WO2006022010A1 - Eccentric weight, method of producing the same, vibration motor, and portable apparatus - Google Patents

Eccentric weight, method of producing the same, vibration motor, and portable apparatus Download PDF

Info

Publication number
WO2006022010A1
WO2006022010A1 PCT/JP2004/012291 JP2004012291W WO2006022010A1 WO 2006022010 A1 WO2006022010 A1 WO 2006022010A1 JP 2004012291 W JP2004012291 W JP 2004012291W WO 2006022010 A1 WO2006022010 A1 WO 2006022010A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
eccentric weight
eccentric
shaft
holding
Prior art date
Application number
PCT/JP2004/012291
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichi Shimodaira
Takaomi Tanaka
Yoshito Hirata
Hidehiko Ichikawa
Akira Shimojima
Hikaru Yoshizawa
Kenichi Kusano
Original Assignee
Nanshin Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanshin Co., Ltd. filed Critical Nanshin Co., Ltd.
Priority to PCT/JP2004/012291 priority Critical patent/WO2006022010A1/en
Priority to PCT/JP2005/015483 priority patent/WO2006022354A1/en
Publication of WO2006022010A1 publication Critical patent/WO2006022010A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/10Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy
    • B06B1/16Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving rotary unbalanced masses

Definitions

  • the present invention relates to an eccentric weight, a manufacturing method thereof, a vibration motor, and a portable device.
  • FIG. 12 is a diagram for explaining such a vibration motor and an eccentric weight used in such a vibration motor.
  • Fig. 12 (a) is a perspective view of a vibration motor
  • Fig. 12 (b) is a cross-sectional view of an eccentric weight cut along a plane perpendicular to the motor shaft
  • Fig. 12 (c) is an eccentric weight on the motor shaft. It is sectional drawing cut by the plane which followed.
  • FIGS. 12 (b) and 12 (c) the position of the eccentric weight in FIG. 12 (a) in the rotational direction is changed.
  • the vibration motor 1100 includes a small cylindrical motor main body 1110 and an eccentric weight 1120 having a substantially fan shape and also having a force such as a sintered body of tandastane.
  • the motor shaft 1112 of the motor body 1110 is passed through and held in the motor shaft holding hole 1122 of the eccentric weight 1120.
  • Eccentric weight 1120 is the tip of the motor shaft 1112 with a caulking stop by deforming the motor shaft holding hole 1122 by deforming the motor shaft holding hole 1122 by measuring the side force of the thin direction force of the motor shaft holding hole 1122 that passes through the motor shaft 1112. (For example, see Patent Document 1).
  • FIG. 13 is a diagram for explaining another conventional eccentric weight.
  • Fig. 13 (a) is a front view
  • Fig. 13 (b) is an A-A cross-sectional view of Fig. 13 (a)
  • Fig. 13 (c) is a front view of the component
  • Fig. 13 (d ) Is a sectional view taken along line BB in FIG. 13 (c).
  • a part of the motor body 1210 is also shown.
  • another conventional eccentric weight 1220 includes a motor shaft 1 of a motor body 1210.
  • the weight 1240 also has a high specific gravity metal force
  • the center of gravity of the eccentric weight 1220 is disposed at a position where the center axial force of the motor shaft holding hole 1232 is also separated.
  • the amount of eccentricity in the eccentric weight 1220 increases, and by using such other conventional eccentric weight 1220, a vibration motor that can obtain a required vibration amount with light weight and low power consumption can be configured. .
  • Patent Document 1 JP 2001-129479 A
  • the weight 1240 is integrally joined and fixed to a part of the outer surface 1234 of the shaft body 1230 via the brazing portion 1250.
  • the motor is used for a long time, there is a problem that the reliability of the connection between the weight and the shaft is lowered.
  • the present invention has been made to solve such problems, and is a vibration motor that can obtain a necessary amount of vibration with light weight, low V, and power consumption.
  • the vibration motor can be used for a long time. It is an object of the present invention to provide an eccentric weight in which the reliability of the connection between the weight and the shaft body is suppressed even when used. It is another object of the present invention to provide a vibration motor and a portable device having such an excellent eccentric weight.
  • the eccentric weight of the present invention has a weight made of a high specific gravity metal key, a weight holding hole for holding the weight, and a motor shaft holding portion for holding the motor shaft, And a shaft body made of a material having a specific gravity lower than that of the high specific gravity metal constituting the weight, wherein the weight is held in the weight holding hole over the entire circumference.
  • the weight is held in the weight holding hole in the shaft over the entire circumference. Therefore, according to the eccentric weight of the present invention, when the vibration motor is used for a long time, it is suppressed that the reliability of the connection between the weight and the shaft body is lowered.
  • the specific gravity is lower than the high specific gravity metal constituting the weight. Since the shaft body having material force is provided, the center of gravity of the eccentric weight is arranged at a position further away from the center axis of the motor shaft holding portion. For this reason, the amount of eccentricity in the eccentric weight increases, and by using such an eccentric weight, it becomes possible to configure a vibration motor that can obtain a large amount of vibration with light weight and low power consumption.
  • the entire circumference is the entire circumference of the weight in a plane perpendicular to the longitudinal direction of the weight, and the weight is not necessarily in the weight holding hole at both ends in the longitudinal direction of the weight. It does not have to be retained. Further, as will be described later, the weight does not necessarily have to be held in the weight holding hole in the shaft over the entire length of the weight.
  • the eccentric weight of the present invention has a weight made of a high specific gravity metal key, a weight holding recess for holding the weight and a motor shaft holding portion for holding the motor shaft, And a shaft body made of a material having a specific gravity lower than that of the high specific gravity metal constituting the weight, wherein the weight is held in the weight holding recess for more than half a circumference.
  • the weight is held in the weight holding recess in the shaft over a half circumference or more. Therefore, even with the eccentric weight of the present invention, it is possible to suppress a decrease in the reliability of the connection between the weight and the shaft body when the vibration motor is used for a long time.
  • the eccentric weight of the present invention since the shaft body having a material force having a specific gravity lower than that of the high specific gravity metal constituting the weight is provided, the center of gravity of the eccentric weight is the central axis of the motor shaft holding portion. It will be arranged in a position further separated. For this reason, the amount of eccentricity in the eccentric weight increases, and by using such an eccentric weight, it becomes possible to configure a vibration motor that can obtain a large amount of vibration with light weight and low power consumption.
  • the half or more means a half or more of the weight in a plane perpendicular to the longitudinal direction of the weight, and the weight is formed in the weight holding recess at both ends in the longitudinal direction of the weight. It is not necessarily held. Further, as will be described later, the weight does not necessarily need to be held in the weight holding recess in the shaft over the entire length of the weight.
  • a motor shaft holding portion for holding the motor shaft;
  • the width of the opening in the weight holding recess is preferably narrower than the maximum length parallel to the width direction of the opening in the weight.
  • the maximum distance from the central axis of the motor shaft holding portion in the shaft body to the outer peripheral portion of the weight is in the shaft body.
  • the central axial force of the motor shaft holding part is preferably larger than the maximum distance to the outer peripheral part of the shaft body.
  • the center of gravity of the eccentric weight is disposed at a position where the center axial force of the motor shaft holding portion is further away from the center of gravity of the shaft body. For this reason, the amount of eccentricity in the eccentric weight becomes large, and by using such an eccentric weight, it becomes possible to configure a vibration motor that can obtain a large amount of vibration with light weight and low power consumption.
  • the material is preferably a metal having a specific gravity lower than that of the high specific gravity metal constituting the weight.
  • the material is preferably a stainless steel having a specific gravity lower than that of the high specific gravity metal constituting the weight.
  • a material constituting a weight for example, tungsten, tungsten alloy, etc.
  • tungsten, tungsten alloy, etc. has a low corrosion resistance and tends to crack, so that the eccentric weight as a whole has a high corrosion resistance and is difficult to crack (for example, nickel. ).
  • the joint between the eccentric weight and the plating film and the plating film itself can easily crack.
  • the reliability related to holding the motor shaft in the motor shaft holding portion decreases.
  • stainless steel is originally a material with high corrosion resistance and resistance to cracking, so it is not necessary to apply a plating. For this reason, cracks do not occur at the joint between the eccentric weight and the plating film, and it is possible to suppress a decrease in reliability related to holding the motor shaft in the motor shaft holding portion.
  • the weight is selected from tandasten, tungsten alloy, osmium, osminium alloy, gold, gold alloy, iridium or iridium alloy. It is preferable to be powerful.
  • tungsten, tungsten alloy, osmium, osmium-um alloy, gold, gold alloy, iridium or iridium alloy has a very high specific gravity, so the center of gravity of the eccentric weight is the motor shaft holding part. It is arranged at a position further away from the central axis of the. For this reason, the amount of eccentricity in the eccentric weight is further increased. By using such an eccentric weight, it is possible to configure a vibration motor that can obtain a larger amount of vibration with light weight and less power consumption.
  • the weight since the weight does not need a function for holding the motor shaft, the weight has a very simple shape (for example, a cross-section such as a circle, an ellipse, or a sector). Can be adopted. For this reason, as a weight, It is necessary to use a sintered body that has been sintered into the shape of a weight, or a sintered body that has the same cross-sectional shape as the cross-sectional shape of the weight (for example, a circle, an ellipse, a fan shape, etc.) that has been cut short.
  • a sintered body that has been sintered into the shape of a weight or a sintered body that has the same cross-sectional shape as the cross-sectional shape of the weight (for example, a circle, an ellipse, a fan shape, etc.) that has been cut short.
  • a weight obtained by cutting a sintered body made of a round bar into a cross-sectional shape that is the same as the cross-sectional shape of the weight it is possible to use a material obtained by cutting a sintered body having a round bar force as it is.
  • the weight has a predetermined first plane including a central axis of the motor shaft holding portion as a symmetry plane. It is preferable to have a plane-symmetric shape.
  • the weight can be inserted into any end side force weight holding hole or weight holding recess, so that the weight is disposed in the weight holding hole or weight holding recess.
  • the degree of freedom when doing so increases, and the workability improves. For this reason, the manufacturing cost at the time of manufacturing an eccentric weight can be made low.
  • the central axis of the motor shaft holding portion is the central axis of the motor shaft that is held by the motor shaft holding portion.
  • the weight has a plane-symmetric shape with a predetermined second plane orthogonal to the first plane as a plane of symmetry.
  • the weight can be inserted into the weight holding hole or the weight holding recess in any direction. Therefore, when placing the weight in the weight holding hole or the weight holding recess, The degree of freedom is further increased, and workability is further improved. For this reason, the manufacturing cost at the time of manufacturing an eccentric weight can be made still lower.
  • the shaft body has a structure in which a plurality of thin plate members having a shape corresponding to the shaft body are stacked. I like it.
  • the method for producing an eccentric weight of the present invention includes the eccentricity according to any one of (1) and (10) above.
  • a method of manufacturing an eccentric weight for manufacturing a weight comprising the step of caulking the shaft body in a state where the weight is inserted into the weight holding hole or the weight holding recess in the shaft body.
  • the weight is held in the weight holding hole over the entire circumference, or is held in the weight holding recess over the half circumference.
  • the weight is held firmly on the shaft. For this reason, when the vibration motor is used for a long time, it is further suppressed that the reliability of the connection between the weight and the shaft is lowered.
  • An eccentric weight manufacturing method of the present invention is an eccentric weight manufacturing method for manufacturing an eccentric weight according to any one of (1) and (10) above, wherein the weight is It includes a step of press-fitting with a margin into the weight holding hole or the weight holding recess in the shaft body.
  • the weight is also held in the weight holding hole over the entire circumference, or is held in the weight holding recess over the entire circumference by the eccentric weight manufacturing method of the present invention.
  • the weight is firmly held by the shaft. For this reason, when the vibration motor is used for a long time, it is further suppressed that the reliability of the connection between the weight and the shaft is lowered.
  • An eccentric weight manufacturing method of the present invention is an eccentric weight manufacturing method for manufacturing an eccentric weight according to any one of (1) and (10) above, The method includes a step of inserting the weight into the weight holding hole or the weight holding recess in the shaft while the temperature is higher than the temperature of the weight.
  • the weight is held in the weight holding hole over the entire circumference or is held in the weight holding recess over the half circumference.
  • the weight is firmly held by the shaft. For this reason, when the vibration motor is used for a long time, it is further suppressed that the reliability of the connection between the weight and the shaft is lowered.
  • An eccentric weight manufacturing method of the present invention is an eccentric weight manufacturing method for manufacturing an eccentric weight according to any one of (1) and (10) above, wherein the weight and the weight It includes a step of joining the shaft body.
  • the weight is also held in the weight holding hole over the entire circumference, or is held in the weight holding portion over the entire circumference by the eccentric weight manufacturing method of the present invention.
  • the weight is held firmly on the shaft. For this reason, when the vibration motor is used for a long time, it is further suppressed that the reliability of the connection between the weight and the shaft is lowered.
  • the step of joining the weight and the shaft can be performed by adhering the weight and the shaft, or by brazing the weight and the shaft. It can also be performed, or can be performed by welding the weight and the shaft.
  • an adhesive may be applied after crimping, an adhesive may be applied after brazing, spot welding may be performed after caulking, or brazing may be performed after spot welding.
  • An eccentric weight manufacturing method of the present invention is an eccentric weight manufacturing method for manufacturing an eccentric weight according to any one of (1) and (9) above, The method includes the step of inserting the material of the shaft into the mold in a state where a part or all of the mold is put in a predetermined mold.
  • the weight is also held in the weight holding hole over the entire circumference, or is held in the weight holding portion over the entire circumference by the eccentric weight manufacturing method of the present invention.
  • the weight is held firmly on the shaft. For this reason, when the vibration motor is used for a long time, it is further suppressed that the reliability of the connection between the weight and the shaft is lowered.
  • a vibration motor according to the present invention includes a motor body and the eccentric weight according to any one of (1) and (10) above.
  • the vibration motor of the present invention when the vibration motor is used for a long period of time, it is possible to suppress a decrease in the reliability of the connection between the weight and the shaft body. Since it has an eccentric weight, it becomes a vibration motor with high reliability for a long time.
  • a portable device of the present invention includes the vibration motor according to (16).
  • the portable device of the present invention since the long-time reliable vibration motor is provided, the portable device is highly reliable for a long time.
  • FIG. 1 A view for explaining an eccentric weight according to the first embodiment.
  • FIG. 2 is a view for explaining the vibration motor according to the first embodiment.
  • FIG. 3 is a view for explaining an eccentric weight according to the second embodiment.
  • FIG. 4 is a view for explaining an eccentric weight according to a third embodiment.
  • FIG. 5 is a view for explaining an eccentric weight according to a fourth embodiment.
  • FIG. 6 is a view for explaining a weight used for the eccentric weight according to the embodiment 1-4.
  • FIG. 7 is a view for explaining an eccentric weight according to the fifth embodiment.
  • FIG. 8 is a view for explaining an eccentric weight according to the sixth embodiment.
  • FIG. 9 is a view for explaining an eccentric weight according to the seventh embodiment.
  • FIG. 10 is a view for explaining an eccentric weight according to an eighth embodiment.
  • FIG. 11 is a view for explaining an eccentric weight according to the ninth embodiment.
  • FIG. 12 is a view for explaining a conventional vibration motor and an eccentric weight.
  • FIG. 13 is a view for explaining another conventional eccentric weight.
  • FIG. 1 is a view for explaining an eccentric weight according to the first embodiment.
  • Fig. 1 (a) is a view of the eccentric weight according to Embodiment 1 from the front
  • Fig. 1 (b) is a view of the eccentric weight according to Embodiment 1 from the side.
  • FIG. 1 is a perspective view of an eccentric weight according to the first embodiment
  • FIG. 1 (d) is a perspective view of the eccentric weight according to the first embodiment viewed from an angle different from that in FIG. 1 (c).
  • the eccentric weight 120 includes a weight 140 and a shaft body 130.
  • Weight 140 has high specific gravity metal power.
  • the shaft body 130 has a weight holding hole 134 for holding the weight 140 and a motor shaft holding hole 1 32 for holding the motor shaft 112 (see FIG. 2).
  • the material strength is low.
  • the weight 140 is held in the weight holding hole 1 34 over the entire circumference.
  • the weight 140 has a shaft extending over the entire circumference. Since the weight 130 is held in the weight holding hole 134 in the body 130, it is possible to suppress a decrease in the reliability of the connection between the weight 140 and the shaft body 130 when the vibration motor is used for a long time.
  • the eccentric weight 120 since the shaft body 130 having a material force having a specific gravity lower than that of the high specific gravity metal constituting the weight 140 is provided, the center of gravity of the eccentric weight 120 is Therefore, it is arranged at a position further away from the central axis of the data shaft holding hole 132. For this reason, the amount of eccentricity in the eccentric weight 120 becomes large. By using such an eccentric weight 120, it is possible to construct a vibration motor that can obtain a large amount of vibration with light weight and low power consumption. Become.
  • the entire circumference is the entire circumference of the weight 140 in a plane perpendicular to the longitudinal direction of the weight 140, and as shown in FIG. 1, at both ends of the weight 140 in the longitudinal direction. Is not necessarily held in the weight holding hole. Further, as shown in FIG. 1, the weight 140 does not necessarily have to be held in the weight holding hole 134 in the shaft body 130 over the entire longitudinal direction of the weight 140.
  • the central axis of the motor shaft holding hole 132 is the central axis of the motor shaft 112 (see FIG. 2) that the motor shaft holding hole 132 holds.
  • the weight 140 is a tungsten alloy force
  • the shaft body 130 is also a stainless steel force having a specific gravity lower than that of the tungsten alloy.
  • the shaft body 130 is made of a metal (stainless steel) having a specific gravity lower than that of the high specific gravity metal (tungsten alloy) constituting the weight 140, so that the durability of the shaft body is improved and the shaft body and The weight can be more firmly integrated, and further reduction in the reliability of the connection between the weight and the shaft when the vibration motor is used for a long time is further suppressed.
  • stainless steel is originally a material with high corrosion resistance and resistance to rustling, even if it is used as a shaft, it is not necessary to apply a plating. As a result, the joint between the shaft body and the plating film and the plating film itself are not cracked, and no cracks are generated due to the crack, and the motor shaft in the motor shaft holding hole is not cracked. Decrease in reliability regarding retention is suppressed.
  • a manufacturing method of the weight 140 a manufacturing method in which a weight is obtained by sintering a tandasten alloy into a weight shape having a relatively complicated shape can be adopted.
  • the eccentricity according to the first embodiment is used.
  • the weight 120 it is possible to employ a manufacturing method in which a tungsten alloy is sintered to form a round bar having a simple shape, and the round bar is cut out to obtain a weight. By doing so, the amount of the additive (for example, copper) contained in the tungsten alloy can be reduced, so that the specific gravity can be increased and the amount of eccentricity in the eccentric weight can be further increased. It ’s like this.
  • the eccentric weight 120 according to the first embodiment can be manufactured, for example, by the following method.
  • a tungsten alloy round bar having a cross section larger than that of the weight 140 is prepared.
  • a weight having an outer shape corresponding to the weight 140 is manufactured by cutting the bar material to a predetermined length.
  • a shaft body having an outer shape corresponding to the shaft body 130 is prepared separately from the above-described weight, and the shaft is inserted in the weight holding hole in the shaft body. By holding the body outward, the weight is held on the shaft.
  • the weight 140 is held by the weight holding hole 134 in the shaft body 130 over the entire circumference, so that the vibration motor is used for a long time. In addition, it is possible to suppress a decrease in the reliability of the connection between the weight and the shaft.
