WO2006028048A1 - 菌体培養方法 - Google Patents

菌体培養方法 Download PDF

Info

Publication number
WO2006028048A1
WO2006028048A1 PCT/JP2005/016244 JP2005016244W WO2006028048A1 WO 2006028048 A1 WO2006028048 A1 WO 2006028048A1 JP 2005016244 W JP2005016244 W JP 2005016244W WO 2006028048 A1 WO2006028048 A1 WO 2006028048A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
stirring
aeration
agitation
fatty acid
Prior art date
Application number
PCT/JP2005/016244
Other languages
English (en)
French (fr)
Inventor
Kenichi Higashiyama
Original Assignee
Suntory Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntory Limited filed Critical Suntory Limited
Priority to AU2005281109A priority Critical patent/AU2005281109B2/en
Priority to CA2579154A priority patent/CA2579154C/en
Priority to ES05781593T priority patent/ES2387680T3/es
Priority to EP05781593A priority patent/EP1795586B1/en
Priority to US11/662,015 priority patent/US9701990B2/en
Priority to DK05781593.8T priority patent/DK1795586T3/da
Publication of WO2006028048A1 publication Critical patent/WO2006028048A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6472Glycerides containing polyunsaturated fatty acid [PUFA] residues, i.e. having two or more double bonds in their backbone
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone

Definitions

  • the present invention relates to a highly unsaturated fatty acid or a highly unsaturated fatty acid as a constituent fatty acid using an aeration and agitation type culture apparatus capable of adjusting and controlling the agitation power and aeration volume in a medium containing at least a carbon source and a nitrogen source.
  • the present invention relates to a cell culture method for culturing a microorganism capable of producing at least any one of the compounds contained as.
  • Non-Patent Document 1 Kiyoshi Murakami et al., Chemical Engineering Journal 26 (4): 557-562 (2000)
  • the first characteristic configuration of the present invention is that a highly unsaturated fatty acid or a highly advanced fatty acid is used in a medium containing at least a carbon source and a nitrogen source by using an aeration and agitation type culture apparatus capable of adjusting and controlling the agitation power and aeration rate.
  • a medium containing at least a carbon source and a nitrogen source can be cultured, and a homogeneous material can be always prepared because mechanical agitation is performed. As a result, reproducibility in the growth and productivity of the bacterial cells can be ensured.
  • the required power parameter for stirring (P ZV) ° 95 [(WZm 3 ) ° 95 ] is set to 203 or more because the stirring power per unit liquid volume is shown in Ex. 4-2 column in Table 4. 269 (WZm 3 ) or more at the start of the culture, that is, the required dynamic power parameter (PZV) ° 95 [(WZm 3 ) ° 95 ] is 203 or more, and stirring at the start of the culture, preferably the start of the culture It is intended to stir more strongly than the time.
  • Arachidonic acid accounts for about 10% of fatty acids that make up vital organs such as blood and liver (for example, arachidonic acid is 11% and EPA is 1% in the ratio of fatty acids in phospholipids of human blood) DHA is 3%). And it is the flow of membrane as the main component of cell membrane It is involved in the regulation of sex and exhibits various functions in the body's metabolism, while playing an important role as a direct precursor of prostaglandins.
  • At least one of arachidonic acid or an oil and fat having arachidonic acid as a constituent fatty acid which plays an especially important role in infant nutrition, is efficiently and stably produced. It is possible. It can contribute to the maintenance and promotion of public health through the manufacturing and sales of foods, drinks, therapeutic nutritional foods, feeds and pharmaceuticals.
  • a third characteristic configuration of the present invention is that the PUFA-producing bacterium belongs to the genus Mortierella (Mortierella).
  • a fourth characteristic configuration of the present invention is that the predetermined time after the start of culture is preferably 12 to 24 hours.
  • the mechanical agitation with a small agitating shear force for which the agitation power per unit liquid amount is 269 (W / m 3 ) or less is 12 to 24 hours after the start of culture, During this time, during the cultivation, the cells that cause morphological changes to the pulpy mycelial power pellets are efficiently changed so that the viscosity of the subsequent culture solution becomes extremely high. Rise is suppressed. Therefore, it becomes possible to produce PUFAs more efficiently.
  • the liquid medium is inoculated with the spores, mycelia of the strain, or the seed culture solution obtained by culturing in advance or the cells recovered from the seed culture.
  • the main culture is performed.
  • a liquid medium as the carbon source, commonly used ones such as glucose, fructose, xylose, sucrose, maltose, soluble starch, molasses, glycerol, mannitol, saccharified starch, etc. are used. Yes, but not limited to these.
  • the unsaturated fatty acid precursor for example, a hydrocarbon such as hexadecane or octadecane; a fatty acid such as oleic acid or linoleic acid or a salt thereof, or Fatty acid esters such as ethyl ester, glycerin fatty acid ester, sorbitan fatty acid ester; or fats and oils such as olive oil, soybean oil, rapeseed oil, cottonseed oil or coconut oil can be used alone or in combination.
  • the amount of added force of the substrate is 0.001 to 10%, preferably 0.5 to 10%, based on the medium.
  • the culture temperature of the microorganism in the present invention varies depending on the microorganism used.
  • the temperature is set to 5 to 40 ° C, preferably 20 to 30 ° C, and after culturing at 20 to 30 ° C to proliferate the cells, the cultivation is continued at 5 to 20 ° C to continue the unsaturated fatty acid. Can also be produced.
  • Such temperature control can also increase the proportion of highly unsaturated fatty acids in the produced fatty acids.
  • aeration and agitation culture shaking culture, solid culture, or stationary liquid culture is performed, and in main culture, aeration and agitation culture are performed.
  • the medium pH at the start of main culture is adjusted to 5 to 7, preferably 5.5 to 6.5.
  • the main culture period is usually 2 to 30 days, preferably 5 to 20 days, more preferably 5 to 15 days.
  • Cultivation is performed using a culture vessel equipped with a stirring blade.
  • Microorganisms belonging to the genus Mortierella subgenus Mortierella are known as microorganisms capable of producing fats and oils (triglycerides) containing arachidonic acid as a main constituent fatty acid.
  • the present inventors have carried out mutation treatment on the above-mentioned strain to produce microorganisms (JP-A-5-91887) capable of producing fats and oils (triglycerides) whose main constituent fatty acid is dihomo ⁇ -linolenic acid (JP-A-5-91887), Microorganisms capable of producing fats and oils (triglycerides) mainly composed of saturated fatty acids are obtained (JP-A-5-91888).
  • microorganism W098Z394678
  • productivity can be improved by culturing by the culture method of the present invention.
  • the pellet-like cell is one of the fungal forms of actinomycetes when cultured in a liquid medium, and is an aggregate of spherical or spindle-shaped mycelium having an average diameter of 0.2 to several millimeters. Showing the body.
  • the morphogenesis of the cells into pellets is promoted by performing stirring with a small stirring shear force for a predetermined time from the start of the culture.
  • the dissolved oxygen concentration (DO) in the medium begins to decrease with the growth of the cells, but the stirring power and aeration immediately before reaching the lower limit DO value (approximately 50%) that does not affect the productivity of PUFAs. Adjust the amount to maintain the DO value.
  • the arachidonic acid-producing bacterium Mortierella alpina 1S-4 strain (Mortierella alpina IS 4 strain) was cultured in a 10 kL culture tank.
  • the agitation power consumption was measured when operating at various agitation speeds under the conditions of culture volume of 6 kL and aeration lwm. The results are shown in the table below.
  • M. alpina IS Spore suspension of 4 strains is inoculated into 0.1 vol.% Of yeast extract 1.0%, glucose 2.0%, pH 6.3 medium, reciprocal shaking 100 rpm, temperature 28 ° C Under this condition, seed culture (first stage) was started and cultured for 3 days.
  • a medium for main culture was prepared in a 10 kL aeration and stirring tank (inner diameter of culture tank: 1.8 m).
  • a 4500 L medium (medium A: soybean powder 336 kg, KH PO 16.
  • the value of each parameter at the start of culture was determined as follows.
  • Vs ° - 67 0.03 [( m / sec) 0 - 67]
  • Vs ° - 67 0.130 [( m / sec) 0 '67]
  • the medium was fed as shown below, and the main culture was performed for 306 hours.
  • the cells were sterilized at 120 ° C for 20 minutes, and then wet cells were collected with a continuous dehydrator, and the moisture content was obtained by hot air drying (hot air temperature 120 ° C) with a vibrating fluidized bed dryer. Dried to 2 wt%.
  • the dried cells were cooled to 40 ° C by supplying air at room temperature in a fluidized bed, and then dried cells were transported to the filling site using an air transporter.
  • the obtained dried cells were filled into an aluminum bouch container bag having a volume of about lm 3 together with nitrogen gas, and the bag mouth was heat-sealed and stored in a refrigerator room at 10 ° C or lower.
  • Seed culture was performed in the same manner as in Example 3 to prepare a medium for main culture.
  • the main culture was carried out under the same conditions as in Example 3 except that the stirring conditions at the start of the culture were set to various conditions as shown in the table below.
  • Example 5 Influence of aeration volume at the start of culture
  • Seed culture was performed in the same manner as in Example 3 to prepare a medium for main culture.
  • the main culture was carried out under the same conditions as in Example 3 except that the aeration conditions at the start of the culture were set to various conditions as shown in the table below.
  • the aeration rate was set higher than that at the start of culture, so the foaming was much higher than that of Ex. It was recognized until the eyes. Therefore, in order to suppress foaming, a method of intermittently stopping ventilation was adopted.
  • the air line velocity Vs in the present embodiment is the air line velocity in a state where air is ventilated, and is not an integrated air flow rate average value considering the intermittent air method.
  • the DO value is the DO concentration (critical DO concentration) at which the decrease in DO caused by ventilation stops losing a linear relationship over time.
  • the critical DO concentration was determined beforehand by culturing under the same conditions and using a dynamic measurement method ("Basics of Fermentation Engineering (1988), Academic Publishing Center, Fumihiro Ishizaki").
  • Seed culture was performed in the same manner as in Example 3 to prepare a medium for main culture.
  • the temperature was 26 ° C
  • the internal pressure was 200 kPa
  • Vs ° -67 0.03 [(m / sec) 0 '67 ]
  • Vs ° - 67 0.042 [( m / sec) 0 - 67]
  • the stirring power PZV was increased to 1493 WZm 3 until 084 (mZsec).
  • the values of each parameter with the aeration stirring increased were determined as follows.
  • Vs ° - 67 0.191 [( m / sec) 0 '67]
  • KLA ( (P / V) 095 Vs ° - 67): 198 [. (W / m 3 95 (m / sec 67]
  • Vs ° - 67 0.03 [( m / sec) 0 - 67]
  • KLA (P / V) 095 Vs ° - 67): 2.67 [(W / m 3) 0 '95 ⁇ (m / sec) 0' 67]
  • Vs ° - 67 0.130 [( m / sec) 0 '67]
  • Mortierella alpina SAM1860 strain was used as a dihomo- ⁇ -linolenic acid-producing bacterium.
  • the stock strain is inoculated into a 1% yeast extract, 2% glucose, and pH 6.3 medium prepared in a flask, and seed culture (first stage) is performed at 100 rpm and 28 ° C for 3 days. It was.
  • 30L of a medium of yeast extract 1%, glucose 2%, soybean oil 0.1%, pH 6.3 is prepared in a 50L aeration and agitation culture tank, and the culture solution of the previous seed culture (first stage) is added thereto.
  • seed culture (second stage) was performed for 2 days under the conditions of a stirring speed of 200 rpm, a temperature of 28 ° C., and a tank pressure of 150 kPa.
  • the main culture was started with a liquid volume of 4000L.
  • Vs 0 67 0.0871 [(m / sec) 0 '67 ]
  • KLA (P / V 95 Vs 0 '67 ): 76.3 [(W / m 3 ) 0 ' 95 ⁇ (m / sec) 0 '67 ]
  • the main culture was performed for 160 hours while performing glucose supplementation during the culture.
  • the dihomo ⁇ -linolenic acid production concentration at the end of the culture was 7.0 g / L.
  • Mortierella alpina SAM2086 strain was used as a mead acid producing bacterium.
  • the stock strain was inoculated into a 1% yeast extract, 2% glucose, pH 6.3 medium prepared in a flask, and seed culture (first stage) was performed for 3 days under the conditions of 100 rpm and 28 ° C.
  • seed culture (second stage) was performed for 2 days under the conditions of a stirring speed of 200 rpm, a temperature of 28 ° C., and a tank pressure of 15 OkPa.
  • Vs 0 67 0.0871 [(m / sec) 0 '67 ]
  • KLA (P / V 95 Vs 0 '67 ): 67.4 [(W / m 3 ) 0 ' 95 ⁇ (m / sec) 0 '67 ]
  • the main culture was performed for 376 hours while adding glucose during the culture.
  • the mead acid production concentration at the end of the culture was 6.0 g / L.
  • FIG. 1 A plot of the relationship between the amount of arachidonic acid produced in each culture and the KLA value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 少なくとも炭素源及び窒素源を含む培地中で、攪拌動力と通気量とが調整制御可能な通気攪拌型培養装置を用いて高度不飽和脂肪酸又は高度不飽和脂肪酸を構成脂肪酸として含む化合物の少なくともいずれか一方を産生することができる微生物を培養する方法であって、培養開始時から所定時間までの間は、単位液量あたりの攪拌動力を269(W/m3)以下とする機械的攪拌を行い、所定時間経過以降に、P;攪拌所要動力(W)、V;液量(m3)、Vs;通気線速度(m/sec)としたときのKLA(=(P/V)0.95 Vs0.67)が59以上、且つ通気線速度パラメータVs0.67が0.075以上、且つ攪拌所要動力パラメータ(P/V)0.95が203以上を満たすような範囲に、最大通気量又は最大攪拌所要動力の少なくとも何れか一方を調整制御する菌体培養方法。

