radiating electrode, while moving the resonant frequency of the higher order mode of the radiating electrode closer to the resonant frequency of the fundamental mode.
  • the surface mount antenna according to the present invention since the surface mount antenna according to the present invention is small, downsizing of the antenna reduces the size of the wireless communication device. Can be achieved.
  • the surface-mounted antenna of the present invention can have a wide frequency band, a radio communication device can be a system that uses a wide frequency band by providing only one surface-mounted antenna. It can correspond to. Brief Description of Drawings
  • FIG. 1 is a schematic perspective view for explaining a surface-mounted antenna according to a first embodiment.
  • FIG. 2 is a development view of the surface mount antenna shown in FIG.
  • FIG. 3a is a diagram for explaining an example of a surface-mounted form of the surface-mounted antenna of FIG. 1 on a circuit board.
  • FIG. 3b is a diagram for explaining a configuration example of the circuit board shown in FIG. 3a.
  • FIG. 4 is a schematic perspective view showing a comparative example for the surface mount antenna of the first embodiment.
  • FIG. 5a is a diagram for explaining the conditions of an experiment conducted by the present inventor.
  • FIG. 5b is a graph showing the experimental results of Sample A (having the configuration of the surface mount antenna of the first embodiment) by the experiment conducted by the present inventors.
  • FIG. 5c is a graph showing the experimental results of Sample B (having the structure of a surface mount antenna of a comparative example) obtained by experiments conducted by the present inventors.
  • FIG. 6 is a schematic perspective view for explaining a surface-mounted antenna according to a second embodiment.
  • FIG. 7 is a schematic perspective view showing a comparative example for the surface mount antenna of the second embodiment.
  • FIG. 8a is a diagram for explaining the conditions of an experiment conducted by the present inventor.
  • FIG. 8b is a graph showing the experimental results of sample A ′ (having the surface-mounted antenna configuration of the second example) according to experiments conducted by the present inventors.
  • FIG. 8c is a graph showing the experimental results of sample B ′ (having the configuration of a surface mount antenna of a comparative example) obtained by experiments conducted by the present inventors.
  • FIG. 9b Example of reflection characteristics of surface mount antenna obtained by simulation under the condition that the feed electrode width H is 0.4 mm and the distance between the feed electrode and the ground electrode dl, d2 is 0.36 mm It is a graph showing.
  • Feed electrode width H force S0.5mm, spacing between feed electrode and ground electrode dl, d2 is 0 6 is a graph showing an example of reflection characteristics of a surface-mounted antenna obtained by simulation under a condition of .3 mm.
  • FIG. 10b Example of reflection characteristics of surface mount antenna obtained by simulation under conditions where feed electrode width H is 0.5mm and spacing dl and d2 between feed electrode and ground electrode are 0.45mm It is a graph to represent.
  • FIG. 11a Example of reflection characteristics of a surface-mounted antenna obtained by simulation under the condition that the feeding electrode width H is 0.6 mm and the distances dl and d2 between the feeding electrode and the ground electrode are 0.3 mm. It is a graph to represent.
  • FIG. L ib Reflection characteristics of surface mount antenna obtained by simulation under conditions where feed electrode width H force S0.6mm, distance between feed electrode and ground electrode dl, d2 is 0.54mm It is a graph showing an example.
  • FIG. 12a Example of reflection characteristics of surface mount antenna obtained by simulation under conditions where feed electrode width H force S0.7mm, distance between feed electrode and ground electrode dl, d2 is 0 • 3mm It is a graph showing.
  • FIG. 12b Example of reflection characteristics of surface mount antenna obtained by simulation under conditions where feed electrode width H force is S0.7mm and distance between feed electrode and ground electrode is dl, d2 is 0.63mm It is a graph showing.
  • FIG. 13a Example of reflection characteristics of a surface-mounted antenna obtained by simulation under the condition that the electrode width for feeding is H force 0.8mm and the distance between the feeding electrode and the ground electrode is dl, d2 is 0.3mm It is a graph to represent.
  • FIG. 13b Example of reflection characteristics of surface mount antenna obtained by simulation under conditions where feed electrode width H is 0.8mm and spacing dl and d2 between feed electrode and ground electrode are 0.72mm It is a graph to represent.
  • FIG. 14a Example of reflection characteristics of surface-mounted antenna obtained by simulation under the conditions of feeding electrode width H force of 0.9 mm and distances dl and d2 between the feeding electrode and the ground electrode of 0.3 mm It is a graph to represent.
  • FIG. 14b Reflection characteristics of the surface mount antenna obtained by simulation under the condition that the feeding electrode width H is 0.9 mm and the distance between the feeding electrode and the ground electrode is dl and d2 is 0.81 mm. It is a graph showing a sex example.
  • FIG. 15a Example of reflection characteristics of surface-mount antenna obtained by simulation under the conditions of feeding electrode width H force l.0 mm and spacing dl, d2 between feeding electrode and ground electrode 0.3 mm It is a graph showing.
  • FIG. 15b Example of reflection characteristics of surface-mounted antenna obtained by simulation under the conditions of feeding electrode width H force Sl. 0 mm and spacing dl, d2 between feeding electrode and ground electrode 0.90 mm It is a graph showing.
  • Feed electrode width H is l. Lmm, and distance between feed electrode and ground electrode is dl, d2 is 0
  • This graph shows an example of the reflection characteristics of a surface-mount antenna obtained by simulation under the condition of 3 mm.
  • FIG. 16b Example of reflection characteristics of surface mount antenna obtained by simulation under conditions where feed electrode width H is l. Lmm and spacing between feed electrode and ground electrode is dl, d2 is 0.99mm It is a graph showing.
  • Feed electrode width H is 1.2mm, and distance between feed electrode and ground electrode is dl, d2 is 0
  • This graph shows an example of the reflection characteristics of a surface-mount antenna obtained by simulation under the condition of 3 mm.
  • FIG. 17b Example of reflection characteristics of surface mount antenna obtained by simulation under the condition that the feed electrode width H is 1.2mm and the distance between the feed electrode and the ground electrode is dl, d2 is 1.08mm. It is a graph to represent.
  • FIG. 18a Reflection characteristics of surface mount antenna obtained by simulation under conditions where feed electrode width H force is l.3mm and distance between feed electrode and ground electrode is dl, d2 is 0.3mm. It is a graph showing.
  • FIG. 18b Example of reflection characteristics of surface-mounted antenna obtained by simulation under the condition of feeding electrode width H force Sl. 3mm and spacing dl, d2 between feeding electrode and ground electrode 1.17mm It is a graph showing.
  • FIG. 19a Example of reflection characteristics of surface mount antenna obtained by simulation under conditions where feed electrode width H force is l.4mm and distance between feed electrode and ground electrode is dl, d2 is 0.3mm It is a graph showing.
  • FIG. 19b Example of reflection characteristics of surface mount antenna obtained by simulation under conditions where electrode width for feed is H force Sl. 4 mm and distance between feed electrode and ground electrode is dl, d2 is 1.26 mm It is a graph showing.
  • FIG. 20a Example of reflection characteristics of surface mount antenna obtained by simulation under conditions where feed electrode width H force is 1.5 mm, and distance between feed electrode and ground electrode is dl, d2 is 0.3 mm It is a graph showing.
  • FIG. 20b Example of reflection characteristics of surface mount antenna obtained by simulation under the condition of feeding electrode width H force Sl. 5 mm and spacing dl, d2 between feeding electrode and ground electrode 1.35 mm It is a graph showing.
  • Feed electrode width H is 1.6mm, and distance between feed electrode and ground electrode is dl, d2 is 0
  • This graph shows an example of the reflection characteristics of a surface-mount antenna obtained by simulation under the condition of 3 mm.
  • FIG. 21b Example of reflection characteristics of a surface-mounted antenna obtained by simulation under the condition that the feeding electrode width H is 1.6 mm and the distance between the feeding electrode and the ground electrode is dl, d2 is 1.44 mm. It is a graph to represent.
  • Feed electrode width H is 1.7mm, and distance between feed electrode and ground electrode is dl, d2 is 0
  • This graph shows an example of the reflection characteristics of a surface-mount antenna obtained by simulation under the condition of 3 mm.
  • FIG. 22b Example of reflection characteristics of surface mount antenna obtained by simulation under conditions where electrode width for feed is H force Sl. 7mm and distance between feed electrode and ground electrode is dl, d2 is 1.53mm It is a graph showing.
  • FIG. 23a Example of reflection characteristics of surface mount antenna obtained by simulation under conditions where feed electrode width H force is l.8mm and distance between feed electrode and ground electrode is dl, d2 is 0.3mm It is a graph showing.
  • FIG. 23b Example of reflection characteristics of surface-mounted antenna obtained by simulation under the conditions of feeding electrode width H force Sl. 9 mm and spacing dl, d2 between feeding electrode and ground electrode 0.3 mm It is a graph showing.
  • Feed electrode width H is 2.0mm, and distance between feed electrode and ground electrode is dl, d2 is 0 6 is a graph showing an example of reflection characteristics of a surface-mounted antenna obtained by simulation under a condition of .3 mm.
  • FIG.24 Example of reflection characteristics of surface mount antenna obtained by simulation under the condition that the feed electrode width H is 0.3mm and the distance between the feed electrode and the ground electrode is dl and d2 is 0.27mm. It is a graph showing.
  • FIG. 25 is a graph showing an example of the relationship between the minimum value of the reflection characteristic near the frequency of 5 GHz and the feeding electrode width H obtained from the simulation results shown in FIGS. 9a to 24.
  • FIG. 26 is a diagram for explaining another embodiment.
  • FIG. 27a is a diagram for explaining another example of the radiation electrode.
  • FIG. 27b is a diagram for explaining still another embodiment of the radiation electrode.
  • FIG. 27c is a diagram for explaining another example of another form of the radiation electrode.
  • FIG. 27d is a diagram for explaining another example of another form of the radiation electrode.
  • FIG. 28 is a model diagram for explaining a conventional example.
  • FIG. 1 shows a schematic perspective view of the surface-mounted antenna of the first embodiment
  • FIG. 2 shows a schematic development view of the surface-mounted antenna shown in FIG.
  • the surface mount antenna 1 of the first embodiment includes a base body (dielectric base body) 2 made of a rectangular parallelepiped dielectric, a radiation electrode 3 formed on the upper surface 2a of the dielectric base body 2, and a dielectric body.
  • Side 2 of substrate 2 It has a power supply electrode 4 and a ground electrode 5 (5a, 5b) formed on b
  • One end side of the radiation electrode 3 forms a feeding portion Q, and the other end side of the radiation electrode 3 forms an open end K.
  • the radiation electrode 3 has a teardrop shape with a portion where the width of the radiation electrode 3 increases from the power supply portion Q toward the open end K according to the direction force.
  • the radiation electrode 3 can operate as a monopole antenna.
  • the size and the like of the radiation electrode 3 are designed so that signals can be wirelessly communicated in a predetermined frequency band. Since the radiation electrode 3 has a teardrop shape, it is easy to obtain omnidirectionality in a horizontal plane, and it is easy to widen the frequency band and improve the VSWR.
  • the power supply electrode 4 has a strip shape. One end side of the feeding electrode 4 is connected to the feeding portion Q of the radiation electrode 3 (that is, the tip of the teardrop-shaped radiation electrode 3). The other end side of the power supply electrode 4 is formed so as to go from the side surface 2b of the dielectric substrate 2 to the bottom surface 2c.
  • the power feeding electrode 4 is for connecting the power feeding portion Q of the radiation electrode 3 to a radio communication high frequency circuit 7 provided in the radio communication device.
  • Ground electrodes 5 are arranged on both sides of the power supply electrode 4 with a gap from the power supply electrode 4, respectively.