  • FIG. 2 is a view for explaining the vibration motor according to the first embodiment.
  • Figure 2 (a) is real
  • FIG. 2B is a perspective view of the vibration motor according to Embodiment 1
  • FIG. 2B is a view of the eccentric weight as viewed from the front
  • FIG. 8C is a view of the eccentric weight as viewed from the side.
  • the vibration motor 100 according to the first embodiment is a vibration motor including a motor body 110 and an eccentric weight 120. Then, as described above, the vibration motor 100 according to the first embodiment is an excellent eccentric weight in which the reliability of the connection between the weight and the shaft body is suppressed when the vibration motor is used for a long time. 120. For this reason, since the vibration motor 100 according to the first embodiment is a vibration motor including such an excellent eccentric weight 120, it becomes a vibration motor with high reliability for a long time.
  • the portable device can be made a portable device having high reliability for a long time.
  • FIG. 3 is a view for explaining the eccentric weight according to the second embodiment.
  • Fig. 3 (a) is a diagram of the eccentric weight according to Embodiment 2 as viewed from the front
  • Fig. 3 (b) is a diagram of the eccentric weight as viewed from the side.
  • the eccentric weight 220 according to the second embodiment has an eccentric weight according to the first embodiment in which the shape of the weight 240 (and the shape of the weight holding hole 234 in the shaft body 230) is the same. Different from 120. That is, in the eccentric weight 220 according to the second embodiment, the weight 240 has a substantially fan shape.
  • the eccentric weight 220 according to the second embodiment is the case where the weight 240 (and the accompanying shape of the weight holding hole 234 in the shaft body 230) is the eccentric weight 120 according to the first embodiment.
  • the vibration motor is lengthened as in the case of the eccentric weight 120 according to the first embodiment.
  • the shaft 230 having a material force having a specific gravity lower than that of the high specific gravity metal constituting the weight 240 is provided as in the case of the eccentric weight 120 according to the first embodiment. Since the center of gravity of the eccentric weight 220 is from the center axis of the motor shaft holding hole 232 Furthermore, it will be arrange
  • the distance between the motor shaft holding hole 232 and the weight holding hole 234 is a predetermined distance. As a result, it is possible to obtain an effect that the deterioration of the motor shaft holding characteristic and the weight holding characteristic due to the interference between the motor shaft holding hole 232 and the weight holding hole 234 can be minimized.
  • FIG. 4 is a view for explaining the eccentric weight according to the third embodiment.
  • Fig. 4 (a) is a view of the eccentric weight according to Embodiment 3 as viewed from the front
  • Fig. 4 (b) is a view of the eccentric weight as viewed from the side.
  • the eccentric weight 320 according to the third embodiment has a weight 340 shape (and a shape of the weight holding hole 334 in the shaft body 330) according to the first or second embodiment. Different from eccentric weight 120, 220.
  • the weight 340 has a long and hexagonal shape along the substantially circumferential direction of the eccentric weight 320.
  • the eccentric weight 320 according to the third embodiment has an eccentric weight 1 in which the shape of the weight 340 (and the shape of the weight holding hole 334 in the shaft 330) is the same as in the first or second embodiment. Unlike the case of 20, 220, since the weight 340 is held in the weight holding hole 334 in the shaft 330 over the entire circumference, it is different from the case of the eccentric weight 120, 220 according to the embodiment 1 or 2. Similarly, when the vibration motor is used for a long time, it is possible to suppress a decrease in the reliability of the connection between the weight and the shaft body.
  • the material having a specific gravity lower than that of the high specific gravity metal constituting the weight 340 since the shaft body 330 having the force is provided, the center of gravity of the eccentric weight 320 is arranged at a position where the center axial force of the motor shaft holding hole 332 is further separated. For this reason, the amount of eccentricity in the eccentric weight 320 is increased, and by using such an eccentric weight 320, it is possible to configure a vibration motor that can obtain a large amount of vibration with low power consumption. Become.
  • FIG. 5 is a view for explaining the eccentric weight according to the fourth embodiment.
  • FIG. 5 (a) is a view of the eccentric weight according to Embodiment 4 as viewed from the front
  • FIG. 5 (b) is a view of the eccentric weight as viewed from the side.
  • the eccentric weight 420 according to the fourth embodiment includes the number and shape of weights 440, 442, 442 (and the number of weight holding holes 434, 436, 436 in the shaft body 430). And the shape) are different from those of the eccentric weights 120, 220, 320 according to the first to third embodiments. That is, in the eccentric weight 420 according to the fourth embodiment, the weight is composed of three weights 440, 442, and 4 42, and these three weights 440, 442, and 442 all have a circular cross section, and 1 Two weights 440 and weight 440 / J, and two weights 442, 442 power.
  • the eccentric weight 420 according to the fourth embodiment includes the number and shape of the weights 440, 442, 442 (and the number and shape of the weight holding holes 434, 436, 436 in the shaft body 430 accordingly). Is different from the eccentric weights 120, 220, 320 according to Embodiment 1-3, but each weight 440 is the same as the eccentric weight 120, 220, 320 according to Embodiment 1-13. , 442, and 442 are held in the weight holding holes 434, 436, and 436 in the shaft body 430 over the entire circumference, so that the reliability of the weight-shaft joint can be maintained when the vibration motor is used for a long time. The decline in sex is suppressed.
  • the high weight heavy metal constituting the weights 440, 442, and 442 is used. Since the shaft body 430 having a low specific gravity and a material force is provided, the center of gravity of the eccentric weight 420 is arranged at a position further separated from the center axis of the motor shaft holding hole 432. For this reason, the amount of eccentricity in the eccentric weight 420 becomes large, and by using such an eccentric weight 420, it is possible to configure a vibration motor that can obtain a large amount of vibration with light weight and low power consumption.
  • the weights 440, 442, and 442 are all circular in cross section, so that the weight can be easily manufactured and the manufacturing cost can be reduced.
  • FIG. 6 is a diagram for explaining a weight used for the eccentric weight according to the first to fourth embodiments.
  • the 6 (a) is a cross-sectional view of the weight in Embodiment 1
  • FIG. 6 (b) is a cross-sectional view of the weight in Embodiment 2
  • FIG. 6 (c) is a cross-sectional view of the weight in Embodiment 3.
  • FIG. 6D is a sectional view of the weight in the fourth embodiment.
  • the weights of the weights 140, 240, 340, 440, and 442! It has a plane-symmetric shape with a predetermined first plane As including the axis as a plane of symmetry.
  • the weights 140, 240, 340, 440, 442 are connected to either end (the end shown in FIG. 1 (b)). See S and S.)
  • the weight holding hole 134, 234, 334, 434, 436 Since the force can be inserted into the weight holding hole 134, 234, 334, 434, 436, the weight holding hole 134, 234, 334, 434, 436 has the weight 140, 240, 340, 440, 442 This increases the degree of freedom when placing the battery and improves workability. For this reason, the manufacturing cost at the time of manufacturing an eccentric weight can be made low.
  • any of the weights 140, 340, 440, and 442 has a predetermined first plane orthogonal to the predetermined first plane As described above. 2 It has a plane-symmetric shape with plane Bs as the plane of symmetry.
  • the weights 140, 340, 440, and 442 are! The weight holding holes 134, 334, 434, and 436 in the direction of deviation.
  • the degree of freedom when placing the weights 140, 340, 440, 442 in the weight holding holes 134, 334, 434, 436 is further increased, and the workability is further improved. For this reason, the manufacturing cost at the time of manufacturing an eccentric weight can be made still lower.
  • FIG. 7 is a view for explaining the eccentric weight according to the fifth embodiment.
  • FIG. 7 (a) is a diagram of the eccentric weight according to Embodiment 5 as viewed from the front
  • FIG. 7 (b) is a diagram of the eccentric weight as viewed from the side.
  • the eccentric weight 520 according to the fifth embodiment is different in the structure of the shaft body 530 from the eccentric weight 120 according to the first embodiment. That is, in the eccentric weight 520 according to the fifth embodiment, the shaft body 530 serves as a weight holding portion, and holds the weight over a half circumference instead of the weight holding hole 134 that holds the weight over the entire circumference. Has a weight retaining recess 534 The
  • This weight holding recess 534 has a shape such that a part of the weight holding hole 1 34 in the eccentric weight 120 according to the first embodiment is opened along the central axis of the motor shaft holding hole 132. Yes.
  • the eccentric weight 520 according to the fifth embodiment is different from the case of the eccentric weight 120 according to the first embodiment in the structure of the shaft body 530.
  • the weight weight 540 is applied to the shaft body 530 over a half circumference. Since the weight is retained in the weight retaining recess 534, the reliability of the connection between the weight and the shaft is reduced when the vibration motor is used for a long time, as in the case of the eccentric weight 120 according to the first embodiment. Is suppressed.
  • the shaft body 530 having a material force having a specific gravity lower than that of the high specific gravity metal constituting the weight 540 is provided. Therefore, the center of gravity of the eccentric weight 520 is arranged at a position further away from the center axis of the motor shaft holding hole 532. For this reason, the amount of eccentricity in the eccentric weight 520 becomes large, and by using such an eccentric weight 520, it becomes possible to configure a vibration motor that can obtain a large amount of vibration with light weight and low power consumption.
  • half or more means more than half of the weight 540 in a plane perpendicular to the longitudinal direction of the weight 540, and as shown in FIG. 7, both ends of the weight 540 in the longitudinal direction.
  • the part does not necessarily have to be held by the weight holding part.
  • the weight 540 does not necessarily have to be held by the weight holding portion 534 in the shaft body 530 over the entire longitudinal direction of the weight 540.
  • the width L of the opening in the weight holding recess 534 is set narrower than the maximum length L parallel to the width direction of the opening in the weight 540.
  • the weight 540 is further held in the weight holding recess 534 with a greater force.
  • FIG. 8 is a view for explaining the eccentric weight according to the sixth embodiment.
  • FIG. 8 (a) is a view of the eccentric weight according to Embodiment 6 as viewed from the front
  • FIG. 8 (b) is a view of the eccentric weight as viewed from the side.
  • the eccentric weight 620 according to the sixth embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the shaft body 630. That is, in the eccentric weight 620 according to the sixth embodiment, the shaft body 630 serves as a motor shaft holding portion that holds the motor shaft, instead of the motor shaft holding hole 132 that holds the motor shaft over the entire circumference.
  • a motor shaft holding recess 632 for holding the shaft also in three-way force is provided. The motor shaft is joined to the shaft body 630 by inserting the motor shaft into the motor shaft holding recess 632 and then applying force to the opening.
  • the eccentric weight 620 according to the sixth embodiment is different from the case of the eccentric weight 120 according to the first embodiment in the structure of the shaft body 630.
  • the weight weight 640 is provided in the shaft body 630 over the entire circumference. Since the weight is held in the weight holding hole 634, as in the case of the eccentric weight 120 according to the first embodiment, when the vibration motor is used for a long time, the reliability of the connection between the weight and the shaft body decreases. It is suppressed.
  • the shaft body 630 having a material force having a specific gravity lower than that of the high specific gravity metal constituting the weight 640 is provided.
  • the center of gravity of the eccentric weight 620 is arranged at a position further away from the center axial force of the motor shaft holding recess 632. For this reason, the amount of eccentricity in the eccentric weight 620 becomes large, and by using such an eccentric weight 620, a vibration motor that can obtain a large amount of vibration with light weight and low power consumption can be configured.
  • the central axis of the motor shaft holding recess 632 is the central axis of the motor shaft that the motor shaft holding recess 632 holds.
  • FIG. 9 is a view for explaining the eccentric weight according to the seventh embodiment.
  • FIG. 9 (a) is a view of the eccentric weight according to Embodiment 7 as viewed from the front
  • FIG. 9 (b) is a view of the eccentric weight as viewed from the side.
  • the eccentric weight 720 according to the seventh embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the shaft body 730. That is, in the eccentric weight 720 according to the seventh embodiment, the shaft body 730 has a structure in which a plurality of thin plate members 731 having a shape corresponding to the shaft body 730 are stacked.
  • the structure of the shaft body 730 is related to the first embodiment. Since the weight 740 is held in the weight holding hole 734 in the shaft body 730 over the entire circumference, as in the case of the eccentric weight 120 according to the first embodiment, When the vibration motor is used for a long time, it is possible to suppress a decrease in the reliability of the connection between the weight and the shaft.
  • the eccentric weight 720 according to the seventh embodiment as in the case of the eccentric weight 120 according to the first embodiment, the shaft body 730 having a lower specific gravity than the high specific gravity metal constituting the weight 740 is provided. Therefore, the center of gravity of the eccentric weight 720 is arranged at a position further away from the center axis of the motor shaft holding hole 732. For this reason, the amount of eccentricity in the eccentric weight 720 becomes large, and by using such an eccentric weight 720, a vibration motor that can obtain a large amount of vibration with light weight and low power consumption can be configured.
  • the shaft body 730 has a structure in which a plurality of thin plate members 731 having a shape corresponding to the shaft body 730 are stacked.
  • the workability when the weight 740 is arranged in the weight holding hole 734 of the 730 is improved, and the manufacturing cost when the eccentric weight is manufactured can be further reduced.
  • the eccentric weight 720 according to Embodiment 7 can be manufactured, for example, by the following method.
  • a tungsten alloy round bar having a cross section larger than that of the weight 740 is prepared.
  • a weight having an outer shape corresponding to the weight 740 is manufactured by cutting the above-described bar material into a predetermined length.
  • Thin plate member that finally becomes a shaft body 730 in the eccentric weight 720 by laminating 731 is prepared, and the weight is inserted into the weight holding hole in each thin plate member 731 (i.e., In a state in which a plurality of thin plate members 731 are put on the weight), the plurality of thin plate members 731 are clamped from the outside to hold the weights in the laminated members 731 stacked.
  • FIG. 10 is a view for explaining the eccentric weight according to the eighth embodiment.
  • Fig. 10 (a) is a front view of the eccentric weight according to Embodiment 8
  • Fig. 10 (b) is a CC sectional view of Fig. 10 (a)
  • Fig. 10 (c) is Embodiment 8.
  • FIG. 10 (d) is a perspective view of the eccentric weight according to the eighth embodiment, and also shows an angular force different from that in FIG. 10 (c).
  • the eccentric weight 820 according to the eighth embodiment has the number and shape of the weights 840, 840, 840 (and the shape of the shaft 830 accordingly) as the eccentric weight according to the first embodiment. Different from 120. That is, in the eccentric weight 820 according to the eighth embodiment, the number of weights 840, 840, and 840 is three, and each weight 840, the shaft 830 is held as a first cylindrical force. It is held by the central portion 842 and the shaft body 830, so that it becomes 844 forces at both ends which are two second cylindrical forces! Further, the shaft body 830 ⁇ has weight holding recesses 834, 834, 834 for holding three weights 840, 840, 840. The shaft body 830 is set slightly smaller than the shaft body 130.
  • the eccentric weight 820 according to the eighth embodiment has the same number and shape of the weights 840, 840, 840 (and the shape of the shaft body 830) as the eccentric weight 120 according to the first embodiment. Unlike the case, each weight 840 is held in the weight holding recess 834 in the shaft body 830 for more than half a circle, so that the vibration motor is lengthened as in the case of the eccentric weight 120 according to the first embodiment. When used for a long time, it is possible to suppress a decrease in the reliability of the connection between the weight and the shaft.
  • the shaft body 830 also has a material force having a specific gravity lower than that of the high specific gravity metal constituting each weight 840. Therefore, the center of gravity of the eccentric weight 820 is arranged at a position further away from the center axial force of the motor shaft holding hole 832. For this reason, the amount of eccentricity in the eccentric weight 820 increases, and by using such an eccentric weight 820, a vibration motor that can obtain a large amount of vibration with light weight and low power consumption can be configured.
  • the width of the opening in each weight holding recess 834 is set to be narrower than the maximum length parallel to the width direction of the opening in each weight 840. . For this reason, according to the eccentric weight 820 according to the eighth embodiment, each weight 840 is further held by each weight holding recess 834.
  • the shaft body 830 is set to be somewhat smaller than the shaft body 130, so that the motor shaft holding hole 832 in the shaft body 830 Central axial force
  • the maximum distance to the outer periphery of each weight 840 is set so that the central axial force of the motor shaft holding portion 832 in the shaft body 830 is also larger than the maximum distance to the outer periphery of the shaft body 830.
  • the center of gravity of the eccentric weight 820 is arranged at a position further away from the center axis of the motor shaft holding hole 832 than the center of gravity of the shaft body 830. It will be. For this reason, the amount of eccentricity in the eccentric weight 820 increases, and by using such an eccentric weight 820, it is possible to configure a vibration motor that can obtain a large amount of vibration with light weight and low power consumption.
  • FIG. 11 is a view for explaining the eccentric weight according to the ninth embodiment.
  • FIG. 11 (a) is a diagram of the eccentric weight according to the ninth embodiment, in which the shaft before the integral weight is seen is also viewed from the front
  • FIG. 10 (b) is the front view of the eccentric weight according to the ninth embodiment.
  • FIG. 11 (a) is a diagram of the eccentric weight according to the ninth embodiment, in which the shaft before the integral weight is seen is also viewed from the front
  • FIG. 10 (b) is the front view of the eccentric weight according to the ninth embodiment.
  • the eccentric weight 920 according to the ninth embodiment is different from the eccentric weight 820 according to the eighth embodiment in the structure of the shaft body 930. That is, in the eccentric weight 920 according to the ninth embodiment, two notches 936 are formed between the three weight holding recesses 934, 934, 934 in the shaft body 930 !.
  • the eccentric weight 920 according to the ninth embodiment is different from the case of the eccentric weight 820 according to the eighth embodiment in the structure of the shaft body 930.
  • Each weight 940 has a shaft body 930 over a half circumference. Therefore, when the vibration motor is used for a long time, the reliability of the connection between the weight and the shaft body is improved, as in the case of the eccentric weight 820 according to the eighth embodiment. Decrease is suppressed.
  • the shaft body 930 similarly to the eccentric weight 820 according to the eighth embodiment, the shaft body 930 also has a material force having a specific gravity lower than that of the high specific gravity metal constituting each weight 940.
  • the center of gravity of the eccentric weight 920 is the center axis of the motor shaft holding hole 932.
  • the force will also be located at a further distance. For this reason, the amount of eccentricity in the eccentric weight 920 becomes large, and by using such an eccentric weight 920, a vibration motor that can obtain a large amount of vibration with light weight and low power consumption can be configured.
  • each weight 940 is further held and held in each weight holding recess 934. Will come to be.
  • the force using tungsten alloy as the weight is not limited to this.
  • tungsten, osmium, osmium alloy, gold, gold alloy, iridium, iridium alloy, and other metals having higher specific gravity than the shaft body can be used.
  • a sintered body made of a round bar is cut as a weight, and the cut body processed into the same cross-sectional shape as the weight is cut short.
  • the present invention is not limited to this.
  • a sintered body sintered in the shape of a weight, or a sintered body with a deformed bar force that has the same cross-sectional shape as a weight is cut short.
  • a cross-sectional shape of the weight is a circle, for example, a sintered body having a round bar force can be used as it is cut short.
  • the manufacturing method of the eccentric weight according to Embodiment 1 includes the step of pressing the shaft body 130 in a state where the weight 140 is inserted into the weight holding hole 1 34 of the shaft body 130 at a predetermined position.
  • the present invention is not limited to this.
  • weight 140 is used to hold weight 140 in shaft body 1
  • the manufacturing method may include a step of press-fitting to 34 with a margin, and the weight 140 is inserted into the weight holding hole 134 in the shaft body 130 while the temperature of the shaft body 130 is higher than the temperature of the weight 140.
  • the manufacturing method including the process to do may be sufficient.
  • the manufacturing method may include a step of joining the weight 140 and the shaft body 130 by brazing, bonding, or welding.
  • the manufacturing method may include a step of inserting the material of the shaft body 130 into the mold in a state where a part or all of the weight 140 is placed in a predetermined mold.
  • the manufacturing method which used the above-mentioned process together may be used.
  • a manufacturing method including a process is also possible.
  • the vibration motor of the present invention can also be suitably used for a remote control of a game machine, a pachinko operation unit, an electric toothbrush and the like suitably used for portable devices such as mobile phones and PDAs.