Description

明 細 書
菌体培養方法
技術分野
[0001] 本発明は、少なくとも炭素源及び窒素源を含む培地中で、攪拌動力と通気量とが 調整制御可能な通気攪拌型培養装置を用いて高度不飽和脂肪酸又は高度不飽和 脂肪酸を構成脂肪酸として含む化合物の少なくともいずれか一方を産生することが できる微生物を培養する、菌体培養方法に関する。
背景技術
[0002] 好気培養においては、酸素の供給が培養の結果 (例えば高度不飽和脂肪酸 (以下 「PUFA (poly unsaturated fatty acid)」と記す)の生産性等)を左右することが多ぐス ケールアップを考える場合には、通気量や攪拌速度、通気攪拌所要動力といったフ アクターとともに KLa (酸素移動容量係数)が指標として重要視されている。
[0003] スケールアップを考える際に KLaを指標とするのは、培養槽の形式や規模が異な つても酸素移動速度を等しくすれば、同一の培養成績を得られるという考え方による ものである(例えば、非特許文献 1及び 2を参照)。
[0004] KLa測定の方法としては、種々の方法が提案されて!、るが、その操作が煩雑であ ること力 、より簡便に KLaを推定する方法として、 Cooperらは KLaについて、 KLa =K (P/V) °·95 (Vs) °·67〔Κ;比例定数、 Ρ;攪拌所要動力 (W)、 V;液量 (m3)、 Vs;通 気線速度 (mZsec)〕と!ヽぅ近似式を提唱して!/ヽる (非特許文献 3を参照)。
非特許文献 1 :村上聖ら、化学工学論文集 26(4):557-562(2000)
非特許文献 2 :A.E.Humphery,発酵工学会誌, 42:334-345(1964)
非特許文献 3 : C.M.Cooper et al.,Ind.Chem.Eng.36:504- 509(1944)
発明の開示
発明が解決しょうとする課題
[0005] Cooperらが提唱した上記近似式により、 KLaを予測することができる力 彼らは、 1 2枚羽根の Vaned disk型の翼を使用して KLaと操作条件との相関を求めているの で、厳密にはそのような型とは異なる培養槽にこの相関を用いることは出来ない。 [0006] また、 Cooperらの実験は、水で行われているため、細菌や酵母等のレオロジ一の 低いものの培養に関してはその有用性は評価されている力 糸状菌ゃ放線菌のよう にレオロジ一の高いものの場合には、実際の培養液とは大きな違いがあると考えられ ている。
[0007] 本発明は、上記実情に鑑みてなされたものであって、スケールアップの際、 KLa ( 酸素移動容量係数)を実際に求めることを必要とせず、し力も、 PUFA又は PUFAを 構成成分として含む化合物の良好な生産性を確保し得る培養方法を提供するもので ある。
課題を解決するための手段
[0008] 本発明の第 1特徴構成は、少なくとも炭素源及び窒素源を含む培地中で、攪拌動 力と通気量とが調整制御可能な通気攪拌型培養装置を用いて高度不飽和脂肪酸 又は高度不飽和脂肪酸を構成脂肪酸として含む化合物の少なくともいずれか一方を 産生することができる微生物を培養する方法であって、培養開始時力 所定時間ま での間は、単位液量あたりの攪拌動力を 269 (W/m3)以下とする機械的攪拌を行 い、所定時間経過以降に、 P ;攪拌所要動力 (W)、 V;液量 (m3)、 Vs ;通気線速度( m/sec)としたときの KLA ( = (P/V) °·95 Vs0'67)が 59以上、且つ通気線速度パラメ ータ Vs°67が 0. 075以上、且つ攪拌所要動力パラメータ (ΡΖν)°·95が 203以上を満 たすような範隨こ、最大通気量又は最大攪拌所要動力の少なくとも何れか一方を調 整制御する点にある。
[0009] 〔作用及び効果〕
本発明の第 1特徴構成によれば、少なくとも炭素源及び窒素源を含む培地であれ ば培養可能であり、機械的攪拌を行うため常に均質なものを調製することが可能であ る。その結果、菌体の増殖や生産性においての再現性を確保することも可能となる。
[0010] また、通気攪拌型培養槽にて培養を行うため、 PUFA又は PUFAを構成成分とし て含む化合物の少なくとも 、ずれか一方 (以下「PUFA類」と記す)を産生する好気 性の微生物を効率良く培養することができる。
[0011] さらに、前記通気攪拌型培養槽は、攪拌動力と通気量とが調整制御可能であるた め、例えば、培養液中の溶存酸素濃度を、 PUFA類の産生に適する範囲に随時調 節することができる。
[0012] また、培養開始時力も所定時間までは、単位液量あたりの攪拌動力を 269 (W/m3 )以下とする攪拌せん断力の小さい機械的攪拌を行うことにより、放線菌ゃ糸状菌の 菌糸及びペレット状菌体が受ける物理的損傷を抑えることが可能となる。その結果、 それらの菌体を PUFA類の生産に適した形態で培養することができる。
そして、所定時間経過後は、 KLA(= (Ρ/V) 0·95 Vs°'67)を 59以上、且つ通気線 速度パラメータ Vs Q'67[ (m/sec) Q'67]が 0. 075以上、且つ攪拌所要動力パラメータ( PZV) °95[ (WZm3) °95]が 203以上を満たすような範隨こ、最大通気量又は最大攪 拌所要動力の少なくとも何れか一方を調整制御することによって、さらに効率良く PU FA類生産菌の培養が行うことができる。従って、 PUFA類の生産性の向上を促すこ とができる〔P;攪拌所要動力(W)、 V;液量 (m3)、 Vs;通気線速度 (mZsec)〕。即ち 、 KLA(= (Ρ/V) 0·95 Vs°67)が 59より小さい場合、通気線速度パラメータ Vs°67[ (m Zsec) °'67]が 0. 075より小さい場合には、図 1及び図 2に示すように、 PUFA類 (ここ では、ァラキドン酸)の生成量が少ないためである。また、攪拌所要動力パラメータ (P ZV) °95[ (WZm3) °95]を 203以上とするのは、表 4の Ex. 4— 2欄に示すように、単 位液量あたりの攪拌動力を培養開始時の 269 (WZm3)以上、つまり、攪拌所要動 力パラメータ (PZV) °95[ (WZm3) °95]を 203以上、とし、培養開始時以上の攪拌、 好ましくは、培養開始時より強く攪拌をすることを意図するものである。
[0013] さらに、スケールアップの際は、上記の数値を基に、最大通気量と最大攪拌所要動 力の設定を行えば、最小限の通気量や攪拌動力で生産性の高い培養を行うことが 可能となる。これにより、ランニングコストの低減にもつながるため、生産効率の非常 に高 、スケールアップを実現することも可能となる。
[0014] 本発明の第 2特徴構成は、前記高度不飽和脂肪酸がァラキドン酸であるという点に ある。
[0015] 〔作用及び効果〕
ァラキドン酸は、血液や肝臓などの重要な器官を構成する脂肪酸の約 10%程度を 占めている(例えば、ヒト血液のリン脂質中の脂肪酸組成比では、ァラキドン酸は 11% 、 EPAは 1%、 DHAは 3%)。そして、それは、細胞膜の主要構成成分として膜の流動 性の調節に関与し、体内の代謝で様々な機能を示す一方、プロスタグランジン類の 直接の前駆体として重要な役割を果たす。
[0016] 特に最近は、乳幼児栄養としてのァラキドン酸の役割、神経活性作用を示す内因 性カンナピノイド (2-ァラキドノィルモノグリセロール、ァナンダミド)の構成脂肪酸とし て注目されている。
通常はリノール酸に富む食品を摂取すればァラキドン酸に変換されるが、成人病患 者やその予備軍、乳児、老人では生合成に関与する酵素の働きが低下し、これらァ ラキドン酸は不足しがちとなる。そのため、油脂(トリグリセリドの構成脂肪酸)として、 ァラキドン酸を直接に摂取することが望まれる。
本発明の第 2特徴構成によれば、このように特に乳幼児栄養として重要な役割を果 たすァラキドン酸又はァラキドン酸を構成脂肪酸とする油脂等の化合物の少なくとも いずれか一方を効率良く安定生産することが可能である。これらを配合する飲食物、 治療用栄養食品、飼料及び医薬品等の製造販売を通して、公衆の健康維持'増進 に寄与し得る。
[0017] 本発明の第 3特徴構成は、 PUFA類生産菌が、モルティエレラ(Mortierella)属モ ルティエレラ(Mortierella)亜属であると!/、う点にある。
[0018] 〔作用及び効果〕