  • the ground electrodes 5 (5a, 5b) are electrodes that are grounded.
  • the ground electrode 5 (5a, 5b) is formed to extend from the side surface 2b of the dielectric substrate 2 to the edge of the bottom surface 2c.
  • the distance dl between the ground electrode 5a and the power feeding electrode 4 and the distance d2 between the ground electrode 5b and the power feeding electrode 4 are both determined from the width H of the power feeding electrode 4. Is also narrow.
  • the ground electrode 5 (5a, 5b) has a portion before the upper end portion formed on the side surface 2b from the lower end portion formed on the bottom surface 2c of the dielectric substrate.
  • a notch 8 is formed on the power feeding electrode 4 side up to the middle position.
  • the power supply electrode 4 and the ground electrode 5 are located on the bottom surface side. Each is provided with solder. If the bottom surface side portion of the power supply electrode 4 and the bottom surface side portion of the ground electrode 5 are arranged close to each other at a distance narrower than the width H of the power supply electrode 4, the power supply electrode 4 is disposed on the bottom surface side portion.
  • Solder placed on the bottom side of the ground electrode 5 May form a solder bridge and cause a short circuit problem.
  • the space between the bottom side portion of the ground electrode 5 and the power feeding electrode 4 is widened. .
  • the formation of a solder bridge between the power supply electrode 4 and the ground electrode 5 can be avoided, and a short circuit problem can be prevented.
  • the fixing electrode 6 (6a, 6b, 6c) is formed on the side surface 2d of the dielectric substrate 2.
  • Fixing electrode 6 (6a, 6b, 6c) is a dedicated fixing that functions as a solder base electrode when the surface-mounted antenna 1 is fixed to the circuit board of the wireless communication device using solder (surface mounting) Electrode.
  • the surface mount antenna 1 of the first embodiment is configured as described above.
  • the surface-mounted antenna 1 is mounted on the surface of a circuit board 10 of a radio communication device and incorporated in the radio communication device, for example, as shown in the model diagram of FIG. 3a. That is, the circuit board 10 has a ground region Zg where the ground electrode 11 having the ground potential is formed and a non-ground region Zz where the ground electrode 11 is not formed.
  • the surface mount antenna 1 is disposed in the non-ground region Zz of the circuit board 10.
  • the ground electrode 11 is not formed in the non-ground region Zz of the circuit board 10 on the back side of the circuit board 10 or on the inner layer of the circuit board 10.
  • the non-ground region Zz of the circuit board 10 is electrically connected to the ground wiring pattern 12 (12a, 12b) communicating with the ground electrode 11 and the high-frequency circuit 7 for wireless communication.
  • a power supply wiring pattern 13 connected to, and an electrically floating fixing conductor pattern 14 (14a, 14b, 14c) are formed.
  • the ground electrode 5 (5a, 5b) of the surface-mounted antenna 1 is connected to the ground wiring pattern 12 (12a of the circuit board 10). , 12b).
  • the feeding electrode 4 of the surface mount antenna 1 is aligned with the feeding wiring pattern 13 of the circuit board 10.
  • the fixing electrodes 6 (6a, 6b, 6c) of the surface mount antenna 1 are aligned with the fixing conductor patterns 14 (14a, 14b, 14c) of the circuit board 10. In this state of alignment, the surface-mounted antenna 1 is placed on the substrate surface of the non-Darland region Zz of the circuit board 10.
  • a transmission signal is transmitted from the high-frequency circuit 7 for wireless communication via the power supply wiring pattern 13 to the surface.
  • the signal is supplied to the radiation electrode 3, and the radiation electrode 3 is excited to transmit a signal for transmission wirelessly.
  • the radiation electrode 3 resonates due to the arrival of a signal from the outside and receives the signal, the received signal is transmitted from the radiation electrode 3 to the high-frequency circuit 7 for wireless communication via the feeding electrode 4 and the feeding wiring pattern 13. Then, signal processing is performed by the high-frequency circuit 7 for wireless communication.
  • the distances dl, d2 between the feeding electrode 4 and the Darling electrodes 5 (5a, 5b) are the same as those of the feeding electrode 4.
  • the width is narrower than H.
  • Sample A has a configuration unique to this first embodiment (that is, a configuration in which the distance between the feeding electrode 4 and the ground electrode 5 is narrower than the width of the feeding electrode 4) as shown in FIG.
  • This is a surface mount antenna 1.
  • Samplenore B is a comparative example for sample A.
  • This Sampnole B is a surface mount antenna 20 having a configuration in which the distance between the feeding electrode 4 and the ground electrode 5 is wider than the width of the feeding electrode 4 as shown in FIG.
  • the Samples A and B have the same configuration except for the configuration related to the distance between the power supply electrode 4 and the ground electrode 5.
  • the length Lz of the non-ground region Zz of the road substrate 10 is 16.5 mm.
  • the width W of the dielectric substrate 2 of the surface mount antenna 1 is 12 mm.
  • the length L of the dielectric substrate 2 is 15 mm. Dielectric
  • the height h of the substrate 2 is 1.5 mm.
  • the reflection characteristics of sample A (that is, the surface mount antenna 1 of the first example) obtained by simulation are shown in Fig. 5b, and the reflection characteristics of sample B (surface mount antenna 20 of the comparative example) are shown. Is shown in Figure 5c.
  • the band where the reflection characteristic is -7.4dB or less (that is, the band where the VSWR power is .5 or less, which is a criterion for determining whether or not wireless communication can be performed satisfactorily)
  • Is divided into two bands in sample B (comparative example), a band from about 3.0 GHz to about 4.7 GHz and a band from about 5.7 GHz to 8 GHz or more.
  • sample A has one continuous band of about 3.1 GHz power up to about 7.9 GHz.
  • the frequency band can be widened by having a unique configuration in this first embodiment (that is, the interval between the feeding electrode 4 and the ground electrode 5 is narrower than the width of the feeding electrode 4). It can be seen that it can be planned.
  • sample A surface-mounted antenna 1 of the first embodiment
  • sample B has a gap between the feeding electrode 4 and the ground electrode 5 that is narrower than the width of the feeding electrode 4.
  • the capacitance between the feeding part side of the radiating electrode 3 and the ground is larger than that of the Sampnore B (comparative example).
  • the resonance frequency of the fundamental mode of sample A is about 3.5 GHz
  • the resonance frequency of the fundamental mode of sample B is about 4.2 GHz.
  • the deviation of the resonance frequency of the fundamental mode of samples A and B due to the difference in the distance between the feeding electrode 4 and the ground electrode 5 is large. Les.
  • the higher-order mode resonance frequency of sample A is about 6.2 GHz
  • the higher-order mode resonance frequency of sample B is about 7.9 GHz.
  • the resonance frequency of the higher order modes of sample A and B is larger than that of sample B, and the resonance frequency of higher order modes of samples A and B is larger.
  • the resonance frequency of the higher-order mode is set to the fundamental mode so that part of the resonance frequency band due to the higher-order mode overlaps with part of the resonance frequency band due to the fundamental mode.
  • the resonance frequency can be approached. In this way, a part of the resonance frequency band due to the higher order mode overlaps with a part of the resonance frequency band due to the fundamental mode, so that the frequency region between the resonance frequency of the fundamental mode and the resonance frequency of the higher order mode.
  • the reflection characteristics (VSWR) of this material have improved dramatically, and this is considered to have broadened the bandwidth.
  • the frequency bandwidth can be adjusted by adjusting the distances dl and d2 between the power supply electrode 4 and the ground electrode 5. Therefore, in the first embodiment, the distances dl, d2 between the power feeding electrode 4 and the ground electrode 5 (5a, 5b) are narrower than the width of the power feeding electrode 4, and are, for example, It is designed so that the surface mount antenna 1 can have the bandwidth required by the specifications.
  • the surface-mounted antenna 1 has a triangular radiation electrode 3 as shown in the schematic perspective view of FIG.
  • One top of the triangular radiation electrode 3 is connected to the feeding electrode 4 as a feeding part Q.
  • the bottom of the radiation electrode 3 with respect to the feeding part Q (top) is an open end K.
  • the configuration of the surface mount antenna 1 other than the shape of the radiation electrode 3 is the same as that of the first embodiment, Ground electrodes 5 (5a, 5b) are provided on both sides of the working electrode 4 with a gap therebetween. The distance between the feeding electrode 4 and the ground electrode 5 (5a, 5b) is narrower than the width of the feeding electrode 4.
  • the inventor of the present invention also relates to the surface-mounted antenna 1 having the triangular radiation electrode 3 as shown in the second embodiment, similarly to the first embodiment, the feeding electrode 4 and the ground electrode. Experiments have confirmed that the effect of widening the frequency band and improving the VSWR can be obtained by making the distance between the two and the electrode 4 narrower than the width of the feeding electrode 4.
  • sample A ′ having a form as shown in FIG. 6 that is, the distance between the feeding electrode 4 and the ground electrode 5 is narrower than the width of the feeding electrode 4
  • sample B ′ as shown in FIG. 7 that is, the gap between the feeding electrode 4 and the ground electrode 5 is wider than the width of the feeding electrode 4 (comparative example)).
  • the reflection characteristics under the condition that the circuit board 10 is mounted in the non-ground region Zz as shown in 8a were obtained by simulation.
  • the experimental results are shown in Fig. 8b and Fig. 8c.
  • Fig. 8b relates to sample A '(surface mount antenna 1 of the second embodiment)
  • Fig. 8c relates to sample B' (surface mount antenna 20 of the comparative example).
  • the dimensions of the circuit board 10 and the dimensions of the dielectric substrate 2 of the surface mount antennas 1 and 20 in this experiment are the same as those in the experiment described in the first embodiment. .
  • the resonance frequency of the higher mode is higher than that of the sample B' (comparative example). Is approaching.
  • the frequency band with a reflection characteristic of -7.4 dB or less (VSWR ⁇ 2.5) is a band from about 2.9 GHz to about 4.7 GHz and a band of about 5.7 GHz power of 8 GHz or more in sample B '.
  • sample A ' has one continuous band from about 3.0 GHz to about 7.6 GHz, which is a wider band.
  • the reflection characteristics (VSWR) are improved.
  • the present inventor further conducted the following experiment.
  • the width H of the feeding electrode 4 and the feeding electrode 4 The distances dl and d2 between the electrodes 5 are variously changed as shown below, and each surface mount antenna 1 is mounted on the circuit board 10 as shown in FIG.
  • the reflection characteristics of the mounted antenna 1 were simulated. That is, in this experiment, in the surface-mounted antenna 1 as shown in FIG. 6, the width H of the feeding electrode 4 is 0.3 mm or more including the electrode width assumed to be practically used, and Within a range of 2.0 mm or less, the change was made every 0.1 mm.
  • the width H of the power supply electrode 4 is 0.4mn!
  • the distance between the feeding electrode 4 and the ground electrode 5 dl, d2 is 0.3mm, 0.9 times the width H of the feeding electrode 4.
  • the interval was changed.
  • the smaller value of the distance dl, d2 between the feeding electrode 4 and the ground electrode 5 is fixed at 0.3 mm because of the practical problem of the distance dl, d2 at the present time due to manufacturing problems. This is because the minimum limit value is 0.3 mm.
  • the width H force of the power supply electrode 4 is within the range of Sl. 8 mm to 2.0 mm, for each electrode width H, the distances dl, d2 between the power supply electrode 4 and the ground electrode 5 are 0.3 mm. Further, when the width H of the feeding electrode 4 is S 0.3 mm, the distances dl and d2 between the feeding electrode 4 and the ground electrode 5 are 0.9 times the width H of the feeding electrode 4 (0.27 mm ).
  • the dimensions of the circuit board 10 and the dimensions of the dielectric substrate 2 of the surface mount antenna 1 are the same as those in the experiment described in the first embodiment.
  • the width of the feeding electrode Q side end of the radiation electrode 3 is in accordance with the width of the feeding electrode 4 so that the end of the feeding electrode Q side of the radiation electrode 3 matches the feeding electrode 4. It has become wide.