Abstract

An eccentric weight (120) comprising a weight (140) that is made of a high specific gravity metal and a shaft body (130) that has a hole (134) for holding the weight (140) and a hole (132) for holding a motor shaft and is made of a material having a specific gravity lower than that of the high specific gravity metal, wherein the weight (140) is held in the weight holding hole (134) over the entire circumference. Since the weight (140) of the eccentric weight (120) is held in the weight holding hole (134), of the shaft body (130), over the entire circumference, reduction in reliability in the bonding between the weight and the shaft body is suppressed even when a vibration motor is used for a long time.

Description

偏心分銅及びその製造方法並びに振動モータ及び携帯機器 技術分野  Eccentric weight, manufacturing method thereof, vibration motor and portable device
[0001] 本発明は、偏心分銅及びその製造方法並びに振動モータ及び携帯機器に関する 背景技術  TECHNICAL FIELD [0001] The present invention relates to an eccentric weight, a manufacturing method thereof, a vibration motor, and a portable device.
[0002] 携帯電話や PDAなどにおいては、着信を振動で知らせるために振動モータが用い られている。図 12は、このような振動モータ及びこのような振動モータに用いられてい る偏心分銅を説明するための図である。図 12 (a)は振動モータの斜視図であり、図 1 2 (b)は偏心分銅をモータ軸に垂直な平面で切った断面図であり、図 12 (c)は偏心 分銅をモータ軸に沿った平面で切った断面図である。図 12 (b)及び図 12 (c)におい ては、図 12 (a)における偏心分銅の回転方向における位置を変えて示している。  In mobile phones and PDAs, vibration motors are used to notify incoming calls by vibration. FIG. 12 is a diagram for explaining such a vibration motor and an eccentric weight used in such a vibration motor. Fig. 12 (a) is a perspective view of a vibration motor, Fig. 12 (b) is a cross-sectional view of an eccentric weight cut along a plane perpendicular to the motor shaft, and Fig. 12 (c) is an eccentric weight on the motor shaft. It is sectional drawing cut by the plane which followed. In FIGS. 12 (b) and 12 (c), the position of the eccentric weight in FIG. 12 (a) in the rotational direction is changed.
[0003] 振動モータ 1100は、図 12に示すように、小型円筒型のモータ本体 1110と、タンダ ステンの焼結体など力もなり略扇形状を有する偏心分銅 1120とからなる。偏心分銅 1120のモータ軸保持穴 1122には、モータ本体 1110のモータ軸 1112が揷通 ·保 持されている。偏心分銅 1120は、モータ軸 1112を揷通するモータ軸保持穴 1122 の肉薄方向力 の側面力 外力をカ卩えてモータ軸保持穴 1122を変形させることによ るカシメ止めでモータ軸 1112の先端部に取り付けられている(例えば、特許文献 1参 照。)。  [0003] As shown in FIG. 12, the vibration motor 1100 includes a small cylindrical motor main body 1110 and an eccentric weight 1120 having a substantially fan shape and also having a force such as a sintered body of tandastane. The motor shaft 1112 of the motor body 1110 is passed through and held in the motor shaft holding hole 1122 of the eccentric weight 1120. Eccentric weight 1120 is the tip of the motor shaft 1112 with a caulking stop by deforming the motor shaft holding hole 1122 by deforming the motor shaft holding hole 1122 by measuring the side force of the thin direction force of the motor shaft holding hole 1122 that passes through the motor shaft 1112. (For example, see Patent Document 1).
[0004] ところで、携帯電話や PDAなどにぉ 、ては、振動モータとして、軽量かつ少な 、消 費電力で必要な振動量が得られる振動モータが求められている。このため、このよう な振動モータに用いる偏心分銅として、図 13に示すような他の偏心分銅が提案され ている。図 13は、従来の他の偏心分銅を説明するために示す図である。図 13 (a)は 正面図であり、図 13 (b)は図 13 (a)の A— A断面図であり、図 13 (c)は構成部品の正 面図であり、図 13 (d)は図 13 (c)の B— B断面図である。図 13 (a)及び図 13 (b)にお いては、モータ本体 1210も一部示されている。  [0004] By the way, for a mobile phone, a PDA, and the like, there is a demand for a vibration motor that can obtain a necessary amount of vibration with low power consumption and light weight. For this reason, another eccentric weight as shown in FIG. 13 has been proposed as an eccentric weight used in such a vibration motor. FIG. 13 is a diagram for explaining another conventional eccentric weight. Fig. 13 (a) is a front view, Fig. 13 (b) is an A-A cross-sectional view of Fig. 13 (a), Fig. 13 (c) is a front view of the component, and Fig. 13 (d ) Is a sectional view taken along line BB in FIG. 13 (c). In FIG. 13 (a) and FIG. 13 (b), a part of the motor body 1210 is also shown.
[0005] 図 13に示すように、従来の他の偏心分銅 1220は、モータ本体 1210のモータ軸 1 212を保持するためのモータ軸保持穴 1232を有し低比重金属力もなる円筒状の軸 体 1230と、高比重金属力もなる略半パイプ状の分銅 1240とからなっている(例えば 、特許文献 1参照。 ) oこのため、分銅 1240が高比重金属力もなるため、偏心分銅 12 20の重心がモータ軸保持穴 1232の中心軸力も離隔された位置に配置されることに なる。その結果、偏心分銅 1220における偏心量が大きくなり、このような従来の他の 偏心分銅 1220を用いることにより、軽量かつ少ない消費電力で必要な振動量が得ら れる振動モータを構成することができる。 As shown in FIG. 13, another conventional eccentric weight 1220 includes a motor shaft 1 of a motor body 1210. A cylindrical shaft 1230 having a motor shaft holding hole 1232 for holding 212 and having a low specific gravity metal force, and a substantially half-pipe weight 1240 having a high specific gravity metal force (for example, Patent Document 1). (Refer to) o For this reason, since the weight 1240 also has a high specific gravity metal force, the center of gravity of the eccentric weight 1220 is disposed at a position where the center axial force of the motor shaft holding hole 1232 is also separated. As a result, the amount of eccentricity in the eccentric weight 1220 increases, and by using such other conventional eccentric weight 1220, a vibration motor that can obtain a required vibration amount with light weight and low power consumption can be configured. .
[0006] 特許文献 1:特開 2001—129479号公報 [0006] Patent Document 1: JP 2001-129479 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] しかしながら、上記した従来の他の偏心分銅 1220においては、分銅 1240が軸体 1230の外側面 1234の一部にロウ付け部 1250を介して一体に接合固定されたもの であるため、振動モータを長時間使用した場合に分銅と軸体との接合の信頼性が低 下するという問題があった。  However, in the other conventional eccentric weight 1220 described above, the weight 1240 is integrally joined and fixed to a part of the outer surface 1234 of the shaft body 1230 via the brazing portion 1250. When the motor is used for a long time, there is a problem that the reliability of the connection between the weight and the shaft is lowered.
[0008] そこで、本発明は、このような問題を解決するためになされたもので、軽量かつ少な V、消費電力で必要な振動量が得られる振動モータであって、振動モータを長時間使 用した場合においても分銅と軸体との接合の信頼性が低下することが抑制された偏 心分銅を提供することを目的とする。また、本発明は、このように優れた偏心分銅を備 えた振動モータ及び携帯機器を提供することを目的とする。  [0008] Therefore, the present invention has been made to solve such problems, and is a vibration motor that can obtain a necessary amount of vibration with light weight, low V, and power consumption. The vibration motor can be used for a long time. It is an object of the present invention to provide an eccentric weight in which the reliability of the connection between the weight and the shaft body is suppressed even when used. It is another object of the present invention to provide a vibration motor and a portable device having such an excellent eccentric weight.
課題を解決するための手段  Means for solving the problem
[0009] (1)本発明の偏心分銅は、高比重金属カゝらなる分銅と、前記分銅を保持するための 分銅保持穴及びモータ軸を保持するためのモータ軸保持部を有し、前記分銅を構 成する高比重金属よりも比重の低 ヽ材料からなる軸体とを備え、前記分銅は全周に 渡って前記分銅保持穴に保持されていることを特徴とする。 (1) The eccentric weight of the present invention has a weight made of a high specific gravity metal key, a weight holding hole for holding the weight, and a motor shaft holding portion for holding the motor shaft, And a shaft body made of a material having a specific gravity lower than that of the high specific gravity metal constituting the weight, wherein the weight is held in the weight holding hole over the entire circumference.
[0010] このため、本発明の偏心分銅においては、分銅は全周に渡って軸体における分銅 保持穴に保持されることになる。従って、本発明の偏心分銅によれば、振動モータを 長時間使用した場合に分銅と軸体との接合の信頼性が低下することが抑制される。 For this reason, in the eccentric weight of the present invention, the weight is held in the weight holding hole in the shaft over the entire circumference. Therefore, according to the eccentric weight of the present invention, when the vibration motor is used for a long time, it is suppressed that the reliability of the connection between the weight and the shaft body is lowered.
[0011] また、本発明の偏心分銅によれば、分銅を構成する高比重金属よりも比重の低い 材料力もなる軸体を備えているため、偏心分銅の重心がモータ軸保持部の中心軸か らさらに離隔された位置に配置されることになる。このため、偏心分銅における偏心 量が大きくなり、このような偏心分銅を用いることにより、軽量かつ少ない消費電力で 大きな振動量が得られる振動モータを構成することができるようになる。 [0011] Further, according to the eccentric weight of the present invention, the specific gravity is lower than the high specific gravity metal constituting the weight. Since the shaft body having material force is provided, the center of gravity of the eccentric weight is arranged at a position further away from the center axis of the motor shaft holding portion. For this reason, the amount of eccentricity in the eccentric weight increases, and by using such an eccentric weight, it becomes possible to configure a vibration motor that can obtain a large amount of vibration with light weight and low power consumption.
[0012] 本発明の偏心分銅において、全周とは、分銅の長手方向に垂直な平面における分 銅の全周のことであり、分銅の長手方向における両端部においては分銅が分銅保持 穴に必ずしも保持されている必要はない。また、後述するように、分銅は、必ずしも分 銅の長手方向全体に渡って、軸体における分銅保持穴に保持されている必要もない  [0012] In the eccentric weight of the present invention, the entire circumference is the entire circumference of the weight in a plane perpendicular to the longitudinal direction of the weight, and the weight is not necessarily in the weight holding hole at both ends in the longitudinal direction of the weight. It does not have to be retained. Further, as will be described later, the weight does not necessarily have to be held in the weight holding hole in the shaft over the entire length of the weight.
[0013] (2)本発明の偏心分銅は、高比重金属カゝらなる分銅と、前記分銅を保持するための 分銅保持凹部及びモータ軸を保持するためのモータ軸保持部を有し、前記分銅を 構成する高比重金属よりも比重の低 ヽ材料からなる軸体とを備え、前記分銅は半周 以上に渡って前記分銅保持凹部に保持されていることを特徴とする。 (2) The eccentric weight of the present invention has a weight made of a high specific gravity metal key, a weight holding recess for holding the weight and a motor shaft holding portion for holding the motor shaft, And a shaft body made of a material having a specific gravity lower than that of the high specific gravity metal constituting the weight, wherein the weight is held in the weight holding recess for more than half a circumference.
[0014] このため、本発明の偏心分銅においては、分銅は半周以上に渡って軸体における 分銅保持凹部に保持されることになる。従って、本発明の偏心分銅によっても、振動 モータを長時間使用した場合に分銅と軸体との接合の信頼性が低下することが抑制 される。  [0014] For this reason, in the eccentric weight of the present invention, the weight is held in the weight holding recess in the shaft over a half circumference or more. Therefore, even with the eccentric weight of the present invention, it is possible to suppress a decrease in the reliability of the connection between the weight and the shaft body when the vibration motor is used for a long time.
[0015] また、本発明の偏心分銅によれば、分銅を構成する高比重金属よりも比重の低い 材料力もなる軸体を備えているため、偏心分銅の重心がモータ軸保持部の中心軸か らさらに離隔された位置に配置されることになる。このため、偏心分銅における偏心 量が大きくなり、このような偏心分銅を用いることにより、軽量かつ少ない消費電力で 大きな振動量が得られる振動モータを構成することができるようになる。  [0015] Further, according to the eccentric weight of the present invention, since the shaft body having a material force having a specific gravity lower than that of the high specific gravity metal constituting the weight is provided, the center of gravity of the eccentric weight is the central axis of the motor shaft holding portion. It will be arranged in a position further separated. For this reason, the amount of eccentricity in the eccentric weight increases, and by using such an eccentric weight, it becomes possible to configure a vibration motor that can obtain a large amount of vibration with light weight and low power consumption.
[0016] 本発明の偏心分銅において、半周以上とは、分銅の長手方向に垂直な平面にお ける分銅の半周以上のことであり、分銅の長手方向における両端部においては分銅 が分銅保持凹部に必ずしも保持されている必要はない。また、後述するように、分銅 は、必ずしも分銅の長手方向全体に渡って、軸体における分銅保持凹部に保持され ている必要もない。  [0016] In the eccentric weight of the present invention, the half or more means a half or more of the weight in a plane perpendicular to the longitudinal direction of the weight, and the weight is formed in the weight holding recess at both ends in the longitudinal direction of the weight. It is not necessarily held. Further, as will be described later, the weight does not necessarily need to be held in the weight holding recess in the shaft over the entire length of the weight.
[0017] なお、本発明の偏心分銅において、モータ軸を保持するためのモータ軸保持部と は、モータ軸を全周に渡って保持するためのモータ軸保持穴及びモータ軸を例えば 三方力も保持し、モータ軸を挿入後、開口部を力しめて接合するためのモータ軸保 持凹部の両方の場合を含む。 [0017] In the eccentric weight of the present invention, a motor shaft holding portion for holding the motor shaft; The motor shaft holding hole for holding the motor shaft over the entire circumference and the motor shaft holding both the motor shaft, for example, also with a three-way force, and after inserting the motor shaft, both the motor shaft holding recess for joining by pressing the opening Including the case.
[0018] (3)上記(2)に記載の偏心分銅においては、前記分銅保持凹部における開口の幅 は、前記分銅における前記開口の幅方向に平行な最大長さよりも狭いことが好ましい  [0018] (3) In the eccentric weight described in (2) above, the width of the opening in the weight holding recess is preferably narrower than the maximum length parallel to the width direction of the opening in the weight.
[0019] このように構成することにより、分銅は分銅保持凹部にさらにしつかりと保持されるこ とになる。 With this configuration, the weight is more firmly held in the weight holding recess.
[0020] (4)上記(2)又は(3)に記載の偏心分銅においては、前記軸体におけるモータ軸保 持部の中心軸から前記分銅の外周部までの最大距離は、前記軸体におけるモータ 軸保持部の中心軸力 前記軸体の外周部までの最大距離よりも大きいことが好まし い。  [0020] (4) In the eccentric weight described in (2) or (3) above, the maximum distance from the central axis of the motor shaft holding portion in the shaft body to the outer peripheral portion of the weight is in the shaft body. The central axial force of the motor shaft holding part is preferably larger than the maximum distance to the outer peripheral part of the shaft body.
[0021] このように構成することにより、偏心分銅の重心が軸体の重心よりもモータ軸保持部 の中心軸力もさらに離隔された位置に配置されることになる。このため、偏心分銅に おける偏心量が大きくなり、このような偏心分銅を用いることにより、軽量かつ少ない 消費電力で大きな振動量が得られる振動モータを構成することができるようになる。  With this configuration, the center of gravity of the eccentric weight is disposed at a position where the center axial force of the motor shaft holding portion is further away from the center of gravity of the shaft body. For this reason, the amount of eccentricity in the eccentric weight becomes large, and by using such an eccentric weight, it becomes possible to configure a vibration motor that can obtain a large amount of vibration with light weight and low power consumption.
[0022] (5)上記(1)一(4)のいずれかに記載の偏心分銅においては、前記分銅を構成する 高比重金属よりも比重の低 、材料は、金属であることが好ま 、。  [0022] (5) In the eccentric weight according to any one of (1) and (4) above, the material is preferably a metal having a specific gravity lower than that of the high specific gravity metal constituting the weight.
[0023] このように構成することにより、分銅を構成する高比重金属よりも比重の低い材料が 金属であるため、軸体の耐久性が向上するとともに、軸体と分銅とをより強固に一体 ィ匕させることができるようになり、振動モータを長時間使用した場合に分銅と軸体との 接合の信頼性が低下することがさらに抑制される。  [0023] With this configuration, since the material having a specific gravity lower than that of the high specific gravity metal constituting the weight is a metal, the durability of the shaft body is improved and the shaft body and the weight are more firmly integrated. As a result, the reliability of the connection between the weight and the shaft can be further suppressed when the vibration motor is used for a long time.
[0024] (6)上記(1)一(5)のいずれかに記載の偏心分銅においては、前記分銅を構成する 高比重金属よりも比重の低 、材料は、ステンレス鋼であることが好ま 、。  (6) In the eccentric weight according to any one of the above (1) and (5), the material is preferably a stainless steel having a specific gravity lower than that of the high specific gravity metal constituting the weight. .
[0025] 一般に分銅を構成する材料 (例えば、タングステン、タングステン合金など。 )は耐 食性が低く鲭びやすい傾向にあるので、従来より偏心分銅全体を耐食性が高く鲭び にくい材料 (例えば、ニッケル。)でメツキすることが行われている。し力しながら、この ような場合、偏心分銅とメツキ膜との接合部分及びメツキ膜自身にひびが入り易ぐそ の結果、このひびなどに起因して鲭びが発生し易くなる。このため、モータ軸保持部 におけるモータ軸の保持に関する信頼性が低下するという問題があった。これに対し て、ステンレス鋼はもともと耐食性が高く鲭びにくい材料であるので、メツキを施すこと が不要になる。このため、偏心分銅とメツキ膜との間の接合部分でひびが入るというこ とがなくなり、モータ軸保持部におけるモータ軸の保持に関する信頼性が低下するこ とが抑制される。 [0025] In general, a material constituting a weight (for example, tungsten, tungsten alloy, etc.) has a low corrosion resistance and tends to crack, so that the eccentric weight as a whole has a high corrosion resistance and is difficult to crack (for example, nickel. ). However, in such a case, the joint between the eccentric weight and the plating film and the plating film itself can easily crack. As a result, it becomes easy to generate creases due to such cracks. For this reason, there has been a problem that the reliability related to holding the motor shaft in the motor shaft holding portion decreases. On the other hand, stainless steel is originally a material with high corrosion resistance and resistance to cracking, so it is not necessary to apply a plating. For this reason, cracks do not occur at the joint between the eccentric weight and the plating film, and it is possible to suppress a decrease in reliability related to holding the motor shaft in the motor shaft holding portion.
