WO2006023000A1 - Tranexamic acid formulations - Google Patents

Tranexamic acid formulations Download PDF

Info

Publication number
WO2006023000A1
WO2006023000A1 PCT/US2005/020558 US2005020558W WO2006023000A1 WO 2006023000 A1 WO2006023000 A1 WO 2006023000A1 US 2005020558 W US2005020558 W US 2005020558W WO 2006023000 A1 WO2006023000 A1 WO 2006023000A1
Authority
WO
WIPO (PCT)
Prior art keywords
tranexamic acid
dosage form
modified release
pharmaceutically acceptable
acceptable salt
Prior art date
Application number
PCT/US2005/020558
Other languages
English (en)
French (fr)
Inventor
Keith A. Moore
Ralph A. Heasley
Jeffrey S. Greiwe
Original Assignee
Xanodyne Pharmaceuticals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xanodyne Pharmaceuticals, Inc. filed Critical Xanodyne Pharmaceuticals, Inc.
Priority to JP2007523555A priority Critical patent/JP5205053B2/ja
Publication of WO2006023000A1 publication Critical patent/WO2006023000A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2027Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/16Otologicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/24Drugs for disorders of the endocrine system of the sex hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system

Definitions

  • the invention is directed to modified release oral tranexamic acid formulations that preferably minimize or eliminate undesirable side effects and methods of treatment with these formulations.
  • Tranexamic acid (trans-4-(aminomethyl) cyclohexanecarboxylic acid, Cyklokapron® (Pfizer) is an antifibrinolytic agent. That is, it helps to prevent lysis or dissolution of a fibrin clot which forms in the normal physiologic process of hemostasis. Its mechanism of action is as a competitive inhibitor of plasminogen activation, and as a noncompetitive inhibitor of plasmin; both plasminogen and plasmin are activators of fibrinolysis and active clot-lysing agents. Tranexamic acid thus helps to stabilize fibrin clots, which in turn maintains coagulation and helps to control bleeding.
  • Tranexamic acid is used to control excess bleeding, for example, excess bleeding that occurs during dental procedures in hemophiliacs and for heavy bleeding during menstruation (menorrhagia). Women suffering from menorrhagia are typically treated orally with 500 mg tranexamic acid tablets administered three or four times daily with a total daily dose ranging from 3 grams/day (two tablets every eight hours) to 6 grams/day (three tablets every six hours). However, this treatment may cause adverse gastrointestinal reactions, including nausea, vomiting, diarrhea, and cramping, etc.
  • gastrointestinal side effects are due to the quantity of tranexamic acid and/or rapid rate of release of tranexamic acid into the stomach with each dose, as well as the large quantity of excipients used in the tablet formulation that are introduced into the stomach.
  • Such side effects in addition to the cramping, bloating, pain, and other symptoms that may accompany menses, are undesirable, and a formulation of tranexamic acid is needed which will reduce or eliminate these side effects.
  • Formulations of tranexamic acid which minimize or eliminate the undesirable gastrointestinal side effects in patients on oral tranexamic acid therapy, e.g. women treated for menorrhagia (heavy menstrual bleeding) are disclosed.
  • the present invention is directed in part to a modified release formulation, formulated so that the release of tranexamic acid thereof from the dosage form occurs in a designed fashion to prevent a bolus of tranexamic acid being introduced into the stomach and available for dissolution in the gastric contents.
  • modified release formulations reduce the concentration of tranexamic acid dissolved in the stomach contents such as e.g., preventing a large bolus of tranexamic acid being introduced in the stomach.
  • the beneficial effect of this reduced tranexamic acid concentration is to lower the amount of tranexamic acid in the gastric contents so that there are fewer adverse effects with tranexamic acid therapy.
  • This reduction in adverse effects preferably results in improved patient compliance with therapy, because preferably patients will not intentionally miss taking a dose to avoid these adverse side effects. Physicians will also preferably be more likely to initiate and maintain tranexamic acid treatment for their patients because of the reduced patient complaints.
  • a modified release oral dosage form comprising tranexamic acid or a pharmaceutically acceptable salt thereof and a modified release material which provides for the modified release of the tranexamic acid or pharmaceutically acceptable salt thereof from the dosage form such that the dosage form is suitable for administration on a two or three times a day basis; said dosage form providing an in- vitro dissolution release rate of the tranexamic acid or pharmaceutically acceptable salt thereof, when measured by a USP 27 Apparatus Type II Paddle Method @ 50 RPM in 900 ml water at 37 ⁇ 0.5°C, of less than about 70% by weight tranexamic acid or pharmaceutically acceptable salt thereof released at about 45 minutes and about 100% by weight of said tranexamic acid or pharmaceutically acceptable salt thereof released by about 120 minutes.
  • the present invention is directed to a method of treating a patient in need of tranexamic acid or pharmaceutically acceptable salt thereof therapy comprising administering to the patient about 1300 mg of tranexamic acid or pharmaceutically acceptable salt thereof in at least one oral dosage form comprising said tranexamic acid or pharmaceutically acceptable salt thereof and a modified release material which provides a mean maximum plasma concentration (C max ) of tranexamic acid of from about 5 to about 17.5 mcg/ml, preferably from about 6.5 to about 15 mcg/ml, more preferably from about 9 to about 14.5 mcg/ml after single dose oral administration to humans.
  • C max mean maximum plasma concentration
  • the invention is further directed to a method of treating a patient in need of tranexamic acid or pharmaceutically acceptable salt thereof therapy comprising administering to the patient about 1300 mg of tranexamic acid or pharmaceutically acceptable salt thereof in at least one oral dosage form comprising said tranexamic acid or pharmaceutically acceptable salt thereof and a modified release material which provides a mean maximum plasma concentration (C max ) of tranexamic acid of from about 5 to about 25 mcg/ml, preferably from about 10 to about 20 mcg/ml, more preferably from about 12.5 to about 17.5 mcg/ml, most preferably about 15 to about 17 mcg/ml after steady state oral administration to humans.
  • C max mean maximum plasma concentration
  • the modified release oral dosage form of the present invention provides a mean T max of tranexamic acid at from about 1 to about 5.5 hours, preferably at from about 2 to about 4 hours, more preferably at from about 2 to about 3.5 hours after oral administration of the dosage form to humans.
  • the invention is further directed to a modified release oral dosage form comprising tranexamic acid or pharmaceutically acceptable salt thereof and a modified release material which provides for the modified release of the tranexamic acid or pharmaceutically acceptable salt thereof from the dosage form such that the dosage form is suitable for administration on a two or three times a day basis and the dosage form provides a dissolution release rate in- vitro of the tranexamic acid or pharmaceutically acceptable salt thereof when measured by the USP 27 Apparatus Type II Paddle Method @ 50 RPM in 900 ml water at 37 ⁇ 0.5°C of less than about 40% by weight tranexamic acid or pharmaceutically acceptable salt thereof released at about 15 minutes, less than about 70% by weight tranexamic acid or pharmaceutically acceptable salt thereof released at about 45 minutes, and not less than 50% by weight tranexamic acid or pharmaceutically acceptable salt thereof released at about 90 minutes.
  • the invention is further directed to a modified release oral dosage form comprising tranexamic acid or pharmaceutically acceptable salt thereof and a modified release material which provides. for the modified release of the tranexamic acid or pharmaceutically acceptable salt thereof from the dosage form such that the dosage form is suitable for administration on a two or three times a day basis and the dosage form provides a dissolution release rate in- vitro of the tranexamic acid or pharmaceutically acceptable salt thereof when measured by the USP 27 Apparatus Type II Paddle Method @ 50 RPM in 900 ml water at 37 ⁇ 0.5°C of about 0% to about 40% by weight tranexamic acid or pharmaceutically acceptable salt thereof released at about 15 minutes, from about 20% to about 60% by weight tranexamic acid or pharmaceutically acceptable salt thereof released at about 30 minutes, from about 40% to about 65% by weight tranexamic acid or pharmaceutically acceptable salt thereof released at about 45 minutes, from about 50% to about 90% by weight tranexamic acid or pharmaceutically acceptable salt thereof release at about 60 minutes
  • the invention is further directed to a modified release oral dosage form comprising tranexamic acid or pharmaceutically acceptable salt thereof and a modified release material, which provides for a bioavailability of tranexamic acid of greater than 40%, from about 41% to about 60%, preferably from about 42% to about 50%, more preferably about 45% after oral administration to humans [0017]
  • the present invention is further directed to a modified release oral dosage form comprising from about 585 to about 715 mg of tranexamic acid or pharmaceutically acceptable salt thereof, preferably about 650 mg of tranexamic acid or pharmaceutically acceptable salt thereof, and a modified release material which provides for the modified release of the tranexamic acid or pharmaceutically acceptable salt thereof from the dosage form such that the dosage form is suitable for administration on a two or three times a day basis.