  • FIG. 9b is a graph showing the simulation result of the reflection characteristics of the surface-mounted antenna 1 in which the width H of the feeding electrode 4 is 0.4 mm.
  • FIG. 9a shows the distance between the feeding electrode 4 and the ground electrode 5 dl , d2 is 0.3 mm, and FIG. 9b relates to the case where the distance dl, d2 between the feeding electrode 4 and the ground electrode 5 is 0.9 times (0.36 mm) the width H of the feeding electrode 4.
  • Figures 10a and 10b are graphs showing the simulation results of the reflection characteristics of the surface-mounted antenna 1 where the width H of the feed electrode 4 is 0.5 mm, and Fig. 10a shows the simulation results of the feed electrode 4 and the ground electrode 5 Fig.
  • FIG. 10b shows that the distance between the feeding electrode 4 and the ground electrode 5 is 0.9 times (0.45mm) the width H of the feeding electrode 4 with respect to the one where the spacing dl, d2 is 0.3mm.
  • Figure 11a and Figure l ib is a graph showing the simulation result of the reflection characteristics of the surface mount antenna 1 where the width H of the feed electrode 4 is 0.6 mm, and FIG. 11a shows the spacing between the feed electrode 4 and the ground electrode 5.
  • FIG. l ib relates to the case where the distances dl and d2 between the feeding electrode 4 and the ground electrode 5 are 0.9 times (0.54 mm) the width H of the feeding electrode 4.
  • FIGS. 12a and 12b are graphs showing simulation results of the reflection characteristics of the surface-mounted antenna 1 in which the width H of the feeding electrode 4 is 0.7 mm
  • FIG. Figure 12b shows that the distance dl, d2 between ground electrodes 5 is 0.3 mm, and the distance dl, d2 between power supply electrode 4 and ground electrode 5 is 0.9 times the width H of power supply electrode 4 (0.63 mm).
  • Figs. 13a and 13b are graphs showing the simulation results of the reflection characteristics of the surface-mounted antenna 1 with the width H of the feeding electrode 4 and S force of 0.8mm.
  • Fig. 13a shows the feeding electrode 4 and the ground electrode.
  • Figure 13b shows that the distance dl, d2 between the feeding electrode 4 and the ground electrode 5 is 0.9 times (0.72 mm) the width H of the feeding electrode 4 for the case where the spacing dl, d2 between 5 is 0.3 mm.
  • FIG. 14a and 14b are graphs showing the simulation results of the reflection characteristics of the surface-mounted antenna 1 in which the width H of the feeding electrode 4 is H force S0.9 mm
  • FIG. 14a is a graph showing the feeding electrode 4 and the ground electrode 5
  • Figure 14b shows that the distance between the feeding electrode 4 and the ground electrode 5 is 0.9 times (0.81 mm) the width H of the feeding electrode 4
  • the distance between the feeding electrode 4 and the ground electrode 5 is 0.9 times (0.81 mm) the width H of the feeding electrode 4
  • FIGS. 15a and 15b are graphs showing simulation results of the reflection characteristics of the surface-mounted antenna 1 in which the width H force of the power supply electrode 4 is 0 mm.
  • FIG. Figure 15b shows that the distance between the feed electrode 4 and the ground electrode 5 is 0.9 times the width H of the feed electrode 4 (0.90 mm).
  • Figs. 16a and 16b are graphs showing the simulation results of the reflection characteristics of the surface-mounted antenna 1 with the width H force i. Lmm of the feeding electrode 4, and Fig. 16a shows the feeding electrode 4 and the ground electrode.
  • Fig. 16a shows the simulation results of the reflection characteristics of the surface-mounted antenna 1 with the width H force i. Lmm of the feeding electrode 4
  • Fig. 16a shows the feeding electrode 4 and the ground electrode.
  • FIG. 16b shows that the distances dl and d2 between the feeding electrode 4 and the ground electrode 5 are 0.9 times (0.99 mm) of the width H of the feeding electrode 4 with respect to the case where the spacings dl and d2 between 5 are 0.3 mm.
  • Figures 17a and 17b are graphs showing the simulation results of the reflection characteristics of the surface-mounted antenna 1 with the width H force of the feed electrode 4 of l.2 mm.
  • Figure 17a shows the feed electrode 4 and the ground electrode 5 For the case where the distance dl, d2 between them is 0.3 mm, Fig.
  • the distance between the ground electrodes 5 is dl, d2 is 0.9 times the width H of the feed electrode 4 (1.08 mm).
  • FIGS. 18a and 18b are graphs showing the simulation results of the reflection characteristics of the surface-mounted antenna 1 in which the feeding electrode 4 has a width H force of 3 mm.
  • FIG. 18a shows the feeding electrode 4 and the ground electrode.
  • Fig. 18b shows that the distance dl, d2 between the ground electrodes 5 is 0.3 mm, and the distance dl, d2 between the feed electrode 4 and the ground electrode 5 is 0.9 times the width H of the feed electrode 4 (1.17 mm).
  • Figures 19a and 19b are graphs showing the simulation results of the reflection characteristics of the surface-mounted antenna 1 with the width H of the feeding electrode 4 of 1.4 mm, and Fig. 19a shows the feeding electrode 4 and the ground electrode.
  • Figure 19b shows that the distance dl, d2 between the feeding electrode 4 and the ground electrode 5 is 0.9 times the width H of the feeding electrode 4 (1.26 mm).
  • 20a and 20b are graphs showing the simulation results of the reflection characteristics of the surface-mounted antenna 1 in which the width H of the feeding electrode 4 is 1.5 mm.
  • FIG. 20a is a diagram between the feeding electrode 4 and the ground electrode 5.
  • Figure 20b shows that the distance dl, d2 between the feeding electrode 4 and the ground electrode 5 is 0.9 times (1.35 mm) the width H of the feeding electrode 4.
  • the distance dl, d2 between the feeding electrode 4 and the ground electrode 5 is 0.9 times (1.35 mm) the width H of the feeding electrode 4.
  • FIGS. 21a and 21b are graphs showing simulation results of the reflection characteristics of the surface-mounted antenna 1 in which the width H of the feeding electrode 4 is 1.6 mm, and FIG. For the case where the distance dl, d2 between the ground electrodes 5 is 0.3 mm, Fig. 21b shows that the distance dl, d2 between the feeding electrode 4 and the ground electrode 5 is 0.9 times the width H of the feeding electrode 4 (1.44). mm).
  • 22a and 22b are graphs showing the simulation results of the reflection characteristics of the surface-mounted antenna 1 in which the feeding electrode 4 has a width H force of i.7 mm, and FIG. 22a shows the feeding electrode 4 and the ground electrode.
  • Figure 22b shows that the distance dl, d2 between the feeding electrode 4 and the ground electrode 5 is 0.9 times (1.53 mm) the width H of the feeding electrode 4 with respect to the case where the spacing dl, d2 between 5 is 0.3 mm. About something.
  • FIG. 23a is a graph showing a simulation result of the reflection characteristics of the surface-mounted antenna 1 in which the feeding electrode 4 has a width H force of Sl. 8 mm.
  • FIG. 23b is a graph showing the simulation result of the reflection characteristics of the surface-mounted antenna 1 in which the feeding electrode 4 has a width H force of .9 mm.
  • Figure 23c shows the reflection characteristics of the surface-mounted antenna 1 in which the feeding electrode 4 has a width H force of 3 ⁇ 4.0 mm. It is a graph showing a simulation result.
  • FIGS. 23a to 23c is obtained under the condition that the distances dl and d2 between the feeding electrode 4 and the ground electrode 5 are 0.3 mm.
  • FIG. 24 is a graph showing the simulation results of the reflection characteristics of the surface-mounted antenna 1 where the width H of the feed electrode 4 is 0.3 mm.
  • the distance between the feed electrode 4 and the ground electrode 5 dl, d2 Is obtained under the condition that the width H of the feeding electrode 4 is 0.9 times (0.27 mm).
  • the distance between the power supply electrode 4 and the ground electrode 5 is wider than the width of the power supply electrode 4.
  • the resonance frequency of the fundamental mode is the same.
  • the resonance frequency of the higher-order mode is close to the resonance frequency of the fundamental mode.
  • the lowest value having the worst reflection characteristics in the frequency range from the resonance frequency of the fundamental mode to the resonance frequency of the higher-order mode is investigated, and the width of the feeding electrode 4 is determined.
  • the relationship between H and its minimum value is shown in the graph of FIG.
  • the solid line ⁇ shown in FIG. 25 relates to a condition where the distances dl, d2 between the power supply electrode 4 and the ground electrode 5 are 0.9 times the width H of the power supply electrode 4.
  • the solid line relates to the condition where the distances dl and d2 between the feeding electrode 4 and the dielectric electrode 5 are 0.3 mm.
  • the width H of the feeding electrode 4 was within the range of 0.5 mm or more and 1.7 mm or less. Therefore, by making the distances dl and d2 between the power supply electrode 4 and the ground electrode 5 narrower than the width H of the power supply electrode 4, a part of the resonance frequency band of the higher-order mode is changed to the resonance frequency of the fundamental mode.
  • the higher-order mode resonance frequency approaches the fundamental mode resonance frequency as it overlaps part of the band, and the reflection characteristics are -7.4 dB or less (VSWR ⁇ 2.5) (dot line ⁇ or less in Fig. 25). It can be seen that the frequency band can be obtained.
  • the third embodiment relates to a wireless communication device.
  • the surface mount antenna 1 of the first embodiment or the second embodiment is provided on the circuit board 10 in the form as shown in FIG. 3a.
  • redundant description thereof is also omitted.
  • the present invention is not limited to the forms of the first to third embodiments, and can take various forms.
  • the force in which the ground electrode 5 is disposed on both sides of the power supply electrode 4, for example, as shown in FIG. 26, the power supply electrode 4 and the ground The length of the opposing part of the electrode 5 can be increased, and even if there is only one ground electrode 5, the capacitance between the feeding electrode 4 and the ground electrode 5 (that is, the feeding part of the radiating electrode 3)
  • the ground electrode 5 is disposed only on one side of the power supply electrode 4 when the capacitance between the power supply side and the ground can be made large enough to achieve the required wide frequency band. Moyore.
  • the distance d between the power supply electrode 4 and the ground electrode 5 is narrower than the width H of the power supply electrode 4.
  • the radiation electrode 3 is formed only on the upper surface of the dielectric substrate 2.
  • the radiation electrode 3 may be formed across two surfaces of the substrate 2 .
  • the radiation electrode 3 may be formed over the three surfaces of the dielectric substrate 2.
  • the radiation electrode 3 may be formed over the four surfaces of the dielectric substrate 2.
  • the radiation electrode 3 may be formed over 5 or 6 surfaces (entire surface) of the dielectric substrate 2.
  • the radiation electrode 3 may be configured to be formed over a plurality of surfaces of the dielectric substrate 2.
  • the radiation electrode 3 By forming the radiation electrode 3 over a plurality of surfaces of the dielectric substrate 2, the area of the top surface (bottom surface) of the dielectric substrate 2 can be reduced. Can occupy less area.
  • the radiation electrode 3 has a teardrop shape.
  • the radiation electrode 3 has a triangular shape other than the teardrop shape. It may be formed over a plurality of surfaces of the dielectric substrate 2.
  • the radiation electrode 3 may have a shape in which a part thereof is cut out, as shown in the developed view of Fig. 27d.
  • the radiation electrode 3 may have a shape in which a protrusion is provided.
  • the radiation electrode 3 may have a shape in which an electrode non-formation region in which no electrode is formed is arranged in a portion avoiding the edge portion.
  • the release An example in which the shooting electrode 3 has a teardrop shape is shown, and in the second embodiment, an example in which the radiation electrode 3 has a triangular shape has been shown.
  • the radiation electrode 3 radiates from the feeding portion Q to the open end K according to the direction force. Any shape other than a teardrop shape or a triangle shape may be used as long as the electrode 3 has a widened portion.
  • the substrate constituting the surface mount antenna 1 is made of a dielectric, but for example, the substrate may be made of a magnetic material.
  • the surface-mounted antenna of the present invention and the wireless communication device of the present invention can be reduced in size while increasing the frequency band and improving the VSWR. Therefore, the surface-mounted antenna of the present invention is mounted on a small wireless communication device. This is particularly effective when applied to a surface mount antenna or a small wireless communication device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