[0026] また、一般に分銅を構成する材料 (例えば、タングステン、タングステン合金など。 ) は脆いため、割れ易いという問題があった。これに対して、ステンレス鋼は粘りがある ため、このような脆くて割れやすい分銅をステンレス鋼で全周に渡って又は半周以上 に渡って保持することにより、分銅を構成する材料が割れ易いという問題も抑制され る。  [0026] In addition, there is a problem that a material (for example, tungsten, tungsten alloy, etc.) generally constituting a weight is fragile and easily cracked. On the other hand, since stainless steel is sticky, holding a brittle and fragile weight with stainless steel over the entire circumference or over a half circumference makes it easier for the material constituting the weight to break. Problems are also suppressed.
[0027] また、一般に分銅を構成する材料 (例えば、タングステン、タングステン合金など。 ) は高価であるため、偏心分銅の製造コストを下げるのが容易ではないという問題があ つた。これに対して、ステンレス鋼はタングステンやタングステン合金などに比べると 安価であるため、このような比較的安価なステンレス鋼で軸体を構成することにより、 偏心分銅の製造コストを下げることが可能になる。  [0027] In addition, since materials (for example, tungsten and tungsten alloys) constituting weights are generally expensive, there has been a problem that it is not easy to reduce the manufacturing cost of eccentric weights. On the other hand, stainless steel is less expensive than tungsten and tungsten alloys, and so the cost of manufacturing eccentric weights can be reduced by using a relatively inexpensive stainless steel shaft. Become.
[0028] (7)上記(1)一(6)のいずれかに記載の偏心分銅においては、前記分銅は、タンダ ステン、タングステン合金、ォスミニゥム、ォスミニゥム合金、金、金合金、イリジウム又 はイリジウム合金力もなることが好まし 、。  [0028] (7) In the eccentric weight according to any one of (1) and (6) above, the weight is selected from tandasten, tungsten alloy, osmium, osminium alloy, gold, gold alloy, iridium or iridium alloy. It is preferable to be powerful.
[0029] このように構成することにより、タングステン、タングステン合金、ォスミニゥム、ォスミ -ゥム合金、金、金合金、イリジウム又はイリジウム合金は極めて比重が高いため、偏 心分銅の重心がモータ軸保持部の中心軸からさらに離隔された位置に配置されるこ とになる。このため、偏心分銅における偏心量がさらに大きくなり、このような偏心分銅 を用いることにより、軽量かつ少ない消費電力でさらに大きな振動量が得られる振動 モータを構成することができるようになる。  [0029] With this configuration, tungsten, tungsten alloy, osmium, osmium-um alloy, gold, gold alloy, iridium or iridium alloy has a very high specific gravity, so the center of gravity of the eccentric weight is the motor shaft holding part. It is arranged at a position further away from the central axis of the. For this reason, the amount of eccentricity in the eccentric weight is further increased. By using such an eccentric weight, it is possible to configure a vibration motor that can obtain a larger amount of vibration with light weight and less power consumption.
[0030] なお、本発明の偏心分銅においては、分銅には、モータ軸を保持するための機能 は必要ないため、分銅の形状として極めて単純な形状 (例えば、円、長円、扇形など の断面を有する棒形状。)を採用することができるようになる。このため、分銅として、 分銅の形状に焼結した焼結体や、分銅の断面形状 (例えば、円、長円、扇形など。 ) と同じ断面形状を有する異形棒力 なる焼結体を短く切断したものを用いることがで きるほか、分銅として、丸棒からなる焼結体を削りだして分銅の断面形状と同じ断面 形状に加工した切削体を短く切断したものを用いることができるようになる。また、分 銅の断面形状が円である場合には、丸棒力 なる焼結体をそのまま短く切断したもの を用いることができるようになる。 [0030] In the eccentric weight of the present invention, since the weight does not need a function for holding the motor shaft, the weight has a very simple shape (for example, a cross-section such as a circle, an ellipse, or a sector). Can be adopted. For this reason, as a weight, It is necessary to use a sintered body that has been sintered into the shape of a weight, or a sintered body that has the same cross-sectional shape as the cross-sectional shape of the weight (for example, a circle, an ellipse, a fan shape, etc.) that has been cut short. In addition, it is possible to use a weight obtained by cutting a sintered body made of a round bar into a cross-sectional shape that is the same as the cross-sectional shape of the weight. In addition, when the cross-sectional shape of the weight is a circle, it is possible to use a material obtained by cutting a sintered body having a round bar force as it is.
[0031] (8)上記(1)一(7)のいずれかに記載の偏心分銅においては、前記分銅は、前記モ ータ軸保持部の中心軸を含む所定の第 1平面を対称面とする面対称の形状を有す ることが好ましい。  [0031] (8) In the eccentric weight according to any one of (1) and (7), the weight has a predetermined first plane including a central axis of the motor shaft holding portion as a symmetry plane. It is preferable to have a plane-symmetric shape.
[0032] このように構成することにより、分銅をいずれの端部側力 分銅保持穴又は分銅保 持凹部に挿入することもできるようになるため、分銅保持穴又は分銅保持凹部に分 銅を配置する際の自由度が高まり、作業性が向上する。このため、偏心分銅を製造 する際の製造コストを低いものにすることができる。  [0032] With this configuration, the weight can be inserted into any end side force weight holding hole or weight holding recess, so that the weight is disposed in the weight holding hole or weight holding recess. The degree of freedom when doing so increases, and the workability improves. For this reason, the manufacturing cost at the time of manufacturing an eccentric weight can be made low.
[0033] なお、本発明の偏心分銅において、モータ軸保持部の中心軸とは、モータ軸保持 部が保持することになるモータ軸の中心軸のことである。 [0033] In the eccentric weight of the present invention, the central axis of the motor shaft holding portion is the central axis of the motor shaft that is held by the motor shaft holding portion.
[0034] (9)上記(8)に記載の偏心分銅においては、前記分銅は、前記第 1平面に直交する 所定の第 2平面を対称面とする面対称の形状を有することが好ましい。 (9) In the eccentric weight described in (8), it is preferable that the weight has a plane-symmetric shape with a predetermined second plane orthogonal to the first plane as a plane of symmetry.
[0035] このように構成することにより、分銅をいずれの向きで分銅保持穴又は分銅保持凹 部に挿入することもできるようになるため、分銅保持穴又は分銅保持凹部に分銅を配 置する際の自由度がさらに高まり、作業性がさらに向上する。このため、偏心分銅を 製造する際の製造コストをさらに低いものにすることができる。 [0035] With this configuration, the weight can be inserted into the weight holding hole or the weight holding recess in any direction. Therefore, when placing the weight in the weight holding hole or the weight holding recess, The degree of freedom is further increased, and workability is further improved. For this reason, the manufacturing cost at the time of manufacturing an eccentric weight can be made still lower.
[0036] (10)上記(1)一(9)のいずれかに記載の偏心分銅においては、前記軸体は、前記 軸体に対応する形状を有する複数の薄板部材が積層された構造を有することが好ま しい。 [0036] (10) In the eccentric weight according to any one of (1) and (9), the shaft body has a structure in which a plurality of thin plate members having a shape corresponding to the shaft body are stacked. I like it.
[0037] このように構成することにより、軸体の分銅保持穴又は分銅保持凹部に分銅を配置 する際の作業性が良くなり、偏心分銅を製造する際の製造コストをさらに低いものに することができる。  [0037] By configuring in this way, workability when placing a weight in the weight holding hole or weight holding recess of the shaft body is improved, and the manufacturing cost when manufacturing an eccentric weight is further reduced. Can do.
[0038] (11)本発明の偏心分銅の製造方法は、上記(1)一(10)のいずれかに記載の偏心 分銅を製造するための偏心分銅の製造方法であって、前記分銅を前記軸体におけ る前記分銅保持穴又は前記分銅保持凹部に挿入した状態で、前記軸体をかしめる 工程を含むことを特徴とする。 [0038] (11) The method for producing an eccentric weight of the present invention includes the eccentricity according to any one of (1) and (10) above. A method of manufacturing an eccentric weight for manufacturing a weight, comprising the step of caulking the shaft body in a state where the weight is inserted into the weight holding hole or the weight holding recess in the shaft body. Features.
[0039] このため、本発明の偏心分銅の製造方法によれば、分銅は全周に渡って分銅保持 穴に保持される又は半周以上に渡って分銅保持凹部に保持されることになるため、 分銅は軸体にしつカゝりと保持される。このため、振動モータを長時間使用した場合に 分銅と軸体との接合の信頼性が低下することがさらに抑制されるようになる。  [0039] Therefore, according to the eccentric weight manufacturing method of the present invention, the weight is held in the weight holding hole over the entire circumference, or is held in the weight holding recess over the half circumference. The weight is held firmly on the shaft. For this reason, when the vibration motor is used for a long time, it is further suppressed that the reliability of the connection between the weight and the shaft is lowered.
[0040] (12)本発明の偏心分銅の製造方法は、上記(1)一(10)のいずれかに記載の偏心 分銅を製造するための偏心分銅の製造方法であって、前記分銅を前記軸体におけ る前記分銅保持穴又は前記分銅保持凹部に締めしろをもって圧入する工程を含む ことを特徴とする。  [0040] (12) An eccentric weight manufacturing method of the present invention is an eccentric weight manufacturing method for manufacturing an eccentric weight according to any one of (1) and (10) above, wherein the weight is It includes a step of press-fitting with a margin into the weight holding hole or the weight holding recess in the shaft body.
[0041] このため、本発明の偏心分銅の製造方法によっても、分銅は全周に渡って分銅保 持穴に保持される又は半周以上に渡って分銅保持凹部に保持されることになるため 、分銅は軸体にしっかりと保持される。このため、振動モータを長時間使用した場合 に分銅と軸体との接合の信頼性が低下することがさらに抑制されるようになる。  [0041] For this reason, the weight is also held in the weight holding hole over the entire circumference, or is held in the weight holding recess over the entire circumference by the eccentric weight manufacturing method of the present invention. The weight is firmly held by the shaft. For this reason, when the vibration motor is used for a long time, it is further suppressed that the reliability of the connection between the weight and the shaft is lowered.
[0042] (13)本発明の偏心分銅の製造方法は、上記(1)一(10)のいずれかに記載の偏心 分銅を製造するための偏心分銅の製造方法であって、前記軸体の温度が前記分銅 の温度よりも高くした状態で、前記分銅を前記軸体における前記分銅保持穴又は前 記分銅保持凹部に挿入する工程を含むことを特徴とする。  [0042] (13) An eccentric weight manufacturing method of the present invention is an eccentric weight manufacturing method for manufacturing an eccentric weight according to any one of (1) and (10) above, The method includes a step of inserting the weight into the weight holding hole or the weight holding recess in the shaft while the temperature is higher than the temperature of the weight.
[0043] このため、本発明の偏心分銅の製造方法によっても、分銅は全周に渡って分銅保 持穴に保持される又は半周以上に渡って分銅保持凹部に保持されることになるため 、分銅は軸体にしっかりと保持される。このため、振動モータを長時間使用した場合 に分銅と軸体との接合の信頼性が低下することがさらに抑制されるようになる。  [0043] For this reason, also in the manufacturing method of the eccentric weight of the present invention, the weight is held in the weight holding hole over the entire circumference or is held in the weight holding recess over the half circumference. The weight is firmly held by the shaft. For this reason, when the vibration motor is used for a long time, it is further suppressed that the reliability of the connection between the weight and the shaft is lowered.
[0044] (14)本発明の偏心分銅の製造方法は、上記(1)一(10)のいずれかに記載の偏心 分銅を製造するための偏心分銅の製造方法であって、前記分銅と前記軸体とを接合 する工程を含むことを特徴とする。  (14) An eccentric weight manufacturing method of the present invention is an eccentric weight manufacturing method for manufacturing an eccentric weight according to any one of (1) and (10) above, wherein the weight and the weight It includes a step of joining the shaft body.
[0045] このため、本発明の偏心分銅の製造方法によっても、分銅は全周に渡って分銅保 持穴に保持される又は半周以上に渡って分銅保持部に保持されることになるため、 分銅は軸体にしつカゝりと保持される。このため、振動モータを長時間使用した場合に 分銅と軸体との接合の信頼性が低下することがさらに抑制されるようになる。 [0045] For this reason, the weight is also held in the weight holding hole over the entire circumference, or is held in the weight holding portion over the entire circumference by the eccentric weight manufacturing method of the present invention. The weight is held firmly on the shaft. For this reason, when the vibration motor is used for a long time, it is further suppressed that the reliability of the connection between the weight and the shaft is lowered.
[0046] なお、前記分銅と前記軸体とを接合する工程は、前記分銅と前記軸体とを接着す ることによって行うこともできるし、前記分銅と前記軸体とをロウ付けすることによって 行うこともできるし、前記分銅と前記軸体とを溶着することによって行うこともできる。  [0046] The step of joining the weight and the shaft can be performed by adhering the weight and the shaft, or by brazing the weight and the shaft. It can also be performed, or can be performed by welding the weight and the shaft.
[0047] また、本発明の偏心分銅の製造方法においては、上記した工程を併用することもで きる。例えば、カゝしめ後に接着剤を塗布したり、ロウ付け後に接着剤を塗布したり、か しめ後にスポット溶接を行ったり、スポット溶接後にロウ付け等を施したりすることもで きる。  [0047] Further, in the method for producing an eccentric weight of the present invention, the above-described steps can be used in combination. For example, an adhesive may be applied after crimping, an adhesive may be applied after brazing, spot welding may be performed after caulking, or brazing may be performed after spot welding.
[0048] (15)本発明の偏心分銅の製造方法は、上記(1)一(9)のいずれかに記載の偏心分 銅を製造するための偏心分銅の製造方法であって、前記分銅の一部又は全部を所 定の型に入れた状態で、型の中に前記軸体の材料を铸込む工程を含むことを特徴 とする。  (15) An eccentric weight manufacturing method of the present invention is an eccentric weight manufacturing method for manufacturing an eccentric weight according to any one of (1) and (9) above, The method includes the step of inserting the material of the shaft into the mold in a state where a part or all of the mold is put in a predetermined mold.
[0049] このため、本発明の偏心分銅の製造方法によっても、分銅は全周に渡って分銅保 持穴に保持される又は半周以上に渡って分銅保持部に保持されることになるため、 分銅は軸体にしつカゝりと保持される。このため、振動モータを長時間使用した場合に 分銅と軸体との接合の信頼性が低下することがさらに抑制されるようになる。  [0049] For this reason, the weight is also held in the weight holding hole over the entire circumference, or is held in the weight holding portion over the entire circumference by the eccentric weight manufacturing method of the present invention. The weight is held firmly on the shaft. For this reason, when the vibration motor is used for a long time, it is further suppressed that the reliability of the connection between the weight and the shaft is lowered.
[0050] (16)本発明の振動モータは、モータ本体と、上記(1)一(10)のいずれかに記載の 偏心分銅とを備えたことを特徴とする。  [0050] (16) A vibration motor according to the present invention includes a motor body and the eccentric weight according to any one of (1) and (10) above.
[0051] このため、本発明の振動モータによれば、上記したように、振動モータを長時間使 用した場合に分銅と軸体との接合の信頼性が低下することが抑制された優れた偏心 分銅を備えて 、るため、長時間信頼性の高 、振動モータとなる。  [0051] Therefore, according to the vibration motor of the present invention, as described above, when the vibration motor is used for a long period of time, it is possible to suppress a decrease in the reliability of the connection between the weight and the shaft body. Since it has an eccentric weight, it becomes a vibration motor with high reliability for a long time.
[0052] (17)本発明の携帯機器は、上記(16)に記載の振動モータを備えたことを特徴とす る。  [0052] (17) A portable device of the present invention includes the vibration motor according to (16).
[0053] このため、本発明の携帯機器によれば、長時間信頼性の高い振動モータを備えて いるため、長時間信頼性の高い携帯機器となる。  [0053] For this reason, according to the portable device of the present invention, since the long-time reliable vibration motor is provided, the portable device is highly reliable for a long time.
図面の簡単な説明  Brief Description of Drawings
[0054] [図 1]実施形態 1に係る偏心分銅を説明するために示す図である。 [図 2]実施形態 1に係る振動モータを説明するために示す図である。 [FIG. 1] A view for explaining an eccentric weight according to the first embodiment. FIG. 2 is a view for explaining the vibration motor according to the first embodiment.
[図 3]実施形態 2に係る偏心分銅を説明するために示す図である。  FIG. 3 is a view for explaining an eccentric weight according to the second embodiment.
[図 4]実施形態 3に係る偏心分銅を説明するために示す図である。  FIG. 4 is a view for explaining an eccentric weight according to a third embodiment.
[図 5]実施形態 4に係る偏心分銅を説明するために示す図である。  FIG. 5 is a view for explaining an eccentric weight according to a fourth embodiment.
[図 6]実施形態 1一 4に係る偏心分銅に用いる分銅を説明するために示す図である。  FIG. 6 is a view for explaining a weight used for the eccentric weight according to the embodiment 1-4.
[図 7]実施形態 5に係る偏心分銅を説明するために示す図である。  FIG. 7 is a view for explaining an eccentric weight according to the fifth embodiment.
[図 8]実施形態 6に係る偏心分銅を説明するために示す図である。  FIG. 8 is a view for explaining an eccentric weight according to the sixth embodiment.
[図 9]実施形態 7に係る偏心分銅を説明するために示す図である。  FIG. 9 is a view for explaining an eccentric weight according to the seventh embodiment.
[図 10]実施形態 8に係る偏心分銅を説明するために示す図である。  FIG. 10 is a view for explaining an eccentric weight according to an eighth embodiment.
[図 11]実施形態 9に係る偏心分銅を説明するために示す図である。  FIG. 11 is a view for explaining an eccentric weight according to the ninth embodiment.
[図 12]従来の振動モータ及び偏心分銅を説明するために示す図である。  FIG. 12 is a view for explaining a conventional vibration motor and an eccentric weight.
[図 13]従来の他の偏心分銅を説明するために示す図である。  FIG. 13 is a view for explaining another conventional eccentric weight.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0055] 以下、本発明の偏心分銅及びその製造方法並びに振動モータ及び携帯機器につ いて、図に示す実施の形態に基づいて説明する。  [0055] Hereinafter, an eccentric weight, a manufacturing method thereof, a vibration motor, and a portable device of the present invention will be described based on the embodiments shown in the drawings.
[0056] 〔実施形態 1〕  [Embodiment 1]
図 1は、実施形態 1に係る偏心分銅を説明するために示す図である。図 1 (a)は実 施形態 1に係る偏心分銅を正面から見た図であり、図 1 (b)は実施形態 1に係る偏心 分銅を側面から見た図であり、図 1 (c)は実施形態 1に係る偏心分銅の斜視図であり 、図 1 (d)は実施形態 1に係る偏心分銅の、図 1 (c)とは別の角度から見た斜視図で ある。  FIG. 1 is a view for explaining an eccentric weight according to the first embodiment. Fig. 1 (a) is a view of the eccentric weight according to Embodiment 1 from the front, and Fig. 1 (b) is a view of the eccentric weight according to Embodiment 1 from the side. FIG. 1 is a perspective view of an eccentric weight according to the first embodiment, and FIG. 1 (d) is a perspective view of the eccentric weight according to the first embodiment viewed from an angle different from that in FIG. 1 (c).