本発明の第 3特徴構成によれば、後に詳述するように、 PUFA類生産菌をモルティ エレラ(Mortierella)属モルティエレラ(Mortierella)亜属とすることで、 PUFA類を より効率良く生産することができるようになり、し力もこれらの菌体は容易に入手可能 である。
[0019] 本発明の第 4特徴構成は、培養開始後の所定時間が好ましくは 12〜24時間であ るという点にある。
[0020] 〔作用及び効果〕
本発明の第 4特徴構成によれば、単位液量あたりの攪拌動力を 269 (W/m3)以下 とする攪拌せん断力の小さい機械的攪拌を培養開始後 12〜24時間とすることで、こ の間、培養中パルプ状菌糸力 ペレット状菌体へ形態変化を起こすような菌体にお いて、その形態変化を効率的に行わせることにより、その後の培養液の粘度の極端 な上昇が抑えられる。従って、 PUFA類をより効率良く生産することが可能となる。 発明を実施するための最良の形態
[0021] 〔実施形態〕
本発明において使用される、 PUFAあるいは PUFAを構成脂肪酸とする化合物( 例えば、油脂(トリグリセリド)及び/又はリン脂質)の少なくともいずれか一方の生産能 を有する微生物としては、例えば、モルティエレラ(Mortierella)属、コ-ディオボラ ス(Conidiobolus)属、フイチゥム(Pythium)属、フィトフトラ(Phytophthora)属、 ぺ-シリウム (Penicillium)属、クロドスポリゥム (Cladosporium)属、ムコーノレ (Muc or)属、フザリウム(Fusarium)属、ァスペルギルス(Aspergillus)属、ロードトルラ(R hodotorula)属、ェントモフトラ (Entomophthora)属、ェキノスポランジゥム (Echin osporangium)属、サプロレグ-ァ(Saprolegnia)属に属する微生物を挙げることが できる。
[0022] 特に、モルティエレラ(Mortierella)属モルティエレラ(Mortierella)亜属に属する 微生物では、例えばモノレティエレラ ·エロンガタ(Mortierella elongata)、モノレティ エレラ ·エキシグァ (Mortierella exigua)、モノレティエレラ ·フィグロフイラ (Mortier ella hygrophila)、モルティエレラ 'アルピナ(Mortierella alpina)等を挙げること ができる。具体的にはモルティエレラ'エロンガタ(Mortierella elongata) IF0857 0、モルティエレラ 'エキシグァ(Mortierella exigua) IF08571 ,モルティエレラ'フ ィグロフイラ(Mortierella hygrophila) IF05941、モルティエレラ'アルピナ(Mort ierella alpina) IF08568、 ATCC16266、 ATCC32221 , ATCC42430、 CBS 219. 35、 CBS224. 37、 CBS250. 53、 CBS343. 66、 CBS527. 72、 CBS529 . 72、 CBS608. 70、 CBS754. 68等の菌株を挙げ、ること力 Sできる。
[0023] これらの菌株は 、ずれも、大阪市の財団法人醱酵研究所 (IFO)、及び米国のァメ リカン'タイプ'力ノレチヤ一'コレクション (American Type Culture Collection, ATCC)及び、 Centrralbureau voor Scmmmelcultures (CBS)力らなんら帘 [J 限無く入手することができる。また、本発明の研究グループが土壌力も分離した菌株 モルティエレラ ·エロンガタ SAM0219 (微工研菌寄第 8703号)(微工研条寄第 123 9号)、モルティエレラ'アルピナ 1S— 4を使用することもできる。 [0024] 本発明に使用される菌株を培養する為には、その菌株の胞子、菌糸、又は予め培 養して得られた種培養液あるいは種培養より回収した菌体を、液体培地に接種し本 培養する。液体培地の場合に、炭素源としては、グルコース、フラクトース、キシロー ス、サッカロース、マルトース、可溶性デンプン、糖蜜、グリセロール、マン-トール、 糖化澱粉等の一般的に使用されているものが、いずれも使用できるが、これらに限ら れるものではない。窒素源としてはペプトン、酵母エキス、麦芽エキス、肉エキス、力 ザミノ酸、コーンスティープリカ一、大豆タンパク、脱脂ダイズ、綿実カス等の天然窒 素源の他に、尿素などの有機窒素源、ならびに硝酸ナトリウム、硝酸アンモ-ゥム、 硫酸アンモ-ゥム等の無機窒素源を用いることができる。特に大豆力も得られる窒素 源、具体的には大豆、脱脂大豆、大豆フレーク、食用大豆タンパク、おから、豆乳、き な粉などが挙げられ、特に脱脂大豆に熱変性を施したもの、より好ましくは脱脂大豆 を約 70〜90°Cで熱処理し、さらにエタノール可溶成分を除去したものを単独又は複 数で、あるいは前記窒素源と組み合わせて使用することができる。
[0025] この他、必要に応じて、リン酸イオン、カリウムイオン、ナトリウムイオン、マグネシウム イオン、カルシウムイオン以外に、鉄、銅、亜鉛、マンガン、ニッケル、コバルト等の金 属イオンやビタミン等を微量栄養源として使用できる。これらの培地成分は微生物の 生育を害しない濃度であれば特に制限はない。実用上、一般に炭素源の総添加量 は 0. 1〜40重量%、好ましくは 1〜25重量%、窒素源の総添力卩量は 2〜15重量% 、好ましくは 2〜: LO重量%とする。より好ましくは初発の炭素源添加量を 1〜5重量% 、初発の窒素源濃度を 3〜8重量%として、培養途中に炭素源及び窒素源を、さらに より好ましくは炭素源のみを流加して培養する。
[0026] なお、不飽和脂肪酸の収率を増加せしめるために、不飽和脂肪酸の前駆体として 、例えば、へキサデカン若しくはォクタデカンのごとき炭化水素;ォレイン酸若しくはリ ノール酸のごとき脂肪酸又はその塩、あるいは脂肪酸エステル、例えば、ェチルエス テル、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル;又はオリーブ油、大豆 油、なたね油、綿実油若しくはヤシ油のごとき油脂類を単独で、又は組み合わせて使 用できる。基質の添力卩量は培地に対して 0. 001〜10%、好ましくは 0. 5〜10%で ある。またこれらの基質を唯一の炭素源として培養してもよ 、。 [0027] 本発明における微生物の培養温度は使用する微生物により異なる。例えば、 5〜4 0°C、好ましくは 20〜30°Cとし、また 20〜30°Cにて培養して菌体を増殖せしめた後 5〜20°Cにて培養を続けて不飽和脂肪酸を生産せしめることもできる。このような温 度管理によっても、生成脂肪酸中の高度不飽和脂肪酸の割合を上昇せしめることが できる。
[0028] 種培養では通気攪拌培養、振盪培養、固体培養、又は静置液体培養を行 ヽ、本 培養では通気攪拌培養を行う。本培養開始時 (種培養液接種時)の培地 pHは 5〜7 、好ましくは 5. 5〜6. 5に調整する。本培養期間は、通常 2〜30日間、好ましくは 5 〜20日間、より好ましくは 5〜15日間行う。
[0029] 本培養方法としては、攪拌動力と通気量とが調整制御可能な通気攪拌型培養装置 を使用して行い、攪拌翼直径( = d)、培養槽直径( = D)の比率が、 d/D = 0. 30〜 0. 6、好ましくは dZD = 0. 34〜0. 55、より好ましくは dZD=0. 37〜0. 55、最も 好ましくは dZD = 0. 42〜0. 55の攪拌翼を備えた培養槽を用いて培養を行う。
[0030] モルティエレラ属モルティエレラ亜属に属する微生物は、ァラキドン酸を主たる構成 脂肪酸とする油脂(トリグリセリド)を産生しうる微生物として知られている。本発明者ら は、上記菌株に変異処理を施すことによって、ジホモー γ —リノレン酸を主たる構成 脂肪酸としてなる油脂(トリグリセリド)を産生しうる微生物 (特開平 5— 91887)や、 ω 9系高度不飽和脂肪酸を主たる構成脂肪酸としてなる油脂(トリグリセリド)を産生し うる微生物を (特開平 5— 91888)得ている。さらに、高濃度の炭素源に耐性を有す る微生物(W098Z39468)も得ている。これら微生物は、モルティエレラ属モルティ エレラ亜属の微生物であり、本発明の培養法で培養することによって、生産性を向上 することができる。