  • the present invention is directed to a modified release oral dosage form comprising tranexamic acid or pharmaceutically acceptable salt thereof and a modified release material which provides for the modified release of the tranexamic acid or pharmaceutically acceptable salt thereof from the dosage form such that the dosage form is suitable for administration on a two or three times a day basis, the dosage form providing a reduction of at least one side effect selected from the group, consisting of headache, nausea, vomiting, diarrhea, constipation, cramping, bloating, and combinations thereof, as compared to an equivalent amount of tranexamic acid or pharmaceutically acceptable salt thereof in an immediate release oral dosage form when administered across a patient population.
  • the present invention is directed to a modified release oral dosage form comprising tranexamic acid or pharmaceutically acceptable salt thereof and a modified release excipient, said dosage form providing for the release of the tranexamic acid or pharmaceutically acceptable salt thereof which is slower than an immediate release oral dosage form and faster than a controlled release oral dosage form, such that the modified release oral dosage form is suitable for administration two or three times a day.
  • the invention is further directed to a modified release oral dosage form comprising about 650 mg of tranexamic acid or pharmaceutically acceptable salt thereof and a modified release material, the dosage form being suitable for oral administration on a three times a day basis, and the dosage form providing a mean maximum plasma concentration (C max ) of tranexamic acid of from about 5 to about 17.5 mcg/ml, preferably from about 6.5 to about 15 mcg/ml, more preferably from about 9 to about 14.5 mcg/ml per 1300 mg tranexamic acid after single dose oral administration to humans.
  • C max mean maximum plasma concentration
  • the invention is further directed to a modified release oral dosage form comprising about 650 mg of tranexamic acid or pharmaceutically acceptable salt thereof and a modified release material, the dosage form being suitable for oral administration on a twice a day basis, and the dosage form providing a mean maximum plasma concentration (C max ) of tranexamic acid of from about 5 to about 40 mcg/ml, preferably from about 10 to about 30 mcg/ml per 1950 mg tranexamic acid after single dose oral administration to humans.
  • C max mean maximum plasma concentration
  • the invention is further directed to a modified release oral dosage form comprising about 650 mg of tranexamic acid or pharmaceutically acceptable salt thereof and a modified release material, the dosage form being suitable for oral administration on a three times a day basis, and the dosage form providing a mean plasma concentration of tranexamic acid of from about 5 to about 25 mcg/ml, preferably from about 7.5 to about 15 mcg/ml, more preferably from about 8 to about 10 rhcg/ml, most preferably about 9 mcg/ml per 1300 mg tranexamic acid after steady state oral administration to humans.
  • the invention is further directed to a modified release oral dosage form comprising about 650 mg of tranexamic acid or pharmaceutically acceptable salt thereof and a modified release material, the dosage form being suitable for administration on a three times a day basis, and the dosage form providing a mean maximum plasma concentration (C max ) of tranexamic acid of from about 5 to about 25 mcg/ml, preferably from about 10 to about 20 mcg/ml, more preferably from about 12.5 to about 17.5 mcg/ml, most preferably about 15 to about 17 mcg/ml per 1300 mg tranexamic acid after steady state oral administration to humans.
  • C max mean maximum plasma concentration
  • the invention is further directed to a modified release oral dosage form comprising about 650 mg of tranexamic acid or pharmaceutically acceptable salt thereof and an modified release material, the dosage form being suitable for administration on a three times a day basis, and the dosage form providing a mean plasma trough concentration of tranexamic acid or pharmaceutically acceptable salt thereof of from about 2 to about 10 mcg/ml, preferably from about 3 to about 7.5 mcg/ml, more preferably about 4 to about 7 mcg/ml, most preferably about 5 to about 6 mcg/ml per 1300 mg tranexamic acid or after steady state oral administration to humans.
  • the invention is further directed to a method of treating a patient with a therapeutically effective amount of tranexamic acid or pharmaceutically acceptable salt thereof comprising administering to the patient two dosage forms of the present invention, each dosage form comprising from about 585 mg to about 715 mg of tranexamic acid or pharmaceutically acceptable salt thereof, preferably about 650 mg tranexamic acid or pharmaceutically acceptable salt thereof, and a modified release material such that the dosage form is suitable for oral administration on a three times a day basis.
  • the invention is further directed to a method of treating a patient with a therapeutically effective amount of tranexamic acid or pharmaceutically acceptable salt thereof comprising administering to the patient three dosage forms of the present invention, each dosage form comprising from about 585 mg to about 715 mg, preferably about 650 mg tranexamic acid or pharmaceutically acceptable salt thereof, and a modified release material such that the dosage form is suitable for oral administration on a twice a day basis.
  • the invention is directed to a dose of tranexamic acid or pharmaceutically acceptable salt thereof comprising two unit dosage forms of a modified release formulation, each unit dosage form of said modified release formulation comprising from about 585 mg to about 715 mg, preferably about 650 mg of tranexamic acid or pharmaceutically acceptable salt thereof, and a modified release material which provides for the release of the tranexamic acid or pharmaceutically acceptable salt thereof from the dosage form such that the dose provides a therapeutic effect when administered three times a day.
  • the invention is directed to a dose of tranexamic acid comprising three unit dosage forms of a modified release formulation, each unit dosage form of said modified release formulation comprising from about 585 mg to about 715 mg, preferably about 650 mg of tranexamic acid or pharmaceutically acceptable salt thereof, and a modified release material which provides for the release of the tranexamic acid or pharmaceutically acceptable salt thereof from the dosage form such that the dose provides a therapeutic effect when administered twice a day.
  • the invention is further directed to a modified release oral dosage form including tranexamic acid or pharmaceutically acceptable salt thereof and a modified release material which provides for the modified release of the tranexamic acid or pharmaceutically acceptable salt thereof from the dosage form such that the dosage form is suitable for administration on a two or three times a day basis and the dosage form provides a dissolution release rate in- vitro of the tranexamic acid or pharmaceutically acceptable salt thereof when measured by the USP 27 Apparatus Type II Paddle Method @ 50 RPM in 900 ml water at 37 ⁇ 0.5°C of about 0% to about 40% by weight tfahexamic acid or pharmaceutically acceptable salt thereof released at about 15 minutes, from about 20% to about 60% by weight tranexamic acid or pharmaceutically acceptable salt thereof released at about 30 minutes, from about 40% to about 80% by weight tranexamic acid or pharmaceutically acceptable salt thereof released at about 45 minutes, from about 50% to about 95% by weight tranexamic acid or pharmaceutically acceptable salt thereof release at about
  • the invention is further directed to a modified release oral dosage form including tranexamic acid or pharmaceutically acceptable salt . thereof and a modified release material which provides for the modified release of the tranexamic acid or pharmaceutically acceptable salt thereof from the dosage form such that the dosage form is suitable for administration on a two or three times a day basis and the dosage form provides a dissolution release rate in- vitro of the tranexamic acid or pharmaceutically acceptable salt thereof when measured by the USP 27 Apparatus Type II Paddle Method @ 50 RPM in 900 ml water at 37 ⁇ 0.5°C of about 14% to about 22% by- weight tranexamic acid or pharmaceutically acceptable salt thereof released at about 15 minutes, from about 32% to about 50% by weight tranexamic acid or pharmaceutically acceptable salt thereof released at about 30 minutes, from about 47% to about 71% by weight tranexamic acid or pharmaceutically acceptable salt thereof released at about 45 minutes, from about 61% to about 92% by weight tranexamic acid or pharmaceutically acceptable salt
  • the invention is directed to a modified release oral dosage form comprising tranexamic acid or pharmaceutically acceptable salt thereof and an effective amount of a modified release excipient such that the dosage form releases from about 10% to about 25% by weight tranexamic acid or pharmaceutically acceptable salt thereof every 15 minutes when measured in vitro utilizing the USP 27 Apparatus Type II Paddle Method @ 50 RPM in 900 ml water at 37 ⁇ 0.5°C.
  • the dosage form releases about 18% to about 23% by weight tranexamic acid or pharmaceutically acceptable salt thereof every 15 minutes when measured in vitro utilizing the USP 27 Apparatus Type II Paddle Method @ 50 RPM in 900 ml water at 37 ⁇ 0.5°C.
  • the dosage form releases about 100% of said tranexamic acid or pharmaceutically acceptable salt thereof within about 120 minutes when measured in vitro utilizing the USP 27 Apparatus Type II Paddle Method @ 50 RPM in 900 ml water at 37 ⁇ 0.5°C. In certain embodiments, the dosage form releases about 1% of said tranexamic acid or pharmaceutically acceptable salt thereof every minute when measured in vitro utilizing the USP 27 Apparatus Type II Paddle Method @ 50 RPM in 900 ml water at 37 ⁇ 0.5°C. [0032] In certain preferred embodiments, the modified release oral dosage form of the invention further provides a mean transit time of said tranexamic acid of 7.70 ⁇ 0.72 hours when administered across a patient population.