[0057] 実施形態 1に係る偏心分銅 120は、図 1に示すように、分銅 140と、軸体 130とを備 えている。分銅 140は高比重金属力 なる。軸体 130は、分銅 140を保持するための 分銅保持穴 134及びモータ軸 112 (図 2参照。)を保持するためのモータ軸保持穴 1 32を有し、分銅 140を構成する高比重金属よりも比重の低い材料力もなる。そして、 実施形態 1に係る偏心分銅 120においては、分銅 140は全周に渡って分銅保持穴 1 34に保持されている。  As shown in FIG. 1, the eccentric weight 120 according to the first embodiment includes a weight 140 and a shaft body 130. Weight 140 has high specific gravity metal power. The shaft body 130 has a weight holding hole 134 for holding the weight 140 and a motor shaft holding hole 1 32 for holding the motor shaft 112 (see FIG. 2). However, the material strength is low. In the eccentric weight 120 according to the first embodiment, the weight 140 is held in the weight holding hole 1 34 over the entire circumference.
[0058] このため、実施形態 1に係る偏心分銅 120によれば、分銅 140は全周に渡って軸 体 130における分銅保持穴 134に保持されることになるため、振動モータを長時間 使用した場合に分銅 140と軸体 130との接合の信頼性が低下することが抑制される [0058] For this reason, according to the eccentric weight 120 according to the first embodiment, the weight 140 has a shaft extending over the entire circumference. Since the weight 130 is held in the weight holding hole 134 in the body 130, it is possible to suppress a decrease in the reliability of the connection between the weight 140 and the shaft body 130 when the vibration motor is used for a long time.
[0059] また、実施形態 1に係る偏心分銅 120によれば、分銅 140を構成する高比重金属よ りも比重の低い材料力もなる軸体 130を備えているため、偏心分銅 120の重心がモ ータ軸保持穴 132の中心軸からさらに離隔された位置に配置されることになる。この ため、偏心分銅 120における偏心量が大きくなり、このような偏心分銅 120を用いるこ とにより、軽量かつ少ない消費電力で大きな振動量が得られる振動モータを構成す ることがでさるよう〖こなる。 In addition, according to the eccentric weight 120 according to the first embodiment, since the shaft body 130 having a material force having a specific gravity lower than that of the high specific gravity metal constituting the weight 140 is provided, the center of gravity of the eccentric weight 120 is Therefore, it is arranged at a position further away from the central axis of the data shaft holding hole 132. For this reason, the amount of eccentricity in the eccentric weight 120 becomes large. By using such an eccentric weight 120, it is possible to construct a vibration motor that can obtain a large amount of vibration with light weight and low power consumption. Become.
[0060] なお、ここで「全周」とは、分銅 140の長手方向に垂直な平面における分銅 140の 全周のことであり、図 1に示すように、分銅 140の長手方向における両端部において は、必ずしも分銅保持穴に保持されている必要はない。また、図 1に示すように、分 銅 140は、必ずしも分銅 140の長手方向全体に渡って、軸体 130における分銅保持 穴 134に保持されて 、る必要もな 、。  [0060] Here, "the entire circumference" is the entire circumference of the weight 140 in a plane perpendicular to the longitudinal direction of the weight 140, and as shown in FIG. 1, at both ends of the weight 140 in the longitudinal direction. Is not necessarily held in the weight holding hole. Further, as shown in FIG. 1, the weight 140 does not necessarily have to be held in the weight holding hole 134 in the shaft body 130 over the entire longitudinal direction of the weight 140.
[0061] また、「モータ軸保持穴 132の中心軸」とは、モータ軸保持穴 132が保持することに なるモータ軸 112 (図 2参照。)の中心軸のことである。  Further, “the central axis of the motor shaft holding hole 132” is the central axis of the motor shaft 112 (see FIG. 2) that the motor shaft holding hole 132 holds.
[0062] 実施形態 1に係る偏心分銅 120においては、分銅 140は、タングステン合金力ゝらな り、軸体 130は、タングステン合金よりも比重の低いステンレス鋼力もなる。  In the eccentric weight 120 according to the first embodiment, the weight 140 is a tungsten alloy force, and the shaft body 130 is also a stainless steel force having a specific gravity lower than that of the tungsten alloy.
[0063] このため、軸体 130は分銅 140を構成する高比重金属(タングステン合金)よりも比 重の低い金属 (ステンレス鋼)からなるため、軸体の耐久性が向上するとともに、軸体 と分銅とをより強固に一体化させることができるようになり、振動モータを長時間使用 した場合に分銅と軸体との接合の信頼性が低下することがさらに抑制される。  [0063] For this reason, the shaft body 130 is made of a metal (stainless steel) having a specific gravity lower than that of the high specific gravity metal (tungsten alloy) constituting the weight 140, so that the durability of the shaft body is improved and the shaft body and The weight can be more firmly integrated, and further reduction in the reliability of the connection between the weight and the shaft when the vibration motor is used for a long time is further suppressed.
[0064] また、ステンレス鋼はもともと耐食性が高く鲭びにく!、材料であるので、これを軸体と して用いたとしてもメツキを施すことが不要になる。その結果、軸体とメツキ膜との接合 部分及びメツキ膜自身にでひびが入るということがなくなり、ひびなどに起因して鲭び が発生するということがなくなり、モータ軸保持穴におけるモータ軸の保持に関する 信頼性が低下することが抑制される。  [0064] Further, since stainless steel is originally a material with high corrosion resistance and resistance to rustling, even if it is used as a shaft, it is not necessary to apply a plating. As a result, the joint between the shaft body and the plating film and the plating film itself are not cracked, and no cracks are generated due to the crack, and the motor shaft in the motor shaft holding hole is not cracked. Decrease in reliability regarding retention is suppressed.
[0065] また、ステンレス鋼は粘りがあるため、タングステン合金のような脆くて割れやす!/、分 銅を粘りのあるステンレス鋼で全周に渡って保持することにより、分銅が割れ易 ヽと ヽ う問題も抑制される。 [0065] Since stainless steel is sticky, it is brittle and easily cracked like a tungsten alloy! / Min By holding copper all over the circumference with sticky stainless steel, the problem of the weight being prone to cracking is also suppressed.
[0066] また、ステンレス鋼はタングステン合金などに比べると安価であるため、このような比 較的安価なステンレス鋼で軸体 130を構成することにより、偏心分銅の製造コストを 下げることが容易になる。  [0066] Further, since stainless steel is less expensive than tungsten alloy and the like, it is easy to lower the manufacturing cost of the eccentric weight by configuring the shaft body 130 with such relatively inexpensive stainless steel. Become.
[0067] 分銅 140の製造方法としては、比較的複雑な形状を有する分銅の形状にタンダス テン合金を焼結して分銅とする製造方法を採用することもできるが、実施形態 1に係 る偏心分銅 120においては、タングステン合金を焼結して単純な形状の丸棒を作り、 この丸棒を削りだして分銅とする製造方法を採用することもできる。このようにすること により、タングステン合金に含まれる添加物(例えば、銅。)の量を減じることができる ため、比重を高くすることができ、偏心分銅における偏心量をさらに大きくすることが でさるよう〖こなる。  [0067] As a manufacturing method of the weight 140, a manufacturing method in which a weight is obtained by sintering a tandasten alloy into a weight shape having a relatively complicated shape can be adopted. However, the eccentricity according to the first embodiment is used. For the weight 120, it is possible to employ a manufacturing method in which a tungsten alloy is sintered to form a round bar having a simple shape, and the round bar is cut out to obtain a weight. By doing so, the amount of the additive (for example, copper) contained in the tungsten alloy can be reduced, so that the specific gravity can be increased and the amount of eccentricity in the eccentric weight can be further increased. It ’s like this.
[0068] 実施形態 1に係る偏心分銅 120は、例えば以下のような方法で製造することができ る。  [0068] The eccentric weight 120 according to the first embodiment can be manufactured, for example, by the following method.
[0069] (1)分銅 140の断面よりも大きな断面を有するタングステン合金の丸棒を準備する。  (1) A tungsten alloy round bar having a cross section larger than that of the weight 140 is prepared.
(2)次に、上記した丸棒の外周を切削して、分銅 140の断面形状に対応する断面形 状を有する棒材を製造する。  (2) Next, the outer periphery of the round bar is cut to produce a bar having a cross-sectional shape corresponding to the cross-sectional shape of the weight 140.
(3)次に、上記した棒材を所定の長さに切断して分銅 140に対応する外形形状を有 する分銅を製造する。  (3) Next, a weight having an outer shape corresponding to the weight 140 is manufactured by cutting the bar material to a predetermined length.
[0070] (4)上記した分銅とは別に軸体 130に対応する外形形状を有する軸体を準備してお き、この軸体における分銅保持穴に、上記した分銅を挿入した状態で、軸体を外側 力 力しめることにより、軸体に分銅を保持させる。  [0070] (4) A shaft body having an outer shape corresponding to the shaft body 130 is prepared separately from the above-described weight, and the shaft is inserted in the weight holding hole in the shaft body. By holding the body outward, the weight is held on the shaft.
(5)これにより、分銅 140が全周に渡って軸体 130における分銅保持穴 134に保持 された偏心分銅 120が製造される。  (5) Thereby, the eccentric weight 120 in which the weight 140 is held in the weight holding hole 134 in the shaft body 130 over the entire circumference is manufactured.
[0071] このような方法とすることにより、分銅 140は全周に渡って軸体 130における分銅保 持穴 134にしつ力りと保持されることになるため、振動モータを長時間使用した場合 に分銅と軸体との接合の信頼性が低下することが抑制されるようになる。 [0071] By adopting such a method, the weight 140 is held by the weight holding hole 134 in the shaft body 130 over the entire circumference, so that the vibration motor is used for a long time. In addition, it is possible to suppress a decrease in the reliability of the connection between the weight and the shaft.
[0072] 図 2は、実施形態 1に係る振動モータを説明するために示す図である。図 2 (a)は実 施形態 1に係る振動モータの斜視図であり、図 2 (b)は偏心分銅を正面から見た図で あり、図 8 (c)は偏心分銅を側面力 見た図である。 FIG. 2 is a view for explaining the vibration motor according to the first embodiment. Figure 2 (a) is real FIG. 2B is a perspective view of the vibration motor according to Embodiment 1, FIG. 2B is a view of the eccentric weight as viewed from the front, and FIG. 8C is a view of the eccentric weight as viewed from the side.
[0073] 実施形態 1に係る振動モータ 100は、モータ本体 110と、偏心分銅 120とを備えた 振動モータである。そして、実施形態 1に係る振動モータ 100は、上記したように、振 動モータを長時間使用した場合に分銅と軸体との接合の信頼性が低下することが抑 制された優れた偏心分銅 120を備えている。このため、実施形態 1に係る振動モータ 100は、このような優れた偏心分銅 120を備えた振動モータであるため、長時間信頼 性の高い振動モータとなる。 The vibration motor 100 according to the first embodiment is a vibration motor including a motor body 110 and an eccentric weight 120. Then, as described above, the vibration motor 100 according to the first embodiment is an excellent eccentric weight in which the reliability of the connection between the weight and the shaft body is suppressed when the vibration motor is used for a long time. 120. For this reason, since the vibration motor 100 according to the first embodiment is a vibration motor including such an excellent eccentric weight 120, it becomes a vibration motor with high reliability for a long time.
このため、このように長時間信頼性の高い優れた振動モータ 100を携帯機器の振 動モータとして用いることにより、携帯機器を、長時間信頼性の高い携帯機器とする ことができる。  Therefore, by using the excellent vibration motor 100 having high reliability for a long time as the vibration motor of the portable device in this way, the portable device can be made a portable device having high reliability for a long time.
[0074] 〔実施形態 2〕 [Embodiment 2]
図 3は、実施形態 2に係る偏心分銅を説明するために示す図である。図 3 (a)は実 施形態 2に係る偏心分銅を正面から見た図であり、図 3 (b)は偏心分銅を側面力 見 た図である。  FIG. 3 is a view for explaining the eccentric weight according to the second embodiment. Fig. 3 (a) is a diagram of the eccentric weight according to Embodiment 2 as viewed from the front, and Fig. 3 (b) is a diagram of the eccentric weight as viewed from the side.
[0075] 実施形態 2に係る偏心分銅 220は、図 3に示すように、分銅 240の形状 (及びそれ に伴って、軸体 230における分銅保持穴 234の形状)が実施形態 1に係る偏心分銅 120の場合と異なる。すなわち、実施形態 2に係る偏心分銅 220においては、分銅 2 40は略扇型の形状をして 、る。  As shown in FIG. 3, the eccentric weight 220 according to the second embodiment has an eccentric weight according to the first embodiment in which the shape of the weight 240 (and the shape of the weight holding hole 234 in the shaft body 230) is the same. Different from 120. That is, in the eccentric weight 220 according to the second embodiment, the weight 240 has a substantially fan shape.
[0076] このように、実施形態 2に係る偏心分銅 220は、分銅 240の形状 (及びそれに伴つ て、軸体 230における分銅保持穴 234の形状)が実施形態 1に係る偏心分銅 120の 場合とは異なるが、分銅 240は全周に渡って軸体 230における分銅保持穴 234に保 持されることになるため、実施形態 1に係る偏心分銅 120の場合と同様に、振動モー タを長時間使用した場合に分銅と軸体との接合の信頼性が低下することが抑制され る。  As described above, the eccentric weight 220 according to the second embodiment is the case where the weight 240 (and the accompanying shape of the weight holding hole 234 in the shaft body 230) is the eccentric weight 120 according to the first embodiment. However, since the weight 240 is held in the weight holding hole 234 in the shaft body 230 over the entire circumference, the vibration motor is lengthened as in the case of the eccentric weight 120 according to the first embodiment. When used for a long time, it is possible to suppress a decrease in the reliability of the connection between the weight and the shaft.
[0077] また、実施形態 2に係る偏心分銅 220においては、実施形態 1に係る偏心分銅 120 の場合と同様に、分銅 240を構成する高比重金属よりも比重の低い材料力もなる軸 体 230を備えているため、偏心分銅 220の重心がモータ軸保持穴 232の中心軸から さらに離隔された位置に配置されることになる。このため、偏心分銅 220における偏 心量が大きくなり、このような偏心分銅 220を用いることにより、軽量かつ少ない消費 電力で大きな振動量が得られる振動モータを構成することができるようになる。 [0077] In addition, in the eccentric weight 220 according to the second embodiment, the shaft 230 having a material force having a specific gravity lower than that of the high specific gravity metal constituting the weight 240 is provided as in the case of the eccentric weight 120 according to the first embodiment. Since the center of gravity of the eccentric weight 220 is from the center axis of the motor shaft holding hole 232 Furthermore, it will be arrange | positioned in the position spaced apart. For this reason, the amount of eccentricity in the eccentric weight 220 becomes large, and by using such an eccentric weight 220, it is possible to configure a vibration motor that can obtain a large amount of vibration with light weight and low power consumption.
[0078] また、実施形態 2に係る偏心分銅 220においては、分銅 240が略扇型の形状をし ているため、モータ軸保持穴 232と分銅保持穴 234との間の距離として所定の距離 が確保される結果、モータ軸保持穴 232と分銅保持穴 234とが干渉することによるモ ータ軸保持特性及び分銅保持特性の劣化が最小限に抑えられるという効果も得られ る。 In the eccentric weight 220 according to the second embodiment, since the weight 240 has a substantially fan shape, the distance between the motor shaft holding hole 232 and the weight holding hole 234 is a predetermined distance. As a result, it is possible to obtain an effect that the deterioration of the motor shaft holding characteristic and the weight holding characteristic due to the interference between the motor shaft holding hole 232 and the weight holding hole 234 can be minimized.
[0079] 〔実施形態 3〕  [Embodiment 3]
図 4は、実施形態 3に係る偏心分銅を説明するために示す図である。図 4 (a)は実 施形態 3に係る偏心分銅を正面から見た図であり、図 4 (b)は偏心分銅を側面力 見 た図である。  FIG. 4 is a view for explaining the eccentric weight according to the third embodiment. Fig. 4 (a) is a view of the eccentric weight according to Embodiment 3 as viewed from the front, and Fig. 4 (b) is a view of the eccentric weight as viewed from the side.
[0080] 実施形態 3に係る偏心分銅 320は、図 4に示すように、分銅 340の形状 (及びそれ に伴って、軸体 330における分銅保持穴 334の形状)が実施形態 1又は 2に係る偏 心分銅 120, 220の場合と異なる。すなわち、実施形態 3に係る偏心分銅 320におい ては、分銅 340は偏心分銅 320の略周方向に沿って長 、六角形の形状をして 、る。  As shown in FIG. 4, the eccentric weight 320 according to the third embodiment has a weight 340 shape (and a shape of the weight holding hole 334 in the shaft body 330) according to the first or second embodiment. Different from eccentric weight 120, 220. In other words, in the eccentric weight 320 according to the third embodiment, the weight 340 has a long and hexagonal shape along the substantially circumferential direction of the eccentric weight 320.
[0081] このように、実施形態 3に係る偏心分銅 320は、分銅 340の形状 (及びそれに伴つ て、軸体 330における分銅保持穴 334の形状)が実施形態 1又は 2に係る偏心分銅 1 20, 220の場合とは異なるが、分銅 340は全周に渡って軸体 330における分銅保持 穴 334に保持されることになるため、実施形態 1又は 2に係る偏心分銅 120, 220の 場合と同様に、振動モータを長時間使用した場合に分銅と軸体との接合の信頼性が 低下することが抑制される。  As described above, the eccentric weight 320 according to the third embodiment has an eccentric weight 1 in which the shape of the weight 340 (and the shape of the weight holding hole 334 in the shaft 330) is the same as in the first or second embodiment. Unlike the case of 20, 220, since the weight 340 is held in the weight holding hole 334 in the shaft 330 over the entire circumference, it is different from the case of the eccentric weight 120, 220 according to the embodiment 1 or 2. Similarly, when the vibration motor is used for a long time, it is possible to suppress a decrease in the reliability of the connection between the weight and the shaft body.
[0082] また、実施形態 3に係る偏心分銅 320においては、実施形態 1又は 2に係る偏心分 銅 120, 220の場合と同様に、分銅 340を構成する高比重金属よりも比重の低い材 料力もなる軸体 330を備えているため、偏心分銅 320の重心がモータ軸保持穴 332 の中心軸力もさらに離隔された位置に配置されることになる。このため、偏心分銅 32 0における偏心量が大きくなり、このような偏心分銅 320を用いることにより、軽量かつ 少な 、消費電力で大きな振動量が得られる振動モータを構成することができるように なる。 In addition, in the eccentric weight 320 according to the third embodiment, as in the case of the eccentric weights 120 and 220 according to the first or second embodiment, the material having a specific gravity lower than that of the high specific gravity metal constituting the weight 340. Since the shaft body 330 having the force is provided, the center of gravity of the eccentric weight 320 is arranged at a position where the center axial force of the motor shaft holding hole 332 is further separated. For this reason, the amount of eccentricity in the eccentric weight 320 is increased, and by using such an eccentric weight 320, it is possible to configure a vibration motor that can obtain a large amount of vibration with low power consumption. Become.