[0031] 上記の菌体、培地、培養装置を使用して行われる本培養の培養プロセスの概略を 説明する。
[0032] まず、培養開始時は、単位液量あたりの攪拌動力を 269 (W/m3)以下とする比較 的弱 ヽ機械的攪拌と通気をしながら培養を行う。
[0033] また、このときの通気量については特になんら制限はない。放線菌ゃ糸状菌を好気 的な条件下で液体培養すると、栄養増殖期カゝら生産期へ移行する時期にパルプ状 菌糸からペレット状菌体 (別名、球状菌糸)へ形態変化する場合がある。
[0034] ここで、ペレット状菌体とは、液体培地で培養したときの放線菌ゃ糸状菌の菌形態 の一つであり、平均直径 0. 2〜数ミリの球状または紡錘状の菌糸集合体を示してい る。
[0035] また、パルプ状菌糸とは、液体培地で培養したときの放線菌ゃ糸状菌の典型的な 菌形態であり、直線又は放射状に伸びた菌糸が分散した状態を示している。つまり、 そのようなパルプ状菌糸からペレット状菌体への形態変化は、 PUFA類の生産性と 密接に関わっている。
[0036] 攪拌せん断力の大きな機械的攪拌を行って、ペレット状の菌形態が崩れたり、ペレ ット状のへの形態形成が妨げられたりすると、菌体の増殖に伴って培養液の粘度が 上昇し、混合効率が下がる。その結果、酸素等が菌体に十分に供給され難くなるた め、 PUFA類の生産性が低下するものと考えられている。
[0037] そこで従来はペレット状への形態形成を促進するために、最適な培地組成を検討 したり、あるいは通気ガス中の酸素分圧を調整したりしていた。本発明では、培養開 始から所定時間の間は、攪拌せん断力の小さい攪拌を行うことにより、菌体のペレツ ト状への形態形成を促進させて ヽる。
[0038] 通気攪拌型装置には、溶存酸素濃度検出センサーが取り付けられており、培養液 中の溶存酸素濃度がモニターされる。
[0039] 菌体の増殖と共に培地中の溶存酸素濃度 (DO)が低下し始めるが、 PUFA類の生 産性に影響を及ぼさない下限 DO値 (およそ 50%)に達する直前に攪拌動力と通気 量を上げて DO値を維持するように調整する。
[0040] この下限 DO値に達する時間力 培養開始力もおよそ 12〜24時間後である。その 後は、 KLA(= (Ρ/V) 0·95 Vs°-67)が 59以上、且つ通気線速度パラメータ Vs° 67 [単 位:(m/sec) ° 67]が 0. 075以上、且つ攪拌所要動力パラメータ (PZV)° 95 [単位: ( W/m3) °·95]が 203以上を満たすような範囲まで最大通気量又は最大攪拌所要動力 の少なくとも何れか一方を調整制御して培養を行う。前記調整制御の具体例として、 例えば、最大通気量又は最大攪拌所要動力の何れか一方を高めたり、その両方を 高めることが想定される。 [0041] ここで KLA値とは、本発明者らが、 Cooperらの KLa (酸素移動容量係数) =K (P
Zv)Q'95(vs) CTという近似式をもとに、新たに設定したパラメータである。本発明者ら によって、この KLA値と PUFA類の生産量との間に良好な正の相関があることが初 めて見出されたものである。
[0042] 培養開始後、およそ 40〜48時間後に、培地栄養分 (特に窒素源)の消尽と共に菌 体濃度が最高値に達し、栄養増殖期から PUFA類の生産期に移行して、 PUFA類 の菌体内の蓄積が促進される。
[0043] 次!、で、培養途中で随時グルコースの培地流加をしながら、およそ 5〜15日間の 培養を行う。培養終了後は、菌体を回収して乾燥させ、乾燥菌体についてへキサン 抽出等を行い PUFA又は PUFAを構成脂肪酸として含む化合物(例えば、トリグリセ リドゃリン脂質など)の少なくともいずれか一方を得る。
実施例
[0044] 実施例 1 (攪拌所要動力の測定)
10kL容の通気攪拌培養層に、水道水を 6kL (=V)張り込み、通気 lwm条件のも と、様々な攪拌回転数で運転した場合の攪拌消費電力を測定した(=A)。次いで、 同培養槽、同回転数で空運転を行なって攪拌所要電力を測定した( = B)。空運転 の際は、攪拌軸の過熱を防止するため、攪拌翼よりも下の水位でかつ攪拌軸下部軸 受け部分が水に浸るように水を張りこんで運転した。
[0045] 電力測定は、インバータの一次側 (電源側)に電力計(日置電機 (株)製、クランプ オン電力計)を設置して、有効電力を測定した。
[0046] A値より B値を差引いた値を攪拌所要動力( = P)とし、 P値を液量で除した値を液 量あたり攪拌所要動力(( = PZV)として求めた。求められた実測値を下表に示す。
[0047] [表 1] 攪拌回転数 水張時 空運転時 攪拌所要動力(kW) 液量あたりの
(rpm) (=N) 消費霞力 ( kW) 消費霪カ (kW) (P=A-B) 攪拌所要動力
(=A) (=B) ( kW/m3)
( P/V)
35 1. 660 0. 630 1. 030 0. 172
65 6. 804 1. 050 5. 754 0. 959
95 17. 528 1. 498 16. 030 2. 672 [0048] 実測値を、横軸に攪拌回転数(=N)、縦軸に液量あたり攪拌所要動力( = PZV) のグラフ上にプロットし、近似式 PZV=XNYのパラメータ Xおよび Yを最小二乗法で 求めた。求められた X値、 Y値および近似式を用いて、任意の攪拌回転数における 単位液量あたり攪拌所要動力を求めた。
[0049] 培養槽への通気を停止することによって、攪拌所要動力の増加が認められたが、 上述と同様の方法によって無通気時の X値および Y値を求め、任意の攪拌回転数に おける、液量あたり攪拌所要動力を求めた。
[0050] 実施例 2 (培養液の攪拌所要動力)
ァラキドン酸生産菌モルティエレラ'アルピナ 1S—4株(Mortierella alpina IS 4株)を 10kLの培養槽で培養した。培養液量 6kL、通気 lwm条件のもと、様々な 攪拌回転数で運転した場合の攪拌消費電力を測定した。その結果を下表に示す。
[0051] [表 2]
Figure imgf000012_0001
[0052] 実施例 1および実施例 2で得られた攪拌動力の比較より、水張運転時 (実施例 1)と 培養液張込時 (実施例 2)では攪拌動力に大きな差は無 、ことが確認された。このこ とより、培養中における攪拌所要動力は、同培養槽において水張運転で求めた攪拌 所要動力でほぼ近似できると考えられた。
[0053] 実施例 3
M. alpina IS— 4株の胞子懸濁液を、酵母エキス 1. 0%、グルコース 2. 0%、 p H6. 3の培地に 0. 1vol. %接種し、往復振盪 100rpm、温度 28°Cの条件にて種培 養 (第一段階)を開始し、 3日間培養した。
[0054] 次に、酵母エキス 1%、グルコース 2%、大豆油 0. 1%、 pH6. 3の培地 30Lを 50L 容通気攪拌培養槽にて調製し、これに種培養 (第一段階)液を接種して、攪拌回転 数 200rpm、温度 28°C、槽内圧 150kPaの条件にて、種培養 (第二段階)を開始し、 2日間培養した。
[0055] 次に、 10kL容の通気攪拌槽 (培養槽内直径 1. 8m)にて本培養の培地を調製した 。培地調製法としては、まず 4500Lの培地(培地 A:大豆粉 336kg、 KH PO 16.
2 4
8kg、 MgCl · 6Η Ο 2. 8kg、 CaCl · 2Η Ο 2. 8kg、大豆油 5. 6kg)の ρΗを 4.
2 2 2 2
5に調製して、 121°C、 20分の条件で本培養槽内で滅菌した。別培地として、 1000 Lの培地(培地 B:含水グルコース 112kg)を 121°C、 20分の条件で別の培養槽で滅 菌した後、無菌的に本培養槽へ移送して先の培地 Aに添加した(添加後の培地を培 地 Cとする)。培地 Cに滅菌した水酸ィ匕ナトリウム水溶液を無菌的に添加して pH6. 1 に調整した後、容量 28Lの種培養液 (第二段階)を無菌操作によって接種し、計 560 0Lの初発培養液量 (培養槽容積 10kL)に合わせた。温度 26°C、内圧 200kPa、通 気量 49m3/hr (通気線速度(=Vs)として 0. 00535m/sec)、培養液量あたり攪拌 所要動力( = PZV) 112WZm3で培養を開始した。培養開始時の各パラメータの値 は次のように求められた。