  • the modified release oral dosage form of the invention further provides a mean absorption time of said tranexamic acid of 4.18 ⁇ 0.70 hours when administered across a patient population.
  • the modified release oral dosage form of the present invention provides confidence intervals derived from In-transformed pharmacokinetic kinetic parameters AUC 0-t , AUC; n f and C max for tranexamic acid in plasma which are within a 80-125% range of an immediate release formulation including an equivalent amount of tranexamic acid when administered across a patient population under fasted conditions.
  • the invention is further directed to a modified release oral dosage form comprising tranexamic acid or pharmaceutically acceptable salt thereof and a modified release material which provides for the modified release of the tranexamic acid or pharmaceutically acceptable salt thereof from the dosage form such that the dosage form is suitable for administration on a two or three times a day basis and the dosage form provides less than about 20 percent incidence of headache as a side effect after single dose oral administration across a patient population.
  • the invention is further directed to a modified release oral dosage form comprising tranexamic acid or pharmaceutically acceptable salt thereof and a modified release material which provides for the modified release of the tranexamic acid or pharmaceutically acceptable salt thereof from the dosage form such that the dosage form is suitable for administration on a two or three times a day basis and the dosage form provides less than about 10 percent incidence of nausea as a side effect when administered across a patient population, less than about 7 percent incidence of nausea when administered across a patient population, preferable less than about 5 percent incidence of nausea as a side effect when administered across a patient population, more preferably less than about 2 percent incidence of nausea as a side effect after single dose oral administration across a patient population.
  • the modified release oral dosage form of the present invention provides less CNS side effects (e.g., headache), less GI side effects (e.g., nausea), or combination thereof in comparision to an equivalent amount of tranexamic acid or pharmaceutically acceptable salt thereof in an immediate release formulation when administered across a patient population. Additionally or alternatively, in certain embodiments the dosage form provides less CNS side effects (e.g., headache), less GI side effects (e.g., nausea), or combination thereof in comparision to a therapeutically equivalent amount of tranexamic acid administered intravenously in five minutes or less across a patient population.
  • CNS side effects e.g., headache
  • GI side effects e.g., nausea
  • the dosage form provides less CNS side effects (e.g., headache), less GI side effects (e.g., nausea), or combination thereof in comparision to a therapeutically equivalent amount of tranexamic acid administered intravenously in five minutes or less across a patient population.
  • the modified release oral dosage form of the present invention provides for the reduction of at least one side effect as compared to an immediate release oral dosage form including an equivalent amount of tranexamic acid or pharmaceutically acceptable salt thereof, when the immediate release dosage form is administered across a same or different population of patients as said modified release dosage form, and wherein said immediate release dosage form releases all of said tranexamic acid or pharmaceutically acceptable salt thereof within about 45 minutes when measured in vitro utilizing the USP 27 Apparatus Type II Paddle Method @ 50 RPM in 900 ml water at 37 ⁇ 0.5°C.
  • the modified release oral dosage form of the present invention provides a mean transit time of tranexamic acid which is at least about 20 minutes longer, preferably about 30 minutes longer, than an immediate release formulation including an equivalent amount of tranexamic acid when administered across a patient population.
  • the dosage form of the present invention provides a mean absorption time of tranexamic acid which is at least about 20 minutes longer, preferably about 30 minutes longer, than an immediate release formulation including an equivalent amount of tranexamic acid when administered across a patient population.
  • the therapeutically effective dose of the tranexamic acid or pharmaceutically acceptable salt thereof is provided via the administration of two or more dosage units. For example, if the dosage unit comprises
  • the invention is further directed to a method of treating a patient with one or more modified release oral dosage forms comprising tranexamic acid or pharmaceutically acceptable salt thereof and a modified release material, wherein the oral dosage form provides a therapeutically effective plasma level of tranexamic acid or pharmaceutically acceptable salt thereof in accordance with a three times a day (TID) dosing schedule, and the therapeutically effective dose administered comprises about 1300 mg of tranexamic acid or pharmaceutically acceptable salt thereof.
  • TID three times a day
  • the invention is further directed to a method of treating a patient with one or more modified release oral dosage forms comprising tranexamic acid or pharmaceutically acceptable salt thereof and a modified release material, wherein the oral dosage form provides a therapeutically effective plasma level of tranexamic acid or pharmaceutically acceptable salt thereof in accordance with a twice a day (BID) dosing schedule, and the therapeutically effective dose administered comprises about 1950 mg of tranexamic acid or pharmaceutically acceptable salt thereof.
  • BID twice a day
  • the invention is directed to a method of providing a tranexamic acid plasma concentration within the range of about 5 mcg/mL to about 15 i ⁇ cg/mL by administration of a modified release formulation of the present invention comprising tranexamic acid or pharmaceutically acceptable salt thereof and a modified release material on a three times a day basis to a patient in need of tranexamic acid or pharmaceutically acceptable salt thereof treatment.
  • the invention is further directed to a method of treating a human patient with heavy menstrual bleeding (e.g., menorrhagia) comprising administering about 1300 mg of tranexamic acid or pharmaceutically acceptable salt thereof on a three times a day basis to the human patient to provide a tranexamic acid or pharmaceutically acceptable salt thereof plasma concentration within the range of about 5 mcg/mL to about 15 mcg/mL after steady state oral administration to a human patient.
  • heavy menstrual bleeding e.g., menorrhagia
  • the invention is directed to a method of treating a patient suffering from menorrhagia, conization of the cervix, epistaxis, hyphema, hereditary angioneurotic edema, a patient with a blood coagulation disorder undergoing dental surgery, combinations thereof, and the like, by administering at least one dosage form of the present invention to the patient in need in tranexamic acid or pharmaceutically acceptable salt thereof therapy.
  • the invention is directed to a method of treating heavy menstrual bleeding with a therapeutically effective dose of at least one oral formulation of the present invention comprising tranexamic acid or pharmaceutically acceptable salt thereof and a modified release material wherein the menstrual blood loss per menstrual cycle is reduced by at least about 10 ml, preferably at least about 20 ml, more preferably at least about 40 ml. In a most preferred embodiment the menstrual blood loss per menstrual cycle, is reduced by greater than or equal to about 50 ml.
  • the invention is directed to a method of treating heavy menstrual bleeding with a therapeutically effective dose of at least one oral formulation of the present invention comprising tranexamic acid or pharmaceutically acceptable salt thereof and a modified release material which upon oral administration to a human female reduces the blood loss per menstrual cycle by about 35 ml to about 200 ml, preferably about 40 ml to about 175 ml, more preferably from about 50 ml to about 150 ml.
  • the invention is further directed to a method of treating heavy menstrual bleeding with a therapeutically effective dose of at least one oral formulation of the present invention comprising tranexamic acid or pharmaceutically acceptable salt thereof and a modified release material which upon oral administration to a human female reduces the blood loss per menstrual cycle by about 20% to 100%, preferably from about 20% to about 70%.
  • the menstrual blood loss can be measured by procedures known in the art.
  • the menstrual blood loss can be determined by a procedure described by (i) L. Hallbert, et al. in "Determination of Menstrual Blood Loss", Scandinav. J. Clin. & Lab. Investigation, 244-248, 16, 1964, wherein the procedure is performed by extracting the menstrual blood from vaginal tampons and towels with a sodium hydroxide solution, converting heme chromogens to alkaline hematin, which is determined spectrophotometrically; or (ii) the menstrual blood loss can be determined by a procedure described by J.
  • the modified release material may be incorporated in a coating applied onto e.g., a tablet comprising the tranexamic acid or pharmaceutically acceptable salt thereof, may be incorporated into a matrix with the tranexamic acid or pharmaceutically acceptable salt thereof, or a combination thereof.
  • the modified release material is a controlled release material such as a gel-forming or hydratable polymer which is added to e.g., a matrix composition comprising the tranexamic acid or pharmaceutically acceptable salt thereof.