[0083] 〔実施形態 4〕  [Embodiment 4]
図 5は、実施形態 4に係る偏心分銅を説明するために示す図である。図 5 (a)は実 施形態 4に係る偏心分銅を正面から見た図であり、図 5 (b)は偏心分銅を側面力 見 た図である。  FIG. 5 is a view for explaining the eccentric weight according to the fourth embodiment. FIG. 5 (a) is a view of the eccentric weight according to Embodiment 4 as viewed from the front, and FIG. 5 (b) is a view of the eccentric weight as viewed from the side.
[0084] 実施形態 4に係る偏心分銅 420は、図 5に示すように、分銅 440, 442, 442の数 及び形状 (及びそれに伴って、軸体 430における分銅保持穴 434, 436, 436の数 及び形状)が実施形態 1一 3に係る偏心分銅 120, 220, 320の場合と異なる。すな わち、実施形態 4に係る偏心分銅 420においては、分銅は 3つの分銅 440, 442, 4 42力らなり、これら 3つの分銅 440, 442, 442はすべて断面円形状を有するとともに 、 1つの分銅 440及び分銅 440よりち/ J、さな 2つの分銅 442, 442力らなる。  As shown in FIG. 5, the eccentric weight 420 according to the fourth embodiment includes the number and shape of weights 440, 442, 442 (and the number of weight holding holes 434, 436, 436 in the shaft body 430). And the shape) are different from those of the eccentric weights 120, 220, 320 according to the first to third embodiments. That is, in the eccentric weight 420 according to the fourth embodiment, the weight is composed of three weights 440, 442, and 4 42, and these three weights 440, 442, and 442 all have a circular cross section, and 1 Two weights 440 and weight 440 / J, and two weights 442, 442 power.
[0085] このように、実施形態 4に係る偏心分銅 420は、分銅 440, 442, 442の数及び形 状 (及びそれに伴って、軸体 430における分銅保持穴 434, 436, 436の数及び形 状)が実施形態 1一 3に係る偏心分銅 120, 220, 320の場合とは異なるが、実施形 態 1一 3に係る偏'、分銅 120, 220, 320の場合と同様に、各分銅 440, 442, 442 は全周に渡って軸体 430における各分銅保持穴 434, 436, 436に保持されること になるため、振動モータを長時間使用した場合に分銅と軸体との接合の信頼性が低 下することが抑制される。  As described above, the eccentric weight 420 according to the fourth embodiment includes the number and shape of the weights 440, 442, 442 (and the number and shape of the weight holding holes 434, 436, 436 in the shaft body 430 accordingly). Is different from the eccentric weights 120, 220, 320 according to Embodiment 1-3, but each weight 440 is the same as the eccentric weight 120, 220, 320 according to Embodiment 1-13. , 442, and 442 are held in the weight holding holes 434, 436, and 436 in the shaft body 430 over the entire circumference, so that the reliability of the weight-shaft joint can be maintained when the vibration motor is used for a long time. The decline in sex is suppressed.
[0086] また、実施形態 4に係る偏心分銅 420においては、実施形態 1一 3に係る偏心分銅 120, 220, 320の場合と同様に、分銅 440, 442, 442を構成する高 it重金属よりも 比重の低 、材料力もなる軸体 430を備えて 、るため、偏心分銅 420の重心がモータ 軸保持穴 432の中心軸からさらに離隔された位置に配置されることになる。このため 、偏心分銅 420における偏心量が大きくなり、このような偏心分銅 420を用いることに より、軽量かつ少ない消費電力で大きな振動量が得られる振動モータを構成すること ができるようになる。  [0086] Further, in the eccentric weight 420 according to the fourth embodiment, as in the case of the eccentric weights 120, 220, and 320 according to the first and third embodiments, the high weight heavy metal constituting the weights 440, 442, and 442 is used. Since the shaft body 430 having a low specific gravity and a material force is provided, the center of gravity of the eccentric weight 420 is arranged at a position further separated from the center axis of the motor shaft holding hole 432. For this reason, the amount of eccentricity in the eccentric weight 420 becomes large, and by using such an eccentric weight 420, it is possible to configure a vibration motor that can obtain a large amount of vibration with light weight and low power consumption.
[0087] また、実施形態 4に係る偏心分銅 420においては、分銅 440, 442, 442の断面が すべて円形状であるため、分銅の製造が容易となり、製造コストも安価なものとなる。  Further, in the eccentric weight 420 according to the fourth embodiment, the weights 440, 442, and 442 are all circular in cross section, so that the weight can be easily manufactured and the manufacturing cost can be reduced.
[0088] 図 6は、実施形態 1一 4に係る偏心分銅に用いる分銅を説明するために示す図であ る。図 6 (a)は実施形態 1における分銅の断面図であり、図 6 (b)は実施形態 2におけ る分銅の断面図であり、図 6 (c)は実施形態 3における分銅の断面図であり、図 6 (d) は実施形態 4における分銅の断面図である。 FIG. 6 is a diagram for explaining a weight used for the eccentric weight according to the first to fourth embodiments. The 6 (a) is a cross-sectional view of the weight in Embodiment 1, FIG. 6 (b) is a cross-sectional view of the weight in Embodiment 2, and FIG. 6 (c) is a cross-sectional view of the weight in Embodiment 3. FIG. 6D is a sectional view of the weight in the fourth embodiment.
[0089] 実施形態 1一 4に係る偏心分銅 120, 220, 320, 420においては、図 6に示すよう に、分銅 140, 240, 340, 440, 442の!/、ずれも力 モータ軸保持穴の中'、軸を含 む所定の第 1平面 Asを対称面とする面対称の形状を有している。  In the eccentric weights 120, 220, 320, and 420 according to Embodiments 1 and 4, as shown in FIG. 6, the weights of the weights 140, 240, 340, 440, and 442! It has a plane-symmetric shape with a predetermined first plane As including the axis as a plane of symmetry.
[0090] このため、実施形態 1一 4に係る偏心分銅 120, 220, 320, 420においては、分銅 140, 240, 340, 440, 442をいずれの端部(図 1 (b)に示す端部 S , S参照。 )側  [0090] Therefore, in the eccentric weights 120, 220, 320, 420 according to Embodiment 1-14, the weights 140, 240, 340, 440, 442 are connected to either end (the end shown in FIG. 1 (b)). See S and S.)
1 2 力ら分銅保持穴 134, 234, 334, 434, 436に挿入することもできるようになるため、 分銅保持穴 134, 234, 334, 434, 436に分銅 140, 240, 340, 440, 442を配置 する際の自由度が高まり、作業性が向上する。このため、偏心分銅を製造する際の 製造コストを低いものにすることができる。  1 2 Since the force can be inserted into the weight holding hole 134, 234, 334, 434, 436, the weight holding hole 134, 234, 334, 434, 436 has the weight 140, 240, 340, 440, 442 This increases the degree of freedom when placing the battery and improves workability. For this reason, the manufacturing cost at the time of manufacturing an eccentric weight can be made low.
[0091] また、実施形態 1、 3及び 4に係る偏心分銅 120, 320, 420においては、分銅 140 , 340, 440, 442のいずれも力 上記した所定の第 1平面 Asに直交する所定の第 2 平面 Bsを対称面とする面対称の形状を有して 、る。  [0091] In the eccentric weights 120, 320, and 420 according to the first, third, and fourth embodiments, any of the weights 140, 340, 440, and 442 has a predetermined first plane orthogonal to the predetermined first plane As described above. 2 It has a plane-symmetric shape with plane Bs as the plane of symmetry.
[0092] このため、実施形態 1、 3及び 4に係る偏心分銅 120, 320, 420においては、分銅 140, 340, 440, 442を!ヽずれの向きで分銅保持穴 134, 334, 434, 436【こ挿人 することもできるようになるため、分銅保持穴 134, 334, 434, 436に分銅 140, 340 , 440, 442を配置する際の自由度がさらに高まり、作業性がさらに向上する。このた め、偏心分銅を製造する際の製造コストをさらに低いものにすることができる。  [0092] For this reason, in the eccentric weights 120, 320, and 420 according to the first, third, and fourth embodiments, the weights 140, 340, 440, and 442 are! The weight holding holes 134, 334, 434, and 436 in the direction of deviation. [Because it can also be inserted, the degree of freedom when placing the weights 140, 340, 440, 442 in the weight holding holes 134, 334, 434, 436 is further increased, and the workability is further improved. For this reason, the manufacturing cost at the time of manufacturing an eccentric weight can be made still lower.
[0093] 〔実施形態 5〕  [Embodiment 5]
図 7は、実施形態 5に係る偏心分銅を説明するために示す図である。図 7 (a)は実 施形態 5に係る偏心分銅を正面から見た図であり、図 7 (b)は偏心分銅を側面力 見 た図である。  FIG. 7 is a view for explaining the eccentric weight according to the fifth embodiment. FIG. 7 (a) is a diagram of the eccentric weight according to Embodiment 5 as viewed from the front, and FIG. 7 (b) is a diagram of the eccentric weight as viewed from the side.
[0094] 実施形態 5に係る偏心分銅 520は、図 7に示すように、軸体 530の構造が実施形態 1に係る偏心分銅 120の場合と異なる。すなわち、実施形態 5に係る偏心分銅 520に おいては、軸体 530は、分銅保持部として、全周に渡って分銅を保持する分銅保持 穴 134の代わりに、半周以上に渡って分銅を保持する分銅保持凹部 534を有してい る。 As shown in FIG. 7, the eccentric weight 520 according to the fifth embodiment is different in the structure of the shaft body 530 from the eccentric weight 120 according to the first embodiment. That is, in the eccentric weight 520 according to the fifth embodiment, the shaft body 530 serves as a weight holding portion, and holds the weight over a half circumference instead of the weight holding hole 134 that holds the weight over the entire circumference. Has a weight retaining recess 534 The
[0095] この分銅保持凹部 534は、実施形態 1に係る偏心分銅 120における分銅保持穴 1 34の一部がモータ軸保持穴 132の中心軸に沿って開口しているような形状を有して いる。  This weight holding recess 534 has a shape such that a part of the weight holding hole 1 34 in the eccentric weight 120 according to the first embodiment is opened along the central axis of the motor shaft holding hole 132. Yes.
[0096] このように、実施形態 5に係る偏心分銅 520は、軸体 530の構造が実施形態 1に係 る偏心分銅 120の場合とは異なる力 分銅 540は半周以上に渡って軸体 530におけ る分銅保持凹部 534に保持されることになるため、実施形態 1に係る偏心分銅 120の 場合と同様に、振動モータを長時間使用した場合に分銅と軸体との接合の信頼性が 低下することが抑制される。  As described above, the eccentric weight 520 according to the fifth embodiment is different from the case of the eccentric weight 120 according to the first embodiment in the structure of the shaft body 530. The weight weight 540 is applied to the shaft body 530 over a half circumference. Since the weight is retained in the weight retaining recess 534, the reliability of the connection between the weight and the shaft is reduced when the vibration motor is used for a long time, as in the case of the eccentric weight 120 according to the first embodiment. Is suppressed.
[0097] また、実施形態 5に係る偏心分銅 520においては、実施形態 1に係る偏心分銅 120 の場合と同様に、分銅 540を構成する高比重金属よりも比重の低い材料力もなる軸 体 530を備えているため、偏心分銅 520の重心がモータ軸保持穴 532の中心軸から さらに離隔された位置に配置されることになる。このため、偏心分銅 520における偏 心量が大きくなり、このような偏心分銅 520を用いることにより、軽量かつ少ない消費 電力で大きな振動量が得られる振動モータを構成することができるようになる。  In addition, in the eccentric weight 520 according to the fifth embodiment, as in the case of the eccentric weight 120 according to the first embodiment, the shaft body 530 having a material force having a specific gravity lower than that of the high specific gravity metal constituting the weight 540 is provided. Therefore, the center of gravity of the eccentric weight 520 is arranged at a position further away from the center axis of the motor shaft holding hole 532. For this reason, the amount of eccentricity in the eccentric weight 520 becomes large, and by using such an eccentric weight 520, it becomes possible to configure a vibration motor that can obtain a large amount of vibration with light weight and low power consumption.
[0098] なお、ここで、「半周以上」とは、分銅 540の長手方向に垂直な平面における分銅 5 40の半周以上のことであり、図 7に示すように、分銅 540の長手方向における両端部 においては必ずしも分銅保持部に保持されている必要はない。また、図 7に示すよう に、分銅 540は、必ずしも分銅 540の長手方向全体に渡って、軸体 530における分 銅保持部 534に保持されて 、る必要もな 、。  [0098] Here, "half or more" means more than half of the weight 540 in a plane perpendicular to the longitudinal direction of the weight 540, and as shown in FIG. 7, both ends of the weight 540 in the longitudinal direction. The part does not necessarily have to be held by the weight holding part. Further, as shown in FIG. 7, the weight 540 does not necessarily have to be held by the weight holding portion 534 in the shaft body 530 over the entire longitudinal direction of the weight 540.
[0099] 実施形態 5に係る偏心分銅 520においては、分銅保持凹部 534における開口の幅 Lは、分銅 540における開口の幅方向に平行な最大長さ Lよりも狭く設定されてい In the eccentric weight 520 according to the fifth embodiment, the width L of the opening in the weight holding recess 534 is set narrower than the maximum length L parallel to the width direction of the opening in the weight 540.
2 1 twenty one
る。このため、実施形態 5に係る偏心分銅 520によれば、分銅 540は分銅保持凹部 5 34にさらにしつ力りと保持されることになる。  The For this reason, according to the eccentric weight 520 according to the fifth embodiment, the weight 540 is further held in the weight holding recess 534 with a greater force.
[0100] 〔実施形態 6〕 [Embodiment 6]
図 8は、実施形態 6に係る偏心分銅を説明するために示す図である。図 8 (a)は実 施形態 6に係る偏心分銅を正面から見た図であり、図 8 (b)は偏心分銅を側面力 見 た図である。 [0101] 実施形態 6に係る偏心分銅 620は、図 8に示すように、軸体 630の構造が実施形態 1に係る偏心分銅 120の場合と異なる。すなわち、実施形態 6に係る偏心分銅 620に おいては、軸体 630はモータ軸を保持するモータ軸保持部として、モータ軸を全周 に渡って保持するモータ軸保持穴 132に代えて、モータ軸を三方力も保持するモー タ軸保持凹部 632を有している。モータ軸は、モータ軸保持凹部 632に挿入後、そ の開口部を力しめることにより、軸体 630と接合される。 FIG. 8 is a view for explaining the eccentric weight according to the sixth embodiment. FIG. 8 (a) is a view of the eccentric weight according to Embodiment 6 as viewed from the front, and FIG. 8 (b) is a view of the eccentric weight as viewed from the side. As shown in FIG. 8, the eccentric weight 620 according to the sixth embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the shaft body 630. That is, in the eccentric weight 620 according to the sixth embodiment, the shaft body 630 serves as a motor shaft holding portion that holds the motor shaft, instead of the motor shaft holding hole 132 that holds the motor shaft over the entire circumference. A motor shaft holding recess 632 for holding the shaft also in three-way force is provided. The motor shaft is joined to the shaft body 630 by inserting the motor shaft into the motor shaft holding recess 632 and then applying force to the opening.
[0102] このように、実施形態 6に係る偏心分銅 620は、軸体 630の構造が実施形態 1に係 る偏心分銅 120の場合とは異なる力 分銅 640は全周に渡って軸体 630における分 銅保持穴 634に保持されることになるため、実施形態 1に係る偏心分銅 120の場合と 同様に、振動モータを長時間使用した場合に分銅と軸体との接合の信頼性が低下 することが抑制される。  As described above, the eccentric weight 620 according to the sixth embodiment is different from the case of the eccentric weight 120 according to the first embodiment in the structure of the shaft body 630. The weight weight 640 is provided in the shaft body 630 over the entire circumference. Since the weight is held in the weight holding hole 634, as in the case of the eccentric weight 120 according to the first embodiment, when the vibration motor is used for a long time, the reliability of the connection between the weight and the shaft body decreases. It is suppressed.
[0103] また、実施形態 6に係る偏心分銅 620においては、実施形態 1に係る偏心分銅 120 の場合と同様に、分銅 640を構成する高比重金属よりも比重の低い材料力もなる軸 体 630を備えているため、偏心分銅 620の重心がモータ軸保持凹部 632の中心軸 力もさらに離隔された位置に配置されることになる。このため、偏心分銅 620における 偏心量が大きくなり、このような偏心分銅 620を用いることにより、軽量かつ少ない消 費電力で大きな振動量が得られる振動モータを構成することができるようになる。  Further, in the eccentric weight 620 according to the sixth embodiment, as in the case of the eccentric weight 120 according to the first embodiment, the shaft body 630 having a material force having a specific gravity lower than that of the high specific gravity metal constituting the weight 640 is provided. Thus, the center of gravity of the eccentric weight 620 is arranged at a position further away from the center axial force of the motor shaft holding recess 632. For this reason, the amount of eccentricity in the eccentric weight 620 becomes large, and by using such an eccentric weight 620, a vibration motor that can obtain a large amount of vibration with light weight and low power consumption can be configured.
[0104] なお、「モータ軸保持凹部 632の中心軸」とは、モータ軸保持凹部 632が保持する ことになるモータ軸の中心軸のことである。  It should be noted that “the central axis of the motor shaft holding recess 632” is the central axis of the motor shaft that the motor shaft holding recess 632 holds.
[0105] 〔実施形態 7〕  [Embodiment 7]
図 9は、実施形態 7に係る偏心分銅を説明するために示す図である。図 9 (a)は実 施形態 7に係る偏心分銅を正面から見た図であり、図 9 (b)は偏心分銅を側面力 見 た図である。  FIG. 9 is a view for explaining the eccentric weight according to the seventh embodiment. FIG. 9 (a) is a view of the eccentric weight according to Embodiment 7 as viewed from the front, and FIG. 9 (b) is a view of the eccentric weight as viewed from the side.
[0106] 実施形態 7に係る偏心分銅 720は、図 9 (b)に示すように、軸体 730の構造が実施 形態 1に係る偏心分銅 120の場合と異なる。すなわち、実施形態 7に係る偏心分銅 7 20においては、軸体 730は、軸体 730に対応する形状を有する複数の薄板部材 73 1が積層された構造を有している。  As shown in FIG. 9 (b), the eccentric weight 720 according to the seventh embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the shaft body 730. That is, in the eccentric weight 720 according to the seventh embodiment, the shaft body 730 has a structure in which a plurality of thin plate members 731 having a shape corresponding to the shaft body 730 are stacked.
[0107] このように、実施形態 7に係る偏心分銅 720は、軸体 730の構造が実施形態 1に係 る偏心分銅 120の場合とは異なる力 分銅 740は全周に渡って軸体 730における分 銅保持穴 734に保持されることになるため、実施形態 1に係る偏心分銅 120の場合と 同様に、振動モータを長時間使用した場合に分銅と軸体との接合の信頼性が低下 することが抑制される。 As described above, in the eccentric weight 720 according to the seventh embodiment, the structure of the shaft body 730 is related to the first embodiment. Since the weight 740 is held in the weight holding hole 734 in the shaft body 730 over the entire circumference, as in the case of the eccentric weight 120 according to the first embodiment, When the vibration motor is used for a long time, it is possible to suppress a decrease in the reliability of the connection between the weight and the shaft.