[0056] 〔数 1〕
(P/V)°-95:89 [(W/m3)0-95]
Vs°-67:0.03 [(m/sec)0-67]
KLA(=(P/V)0 95 Vs°-67):2.67 [(W/m3)0'95 · (m/sec)0'67]
[0057] 培養 15時間目に攪拌動力( = PZV)を 880WZm3に変更した後、培養 40時間目 までの間に、徐々に通気量および攪拌回転数を上げていき、通気量を 437m3Zhr ( 通気線速度(=Vs)として 0. 0477mZsec)まで、攪拌動力( = PZV)を 3250WZ m3まで高めた。通気攪拌を高めた状態での各パラメータの値は次のように求められ た。
[0058] 〔数 2〕
(P/V)°-95:2169 [(W/m3)0'95]
Vs°-67:0.130 [(m/sec)0'67]
KLA(=(P/V)0 95 Vs°-67):282 [(W/m3,95. (m/sec 67]
[0059] 培養途中で以下に示すように培地流加を行ない、 306時間の本培養を行なった。
培養終了時は、培地流加による増加分と蒸発による減少分の影響で、 7750Lの培 養液量となった。
[0060] [表 3]
Figure imgf000014_0001
[0061] 培養終了後、 120°C、 20分の条件で殺菌した後、連続式脱水機で湿菌体を回収し 、振動流動層乾燥機で熱風乾燥 (熱風温度 120°C)によって水分含量 2wt%まで乾 燥した。乾燥した菌体を流動層で、室温空気の供給によって、 40°Cまで冷却した後、 空気輸送機を用いて充填場所に乾燥菌体を輸送した。得られた乾燥菌体を、容積 約 lm3のアルミバウチ製コンテナバッグに窒素ガスとともに充填し、バッグ口部をヒー トシールシールした後、 10°C以下の冷蔵室で保管した。
[0062] コンテナバッグより取り出した乾燥菌体に、へキサン抽出を施し、へキサン溶液を濾 過して含有固形分を除去した。この後、減圧下で加熱することによってへキサンを除 去し、ァラキドン酸を構成脂肪酸とする粗油を得た。
[0063] 実施例 4 (培養開始時攪拌所要動力の影響)
実施例 3と同様の方法で種培養を行ない、本培養の培地調製を行なった。培養開 始時の攪拌条件を下表に示すような様々な条件に設定する他は、実施例 3と同条件 で本培養を行なった。
[0064] 培養結果より、培養開始時の PZV値は、ァラキドン酸生産に大きな影響を及ぼす ことが見出された。
[0065] [表 4] 実験 No. 培養開始時の条件
培養開始時の パラメータ 培養液量当り 液量当り攪拌所要動力 議 0.95 ァラキドン酸生産量 ※)
P/V (W/m3) [ (W/m3) 0-95] (g/D
Ex. 4-1 41 34 22. 4
Ex. 4-2 269 203 22. 40
Ex. 4-3 810 579 17. 0
Ex. 4-4 3250 2169 14. 1
Ex. 3 (実施例 3) 112 89 22. 8
(¾·) 各培養ごとに蒸発とグルコース添加によって培養液量が変動するため、
次式によって、 補正した値。
[0066] 〔数 3〕
ァラキドン酸生成量 (補正値)
=培養終了時の培養液当りァラキドン酸生成量 X培養終了時液量,培養開始時液
[0067] 実施例 5 (培養開始時通気量の影響)
実施例 3と同様の方法で種培養を行ない、本培養の培地調製を行なった。培養開 始時の通気条件を下表に示すような様々な条件に設定する他は、実施例 3と同条件 で本培養を行なった。実験 No. 5—1および Ex. 5— 2の何れにおいても、培養開始 時より高い通気量を設定したために、 Ex. 3に比べてきわめて高い起泡性が培養開 始時カも培養 20時間目までの間認められた。そこで、泡立ちを押さえるために、間欠 的に通気を停止する方法を採用した。
[0068] 通気を行なうと、泡立ちが起こり、泡高さが上昇を始めた。泡高さが槽内天井付近( 排気ライン近く)まで上昇したら直ちに、液中通気を停止した。通気を停止すると、泡 高さは下降をしはじめるが、培養液中の溶存酸素濃度 (DO)も同時に低下し始めた 。ァラキドン酸生産性に影響を及ぼさない下限 DO値まで達する直前に、再度通気を 開始した。同様の操作を起泡性が収まるまで繰り返した。本実施例における通気線 速度 Vsとは、通気している状態における通気線速度であり、間欠通気法を考慮して の通気量積算平均値ではない。また、ァラキドン酸生産性に影響を及ぼさない下限 DO値は、通気停止によって起こる DOの減少が時間の経過に対して直線関係を失 なう DO濃度(臨界 DO濃度)である。臨界 DO濃度は、予め同等の条件で培養して動 的測定法(「発酵工学の基礎(1988)、学会出版センター、石崎文彬訳」)によって求 めておいた。
[0069] 培養結果より、培養開始時の Vs値は、ァラキドン酸生産にほとんど影響を及ぼさな いことが確認された。
[0070] [表 5]
Figure imgf000016_0001
各培養ごとに蒸発と グルコース添加によって培養液量が変動するため、 次式によって、 補正した値。
[0071] 〔数 4〕
ァラキドン酸生成量 (補正値)
=培養終了時の培養液当りァラキドン酸生成量 X培養終了時液量,培養開始時液
[0072] 実施例 6 (最高 KLA値の影響)
実施例 3と同様に種培養を行ない、本培養の培地調製を行なった。実施例 3と同様 に、温度 26°C、内圧 200kPa、通気量 49m3Zhr (通気線速度(=Vs)として 0. 005
35m/sec)、培養液量あたり攪拌所要動力( = PZV) 112WZm3で培養を開始し た。培養開始時の各パラメータの値は次のように求められた。
[0073] 〔数 5〕
(P/V)°-95:89 [(W/m3)0-95]
Vs°-67:0.03 [(m/sec)0'67]
KLA(=(P/V)0 95 Vs°-67):2.67 [(W/m3)0'95 · (m/sec)0'67]
[0074] 培養 18時間目に攪拌所要動力( = PZV)を 380WZm3に変更した後、培養 48時 間目までの間に、徐々に通気量および攪拌回転数を上げていき、様々な最大通気 量および最大攪拌動力条件のもとで培養を行なった。図 1に、各培養で得られたァラ キドン酸生成量と、培養中における最大 KLA(= (Ρ/V)0·95 Vs°'67)値の関係をプロ ットした。これにより、 KLA値とァラキドン酸生成量の間に良好な正の相関関係がある ことを見出した。また図 1において、 KLA値を 100以上に上げても、ァラキドン酸生成 量が 15〜 16gZL程度しカゝ得られな 、場合 (例えば、図 1中に Aで示す範囲内のプ ロットの場合)もあり、 KLAとァラキドン酸生成量の相関カゝらずれる場合もあることも見 出した。この原因について考察するため、 KLA値を構成する 2つのパラメータである (PZV)°95値と Vs°67値の相関関係についてプロットした(図 2)。ここで、図 2中に A' で示す範囲内のプロットは、図 1中に Aで示す範囲内のプロットに対応している。その 結果、 KLA値が高くても、 Vs°'67値が 0. 075以上を満たしていないと、 KLA値を高め たことによるァラキドン酸生成量増大効果が得られないことが分力つた。
[0075] 実施例 7
実施例 3と同様に種培養を行なった。実施例 3と同じ濃度組成の本培養培地 1300 Lを 2kL容培養槽に調製し、温度 26°C、内圧 200kPa、通気線速度 0. 0087 (m/s ec)、培養液量あたり攪拌所要動力( = PZV) 264WZm3で培養を開始した。培養 開始時の各パラメータの値は次のように求められた。
[0076] 〔数 6〕
(P/V)°-95:199 [(W/m3)0-95]
Vs°-67:0.042 [(m/sec)0-67]
KLA(=(P/V)°-95Vs°-67):8.28 [(W/m3 95. (m/sec)0'67]
[0077] 培養 24時間目に攪拌所要動力( = PZV)を 890WZm3に変更した後、培養 48時 間目までの間に、徐々に通気量および攪拌回転数を上げていき、通気線速度 Vsを 0
. 084 (mZsec)まで、攪拌動力 PZVを 1493WZm3まで高めた。通気攪拌を高め た状態での各パラメータの値は次のように求められた。
[0078] 〔数 7〕
(P/V)°-95:1036 [(W/m3)0'95]