 無線通信用の高周波回路に接続してアンテナ動作を行う放射電極3が基体2上に形成されている構成を備えた表面実装型アンテナ1において、放射電極3の一端側は高周波回路に接続する給電部Qと成し、放射電極3の他端側は開放端Kと成す。放射電極3は給電部Qから開放端側Kに向かうに従って放射電極3の幅が広がっている部位を有している。基体2には、放射電極3の給電部Qに接続して当該給電部Qを高周波回路に接続させるための帯状の給電用電極4を設けると共に、給電用電極4の両側あるいは片側には、給電用電極4と間隙を介してグランド電極5を設ける。グランド電極5と給電用電極4との間の間隔d1,d2は給電用電極4の幅Hよりも狭くする。

Description

明 細 書
表面実装型アンテナおよびそれを備えた無線通信機
技術分野
[0001] 本発明は、放射電極が基体に設けられている構成を備えた表面実装型アンテナお よびそれを備えた無線通信機に関するものである。
背景技術
[0002] モノポールアンテナの一つとして、図 28に示されるようなアンテナが提案されている
(例えば非特許文献 1参照)。このアンテナ 30は、円形状の導体板から成る接地板 3 1と、この接地板 31上に立設されている放射電極 32とを有して構成されている。放射 電極 32はモノポールアンテナとして機能するものである。当該放射電極 32は、円錐 状の部位 32aと、球状部位 32bとが連接された形態と成している。この放射電極 32は 、円錐状の部位 32aの尖端部を接地板 31側に向けて接地板 31上に立設される。放 射電極 32の尖端部は、接地板 31に形成されている貫通孔を通して、接地板 31の下 方側に配置されている同軸ケーブル 33に接続される。同軸ケーブル 33は、無線通 信機に設けられている無線通信用の高周波回路 34に接続して、放射電極 32を無線 通信用の高周波回路 34に電気的に接続させる。
[0003] 例えば、高周波回路 34から同軸ケーブル 33を通して送信用の信号が放射電極 32 に供給されると、放射電極 32が励振して (アンテナ動作して)送信用の信号を無線送 信する。また、外部から放射電極 32に信号が到来して放射電極 32が励振して(アン テナ動作して)信号を受信すると、その受信信号は同軸ケーブル 33を通して高周波 回路 34に伝達され、高周波回路 34で信号処理される。
[0004] 上記のようなアンテナ 30は、無線通信用に予め設定された周波数帯において、水 平面内無指向性を持つことができる。しかも、アンテナ 30は、 VSWR (電圧定在波比 )を理想的な「1」に向けて向上させやすいものである。換言すれば、アンテナ 30は、 放射電極 32と、高周波回路 34側とのインピーダンスマッチングをとりやすいものであ る。
[0005] 非特許文献 1 :谷ロ琢也、小林岳彦, 「UWBワイヤレスシステム用の水平面内無指 向性および低 VSWRアンテナ」, 2002年電子情報通信学会通信ソサイエティ大会要 項集, SB— 1—5
発明の開示
発明が解決しょうとする課題
[0006] ところで、近年、無線通信機の小型化に伴ってアンテナの小型化が要求されている 。し力 ながら、アンテナ 30の構成では、無線通信用に設定された周波数帯の波長 によって放射電極 32の大きさがほぼ定まってしまう。また、放射電極 32は、円錐状の 部位 32aと、球状部位 32bとが組み合わされた嵩張る態様を持つものである。これら の原因により、アンテナ 30の小型化は難しいという問題がある。
[0007] また、放射電極 32は、円錐状の部位 32aと、球状部位 32bとが組み合わされた尖 端部と曲面から成る形状である。このような形状の放射電極 32を平板である接地板 3 1上に立設させることは難しい。このために、無線通信機内に放射電極 32を組み込 む作業は面倒であり、製造コストが掛かるという問題がある。
課題を解決するための手段
[0008] この発明は次に示す構成をもって前記課題を解決するための手段としている。すな わち、この発明の表面実装型アンテナは、
無線通信用の高周波回路に接続してアンテナ動作を行う放射電極が基体上に形 成されてレ、る構成を備えた表面実装型アンテナにおレ、て、
放射電極の一端側は無線通信用の高周波回路に接続する給電部と成し、放射電 極の他端側は開放端と成し、放射電極は給電部から開放端側に向かうに従って放射 電極の幅が広がっている部位を有しており、
基体には、放射電極の給電部に接続して当該給電部を無線通信用の高周波回路 に接続させるための帯状の給電用電極が設けられていると共に、給電用電極の両側 あるいは片側には、給電用電極と間隙を介してグランド電極が設けられており、 グランド電極と給電用電極との間の間隔は給電用電極の幅よりも狭レ、ことを特徴と している。
[0009] また、この発明の無線通信機は、接地電極が設けられているグランド領域および接 地電極が設けられていない非グランド領域を有する回路基板を備え、この発明にお ける特有な構成を持つ表面実装型アンテナが回路基板の非グランド領域に配設され ており、回路基板には、表面実装型アンテナのグランド電極を回路基板の接地電極 に接続させるための接続手段が設けられていることを特徴としている。
発明の効果
[0010] この発明によれば、放射電極は、給電部から開放端側に向力うに従って放射電極 の幅が広がっている部位を有する形態と成している。この放射電極はモノポールアン テナと成すことができ、その形態によって、水平面内無指向性を持つことができ、また
、周波数帯域の広帯域化および VSWRの向上が容易となる。この発明では、放射電 極は、その全体が誘電体あるいは磁性体から成る基体の面上に設けられている。こ のため、放射電極全体が基体からの影響を受けて基体の誘電率に応じた波長短縮 効果が生じる。これにより、放射電極の小型化(つまり、表面実装型アンテナの小型 ィ匕)が容易である。
[0011] また、放射電極は基体の面上に設けられているので、その放射電極が設けられた 基体を例えば無線通信機の回路基板上に配設するだけで、表面実装型アンテナを 無線通信機に簡単かつ短時間で組み込むことができる。例えば、表面実装型アンテ ナの基体を半田を利用して無線通信機の回路基板に固定する場合には、回路基板 に半田を利用して電気部品等を固定する表面実装工程でもって、表面実装型アンテ ナも同時に無線通信機の回路基板に固定 (表面実装)することが可能である。このた め、電気部品を回路基板に搭載する工程とは別に回路基板への表面実装型アンテ ナの組み込み工程を設けなくて済むこととなり、無線通信機の製造工程の簡略化を 図ること力 Sできる。
[0012] すなわち、この発明の構成を備えることにより、表面実装型アンテナの周波数帯域 の広帯域化および VSWRの向上および小型化が容易となる。かつ、表面実装型ァ ンテナを無線通信機へ組み込み作業を簡単に行うことが可能となる。
[0013] さらに、この発明では、表面実装型アンテナの基体には、放射電極を無線通信用 の高周波回路に接続させるための帯状の給電用電極が設けられている。この給電用 電極の両側あるいは片側には、給電用電極と間隔を介してグランド電極が設けられ ている。このように基体にグランド電極を設けてグランド電極を給電用電極に近接配 置することにより、放射電極の給電部側とグランドとの間には、放射電極の共振周波 数に影響を与える程の容量を形成できることとなる。このため、給電用電極とグランド 電極による放射電極の給電部側とグランドとの間の容量の大きさを可変すると、放射 電極が持つ複数の共振モードのそれぞれの共振周波数を変動させることができる。 また、その放射電極の給電部側とグランドとの間の容量は、周波数が高くなるに従つ て放射電極の共振動作 (例えば共振周波数)に与える影響が大きくなる。このために 、放射電極の給電部側とグランドとの間の容量の大きさを可変したときに、放射電極 の複数の共振モードのうちの最も周波数が低い基本モードの共振周波数の変化量よ りも、基本モードよりも周波数が高い高次モードの共振周波数の変化量が大きくなる 。換言すれば、給電用電極とグランド電極による放射電極の給電部側とグランドとの 間の容量の大きさを可変することにより、放射電極の基本モードの共振周波数の変 化量を小さく抑制した状態で、高次モードの共振周波数を大きく可変させることがで きる。
[0014] この発明では、グランド電極と給電用電極との間の間隔は給電用電極の幅よりも狭 い構成である。この構成を備えることによって、グランド電極と給電用電極間の間隔が 給電用電極の幅よりも広い場合に比べて、放射電極の給電部側とグランド間の容量 が大きくなる。この放射電極の給電部側とグランド間の大きな容量によって、放射電 極の基本モードの共振周波数の変動を抑制しつつ、放射電極の高次モードの共振 周波数を基本モードの共振周波数に近付ける方向に可変することができる。そして、 高次モードによる周波数帯の一部分を基本モードによる周波数帯の一部にオーバ 一ラップさせることが可能である。つまり、基本モードによる周波数帯と、高次モードに よる周波数帯との結合の周波数帯を形成することができ、これにより、周波数帯域を 広帯域化することができる。
[0015] この発明の表面実装型アンテナを備えた無線通信機にあっては、この発明の表面 実装型アンテナは小型なものであることから、このアンテナの小型化により、無線通 信機の小型化を図ることができる。また、この発明の表面実装型アンテナは、広帯域 な周波数帯を持つことができるものであることから、表面実装型アンテナを 1つ設ける だけで、無線通信機は、広帯域な周波数帯を使用するシステムに対応できる。 図面の簡単な説明
[図 1]第 1実施例の表面実装型アンテナを説明するための模式的な斜視図である。
[図 2]図 1に示されている表面実装型アンテナの展開図である。
[図 3a]回路基板における図 1の表面実装型アンテナの表面実装形態の一例を説明 するための図である。
[図 3b]図 3aに示される回路基板の一構成例を説明するための図である。
[図 4]第 1実施例の表面実装型アンテナに対する比較例を表した模式的な斜視図で ある。
[図 5a]本発明者が行った実験の条件を説明するための図である。
[図 5b]本発明者が行った実験によるサンプル A (第 1実施例の表面実装型アンテナ の構成を持つもの)の実験結果を表したグラフである。
[図 5c]本発明者が行った実験によるサンプル B (比較例の表面実装型アンテナの構 成を持つもの)の実験結果を表したグラフである。
[図 6]第 2実施例の表面実装型アンテナを説明するための模式的な斜視図である。
[図 7]第 2実施例の表面実装型アンテナに対する比較例を表した模式的な斜視図で ある。
[図 8a]本発明者が行った実験の条件を説明するための図である。
[図 8b]本発明者が行った実験によるサンプル A' (第 2実施例の表面実装型アンテナ の構成を持つもの)の実験結果を表したグラフである。
[図 8c]本発明者が行った実験によるサンプル B ' (比較例の表面実装型アンテナの構 成を持つもの)の実験結果を表したグラフである。
[図 9a]給電用電極幅 H力 S0.4mm、給電用電極とグランド電極との間の間隔 dl, d2が 0. 3mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特性 例を表すグラフである。
[図 9b]給電用電極幅 Hが 0.4mm、給電用電極とグランド電極との間の間隔 dl, d2が 0. 36mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特 性例を表すグラフである。
[図 10a]給電用電極幅 H力 S0.5mm、給電用電極とグランド電極との間の間隔 dl, d2が 0 .3mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特性 例を表すグラフである。
[図 10b]給電用電極幅 Hが 0.5mm、給電用電極とグランド電極との間の間隔 dl, d2が 0.45mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特 性例を表すグラフである。
[図 11a]給電用電極幅 Hが 0.6mm、給電用電極とグランド電極との間の間隔 dl, d2が 0 .3mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特性 例を表すグラフである。
[図 l ib]給電用電極幅 H力 S0.6mm、給電用電極とグランド電極との間の間隔 dl, d2が 0.54mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特 性例を表すグラフである。
[図 12a]給電用電極幅 H力 S0.7mm、給電用電極とグランド電極との間の間隔 dl, d2が 0 • 3mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特性 例を表すグラフである。
[図 12b]給電用電極幅 H力 S0.7mm、給電用電極とグランド電極との間の間隔 dl, d2が 0.63mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特 性例を表すグラフである。
[図 13a]給電用電極幅 H力 0.8mm、給電用電極とグランド電極との間の間隔 dl, d2が 0 .3mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特性 例を表すグラフである。
[図 13b]給電用電極幅 Hが 0.8mm、給電用電極とグランド電極との間の間隔 dl, d2が 0.72mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特 性例を表すグラフである。
[図 14a]給電用電極幅 H力 0.9mm、給電用電極とグランド電極との間の間隔 dl, d2が 0 .3mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特性 例を表すグラフである。
[図 14b]給電用電極幅 Hが 0.9mm、給電用電極とグランド電極との間の間隔 dl, d2が 0.81mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特 性例を表すグラフである。
[図 15a]給電用電極幅 H力 l.0mm、給電用電極とグランド電極との間の間隔 dl, d2が 0 .3mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特性 例を表すグラフである。
[図 15b]給電用電極幅 H力 Sl.0mm、給電用電極とグランド電極との間の間隔 dl, d2が 0.90mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特 性例を表すグラフである。
[図 16a]給電用電極幅 Hが l. lmm、給電用電極とグランド電極との間の間隔 dl, d2が 0
• 3mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特性 例を表すグラフである。
[図 16b]給電用電極幅 Hが l. lmm、給電用電極とグランド電極との間の間隔 dl, d2が 0.99mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特 性例を表すグラフである。
[図 17a]給電用電極幅 Hが 1.2mm、給電用電極とグランド電極との間の間隔 dl, d2が 0
• 3mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特性 例を表すグラフである。
[図 17b]給電用電極幅 Hが 1.2mm、給電用電極とグランド電極との間の間隔 dl, d2が 1.08mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特 性例を表すグラフである。
[図 18a]給電用電極幅 H力 l.3mm、給電用電極とグランド電極との間の間隔 dl, d2が 0 .3mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特性 例を表すグラフである。
[図 18b]給電用電極幅 H力 Sl.3mm、給電用電極とグランド電極との間の間隔 dl, d2が 1.17mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特 性例を表すグラフである。
[図 19a]給電用電極幅 H力 l.4mm、給電用電極とグランド電極との間の間隔 dl, d2が 0 .3mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特性 例を表すグラフである。 [図 19b]給電用電極幅 H力 Sl.4mm、給電用電極とグランド電極との間の間隔 dl, d2が 1.26mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特 性例を表すグラフである。
[図 20a]給電用電極幅 H力 l.5mm、給電用電極とグランド電極との間の間隔 dl, d2が 0 .3mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特性 例を表すグラフである。
[図 20b]給電用電極幅 H力 Sl.5mm、給電用電極とグランド電極との間の間隔 dl, d2が 1.35mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特 性例を表すグラフである。
[図 21a]給電用電極幅 Hが 1.6mm、給電用電極とグランド電極との間の間隔 dl, d2が 0
• 3mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特性 例を表すグラフである。
[図 21b]給電用電極幅 Hが 1.6mm、給電用電極とグランド電極との間の間隔 dl, d2が 1.44mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特 性例を表すグラフである。
[図 22a]給電用電極幅 Hが 1.7mm、給電用電極とグランド電極との間の間隔 dl, d2が 0
• 3mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特性 例を表すグラフである。
[図 22b]給電用電極幅 H力 Sl.7mm、給電用電極とグランド電極との間の間隔 dl, d2が 1.53mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特 性例を表すグラフである。
[図 23a]給電用電極幅 H力 l.8mm、給電用電極とグランド電極との間の間隔 dl, d2が 0 .3mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特性 例を表すグラフである。
[図 23b]給電用電極幅 H力 Sl.9mm、給電用電極とグランド電極との間の間隔 dl, d2が 0.3mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特 性例を表すグラフである。
[図 23c]給電用電極幅 Hが 2.0mm、給電用電極とグランド電極との間の間隔 dl , d2が 0 .3mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特性 例を表すグラフである。
[図 24]給電用電極幅 Hが 0.3mm、給電用電極とグランド電極との間の間隔 dl, d2が 0. 27mmである条件下でシミュレーションにより得られた表面実装型アンテナの反射特 性例を表すグラフである。
[図 25]図 9a〜図 24に表されている各シミュレーション結果から得られた周波数 5GHz 付近の反射特性の最低値と、給電用電極幅 Hとの関係例を表したグラフである。
[図 26]その他の実施例を説明するための図である。
[図 27a]放射電極のその他の形態例を説明するための図である。
[図 27b]放射電極のさらに別のその他の形態例を説明するための図である。
[図 27c]さらに、放射電極の別のその他の形態例を説明するための図である。
[図 27d]さらにまた、放射電極の別のその他の形態例を説明するための図である。
[図 28]従来例を説明するためのモデル図である。
符号の説明
[0017] 1 表面実装型アンテナ
2 誘電体基体
3 放射電極
4 給電用電極
5 グランド電極
7 無線通信用の高周波回路
10 回路基板
11 接地電極
発明を実施するための最良の形態
[0018] 以下に、この発明に係る実施例を図面に基づいて説明する。
[0019] 図 1には第 1実施例の表面実装型アンテナが模式的な斜視図により示され、図 2に は図 1に示される表面実装型アンテナの模式的な展開図が示されている。この第 1実 施例の表面実装型アンテナ 1は、直方体状の誘電体から成る基体 (誘電体基体) 2と 、この誘電体基体 2の上面 2aに形成されている放射電極 3と、誘電体基体 2の側面 2 bに形成されている給電用電極 4とグランド電極 5 (5a, 5b)とを有して構成されている
[0020] 放射電極 3の一端側は給電部 Qと成し、放射電極 3の他端側は開放端 Kと成してい る。この放射電極 3は、給電部 Qから開放端 K側に向力 に従って放射電極 3の幅が 広がっている部位を備えた涙滴形状と成っている。この放射電極 3はモノポールアン テナとして動作することができるものである。当該放射電極 3は、予め定められた周波 数帯でもって信号の無線通信を行うことができるように、その大きさ等が設計されてい る。この放射電極 3は涙滴形状となっているので、水平面内無指向性が得易ぐまた 、周波数帯域の広帯域化および VSWRの向上が容易である。
[0021] 給電用電極 4は帯状と成している。この給電用電極 4の一端側は放射電極 3の給電 部 Q (つまり、涙滴形状の放射電極 3の尖端部)に接続されている。給電用電極 4の 他端側は誘電体基体 2の側面 2bから底面 2cに回り込んで形成されている。給電用 電極 4は、放射電極 3の給電部 Qを無線通信機に設けられている無線通信用の高周 波回路 7に接続させるためのものである。
[0022] このような給電用電極 4の両側に、それぞれ、給電用電極 4と間隔を介してグランド 電極 5 (5a, 5b)が配設されている。グランド電極 5 (5a, 5b)はグランドに接地される 電極である。グランド電極 5 (5a, 5b)は、誘電体基体 2の側面 2bから底面 2cの端縁 部に伸長形成されている。この第 1実施例では、グランド電極 5aと給電用電極 4との 間の間隔 dl、および、グランド電極 5bと給電用電極 4との間の間隔 d2は両方共に、 給電用電極 4の幅 Hよりも狭い間隔となっている。
[0023] なお、この第 1実施例では、グランド電極 5 (5a, 5b)には、誘電体基体底面 2cに形 成されている下端部から側面 2bに形成されている上端部に至る前の途中位置まで の部分の給電用電極 4側に、切り欠き部 8が形成されている。この第 1実施例の表面 実装型アンテナ 1が、後述するように半田を利用して無線通信機の回路基板に表面 実装されるときに、給電用電極 4とグランド電極 5の各底面側の部位には、それぞれ、 半田が配設される。給電用電極 4の底面側部位と、グランド電極 5の底面側部位とが 、給電用電極 4の幅 Hよりも狭い間隔でもって近接配置されていると、給電用電極 4 の底面側部位に配置された半田と、グランド電極 5の底面側部位に配置された半田 とが半田ブリッジを形成してしまってショート問題を発生させてしまう虞がある。これに 対して、この第 1実施例に示したように、グランド電極 5に切り欠き部 8を形成すること によって、グランド電極 5の底面側部位と、給電用電極 4との間の間隔が広がる。これ により、給電用電極 4とグランド電極 5間の半田プリッジの形成を回避できてショート問 題を防止できる。
[0024] また、この第 1実施例では、誘電体基体 2の側面 2dには固定用電極 6 (6a, 6b, 6c )が形成されている。固定用電極 6 (6a, 6b, 6c)は、表面実装型アンテナ 1を無線通 信機の回路基板に半田を利用して固定 (表面実装)するときに半田の下地電極とし て機能する固定専用の電極である。
[0025] この第 1実施例の表面実装型アンテナ 1は上記のように構成されている。この表面 実装型アンテナ 1は、例えば、図 3aのモデル図に示されるように無線通信機の回路 基板 10に表面実装されて無線通信機内に組み込まれる。すなわち、回路基板 10は 、グランド電位を持つ接地電極 11が形成されているグランド領域 Zgと、接地電極 11 が形成されていない非グランド領域 Zzとを有している。表面実装型アンテナ 1は、回 路基板 10の非グランド領域 Zzに配設される。なお、回路基板 10の非グランド領域 Zz には、もちろん、回路基板 10の裏面側や回路基板 10の内層にも接地電極 11は形 成されていない。
[0026] 回路基板 10の非グランド領域 Zzには、図 3bに示されるように、接地電極 11に連通 する接地用配線パターン 12 (12a, 12b)と、無線通信用の高周波回路 7に電気的に 接続する給電用配線パターン 13と、電気的に浮いている固定用導体パターン 14 (1 4a, 14b, 14c)とが形成されている。表面実装型アンテナ 1が回路基板 10の非ダラ ンド領域 Zzに配設される工程では、表面実装型アンテナ 1のグランド電極 5 (5a, 5b) は、回路基板 10の接地用配線パターン 12 (12a, 12b)に位置合わせされる。また、 表面実装型アンテナ 1の給電用電極 4は、回路基板 10の給電用配線パターン 13に 位置合わせされる。さらに、表面実装型アンテナ 1の固定用電極 6 (6a, 6b, 6c)は、 回路基板 10の固定用導体パターン 14 (14a, 14b, 14c)に位置合わせされる。この ように位置合わせが成された状態で、表面実装型アンテナ 1が回路基板 10の非ダラ ンド領域 Zzの基板面上に配置される。 [0027] そして、表面実装型アンテナ 1のグランド電極 5 (5a, 5b)と回路基板 10の接地用配 線パターン 12 (12a, 12b)との間、および、表面実装型アンテナ 1の給電用電極 4と 回路基板 10の給電用配線パターン 13との間、および、表面実装型アンテナ 1の固 定用電極 6 (6a, 6b, 6c)と回路基板 10の固定用導体パターン 14 (14a, 14b, 14c) との間が、それぞれ、例えば半田等の導電性接合材料によって接合される。これによ り、表面実装型アンテナ 1は回路基板 10に固定されると共に、表面実装型アンテナ 1 のグランド電極 5 (5a, 5b)は回路基板 10の接地用配線パターン 12 (12a, 12b)を介 して接地電極 11に接地される。また、表面実装型アンテナ 1の給電用電極 4は回路 基板 10の給電用配線パターン 13を介して無線通信用の高周波回路 7に接続される
[0028] このように表面実装型アンテナ 1が回路基板 10に表面実装されている状態で、例 えば、無線通信用の高周波回路 7から給電用配線パターン 13を介して送信用の信 号が表面実装型アンテナ 1の給電用電極 4に伝達されると、その信号は放射電極 3 に供給され放射電極 3が励振して送信用の信号を無線送信する。また、外部からの 信号到来により放射電極 3が共振して信号を受信すると、その受信信号は放射電極 3から給電用電極 4と給電用配線パターン 13を介して無線通信用の高周波回路 7に 伝達され、無線通信用の高周波回路 7により信号処理が成される。
[0029] この第 1実施例の表面実装型アンテナ 1では、前述したように、給電用電極 4とダラ ンド電極 5 (5a, 5b)との間の間隔 dl, d2は、給電用電極 4の幅 Hよりも狭くなつている 。この構成を備えることによって、間隔 dl, d2が給電用電極 4の幅 Hよりも広い場合に 比べて、周波数帯域の広帯域化および VSWRの向上を図ることができる。このことは 、本発明者が実験により確認している。
[0030] その実験では、次に示すようなサンプル A, Bのそれぞれについて、反射特性をシミ ユレーシヨンにより調べた。サンプル Aは、この第 1実施例において特有な構成(つま り、給電用電極 4とグランド電極 5間の間隔が給電用電極 4の幅よりも狭い構成)を持 つ図 1に示されるような表面実装型アンテナ 1である。サンプノレ Bは、サンプル Aに対 する比較例である。このサンプノレ Bは、図 4に示されるように給電用電極 4とグランド電 極 5間の間隔が給電用電極 4の幅よりも広い構成を持つ表面実装型アンテナ 20であ る。サンプル A, Bは、給電用電極 4とグランド電極 5との間の間隔に関わる構成以外 の構成は同様である。
[0031] サンプル A, Bは両方共に同様に、図 5aの平面図に示されるように、回路基板 10の 非グランド領域 Zzに表面実装されているという同じ条件下で、反射特性のシミュレ一 シヨンが行われた。なお、この実験では、回路基板 10、および、表面実装型アンテナ 1, 20の誘電体基体 2は次に示すような寸法を持つものとした。つまり、回路基板 10 の幅 W は 18mmである。回路基板 10のグランド領域 Zgの長さ Lgは 63.5mmである。回
10
路基板 10の非グランド領域 Zzの長さ Lzは 16.5mmである。表面実装型アンテナ 1の 誘電体基体 2の幅 Wは 12mmである。誘電体基体 2の長さ Lは 15mmである。誘電体
2 2
基体 2の高さ hは 1.5mmである。
[0032] シミュレーションにより得られたサンプル A (つまり、第 1実施例の表面実装型アンテ ナ 1)の反射特性は図 5bに示され、サンプル B (比較例の表面実装型アンテナ 20)の 反射特性は図 5cに示されている。図 5bや図 5cに示されるように、反射特性が- 7.4dB 以下である帯域 (つまり、無線通信を良好に行うことができるか否かの判断基準となる 、 VSWR力 .5以下となる帯域)は、サンプル B (比較例)においては、約 3.0GHzから 約 4.7GHzまでの帯域と、約 5.7GHzから 8GHz以上の帯域との 2つの帯域に分かれて いる。これに対して、サンプル A (第 1実施例)においては、約 3.1GHz力 約 7.9GHz までの連続した 1つの帯域となっている。つまり、この第 1実施例において特有な構成 (つまり、給電用電極 4とグランド電極 5間の間隔が給電用電極 4の幅よりも狭レ、構成) を持つことにより、周波数帯域の広帯域化を図ることができることが分かる。
[0033] このように、この第 1実施例において特有な構成を持つことにより、周波数帯域を広 帯域化できることは次に示す理由によるものと本発明者は考えている。つまり、サンプ ル A (第 1実施例の表面実装型アンテナ 1)は、給電用電極 4とグランド電極 5間の間 隔が給電用電極 4の幅よりも狭レ、。これにより、サンプノレ B (比較例)に比べて、放射 電極 3の給電部側とグランドとの間の容量が大きレ、。また、図 5bや図 5cに示されるよ うに、サンプル Aの基本モードの共振周波数は約 3.5GHzであり、サンプル Bの基本 モードの共振周波数は約 4.2GHzである。このように、給電用電極 4とグランド電極 5 間の間隔の差異によるサンプル A, Bの基本モードの共振周波数のずれは大きくな レ、。これに対して、サンプル Aの高次モードの共振周波数は約 6.2GHzであり、サンプ ル Bの高次モードの共振周波数は約 7.9GHzである。このように、サンプル Aはサンプ ル Bよりも、高次モードの共振周波数が基本モードの共振周波数に近付いて、サンプ ノレ A, Bの高次モードの共振周波数のずれは大きい。
[0034] この実験結果から、給電用電極 4とグランド電極 5による放射電極 3の給電部側とグ ランドとの間の容量を大きくする方向に変化させると、基本モードの共振周波数の変 動量を抑えつつ、高次モードの共振周波数を基本モードの共振周波数に向けて変 化させることができることが分かる。この第 1実施例の構成のように(サンプル Aのよう に)、給電用電極 4とグランド電極 5との間の間隔を給電用電極 4の幅よりも狭くして、 放射電極 3の給電部側とグランドとの間の容量を大きくすることにより、高次モードに よる共振周波数帯の一部が基本モードによる共振周波数帯の一部にオーバーラップ する程に高次モードの共振周波数を基本モードの共振周波数に近付けることができ る。このように、高次モードによる共振周波数帯の一部が基本モードによる共振周波 数帯の一部にオーバーラップすることにより、基本モードの共振周波数と高次モード の共振周波数との間の周波数領域の反射特性 (VSWR)が格段に向上し、これによ り、広帯域化が成されていると考えられる。
[0035] このこと力ら、給電用電極 4とグランド電極 5間の間隔 dl, d2を調整することによって 、周波数帯域幅を調整できることが分かる。したがって、この第 1実施例では、給電用 電極 4と、グランド電極 5 (5a, 5b)との間の間隔 dl, d2は、給電用電極 4の幅よりも狭 レ、間隔であって、例えば仕様等により要求されている帯域幅を表面実装型アンテナ 1 が持てる間隔に設計されている。
[0036] 以下に、第 2実施例を説明する。なお、この第 2実施例の説明において、第 1実施 例と同一構成部分には同一符号を付し、その共通部分の重複説明は省略する。
[0037] この第 2実施例では、表面実装型アンテナ 1は、図 6の模式的な斜視図に示される ように、三角形状の放射電極 3を有している。この三角形状の放射電極 3の一つの頂 部が給電部 Qと成して給電用電極 4に接続されている。また、その放射電極 3の給電 部 Q (頂部)に対する底辺が開放端 Kとなっている。この第 2実施例では、表面実装 型アンテナ 1における放射電極 3の形状以外の構成は第 1実施例と同様であり、給電 用電極 4の両側にはそれぞれ間隔を介してグランド電極 5 (5a, 5b)が設けられてい る。給電用電極 4と、グランド電極 5 (5a, 5b)との間の間隔は、給電用電極 4の幅より も狭くなつている。
[0038] 本発明者は、この第 2実施例に示したような三角形状の放射電極 3を持つ表面実 装型アンテナ 1に関しても、第 1実施例と同様に、給電用電極 4とグランド電極 5との 間の間隔を給電用電極 4の幅よりも狭くすることにより、周波数帯の広帯域化および VSWRの向上の効果が得られることを実験により確認している。
[0039] つまり、その実験では、図 6に示されるような形態のサンプル A' (つまり、給電用電 極 4とグランド電極 5との間の間隔が給電用電極 4の幅よりも狭いもの)と、図 7に示さ れるようなサンプル B' (つまり、給電用電極 4とグランド電極 5との間の間隔が給電用 電極 4の幅よりも広いもの(比較例))とのそれぞれについて、図 8aに示されるような回 路基板 10の非グランド領域 Zzに実装されているという条件の下での反射特性をシミ ユレーシヨンにより求めた。その実験結果が図 8bや図 8cに示されている。図 8bはサ ンプル A' (第 2実施例の表面実装型アンテナ 1)に関するものであり、図 8cはサンプ ル B' (比較例の表面実装型アンテナ 20)に関するものである。なお、この実験におけ る回路基板 10の寸法、および、表面実装型アンテナ 1, 20の誘電体基体 2のそれぞ れの寸法は、第 1実施例で述べた実験と同じ寸法となっている。
[0040] この実験結果においても、第 1実施例と同様に、サンプル A' (第 2実施例)では、サ ンプル B' (比較例)よりも高次モードの共振周波数が基本モードの共振周波数に近 付いている。これにより、サンプル A'においては、高次モードと基本モードの各周波 数帯の一部分がオーバーラップして VSWRが向上すると共に周波数帯域の広帯域 化が成されている。具体的には、反射特性が- 7.4dB以下 (VSWR≤2.5)である周波 数帯は、サンプル B'においては、約 2.9GHzから約 4.7GHzまでの帯域と、約 5.7GHz 力も 8GHz以上の帯域との 2つの帯域となっている。これに対して、サンプル A'にお いては、約 3.0GHzから約 7.6GHzまでの連続した 1つの帯域となっており、広帯域化 されている。かつ、反射特性 (VSWR)が向上している。
[0041] 本発明者はさらに次に示すような実験も行った。その実験では、第 2実施例の構成 を持つ表面実装型アンテナ 1において、給電用電極 4の幅 Hと、給電用電極 4とダラ ンド電極 5間の間隔 dl, d2とをそれぞれ次に示すように様々に変え、各表面実装型 アンテナ 1が図 8aに示されるように回路基板 10に実装されているという条件の下で、 表面実装型アンテナ 1の反射特性をシミュレーションした。つまり、この実験では、図 6 に示されるような表面実装型アンテナ 1において、給電用電極 4の幅 Hは、実用的に 使用されることが想定される電極幅を含む 0.3mm以上、かつ、 2.0mm以下の範囲内に おいて、 0.1mm毎に変ィ匕させた。また、給電用電極 4の幅 Hが 0.4mn!〜 1.7mmの範囲 内である場合には、各電極幅 H毎に、給電用電極 4とグランド電極 5間の間隔 dl, d2 は、 0.3mmと、給電用電極 4の幅 Hの 0.9倍の間隔とに変化させた。ここで、給電用電 極 4とグランド電極 5間の間隔 dl, d2の小さい方の数値を 0.3mmに固定したのは、現 時点において、製造上の問題から、間隔 dl, d2の実用的な最小の限界値が 0.3mm であるからである。
[0042] さらに、給電用電極 4の幅 H力 Sl.8mm〜2.0mmの範囲内である場合には、各電極幅 H毎に、給電用電極 4とグランド電極 5間の間隔 dl, d2は 0.3mmとした。さらに、給電 用電極 4の幅 H力 S0.3mmである場合には、給電用電極 4とグランド電極 5間の間隔 dl , d2は、給電用電極 4の幅 Hの 0.9倍の間隔(0.27mm)とした。なお、この実験では、 回路基板 10の寸法、および、表面実装型アンテナ 1の誘電体基体 2の寸法は、第 1 実施例で述べた実験と同じ寸法となっている。さらに、この実験では、放射電極 3の 給電部 Q側の端部が給電用電極 4に合うように、放射電極 3の給電部 Q側の端部の 幅は、給電用電極 4の幅に応じた幅となっている。