  • the tranexamic acid for use in the methods and formulations of the present invention is in the form of a pharmaceutically acceptable salt thereof.
  • Such salt forms include for example and without limitation the sodium salt, potassium salt, calcium salt, magnesium salt and the like; as well as the hydrochloride, hydrobromide, sulfate, phosphate, formate, acetate, trifluoroacetate, maleate, tartrate, methanesulfonate, benzenesulfonate, p-toluenesulfonatemethanesulfonate salt forms, and the like.
  • the active ingredient for use in accordance with the present invention is tranexamic acid.
  • An "immediate release oral dosage form" for purposes of the present invention is a dosage form which releases all of active ingredient (e.g;, tranexamic acid) included therein within about 45 minutes when measured in vitro utilizing the USP 27 Apparatus Type II Paddle Method @ 50 RPM in 900 ml water at 37 ⁇ 0.5°C.
  • active ingredient e.g;, tranexamic acid
  • a "modified release oral dosage form” for purposes of the present invention is an oral dosage form which releases the active ingredient (e.g., tranexamic acid) included therein in a manner that is slower than an immediate release oral dosage form and faster than a controlled release oral dosage form, when the dosage forms include the same amount of active as the modified release oral dosage form.
  • active ingredient e.g., tranexamic acid
  • One definition of the terms “slower” and “faster” as used in this application is that they are meant to represent a statistically significant difference at each measured 15 minute interval after the start of in-vitro dissolution.
  • the modified release oral dosage form of the present invention provides an in-vitro dissolution release rate of tranexamic acid or pharmaceutically acceptable salt thereof, when measured by a USP 27 Apparatus Type II Paddle Method @ 50 RPM in 900 ml water at 37 ⁇ 0.5°C, of less than about 70% by weight tranexamic acid or pharmaceutically acceptable salt thereof released at about 45 minutes and about 100% by weight of said tranexamic acid or pharmaceutically acceptable salt thereof released by about 120 minutes.
  • a "controlled release oral dosage form" for purposes of the present invention is a dosage form which releases all of the active ingredient (e.g., tranexamic acid ) included therein after about 4 hours or more when measured in vitro utilizing the USP 27 Apparatus Type II Paddle Method @ 50 RPM in 900 ml water at 37 ⁇ 0.5°C.
  • C max unless otherwise indicated is meant for purposes of the present invention to mean the maximum plasma concentration of a medicament achieved after single dose administration of a dosage form, or the maximum plasma concentration of a medicament achieved over a dosing interval from multiple-doses at steady-state in accordance with the present invention.
  • T max is meant for purposes of the present invention to mean the elapsed time from administration of a dosage form to the time the C max of the medicament is achieved.
  • steady state means that the amount of the drug reaching the system is approximately the same as the amount of the drug leaving the system. Thus, at “steady- state", the patient's body eliminates the drug at approximately the same rate that the drug becomes available to the patient's system through absorption into the blood stream.
  • mean for purposes of the present invention, when used to define a pharmacokinetic value (e.g., T max ), unless specified otherwise, represents the arithmetic mean value measured across a patient or subject population.
  • TID three times a day
  • mean transit time is understood by those skilled in the art and means the time-point where 63.2% of the total AUC is attained after oral administration, or 63.2% of the IV dose is eliminated, as described in Applied Pharmacokinetics, Principles of Therapeutic Drug Monitoring, Second Edition (1986), edited by William E. Evans, et al., the disclosure of which is hereby incorporated by reference in its entirety.
  • mean absorption time is understood by those skilled in the art and means a quantitative parameter which summarizes how long, on average, the drug molecule remains unabsorbed, i.e.
  • the mean absorption time is not affected by incomplete release of drug from its dosage form, irregular absorption, lag- time, mixed zero-order dissolution rates, changing GI motility, GI blood flow, first-pass effect, etc.
  • Figure 1 depicts concentration-time profiles for simulated administration of the 1.3 g tranexamic acid modified release formulation, of Example 1 at a Q8H (every 8 hours) dosing schedule of 6:00AM, 2:00PM, 10:00PM comparing it with 1 g administered Q8H.
  • Figure 2 depicts concentration-time profiles for simulated administration of the 1.3 g tranexamic acid modified release formulation of Example 1 at a TID (three times a day) dosing schedule of 8:00AM, 2:00PM, 8:00PM comparing it with 1 g administered TID.
  • Figure 3 depicts mean plasma concentration-time profiles on a semi-log scale over 36 hours for the study of Example 4.
  • Figure 4 depicts mean plasma concentration-time profiles on a linear scale over 36 hours for the study of Example 4.
  • the dosage regimen typically listed for tranexamic acid in HMB (Heavy Menstrual Bleeding) therapy is 1 - 1.5 g per dose administered three — four times a day at the onset of copious menstrual bleeding and continued for the first 3 - 5 days of the menstrual cycle.
  • the most frequently reported dosage regimen of tranexamic acid is an immediate release oral formulation in which 1 g tranexamic acid is administered four times a day (4 g per day) for HMB therapy outside of the US.
  • tranexamic acid serum concentrations are 9, 41, 73, 88 percent (with food), and 22, 63, 85, and 98 percent (fasting) of maximal absorption at 0.5, 1, 1.5 and 2 hours after a 2 g oral dose, respectively.
  • tranexamic acid oral absorption appears to be controlled by a non-dissolution rate limited process, Le. the rate and extent of oral absorption is a function of a transmembrane passage-limited process, in order to explain the disparity between the time of product dissolution and relatively prolonged tmax (time to achieve the peak serum concentration).
  • the goal of the formulation, dose strength and dosage regimen of the invention is to provide HMB therapy which achieves from about 20% to 100% reduction in menstrual blood loss per menstrual cycle.
  • the preferred tranexamic acid dose of 1.3 g every 8 hours is predicted to provide an average serum tranexamic acid concentration comparable to that produced by a 1 g every 6 hour regimen (i.e. 12.4 mcg/mL), with associated peaks and troughs falling approximately within the therapeutic antifibrinolytic range (5-15 mcg/mL; Cyklokapron NDA 19-280).
  • a two-compartment oral absorption and elimination simulation model coupled with pharmacokinetic data (Pilbrant, et al., Eur. J. Clin. Pharmacol, (1981)-20:65-72), and modified-release tablet dissolution performance information were used to determine the preferred lead dosage regimen.
  • pharmacokinetic data Panbrant, et al., Eur. J. Clin. Pharmacol, (1981)-20:65-72
  • modified-release tablet dissolution performance information were used to determine the preferred lead dosage regimen.
  • the entire dose and the soluble components in the dosage form dissolve in gastrointestinal fluid and present a high concentration of solutes for absorption. The most frequently reported adverse effects are primarily confined to the proximal gastrointestinal tract (nausea and vomiting).
  • the oral dosage form of the present invention provides for an increased bioavailability as compared to immediate release oral dosage forms currently available (e.g., Cyclokapron).
  • the increased bioavailability allows therapeutic plasma levels of tranexamic acid to be reached with a lower dose of drug.
  • the increased bioavailability also decreases the amount of tranexamic acid that remains unabsorbed in the gastrointestinal which leads to decreased incidence of side effects that are typically associated with formulations that provide, higher levels of unabsorbed tranexamic acid and prolonged exposure of the gastrointestinal tract to the higher tranexamic acid levels.
  • the oral dosage form of the present invention provides for a bioavailability of tranexamic acid of greater than 40%, from about 41% to about 60%, preferably from about 42% to about 50%, more preferably about 45% after oral administration to humans.
  • the modified release oral formulations of tranexamic acid of the present invention provides a release of the drug which is slower than that of the immediate release 500 mg Cyklokapron product current marketed in Canada which provided a mean release rate of 100% by weight tranexamic acid released by about 15 minutes when measured utilizing USP 27 Apparatus Type II paddle method @ 50 RPM in 900 ml water at 37 ⁇ 0.5°C.
  • the modified release oral formulations may be described as providing a mean transit time through the proximal gastrointestinal mucosa which takes approximately one half hour longer than an immediate release formulation.
  • the modified release formulations of the invention provide a rate of release of (dissolved) tranexamic acid from the dosage form in-vitro which is approximately 20, 40, 60, 80, and 100 percent of the total dose at 0.25, 0.5,0.75, 1 and 1.5 hours, respectively.
  • such a release rate in-vitro demonstrates that the formulations of the present invention provide a relative reduction in the amount and rate of dissolved tranexamic acid presented to the proximal gastric mucosa to approximate 20, 40, 60, 80, and 100 percent of the total dose at 0.25, 0.5,0.75, 1 and 1.5 hours, respectively, after oral administration.
  • a modified release tranexamic acid tablet for oral administration is disclosed.
  • the tablet contains at least one material (defined herein as any substance other than the active, i.e., tranexamic acid) which minimizes or eliminates the adverse gastrointestinal side effects in patients, for example, women dosed with oral tranexamic acid for treatment of menorrhagia.