Vs°-67:0.191 [(m/sec)0'67] KLA(=(P/V)095 Vs°-67):198 [(W/m3 95. (m/sec 67]
[0079] 培養途中で、実施例 3と同組成濃度のグルコース添加を行ない、 306時間の本培 養を行なった。その結果、 20. OgZLのァラキドン酸生成量 (補正値として)が得られ た。
[0080] 実施例 8
ァラキドン酸生産菌として Mortierella alpina CBS754. 68株を用いた。保存菌 株から実施例 3と同様の方法で種培養を行ない、本培養の培地調製を行なった。温 度 26°C、内圧 200kPa、通気量 49m3Zhr (通気線速度(=Vs)として 0. 00535m /sec)、培養液量あたり攪拌所要動力( = PZV) 112WZm3で培養を開始した。培 養開始時の各パラメータの値は次のように求められた。
[0081] 〔数 8〕
(P/V)°-95:89 [(W/m3)0-95]
Vs°-67:0.03 [(m/sec)0-67]
KLA(=(P/V)095 Vs°-67):2.67 [(W/m3)0'95 · (m/sec)0'67]
[0082] この条件で培養を開始し、最初の攪拌回転数変更時間を様々な時間にずらして複 数回の培養(実験 No. Ex. 6— 1〜6—4)を行なった。最初の攪拌回転数変更時 には、攪拌動力( = PZV)を 380WZm3へと変更し、その後、培養 48時間目までの 間に、徐々に通気量および攪拌回転数を上げていき、最大通気量を 437m3Zhr (通 気線速度(=Vs)として 0. 0477mZsec)まで、最大攪拌動力( = PZV)を 3250W /m3まで高めた。通気攪拌を高めた状態での各パラメータの値は次のように求めら れた。
[0083] 〔数 9〕
(P/V)°-95:2169 [(W/m3)0'95]
Vs°-67:0.130 [(m/sec)0'67]
KLA(=(P/V)095 Vs°-67):282 [(W/m3,95. (m/sec 67]
[0084] 培養途中で実施例 3と同様にグルコース添加を行ない、 288時間の本培養を行な つた o
[0085] 培養結果より、培養開始後の最初の攪拌動力変更時間は、ァラキドン酸生産に大 きな影響を及ぼすことが見出された。
[0086] [表 6]
Figure imgf000019_0001
( ) 各培養ごとに蒸発とグルコース添加によって培養液量が変動するため、 次式によって、 補正した値。
[0087] 〔数 10〕
ァラキドン酸生成量 (補正値)
=培養終了時の培養液当りァラキドン酸生成量 X培養終了時液量,培養開始時液
[0088] 実施例 9 (DGLA生産)
ジホモ- γ -リノレン酸生産菌として Mortierella alpinaSAM1860株を用いた。保存菌 株を、フラスコに調製した酵母エキス 1%、グルコース 2%、 pH6.3の培地に接種して、 10 0rpm、 28°Cの条件にて、種培養 (第一段階)を 3日間行なった。次に、酵母エキス 1%、 グルコース 2%、大豆油 0.1%、 pH6.3の培地 30Lを 50L容通気攪拌培養槽に調製し、こ れに先の種培養 (第一段階)の培養液を接種して、攪拌回転数 200rpm、温度 28°C、 槽内圧 150kPaの条件にて種培養 (第二段階)を 2日間行なった。
[0089] 次に、脱脂大豆粉 4%、グルコース 1.8%、 KH PO 0.3%、 Na SO 0.1%、 MgCl ·6Η Ο 0
2 4 2 4 2 2
.05%、 CaCl ·2Η Ο 0.05%、大豆油 0.1%、 ρΗ6.1の培地に種培養液(第二段階) 0.5%を
2 2
接種し、液量 4000Lで本培養を開始した。
[0090] 温度 26°C、内圧 200kPa、通気量 52m3/hr (通気線速度 (=Vs)として 0.0057m/sec)、培 養液量あたり攪拌所要動力 (=P/V)30W/m3で培養を開始した。培養開始時の各パラ メータの値は次のように求められた。
[0091] 〔数 11〕
(P/V)°-95 : 25 [(W/m3)0-95] Vs0 67 : 0.0313 [(m/sec)0-67]
KLA( = (P/V)095 Vs0'67) : 0.782 [(W/m3)0'95 · (m/sec)0'67]
[0092] この条件で培養を開始し、培養開始後 19時間目に、攪拌動力を変更した後、培養 4
8時間目までの間に、さらに徐々に通気量および攪拌回転数を上げていき、最大通 気量を 240m3/hr (通気線速度 (=Vs)として 0.0262m/sec)まで、最大攪拌動力 (=P/V)を
1251W/m3まで高めた。通気攪拌を高めた状態での各パラメータの値は次のように求 められた。
[0093] 〔数 12〕
(P/V 95 : 875.9 [(W/m3)0-95]
Vs0 67 : 0.0871 [(m/sec)0'67]
KLA( = (P/V 95 Vs0'67) : 76.3 [(W/m3)0'95 · (m/sec)0'67]
[0094] 培養途中にグルコース添カ卩を行な 、ながら 160時間の本培養を行なった。培養終 了時のジホモ γリノレン酸生成濃度は 7.0g/Lであった。
[0095] 実施例 10 (ミード酸生産)
ミード酸生産菌として Mortierella alpinaSAM2086株を用いた。保存菌株を、フラスコ に調製した酵母エキス 1%、グルコース 2%、 pH6.3の培地に接種して、 100rpm、 28°Cの 条件にて、種培養 (第一段階)を 3日間行なった。次に、酵母エキス 1%、グルコース 2% 、ォリーブ油 0.1%、 pH6.3の培地 30Lを 50L容通気攪拌培養槽に調製し、これに先の 種培養 (第一段階)の培養液を接種して、攪拌回転数 200rpm、温度 28°C、槽内圧 15 OkPaの条件にて種培養 (第二段階)を 2日間行なった。
[0096] 次に、脱脂大豆粉 4%、グルコース 1.8%、 KH PO 0.3%、 Na SO 0.1%、 MgCl ·6Η Ο 0
2 4 2 4 2 2
.05%、 CaCl ·2Η Ο 0.05%、ォリーブ油 0.1%、 ρΗ6.1の培地に種培養液(第二段階) 0.5
2 2
%を接種し、液量 4000Lで本培養を開始した。
[0097] 温度 24°C、内圧 200kPa、通気量 52m3/hr (通気線速度 (=Vs)として 0.0057m/sec)、培 養液量あたり攪拌所要動力 (=P/V)30W/m3で培養を開始した。培養開始時の各パラ メータの値は次のように求められた。
[0098] 〔数 13〕
(P/V)°-95 : 25 [(W/m3)0'95] Vs0 67 : 0.0313 [(m/sec)0-67]
KLA( = (P/V)095 Vs0'67) : 0.782 [(W/m3)0'95 · (m/sec)0'67]
[0099] この条件で培養を開始し、培養開始後 22時間目に、攪拌動力を変更した後、培養 4
8時間目までの間に、さらに徐々に通気量および攪拌回転数を上げていき、最大通 気量を 240m3/hr (通気線速度 (=Vs)として 0.0262m/sec)まで、最大攪拌動力 (=P/V)を
1098W/m3まで高めた。通気攪拌を高めた状態での各パラメータの値は次のように求 められた。
[0100] 〔数 14〕
(P/V 95 : 773.8 [(W/m3)0-95]
Vs0 67 : 0.0871 [(m/sec)0'67]
KLA( = (P/V 95 Vs0'67) : 67.4 [(W/m3)0'95 · (m/sec)0'67]
[0101] 培養途中にグルコース添加を行な ヽながら 376時間の本培養を行なった。培養終 了時のミード酸生成濃度は 6.0g/Lであった。
産業上の利用可能性
[0102] 特に乳幼児栄養として重要な役割を果たすァラキドン酸又はァラキドン酸を構成脂 肪酸とする油脂等の化合物の少なくともいずれか一方を効率良く安定生産すること が可能であるので、これらを配合する飲食物、治療用栄養食品、飼料及び医薬品等 の製造に使用可能である。
図面の簡単な説明
[0103] [図 1]各培養で得られたァラキドン酸生成量と KLA値との関係をプロットした図
[図 2]KLA値を構成する 2つのパラメータである(PZV) Q 95値と VsQ'67値の相関関係に ついてプロットした図