[0043] シミュレーション結果が図 9a〜図 24にそれぞれ示されている。すなわち、図 9aと図
9bは、給電用電極 4の幅 Hが 0.4mmである表面実装型アンテナ 1の反射特性のシミ ユレーシヨン結果を表したグラフであり、図 9aは、給電用電極 4とグランド電極 5間の 間隔 dl, d2が 0.3mmであるものに関し、図 9bは、給電用電極 4とグランド電極 5間の 間隔 dl, d2が給電用電極 4の幅 Hの 0.9倍(0.36mm)であるものに関する。図 10aと図 10bは、給電用電極 4の幅 Hが 0.5mmである表面実装型アンテナ 1の反射特性のシミ ユレーシヨン結果を表したグラフであり、図 10aは、給電用電極 4とグランド電極 5間の 間隔 dl, d2が 0.3mmであるものに関し、図 10bは、給電用電極 4とグランド電極 5間の 間隔 dl, d2が給電用電極 4の幅 Hの 0.9倍(0.45mm)であるものに関する。図 11aと図 l ibは、給電用電極 4の幅 Hが 0.6mmである表面実装型アンテナ 1の反射特性のシミ ユレーシヨン結果を表したグラフであり、図 11aは、給電用電極 4とグランド電極 5間の 間隔 dl , d2が 0.3mmであるものに関し、図 l ibは、給電用電極 4とグランド電極 5間の 間隔 dl , d2が給電用電極 4の幅 Hの 0.9倍(0.54mm)であるものに関する。
[0044] 図 12aと図 12bは、給電用電極 4の幅 H力 0.7mmである表面実装型アンテナ 1の反 射特性のシミュレーション結果を表したグラフであり、図 12aは、給電用電極 4とグラン ド電極 5間の間隔 dl , d2が 0.3mmであるものに関し、図 12bは、給電用電極 4とグラン ド電極 5間の間隔 dl , d2が給電用電極 4の幅 Hの 0.9倍(0.63mm)であるものに関す る。図 13aと図 13bは、給電用電極 4の幅 H力 S0.8mmである表面実装型アンテナ 1の 反射特性のシミュレーション結果を表したグラフであり、図 13aは、給電用電極 4とグ ランド電極 5間の間隔 dl, d2が 0.3mmであるものに関し、図 13bは、給電用電極 4とグ ランド電極 5間の間隔 dl, d2が給電用電極 4の幅 Hの 0.9倍(0.72mm)であるものに関 する。図 14aと図 14bは、給電用電極 4の幅 H力 S0.9mmである表面実装型アンテナ 1 の反射特性のシミュレーション結果を表したグラフであり、図 14aは、給電用電極 4と グランド電極 5間の間隔 dl, d2が 0.3mmであるものに関し、図 14bは、給電用電極 4と グランド電極 5間の間隔 dl, d2が給電用電極 4の幅 Hの 0.9倍(0.81mm)であるものに 関する。
[0045] 図 15aと図 15bは、給電用電極 4の幅 H力 0mmである表面実装型アンテナ 1の反 射特性のシミュレーション結果を表したグラフであり、図 15aは、給電用電極 4とグラン ド電極 5間の間隔 dl , d2が 0.3mmであるものに関し、図 15bは、給電用電極 4とグラン ド電極 5間の間隔 dl , d2が給電用電極 4の幅 Hの 0.9倍(0.90mm)であるものに関す る。図 16aと図 16bは、給電用電極 4の幅 H力 i. lmmである表面実装型アンテナ 1の 反射特性のシミュレーション結果を表したグラフであり、図 16aは、給電用電極 4とグ ランド電極 5間の間隔 dl, d2が 0.3mmであるものに関し、図 16bは、給電用電極 4とグ ランド電極 5間の間隔 dl, d2が給電用電極 4の幅 Hの 0.9倍(0.99mm)であるものに関 する。図 17aと図 17bは、給電用電極 4の幅 H力 l.2mmである表面実装型アンテナ 1 の反射特性のシミュレーション結果を表したグラフであり、図 17aは、給電用電極 4と グランド電極 5間の間隔 dl, d2が 0.3mmであるものに関し、図 17bは、給電用電極 4と グランド電極 5間の間隔 dl, d2が給電用電極 4の幅 Hの 0.9倍( 1.08mm)であるものに 関する。
[0046] 図 18aと図 18bは、給電用電極 4の幅 H力 3mmである表面実装型アンテナ 1の反 射特性のシミュレーション結果を表したグラフであり、図 18aは、給電用電極 4とグラン ド電極 5間の間隔 dl, d2が 0.3mmであるものに関し、図 18bは、給電用電極 4とグラン ド電極 5間の間隔 dl , d2が給電用電極 4の幅 Hの 0.9倍(1.17mm)であるものに関す る。図 19aと図 19bは、給電用電極 4の幅 H力 l.4mmである表面実装型アンテナ 1の 反射特性のシミュレーション結果を表したグラフであり、図 19aは、給電用電極 4とグ ランド電極 5間の間隔 dl, d2が 0.3mmであるものに関し、図 19bは、給電用電極 4とグ ランド電極 5間の間隔 dl, d2が給電用電極 4の幅 Hの 0.9倍(1.26mm)であるものに関 する。図 20aと図 20bは、給電用電極 4の幅 Hが 1.5mmである表面実装型アンテナ 1 の反射特性のシミュレーション結果を表したグラフであり、図 20aは、給電用電極 4と グランド電極 5間の間隔 dl, d2が 0.3mmであるものに関し、図 20bは、給電用電極 4と グランド電極 5間の間隔 dl , d2が給電用電極 4の幅 Hの 0.9倍( 1.35mm)であるものに 関する。
[0047] 図 21aと図 21bは、給電用電極 4の幅 Hが 1.6mmである表面実装型アンテナ 1の反 射特性のシミュレーション結果を表したグラフであり、図 21aは、給電用電極 4とグラン ド電極 5間の間隔 dl, d2が 0.3mmであるものに関し、図 21bは、給電用電極 4とグラン ド電極 5間の間隔 dl , d2が給電用電極 4の幅 Hの 0.9倍( 1.44mm)であるものに関す る。図 22aと図 22bは、給電用電極 4の幅 H力 i.7mmである表面実装型アンテナ 1の 反射特性のシミュレーション結果を表したグラフであり、図 22aは、給電用電極 4とグ ランド電極 5間の間隔 dl, d2が 0.3mmであるものに関し、図 22bは、給電用電極 4とグ ランド電極 5間の間隔 dl, d2が給電用電極 4の幅 Hの 0.9倍(1.53mm)であるものに関 する。
[0048] 図 23aは、給電用電極 4の幅 H力 Sl.8mmである表面実装型アンテナ 1の反射特性の シミュレーション結果を表したグラフである。図 23bは、給電用電極 4の幅 H力 .9mm である表面実装型アンテナ 1の反射特性のシミュレーション結果を表したグラフである 。図 23cは、給電用電極 4の幅 H力 ¾.0mmである表面実装型アンテナ 1の反射特性の シミュレーション結果を表したグラフである。図 23a〜図 23cの何れも、給電用電極 4 とグランド電極 5間の間隔 dl, d2は 0.3mmである条件の下で得られたものである。図 2 4は、給電用電極 4の幅 Hが 0.3mmである表面実装型アンテナ 1の反射特性のシミュ レーシヨン結果を表したグラフであり、給電用電極 4とグランド電極 5間の間隔 dl , d2 は給電用電極 4の幅 Hの 0.9倍(0.27mm)である条件の下で得られたものである。
[0049] 図 9a〜図 24のシミュレーション結果のそれぞれを、図 8cのシミュレーション結果と 比較して分かるように、給電用電極 4とグランド電極 5間の間隔が給電用電極 4の幅よ りも広い場合(図 8c参照)に比べて、給電用電極 4とグランド電極 5間の間隔を給電 用電極 4の幅よりも狭くすると(図 9a〜図 24参照)、基本モードの共振周波数は同様 であるのに、高次モードの共振周波数は基本モードの共振周波数に近付いているこ と力 これらのシミュレーション結果からも分かる。
[0050] また、これらのシミュレーション結果に基づいて、基本モードの共振周波数から高次 モードの共振周波数までの周波数範囲内において、最も反射特性が悪かった最低 値を調べて、給電用電極 4の幅 Hと、その最低値との関係を図 25のグラフに表した。 なお、図 25に示される実線 αは、給電用電極 4とグランド電極 5間の間隔 dl, d2が給 電用電極 4の幅 Hの 0.9倍である条件のものに関する。実線 は、給電用電極 4とダラ ンド電極 5間の間隔 dl , d2が 0.3mmである条件のものに関する。
[0051] 図 25のグラフに表されている実験結果を見ると、このシミュレーションを行った条件 の下では、給電用電極 4の幅 Hが、 0.5mm以上、かつ、 1.7mm以下の範囲内にぉレヽ て、給電用電極 4とグランド電極 5間の間隔 dl , d2を給電用電極 4の幅 Hよりも狭くす ることにより、高次モードによる共振周波数帯の一部が基本モードによる共振周波数 帯の一部にオーバーラップする程に高次モードの共振周波数が基本モードの共振 周波数に近付いて、反射特性が- 7.4dB以下 (VSWR≤2.5) (図 25の点線 γ以下)で ある広帯域な周波数帯を得ることができることが分かる。
[0052] 以下に、第 3実施例を説明する。この第 3実施例は無線通信機に関するものである 。この第 3実施例の無線通信機では、第 1実施例又は第 2実施例の表面実装型アン テナ 1が図 3aに示されるような形態でもって回路基板 10に設けられている。なお、了 ンテナに関わる構成以外の無線通信機構成には様々な構成があり、ここでは、何れ の構成をも採用してよ その説明は省略する。また、第 1実施例又は第 2実施例の 表面実装型アンテナ 1の説明は前述したので、その重複説明も省略する。
[0053] なお、この発明は第 1〜第 3の各実施例の形態に限定されるものではなぐ様々な 実施の形態を採り得る。例えば、この第 1〜第 3の各実施例では、給電用電極 4の両 側に、それぞれ、グランド電極 5が配置されていた力 例えば、図 26に示されるように 、給電用電極 4とグランド電極 5の対向している部分の長さを長くとることができて、グ ランド電極 5が 1つだけでも、給電用電極 4とグランド電極 5間の容量(つまり、放射電 極 3の給電部側とグランドとの間の容量)が、要求される周波数帯域の広帯域化を達 成できる程の大きさとすることができる場合には、給電用電極 4の片側だけにグランド 電極 5を配置してもよレ、。なお、この場合にも、もちろん、給電用電極 4とグランド電極 5との間の間隔 dは、給電用電極 4の幅 Hよりも狭いものとする。
[0054] また、第 1〜第 3の各実施例では、放射電極 3は、誘電体基体 2の上面だけに形成 されていたが、例えば、図 27aの展開図に示されるように、誘電体基体 2の 2面に渡つ て放射電極 3が形成されている構成としてもよい。また、図 27bの展開図に示されるよ うに誘電体基体 2の 3面に渡って放射電極 3が形成されている構成としてもよい。さら に、図 27cの展開図に示されるように誘電体基体 2の 4面に渡って放射電極 3が形成 されている構成としてもよい。さらにまた、放射電極 3は誘電体基体 2の 5面あるいは 6 面(全面)に渡って形成されていてもよレ、。このように、放射電極 3は誘電体基体 2の 複数面に渡って形成されている構成としてもよい。放射電極 3を誘電体基体 2の複数 面に渡って形成する構成とすることにより、誘電体基体 2の上面 (底面)の面積を削減 することができるので、回路基板 10における表面実装型アンテナ 1の占有面積を削 減することができる。なお、図 27aや図 27bや図 27cの例では、放射電極 3は涙滴形 状であつたが、もちろん、涙滴形状以外の三角形状等の放射電極 3に関しても同様 に、放射電極 3は誘電体基体 2の複数面に渡って形成されていてもよいものである。
[0055] さらに、放射電極 3は、図 27dの展開図に示されるように、一部が切り欠かれている 形状と成していてもよい。また、放射電極 3は、突起部が設けられている形状と成して いてもよレ、。さらに、放射電極 3は、端縁部を避けた部分に電極が形成されていない 電極非形成領域が配置されている形状であってもよい。さらに、第 1実施例では、放 射電極 3が涙滴形状である例を示し、第 2実施例では、放射電極 3が三角形状である 例を示したが、放射電極 3は、給電部 Qから開放端 Kに向力 に従って放射電極 3の 幅が広がっている部位を有する形状であれば、涙滴形状や三角形状以外の形状で あってもよレヽ。
[0056] さらに、第 1〜第 3の各実施例では、表面実装型アンテナ 1を構成する基体は誘電 体により構成されていたが、例えば、基体は磁性体により構成されていてもよい。 産業上の利用可能性
[0057] 本発明の表面実装型アンテナおよび本発明の無線通信機は、周波数帯域の広帯 域化や VSWRの向上を図りながら小型化できるものであることから、小型な無線通信 機に搭載される表面実装型アンテナ又は小型な無線通信機に適用するのに特に有 効である。

Claims

請求の範囲
[1] 無線通信用の高周波回路に接続してアンテナ動作を行う放射電極が基体上に形 成されてレ、る構成を備えた表面実装型アンテナにおレ、て、
放射電極の一端側は無線通信用の高周波回路に接続する給電部と成し、放射電 極の他端側は開放端と成し、放射電極は給電部から開放端側に向かうに従って放射 電極の幅が広がっている部位を有しており、
基体には、放射電極の給電部に接続して当該給電部を無線通信用の高周波回路 に接続させるための帯状の給電用電極が設けられていると共に、給電用電極の両側 あるいは片側には、給電用電極と間隙を介してグランド電極が設けられており、 グランド電極と給電用電極との間の間隔は給電用電極の幅よりも狭レ、ことを特徴と する表面実装型アンテナ。
[2] 放射電極は三角形状あるいは涙滴形状と成しており、その三角形状の一つの頂点 又は涙滴形状の尖端部が放射電極の給電部と成していることを特徴とする請求項 1 記載の表面実装型アンテナ。
[3] 給電用電極の幅は、 0. 5mm以上、かつ、 1. 7mm以下の範囲内の幅であることを 特徴とする請求項 1記載の表面実装型アンテナ。
[4] 給電用電極の幅は、 0. 5mm以上、かつ、 1. 7mm以下の範囲内の幅であることを 特徴とする請求項 2記載の表面実装型アンテナ。
[5] 接地電極が設けられているグランド領域および接地電極が設けられていない非ダラ ンド領域を有する回路基板を備え、請求項 1記載の表面実装型アンテナが回路基板 の非グランド領域に配設されており、回路基板には、表面実装型アンテナのグランド 電極を回路基板の接地電極に接続させるための接続手段が設けられていることを特 徴とする無線通信機。
[6] 接地電極が設けられているグランド領域および接地電極が設けられていない非ダラ ンド領域を有する回路基板を備え、請求項 2記載の表面実装型アンテナが回路基板 の非グランド領域に配設されており、回路基板には、表面実装型アンテナのグランド 電極を回路基板の接地電極に接続させるための接続手段が設けられていることを特 徴とする無線通信機。
[7] 接地電極が設けられているグランド領域および接地電極が設けられていない非ダラ ンド領域を有する回路基板を備え、請求項 3記載の表面実装型アンテナが回路基板 の非グランド領域に配設されており、回路基板には、表面実装型アンテナのグランド 電極を回路基板の接地電極に接続させるための接続手段が設けられていることを特 徴とする無線通信機。
[8] 接地電極が設けられているグランド領域および接地電極が設けられていない非ダラ ンド領域を有する回路基板を備え、請求項 4記載の表面実装型アンテナが回路基板 の非グランド領域に配設されており、回路基板には、表面実装型アンテナのグランド 電極を回路基板の接地電極に接続させるための接続手段が設けられていることを特 徴とする無線通信機。
PCT/JP2005/016620 2004-09-10 2005-09-09 表面実装型アンテナおよびそれを備えた無線通信機 WO2006028212A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/575,012 US20080018538A1 (en) 2004-09-10 2005-09-09 Surface-Mount Antenna and Radio Communication Apparatus Including the Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004264174 2004-09-10
JP2004-264174 2004-09-10

Publications (1)

Publication Number Publication Date
WO2006028212A1 true WO2006028212A1 (ja) 2006-03-16

Family

ID=36036494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016620 WO2006028212A1 (ja) 2004-09-10 2005-09-09 表面実装型アンテナおよびそれを備えた無線通信機

Country Status (2)

Country Link
US (1) US20080018538A1 (ja)
WO (1) WO2006028212A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010178001A (ja) * 2009-01-29 2010-08-12 Fujikura Ltd モノポールアンテナ
WO2024143425A1 (ja) * 2022-12-30 2024-07-04 パナソニックIpマネジメント株式会社 アンテナ装置及びアレイアンテナ装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010068425A (ja) * 2008-09-12 2010-03-25 Fujitsu Component Ltd アンテナ装置
EP2262053B1 (en) * 2009-05-26 2012-07-04 Lg Electronics Inc. Portable terminal and antenna device thereof
US11050147B2 (en) * 2017-08-02 2021-06-29 Taoglas Group Holdings Limited Ceramic SMT chip antennas for UWB operation, methods of operation and kits therefor

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235825A (ja) * 1994-02-22 1995-09-05 Murata Mfg Co Ltd 表面実装型アンテナ
JPH07249930A (ja) * 1994-03-09 1995-09-26 Murata Mfg Co Ltd 表面実装型アンテナ
JPH0993016A (ja) * 1995-09-28 1997-04-04 Murata Mfg Co Ltd 表面実装型アンテナおよびこれを用いた通信機
JPH0998009A (ja) * 1995-09-29 1997-04-08 Murata Mfg Co Ltd 表面実装型アンテナの共振周波数調整方法
JPH0998010A (ja) * 1995-09-29 1997-04-08 Murata Mfg Co Ltd 表面実装型アンテナ
US5828340A (en) * 1996-10-25 1998-10-27 Johnson; J. Michael Wideband sub-wavelength antenna
JP2000183637A (ja) * 1998-10-05 2000-06-30 Murata Mfg Co Ltd 表面実装型円偏波アンテナおよびそれを用いた無線装置
JP2002314325A (ja) * 2001-04-13 2002-10-25 Yokowo Co Ltd 表面実装型直線偏波用パッチアンテナ
JP2003133842A (ja) * 2001-10-24 2003-05-09 Alps Electric Co Ltd モノポールアンテナ
US6573866B2 (en) * 2001-08-29 2003-06-03 Auden Techno Corp. Multi-frequency hidden antenna for mobile phones
JP2003533080A (ja) * 2000-05-03 2003-11-05 エクストリームスペクトラム,インコーポレイテッド 一体化された回路を有する平面超広帯域アンテナ
EP1361624A1 (de) * 2002-05-10 2003-11-12 Hirschmann Electronics GmbH & Co. KG Vieleckige Antenne
JP2004129209A (ja) * 2002-08-08 2004-04-22 Tokyo Denki Univ アンテナ装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3114621B2 (ja) * 1996-06-19 2000-12-04 株式会社村田製作所 表面実装型アンテナおよびこれを用いた通信機
US6639559B2 (en) * 2001-03-07 2003-10-28 Hitachi Ltd. Antenna element
US6809687B2 (en) * 2001-10-24 2004-10-26 Alps Electric Co., Ltd. Monopole antenna that can easily be reduced in height dimension
JP3931866B2 (ja) * 2002-10-23 2007-06-20 株式会社村田製作所 表面実装型アンテナおよびそれを用いたアンテナ装置および通信装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235825A (ja) * 1994-02-22 1995-09-05 Murata Mfg Co Ltd 表面実装型アンテナ
JPH07249930A (ja) * 1994-03-09 1995-09-26 Murata Mfg Co Ltd 表面実装型アンテナ
JPH0993016A (ja) * 1995-09-28 1997-04-04 Murata Mfg Co Ltd 表面実装型アンテナおよびこれを用いた通信機
JPH0998009A (ja) * 1995-09-29 1997-04-08 Murata Mfg Co Ltd 表面実装型アンテナの共振周波数調整方法
JPH0998010A (ja) * 1995-09-29 1997-04-08 Murata Mfg Co Ltd 表面実装型アンテナ
US5828340A (en) * 1996-10-25 1998-10-27 Johnson; J. Michael Wideband sub-wavelength antenna
JP2000183637A (ja) * 1998-10-05 2000-06-30 Murata Mfg Co Ltd 表面実装型円偏波アンテナおよびそれを用いた無線装置
JP2003533080A (ja) * 2000-05-03 2003-11-05 エクストリームスペクトラム,インコーポレイテッド 一体化された回路を有する平面超広帯域アンテナ
JP2002314325A (ja) * 2001-04-13 2002-10-25 Yokowo Co Ltd 表面実装型直線偏波用パッチアンテナ
US6573866B2 (en) * 2001-08-29 2003-06-03 Auden Techno Corp. Multi-frequency hidden antenna for mobile phones
JP2003133842A (ja) * 2001-10-24 2003-05-09 Alps Electric Co Ltd モノポールアンテナ
EP1361624A1 (de) * 2002-05-10 2003-11-12 Hirschmann Electronics GmbH & Co. KG Vieleckige Antenne
JP2004129209A (ja) * 2002-08-08 2004-04-22 Tokyo Denki Univ アンテナ装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010178001A (ja) * 2009-01-29 2010-08-12 Fujikura Ltd モノポールアンテナ
WO2024143425A1 (ja) * 2022-12-30 2024-07-04 パナソニックIpマネジメント株式会社 アンテナ装置及びアレイアンテナ装置

Also Published As

Publication number Publication date
US20080018538A1 (en) 2008-01-24

Similar Documents

Publication Publication Date Title
US6903692B2 (en) Dielectric antenna
US7564413B2 (en) Multi-band antenna and mobile communication terminal having the same
US7183980B2 (en) Inverted-F antenna
JP4481716B2 (ja) 通信装置
US8098203B2 (en) Antenna and communication device having the same
US6710748B2 (en) Compact dual band circular PIFA
JP2007089234A (ja) アンテナ
JP2004088218A (ja) 平面アンテナ
US20080122717A1 (en) Flat Miniaturized Antenna and Related Electronic Device Operated in Wide Band
JP2001284954A (ja) 表面実装型アンテナおよびその複共振の周波数調整設定方法および表面実装型アンテナを備えた通信装置
KR20140093548A (ko) 탑 로우딩된 미앤더 선로 방사체의 소형 안테나
KR20100079243A (ko) 무한 파장 안테나 장치
KR20050106533A (ko) 이중 커플링 급전을 이용한 다중밴드용 적층형 칩 안테나
JPH05259724A (ja) プリントアンテナ
CN112117527B (zh) 天线结构
JP2008048412A (ja) マッチング機能を有するモノポールアンテナ
JP2013530623A (ja) 平面導電素子を有するアンテナ
WO2006028212A1 (ja) 表面実装型アンテナおよびそれを備えた無線通信機
KR101049724B1 (ko) 독립 조절이 가능하고 절곡부를 가지는 다중 대역 안테나
EP1483803B1 (en) Microwave antenna
JP2002151930A (ja) アンテナ構造およびそれを備えた無線装置
US7924233B2 (en) Three-dimensional antenna and related wireless communication device
US7482980B2 (en) Three-dimensional wideband antenna and related wireless communication device
JPH09232854A (ja) 移動無線機用小型平面アンテナ装置
KR200402545Y1 (ko) 다중대역 이동통신단말기의 안테나

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11575012

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11575012

Country of ref document: US