  • the modified release oral dosage forms of tranexamic acid for purposes of the present invention include formulation ingredients and/or configurations which are typically utilized for formulations known in the art as extended, sustained and controlled release formulations, although modified to provide a desirable release rate in keeping with the teachings of the present invention.
  • the modified release formulations preferably decrease the concentration of tranexamic acid and materials dissolved in the stomach fluids after dosing by controllably releasing tranexamic acid over a period of time, as opposed to immediate release formulations which release the entire dose of tranexamic acid all at once.
  • the modified release formulations of the present invention thus minimize or prevent gastrointestinal reactions and side effects that occur when a dose of tranexamic acid is ingested and immediately reaches the stomach.
  • the modified release dosage forms of the present invention may be prepared as; tablets, capsules, granules, pellets, powders, dragees, troches, non-pariels, pills or encapsulated suspension, and may be packaged into capsules, sachets, etc.
  • Such dosage forms may be prepared by any formulation technique where release of the active substance (tranexamic acid) from the dosage form is modified to occur at a slower rate than from an immediate release product.
  • tranexamic acid release occurs in the stomach and/or intestine, but at a slower rate so that a bolus of dissolved drug does not reach the lining of the stomach and cause adverse effects, or adverse effects occur with a lower intensity or frequency because of the lower concentration of tranexamic acid.
  • adverse effects are preferably reduced, minimized or eliminated.
  • a modified release form makes tranexamic acid available over an extended period of time after ingestion.
  • Modified release dosage forms coupled with the digestion process and the absorption process in the gastrointestinal tract cause a reduction in the amount of tranexamic acid in solution in the gastrointestinal tract compared to dosing tranexamic acid presented as a conventional dosage form (e.g., as a solution, or as an immediate release dosage form).
  • the modified release formulation may be verified by in vitro dissolution testing and in vivo bioequivalence documentation, according to Food and Drug Administration standards, e.g., as set forth at www.fda.gov. 21 CFR ⁇ 314, 320, and also at USP 23 NF 18 ⁇ 711, 724.
  • Tranexamic acid modified release tablets may be formulated to provide a dose of tranexamic acid, typically about 500 mg to about 2 grams from one to two tablets, within about the first one to two hours after the tablet is ingested. Thus, tranexamic acid release occurs at a designed rate over a period e.g., about 60 minutes to about 120 minutes.
  • the rate of tranexamic acid release over this period of time is designed to provide a reduced concentration of tranexamic acid in the stomach while allowing the absorption of tranexamic acid to occur throughout the gastrointestinal tract.
  • Absorption of tranexamic acid typically begins as soon as tranexamic acid is released from the dosage form and is dissolved in the gastrointestinal fluids contacting the membranes which line the gastrointestinal tract.
  • the rate of release of tranexamic acid from the dosage form and the absorption of drug by the gastrointestinal mucosa help to maintain low concentrations of drug in the gastrointestinal fluids.
  • the lowered concentrations preferably result in lower intensity, frequency, and/or severity of gastrointestinal adverse side effects.
  • the designed rate of release of tranexamic acid from the dosage form in the stomach and the upper small intestine, the natural emptying of gastric juice containing any dissolved tranexamic acid from the stomach, and the absorption of tranexamic acid from a larger segment of the gastrointestinal tract i.e., both the stomach and the small intestine, rather than the stomach only or the lower portion of the small intestine if any modified release dosage form with a longer release time was used
  • Reduced concentrations of tranexamic acid along the gastrointestinal tract preferably provide a reduction in adverse gastrointestinal effects associated with oral tranexamic acid therapy.
  • alleviation of adverse effects using these formulations indicates any relief in one or more symptoms, such as decrease in incidence, severity, or duration of symptoms, and is not limited to absence of symptoms or elimination of symptoms.
  • treatment includes any decrease in incidence, duration, intensity, frequency, etc. of adverse gastrointestinal symptoms including, but not limited to, headache, nausea, vomiting, diarrhea, constipation, cramping, bloating, and combinations thereof.
  • the formulations may reduce symptoms at any time during tranexamic acid therapy, but minimized adverse effects are particularly noted immediately or shortly after dosing, that is, within the first few hours after dosing.
  • adverse gastrointestinal effects and side effects are used interchangeably to indicate nontherapeutic effects (i.e., not relating to any possible beneficial effects due to tranexamic acid), ranging from unpleasant but tolerable sensations to severe gastrointestinal symptoms.
  • oral formulations, ingestable formulations, and orally administered formulations are used interchangeably and include any dosage forms which are ingested by mouth, including, but not limited to, tablets, pills, liquids, gelcaps, softgels, dragees, capsules, powders, granules, pellets, etc.
  • Modified release formulations of tranexamic acid include tablets, pellets, granules, capsules, or other oral dosage forms prepared in such a way to release tranexamic acid in a designed manner.
  • the modified release material is a gel-forming polymer, a hydratable polymer, a water soluble polymer, a water swellable polymer, or mixtures thereof.
  • modified release tranexamic acid tablets are prepared by adding a modified release material comprising a gel-forming or hydratable polymer to a tranexamic tablet composition.
  • Suitable gel-forming or hydratable polymers include, but are not limited to, hydr ⁇ xyproplycellulose, hydroxypropylmethylcellulose or hypromellose, carboxymethylcellulose, polyvinyl alcohol, etc. This provides a compressed tablet that may or may not be film coated.
  • the tablet releases tranexamic acid by diffusion of tranexamic acid through the tablet matrix, or by erosion of the tablet matrix, or by a combination of diffusion from and erosion of the tablet matrix.
  • Tablets formed with water swellable polymers release tranexamic acid by diffusion of tranexamic acid through the tablet matrix, or by erosion of the tablet matrix, or by a combination of diffusion from and erosion of the tablet matrix.
  • One or more water-soluble hydrophilic poiymer(s) may also be used. These include polyvinylpyrrolidine, hydroxypropyl cellulose, hydroxypropylmethylcellulose, now referred to as hypromellose (e.g., MethocelTM, Dow Chemical Company), methyl cellulose, vinyl acetate/crotonic acid copolymers, methacrylic acid copolymers, maleic anhydride/methyl vinyl ether copolymers, derivatives thereof and mixtures thereof.
  • the polymer is hydroxypropyl cellulose or hydroxypropylmethylcellulose.
  • the polymer may be hydroxypropyl-methyl cellulose with a viscosity ranging from about 50 cps to about 200 cps.
  • the polymer may be hydroxypropyl-methyl cellulose with a viscosity of 100 cps, commercially available as MethocelTM K 100 LV (Dow Chemical Company).
  • the amount of polymer in the composition may be in the range of about 5% by weight to about 50% by weight of the composition. In various embodiments, the polymer is in the range of about 10% by weight to about 35% by weight of the composition, or about 10% by weight to about 30% by weight of the composition.
  • the modified release material comprises a vinyl polymer, phthalic acid derivative of vinyl copolymer, hydroxyalkylcellulose, alkylcellulose (e.g., ethylcellulose), cellulose acetate, hydroxyalkylcellulose acetate, cellulose ether, alkylcellulose acetate and partial esters thereof, and polymers and copolymers of lower alkyl acrylic acids and lower alkyl aerylates.and partial esters thereof, or combination thereof
  • the modified release material comprises hydroxypropylcellulose, hydryoxpropylmethylcellulose, carboxymethylcellulose, polyvinyl alcohol, polyvinylpyrrolidone, methylcellulose, vinyl acetate/crotonic acid copolymers, methacrylic acid copolymers, maleic anhydride/methyl vinyl ether copolymers, derivatives thereof, and mixtures thereof.
  • the modified release material comprises a polymer such as a methacrylic acid copolymer.
  • a polymer such as a methacrylic acid copolymer.
  • methacrylic acid copolymer copolymers of methacrylic acid with neutral acrylate or methacrylate esters such as ethyl acrylate or methyl methacrylate.
  • the modified release material comprises a pH independent binder or film-forming agent such as hydroxypropyl methycellulose, hydroxypropyl cellulose, methylcellulose, polyvinylpyrrolidone, neutral poly(meth)acrylate esters (e.g., the methyl methacrylate/ethyl acrylate copolymers sold as Eudragit® (Rohm Pharma), starches, gelatin, sugars such as glucose, sucrose, and mannitol, silicic acid, carboxymethylcellulose, and the like, diluents such as lactose, mannitol, dry starch, microcrystalline cellulose and the like, surface active agents such as polyoxyethylene sorbitan esters, sorbitan ethers, and the like, coloring agents, flavoring agents, lubricants such as talc, calcium stearate, and magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and other tableting aids.
  • the formulation includes tranexamic acid in the range of about 50% by weight to about 95% or more by weight of the formulation. In other embodiments, tranexamic acid is in the range of about 60% by weight to about 90% by weight, or about 60% by weight to about 80% by weight of the formulation. The remaining weight may be made up of the modified release material and additional excipients.
  • the agent or modified release material to slow the release of tranexamic acid may be incorporated into the tablet matrix or coated onto the tablet surface or both.
  • tablet formulations prepared are formulated by granulating a blend of powders of the modified release material.
  • the powder blend is formed by combining portions of the powdered components that make up the tablet. These powders are intimately mixed by dry- blending.
  • the dry blended mixture is granulated by wet mixing of a solution of a binding agent with the powder blend. The time for such wet mixing may be controlled to influence the dissolution rate of the formulation.
  • the total powder mix time may range from about 1 min to about 10 min, or from about 2 min to about 5 min.
  • the particles are removed from the granulator and placed in a fluid bed dryer, a vacuum dryer, a microwave dryer, or a tray dryer for drying. Drying conditions are sufficient to remove unwanted granulating solvent, typically water, or to reduce the amount of granulating solvent to an acceptable level. Drying conditions in a fluid bed dryer or tray dryer are typically about 50 to 7O 0 C.
  • the granulate is dried, screened, mixed with additional excipients such as disintegrating agents, flow agents, or compression aids and lubricants such as talc, stearic acid, or magnesium stearate, and compressed into tablets.
  • additional excipients such as disintegrating agents, flow agents, or compression aids and lubricants such as talc, stearic acid, or magnesium stearate, and compressed into tablets.
  • the tablet that contains a modified release material within the tablet matrix may be coated with an optional film-forming agent. This applied film may aid in identification, mask an unpleasant taste, allow desired colors and surface appearance, provide enhanced elegance, aid in swallowing, aid in enteric coating, etc.
  • the amount of film-forming agent may be in the range of about 2% tablet weight to about 4% tablet weight.
  • Suitable film-forming agents are known to one skilled in the art and include hydroxypropyl cellulose, cellulose ester, cellulose ether, one or more acrylic polymer(s), hydroxypropyl methylcellulose, cationic methacrylate copolymers (diethylaminoethyl) methacrylate/methyl-butyl-methacrylate copolymers such as Eudragit E® (Rohm Pharma) and the like.
  • the film-forming agents may optionally contain colorants, plasticizers, fillers, etc. including, but not limited to, propylene glycol, sorbitan monooleate, sorbic acid, titanium dioxide, and one or more pharmaceutically acceptable dye(s).
  • the tranexamic acid tablets of the invention are coated with a modified release material.
  • tranexamic acid tablets are formulated by dry blending, rotary compacting, or wet granulating powders composed of tranexamic acid and tablet excipients. These powders are compressed into an immediate release tablet. Coating this immediate release tablet with a modified release material as described herein renders this tranexamic acid tablet as a modified release tablet.
  • the formulations of the invention may also contain suitable quantities of other materials, e.g.
  • preservatives e.g., microcrystalline cellulose
  • lubricants e.g., stearic acid, magnesium stearate, and the like
  • binders e.g., povidone, starch, and the like
  • disintegrants e.g, croscarmellose sodium, corn starch, and the like
  • glidants e.g., talc, colloidal silicon dioxide, and the like
  • granulating aids colorants, and flavorants that are conventional in the pharmaceutical art.
  • the release process may be adjusted by varying the type, amount, and the ratio of the ingredients to produce the desired dissolution profile, as known to one skilled in the art.
  • a coating may be a partially neutralized pH-dependent binder that controls the rate of tranexamic acid dissolution in aqueous media across the range of pH in the stomach, which has a pH of about 2, and the intestine, which has a pH of about 5.5 in its upper region.
  • one or more pH dependent binders may be used to modify the dissolution profile so that tranexamic acid is released slowly and continuously as the formulation passes through the stomach and/or intestines.
  • compressed modified release tablets are formulated to comply with USP criteria and to be of such a size and shape to be easy to swallow.
  • the size of the tablet will depend upon the dose of tranexamic acid that is needed to provide adequate therapy and the particular formulation and excipients that are selected to provide the physical properties necessary for tableting and for modified release.
  • a compressed modified release tablet contains from about 500 mg to about 1 gram of tranexamic acid, or from about 600 mg to about 750 mg of tranexamic acid.
  • the daily dose of tranexamic acid may be achieved by taking one or two tablets at each dosing time.
  • the tranexamic acid included in the dosage form is from about 375 mg to about 1500 mg, preferably from about 375 mg to about 1000 mg.
  • the dose of tranexamic acid per tablet is in the range of about 500 mg to about 1000 mg for tablets and from about 500 mg to about 1500 mg for a sachet filled with granules.
  • the dose of tranexamic acid is in the range of about 3 grams/day to about 6 grams/day in three or four divided doses.
  • a total daily dose of 3 grams tranexamic acid may be divided into three doses of one tablet each with each tablet containing 1 gram tranexamic acid, or may be divided into four doses of one tablet each with each tablet containing 0.75 gram tranexamic acid.
  • a total daily dose of 4 gram tranexamic acid may be divided into three doses of two tablets at each dose with each tablet containing 0.666 gram tranexamic acid, or may be divided into four doses of one tablet each with each tablet containing 1 gram tranexamic acid.
  • a total daily dose of 5 gram tranexamic acid may be divided into three doses of one tablet each with each tablet containing 1.66 gram tranexamic acid, or may be divided into four doses of two tablets each with each tablet containing 0.625 gram tranexamic acid.
  • a total daily dose of 6 gram tranexamic acid may be divided into three doses of two tablets each with each tablet containing 1 gram tranexamic acid, or may be divided into four doses of two tablets each with each tablet containing 0.75 gram tranexamic acid.
  • the dose of tranexamic acid taken at each dosing time may be delivered by taking multiple tablets.
  • the 4 gram daily dose may be delivered by taking two 666.61 mg tablets three times a day or two 500 mg tablets four times a day.
  • the 3 gram daily dose may be achieved by taking two 550 mg tablets three times a day or two 375 mg tablets four times a day.
  • a dose of 600 mg, 650 mg, or 700 mg of tranexamic acid per tablet may be used.
  • a total daily dose of 3900 mg/day is administered in three divided doses of 1300 mg of two tablets at each dose with each tablet containing 650 mg of tranexamic acid.
  • each dose may be delivered by taking granules containing the prescribed amount of tranexamic acid presented in a convenient unit dose package. Such examples are not limiting and other doses within these ranges will be appreciated by those skilled in the art.
  • modified release tranexamic acid formulations may be administered by pellets or granules in e.g., a.sachet or capsule.
  • Modified release tranexamic acid pellets or granules may be prepared by using materials to modify the release of tranexamic acid from the granule or pellet matrix. Modified release preparations may also be formulated using coatings to modify the release of tranexamic acid from the granule or pellet.
  • U.S. Patent Nos. 5,650,174; and 5,229,135 each of which is expressly incorporated by reference herein in its entirety, disclose variations on fabricating a pellet or nonpareil dosage form.
  • Spheres are filled into packets, termed sachets, or capsules which are filled by weight to contain the prescribed dose of drug.
  • Multiparticulates may be coated with an modified release coating, as disclosed in U.S. Patent No. 6,066,339, which is expressly incorporated by reference herein its entirety. Coated multiparticulates may be packaged in capsules or sachets.
  • the formulation of granules or pellets for modified release is described in Multiparticulate Oral Drug Delivery, Ghebre-Sellassie, Ed. in Drugs and the Pharmaceutical Sciences, Vol. 65 Marcel Dekker Inc. NY, 1994 and in the relevant parts of the references for modified release formulations previously cited and the relevant portions incorporated herein by reference.
  • the inventive tranexamic acid formulations may be used for additional indications other than menorrhagia, such as conization of the cervix, epistaxis, hyphema, hereditary angioneurotic edema, a patient with a blood coagulation disorder undergoing dental surgery, combinations thereof, and the like.
  • Modified release 650 mg tranexamic acid tablets were prepared having the ingredients listed in the Table 1 below:
  • Example 1 Purified water is removed during processing
  • the formulation of Example 1 was prepared as follows:
  • Example 2 immediate release 650 mg tranexamic acid tablets were prepared having the ingredients listed in Table 2 below:
  • Example 2 The formulation of Example 2 was prepared as follows:
  • Example 3 modified release 650 mg tranexamic acid tablets were prepared as in Example 1 and coated with a film coating similar to the immediate release tablets of Example 2. The ingredients are listed in Table 3 below:
  • Example 4 a comparative, randomized, single dose, 4-way Crossover Absolute Bioavailability (BA) and Bioequivalence (BE) study of Tranexamic Acid Tablet Formulations prepared in accordance with Examples 1 and 2 in Healthy Adult Women Volunteers under Fasting Conditions was performed. The objective was to assess the bioequivalence of a 650 mg modified release tablet formulation prepared in accordance with Example 1 compared to the immediate release reference tablet formulation of tranexamic acid prepared in accordance with Example 2, and to determine the bioavailability of the modified tablet formulation to the approved IV (1 g) formulation Cyklokapron by Pharmacia & Upjohn. The design was a randomized, 4- way crossover, comparative BE and BA determination. All oral doses administered were 1.3 g.
  • AUC 0-t is the area under the plasma concentration versus time curve, from time 0 to the last measurable concentration, as calculated by the linear trapezoidal method.
  • MRT The mean residence time (MRT) after intravenous administration of tranexamic acid was determined using the equation, AUMC/AUC + infusion time/2, where the AUMC is the area under the moment-time curve.
  • the mean transit time (MTT) of tranexamic acid was calculated by dividing the AUMC by the AUC.
  • MAT The mean abso rption time (MAT) for the two formulations was derived by subtracting the MRT from the MTT.
  • the mean transit time (MTT) and mean absorption time (MAT) of the Modified Release formulation of tranexamic acid was approximately 30 minutes longer than that observed for the Immediate Release formulation.
  • the modified release tranexamic acid tablet formulation and the immediate release tranexamic acid formulation are bioequivalent under fasting conditions.
  • Comparative Example 4A 3 a 500 mg immediate release tranexamic acid tablet, approved and marketed in Canada under the name Cyklokapron was obtained and dissolution tested under USP 27 Apparatus Type II Paddle Method @ 50 RPM in 900 ml water at 37 ⁇ 0.5°C. The dissolution results are listed in Table 1OA below:
  • Example 5 based on single dose pharmacokinetic parameters, pharmacokinetic simulations of serum concentrations were performed to compare dosing the modified release formulation of Example 4 at every 8 hours (Q8H: at 6:00 AM, 2:00 PM, 10:00 PM) and dosing three times a day, other than every 8 hours (TID: at 8:00 AM, 2:00 PM, and 10:00 PM). The results are provided in Tables 11-14 below.
  • Example 6 a study of a single dose followed by multiple doses, was performed on 20 healthy non-smoking adult female volunteers using a modified release formulation prepared in accordance with Example 1. After an overnight fast, subjects received a single oral dose of tranexamic acid (1.3 g) on Day 1. Blood samples were taken before dosing and up to 36 hours post-dose. Subjects received another single oral dose of tranexamic acid (1.3 g) on the evening of Day 2, and 3 times a day (every 8 hours) starting on the morning of Day 3 until the last dose on the morning of Day 7.
  • tranexamic acid 250 or 500 mg
  • tranexamic acid 250 or 500 mg
  • IV administration (1 g) 30% of the dose is excreted unchanged in the urine within one hour, 45-55% within 2-3 hours and 90% within 24 hours.
  • the beta elimination half-life of tranexamic acid is 2 hours. Based on published data, the mean C max and AUC 0-6 pharmacokinetic parameters after a single 1.3 g oral dose of tranexamic acid are expected to be approximately 65% of those achieved with a 2 g dose (i.e. -10 mg/L and ⁇ 40 mg-h/L, C max and AUC 0-6 under fasting conditions, respectively).
  • Example 6 Based on the simulation results* it would be appropriate to collect blood samples until 36 hours in order to characterize the AUC, Cmax, tmax, tVz and F. [0119] The objective of this study of Example 6 was to assess the pharmacokinetic linearity of the test tablet formulation of tranexamic acid (modified release), after a single oral dose (Day 1) compared to a daily (1.3 g every 8 hours) dosage regimen (Days 2 to 7), under fasting conditions.
  • Example 6 blood samples (1 x 5 mL) were collected in blood collection tubes containing lithium heparin at Hour 0 (pre-dose) on Day 1, and at 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10, 14, 24, 28, 32, and 36 hours post-dose. Blood samples for Cmin determinations were also collected immediately before the 6th, 9th, 12th, and 15th doses on Days 4, 5, 6, and 7, respectively, and at the following times after the 15th dose: 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, and 8 hours. Plasma samples were separated by centrifugation, then frozen at -2O 0 C ⁇ 1O 0 C and kept frozen until assayed at AAI Development Services in New-Ulm, Germany.
  • Compartmental analysis was performed on tranexamic acid data following single and multiple oral administrations of the modified release (MR) tablet formulation. Multiple compartmental models were constructed and their ability to fit plasma concentrations of tranexamic acid were evaluated using a standard two-stage (STS) approach with ADAPT-II (maximum likelihood analysis). The discrimination process was performed by computing the Akaike Information Criterion Test (AIC), the minimum value of the objective function (OBJ) and by looking at pertinent graphical representations of goodness of fit (e.g. fitted and observed concentrations versus time). [0124] The final analysis was performed using an iterative two-stage approach with the IT2S® software.
  • AIC Akaike Information Criterion Test
  • OBJ minimum value of the objective function
  • goodness of fit e.g. fitted and observed concentrations versus time
  • Descriptive statistics including arithmetic means, standard deviations and coefficients of variation were calculated on the individual concentration and pharmacokinetic data. Additionally, geometric means were calculated for the parameters AUC o- t , AUCi nf , and C max for Day 1 and AUC ⁇ , C max and C min for Day 7.
  • the pharmacokinetic parameter AUC ⁇ (Day 7) was compared against AUCj n f (Day 1) using an analysis of variance (ANOVA) on the In-transformed values for tranexamic acid.
  • the ANOVA model included Group, Day (1 (AUC inf ) and 7 (AUC ⁇ )) and the interaction Day* Group as fixed effects. All the interaction terms were not statistically significant, at a level of 5%, and were dropped from the final model.
  • the ANOVA included calculation of least-squares means (LSM), the difference between Day LSM and the standard error associated with this difference. The above statistical analysis was done using the SAS® GLM procedure.
  • the ratio of LSM was calculated using the exponentiation of the Day LSM from the analysis on the In-transformed response. The ratio was expressed as a percentage relative to AUQ nf (Day 1).
  • a ninety percent confidence interval for the ratio was derived by exponentiation of the confidence interval obtained for the difference between Day LSM resulting from the analysis on the In-transformed response.
  • the confidence interval was expressed as a percentage relative to AUQ nf (Day 1).
  • a steady-state analysis was performed, on the In-transformed pre-dose Cmin concentrations at —72, -48, -24 and 0-hour time points, using Helmert's contrasts.
  • the ANOVA model included Group, Time and the interaction Time*Group as fixed effects.
  • an appropriate variance- co variance matrix was chosen among the following: unstructured (UN), compound symmetry (CS), compound symmetry heterogeneous (CSH), variance component (VC), autoregressive (AR(I)), autoregressive heterogeneous (ARH(I)) and autoregressive moving average (ARMA(I 3 I)), using the Akaike's Burnham and Anderson criterion (AICC).
  • LSMoay7 and LSMoayi are the least-squares means of Day 7 and Day 1, as computed by the LSMEANS statement of the S AS ® GLM procedure.
  • SEDay 7 -D a yi is the standard error of the difference between the adjusted Day means, as computed by the ESTIMATE statement in the SAS GLM procedure.
  • the ANOVA model included Group, Day (1 (AUC inf ) and 7 (AUC ⁇ )) and the interaction Day*Group as the fixed effect. All the interaction terms were not statistically significant, at a level of 5%, and were dropped from the final model. Pharmacokinetic linearity was calculated for the formulation using the same approach as above, but the ANOVA model included Group, Day 1 (AUCinf). and Day 7 (AUC ⁇ )) and the interactions Group*Day as fixed effects and Subject nested within Group as a random effect. The pharmacokinetic linearity results are summarized in the table below.
  • the pharmacokinetic linearity results indicate that the ratios of least-squares means of AUC ⁇ (Day 7) to AUC inf (Day 1) and the 90% confidence interval for the MR formulation were within the 80-125% acceptance range. Based on these results, the 650 mg tranexamic acid modified release tablets exhibited linear pharmacokinetics following repeated administration (7 days) of a 1.3 g dose under fasting conditions.
  • Time* Group was not statistically significant and was removed from the final ANOVA model.
  • the same approach as above was used, but the ANOVA models included Group, Time and the interactions Time*Group as fixed effects.
  • the terminal elimination half-life (Tl/2 ⁇ ) characterizing the slow decline of plasma concentrations should not play a clinically significant role in the frequency of drug administration.
  • the pharmacokinetic linearity results indicate that the ratios of least-squares means of AUOc (Day 7) to AUCinf (Day 1) and the 90% confidence interval for the MR formulation were within the 80-125% acceptance range. Based on these results, the 650 mg tranexamic acid modified release tablets exhibited linear pharmacokinetics following repeated administration (7 days) of a 1.3 g dose under fasting conditions. [0144] Steady-state plasma concentrations of tranexamic acid for the modified-release tablets were reached on Day 4 (-72-hour), since the p-value for the first contrast was not statistically significant at a 5% alpha error.
  • Plasma Pharmacokinetic Parameters for the modified release (MR) formulation of Tranexamic Acid on day 1 are listed in Table 21 below.
  • Plasma Pharmacokinetic Parameters for the modified release (MR) formulation of Tranexamic Acid on day 7 are listed in Table 22 below.

Landscapes

  • Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Endocrinology (AREA)
  • Diabetes (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Reproductive Health (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
PCT/US2005/020558 2004-07-30 2005-06-13 Tranexamic acid formulations WO2006023000A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007523555A JP5205053B2 (ja) 2004-07-30 2005-06-13 トラネキサム酸製剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US59288504P 2004-07-30 2004-07-30
US60/592,885 2004-07-30

Publications (1)

Publication Number Publication Date
WO2006023000A1 true WO2006023000A1 (en) 2006-03-02

Family

ID=35967832

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2005/020563 WO2006023001A1 (en) 2004-07-30 2005-06-13 Tranexamic acid formulations
PCT/US2005/020558 WO2006023000A1 (en) 2004-07-30 2005-06-13 Tranexamic acid formulations

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US2005/020563 WO2006023001A1 (en) 2004-07-30 2005-06-13 Tranexamic acid formulations

Country Status (2)

Country Link
JP (4) JP5205053B2 (ja)
WO (2) WO2006023001A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7947739B2 (en) 2004-03-04 2011-05-24 Ferring B.V. Tranexamic acid formulations
US8022106B2 (en) 2004-03-04 2011-09-20 Ferring B.V. Tranexamic acid formulations
US8273795B2 (en) 2004-03-04 2012-09-25 Ferring B.V. Tranexamic acid formulations
US8957113B2 (en) 2004-03-04 2015-02-17 Ferring B.V. Tranexamic acid formulations
US8968777B2 (en) 2003-07-31 2015-03-03 Ferring B.V. Tranexamic acid formulations with reduced adverse effects
WO2016173948A1 (en) 2015-04-30 2016-11-03 Bayer Pharma Aktiengesellschaft Indazolopyrimidinones as fibrinolysis inhibitors
US9598417B2 (en) 2013-11-05 2017-03-21 Bayer Pharma Aktiengesellschaft (Aza)pyridopyrazolopyrimidinones and indazolopyrimidinones and their use
US10118930B2 (en) 2014-11-03 2018-11-06 Bayer Pharma Aktiengesellschaft Piperidinylpyrazolopyrimidinones and their use
WO2023233422A1 (en) * 2022-05-30 2023-12-07 Syri Research Private Limited Oral liquid formulation of tranexamic acid or its pharmaceutically acceptable salt thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506264A (en) * 1992-06-23 1996-04-09 Zaidan Hojin Seisan Kaihatsu Kaguki Kenkyusho Zinc tranexamate compounds
US5858411A (en) * 1994-12-19 1999-01-12 Daiichi Pharmaceutical Co., Ltd. Sustained-release granular preparations and production process thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158707A (en) * 1980-04-08 1981-12-07 Lion Corp Composition for oral use
JPH0460364A (ja) * 1990-06-26 1992-02-26 Fujitsu Ltd 冷却用ファンを備えた装置のホコリ防止法
JPH04243825A (ja) * 1991-01-25 1992-08-31 Ss Pharmaceut Co Ltd 色素沈着症治療剤
JP3496158B2 (ja) * 1993-01-26 2004-02-09 東洋カプセル株式会社 トラネキサム酸配合ゼラチンカプセル製剤
JPH1017497A (ja) * 1996-07-02 1998-01-20 Takeda Chem Ind Ltd 徐放性製剤およびその製造方法
JP2000159674A (ja) * 1998-12-01 2000-06-13 Kowa Co 解熱鎮痛消炎剤
JP2002265358A (ja) * 2001-03-13 2002-09-18 Kunio Tsuji ストレス対応皮膚外用剤
BRPI0317696B8 (pt) * 2002-12-27 2021-05-25 Daiichi Seiyaku Co composição para branqueamento
DE10300374B4 (de) * 2003-01-06 2010-12-23 Windmöller & Hölscher Kg Verfahren und Vorrichtung zur Regelung der Dicke extrudierter Folie

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506264A (en) * 1992-06-23 1996-04-09 Zaidan Hojin Seisan Kaihatsu Kaguki Kenkyusho Zinc tranexamate compounds
US5858411A (en) * 1994-12-19 1999-01-12 Daiichi Pharmaceutical Co., Ltd. Sustained-release granular preparations and production process thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8968777B2 (en) 2003-07-31 2015-03-03 Ferring B.V. Tranexamic acid formulations with reduced adverse effects
US8957113B2 (en) 2004-03-04 2015-02-17 Ferring B.V. Tranexamic acid formulations
US9060939B2 (en) 2004-03-04 2015-06-23 Ferring B.V. Tranexamic acid formulations
US8487005B2 (en) 2004-03-04 2013-07-16 Ferring B.V. Tranexamic acid formulations
US8791160B2 (en) 2004-03-04 2014-07-29 Ferring B.V. Tranexamic acid formulations
US8809394B2 (en) 2004-03-04 2014-08-19 Ferring B.V. Tranexamic acid formulations
US7947739B2 (en) 2004-03-04 2011-05-24 Ferring B.V. Tranexamic acid formulations
US8022106B2 (en) 2004-03-04 2011-09-20 Ferring B.V. Tranexamic acid formulations
US8273795B2 (en) 2004-03-04 2012-09-25 Ferring B.V. Tranexamic acid formulations
US9598417B2 (en) 2013-11-05 2017-03-21 Bayer Pharma Aktiengesellschaft (Aza)pyridopyrazolopyrimidinones and indazolopyrimidinones and their use
US10098883B2 (en) 2013-11-05 2018-10-16 Bayer Pharma Aktiengesellschaft (Aza)pyridopyrazolopyrimidinones and indazolopyrimidinones and their use
US10668071B2 (en) 2013-11-05 2020-06-02 Bayer Pharma Aktiengesellschaft (Aza)pyridopyrazolopyrimidinones and indazolopyrimidinones and their use
US10118930B2 (en) 2014-11-03 2018-11-06 Bayer Pharma Aktiengesellschaft Piperidinylpyrazolopyrimidinones and their use
WO2016173948A1 (en) 2015-04-30 2016-11-03 Bayer Pharma Aktiengesellschaft Indazolopyrimidinones as fibrinolysis inhibitors
WO2023233422A1 (en) * 2022-05-30 2023-12-07 Syri Research Private Limited Oral liquid formulation of tranexamic acid or its pharmaceutically acceptable salt thereof

Also Published As

Publication number Publication date
JP2014193878A (ja) 2014-10-09
WO2006023001A1 (en) 2006-03-02
JP2011168596A (ja) 2011-09-01
JP5000504B2 (ja) 2012-08-15
JP2008508276A (ja) 2008-03-21
JP5205053B2 (ja) 2013-06-05
JP2008508275A (ja) 2008-03-21

Similar Documents

Publication Publication Date Title
US8487005B2 (en) Tranexamic acid formulations
US8968777B2 (en) Tranexamic acid formulations with reduced adverse effects
US6555133B2 (en) Formulation of fast-dissolving efavirenz capsules or tablets using super-disintegrants
US8022106B2 (en) Tranexamic acid formulations
US20080280981A1 (en) Tranexamic acid formulations
US9060939B2 (en) Tranexamic acid formulations
WO2006023000A1 (en) Tranexamic acid formulations
US20050192259A1 (en) Aldosterone antagonist compositions for release during aldosterone acrophase
JPH061716A (ja) 活性成分の長期放出性を有する投薬形
JP2005508946A (ja) 医薬製剤
NZ718686A (en) Muco-adhesive, controlled release formulations of levodopa and/or esters of levodopa and uses thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007523555

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC (EPO COMUNICATIONS =>FORMS 1205A DATED :23.04.07 AND 26.06.07)

122 Ep: pct application non-entry in european phase

Ref document number: 05758061

Country of ref document: EP

Kind code of ref document: A1