Claims

請求の範囲
[1] 少なくとも炭素源及び窒素源を含む培地中で、攪拌動力と通気量とが調整制御可 能な通気攪拌型培養装置を用いて高度不飽和脂肪酸又は高度不飽和脂肪酸を構 成脂肪酸として含む化合物の少なくともいずれか一方を産生することができる微生物 を培養する方法であって、
培養開始時力も所定時間までの間は、単位液量あたりの攪拌動力を 269 (W/m3) 以下とする機械的攪拌を行い、
所定時間経過以降に、 P;攪拌所要動力 (W)、 V;液量 (m3)、 Vs;通気線速度 (m
/sec)としたときの KLA ( = (P/V) °·95 Vs0'67)が 59以上、且つ通気線速度パラメ一 タ VsQ'67が 0. 075以上、且つ攪拌所要動力パラメータ (PZV) Q'95が 203以上を満た すような範隨こ、最大通気量又は最大攪拌所要動力の少なくとも何れか一方を調整 制御する菌体培養方法。
[2] 前記高度不飽和脂肪酸がァラキドン酸である、請求項 1に記載の菌体培養方法。
[3] 前記微生物が、モノレティエレラ(Mortierella)属モノレティエレラ(Mortierella)亜 属である、請求項 1に記載の菌体培養方法。
[4] 前記所定時間が、好ましくは 12〜24時間である、請求項 1〜3に記載の菌体培養 方法。
PCT/JP2005/016244 2004-09-06 2005-09-05 菌体培養方法 WO2006028048A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2005281109A AU2005281109B2 (en) 2004-09-06 2005-09-05 Method of culturing a microorganism
CA2579154A CA2579154C (en) 2004-09-06 2005-09-05 Method of culturing a microorganism
ES05781593T ES2387680T3 (es) 2004-09-06 2005-09-05 Método de cultivo de hongos
EP05781593A EP1795586B1 (en) 2004-09-06 2005-09-05 Method of fungus culturing
US11/662,015 US9701990B2 (en) 2004-09-06 2005-09-05 Method of culturing a microorganism under controlled agitation and aeration conditions
DK05781593.8T DK1795586T3 (da) 2004-09-06 2005-09-05 Fremgangsmåde til svampedyrkning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-258151 2004-09-06
JP2004258151A JP4624040B2 (ja) 2004-09-06 2004-09-06 菌体培養方法