[0108] また、実施形態 7に係る偏心分銅 720においては、実施形態 1に係る偏心分銅 120 の場合と同様に、分銅 740を構成する高比重金属よりも比重の低い材料力もなる軸 体 730を備えているため、偏心分銅 720の重心がモータ軸保持穴 732の中心軸から さらに離隔された位置に配置されることになる。このため、偏心分銅 720における偏 心量が大きくなり、このような偏心分銅 720を用いることにより、軽量かつ少ない消費 電力で大きな振動量が得られる振動モータを構成することができるようになる。  In addition, in the eccentric weight 720 according to the seventh embodiment, as in the case of the eccentric weight 120 according to the first embodiment, the shaft body 730 having a lower specific gravity than the high specific gravity metal constituting the weight 740 is provided. Therefore, the center of gravity of the eccentric weight 720 is arranged at a position further away from the center axis of the motor shaft holding hole 732. For this reason, the amount of eccentricity in the eccentric weight 720 becomes large, and by using such an eccentric weight 720, a vibration motor that can obtain a large amount of vibration with light weight and low power consumption can be configured.
[0109] また、実施形態 7に係る偏心分銅 720においては、軸体 730が軸体 730に対応す る形状を有する複数の薄板部材 731が積層された構造を有して ヽるため、軸体 730 の分銅保持穴 734に分銅 740を配置する際の作業性が良くなり、偏心分銅を製造す る際の製造コストをさらに低いものにすることができる。  Further, in the eccentric weight 720 according to the seventh embodiment, the shaft body 730 has a structure in which a plurality of thin plate members 731 having a shape corresponding to the shaft body 730 are stacked. The workability when the weight 740 is arranged in the weight holding hole 734 of the 730 is improved, and the manufacturing cost when the eccentric weight is manufactured can be further reduced.
[0110] 実施形態 7に係る偏心分銅 720は、例えば以下のような方法で製造することができ る。  [0110] The eccentric weight 720 according to Embodiment 7 can be manufactured, for example, by the following method.
[0111] (1)分銅 740の断面よりも大きな断面を有するタングステン合金の丸棒を準備する。  (1) A tungsten alloy round bar having a cross section larger than that of the weight 740 is prepared.
(2)次に、上記した丸棒の外周を切削して、分銅 740の断面形状に対応する断面形 状を有する棒材を製造する。  (2) Next, the outer periphery of the round bar is cut to produce a bar having a cross-sectional shape corresponding to the cross-sectional shape of the weight 740.
(3)次に、上記した棒材を所定の長さに切断して分銅 740に対応する外形形状を有 する分銅を製造する。  (3) Next, a weight having an outer shape corresponding to the weight 740 is manufactured by cutting the above-described bar material into a predetermined length.
[0112] (4)上記した分銅とは別に、軸体 730に対応する外形形状を有する複数の薄板部材  (4) Apart from the above-described weight, a plurality of thin plate members having an outer shape corresponding to the shaft body 730
(最終的には積層することによって偏心分銅 720における軸体 730になるような薄板 部材) 731を準備しておき、各薄板部材 731における分銅保持穴に、上記した分銅 を挿入した状態 (すなわち、分銅に複数の薄板部材 731を被せた状態)で、外側から 複数の薄板部材 731をカゝしめることにより、積層された積層部材 731に分銅を保持さ せる。  (Thin plate member that finally becomes a shaft body 730 in the eccentric weight 720 by laminating) 731 is prepared, and the weight is inserted into the weight holding hole in each thin plate member 731 (i.e., In a state in which a plurality of thin plate members 731 are put on the weight), the plurality of thin plate members 731 are clamped from the outside to hold the weights in the laminated members 731 stacked.
(5)これにより、分銅 740が全周に渡って軸体 730の分銅保持穴 734に保持された 偏心分銅 720が製造される。 (5) As a result, the weight 740 was held in the weight holding hole 734 of the shaft body 730 over the entire circumference. An eccentric weight 720 is produced.
[0113] 〔実施形態 8〕  [Embodiment 8]
図 10は、実施形態 8に係る偏心分銅を説明するために示す図である。図 10 (a)は 実施形態 8に係る偏心分銅を正面から見た図であり、図 10 (b)は図 10 (a)の C-C断 面図であり、図 10 (c)は実施形態 8に係る偏心分銅の斜視図であり、図 10 (d)は実 施形態 8に係る偏心分銅の、図 10 (c)とは別の角度力も見た斜視図である。  FIG. 10 is a view for explaining the eccentric weight according to the eighth embodiment. Fig. 10 (a) is a front view of the eccentric weight according to Embodiment 8, Fig. 10 (b) is a CC sectional view of Fig. 10 (a), and Fig. 10 (c) is Embodiment 8. FIG. 10 (d) is a perspective view of the eccentric weight according to the eighth embodiment, and also shows an angular force different from that in FIG. 10 (c).
[0114] 実施形態 8に係る偏心分銅 820は、図 10に示すように、分銅 840, 840, 840の数 及び形状 (並びにこれに伴って軸体 830の形状)が実施形態 1に係る偏心分銅 120 の場合と異なる。すなわち、実施形態 8に係る偏心分銅 820においては、分銅 840, 840, 840の数 ίま 3つであり、各分銅 840ίま、軸体 830【こ保持されて!ヽる第 1の円柱 力 なる中央部 842及び軸体 830に保持されて 、な 、2つの第 2の円柱力 なる両 端咅 844力らなって!/ヽる。また、軸体 830ίま、 3つの分銅 840, 840, 840を保持する 分銅保持凹部 834, 834, 834を有している。そして、軸体 830は、軸体 130よりも幾 分小さく設定されている。  [0114] As shown in FIG. 10, the eccentric weight 820 according to the eighth embodiment has the number and shape of the weights 840, 840, 840 (and the shape of the shaft 830 accordingly) as the eccentric weight according to the first embodiment. Different from 120. That is, in the eccentric weight 820 according to the eighth embodiment, the number of weights 840, 840, and 840 is three, and each weight 840, the shaft 830 is held as a first cylindrical force. It is held by the central portion 842 and the shaft body 830, so that it becomes 844 forces at both ends which are two second cylindrical forces! Further, the shaft body 830ί has weight holding recesses 834, 834, 834 for holding three weights 840, 840, 840. The shaft body 830 is set slightly smaller than the shaft body 130.
[0115] このように、実施形態 8に係る偏心分銅 820は、分銅 840, 840, 840の数及び形 状 (並びにこれに伴って軸体 830の形状)が実施形態 1に係る偏心分銅 120の場合 とは異なるが、各分銅 840は半周以上に渡って軸体 830における分銅保持凹部 834 に保持されることになるため、実施形態 1に係る偏心分銅 120の場合と同様に、振動 モータを長時間使用した場合に分銅と軸体との接合の信頼性が低下することが抑制 される。  [0115] As described above, the eccentric weight 820 according to the eighth embodiment has the same number and shape of the weights 840, 840, 840 (and the shape of the shaft body 830) as the eccentric weight 120 according to the first embodiment. Unlike the case, each weight 840 is held in the weight holding recess 834 in the shaft body 830 for more than half a circle, so that the vibration motor is lengthened as in the case of the eccentric weight 120 according to the first embodiment. When used for a long time, it is possible to suppress a decrease in the reliability of the connection between the weight and the shaft.
[0116] また、実施形態 8に係る偏心分銅 820においては、実施形態 1に係る偏心分銅 120 の場合と同様に、各分銅 840を構成する高比重金属よりも比重の低い材料力もなる 軸体 830を備えているため、偏心分銅 820の重心がモータ軸保持穴 832の中心軸 力もさらに離隔された位置に配置されることになる。このため、偏心分銅 820における 偏心量が大きくなり、このような偏心分銅 820を用いることにより、軽量かつ少ない消 費電力で大きな振動量が得られる振動モータを構成することができるようになる。  In addition, in the eccentric weight 820 according to the eighth embodiment, as in the case of the eccentric weight 120 according to the first embodiment, the shaft body 830 also has a material force having a specific gravity lower than that of the high specific gravity metal constituting each weight 840. Therefore, the center of gravity of the eccentric weight 820 is arranged at a position further away from the center axial force of the motor shaft holding hole 832. For this reason, the amount of eccentricity in the eccentric weight 820 increases, and by using such an eccentric weight 820, a vibration motor that can obtain a large amount of vibration with light weight and low power consumption can be configured.
[0117] 実施形態 8に係る偏心分銅 820においては、各分銅保持凹部 834における開口の 幅は、各分銅 840における開口の幅方向に平行な最大長さよりも狭く設定されている 。このため、実施形態 8に係る偏心分銅 820によれば、各分銅 840は各分銅保持凹 部 834にさらにしつ力りと保持されることになる。 [0117] In the eccentric weight 820 according to the eighth embodiment, the width of the opening in each weight holding recess 834 is set to be narrower than the maximum length parallel to the width direction of the opening in each weight 840. . For this reason, according to the eccentric weight 820 according to the eighth embodiment, each weight 840 is further held by each weight holding recess 834.
[0118] また、上述したように、実施形態 8に係る偏心分銅 820においては、軸体 830は、軸 体 130よりも幾分小さく設定されているため、軸体 830におけるモータ軸保持穴 832 の中心軸力 各分銅 840の外周部までの最大距離は、軸体 830におけるモータ軸 保持部 832の中心軸力も軸体 830の外周部までの最大距離よりも大きく設定されて いる。 Further, as described above, in the eccentric weight 820 according to the eighth embodiment, the shaft body 830 is set to be somewhat smaller than the shaft body 130, so that the motor shaft holding hole 832 in the shaft body 830 Central axial force The maximum distance to the outer periphery of each weight 840 is set so that the central axial force of the motor shaft holding portion 832 in the shaft body 830 is also larger than the maximum distance to the outer periphery of the shaft body 830.
[0119] このため、実施形態 8に係る偏心分銅 820によれば、偏心分銅 820の重心が軸体 8 30の重心よりもモータ軸保持穴 832の中心軸からさらに離隔された位置に配置され ることになる。このため、偏心分銅 820における偏心量が大きくなり、このような偏心分 銅 820を用いることにより、軽量かつ少ない消費電力で大きな振動量が得られる振動 モータを構成することができるようになる。  Therefore, according to the eccentric weight 820 according to the eighth embodiment, the center of gravity of the eccentric weight 820 is arranged at a position further away from the center axis of the motor shaft holding hole 832 than the center of gravity of the shaft body 830. It will be. For this reason, the amount of eccentricity in the eccentric weight 820 increases, and by using such an eccentric weight 820, it is possible to configure a vibration motor that can obtain a large amount of vibration with light weight and low power consumption.
[0120] 〔実施形態 9〕  [Embodiment 9]
図 11は、実施形態 9に係る偏心分銅を説明するために示す図である。図 11 (a)は 実施形態 9に係る偏心分銅における、分銅と一体ィ匕する前の軸体を正面力も見た図 であり、図 10 (b)は実施形態 9に係る偏心分銅を正面から見た図である。  FIG. 11 is a view for explaining the eccentric weight according to the ninth embodiment. FIG. 11 (a) is a diagram of the eccentric weight according to the ninth embodiment, in which the shaft before the integral weight is seen is also viewed from the front, and FIG. 10 (b) is the front view of the eccentric weight according to the ninth embodiment. FIG.
[0121] 実施形態 9に係る偏心分銅 920は、図 11に示すように、軸体 930の構造が実施形 態 8に係る偏心分銅 820の場合と異なる。すなわち、実施形態 9に係る偏心分銅 920 においては、軸体 930における 3つの分銅保持凹部 934, 934, 934の間には 2つの 切れ込み 936が形成されて!、る。  As shown in FIG. 11, the eccentric weight 920 according to the ninth embodiment is different from the eccentric weight 820 according to the eighth embodiment in the structure of the shaft body 930. That is, in the eccentric weight 920 according to the ninth embodiment, two notches 936 are formed between the three weight holding recesses 934, 934, 934 in the shaft body 930 !.
[0122] このように、実施形態 9に係る偏心分銅 920は、軸体 930の構造が実施形態 8に係 る偏心分銅 820の場合とは異なる力 各分銅 940は半周以上に渡って軸体 930にお ける分銅保持凹部 934に保持されることになるため、実施形態 8に係る偏心分銅 820 の場合と同様に、振動モータを長時間使用した場合に分銅と軸体との接合の信頼性 が低下することが抑制される。  As described above, the eccentric weight 920 according to the ninth embodiment is different from the case of the eccentric weight 820 according to the eighth embodiment in the structure of the shaft body 930. Each weight 940 has a shaft body 930 over a half circumference. Therefore, when the vibration motor is used for a long time, the reliability of the connection between the weight and the shaft body is improved, as in the case of the eccentric weight 820 according to the eighth embodiment. Decrease is suppressed.
[0123] また、実施形態 9に係る偏心分銅 920においては、実施形態 8に係る偏心分銅 820 の場合と同様に、各分銅 940を構成する高比重金属よりも比重の低い材料力もなる 軸体 930を備えているため、偏心分銅 920の重心がモータ軸保持穴 932の中心軸 力もさらに離隔された位置に配置されることになる。このため、偏心分銅 920における 偏心量が大きくなり、このような偏心分銅 920を用いることにより、軽量かつ少ない消 費電力で大きな振動量が得られる振動モータを構成することができるようになる。 Further, in the eccentric weight 920 according to the ninth embodiment, similarly to the eccentric weight 820 according to the eighth embodiment, the shaft body 930 also has a material force having a specific gravity lower than that of the high specific gravity metal constituting each weight 940. The center of gravity of the eccentric weight 920 is the center axis of the motor shaft holding hole 932. The force will also be located at a further distance. For this reason, the amount of eccentricity in the eccentric weight 920 becomes large, and by using such an eccentric weight 920, a vibration motor that can obtain a large amount of vibration with light weight and low power consumption can be configured.
[0124] また、実施形態 9に係る偏心分銅 920においては、上述したように、軸体 930にお ける 3つの分銅保持凹部 934, 934, 934の間には 2つの切れ込み 936が形成され て ヽるため、 3つの分銅保持四咅 934, 934【こ 3つの分銅 940, 940, 940を酉己 置した後、軸体 930を外側力もかしめることにより、 2つの切れ込み 936, 936がつぶ されることになる。その結果、分銅保持凹部 934, 934, 934における各開口部が小 さくなるため、実施形態 9に係る偏心分銅 920によれば、各分銅 940は各分銅保持 凹部 934にさらにしつ力りと保持されるようになる。  Further, in the eccentric weight 920 according to the ninth embodiment, as described above, two notches 936 are formed between the three weight holding recesses 934, 934, 934 in the shaft body 930. Therefore, after placing the three weights 940, 940, 940, the two notches 936, 936 are crushed by caulking the shaft body 930 with external force. It will be. As a result, each opening in the weight holding recess 934, 934, 934 becomes smaller, so that according to the eccentric weight 920 according to the ninth embodiment, each weight 940 is further held and held in each weight holding recess 934. Will come to be.
[0125] 以上、本発明の偏心分銅及びその製造方法並びに振動モータ及び携帯機器を上 記の各実施形態に基づいて説明したが、本発明は上記の各実施形態に限られるも のではなぐその要旨を逸脱しな 、範囲にぉ 、て種々の態様にぉ 、て実施すること が可能であり、例えば次のような変形も可能である。  [0125] Although the eccentric weight, the manufacturing method thereof, the vibration motor, and the portable device of the present invention have been described based on the above embodiments, the present invention is not limited to each of the above embodiments. Without departing from the gist, the present invention can be carried out in various modes within the scope, and for example, the following modifications are possible.
[0126] (1)上記各実施形態の偏心分銅 120— 920においては、分銅としてタングステン合 金を用いた力 本発明はこれに限られない。例えば、タングステン、ォスミニゥム、ォス ミニゥム合金、金、金合金、イリジウム、イリジウム合金、その他の軸体よりも比重の高 い金属を用いることもできる。  (1) In the eccentric weights 120-920 of the above embodiments, the force using tungsten alloy as the weight is not limited to this. For example, tungsten, osmium, osmium alloy, gold, gold alloy, iridium, iridium alloy, and other metals having higher specific gravity than the shaft body can be used.
[0127] (2)上記各実施形態の偏心分銅 120— 920においては、分銅として、丸棒からなる 焼結体を削りだして分銅の断面形状と同じ断面形状に加工した切削体を短く切断し たものを用いたが、本発明はこれに限られない。例えば、分銅として、分銅の形状に 焼結した焼結体や、分銅の断面形状 (例えば、円、長円、扇形など。)と同じ断面形 状を有する異形棒力 なる焼結体を短く切断したものを用いることができる。また、分 銅の断面形状が円である場合には、例えば、丸棒力もなる焼結体をそのまま短く切 断したものを用いることができる。  (2) In the eccentric weight 120-920 of each of the above embodiments, a sintered body made of a round bar is cut as a weight, and the cut body processed into the same cross-sectional shape as the weight is cut short. However, the present invention is not limited to this. For example, as a weight, a sintered body sintered in the shape of a weight, or a sintered body with a deformed bar force that has the same cross-sectional shape as a weight (for example, a circle, an ellipse, a fan, etc.) is cut short. Can be used. In addition, when the cross-sectional shape of the weight is a circle, for example, a sintered body having a round bar force can be used as it is cut short.
[0128] (3)実施形態 1に係る偏心分銅の製造方法は、分銅 140を軸体 130の分銅保持穴 1 34の所定位置に挿入した状態で、軸体 130を力しめる工程を含む製造方法である 力 本発明はこれに限られない。例えば、分銅 140を軸体 130における分銅保持穴 1 34に締めしろをもって圧入する工程を含む製造方法であってもよい、また、軸体 130 の温度が分銅 140の温度よりも高くした状態で、分銅 140を軸体 130における分銅 保持穴 134に挿入する工程を含む製造方法であってもよい。また、分銅 140と軸体 1 30とを、ロウ付け、接着又は溶着によって接合する工程を含む製造方法であってもよ い。また、分銅 140の一部又は全部を所定の型に入れた状態で、型の中に軸体 130 の材料を铸込む工程を含む製造方法であってもよい。また、上記した工程を併用し た製造方法であってもよい。例えば、力しめ後に接着を行う工程を含む製造方法、口 ゥ付け後に接着を行う工程を含む製造方法、カゝしめ後にスポット溶接を行う工程を含 む製造方法、スポット溶接後にロウ付け等を施す工程を含む製造方法等も可能であ る。 (3) The manufacturing method of the eccentric weight according to Embodiment 1 includes the step of pressing the shaft body 130 in a state where the weight 140 is inserted into the weight holding hole 1 34 of the shaft body 130 at a predetermined position. The present invention is not limited to this. For example, weight 140 is used to hold weight 140 in shaft body 1 The manufacturing method may include a step of press-fitting to 34 with a margin, and the weight 140 is inserted into the weight holding hole 134 in the shaft body 130 while the temperature of the shaft body 130 is higher than the temperature of the weight 140. The manufacturing method including the process to do may be sufficient. Further, the manufacturing method may include a step of joining the weight 140 and the shaft body 130 by brazing, bonding, or welding. Further, the manufacturing method may include a step of inserting the material of the shaft body 130 into the mold in a state where a part or all of the weight 140 is placed in a predetermined mold. Moreover, the manufacturing method which used the above-mentioned process together may be used. For example, a manufacturing method including a step of bonding after crimping, a manufacturing method including a step of bonding after cuffing, a manufacturing method including a step of spot welding after crimping, brazing after spot welding, etc. A manufacturing method including a process is also possible.
(4)本発明の振動モータは、携帯電話、 PDAなどの携帯機器に好適に用いられるほ 力 ゲーム機のリモコン、パチンコの操作部、電動歯ブラシなどにも好適に用いること ができる。 (4) The vibration motor of the present invention can also be suitably used for a remote control of a game machine, a pachinko operation unit, an electric toothbrush and the like suitably used for portable devices such as mobile phones and PDAs.