Publications (1)

Publication Number Publication Date
WO2006028048A1 true WO2006028048A1 (ja) 2006-03-16

Family

ID=36036329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016244 WO2006028048A1 (ja) 2004-09-06 2005-09-05 菌体培養方法

Country Status (12)

Country Link
US (1) US9701990B2 (ja)
EP (2) EP1795586B1 (ja)
JP (1) JP4624040B2 (ja)
KR (1) KR101214882B1 (ja)
CN (1) CN100482779C (ja)
AU (1) AU2005281109B2 (ja)
CA (1) CA2579154C (ja)
DK (1) DK1795586T3 (ja)
ES (1) ES2387680T3 (ja)
MY (1) MY147430A (ja)
TW (1) TW200613546A (ja)
WO (1) WO2006028048A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080064076A1 (en) * 2006-09-11 2008-03-13 Saucedo Victor M Dissolved Oxygen Profile to Increase Fermentation Productivity and Economics
US8889907B2 (en) 2008-03-14 2014-11-18 Mitsubishi Rayon Co., Ltd. Process for production of amide compounds
US8207363B2 (en) 2009-03-19 2012-06-26 Martek Biosciences Corporation Thraustochytrids, fatty acid compositions, and methods of making and uses thereof
DK2526197T3 (en) 2010-01-19 2018-10-01 Dsm Ip Assets Bv MICRO; PRODUCING EICOSAPENTAIC ACID AND DOCOSAHEXAENIC ACID, FATIC ACID COMPOSITIONS, AND METHODS FOR PREPARING AND USING THEREOF
CN105410925A (zh) 2011-07-21 2016-03-23 帝斯曼知识产权资产管理有限公司 脂肪酸组合物
JP6740590B2 (ja) * 2015-10-23 2020-08-19 株式会社デンソー 光合成微生物の培養装置及び培養方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4971184A (ja) * 1972-11-13 1974-07-10
JPH02238886A (ja) * 1989-03-10 1990-09-21 Kanegafuchi Chem Ind Co Ltd 微水系における油脂類の酵素反応モデル及び該酵素反応モデルによる酵素反応制御方法
JPH0591888A (ja) 1991-09-30 1993-04-16 Suntory Ltd オメガ9系高度不飽和脂肪酸およびこれを含有する脂質の製造方法
JPH0591887A (ja) 1991-09-30 1993-04-16 Suntory Ltd ジホモ−γ−リノレン酸及びこれを含有する脂質の製造方法
JPH06153970A (ja) * 1992-11-16 1994-06-03 Suntory Ltd 高度不飽和脂肪酸及びこれを含有する脂質の製造方法
JPH1070992A (ja) * 1996-08-30 1998-03-17 Suntory Ltd 不飽和脂肪酸含有油脂の製造方法
WO1998039468A1 (fr) 1997-03-04 1998-09-11 Suntory Limited Procede pour preparer un acide gras hautement insature (aghi) et lipide contenant cet aghi
JPH1118758A (ja) * 1997-07-03 1999-01-26 Bio Polymer Res:Kk 横型攪拌培養槽

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6985229B2 (en) 2002-05-30 2006-01-10 Agere Systems, Inc. Overlay metrology using scatterometry profiling
EP2966172B1 (en) * 2002-10-11 2018-02-21 Nippon Suisan Kaisha, Ltd. Process for producing microbial fat or oil having lowered unsaponifiable matter content and said fat or oil

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4971184A (ja) * 1972-11-13 1974-07-10
JPH02238886A (ja) * 1989-03-10 1990-09-21 Kanegafuchi Chem Ind Co Ltd 微水系における油脂類の酵素反応モデル及び該酵素反応モデルによる酵素反応制御方法
JPH0591888A (ja) 1991-09-30 1993-04-16 Suntory Ltd オメガ9系高度不飽和脂肪酸およびこれを含有する脂質の製造方法
JPH0591887A (ja) 1991-09-30 1993-04-16 Suntory Ltd ジホモ−γ−リノレン酸及びこれを含有する脂質の製造方法
JPH06153970A (ja) * 1992-11-16 1994-06-03 Suntory Ltd 高度不飽和脂肪酸及びこれを含有する脂質の製造方法
JPH1070992A (ja) * 1996-08-30 1998-03-17 Suntory Ltd 不飽和脂肪酸含有油脂の製造方法
WO1998039468A1 (fr) 1997-03-04 1998-09-11 Suntory Limited Procede pour preparer un acide gras hautement insature (aghi) et lipide contenant cet aghi
JPH1118758A (ja) * 1997-07-03 1999-01-26 Bio Polymer Res:Kk 横型攪拌培養槽

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. E. HUMPHERY, HAKKO KOGAKU KAISHI, vol. 42, 1964, pages 334 - 345
C. M. COOPER ET AL., IND. CHEM. ENG., vol. 36, 1944, pages 504 - 509
SATOSHI MURAKAMI ET AL., KAGAKU KOGAKU RONBUNSHU, vol. 26, no. 4, 2000, pages 557 - 562
See also references of EP1795586A4
TSUJIMURA H. AND MATSUMOTO S.: "Ryudo Kaiseki o Kanyo shita Shij kin Baiyo no Scale up. (Scale-up of mycelial fermentation based on analysis of fluid velocity distribution)", BIOSCIENCE & INDUSTRY, vol. 52, no. 10, 1994, pages 805 - 807, XP002998822 *

Also Published As

Publication number Publication date
MY147430A (en) 2012-12-14
DK1795586T3 (da) 2012-08-13
CA2579154C (en) 2013-07-09
ES2387680T3 (es) 2012-09-28
EP2330183A1 (en) 2011-06-08
US9701990B2 (en) 2017-07-11
TW200613546A (en) 2006-05-01
JP2006067964A (ja) 2006-03-16
JP4624040B2 (ja) 2011-02-02
US20080311645A1 (en) 2008-12-18
EP1795586A4 (en) 2007-11-07
CN100482779C (zh) 2009-04-29
CA2579154A1 (en) 2006-03-16
KR101214882B1 (ko) 2012-12-24
AU2005281109A1 (en) 2006-03-16
EP1795586A1 (en) 2007-06-13
EP1795586B1 (en) 2012-05-23
CN1746290A (zh) 2006-03-15
TWI371486B (ja) 2012-09-01
AU2005281109B2 (en) 2011-06-09
KR20070068357A (ko) 2007-06-29

Similar Documents

Publication Publication Date Title
US7709236B2 (en) Process for producing microbial fat or oil having lowered unsaponifiable matter content and said fat or oil
US11525150B2 (en) Methods for producing polyunsaturated fatty acid and lipid containing polyunsaturated fatty acid
JP4849806B2 (ja) 新規な菌体処理方法を用いた高度不飽和脂肪酸の製造方法
WO2006028048A1 (ja) 菌体培養方法
JP4197744B2 (ja) 微生物培養用培地、並びに不飽和脂肪酸またはこれを含有する脂質の製造方法
JP2006067964A5 (ja)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2579154

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005281109

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005781593

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077007700

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1405/CHENP/2007

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2005281109

Country of ref document: AU

Date of ref document: 20050905

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005281109

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2005781593

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11662015

Country of ref document: US