Claims

請求の範囲 The scope of the claims
[1] 高比重金属力 なる分銅と、  [1] High specific gravity metal weight,
前記分銅を保持するための分銅保持穴及びモータ軸を保持するためのモータ軸 保持部を有し、前記分銅を構成する高比重金属よりも比重の低 、材料カゝらなる軸体 とを備え、  A shaft having a weight holding hole for holding the weight and a motor shaft holding portion for holding the motor shaft, and having a specific gravity lower than that of the high specific gravity metal constituting the weight. ,
前記分銅は全周に渡って前記分銅保持穴に保持されていることを特徴とする偏心 分銅。  The eccentric weight is characterized in that the weight is held in the weight holding hole over the entire circumference.
[2] 高比重金属力 なる分銅と、  [2] A high specific gravity metal weight,
前記分銅を保持するための分銅保持凹部及びモータ軸を保持するためのモータ 軸保持部を有し、前記分銅を構成する高比重金属よりも比重の低 ヽ材料からなる軸 体とを備え、  A weight holding concave portion for holding the weight and a motor shaft holding portion for holding the motor shaft, and a shaft body made of a low specific gravity material rather than a high specific gravity metal constituting the weight,
前記分銅は半周以上に渡って前記分銅保持凹部に保持されていることを特徴とす る偏心分銅。  The eccentric weight is characterized in that the weight is held in the weight holding recess for more than half a circumference.
[3] 請求項 2に記載の偏心分銅において、 [3] In the eccentric weight according to claim 2,
前記分銅保持凹部における開口の幅は、前記分銅における前記開口の幅方向に 平行な最大長さよりも狭いことを特徴とする偏心分銅。  An eccentric weight, wherein the width of the opening in the weight holding recess is narrower than the maximum length parallel to the width direction of the opening in the weight.
[4] 請求項 2又は 3に記載の偏心分銅において、前記軸体におけるモータ軸保持部の 中心軸力も前記分銅の外周部までの最大距離は、前記軸体におけるモータ軸保持 部の中心軸力 前記軸体の外周部までの最大距離よりも大きいことを特徴とする偏 心分銅。 [4] The eccentric weight according to claim 2 or 3, wherein the central axial force of the motor shaft holding portion in the shaft body and the maximum distance to the outer peripheral portion of the weight are the central axial force of the motor shaft holding portion in the shaft body. An eccentric weight characterized by being larger than the maximum distance to the outer periphery of the shaft body.
[5] 請求項 1一 4のいずれかに記載の偏心分銅において、  [5] The eccentric weight according to any one of claims 1 to 4,
前記分銅を構成する高比重金属よりも比重の低 ヽ材料は、金属であることを特徴と する偏心分銅。  An eccentric weight, characterized in that the material having a lower specific gravity than the high specific gravity metal constituting the weight is a metal.
[6] 請求項 1一 5のいずれかに記載の偏心分銅において、  [6] The eccentric weight according to any one of claims 1 to 5,
前記分銅を構成する高比重金属よりも比重の低 、材料は、ステンレス鋼であること を特徴とする偏心分銅。  An eccentric weight characterized by having a specific gravity lower than that of the high specific gravity metal constituting the weight and made of stainless steel.
[7] 請求項 1一 6のいずれかに記載の偏心分銅において、 [7] In the eccentric weight according to any one of claims 1 to 6,
前記分銅は、タングステン、タングステン合金、ォスミニゥム、ォスミニゥム合金、金、 金合金、イリジウム又はイリジウム合金カゝらなることを特徴とする偏心分銅。 The weights are tungsten, tungsten alloy, osmium, osmium alloy, gold, An eccentric weight made of gold alloy, iridium or iridium alloy.
[8] 請求項 1一 7のいずれかに記載の偏心分銅において、  [8] In the eccentric weight according to any one of claims 1 to 7,
前記分銅は、前記モータ軸保持部の中心軸にを含む所定の第 1平面を対称面とす る面対称の形状を有することを特徴とする偏心分銅。  2. The eccentric weight according to claim 1, wherein the weight has a plane-symmetric shape with a predetermined first plane including the central axis of the motor shaft holding portion as a plane of symmetry.
[9] 請求項 8に記載の偏心分銅において、 [9] The eccentric weight according to claim 8,
前記分銅は、前記第 1平面に直交する所定の第 2平面を対称面とする面対称の形 状を有することを特徴とする偏心分銅。  The eccentric weight is characterized in that it has a plane-symmetric shape with a predetermined second plane orthogonal to the first plane as a plane of symmetry.
[10] 請求項 1一 9のいずれかに記載の偏心分銅において、 [10] The eccentric weight according to any one of claims 1 to 9,
前記軸体は、前記軸体に対応する形状を有する複数の薄板部材が積層された構 造を有することを特徴とする偏心分銅。  The eccentric weight is characterized in that the shaft body has a structure in which a plurality of thin plate members having a shape corresponding to the shaft body are laminated.
[11] 請求項 1一 10のいずれかに記載の偏心分銅を製造するための偏心分銅の製造方 法であって、 [11] A method for manufacturing an eccentric weight for manufacturing an eccentric weight according to any one of claims 1 to 10, comprising:
前記分銅を前記軸体における前記分銅保持穴又は前記分銅保持凹部に挿入した 状態で、前記軸体をかしめる工程を含むことを特徴とする偏心分銅の製造方法。  The manufacturing method of the eccentric weight characterized by including the process which crimps the said shaft body in the state which inserted the said weight in the said weight holding hole or the said weight holding recessed part in the said shaft body.
[12] 請求項 1一 10のいずれかに記載の偏心分銅を製造するための偏心分銅の製造方 法であって、 [12] A method of manufacturing an eccentric weight for manufacturing an eccentric weight according to any one of claims 1 to 10,
前記分銅を前記軸体における前記分銅保持穴又は前記分銅保持凹部に締めしろ をもって圧入する工程を含むことを特徴とする偏心分銅の製造方法。  The manufacturing method of the eccentric weight characterized by including the process which press-fits the said weight in the said weight holding hole or the said weight holding recessed part in the said shaft body with a margin.
[13] 請求項 1一 10のいずれかに記載の偏心分銅を製造するための偏心分銅の製造方 法であって、 [13] A method for producing an eccentric weight for producing an eccentric weight according to any one of claims 1 to 10, comprising:
前記軸体の温度が前記分銅の温度よりも高くした状態で、前記分銅を前記軸体に おける前記分銅保持穴又は前記分銅保持凹部に挿入する工程を含むことを特徴と する偏心分銅の製造方法。  A method for producing an eccentric weight, comprising the step of inserting the weight into the weight holding hole or the weight holding recess in the shaft in a state where the temperature of the shaft is higher than the temperature of the weight. .
[14] 請求項 1一 10のいずれかに記載の偏心分銅を製造するための偏心分銅の製造方 法であって、 [14] A method for producing an eccentric weight for producing an eccentric weight according to any one of claims 1 to 10, comprising:
前記分銅と前記軸体とを接合する工程を含むことを特徴とする偏心分銅の製造方 法。  The manufacturing method of the eccentric weight characterized by including the process of joining the said weight and the said shaft.
[15] 請求項 1一 9のいずれかに記載の偏心分銅を製造するための偏心分銅の製造方 法であって、 [15] A method for producing an eccentric weight for producing the eccentric weight according to any one of claims 1 to 9. Law,
前記分銅の一部又は全部を所定の型に入れた状態で、前記型の中に前記軸体の 材料を铸込む工程を含むことを特徴とする偏心分銅の製造方法。  A method for producing an eccentric weight, comprising a step of inserting a material of the shaft into the mold in a state where a part or all of the weight is put in a predetermined mold.
[16] モータ本体と、請求項 1一 10のいずれかに記載の偏心分銅とを備えたことを特徴と する振動モータ。  [16] A vibration motor comprising the motor main body and the eccentric weight according to any one of claims 1 to 10.
[17] 請求項 16に記載の振動モータを備えたことを特徴とする携帯機器。  17. A portable device comprising the vibration motor according to claim 16.
PCT/JP2004/012291 2004-08-26 2004-08-26 Eccentric weight, method of producing the same, vibration motor, and portable apparatus WO2006022010A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2004/012291 WO2006022010A1 (en) 2004-08-26 2004-08-26 Eccentric weight, method of producing the same, vibration motor, and portable apparatus
PCT/JP2005/015483 WO2006022354A1 (en) 2004-08-26 2005-08-25 Eccentric weight and method of producing the weight, vibrating motor and method of producing the motor, and portable apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/012291 WO2006022010A1 (en) 2004-08-26 2004-08-26 Eccentric weight, method of producing the same, vibration motor, and portable apparatus

Publications (1)

Publication Number Publication Date
WO2006022010A1 true WO2006022010A1 (en) 2006-03-02

Family

ID=35967233

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2004/012291 WO2006022010A1 (en) 2004-08-26 2004-08-26 Eccentric weight, method of producing the same, vibration motor, and portable apparatus
PCT/JP2005/015483 WO2006022354A1 (en) 2004-08-26 2005-08-25 Eccentric weight and method of producing the weight, vibrating motor and method of producing the motor, and portable apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015483 WO2006022354A1 (en) 2004-08-26 2005-08-25 Eccentric weight and method of producing the weight, vibrating motor and method of producing the motor, and portable apparatus

Country Status (1)

Country Link
WO (2) WO2006022010A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5106227B2 (en) * 2008-04-24 2012-12-26 ミネベアモータ株式会社 Weight for vibration motor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414454U (en) * 1990-05-18 1992-02-05
JPH06188812A (en) * 1992-12-17 1994-07-08 Sayama Seimitsu Kogyo Kk Vibration generating part for vibrator
JPH06188811A (en) * 1992-12-17 1994-07-08 Sayama Seimitsu Kogyo Kk Vibration generating part for motor for pager
JPH07288946A (en) * 1994-04-13 1995-10-31 Optec Dai Ichi Denko Co Ltd Rotary vibrator and its mounting method
JPH08251862A (en) * 1995-03-07 1996-09-27 Takashi Nosaka Flywheel device, and its motor, and its generator
JPH09182363A (en) * 1995-12-22 1997-07-11 Kesamori Ide Eccentric weight for vibration
JP3053482U (en) * 1998-04-23 1998-10-27 サンエイ工業株式会社 Floor soil hopper for nursery floor soil feeder
JPH11127553A (en) * 1997-10-22 1999-05-11 Mitsumi Electric Co Ltd Rotor for oscillation generating motor
JP2000132905A (en) * 1998-10-26 2000-05-12 Sankyo Seiki Mfg Co Ltd Rotary body driver
JP2003245608A (en) * 2002-02-25 2003-09-02 Namiki Precision Jewel Co Ltd Counterweight for vibration motor and vibration motor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414454U (en) * 1990-05-18 1992-02-05
JPH06188812A (en) * 1992-12-17 1994-07-08 Sayama Seimitsu Kogyo Kk Vibration generating part for vibrator
JPH06188811A (en) * 1992-12-17 1994-07-08 Sayama Seimitsu Kogyo Kk Vibration generating part for motor for pager
JPH07288946A (en) * 1994-04-13 1995-10-31 Optec Dai Ichi Denko Co Ltd Rotary vibrator and its mounting method
JPH08251862A (en) * 1995-03-07 1996-09-27 Takashi Nosaka Flywheel device, and its motor, and its generator
JPH09182363A (en) * 1995-12-22 1997-07-11 Kesamori Ide Eccentric weight for vibration
JPH11127553A (en) * 1997-10-22 1999-05-11 Mitsumi Electric Co Ltd Rotor for oscillation generating motor
JP3053482U (en) * 1998-04-23 1998-10-27 サンエイ工業株式会社 Floor soil hopper for nursery floor soil feeder
JP2000132905A (en) * 1998-10-26 2000-05-12 Sankyo Seiki Mfg Co Ltd Rotary body driver
JP2003245608A (en) * 2002-02-25 2003-09-02 Namiki Precision Jewel Co Ltd Counterweight for vibration motor and vibration motor

Also Published As

Publication number Publication date
WO2006022354A1 (en) 2006-03-02

Similar Documents

Publication Publication Date Title
US8456055B2 (en) Core block, and magnetic pole core using core blocks for motor
US9935529B2 (en) Method for manufacturing laminated core for motor
JP2008268065A (en) Resolver
JP2012089254A (en) Conductive coupling member, method of manufacturing the same, and battery using conductive coupling member as electrode
JPWO2006132171A1 (en) Rotating electrical machine armature and manufacturing method thereof
CN107127531B (en) Method for manufacturing impeller
JP5212129B2 (en) Manufacturing method of laminated core and manufacturing jig thereof
JP3975987B2 (en) Method for manufacturing an armature of a rotating electric machine and armature manufactured by the manufacturing method
WO2006022010A1 (en) Eccentric weight, method of producing the same, vibration motor, and portable apparatus
US6707193B2 (en) Miniature motor with vibrator secured to an irregular portion of the motor shaft
JP6591911B2 (en) Parts for semiconductor manufacturing equipment
JP3958981B2 (en) Weight for vibration motor and vibration motor
JP5287304B2 (en) Rotating electric machine
JP4180588B2 (en) Vibration motor with internal weight and its manufacturing method
WO2006040808A1 (en) Eccentric weight, method for producing the same, vibration motor and portable apparatus
JP2004500799A (en) Method of forming an annular stack of sheet metal for a stator of a linear motor and an annular stack of sheet metal
JP2008118808A (en) Stator structure of resolver
JP2008278597A (en) Rotor core
JP5146077B2 (en) Motor and manufacturing method thereof
JP2011072054A (en) Motor
WO2006049144A1 (en) Eccentric weight, vibration motor, portable apparatus and method for producing eccentric weight
WO2006109365A1 (en) Eccentric weight, vibrating motor, mobile device, and method of manufacturing eccentric weight
JP4884875B2 (en) motor
JP2007037346A (en) Motor
CN110048563A (en) Holding meanss, keeping method and the insertion method of wave-wound coil

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP