WO2006040808A1 - Eccentric weight, method for producing the same, vibration motor and portable apparatus - Google Patents

Eccentric weight, method for producing the same, vibration motor and portable apparatus Download PDF

Info

Publication number
WO2006040808A1
WO2006040808A1 PCT/JP2004/014972 JP2004014972W WO2006040808A1 WO 2006040808 A1 WO2006040808 A1 WO 2006040808A1 JP 2004014972 W JP2004014972 W JP 2004014972W WO 2006040808 A1 WO2006040808 A1 WO 2006040808A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
eccentric weight
eccentric
motor shaft
holding portion
Prior art date
Application number
PCT/JP2004/014972
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichi Shimodaira
Takaomi Tanaka
Yoshito Hirata
Hidehiko Ichikawa
Akira Shimojima
Hikaru Yoshizawa
Kenichi Kusano
Original Assignee
Nanshin Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanshin Co., Ltd. filed Critical Nanshin Co., Ltd.
Priority to PCT/JP2004/014972 priority Critical patent/WO2006040808A1/en
Priority to PCT/JP2005/018666 priority patent/WO2006041045A1/en
Publication of WO2006040808A1 publication Critical patent/WO2006040808A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/10Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy
    • B06B1/16Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving rotary unbalanced masses

Definitions

  • the present invention relates to an eccentric weight, a manufacturing method thereof, a vibration motor, and a portable device.
  • FIG. 21 is a diagram for explaining a conventional vibration motor and an eccentric weight.
  • Fig. 21 (a) is a perspective view of a vibration motor
  • Fig. 21 (b) is a cross-sectional view of an eccentric weight cut along a plane perpendicular to the motor axis
  • Fig. 21 (c) is an eccentric weight along the motor axis.
  • a conventional vibration motor 1800 includes a small cylindrical motor body 1810 and an eccentric weight 1820 having a substantially fan shape and having a force such as a sintered body of tungsten.
  • the motor shaft 1812 of the motor body 1810 is generally held in the motor shaft holding hole 1822 of the eccentric weight 1820.
  • Eccentric weight 1820 is attached to the tip of motor shaft 1812 by crimping by deforming motor shaft holding hole 1822 by applying an external force to the motor shaft holding hole 1822 through which the motor shaft 1812 is inserted. (For example, see Patent Document 1).
  • FIG. 22 is a view for explaining another conventional eccentric weight.
  • Fig. 22 (a) is a front view
  • Fig. 22 (b) is a cross-sectional view along the line A-A in Fig. 22 (a)
  • Fig. 22 (c) is a front view of the component
  • Fig. 22 (d) Is a sectional view taken along the line BB in FIG. 22 (c).
  • a part of the motor body 1910 is also shown.
  • Another conventional eccentric weight 1920 has a motor shaft 1 of a motor body 1910 as shown in FIG.
  • a cylindrical weight support 1930 having a motor shaft holding hole 1932 for holding 912 and having a low specific gravity metal force
  • a substantially half-pipe weight 1940 having a high specific gravity metal force (for example, a patent) (Refer to Reference 1.)
  • the weight 1940 also has a high specific gravity metal force, so the center of gravity of the eccentric weight 1920 is arranged at a position where the center axial force of the motor shaft holding hole 1932 is also separated.
  • the eccentric amount of the eccentric weight 1920 increases, and by using such other conventional eccentric weight 1920, a vibration motor that can obtain a required vibration amount with light weight and low power consumption can be configured.
  • Patent Document 1 JP 2001-129479 A
  • the weight 1940 is integrally bonded and fixed to a part of the outer surface 1934 of the weight support 1930 via the brazing portion 1950.
  • an object of the present invention is to provide an eccentric weight and a method of manufacturing the same, in which the reliability of the connection between the weight and the weight support is suppressed even when such a vibration motor is used for a long time. It is another object of the present invention to provide a vibration motor and a portable device having such an excellent eccentric weight.
  • the eccentric weight of the present invention includes a weight having a high specific gravity metal force, a weight holding portion for holding the weight over a half circumference, a motor shaft holding portion for holding a motor shaft, and the weight
  • the eccentric weight of the present invention includes a weight having a high specific gravity metal force, a weight holding portion for holding the weight over a half circumference, a motor shaft holding portion for holding a motor shaft, and the weight
  • An eccentric weight having a holding portion and a connecting portion for connecting the motor shaft holding portion, and comprising a weight support made of a metal having a specific gravity lower than that of the high specific gravity metal constituting the weight, the connecting portion Has a shape that forms a single connecting rod when viewed from the direction along the motor shaft.
  • the eccentric weight has a specific gravity lower than that of the high specific gravity metal and the high specific gravity metal constituting the weight. Since the eccentric weight is provided with a weight support made of metal, the total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
  • the vibration motor (and the eccentric weight)
  • copper is used for a long time, it is possible to suppress a decrease in the reliability of bonding between the weight and the weight support. Therefore, by using such an eccentric weight, a vibration motor with high long-term reliability can be configured.
  • the eccentric weight is provided.
  • the total weight of the weight can be reduced and the amount of eccentricity in the eccentric weight can be further increased. For this reason, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
  • the connecting portion that connects the weight holding portion and the motor shaft holding portion is a single connecting rod when viewed from the direction along the motor shaft. Since it has such a shape, the total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be further increased. For this reason, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with a lighter weight and less power consumption. [0015] In the eccentric weight described in (1) above, the larger the thickness of the thin region and the Z or hole in the connecting portion, the lighter the total weight of the eccentric weight, and There is a benefit that the amount of eccentricity can be increased.
  • the eccentric weight of the present invention it is preferable to weigh these advantages and disadvantages to determine the thin region and z or hole size in the connection portion.
  • the total weight of the eccentric weight is reduced and the eccentric weight is reduced as the width of the connecting portion as viewed from the direction along the motor shaft is reduced.
  • the benefit is that the amount of eccentricity can be increased.
  • the width of the connecting portion is made too thin, the mechanical strength of the connecting portion is lowered, resulting in a disadvantage that the reliability of the eccentric weight is impaired. Therefore, in the eccentric weight of the present invention, it is preferable to determine the width of the connecting portion as viewed from the direction along the motor shaft by weighing these advantages and disadvantages.
  • the eccentric weight of the present invention includes a weight having a high specific gravity metal force, a weight holding part for holding the weight over a half circumference, a motor shaft holding part for holding a motor shaft, and the weight.
  • a weight support body having a structure in which a plurality of thin plate members made of a metal having a specific gravity lower than that of the high specific gravity metal constituting the weight are stacked, the connecting portion connecting the holding portion and the motor shaft holding portion;
  • the connecting portion of the thin plate member includes a thin region having a thickness smaller than a length along the motor shaft in the motor shaft holding portion and Z or the motor shaft. It is characterized by having holes that open on both sides.
  • the eccentric weight of the present invention includes a weight having a high specific gravity metal force, a weight holding part for holding the weight over a half circumference, a motor shaft holding part for holding a motor shaft, and the weight
  • a weight support body having a structure in which a plurality of thin plate members made of a metal having a specific gravity lower than that of the high specific gravity metal constituting the weight are stacked, the connecting portion connecting the holding portion and the motor shaft holding portion;
  • Each connecting portion of the thin plate member has a shape that forms a single connecting rod when viewed from the direction along the motor shaft. It is a sign.
  • the eccentric weight has a specific gravity lower than that of the high specific gravity metal and the high specific gravity metal constituting the weight. Since the eccentric weight includes a weight support body having a structure in which a plurality of thin plate members made of metal are laminated, the total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be increased. . Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
  • the eccentric weight described in the above (3) since the predetermined thin area and Z or the predetermined hole are provided in the connecting portion of each thin plate member, the total weight of the eccentric weight is further reduced. At the same time, the amount of eccentricity in the eccentric weight can be further increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter weight and less power consumption.
  • the connecting portion of each thin plate member is shaped so as to be a single connecting rod when viewed from the direction along the motor shaft.
  • the total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be further increased. For this reason, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
  • the advantage that the amount of eccentricity in can be increased is obtained.
  • the thickness of the thin area and Z or hole in each connecting part is made too large, the mechanical strength of the connecting part will decrease and the reliability of the eccentric weight may be impaired. It becomes. Therefore, in the eccentric weight of the present invention, these benefits and disadvantages are weighed, It is preferred to determine the thin area and z or hole size at each connection.
  • the total weight of the eccentric weight is reduced as the width of each connecting portion as viewed from the direction along the motor shaft is reduced.
  • the advantage that the amount of eccentricity in can be increased is obtained.
  • the width of each connecting portion is made too narrow, the mechanical strength of the connecting portion is lowered, and the disadvantage of deteriorating the reliability of the eccentric weight is caused. Therefore, in the eccentric weight of the present invention, it is preferable to determine the width of each connecting portion in view of the directional force along the motor shaft by weighing these advantages and disadvantages.
  • the motor shaft holding portion is a motor shaft holding portion that can hold the motor shaft over the entire circumference.
  • the opening force provided on the one side can also hold the motor shaft by, for example, three-way force by caulking and joining the opening after inserting the motor shaft. It may be.
  • the thin region has a thickness of 50% or less of a length along the motor shaft in the motor shaft holding portion. It is preferable to have
  • the weight of the connecting portion can be sufficiently reduced, so that the total weight of the eccentric weight is further reduced and the amount of eccentricity in the eccentric weight is further increased. Will be able to. For this reason, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and even less power consumption.
  • the thin region preferably has a rib.
  • the mechanical strength of the connecting portion can be increased.
  • a highly reliable vibration motor can be configured.
  • the mechanical strength of the connecting portion can be increased, it is possible to further reduce the weight of the connecting portion by enlarging the thin area or hole in the connecting portion. For this reason, the total weight of the eccentric weight can be further reduced, and the eccentric amount of the eccentric weight can be further increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with a lighter and less power consumption.
  • the thickness of the weight holding portion in the outer peripheral portion that holds the weight on the outer peripheral side of the eccentric weight (of the motor shaft) is preferably 0.4 mm or less.
  • the weight can be arranged on the outer peripheral portion as much as possible, and the weight can be made as large as possible. For this reason, the amount of eccentricity in the eccentric weight can be further increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with less power consumption.
  • the thickness of the weight holding portion in the outer peripheral portion is more preferably 0.3 mm or less, and further preferably 0.2 mm or less.
  • the thickness of the motor shaft holding portion is: It is preferable to be 4mm or less.
  • the total weight of the eccentric weight can be further reduced, and the amount of eccentricity in the eccentric weight can be further increased. For this reason, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
  • the thickness of the motor shaft holding portion is more preferably 0.3 mm or less, and even more preferably 0.2 mm or less.
  • the eccentric weight described in (1) or (3) can be manufactured by a relatively simple method.
  • the cutting method is preferably performed using an end mill, for example. Good.
  • the weight support or the thin plate member is manufactured by a metal powder injection molding method. ,.
  • the eccentric weight described in any one of (1) and (8) can be manufactured by a relatively simple method.
  • the thickness of the weight holding part and motor shaft holding part can be made thinner than that produced by the cutting method.
  • a motor can be configured.
  • the effect that the freedom degree of the weight support body and weight in an eccentric weight can be increased is also acquired.
  • the weight support or the thin plate member is preferably manufactured by a press drawing method. .
  • the eccentric weight described in any one of (1) and (8) above can be manufactured by a relatively simple method.
  • the thickness of the weight holding part and the motor shaft holding part can be made thinner than that produced by the metal fine powder injection molding method, so the required amount of vibration can be reduced with lighter weight and even less power consumption.
  • the resulting vibration motor can be configured.
  • the weight is held by the weight holding portion in the weight support over the entire circumference. For this reason, when the vibration motor is used for a long time, it is further suppressed that the reliability of the connection between the weight and the weight support is lowered.
  • the “entire circumference” means the entire outer circumference of the weight in a plane perpendicular to the longitudinal direction of the weight.
  • the specific gravity is lower than the high specific gravity metal constituting the weight, and the metal is preferably stainless steel. ,.
  • non-magnetic stainless steel can be preferably used in order to reduce the influence on the motor.
  • the weight is selected from the group consisting of tandasten, tungsten alloy, osmium, osmium alloy, gold, gold alloy, iridium or iridium alloy. I prefer to be.
  • tungsten, tungsten alloy, osmium, osmium alloy, gold, gold alloy, iridium or iridium alloy has an extremely high specific gravity, and therefore the amount of eccentricity in the eccentric weight can be further increased. . Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with less power consumption.
  • the weight since the weight does not need a function for holding the motor shaft, the weight has a very simple shape (for example, a cross-section such as a circle, an ellipse, or a sector). Can be adopted.
  • a weight a sintered body sintered in the shape of a weight, or a sintered body with a deformed bar force having the same cross-sectional shape as a weight (for example, a circle, an ellipse, a fan shape, etc.) is cut short.
  • a cut body obtained by cutting a sintered body made of a round bar and cutting it into the same cross-sectional shape as that of the weight.
  • a sintered body that also has a round bar force can be used as it is cut short.
  • the weight is a plane having a predetermined first plane including the central axis of the motor shaft holding portion as a symmetry plane. It preferably has a symmetrical shape.
  • the weight can be inserted into any of the end side force weight holding portions, so the degree of freedom when placing the weight in the weight holding portion is increased, and workability is improved. Will improve. For this reason, the manufacturing cost at the time of manufacturing an eccentric weight can be made low.
  • the central axis of the motor shaft holding portion is an axis on which the central axis of the motor shaft is located when the motor shaft holding portion holds the motor shaft. That is.
  • the eccentric weight of the present invention has a weight inserted into a weight holding portion in a weight support.
  • It can be manufactured by caulking a weight support.
  • the eccentric weight of the present invention can also be manufactured by pressing the weight with a weight holding portion on the weight support in the weight support.
  • the eccentric weight of the present invention is a state where the temperature of the weight support is higher than the temperature of the weight.
  • It can also be manufactured by inserting a weight into a weight holding part in the weight support.
  • the eccentric weight of the present invention can also be produced by joining a weight and a weight support.
  • the joining can be performed by bonding the weight and the weight support, or by brazing the weight and the weight support, or the weight and the weight support can be joined together. It can also be performed by welding.
  • the eccentric weight of the present invention can be used in combination with the above-described method. For example, it can be manufactured by applying adhesive after crimping, applying adhesive after brazing, spot welding after crimping, or brazing after spot welding, etc. .
  • the weight is held in the weight holding portion over a half circumference, so that the weight is firmly held on the weight support. For this reason, when the vibration motor is used for a long time, the reliability of the connection between the weight and the weight support decreases.
  • a vibration motor according to the present invention includes a motor body and the eccentric weight according to any one of (1) and (15) above.
  • an eccentric weight that can be suitably used for a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
  • This is equipped with an excellent eccentric weight that suppresses the decrease in reliability of the connection between the weight and the weight support when the vibration motor is used for a long time. A large amount of vibration can be obtained, and long-term reliability is achieved, resulting in a vibration motor.
  • a portable device of the present invention includes the vibration motor according to (16).
  • the portable device of the present invention a necessary amount of vibration can be obtained with light weight and low power consumption, and since a vibration motor with high reliability for a long time is provided, light weight and low power consumption are required. A large amount of vibration can be obtained, long-term reliability is high, and it becomes a portable device.
  • FIG. 1 is a view for explaining an eccentric weight according to a first embodiment.
  • FIG. 2 is a view for explaining the vibration motor according to the first embodiment.
  • FIG. 3 is a view for explaining an eccentric weight according to the second embodiment.
  • FIG. 4 is a view for explaining an eccentric weight according to a third embodiment.
  • FIG. 5 is a view for explaining an eccentric weight according to a fourth embodiment.
  • FIG. 6 is a view for explaining an eccentric weight according to the fifth embodiment.
  • FIG. 7 is a view for explaining an eccentric weight according to the sixth embodiment.
  • FIG. 8 is a view for explaining an eccentric weight according to the seventh embodiment.
  • FIG. 9 is a view for explaining an eccentric weight according to an eighth embodiment.
  • FIG. 10 is a view for explaining an eccentric weight according to the ninth embodiment.
  • FIG. 11 is a view for explaining a manufacturing method for manufacturing the eccentric weight according to the ninth embodiment.
  • FIG. 12 is a view for explaining an eccentric weight according to the tenth embodiment.
  • FIG. 13 is a view for explaining an eccentric weight according to the eleventh embodiment.
  • FIG. 14 is a view for explaining an eccentric weight according to the twelfth embodiment.
  • FIG. 15 is a view for explaining an eccentric weight according to the thirteenth embodiment.
  • FIG. 16 is a view for explaining an eccentric weight according to the fourteenth embodiment.
  • FIG. 17 is a view for explaining an eccentric weight according to the fifteenth embodiment.
  • FIG. 18 is a view for explaining an eccentric weight according to the sixteenth embodiment.
  • FIG. 19 is a view for explaining an eccentric weight according to the seventeenth embodiment.
  • FIG. 20 is a view for explaining the vibration motor using the eccentric weight according to the seventeenth embodiment.
  • FIG. 21 is a view for explaining a conventional vibration motor and an eccentric weight.
  • FIG. 22 is a view for explaining another conventional eccentric weight.
  • FIG. 1 is a view for explaining an eccentric weight according to the first embodiment.
  • Fig. 1 (a) is a front view of the eccentric weight according to Embodiment 1
  • Fig. 1 (b) is a schematic view of the eccentric weight according to Embodiment 1 as viewed from the front.
  • FIG. 1 (d) is a cross-sectional view taken along the line B-B in FIG. 1 (a)
  • FIG. 1 (e) is a cross-sectional view of the eccentric weight according to the first embodiment.
  • FIG. 1 (f) is a perspective view of the eccentric weight according to Embodiment 1 as seen from the rear side force in FIG. 1 (e).
  • the eccentric weight 120 has a substantially fan-shaped cross section. Copper 140 and weight support 130 are provided. Weight 140 also has high specific gravity metal power. The weight support body 130 also has a metal force having a specific gravity lower than that of the high specific gravity metal constituting the weight 140.
  • the weight support body 130 includes a weight holding portion 134 for holding the weight 140 over the entire circumference and a motor shaft holding portion 132 for holding the motor shaft 11 2 (see FIG. 2), the weight holding portion 134 and the motor. It has a connecting part 136 (the part shaded in FIG. 1 (b)) for connecting the shaft holding part 132.
  • the connecting part 136 is located between the weight holding part 134 and the motor shaft holding part 132.
  • the connecting portion 136 has a thin region 138 that opens to one side along the motor shaft 112.
  • the eccentric weight 120 includes the weight 140 made of a high specific gravity metal and the weight support having a lower specific gravity than the high specific gravity metal constituting the weight 140.
  • the total weight of the eccentric weight 120 can be reduced and the amount of eccentricity of the eccentric weight 120 can be increased. Therefore, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
  • the weight 140 is held by the weight holding portion 134 of the weight support 130 over the entire circumference, so that the vibration motor (and the eccentric weight 120) is also provided. ) Is used for a long time, it is possible to prevent the reliability of bonding between the weight 140 and the weight support 130 from being lowered. Therefore, by using such an eccentric weight 120, it is possible to configure a vibration motor with high long-term reliability.
  • the predetermined thin region 138 is provided in the connecting portion 136 that connects the weight holding portion 134 and the motor shaft holding portion 132.
  • the total weight can be reduced and the amount of eccentricity in the eccentric weight can be further increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with a lighter and less power consumption.
  • a hole having a shape corresponding to the cross-sectional shape of the weight 140 is formed in the weight support 130 to hold the weight 140, but in the eccentric weight 120 according to the first embodiment, the hole is formed.
  • the portion around this hole is called a weight holding portion 134.
  • the weight support 130 has a hole having a shape corresponding to the cross-sectional shape of the motor shaft 112 in order to hold the motor shaft 112.
  • a portion around this hole is referred to as a motor shaft holding portion 132. Therefore, the connecting portion 136 connects the weight holding portion 134 and the motor shaft holding portion 132 as shown in FIG. 1 (b).
  • the entire circumference is the entire outer periphery of the weight 140 in a plane perpendicular to the longitudinal direction of the weight 140.
  • the eccentric weight 120 in the eccentric weight 120 according to the first embodiment, as shown in FIGS. 1 (c) and 1 (d), along the motor shaft 112 in the weight 140 (along the longitudinal direction of the weight 140).
  • the length is 4mm.
  • the length along the motor shaft 112 in the weight holder 134 of the weight support 130 is 2 mm, and the length along the motor shaft 112 in the motor shaft holder 132 of the weight support 130 is also 2 mm.
  • the thickness (thickness in the direction along the motor shaft 112) of the thin region 138 in the connecting portion 136 of the weight support 130 is 0.2 mm.
  • the weight 140 has a weight support 130 in a half length (2 mm) of the length (4 mm) along the length direction of the weight 140. Is held by the weight holder 134. As a result, the weight 140 is held on the weight support 130 by tension.
  • the thin region 138 has a thickness that is 10% of the length along the motor shaft 112 in the motor shaft holding portion 132.
  • the thin wall region 138 has a shape in which a portion having a depth of 1.8 mm is removed by cutting, so that the weight of the connecting portion 136 can be sufficiently reduced, and an eccentric weight is obtained.
  • the total weight of 120 can be further reduced, and the eccentric amount of the eccentric weight 120 can be further increased. For this reason, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
  • the thickness in the radial direction of the motor shaft 112 of the weight holding portion 134 in the outer peripheral portion that holds the weight 140 from the outer peripheral side of the eccentric weight 120 Is 0.25 mm.
  • the weight 140 can be arranged on the outer peripheral portion as much as possible, and the weight 140 can be made as large as possible.
  • the amount of eccentricity at 20 can be further increased. Therefore, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with less power consumption.
  • the thickness of the motor shaft holder 132 in the direction along the radial direction of the motor shaft 112 is 0.2 mm.
  • the total weight of the eccentric weight 120 can be further reduced, and the amount of eccentricity in the eccentric weight 120 can be further increased. For this reason, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
  • the weight 140 has a substantially fan-shaped cross section, and includes a predetermined first weight including the central axis of the motor shaft holding portion 132. It has a plane-symmetric shape with a plane (indicated by A–A in Fig. 1 (a)) as a plane of symmetry.
  • the weight 140 is inserted into any end portion (see the end portions S and S shown in FIG. 1 (c).
  • the M-law force is also inserted into the weight holding portion 134.
  • the degree of freedom when placing the weight 140 on the weight holding portion 134 is increased, and the workability is improved. For this reason, the manufacturing cost at the time of manufacturing the eccentric weight 120 can be made low.
  • the central axis of the motor shaft holding portion 132 means that the central axis of the motor shaft 112 is located when the motor shaft holding portion 132 holds the motor shaft 112 (see FIG. 2). It is the axis that will be.
  • the weight 140 is made of a tungsten sintered alloy
  • the weight support 130 is made of a molten stainless steel having a specific gravity lower than that of the tungsten alloy.
  • the weight support 130 also has a stainless steel strength of a molten material having a specific gravity lower than that of the tungsten sintered alloy constituting the weight 140, the weight support 130 is improved in durability and the weight support 130 is improved. And the weight 140 can be integrated more firmly, and the reliability of the connection between the weight 140 and the weight support 1 30 is reduced when the vibration motor (and the eccentric weight 120) is used for a long time. This is further suppressed. For this reason, such eccentricity By using copper 120, a vibration motor with high long-term reliability can be configured.
  • the weight support body 130 is made of such a relatively inexpensive stainless steel, thereby reducing the manufacturing cost of the eccentric weight 120. Becomes easier.
  • the thin region 138 is formed by a cutting method.
  • the eccentric weight 120 according to Embodiment 1 can be manufactured by a relatively simple method.
  • the cutting method is performed using, for example, an end mill.
  • the weight 140 also has a tungsten alloy force. Since the tungsten alloy has a very high specific gravity, the amount of eccentricity in the eccentric weight 120 can be further increased. For this reason, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with further reduced power consumption.
  • the weight 140 itself does not need a function for holding the motor shaft 112. Therefore, the weight is extremely simple (substantially fan-shaped). Adopting a bar shape with a cross section.).
  • the tungsten alloy is made of The manufacturing method is to make a round bar with a simple shape by sintering and then cut out the round bar to make a weight of 140. By doing so, the amount of the additive (for example, copper) contained in the tandastain alloy can be reduced, so that the specific gravity can be increased and the amount of eccentricity in the eccentric weight 120 can be further increased. I can do it The
  • the eccentric weight 120 according to Embodiment 1 can be manufactured, for example, by the following method.
  • a member having a shape corresponding to the weight support 130 is manufactured by a press working method (however, the thin region 138 and the motor shaft holding portion 132 are not formed).
  • the weight support body 130 is manufactured by forming the thin region 138 and the motor shaft holding portion 132 on this member by a cutting method.
  • the weight support 134 is held by the weight support 134 by caulking the weight support 130 from the outside in a state where the weight 140 is inserted into the weight holding part 134 of the weight support 130.
  • the eccentric weight 120 in which the weight 140 is held by the weight holding portion 134 in the weight support 130 is manufactured over the entire circumference.
  • the weight 140 is held firmly by the weight holding portion 134 in the weight support 130 over the entire circumference, so that the vibration motor (and the eccentric weight 1
  • FIG. 2 is a view for explaining the vibration motor according to the first embodiment.
  • Fig. 2 (a) is a perspective view of the vibration motor according to Embodiment 1
  • Fig. 2 (b) is a view of the vibration motor according to Embodiment 1
  • Fig. 2 (c) is the embodiment.
  • 1 is a side view of a part of a vibration motor according to 1.
  • the vibration motor 100 according to the first embodiment is a vibration motor including a motor body 110 and an eccentric weight 120. Further, as described above, the vibration motor 100 according to the first embodiment is an eccentric weight that can be suitably used for a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption. Weight and weight when the motor is used for a long time An excellent eccentric weight 120 is provided in which deterioration of the reliability of bonding with the support is suppressed. For this reason, the vibration motor 100 according to the first embodiment is a vibration motor having such an excellent eccentric weight 120. Therefore, a required amount of vibration can be obtained with light weight and low power consumption, and long-term reliability can be obtained. High vibration motor.
  • the vibration motor 100 that is light and has a small amount of vibration with low power consumption and has high reliability for a long time as a vibration motor for portable devices, It can be a highly portable device that is lightweight, has low power consumption, and is reliable for a long time.
  • FIG. 3 is a view for explaining the eccentric weight according to the second embodiment.
  • Fig. 3 (a) is a front view of the eccentric weight according to Embodiment 2
  • Fig. 3 (b) is an AA cross-sectional view of Fig. 3 (a).
  • the eccentric weight 220 according to the second embodiment basically has the same structure as the eccentric weight 120 according to the first embodiment. However, the eccentric weight 220 according to the second embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support 230 as shown in FIG. That is, in the eccentric weight 220 according to the second embodiment, the connecting portion 236 of the weight support 230 has a thin region 238 that opens on both sides along the motor shaft.
  • the eccentric weight 220 according to the second embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support 230, but the eccentric weight is divided into components having high specific gravity metal force. Since the eccentric weight 220 is provided with the copper 240 and the weight support body 230 made of a metal having a specific gravity lower than that of the high specific gravity metal constituting the weight 240, the eccentric weight is the same as in the case of the eccentric weight 120 according to the first embodiment. The total weight of the weight 220 can be reduced and the amount of eccentricity in the eccentric weight 220 can be increased. Therefore, by using such an eccentric weight 220, it is possible to configure a vibration motor that can obtain a large amount of vibration with light weight and low power consumption.
  • the weight 240 is held by the weight holding portion 234 in the weight support body 230 over the entire circumference, so the eccentric weight according to the first embodiment.
  • the eccentric weight 220 is used for a long time, it is possible to prevent the reliability of the connection between the weight 240 and the weight support 230 from being lowered. For this reason, By using the eccentric weight 220, a vibration motor with high long-term reliability can be configured.
  • the predetermined thin region 238 is provided in the connecting portion 236 that connects the weight holding portion 234 and the motor shaft holding portion 232.
  • the total weight of the eccentric weight 220 can be reduced and the amount of eccentricity in the eccentric weight 220 can be further increased. For this reason, by using such an eccentric weight 220, it is possible to configure a vibration motor that can obtain a necessary vibration amount with a lighter and less power consumption.
  • FIG. 4 is a view for explaining the eccentric weight according to the third embodiment.
  • 4 (a) is a front view of the eccentric weight according to Embodiment 3
  • FIG. 4 (b) is a cross-sectional view taken along line AA in FIG. 4 (a).
  • the eccentric weight 320 according to the third embodiment has basically the same structure as the eccentric weight 120 according to the first embodiment. However, the eccentric weight 320 according to the third embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support 330 as shown in FIG. That is, in the eccentric weight 320 according to the third embodiment, the connecting portion 336 of the weight support 330 has holes 338 that are open on both sides along the motor shaft.
  • the eccentric weight 320 according to the third embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support 330, but the eccentric weight is used as a component having a high specific gravity metal force. Since the eccentric weight 320 is provided with the copper 340 and the weight support body 330 made of a low density metal having a specific gravity lower than that of the high specific gravity metal constituting the weight 340, the eccentric weight is the same as in the case of the eccentric weight 120 according to the first embodiment. The total weight of the weight 320 can be reduced and the amount of eccentricity of the eccentric weight 320 can be increased. For this reason, by using such an eccentric weight 320, it is possible to configure a vibration motor that can obtain a large vibration amount with light weight and low power consumption.
  • the weight 340 is held by the weight holding portion 334 in the weight support body 330 over the entire circumference, so the eccentric weight according to the first embodiment.
  • the eccentric weight 320 is used for a long time, it is possible to suppress a decrease in the reliability of bonding between the weight 340 and the weight support 330. For this reason, By using the eccentric weight 320, a vibration motor with high long-term reliability can be configured.
  • the predetermined hole 338 is provided in the connecting portion 336 that connects the weight holding portion 334 and the motor shaft holding portion 332, and therefore, according to the first embodiment.
  • the total weight of the eccentric weight 320 can be reduced and the amount of eccentricity in the eccentric weight 320 can be further increased. Therefore, by using such an eccentric weight 320, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
  • FIG. 5 is a view for explaining the eccentric weight according to the fourth embodiment.
  • FIG. 5 (a) is a front view of the eccentric weight according to Embodiment 4, and
  • FIG. 5 (b) is an AA cross-sectional view of FIG. 5 (a).
  • the eccentric weight 420 according to the fourth embodiment has basically the same structure as the eccentric weight 120 according to the first embodiment. However, the eccentric weight 420 according to the fourth embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support 430, as shown in FIG. That is, in the eccentric weight 420 according to the fourth embodiment, the connecting portion 436 of the weight support 430 has a shape that forms a single connecting rod when viewed from the direction along the motor shaft. .
  • the eccentric weight 420 according to the fourth embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support body 430, but the eccentric weight is divided into components having high specific gravity metal force. Since the eccentric weight 420 is provided with the copper 440 and the weight support body 430 made of a low weight metal having a specific gravity lower than that of the high specific gravity metal constituting the weight 440, the eccentric weight is the same as in the case of the eccentric weight 120 according to the first embodiment. While reducing the total weight of the weight 420, the amount of eccentricity in the eccentric weight 420 can be increased. For this reason, by using such an eccentric weight 420, it is possible to configure a vibration motor that can obtain a large vibration amount with light weight and low power consumption.
  • the weight 440 is held by the weight holding portion 434 in the weight support body 430 over the entire circumference, and therefore the eccentric weight according to the first embodiment.
  • the eccentric weight 420 is used for a long time, it is possible to suppress a decrease in the reliability of the connection between the weight 440 and the weight support 430. For this reason, By using the eccentric weight 420, a vibration motor with high long-term reliability can be configured.
  • the connecting portion 436 that connects the weight holding portion 434 and the motor shaft holding portion 432 is formed with a single connecting rod by looking at the directional force along the motor shaft. Therefore, the total weight of the eccentric weight 420 can be reduced and the amount of eccentricity in the eccentric weight 420 can be further increased. For this reason, the use of such an eccentric weight 420 makes it possible to construct a vibration motor that can obtain the required amount of vibration with a lighter weight and less power consumption, as in the case of the eccentric weight 120 according to the first embodiment. can do.
  • FIG. 6 is a view for explaining the eccentric weight according to the fifth embodiment.
  • FIG. 6 (a) is a front view of the eccentric weight according to Embodiment 5, and
  • FIG. 6 (b) is an AA cross-sectional view of FIG. 6 (a).
  • the eccentric weight 520 according to the fifth embodiment has basically the same structure as the eccentric weight 120 according to the first embodiment. However, as shown in FIG. 6, the eccentric weight 520 according to the fifth embodiment has the shape of the weight 540 (and the shape of the weight holding portion 534 in the weight support 530) as shown in FIG. It is different from the case of. That is, in the eccentric weight 520 according to the fifth embodiment, the weight 540 has an oval shape.
  • the eccentric weight 520 according to the fifth embodiment has the shape of the weight 540 (and the shape of the weight holding portion 534 in the weight support 530) corresponding to the eccentric weight 120 according to the first embodiment. Because the eccentric weight is an eccentric weight 520 having a weight 540 made of a high specific gravity metal and a weight support 530 made of a metal having a specific gravity lower than that of the high specific gravity metal constituting the weight 540, As in the case of the eccentric weight 120 according to the first embodiment, the total weight of the eccentric weight 520 can be reduced and the amount of eccentricity in the eccentric weight 520 can be increased. Therefore, by using such an eccentric weight 520, it is possible to configure a vibration motor that can obtain a large vibration amount with light weight and low power consumption.
  • the weight 540 is held by the weight holding portion 534 in the weight support body 530 over the entire circumference, and therefore the eccentric weight according to the first embodiment.
  • the vibration motor and eccentric weight 520
  • the predetermined thin region 538 is provided in the connecting portion 536 that connects the weight holding portion 534 and the motor shaft holding portion 532, so that Embodiment 1 As in the case of the eccentric weight 120 according to the above, the total weight of the eccentric weight 520 can be reduced and the amount of eccentricity in the eccentric weight 520 can be further increased. For this reason, by using such an eccentric weight 520, it is possible to configure a vibration motor that can obtain a required vibration amount with lighter and less power consumption.
  • FIG. 7 is a view for explaining the eccentric weight according to the sixth embodiment.
  • FIG. 7 (a) is a front view of the eccentric weight according to Embodiment 6, and
  • FIG. 7 (b) is an AA cross-sectional view of FIG. 7 (a).
  • the eccentric weight 620 according to the sixth embodiment has basically the same structure as the eccentric weight 120 according to the first embodiment. However, the eccentric weight 620 according to the sixth embodiment is different from the eccentric weight 120 according to the first embodiment in the shape of the weight support 630 as shown in FIG. That is, in the eccentric weight 620 according to the sixth embodiment, the weight support 630 serves as the weight holding portion instead of the weight holding portion that holds the weight over the entire circumference, and covers the entire outer periphery of the weight 640. There is a weight holding part 634 for holding the weight 640 over a half circumference.
  • the eccentric weight 620 according to the sixth embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support 630, but the eccentric weight is divided into components having high specific gravity metal force. Since the eccentric weight 620 includes the copper 640 and the weight support body 630 made of a low weight metal having a specific gravity lower than that of the high specific gravity metal constituting the weight 640, the eccentric weight 120 is the same as in the case of the eccentric weight 120 according to the first embodiment. The total weight of the weight 620 can be reduced and the amount of eccentricity in the eccentric weight 620 can be increased. Therefore, by using such an eccentric weight 620, it is possible to configure a vibration motor that can obtain a large amount of vibration with light weight and low power consumption.
  • the weight 640 is held by the weight holding portion 634 in the weight support 630 over more than half a circumference.
  • the deterioration of the bonding reliability between the weight 640 and the weight support 630 is suppressed when the vibration motor (and the eccentric weight 620) is used for a long time. Therefore, by using such an eccentric weight 620, a vibration motor with high long-term reliability can be configured.
  • the predetermined thin region 638 is provided in the connecting portion 636 that connects the weight holding portion 634 and the motor shaft holding portion 632, so that Embodiment 1 As in the case of the eccentric weight 120 according to the above, the total weight of the eccentric weight 620 can be reduced and the amount of eccentricity in the eccentric weight 620 can be further increased. For this reason, by using such an eccentric weight 620, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and even less power consumption.
  • the width L of the opening in the weight holding portion 634 is in the width direction of the opening in the weight 640.
  • FIG. 8 is a view for explaining the eccentric weight according to the seventh embodiment.
  • FIG. 8 (a) is a front view of the eccentric weight according to Embodiment 7, and
  • FIG. 8 (b) is an AA cross-sectional view of FIG. 8 (a).
  • the eccentric weight 720 according to the seventh embodiment basically has the same structure as the eccentric weight 120 according to the first embodiment. However, the eccentric weight 720 according to the seventh embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support 730 as shown in FIG. That is, in the eccentric weight 720 according to the seventh embodiment, the weight support 730 replaces the motor shaft holding portion that holds the motor shaft over the entire circumference as the motor shaft holding portion. A motor shaft holding portion 732 that also holds a three-way force is provided. After the motor shaft is inserted into the motor shaft holding portion 732, the opening is forced and held by the weight support 730 with tension.
  • the eccentric weight 720 according to the seventh embodiment is different from the eccentric weight 120 according to the first embodiment in that the structure of the weight support 730 is different from that of the eccentric weight 120 according to the first embodiment.
  • Weight support made of copper 740 and a low-density metal with a specific gravity higher than that of the high specific gravity metal that composes weight 740 Since the eccentric weight 720 including the body 730 is used, as in the case of the eccentric weight 120 according to the first embodiment, the total weight of the eccentric weight 720 can be reduced and the amount of eccentricity in the eccentric weight 720 can be increased. Therefore, by using such an eccentric weight 720, it is possible to configure a vibration motor that can obtain a large amount of vibration with light weight and low power consumption.
  • the weight 740 is held by the weight holding portion 734 in the weight support body 730 over the entire circumference, and therefore the eccentric weight according to the first embodiment.
  • the vibration motor and the eccentric weight 720
  • the predetermined thin region 738 is provided in the connecting portion 736 that connects the weight holding portion 734 and the motor shaft holding portion 732, so that the first embodiment 1 Similarly to the case of the eccentric weight 120 according to the above, the total weight of the eccentric weight 720 can be reduced and the amount of eccentricity in the eccentric weight 720 can be further increased. Therefore, by using such an eccentric weight 720, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
  • FIG. 9 is a view for explaining the eccentric weight according to the eighth embodiment.
  • Fig. 9 (a) is a diagram of the eccentric weight according to Embodiment 8 as viewed from the front
  • Fig. 9 (b) is a schematic diagram of the eccentric weight according to Embodiment 8 as viewed from the front.
  • FIG. 9 (d) is a cross-sectional view taken along the line BB in FIG. 9 (a)
  • FIG. 9 (e) is a cross-sectional view of the eccentric weight according to the eighth embodiment.
  • FIG. 9 (f) is a perspective view of the eccentric weight according to Embodiment 8 as seen from the rear side force in FIG. 9 (e).
  • the eccentric weight 820 according to the eighth embodiment basically has the same structure as the eccentric weight 420 according to the fourth embodiment. However, the eccentric weight 820 according to the eighth embodiment is different from the eccentric weight 420 according to the fourth embodiment in the method of manufacturing the weight support 830. That is, in the eccentric weight 820 according to Embodiment 8, the weight support 830 is manufactured by the metal powder injection molding method. As described above, the eccentric weight 820 according to the eighth embodiment is different from the eccentric weight 420 according to the fourth embodiment in the manufacturing method of the weight support 830, but the eccentric weight is made of a high specific gravity metal.
  • the eccentric weight 820 is provided with the weight 840 and the weight support 830 made of a metal having a specific gravity lower than that of the high specific gravity metal constituting the weight 840.
  • the total weight of the eccentric weight 820 can be reduced and the amount of eccentricity in the eccentric weight 820 can be increased. For this reason, by using such an eccentric weight 820, it is possible to configure a vibration motor that can obtain a large amount of vibration with light weight and low power consumption.
  • the weight 840 is held by the weight holding portion 834 in the weight support 830 over the entire circumference, so that the eccentric weight according to the fourth embodiment.
  • the vibration motor and the eccentric weight 820
  • the connecting portion 836 for connecting the weight holding portion 834 and the motor shaft holding portion 832 has a single connecting rod and a directional force along the motor shaft. Therefore, as in the case of the eccentric weight 420 according to the fourth embodiment, the total weight of the eccentric weight 820 can be reduced and the amount of eccentricity in the eccentric weight 820 can be further increased. For this reason, by using such an eccentric weight 820, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
  • the eccentric weight 820 according to the eighth embodiment since it is manufactured by the metal powder injection molding method, it is manufactured by the cutting method as in the case of the eccentric weight 420 according to the fourth embodiment. Rather than that, the thickness of the weight holding part 834 and the motor shaft holding part 832 can be reduced, and a vibration motor that can obtain the necessary vibration amount with lighter and less power consumption can be configured. Therefore, in the eccentric weight 820 according to the eighth embodiment, as shown in FIG. 9C, the thicknesses of the weight holding portion 834 and the motor shaft holding portion 832 are 0.15 mm.
  • eccentric weight 820 according to the eighth embodiment when manufactured by a cutting method As compared with the above, an effect that the waste of the material is reduced can be obtained.
  • eccentric weight 820 according to the eighth embodiment, there is an effect that the degree of freedom of the shape of the weight support 830 and the weight 840 in the eccentric weight 820 can be increased.
  • FIG. 10 is a view for explaining the eccentric weight according to the ninth embodiment.
  • Fig. 10 (a) is a diagram of the eccentric weight according to Embodiment 9 as viewed from the front
  • Fig. 10 (b) is a schematic diagram of the eccentric weight according to Embodiment 9 as viewed from the front.
  • Fig. 10 (a) is a cross-sectional view taken along the line A-A
  • Fig. 10 (d) is a cross-sectional view taken along the line BB of Fig. 10 (a)
  • Fig. 10 (e) is a perspective view of the eccentric weight according to the ninth embodiment.
  • FIG. 10 (f) is a perspective view of the eccentric weight according to Embodiment 9 as seen from the back side of FIG. 10 (e).
  • FIG. 11 is a view for explaining the manufacturing method for manufacturing the eccentric weight according to the ninth embodiment.
  • FIG. 11 (a) -FIG. 11 (f) are diagrams showing the main part in the manufacturing process.
  • the eccentric weight 920 according to the ninth embodiment is different from the eccentric weight 120, 820 according to the first or eighth embodiment in the method of manufacturing the weight support 930. That is, in the eccentric weight 920 according to the ninth embodiment, the weight support 930 is manufactured by a press drawing method.
  • the eccentric weight 920 according to the ninth embodiment is manufactured by the following process.
  • a workpiece W made of stainless steel having a thickness of 0.5 mm is disposed at a predetermined position between a die plate 962 in the die for press drawing and a punch plate 972 in the punch die ( (See Figure 11 (a).)
  • the punching die (and punch 974) is lowered toward the workpiece W, and a portion corresponding to the thin region 938 in the motor shaft holding portion 932 and a portion corresponding to the hole in the weight holding portion 934 are formed. Plastically deform. At this time, the portion constituting the motor shaft holding portion 932 and the portion constituting the weight holding portion 934 are also plastically deformed and extend downward in the drawing (FIG. 11 (b) —FIG. 11). See (d);).
  • This press drawing process can be performed by performing a single press, and the die mold 960 and the punch mold 970 must not be replaced. Force Can also be done by pressing multiple times.
  • remove the workpiece W from the press stop device 950 is removed by cutting the unnecessary parts min in weight support (see FIG. 11 (e) and FIG. 11 (f).) 0 in this case, unnecessary portions Cut along the broken lines L, L, L in Fig. 11 (e).
  • the weight support body 930 is manufactured.
  • the eccentric weight 920 according to the ninth embodiment is different from the eccentric weight 120, 820 according to the first or eighth embodiment in that the method of manufacturing the weight support 930 is different from the eccentric weight 120, 820 in the high specific gravity.
  • the eccentric weight 920 includes a weight 940 made of a metal and a weight support 930 made of a low weight metal having a specific gravity lower than that of the high specific gravity metal constituting the weight 940, the eccentric weight 120 according to the first or eighth embodiment 120, As in the case of 820, the total weight of the eccentric weight 920 can be reduced and the amount of eccentricity in the eccentric weight 920 can be increased. Therefore, by using such an eccentric weight 920, it is possible to configure a vibration motor that can obtain a large vibration amount with light weight and low power consumption.
  • the weight 940 is held by the weight holding portion 934 in the weight support body 930 over the entire circumference, so that the eccentric weight according to the first or eighth embodiment is used.
  • the vibration motor and the eccentric weight 920
  • the predetermined thin region 938 is provided in the connecting portion 936 that connects the weight holding portion 934 and the motor shaft holding portion 932.
  • the total weight of the eccentric weight 920 can be reduced and the amount of eccentricity in the eccentric weight 920 can be further increased. Therefore, by using such an eccentric weight 920, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
  • the eccentric weight 920 according to the ninth embodiment the eccentric weight according to the first or eighth embodiment.
  • the thickness of the weight holding part and the motor shaft holding part can be made thinner than that produced by the cutting method or metal powder injection molding method. It is possible to configure a vibration motor that can obtain the required amount of vibration with electric power. Therefore, in the eccentric weight 920 according to the ninth embodiment, as shown in FIG. 10 (c), the thickness of the weight holding part 934 and the motor shaft holding part 932 is 0.15 mm.
  • eccentric weight 920 according to the ninth embodiment, an effect that the waste of material is reduced as compared with the case of manufacturing by a cutting method is also obtained.
  • FIG. 12 is a view for explaining the eccentric weight according to the tenth embodiment.
  • FIG. 12 (a) is a view of the eccentric weight according to Embodiment 10 as viewed from the front
  • FIG. 12 (b) is a cross-sectional view taken along line AA in FIG. 12 (a).
  • the eccentric weight 1020 according to the tenth embodiment basically has the same structure as the eccentric weight 920 according to the ninth embodiment. However, the eccentric weight 1020 according to the tenth embodiment is different from the eccentric weight 920 according to the ninth embodiment in the structure of the weight support 1030 as shown in FIG. That is, in the eccentric weight 1020 according to the tenth embodiment, as shown in FIG. 12B, ribs 1039 are formed in the thin region 1038 of the connecting portion 1036 in the weight support 1030.
  • the mechanical strength of the connecting portion 1036 can be increased, so that a more reliable vibration motor can be configured.
  • the mechanical strength of the connecting portion 1036 can be increased, the thin area 1038 of the connecting portion 1036 can be enlarged to further reduce the weight of the connecting portion 1036. Therefore, the total weight of the eccentric weight 1020 can be further reduced, and the amount of eccentricity in the eccentric weight 1020 can be further increased. Therefore, by using such an eccentric weight 1020, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
  • the eccentric weight 1020 according to the tenth embodiment has the same configuration as the eccentric weight 920 according to the ninth embodiment except for the above, and thus the eccentric weight 920 according to the ninth embodiment is provided. It has the effect to do as it is.
  • FIG. 13 is a view for explaining the eccentric weight according to the eleventh embodiment.
  • FIG. 13 (a) is a view of the eccentric weight according to the eleventh embodiment as viewed from the front
  • FIG. 13 (b) is a cross-sectional view taken along the line AA in FIG. 13 (a).
  • the eccentric weight 1120 according to the eleventh embodiment basically has the same structure as the eccentric weight 920 according to the ninth embodiment. However, the eccentric weight 1120 according to the eleventh embodiment is different from the eccentric weight 920 according to the ninth embodiment in the structure of the weight support 1130 as shown in FIG. That is, in the eccentric weight 1120 according to the eleventh embodiment, a hole 1138 is formed in the connecting portion 1136 in the weight support 1130.
  • the weight of the connecting portion 1130 can be further reduced. Therefore, the total weight of the eccentric weight 1120 can be further reduced, and the amount of eccentricity in the eccentric weight 1120 can be further increased. Therefore, by using such an eccentric weight 1120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with a lighter and less power consumption.
  • the eccentric weight 1120 according to the eleventh embodiment has the same configuration as the eccentric weight 920 according to the ninth embodiment except for the above, and therefore the eccentric weight 920 according to the ninth embodiment is provided. It has the effect to do as it is.
  • FIG. 14 is a view for explaining the eccentric weight according to the twelfth embodiment.
  • FIG. 14 (a) is a view of the eccentric weight according to the twelfth embodiment as viewed from the front
  • FIG. 14 (b) is a cross-sectional view taken along line AA in FIG. 14 (a).
  • FIG. 15 is a view for explaining the eccentric weight according to the thirteenth embodiment.
  • FIG. 15 (a) is a diagram of the eccentric weight according to the thirteenth embodiment as viewed from the front
  • FIG. 15 (b) is a cross-sectional view taken along the line AA in FIG. 15 (a).
  • FIG. 16 is a view for explaining the eccentric weight according to the fourteenth embodiment.
  • FIG. 16 (a) is a view of the eccentric weight according to the embodiment 14 as viewed from the front
  • FIG. 16 (b) is a cross-sectional view taken along line AA in FIG. 16 (a).
  • FIG. 17 is a view for explaining the eccentric weight according to the fifteenth embodiment.
  • FIG. 17 (a) is a view of the eccentric weight according to the fifteenth embodiment as viewed from the front
  • FIG. 17 (b) is a cross-sectional view taken along line AA in FIG. 17 (a).
  • the eccentric weight is composed of the weight of the high specific gravity metal and the weight.
  • the eccentric weight 120-1120 according to the embodiment 11-11 the eccentric weight includes a weight support body having a structure in which a plurality of thin plate members made of a metal having a specific gravity lower than that of the high specific gravity metal is laminated.
  • Embodiment 12 1-15 [this deviation, weights 1220, 1320, 1420, 1520 [koyore ryoko, weights are held by each weight holding portion in the weight support over a half circumference] Therefore, as in the case of the eccentric weight 120-1120 according to Embodiment 1-11 11, when the vibration motor (and the eccentric weight) is used for a long time, the reliability of the connection between the weight and the weight support decreases. That force S is suppressed. Therefore, by using such eccentric weights 1220, 1320, 1420, 1520, a vibration motor with high long-term reliability can be configured.
  • FIG. 18 is a view for explaining the eccentric weight according to the sixteenth embodiment.
  • FIG. 18 (a) is a view of the eccentric weight according to the embodiment 16 as viewed from the front
  • FIG. 18 (b) is a cross-sectional view taken along the line A-A in FIG. 18 (a).
  • An eccentric weight 1620 according to the sixteenth embodiment has basically the same structure as the eccentric weight 920 according to the ninth embodiment. However, the eccentric weight 1620 according to Embodiment 16 is different from the eccentric weight 920 according to Embodiment 9 in the structure of the weight support 1630 as shown in FIG. The That is, in the eccentric weight 1620 according to the sixteenth embodiment, the thin wall region 1638 extends to both ends in the circumferential direction of the connecting portion 1636 of the weight support 1630.
  • the weight of the connecting portion 1636 can be further reduced. Therefore, the total weight of the eccentric weight 1620 can be further reduced, and the amount of eccentricity in the eccentric weight 1620 can be further increased. Therefore, by using such an eccentric weight 1620, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter weight and less power consumption.
  • eccentric weight 1620 according to the sixteenth embodiment, it is possible to easily produce the weight support body by the press drawing method, which also has an effect.
  • the eccentric weight 1620 according to Embodiment 16 has the same configuration as that of the eccentric weight 920 according to Embodiment 9 in other points, and therefore the eccentric weight 920 according to Embodiment 9 is provided. It has the effect to do as it is.
  • FIG. 19 is a view for explaining the eccentric weight according to the seventeenth embodiment.
  • FIG. 19 (a) is a view of the eccentric weight according to the seventeenth embodiment when the front force is also seen
  • FIG. 19 (b) is a cross-sectional view taken along line AA in FIG. 19 (a).
  • FIG. 20 is a view for explaining the vibration motor including the eccentric weight according to the seventeenth embodiment.
  • FIG. 20 (a) is a view showing a vibration motor provided with the eccentric weight according to the seventeenth embodiment
  • FIG. 20 (b) is a view showing another vibration motor provided with the eccentric weight according to the seventeenth embodiment.
  • the eccentric weight 1720 according to the seventeenth embodiment has basically the same structure as the eccentric weight 1620 according to the sixteenth embodiment. However, the eccentric weight 1720 according to the seventeenth embodiment is different from the eccentric weight 1620 according to the sixteenth embodiment in the structure of the weight support 1730 as shown in FIG. That is, in the eccentric weight 1720 according to the seventeenth embodiment, the connecting portion 1736 that connects the weight holding portion 1734 and the motor shaft holding portion 1732 is a single connecting rod when viewed from the direction along the motor shaft 1712. It has a shape like this.
  • the connecting portion 1736 has a shape that forms a single connecting rod when viewed from the direction along the motor shaft 1 712. Therefore, the eccentric weight 172 The total weight of 0 can be reduced and the amount of eccentricity in the eccentric weight 1720 can be further increased. For this reason, by using such an eccentric weight 1720, a vibration motor that is lighter and has a smaller amount of vibration required for power consumption than that of the eccentric weight 1620 according to Embodiment 16 can be configured. be able to.
  • the eccentric weight 1720 according to the seventeenth embodiment has the same configuration as the eccentric weight 1620 according to the sixteenth embodiment except for this, and therefore, the eccentric weight 162 according to the sixteenth embodiment 162.
  • the motor shaft 1712 of the motor body 1710 is inserted into the motor shaft holding portion 1732 (see FIG. 19) of the eccentric weight 1720.
  • the eccentric weight 1720 fixes the eccentric weight 1740 of the eccentric weight 1720 in the longitudinal direction of the weight 1740 and fixes the motor shaft of the motor main body 1710. 1712 may be inserted into the motor shaft holder 1732 of the eccentric weight 1720 for use. In this case, since the distance between the bearing 1714 of the motor main body 1710 and the motor shaft holding portion 1732 of the eccentric weight 17 20 becomes short, the eccentric weight 1720 rotates more stably, and thus there is a benefit that the eccentric characteristic is improved. can get.
  • the force using tungsten alloy as the weight is not limited to this.
  • a metal having a specific gravity higher than that of tungsten, osmium, osmium alloy, gold, gold alloy, iridium, iridium alloy, and other weight supports can be used.
  • a sintered body made of a round bar is cut as a weight, and the cut body processed into the same cross-sectional shape as the weight is cut short.
  • the present invention is not limited to this.
  • a sintered body sintered in the shape of a weight, or a sintered body with a deformed bar force that has the same cross-sectional shape as a weight is cut short.
  • a sintered body having a round bar force can be used as it is cut short.
  • the manufacturing method of the eccentric weight according to the first embodiment includes a step of clamping the weight support 130 in a state where the weight 140 is inserted into a weight holding hole 134 of the weight support 130.
  • the manufacturing method may include a step of press-fitting the weight 140 into the weight holding hole 134 in the weight support body 130 with a tightening margin, and the temperature of the weight support body 130 is higher than the temperature of the weight 140
  • the manufacturing method may include a step of inserting the weight 140 into the weight holding hole 134 in the weight support 130.
  • attachment, or welding may be sufficient.
  • the manufacturing method may include a step of inserting the material of the weight support 130 into a mold in a state where a part or all of the weight 140 is placed in a predetermined mold.
  • the manufacturing method which used the above-mentioned process together may be sufficient.
  • a manufacturing method including a step of bonding after crimping, a manufacturing method including a step of bonding after brazing, a manufacturing method including a step of spot welding after crimping, and brazing after spot welding may be sufficient.
  • a manufacturing method including a step of bonding after crimping a manufacturing method including a step of bonding after brazing
  • a manufacturing method including a step of spot welding after crimping a step of spot welding after crimping
  • brazing after spot welding A manufacturing method including a process is also possible.
  • the vibration motor of the present invention can also be suitably used for a remote control of a game machine, a pachinko operation unit, an electric toothbrush, etc. suitably used for portable devices such as mobile phones and PDAs.

Abstract

An eccentric weight (1720) comprising a weight (1740) composed of a high specific gravity metal, and a weight support (1730) composed of a metal having a specific gravity lower than that of the high specific gravity metal composing the weight (1740) and having a weight holding section (1734) for holding the weight (1740) over the entire circumference thereof, a motor shaft holding section (1732), and a section (1736) for coupling the weight holding section (1734) and the motor shaft holding section (1732), wherein the coupling section (1736) has an area (1738) having a wall thickness smaller than the length along a motor shaft (1712) at the motor shaft holding section (1732). Total weight of the eccentric weight (1720) can be lightened while increasing eccentricity thereof. When the eccentric weight (1720) is used for a long time, bonding reliability of the weight (1740) and the weight support (1730) can be prevented from lowering.

Description

偏心分銅及びその製造方法並びに振動モータ及び携帯機器 技術分野  Eccentric weight, manufacturing method thereof, vibration motor and portable device
[0001] 本発明は、偏心分銅及びその製造方法並びに振動モータ及び携帯機器に関する 背景技術  TECHNICAL FIELD [0001] The present invention relates to an eccentric weight, a manufacturing method thereof, a vibration motor, and a portable device.
[0002] 携帯電話や PDAなどにおいては、着信を振動で知らせるために振動モータが用い られている。図 21は、従来の振動モータ及び偏心分銅を説明するために示す図であ る。図 21 (a)は振動モータの斜視図であり、図 21 (b)は偏心分銅をモータ軸に垂直 な平面で切った断面図であり、図 21 (c)は偏心分銅をモータ軸に沿った平面で切つ た断面図である。図 21 (b)及び図 21 (c)においては、図 21 (a)における偏心分銅の 回転方向における位置を変えて示して 、る。  In mobile phones and PDAs, vibration motors are used to notify incoming calls by vibration. FIG. 21 is a diagram for explaining a conventional vibration motor and an eccentric weight. Fig. 21 (a) is a perspective view of a vibration motor, Fig. 21 (b) is a cross-sectional view of an eccentric weight cut along a plane perpendicular to the motor axis, and Fig. 21 (c) is an eccentric weight along the motor axis. FIG. In FIGS. 21 (b) and 21 (c), the position of the eccentric weight in FIG. 21 (a) in the rotational direction is changed and shown.
[0003] 従来の振動モータ 1800は、図 21に示すように、小型円筒型のモータ本体 1810と 、タングステンの焼結体など力もなり略扇形状を有する偏心分銅 1820とからなる。偏 心分銅 1820のモータ軸保持穴 1822には、モータ本体 1810のモータ軸 1812が揷 通'保持されている。偏心分銅 1820は、モータ軸 1812を挿通するモータ軸保持穴 1 822の肉薄方向からの側面力も外力を加えてモータ軸保持穴 1822を変形させること によるカシメ止めで、モータ軸 1812の先端部に取り付けられている(例えば、特許文 献 1参照。)。  [0003] As shown in FIG. 21, a conventional vibration motor 1800 includes a small cylindrical motor body 1810 and an eccentric weight 1820 having a substantially fan shape and having a force such as a sintered body of tungsten. The motor shaft 1812 of the motor body 1810 is generally held in the motor shaft holding hole 1822 of the eccentric weight 1820. Eccentric weight 1820 is attached to the tip of motor shaft 1812 by crimping by deforming motor shaft holding hole 1822 by applying an external force to the motor shaft holding hole 1822 through which the motor shaft 1812 is inserted. (For example, see Patent Document 1).
[0004] ところで、携帯電話や PDAなどにぉ 、ては、振動モータとして、軽量かつ少な 、消 費電力で必要な振動量が得られる振動モータが求められている。このため、このよう な振動モータに用いる偏心分銅として、図 22に示すような他の偏心分銅が提案され ている。図 22は、従来の他の偏心分銅を説明するために示す図である。図 22 (a)は 正面図であり、図 22 (b)は図 22 (a)の A— A断面図であり、図 22 (c)は構成部品の正 面図であり、図 22 (d)は図 22 (c)の B— B断面図である。図 22 (a)及び図 22 (b)にお いては、モータ本体 1910も一部示されている。  [0004] By the way, for a mobile phone, a PDA, and the like, there is a demand for a vibration motor that can obtain a necessary amount of vibration with low power consumption and light weight. For this reason, other eccentric weights as shown in FIG. 22 have been proposed as eccentric weights used in such vibration motors. FIG. 22 is a view for explaining another conventional eccentric weight. Fig. 22 (a) is a front view, Fig. 22 (b) is a cross-sectional view along the line A-A in Fig. 22 (a), Fig. 22 (c) is a front view of the component, and Fig. 22 (d) ) Is a sectional view taken along the line BB in FIG. 22 (c). In FIGS. 22 (a) and 22 (b), a part of the motor body 1910 is also shown.
[0005] 従来の他の偏心分銅 1920は、図 22に示すように、モータ本体 1910のモータ軸 1 912を保持するためのモータ軸保持穴 1932を有し低比重金属力もなる円筒状の分 銅支持体 1930と、高比重金属力もなる略半パイプ状の分銅 1940とからなっている( 例えば、特許文献 1参照。 ) oこのため、分銅 1940が高比重金属力もなるため、偏心 分銅 1920の重心がモータ軸保持穴 1932の中心軸力も離隔された位置に配置され ることになる。その結果、偏心分銅 1920における偏心量が大きくなり、このような従来 の他の偏心分銅 1920を用いることにより、軽量かつ少ない消費電力で必要な振動 量が得られる振動モータを構成することができる。 Another conventional eccentric weight 1920 has a motor shaft 1 of a motor body 1910 as shown in FIG. A cylindrical weight support 1930 having a motor shaft holding hole 1932 for holding 912 and having a low specific gravity metal force, and a substantially half-pipe weight 1940 having a high specific gravity metal force (for example, a patent) (Refer to Reference 1.) o For this reason, the weight 1940 also has a high specific gravity metal force, so the center of gravity of the eccentric weight 1920 is arranged at a position where the center axial force of the motor shaft holding hole 1932 is also separated. As a result, the eccentric amount of the eccentric weight 1920 increases, and by using such other conventional eccentric weight 1920, a vibration motor that can obtain a required vibration amount with light weight and low power consumption can be configured.
[0006] 特許文献 1:特開 2001—129479号公報 [0006] Patent Document 1: JP 2001-129479 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] しかしながら、上記した従来の他の偏心分銅 1920においては、分銅 1940が分銅 支持体 1930の外側面 1934の一部にロウ付け部 1950を介して一体に接合固定さ れたものであるため、振動モータ (及び偏心分銅)を長時間使用した場合に分銅と分 銅支持体との接合の信頼性が低下するという問題があった。  However, in the other conventional eccentric weight 1920 described above, the weight 1940 is integrally bonded and fixed to a part of the outer surface 1934 of the weight support 1930 via the brazing portion 1950. When the vibration motor (and the eccentric weight) is used for a long time, there is a problem that the reliability of the connection between the weight and the weight support is lowered.
[0008] そこで、本発明は、このような問題を解決するためになされたもので、軽量かつ少な い消費電力で必要な振動量が得られる振動モータに好適に用いることができる偏心 分銅であって、このような振動モータを長時間使用した場合においても分銅と分銅支 持体との接合の信頼性が低下することが抑制された偏心分銅及びその製造方法を 提供することを目的とする。また、本発明は、このように優れた偏心分銅を備えた振動 モータ及び携帯機器を提供することを目的とする。  [0008] Therefore, the present invention has been made to solve such a problem, and is an eccentric weight that can be suitably used for a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption. Thus, an object of the present invention is to provide an eccentric weight and a method of manufacturing the same, in which the reliability of the connection between the weight and the weight support is suppressed even when such a vibration motor is used for a long time. It is another object of the present invention to provide a vibration motor and a portable device having such an excellent eccentric weight.
課題を解決するための手段  Means for solving the problem
[0009] (1)本発明の偏心分銅は、高比重金属力 なる分銅と、前記分銅を半周以上に渡つ て保持する分銅保持部及びモータ軸を保持するためのモータ軸保持部並びに前記 分銅保持部及び前記モータ軸保持部を連結する連結部を有し、前記分銅を構成す る高比重金属よりも比重の低い金属からなる分銅支持体とを備えた偏心分銅であつ て、前記連結部は、前記モータ軸保持部における前記モータ軸に沿った長さよりも小 さ 、値の肉厚を有する薄肉領域及び z又は前記モータ軸に沿った両側に開口する 穴を有することを特徴とする。 [0010] (2)本発明の偏心分銅は、高比重金属力もなる分銅と、前記分銅を半周以上に渡つ て保持する分銅保持部及びモータ軸を保持するためのモータ軸保持部並びに前記 分銅保持部及び前記モータ軸保持部を連結する連結部を有し、前記分銅を構成す る高比重金属よりも比重の低い金属からなる分銅支持体とを備えた偏心分銅であつ て、前記連結部は、前記モータ軸に沿った方向から見て一本の連結棒となるような形 状を有することを特徴とする。 (1) The eccentric weight of the present invention includes a weight having a high specific gravity metal force, a weight holding portion for holding the weight over a half circumference, a motor shaft holding portion for holding a motor shaft, and the weight An eccentric weight having a holding portion and a connecting portion for connecting the motor shaft holding portion, and comprising a weight support made of a metal having a specific gravity lower than that of the high specific gravity metal constituting the weight, the connecting portion Is characterized in that it has a thin region having a thickness of a value smaller than the length along the motor shaft in the motor shaft holding portion, and z or holes opened on both sides along the motor shaft. (2) The eccentric weight of the present invention includes a weight having a high specific gravity metal force, a weight holding portion for holding the weight over a half circumference, a motor shaft holding portion for holding a motor shaft, and the weight An eccentric weight having a holding portion and a connecting portion for connecting the motor shaft holding portion, and comprising a weight support made of a metal having a specific gravity lower than that of the high specific gravity metal constituting the weight, the connecting portion Has a shape that forms a single connecting rod when viewed from the direction along the motor shaft.
[0011] このため、上記(1)又は(2)に記載の偏心分銅によれば、偏心分銅を、高比重金属 カゝらなる分銅と、分銅を構成する高比重金属よりも比重の低 ヽ金属からなる分銅支持 体とを備えた偏心分銅としたため、偏心分銅の総重量を軽くするとともに、偏心分銅 における偏心量を大きくすることができる。このため、このような偏心分銅を用いること により、軽量かつ少ない消費電力で必要な振動量が得られる振動モータを構成する ことができる。  For this reason, according to the eccentric weight described in (1) or (2) above, the eccentric weight has a specific gravity lower than that of the high specific gravity metal and the high specific gravity metal constituting the weight. Since the eccentric weight is provided with a weight support made of metal, the total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
[0012] また、上記(1)又は(2)に記載の偏心分銅によれば、分銅を半周以上に渡って分 銅支持体における分銅保持部に保持させることとしたため、振動モータ (及び偏心分 銅)を長時間使用した場合に分銅と分銅支持体との接合の信頼性が低下することが 抑制される。このため、このような偏心分銅を用いることにより、長期信頼性の高い振 動モータを構成することができる。  [0012] Further, according to the eccentric weight described in the above (1) or (2), since the weight is held by the weight holding portion in the weight support over a half circumference, the vibration motor (and the eccentric weight) When copper is used for a long time, it is possible to suppress a decrease in the reliability of bonding between the weight and the weight support. Therefore, by using such an eccentric weight, a vibration motor with high long-term reliability can be configured.
[0013] また、上記(1)に記載の偏心分銅によれば、分銅保持部及びモータ軸保持部を連 結する連結部に所定の薄肉領域及び Z又は所定の穴を設けるようにしたため、偏心 分銅の総重量を軽くするとともに、偏心分銅における偏心量をさらに大きくすることが できる。このため、このような偏心分銅を用いることにより、さらに軽量かっさらに少な い消費電力で必要な振動量が得られる振動モータを構成することができる。  [0013] In addition, according to the eccentric weight described in (1) above, since the predetermined thin region and Z or the predetermined hole are provided in the connecting portion for connecting the weight holding portion and the motor shaft holding portion, the eccentric weight is provided. The total weight of the weight can be reduced and the amount of eccentricity in the eccentric weight can be further increased. For this reason, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
[0014] また、上記(2)に記載の偏心分銅によれば、分銅保持部及びモータ軸保持部を連 結する連結部を、モータ軸に沿った方向から見て一本の連結棒となるような形状を有 するようにしたため、偏心分銅の総重量を軽くするとともに、偏心分銅における偏心 量をさらに大きくすることができる。このため、このような偏心分銅を用いることにより、 さらに軽量かっさらに少ない消費電力で必要な振動量が得られる振動モータを構成 することができる。 [0015] なお、上記(1)に記載の偏心分銅においては、連結部における薄肉領域及び Z又 は穴の大きさを大きくすればするほど、偏心分銅の総重量を軽くするとともに、偏心 分銅における偏心量を大きくすることができるという利益が得られる。その一方におい て、連結部における薄肉領域及び Z又は穴の大きさを大きくしすぎると、連結部の機 械的強度が低下して偏心分銅の信頼性を損ねるという不利益が生じてしまうこととな る。そこで、本発明の偏心分銅においては、これらの利益と不利益とを衡量して、連 結部における薄肉領域及び z又は穴の大きさを決定することが好ましい。 [0014] According to the eccentric weight described in (2) above, the connecting portion that connects the weight holding portion and the motor shaft holding portion is a single connecting rod when viewed from the direction along the motor shaft. Since it has such a shape, the total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be further increased. For this reason, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with a lighter weight and less power consumption. [0015] In the eccentric weight described in (1) above, the larger the thickness of the thin region and the Z or hole in the connecting portion, the lighter the total weight of the eccentric weight, and There is a benefit that the amount of eccentricity can be increased. On the other hand, if the thin-walled area and the Z or hole size in the connecting part are made too large, the mechanical strength of the connecting part will decrease and the reliability of the eccentric weight will be impaired. Become. Therefore, in the eccentric weight of the present invention, it is preferable to weigh these advantages and disadvantages to determine the thin region and z or hole size in the connection portion.
[0016] また、上記(2)に記載の偏心分銅においては、モータ軸に沿った方向から見た連 結部の幅を細くすればするほど、偏心分銅の総重量を軽くするとともに、偏心分銅に おける偏心量を大きくすることができるという利益が得られる。その一方において、連 結部の幅を細くしすぎると、連結部の機械的強度が低下して偏心分銅の信頼性を損 ねるという不利益が生じてしまうこととなる。そこで、本発明の偏心分銅においては、こ れらの利益と不利益とを衡量して、モータ軸に沿った方向から見た連結部の幅を決 定することが好ましい。  [0016] In the eccentric weight described in (2), the total weight of the eccentric weight is reduced and the eccentric weight is reduced as the width of the connecting portion as viewed from the direction along the motor shaft is reduced. The benefit is that the amount of eccentricity can be increased. On the other hand, if the width of the connecting portion is made too thin, the mechanical strength of the connecting portion is lowered, resulting in a disadvantage that the reliability of the eccentric weight is impaired. Therefore, in the eccentric weight of the present invention, it is preferable to determine the width of the connecting portion as viewed from the direction along the motor shaft by weighing these advantages and disadvantages.
[0017] (3)本発明の偏心分銅は、高比重金属力もなる分銅と、前記分銅を半周以上に渡つ て保持する分銅保持部及びモータ軸を保持するためのモータ軸保持部並びに前記 分銅保持部及び前記モータ軸保持部を連結する連結部を有し、前記分銅を構成す る高比重金属よりも比重の低い金属からなる複数の薄板部材が積層された構造を有 する分銅支持体とを備えた偏心分銅であって、前記薄板部材における各連結部は、 前記モータ軸保持部における前記モータ軸に沿った長さよりも小さい値の肉厚を有 する薄肉領域及び Z又は前記モータ軸に沿った両側に開口する穴を有することを特 徴とする。  [0017] (3) The eccentric weight of the present invention includes a weight having a high specific gravity metal force, a weight holding part for holding the weight over a half circumference, a motor shaft holding part for holding a motor shaft, and the weight. A weight support body having a structure in which a plurality of thin plate members made of a metal having a specific gravity lower than that of the high specific gravity metal constituting the weight are stacked, the connecting portion connecting the holding portion and the motor shaft holding portion; The connecting portion of the thin plate member includes a thin region having a thickness smaller than a length along the motor shaft in the motor shaft holding portion and Z or the motor shaft. It is characterized by having holes that open on both sides.
[0018] (4)本発明の偏心分銅は、高比重金属力 なる分銅と、前記分銅を半周以上に渡つ て保持する分銅保持部及びモータ軸を保持するためのモータ軸保持部並びに前記 分銅保持部及び前記モータ軸保持部を連結する連結部を有し、前記分銅を構成す る高比重金属よりも比重の低い金属からなる複数の薄板部材が積層された構造を有 する分銅支持体とを備えた偏心分銅であって、前記薄板部材における各連結部は、 前記モータ軸に沿った方向から見て一本の連結棒となるような形状を有することを特 徴とする。 (4) The eccentric weight of the present invention includes a weight having a high specific gravity metal force, a weight holding part for holding the weight over a half circumference, a motor shaft holding part for holding a motor shaft, and the weight A weight support body having a structure in which a plurality of thin plate members made of a metal having a specific gravity lower than that of the high specific gravity metal constituting the weight are stacked, the connecting portion connecting the holding portion and the motor shaft holding portion; Each connecting portion of the thin plate member has a shape that forms a single connecting rod when viewed from the direction along the motor shaft. It is a sign.
[0019] このため、上記(3)又は (4)に記載の偏心分銅によれば、偏心分銅を、高比重金属 カゝらなる分銅と、分銅を構成する高比重金属よりも比重の低 、金属カゝらなる複数の薄 板部材が積層された構造を有する分銅支持体とを備えた偏心分銅としたため、偏心 分銅の総重量を軽くするとともに、偏心分銅における偏心量を大きくすることができる 。このため、このような偏心分銅を用いることにより、軽量かつ少ない消費電力で必要 な振動量が得られる振動モータを構成することができる。  Therefore, according to the eccentric weight described in the above (3) or (4), the eccentric weight has a specific gravity lower than that of the high specific gravity metal and the high specific gravity metal constituting the weight. Since the eccentric weight includes a weight support body having a structure in which a plurality of thin plate members made of metal are laminated, the total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be increased. . Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
[0020] また、上記(3)又は (4)に記載の偏心分銅によれば、分銅を半周以上に渡って分 銅支持体における各分銅保持部に保持させることとしたため、振動モータ (及び偏心 分銅)を長時間使用した場合に分銅と分銅支持体との接合の信頼性が低下すること が抑制される。このため、このような偏心分銅を用いることにより、長期信頼性の高い 振動モータを構成することができる。  [0020] Further, according to the eccentric weight described in the above (3) or (4), since the weight is held by each weight holding portion in the weight support body over a half circumference, the vibration motor (and the eccentric weight) When the weight is used for a long time, it is possible to suppress a decrease in the reliability of bonding between the weight and the weight support. For this reason, a vibration motor with high long-term reliability can be configured by using such an eccentric weight.
[0021] また、上記(3)に記載の偏心分銅によれば、各薄板部材における連結部に所定の 薄肉領域及び Z又は所定の穴を設けるようにしたため、偏心分銅の総重量をさらに 軽くするとともに、偏心分銅における偏心量をさらに大きくすることができる。このため 、このような偏心分銅を用いることにより、さらに軽量かっさらに少ない消費電力で必 要な振動量が得られる振動モータを構成することができる。  [0021] Further, according to the eccentric weight described in the above (3), since the predetermined thin area and Z or the predetermined hole are provided in the connecting portion of each thin plate member, the total weight of the eccentric weight is further reduced. At the same time, the amount of eccentricity in the eccentric weight can be further increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter weight and less power consumption.
[0022] また、上記 (4)に記載の偏心分銅によれば、各薄板部材における連結部をモータ 軸に沿った方向から見て一本の連結棒となるような形状になるようにしたため、偏心 分銅の総重量を軽くするとともに、偏心分銅における偏心量をさらに大きくすることが できる。このため、このような偏心分銅を用いることにより、さらに軽量かっさらに少な い消費電力で必要な振動量が得られる振動モータを構成することができる。  [0022] Further, according to the eccentric weight described in the above (4), the connecting portion of each thin plate member is shaped so as to be a single connecting rod when viewed from the direction along the motor shaft. The total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be further increased. For this reason, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
[0023] なお、上記(3)に記載の偏心分銅においては、各連結部における薄肉領域及び Z 又は穴の大きさを大きくすればするほど、偏心分銅の総重量を軽くするとともに、偏 心分銅における偏心量を大きくすることができるという利益が得られる。その一方にお いて、各連結部における薄肉領域及び Z又は穴の大きさを大きくしすぎると、連結部 の機械的強度が低下して偏心分銅の信頼性を損ねるという不利益が生じてしまうこと となる。そこで、本発明の偏心分銅においては、これらの利益と不利益とを衡量して、 各連結部における薄肉領域及び z又は穴の大きさを決定することが好ましい。 [0023] In the eccentric weight described in (3) above, the larger the thickness of the thin region and Z or hole in each connecting portion, the lighter the total weight of the eccentric weight and the eccentric weight. The advantage that the amount of eccentricity in can be increased is obtained. On the other hand, if the thickness of the thin area and Z or hole in each connecting part is made too large, the mechanical strength of the connecting part will decrease and the reliability of the eccentric weight may be impaired. It becomes. Therefore, in the eccentric weight of the present invention, these benefits and disadvantages are weighed, It is preferred to determine the thin area and z or hole size at each connection.
[0024] また、上記 (4)に記載の偏心分銅においては、モータ軸に沿った方向から見た各 連結部の幅を細くすればするほど、偏心分銅の総重量を軽くするとともに、偏心分銅 における偏心量を大きくすることができるという利益が得られる。その一方において、 各連結部の幅を細くしすぎると、連結部の機械的強度が低下して偏心分銅の信頼性 を損ねるという不利益が生じてしまうこととなる。そこで、本発明の偏心分銅において は、これらの利益と不利益とを衡量して、モータ軸に沿った方向力 見た各連結部の 幅を決定することが好まし 、。  [0024] In the eccentric weight described in (4), the total weight of the eccentric weight is reduced as the width of each connecting portion as viewed from the direction along the motor shaft is reduced. The advantage that the amount of eccentricity in can be increased is obtained. On the other hand, if the width of each connecting portion is made too narrow, the mechanical strength of the connecting portion is lowered, and the disadvantage of deteriorating the reliability of the eccentric weight is caused. Therefore, in the eccentric weight of the present invention, it is preferable to determine the width of each connecting portion in view of the directional force along the motor shaft by weighing these advantages and disadvantages.
[0025] 上記(1)一(4)に記載の偏心分銅において、「半周以上」とは、分銅の長手方向に 垂直な平面における分銅の外周全体に対する半周以上のことである。なお、分銅は 、分銅の長手方向全体に渡って分銅保持部に保持されていてもよいが、必ずしも分 銅の長手方向全体に渡って分銅保持部に保持されて 、る必要はな 、。  [0025] In the eccentric weight described in (1) -1 (4) above, "half or more" means more than half of the entire circumference of the weight in a plane perpendicular to the longitudinal direction of the weight. The weight may be held in the weight holding portion over the entire length of the weight, but is not necessarily held in the weight holding portion over the entire length of the weight.
[0026] また、上記(1)一(4)のいずれかに記載の偏心分銅において、モータ軸保持部は、 モータ軸を全周に渡って保持することができるようなモータ軸保持部であってもよ 、し 、一方側に設けられた開口部力もモータ軸を挿入後、この開口部をかしめて接合す ることにより、モータ軸を例えば三方力 保持することのできるようなモータ軸保持部 であってもよい。  [0026] In the eccentric weight according to any one of (1) and (4), the motor shaft holding portion is a motor shaft holding portion that can hold the motor shaft over the entire circumference. However, the opening force provided on the one side can also hold the motor shaft by, for example, three-way force by caulking and joining the opening after inserting the motor shaft. It may be.
[0027] (5)上記(1)又は(3)に記載の偏心分銅においては、前記薄肉領域は、前記モータ 軸保持部における前記モータ軸に沿った長さの 50%以下の値の肉厚を有すること が好ましい。  [0027] (5) In the eccentric weight described in (1) or (3) above, the thin region has a thickness of 50% or less of a length along the motor shaft in the motor shaft holding portion. It is preferable to have
[0028] このように構成することにより、連結部の重量を十分に軽くすることができるようにな るため、偏心分銅の総重量をさらに軽くするとともに、偏心分銅における偏心量をさら に大きくすることができるようになる。このため、このような偏心分銅を用いることにより 、さらに軽量かっさらに少ない消費電力で必要な振動量が得られる振動モータを構 成することができる。  [0028] With this configuration, the weight of the connecting portion can be sufficiently reduced, so that the total weight of the eccentric weight is further reduced and the amount of eccentricity in the eccentric weight is further increased. Will be able to. For this reason, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and even less power consumption.
[0029] (6)上記(1)、(3)又は(5)に記載の偏心分銅においては、前記薄肉領域は、リブを 有することが好ましい。  [0029] (6) In the eccentric weight described in (1), (3) or (5) above, the thin region preferably has a rib.
[0030] このように構成することにより、連結部の機械的強度を高めることができるため、さら に信頼性の高い振動モータを構成することができるようになる。また、連結部の機械 的強度を高めることができることから、連結部における薄肉領域又は穴を大きくして、 連結部の重量をさらに軽くすることもできるようになる。このため、偏心分銅の総重量 をさらに軽くするとともに、偏心分銅における偏心量をさらに大きくすることができるよ うになる。このため、このような偏心分銅を用いることにより、さらに軽量かっさらに少 ない消費電力で必要な振動量が得られる振動モータを構成することができる。 [0030] With this configuration, the mechanical strength of the connecting portion can be increased. In addition, a highly reliable vibration motor can be configured. In addition, since the mechanical strength of the connecting portion can be increased, it is possible to further reduce the weight of the connecting portion by enlarging the thin area or hole in the connecting portion. For this reason, the total weight of the eccentric weight can be further reduced, and the eccentric amount of the eccentric weight can be further increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with a lighter and less power consumption.
[0031] (7)上記(1)一(6)のいずれかに記載の偏心分銅においては、前記分銅を偏心分銅 の外周側力 保持する外周部分における前記分銅保持部の肉厚 (モータ軸の径方 向に沿った方向の肉厚)は、 0. 4mm以下であることが好ましい。  [0031] (7) In the eccentric weight according to any one of (1) and (6) above, the thickness of the weight holding portion in the outer peripheral portion that holds the weight on the outer peripheral side of the eccentric weight (of the motor shaft) The thickness in the direction along the radial direction is preferably 0.4 mm or less.
[0032] このように構成することにより、分銅をできるだけ外周部に配置するとともに、分銅を できるだけ大きくすることができるようになる。このため、偏心分銅における偏心量をさ らに大きくすることができる。このため、このような偏心分銅を用いることにより、さらに 少ない消費電力で必要な振動量が得られる振動モータを構成することができる。 この観点力も言えば、前記外周部分における前記分銅保持部の肉厚は、 0. 3mm 以下であることがより好ましぐ 0. 2mm以下であることがさらに好ましい。  [0032] With this configuration, the weight can be arranged on the outer peripheral portion as much as possible, and the weight can be made as large as possible. For this reason, the amount of eccentricity in the eccentric weight can be further increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with less power consumption. Speaking of this viewpoint power, the thickness of the weight holding portion in the outer peripheral portion is more preferably 0.3 mm or less, and further preferably 0.2 mm or less.
[0033] (8)上記(1)一(7)のいずれかに記載の偏心分銅においては、前記モータ軸保持部 の肉厚(モータ軸の径方向に沿った方向の肉厚)は、 0. 4mm以下であることが好ま しい。  (8) In the eccentric weight according to any one of (1) and (7) above, the thickness of the motor shaft holding portion (thickness in the direction along the radial direction of the motor shaft) is: It is preferable to be 4mm or less.
[0034] このように構成することにより、偏心分銅の総重量をさらに軽くするとともに、偏心分 銅における偏心量をさらに大きくすることができるようになる。このため、このような偏 心分銅を用いることにより、さらに軽量かっさらに少ない消費電力で必要な振動量が 得られる振動モータを構成することができる。  With such a configuration, the total weight of the eccentric weight can be further reduced, and the amount of eccentricity in the eccentric weight can be further increased. For this reason, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
この観点力 言えば、前記モータ軸保持部の肉厚は、 0. 3mm以下であることがよ り好ましぐ 0. 2mm以下であることがさらに好ましい。  From this viewpoint, the thickness of the motor shaft holding portion is more preferably 0.3 mm or less, and even more preferably 0.2 mm or less.
[0035] (9)上記(1)又は(3)に記載の偏心分銅においては、前記薄肉領域又は前記穴は、 切削加工法によって形成されて!、ることが好ま 、。  [0035] (9) In the eccentric weight described in (1) or (3), it is preferable that the thin region or the hole is formed by a cutting method!
[0036] このように構成することにより、比較的簡単な方法で上記(1)又は(3)に記載の偏心 分銅を製造することができる。切削加工法は、例えばエンドミルを用いて行うことが好 ましい。 [0036] With this configuration, the eccentric weight described in (1) or (3) can be manufactured by a relatively simple method. The cutting method is preferably performed using an end mill, for example. Good.
[0037] (10)上記(1)一(8)のいずれかに記載の偏心分銅においては、前記分銅支持体又 は前記薄板部材は、金属粉末射出成形法によって製造されて 、ることが好ま 、。  (10) In the eccentric weight according to any one of (1) and (8) above, it is preferable that the weight support or the thin plate member is manufactured by a metal powder injection molding method. ,.
[0038] このように構成することにより、比較的簡単な方法で上記(1)一(8)のいずれかに記 載の偏心分銅を製造することができる。この場合、切削加工法によって製造するより も、分銅保持部やモータ軸保持部における肉厚を薄く形成することができるため、さ らに軽量かっさらに少ない消費電力で必要な振動量が得られる振動モータを構成す ることができる。また、切削加工法によって製造する場合と比較して、材料の無駄が 少なくなるという効果も得られる。さらにまた、偏心分銅における分銅支持体及び分 銅の形状の自由度を増すことができるという効果も得られる。  [0038] With this configuration, the eccentric weight described in any one of (1) and (8) can be manufactured by a relatively simple method. In this case, the thickness of the weight holding part and motor shaft holding part can be made thinner than that produced by the cutting method. A motor can be configured. In addition, there is an effect that the waste of material is reduced as compared with the case of manufacturing by a cutting method. Furthermore, the effect that the freedom degree of the weight support body and weight in an eccentric weight can be increased is also acquired.
[0039] (11)上記(1)一(8)のいずれかに記載の偏心分銅においては、前記分銅支持体又 は前記薄板部材は、プレス絞り加工法によって製造されて 、ることが好ま 、。  [0039] (11) In the eccentric weight according to any one of (1) and (8) above, the weight support or the thin plate member is preferably manufactured by a press drawing method. .
[0040] このように構成することによつても、比較的簡単な方法で上記(1)一(8)のいずれか に記載の偏心分銅を製造することができる。この場合、金属微粉末射出成型法によ つて製造するよりも、分銅保持部やモータ軸保持部における肉厚を薄く形成すること ができるため、さらに軽量かっさらに少ない消費電力で必要な振動量が得られる振 動モータを構成することができる。また、切削加工法によって製造する場合と比較し て、材料の無駄が少なくなるという効果も得られる。  [0040] With this configuration as well, the eccentric weight described in any one of (1) and (8) above can be manufactured by a relatively simple method. In this case, the thickness of the weight holding part and the motor shaft holding part can be made thinner than that produced by the metal fine powder injection molding method, so the required amount of vibration can be reduced with lighter weight and even less power consumption. The resulting vibration motor can be configured. In addition, as compared with the case of manufacturing by a cutting method, there is an effect that material waste is reduced.
[0041] (12)上記(1)一(11)のいずれかに記載の偏心分銅においては、前記分銅は全周 に渡って前記分銅保持部に保持されて ヽることが好ま 、。  [0041] (12) In the eccentric weight according to any one of (1) and (11) above, it is preferable that the weight is held by the weight holding portion over the entire circumference.
[0042] このように構成することにより、分銅は全周に渡って分銅支持体における分銅保持 部に保持されることになる。このため、振動モータを長時間使用した場合に分銅と分 銅支持体との接合の信頼性が低下することがさらに抑制される。  With this configuration, the weight is held by the weight holding portion in the weight support over the entire circumference. For this reason, when the vibration motor is used for a long time, it is further suppressed that the reliability of the connection between the weight and the weight support is lowered.
[0043] なお、この場合において、「全周」とは、分銅の長手方向に垂直な平面における分 銅の外周全体のことである。  In this case, the “entire circumference” means the entire outer circumference of the weight in a plane perpendicular to the longitudinal direction of the weight.
[0044] (13)上記(1)一(12)のいずれか〖こ記載の偏心分銅においては、前記分銅を構成 する高比重金属よりも比重の低 、金属は、ステンレス鋼であることが好ま 、。  (13) In the eccentric weight described in any one of the above (1) and (12), the specific gravity is lower than the high specific gravity metal constituting the weight, and the metal is preferably stainless steel. ,.
[0045] 一般に分銅を構成する材料 (例えば、タングステン、タングステン合金など。 )は耐 食性が低く鲭びやすい傾向にあるので、従来より偏心分銅全体を耐食性が高く鲭び にくい材料 (例えば、ニッケル。)でメツキすることが行われている。し力しながら、この ような場合、偏心分銅とメツキ膜との接合部分及びメツキ膜自身にひびが入り易ぐそ の結果、このひびなどに起因して鲭びが発生し易くなる。このため、モータ軸保持部 におけるモータ軸の保持に関する信頼性が低下するという問題があった。これに対し て、ステンレス鋼はもともと耐食性が高く鲭びにくい材料であるので、メツキを施すこと が不要になる。このため、偏心分銅とメツキ膜との間の接合部分でひびが入るというこ とがなくなり、モータ軸保持部におけるモータ軸の保持に関する信頼性が低下するこ とが抑制される。 [0045] In general, materials constituting weights (for example, tungsten, tungsten alloys, etc.) Since the corrosion resistance tends to be low and it tends to crack, the eccentric weight as a whole has been conventionally made of a material that is highly corrosion resistant and difficult to crack (for example, nickel). However, in such a case, cracks are likely to occur in the joint portion between the eccentric weight and the plating film and in the plating film itself. As a result, cracks are likely to occur due to the cracks. For this reason, there has been a problem that the reliability related to holding the motor shaft in the motor shaft holding portion decreases. On the other hand, stainless steel is originally a material with high corrosion resistance and resistance to cracking, so it is not necessary to apply a plating. For this reason, cracks do not occur at the joint between the eccentric weight and the plating film, and it is possible to suppress a decrease in reliability related to holding the motor shaft in the motor shaft holding portion.
[0046] また、一般に分銅を構成する材料 (例えば、タングステン、タングステン合金など。 ) は脆いため、割れ易いという問題があった。これに対して、ステンレス鋼は粘りがある ため、このような脆くて割れやすい分銅をステンレス鋼で半周以上に渡って保持する ことにより、分銅を構成する材料が割れ易いという問題も抑制される。  [0046] In addition, there is a problem that a material constituting the weight (for example, tungsten, tungsten alloy, etc.) is generally fragile and easily broken. On the other hand, since stainless steel is sticky, by holding such a brittle and fragile weight with stainless steel for more than half a circumference, the problem that the material constituting the weight is easily broken is also suppressed.
[0047] また、一般に分銅を構成する材料 (例えば、タングステン、タングステン合金など。 ) は高価であるため、偏心分銅の製造コストを下げるのが容易ではないという問題があ つた。これに対して、ステンレス鋼はタングステンやタングステン合金などに比べると 安価であるため、このような比較的安価なステンレス鋼で分銅支持体を構成すること により、偏心分銅の製造コストを下げることが可能になる。  [0047] In addition, since materials (for example, tungsten and tungsten alloys) constituting weights are generally expensive, there is a problem that it is not easy to reduce the manufacturing cost of eccentric weights. On the other hand, since stainless steel is less expensive than tungsten or tungsten alloy, it is possible to reduce the manufacturing cost of eccentric weight by configuring a weight support with such relatively inexpensive stainless steel. become.
[0048] ステンレス鋼としては、モータに与える影響を小さなものにするために、非磁性のス テンレス鋼を好ましく用いることができる。  [0048] As the stainless steel, non-magnetic stainless steel can be preferably used in order to reduce the influence on the motor.
[0049] (14)上記(1)一(13)のいずれかに記載の偏心分銅においては、前記分銅は、タン ダステン、タングステン合金、オスミウム、オスミウム合金、金、金合金、イリジウム又は イリジウム合金力 なることが好まし 、。  [0049] (14) In the eccentric weight according to any one of the above (1) and (13), the weight is selected from the group consisting of tandasten, tungsten alloy, osmium, osmium alloy, gold, gold alloy, iridium or iridium alloy. I prefer to be.
[0050] このように構成することにより、タングステン、タングステン合金、オスミウム、ォスミゥ ム合金、金、金合金、イリジウム又はイリジウム合金は極めて比重が高いため、偏心 分銅における偏心量をさらに大きくすることができる。このため、このような偏心分銅を 用いることにより、さらに少ない消費電力で必要な振動量が得られる振動モータを構 成することができる。 [0051] なお、本発明の偏心分銅においては、分銅には、モータ軸を保持するための機能 は必要ないため、分銅の形状として極めて単純な形状 (例えば、円、長円、扇形など の断面を有する棒形状。)を採用することができるようになる。このため、分銅として、 分銅の形状に焼結した焼結体や、分銅の断面形状 (例えば、円、長円、扇形など。 ) と同じ断面形状を有する異形棒力 なる焼結体を短く切断したものを用いることがで きる。また、丸棒からなる焼結体を削り出して分銅の断面形状と同じ断面形状に加工 した切削体を短く切断したものを用いることもできる。また、分銅の断面形状が円であ る場合には、丸棒力もなる焼結体をそのまま短く切断したものを用いることもできる。 [0050] With this configuration, tungsten, tungsten alloy, osmium, osmium alloy, gold, gold alloy, iridium or iridium alloy has an extremely high specific gravity, and therefore the amount of eccentricity in the eccentric weight can be further increased. . Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with less power consumption. [0051] In the eccentric weight of the present invention, since the weight does not need a function for holding the motor shaft, the weight has a very simple shape (for example, a cross-section such as a circle, an ellipse, or a sector). Can be adopted. For this reason, as a weight, a sintered body sintered in the shape of a weight, or a sintered body with a deformed bar force having the same cross-sectional shape as a weight (for example, a circle, an ellipse, a fan shape, etc.) is cut short. Can be used. In addition, it is possible to use a cut body obtained by cutting a sintered body made of a round bar and cutting it into the same cross-sectional shape as that of the weight. In addition, when the cross-sectional shape of the weight is a circle, a sintered body that also has a round bar force can be used as it is cut short.
[0052] (15)上記(1)一(14)のいずれかに記載の偏心分銅においては、前記分銅は、前記 モータ軸保持部の中心軸を含む所定の第 1平面を対称面とする面対称の形状を有 することが好ましい。  [0052] (15) In the eccentric weight according to any one of (1) and (14), the weight is a plane having a predetermined first plane including the central axis of the motor shaft holding portion as a symmetry plane. It preferably has a symmetrical shape.
[0053] このように構成することにより、分銅をいずれの端部側力 分銅保持部に挿入するこ ともできるようになるため、分銅保持部に分銅を配置する際の自由度が高まり、作業 性が向上する。このため、偏心分銅を製造する際の製造コストを低いものにすること ができる。  [0053] With this configuration, the weight can be inserted into any of the end side force weight holding portions, so the degree of freedom when placing the weight in the weight holding portion is increased, and workability is improved. Will improve. For this reason, the manufacturing cost at the time of manufacturing an eccentric weight can be made low.
[0054] 上記(15)に記載の偏心分銅において、「モータ軸保持部の中心軸」とは、モータ 軸保持部がモータ軸を保持した場合にモータ軸の中心軸が位置することになる軸の ことである。  [0054] In the eccentric weight described in (15) above, "the central axis of the motor shaft holding portion" is an axis on which the central axis of the motor shaft is located when the motor shaft holding portion holds the motor shaft. That is.
[0055] 本発明の偏心分銅は、分銅を分銅支持体における分銅保持部に挿入した状態で [0055] The eccentric weight of the present invention has a weight inserted into a weight holding portion in a weight support.
、分銅支持体をかしめることにより製造することができる。 It can be manufactured by caulking a weight support.
[0056] また、本発明の偏心分銅は、分銅を分銅支持体における分銅保持部に締めしろを もって圧人すること〖こより製造することもできる。 [0056] Further, the eccentric weight of the present invention can also be manufactured by pressing the weight with a weight holding portion on the weight support in the weight support.
[0057] また、本発明の偏心分銅は、分銅支持体の温度を分銅の温度よりも高くした状態で[0057] Further, the eccentric weight of the present invention is a state where the temperature of the weight support is higher than the temperature of the weight.
、分銅を分銅支持体における分銅保持部に挿入することにより製造することもできる。 It can also be manufactured by inserting a weight into a weight holding part in the weight support.
[0058] また、本発明の偏心分銅は、分銅と分銅支持体とを接合することにより製造すること もできる。この場合、接合は、分銅と分銅支持体とを接着することによって行うこともで きるし、分銅と分銅支持体とをロウ付けすることによって行うこともできるし、分銅と分 銅支持体とを溶着することによって行うこともできる。 [0059] また、本発明の偏心分銅は、上記した方法を併用することもできる。例えば、力しめ 後に接着剤を塗布したり、ロウ付け後に接着剤を塗布したり、カゝしめ後にスポット溶接 を行ったり、スポット溶接後にロウ付け等を施したりすることによって製造することもで きる。 [0058] The eccentric weight of the present invention can also be produced by joining a weight and a weight support. In this case, the joining can be performed by bonding the weight and the weight support, or by brazing the weight and the weight support, or the weight and the weight support can be joined together. It can also be performed by welding. [0059] The eccentric weight of the present invention can be used in combination with the above-described method. For example, it can be manufactured by applying adhesive after crimping, applying adhesive after brazing, spot welding after crimping, or brazing after spot welding, etc. .
[0060] いずれの製造方法を用いた場合にも、分銅は半周以上に渡って分銅保持部に保 持されることになるため、分銅は分銅支持体にしっかりと保持される。このため、振動 モータを長時間使用した場合に分銅と分銅支持体との接合の信頼性が低下すること 力 Sさらに抑制されるようになる。  [0060] Regardless of which manufacturing method is used, the weight is held in the weight holding portion over a half circumference, so that the weight is firmly held on the weight support. For this reason, when the vibration motor is used for a long time, the reliability of the connection between the weight and the weight support decreases.
[0061] (16)本発明の振動モータは、モータ本体と、上記(1)一(15)のいずれかに記載の 偏心分銅とを備えたことを特徴とする。  (16) A vibration motor according to the present invention includes a motor body and the eccentric weight according to any one of (1) and (15) above.
[0062] このため、本発明の振動モータによれば、上記したように、軽量かつ少ない消費電 力で必要な振動量が得られる振動モータに好適に用いることができる偏心分銅であ つて、このような振動モータを長時間使用した場合に分銅と分銅支持体との接合の信 頼性が低下することが抑制された優れた偏心分銅を備えているため、軽量かつ少な V、消費電力で必要な振動量が得られ、長時間信頼性の高!、振動モータとなる。  [0062] Therefore, according to the vibration motor of the present invention, as described above, an eccentric weight that can be suitably used for a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption. This is equipped with an excellent eccentric weight that suppresses the decrease in reliability of the connection between the weight and the weight support when the vibration motor is used for a long time. A large amount of vibration can be obtained, and long-term reliability is achieved, resulting in a vibration motor.
[0063] (17)本発明の携帯機器は、上記(16)に記載の振動モータを備えたことを特徴とす る。  [0063] (17) A portable device of the present invention includes the vibration motor according to (16).
[0064] このため、本発明の携帯機器によれば、軽量かつ少ない消費電力で必要な振動量 が得られ、長時間信頼性の高い振動モータを備えているため、軽量かつ少ない消費 電力で必要な振動量が得られ、長時間信頼性の高!、携帯機器となる。  [0064] For this reason, according to the portable device of the present invention, a necessary amount of vibration can be obtained with light weight and low power consumption, and since a vibration motor with high reliability for a long time is provided, light weight and low power consumption are required. A large amount of vibration can be obtained, long-term reliability is high, and it becomes a portable device.
図面の簡単な説明  Brief Description of Drawings
[0065] [図 1]実施形態 1に係る偏心分銅を説明するために示す図である。 [0065] FIG. 1 is a view for explaining an eccentric weight according to a first embodiment.
[図 2]実施形態 1に係る振動モータを説明するために示す図である。  FIG. 2 is a view for explaining the vibration motor according to the first embodiment.
[図 3]実施形態 2に係る偏心分銅を説明するために示す図である。  FIG. 3 is a view for explaining an eccentric weight according to the second embodiment.
[図 4]実施形態 3に係る偏心分銅を説明するために示す図である。  FIG. 4 is a view for explaining an eccentric weight according to a third embodiment.
[図 5]実施形態 4に係る偏心分銅を説明するために示す図である。  FIG. 5 is a view for explaining an eccentric weight according to a fourth embodiment.
[図 6]実施形態 5に係る偏心分銅を説明するために示す図である。  FIG. 6 is a view for explaining an eccentric weight according to the fifth embodiment.
[図 7]実施形態 6に係る偏心分銅を説明するために示す図である。 [図 8]実施形態 7に係る偏心分銅を説明するために示す図である。 FIG. 7 is a view for explaining an eccentric weight according to the sixth embodiment. FIG. 8 is a view for explaining an eccentric weight according to the seventh embodiment.
[図 9]実施形態 8に係る偏心分銅を説明するために示す図である。  FIG. 9 is a view for explaining an eccentric weight according to an eighth embodiment.
[図 10]実施形態 9に係る偏心分銅を説明するために示す図である。  FIG. 10 is a view for explaining an eccentric weight according to the ninth embodiment.
[図 11]実施形態 9に係る偏心分銅を製造するための製造方法を説明するために示す 図である。  FIG. 11 is a view for explaining a manufacturing method for manufacturing the eccentric weight according to the ninth embodiment.
[図 12]実施形態 10に係る偏心分銅を説明するために示す図である。  FIG. 12 is a view for explaining an eccentric weight according to the tenth embodiment.
[図 13]実施形態 11に係る偏心分銅を説明するために示す図である。  FIG. 13 is a view for explaining an eccentric weight according to the eleventh embodiment.
[図 14]実施形態 12に係る偏心分銅を説明するために示す図である。  FIG. 14 is a view for explaining an eccentric weight according to the twelfth embodiment.
[図 15]実施形態 13に係る偏心分銅を説明するために示す図である。  FIG. 15 is a view for explaining an eccentric weight according to the thirteenth embodiment.
[図 16]実施形態 14に係る偏心分銅を説明するために示す図である。  FIG. 16 is a view for explaining an eccentric weight according to the fourteenth embodiment.
[図 17]実施形態 15に係る偏心分銅を説明するために示す図である。  FIG. 17 is a view for explaining an eccentric weight according to the fifteenth embodiment.
[図 18]実施形態 16に係る偏心分銅を説明するために示す図である。  FIG. 18 is a view for explaining an eccentric weight according to the sixteenth embodiment.
[図 19]実施形態 17に係る偏心分銅を説明するために示す図である。  FIG. 19 is a view for explaining an eccentric weight according to the seventeenth embodiment.
[図 20]実施形態 17に係る偏心分銅を用いた振動モータを説明するために示す図で ある。  FIG. 20 is a view for explaining the vibration motor using the eccentric weight according to the seventeenth embodiment.
[図 21]従来の振動モータ及び偏心分銅を説明するために示す図である。  FIG. 21 is a view for explaining a conventional vibration motor and an eccentric weight.
[図 22]従来の他の偏心分銅を説明するために示す図である。  FIG. 22 is a view for explaining another conventional eccentric weight.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0066] 以下、本発明の偏心分銅及びその製造方法並びに振動モータ及び携帯機器につ いて、図に示す実施の形態に基づいて説明する。  Hereinafter, the eccentric weight, the manufacturing method thereof, the vibration motor, and the portable device of the present invention will be described based on the embodiments shown in the drawings.
[0067] 〔実施形態 1〕  [Embodiment 1]
図 1は、実施形態 1に係る偏心分銅を説明するために示す図である。図 1 (a)は実 施形態 1に係る偏心分銅を正面から見た図であり、図 1 (b)は実施形態 1に係る偏心 分銅を正面から見た模式図であり、図 1 (c)は図 1 (a)の A— A断面図であり、図 1 (d) は図 1 (a)の B— B断面図であり、図 1 (e)は実施形態 1に係る偏心分銅の斜視図であ り、図 1 (f)は実施形態 1に係る偏心分銅の、図 1 (e)の裏面側力 見た斜視図である  FIG. 1 is a view for explaining an eccentric weight according to the first embodiment. Fig. 1 (a) is a front view of the eccentric weight according to Embodiment 1, and Fig. 1 (b) is a schematic view of the eccentric weight according to Embodiment 1 as viewed from the front. ) Is a cross-sectional view taken along the line A-A in FIG. 1 (a), FIG. 1 (d) is a cross-sectional view taken along the line B-B in FIG. 1 (a), and FIG. 1 (e) is a cross-sectional view of the eccentric weight according to the first embodiment. FIG. 1 (f) is a perspective view of the eccentric weight according to Embodiment 1 as seen from the rear side force in FIG. 1 (e).
[0068] 実施形態 1に係る偏心分銅 120は、図 1に示すように、略扇形状の断面を有する分 銅 140と、分銅支持体 130とを備えている。分銅 140は高比重金属力もなる。分銅支 持体 130は、分銅 140を構成する高比重金属よりも比重の低い金属力もなる。分銅 支持体 130は、分銅 140を全周に渡って保持する分銅保持部 134及びモータ軸 11 2 (図 2参照。)を保持するためのモータ軸保持部 132並びに分銅保持部 134及びモ ータ軸保持部 132を連結する連結部 136 (図 1 (b)で網掛けを付された部分)を有し ている。連結部 136は、分銅保持部 134とモータ軸保持部 132との間に位置してい る。連結部 136は、モータ軸 112に沿った片側に開口する薄肉領域 138を有してい る。 As shown in FIG. 1, the eccentric weight 120 according to the first embodiment has a substantially fan-shaped cross section. Copper 140 and weight support 130 are provided. Weight 140 also has high specific gravity metal power. The weight support body 130 also has a metal force having a specific gravity lower than that of the high specific gravity metal constituting the weight 140. The weight support body 130 includes a weight holding portion 134 for holding the weight 140 over the entire circumference and a motor shaft holding portion 132 for holding the motor shaft 11 2 (see FIG. 2), the weight holding portion 134 and the motor. It has a connecting part 136 (the part shaded in FIG. 1 (b)) for connecting the shaft holding part 132. The connecting part 136 is located between the weight holding part 134 and the motor shaft holding part 132. The connecting portion 136 has a thin region 138 that opens to one side along the motor shaft 112.
[0069] このため、実施形態 1に係る偏心分銅 120によれば、偏心分銅を、高比重金属から なる分銅 140と、分銅 140を構成する高比重金属よりも比重の低い金属力もなる分銅 支持体 130とを備えた偏心分銅 120としたため、偏心分銅 120の総重量を軽くすると ともに、偏心分銅 120における偏心量を大きくすることができる。このため、このような 偏心分銅 120を用いることにより、軽量かつ少ない消費電力で必要な振動量が得ら れる振動モータを構成することができる。  [0069] Therefore, according to the eccentric weight 120 according to the first embodiment, the eccentric weight includes the weight 140 made of a high specific gravity metal and the weight support having a lower specific gravity than the high specific gravity metal constituting the weight 140. Thus, the total weight of the eccentric weight 120 can be reduced and the amount of eccentricity of the eccentric weight 120 can be increased. Therefore, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
[0070] また、実施形態 1に係る偏心分銅 120によれば、分銅 140を全周に渡って分銅支 持体 130における分銅保持部 134に保持させることとしたため、振動モータ (及び偏 心分銅 120)を長時間使用した場合に分銅 140と分銅支持体 130との接合の信頼性 が低下することが抑制される。このため、このような偏心分銅 120を用いることにより、 長期信頼性の高 、振動モータを構成することができる。  Further, according to the eccentric weight 120 according to the first embodiment, the weight 140 is held by the weight holding portion 134 of the weight support 130 over the entire circumference, so that the vibration motor (and the eccentric weight 120) is also provided. ) Is used for a long time, it is possible to prevent the reliability of bonding between the weight 140 and the weight support 130 from being lowered. Therefore, by using such an eccentric weight 120, it is possible to configure a vibration motor with high long-term reliability.
[0071] また、実施形態 1に係る偏心分銅 120によれば、分銅保持部 134及びモータ軸保 持部 132を連結する連結部 136に所定の薄肉領域 138を設けるようにしたため、偏 心分銅の総重量を軽くするとともに、偏心分銅における偏心量をさらに大きくすること ができる。このため、このような偏心分銅を用いることにより、さらに軽量かっさらに少 ない消費電力で必要な振動量が得られる振動モータを構成することができる。  In addition, according to the eccentric weight 120 according to the first embodiment, the predetermined thin region 138 is provided in the connecting portion 136 that connects the weight holding portion 134 and the motor shaft holding portion 132. The total weight can be reduced and the amount of eccentricity in the eccentric weight can be further increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with a lighter and less power consumption.
[0072] なお、分銅支持体 130には、分銅 140を保持するために分銅 140の断面形状に対 応する形状を有する穴が形成されて ヽるが、実施形態 1に係る偏心分銅 120におい ては、この穴の周囲の部分を分銅保持部 134という。また、分銅支持体 130には、モ ータ軸 112を保持するためにモータ軸 112の断面形状に対応する形状を有する穴 が形成されているが、実施形態 1に係る偏心分銅 120においては、この穴の周囲の 部分をモータ軸保持部 132という。従って、連結部 136は、図 1 (b)に示すように、分 銅保持部 134とモータ軸保持部 132とを連結して 、る。 [0072] It should be noted that a hole having a shape corresponding to the cross-sectional shape of the weight 140 is formed in the weight support 130 to hold the weight 140, but in the eccentric weight 120 according to the first embodiment, the hole is formed. The portion around this hole is called a weight holding portion 134. Further, the weight support 130 has a hole having a shape corresponding to the cross-sectional shape of the motor shaft 112 in order to hold the motor shaft 112. However, in the eccentric weight 120 according to the first embodiment, a portion around this hole is referred to as a motor shaft holding portion 132. Therefore, the connecting portion 136 connects the weight holding portion 134 and the motor shaft holding portion 132 as shown in FIG. 1 (b).
[0073] また、実施形態 1に係る偏心分銅 120において、「全周」とは、分銅 140の長手方向 に垂直な平面における分銅 140の外周全体のことである。  In the eccentric weight 120 according to the first embodiment, “the entire circumference” is the entire outer periphery of the weight 140 in a plane perpendicular to the longitudinal direction of the weight 140.
[0074] 実施形態 1に係る偏心分銅 120においては、図 1 (c)及び図 1 (d)に示すように、分 銅 140におけるモータ軸 112に沿った(分銅 140の長手方向に沿った)長さは 4mm である。また、分銅支持体 130の分銅保持部 134におけるモータ軸 112に沿った長 さは 2mmであり、分銅支持体 130のモータ軸保持部 132におけるモータ軸 112に沿 つた長さも 2mmである。また、分銅支持体 130の連結部 136における薄肉領域 138 の肉厚(モータ軸 112に沿った方向の肉厚)は、 0. 2mmである。  In the eccentric weight 120 according to the first embodiment, as shown in FIGS. 1 (c) and 1 (d), along the motor shaft 112 in the weight 140 (along the longitudinal direction of the weight 140). The length is 4mm. Further, the length along the motor shaft 112 in the weight holder 134 of the weight support 130 is 2 mm, and the length along the motor shaft 112 in the motor shaft holder 132 of the weight support 130 is also 2 mm. Further, the thickness (thickness in the direction along the motor shaft 112) of the thin region 138 in the connecting portion 136 of the weight support 130 is 0.2 mm.
[0075] このため、実施形態 1に係る偏心分銅 120においては、分銅 140は、分銅 140の長 手方向に沿った長さ(4mm)の半分の長さ(2mm)の部分において分銅支持体 130 における分銅保持部 134に保持されている。その結果、分銅 140は、分銅支持体 13 0にしつ力り保持されることになる。  For this reason, in the eccentric weight 120 according to the first embodiment, the weight 140 has a weight support 130 in a half length (2 mm) of the length (4 mm) along the length direction of the weight 140. Is held by the weight holder 134. As a result, the weight 140 is held on the weight support 130 by tension.
[0076] また、実施形態 1に係る偏心分銅 120においては、薄肉領域 138は、モータ軸保持 部 132におけるモータ軸 112に沿った長さの 10%の値の肉厚を有している。すなわ ち、薄肉領域 138は、 1. 8mmの深さの部分が切削により削除された形状を有してい るため、連結部 136の重量を十分に軽くすることができるようになり、偏心分銅 120の 総重量をさらに軽くするとともに、偏心分銅 120における偏心量をさらに大きくするこ とができるようになる。このため、このような偏心分銅 120を用いることにより、さらに軽 量かっさらに少ない消費電力で必要な振動量が得られる振動モータを構成すること ができる。  In the eccentric weight 120 according to the first embodiment, the thin region 138 has a thickness that is 10% of the length along the motor shaft 112 in the motor shaft holding portion 132. In other words, the thin wall region 138 has a shape in which a portion having a depth of 1.8 mm is removed by cutting, so that the weight of the connecting portion 136 can be sufficiently reduced, and an eccentric weight is obtained. The total weight of 120 can be further reduced, and the eccentric amount of the eccentric weight 120 can be further increased. For this reason, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
[0077] 実施形態 1に係る偏心分銅 120においては、分銅 140を偏心分銅 120の外周側か ら保持する外周部分における、分銅保持部 134のモータ軸 112の径方向に沿った方 向の肉厚は、 0. 25mmである。  In the eccentric weight 120 according to the first embodiment, the thickness in the radial direction of the motor shaft 112 of the weight holding portion 134 in the outer peripheral portion that holds the weight 140 from the outer peripheral side of the eccentric weight 120. Is 0.25 mm.
[0078] このため、実施形態 1に係る偏心分銅 120においては、分銅 140をできるだけ外周 部に配置するとともに、分銅 140をできるだけ大きくすることができるため、偏心分銅 1 20における偏心量をさらに大きくすることができる。このため、このような偏心分銅 12 0を用いることにより、さらに少ない消費電力で必要な振動量が得られる振動モータを 構成することができる。 For this reason, in the eccentric weight 120 according to the first embodiment, the weight 140 can be arranged on the outer peripheral portion as much as possible, and the weight 140 can be made as large as possible. The amount of eccentricity at 20 can be further increased. Therefore, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with less power consumption.
[0079] 実施形態 1に係る偏心分銅 120においては、モータ軸保持部 132のモータ軸 112 の径方向に沿った方向の肉厚は、 0. 2mmである。  In the eccentric weight 120 according to the first embodiment, the thickness of the motor shaft holder 132 in the direction along the radial direction of the motor shaft 112 is 0.2 mm.
[0080] このため、実施形態 1に係る偏心分銅 120においては、偏心分銅 120の総重量を さらに軽くするとともに、偏心分銅 120における偏心量をさらに大きくすることができる 。このため、このような偏心分銅 120を用いることにより、さらに軽量かっさらに少ない 消費電力で必要な振動量が得られる振動モータを構成することができる。  Therefore, in the eccentric weight 120 according to the first embodiment, the total weight of the eccentric weight 120 can be further reduced, and the amount of eccentricity in the eccentric weight 120 can be further increased. For this reason, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
[0081] 実施形態 1に係る偏心分銅 120においては、図 1に示すように、分銅 140は、断面 が略扇形状を有しており、モータ軸保持部 132の中心軸を含む所定の第 1平面(図 1 (a)中、 A— Aで示す。)を対称面とする面対称の形状を有している。  In the eccentric weight 120 according to the first embodiment, as shown in FIG. 1, the weight 140 has a substantially fan-shaped cross section, and includes a predetermined first weight including the central axis of the motor shaft holding portion 132. It has a plane-symmetric shape with a plane (indicated by A–A in Fig. 1 (a)) as a plane of symmetry.
[0082] このため、実施形態 1に係る偏心分銅 120においては、分銅 140をいずれの端部( 図 1 (c)に示す端部 S , S参照。 M則力も分銅保持部 134に挿入することもできるよう  [0082] Therefore, in the eccentric weight 120 according to the first embodiment, the weight 140 is inserted into any end portion (see the end portions S and S shown in FIG. 1 (c). The M-law force is also inserted into the weight holding portion 134. Can also
1 2  1 2
になるため、分銅保持部 134に分銅 140を配置する際の自由度が高まり、作業性が 向上する。このため、偏心分銅 120を製造する際の製造コストを低いものにすること ができる。  Therefore, the degree of freedom when placing the weight 140 on the weight holding portion 134 is increased, and the workability is improved. For this reason, the manufacturing cost at the time of manufacturing the eccentric weight 120 can be made low.
[0083] なお、ここで、 「モータ軸保持部 132の中心軸」とは、モータ軸保持部 132がモータ 軸 112 (図 2参照。)を保持した場合にモータ軸 112の中心軸が位置することになる 軸のことである。  Here, “the central axis of the motor shaft holding portion 132” means that the central axis of the motor shaft 112 is located when the motor shaft holding portion 132 holds the motor shaft 112 (see FIG. 2). It is the axis that will be.
[0084] 実施形態 1に係る偏心分銅 120においては、分銅 140は、タングステン焼結合金か らなり、分銅支持体 130は、タングステン合金よりも比重の低い熔成材のステンレス鋼 からなる。  In the eccentric weight 120 according to the first embodiment, the weight 140 is made of a tungsten sintered alloy, and the weight support 130 is made of a molten stainless steel having a specific gravity lower than that of the tungsten alloy.
[0085] このため、分銅支持体 130は分銅 140を構成するタングステン焼結合金よりも比重 の低い熔成材のステンレス鋼力もなるため、分銅支持体 130の耐久性が向上すると ともに、分銅支持体 130と分銅 140とをより強固に一体化させることができるようになり 、振動モータ (及び偏心分銅 120)を長時間使用した場合に分銅 140と分銅支持体 1 30との接合の信頼性が低下することがさらに抑制される。このため、このような偏心分 銅 120を用いることにより、長期信頼性の高い振動モータを構成することができる。 [0085] For this reason, since the weight support 130 also has a stainless steel strength of a molten material having a specific gravity lower than that of the tungsten sintered alloy constituting the weight 140, the weight support 130 is improved in durability and the weight support 130 is improved. And the weight 140 can be integrated more firmly, and the reliability of the connection between the weight 140 and the weight support 1 30 is reduced when the vibration motor (and the eccentric weight 120) is used for a long time. This is further suppressed. For this reason, such eccentricity By using copper 120, a vibration motor with high long-term reliability can be configured.
[0086] また、ステンレス鋼はもともと耐食性が高く鲭びにく!、材料であるので、これを分銅 支持体として用いたとしてもメツキを施すことが不要になる。その結果、分銅支持体 1 30とメツキ膜との接合部分及びメツキ膜自身にでひびが入るということがなくなり、ひ びなどに起因して鲭びが発生するということがなくなり、モータ軸保持部 132における モータ軸 112の保持に関する信頼性が低下することが抑制される。 [0086] Since stainless steel is originally a material with high corrosion resistance and resistance to rust, it is not necessary to apply a plating even if it is used as a weight support. As a result, cracks do not occur at the joint between the weight support 130 and the plating film and the plating film itself, and no cracks are generated due to cracks, etc. It is suppressed that the reliability regarding the holding of the motor shaft 112 in 132 is lowered.
[0087] また、ステンレス鋼は粘りがあるため、タングステン合金のような脆くて割れやす!/、分 銅を粘りのあるステンレス鋼で全周に渡って保持することにより、分銅が割れ易 ヽと ヽ う問題も抑制される。 [0087] Further, since stainless steel is sticky, it is brittle and easily broken like a tungsten alloy! By holding the weight with sticky stainless steel over the entire circumference, the problem that the weight is easily cracked is also suppressed.
[0088] また、ステンレス鋼はタングステン合金などに比べると安価であるため、このような比 較的安価なステンレス鋼で分銅支持体 130を構成することにより、偏心分銅 120の製 造コストを下げることが容易になる。  [0088] Further, since stainless steel is less expensive than tungsten alloy and the like, the weight support body 130 is made of such a relatively inexpensive stainless steel, thereby reducing the manufacturing cost of the eccentric weight 120. Becomes easier.
[0089] 実施形態 1に係る偏心分銅 120においては、薄肉領域 138は、切削加工法によつ て形成されている。このため、実施形態 1に係る偏心分銅 120は、比較的簡単な方法 で製造することができる。切削加工法は、例えばエンドミルを用いて行う。  [0089] In the eccentric weight 120 according to the first embodiment, the thin region 138 is formed by a cutting method. For this reason, the eccentric weight 120 according to Embodiment 1 can be manufactured by a relatively simple method. The cutting method is performed using, for example, an end mill.
[0090] 実施形態 1に係る偏心分銅 120においては、分銅 140は、タングステン合金力もな る。タングステン合金は極めて比重が高いため、偏心分銅 120における偏心量をさら に大きくすることができる。このため、このような偏心分銅 120を用いることにより、さら に少ない消費電力で必要な振動量が得られる振動モータを構成することができる。  [0090] In the eccentric weight 120 according to the first embodiment, the weight 140 also has a tungsten alloy force. Since the tungsten alloy has a very high specific gravity, the amount of eccentricity in the eccentric weight 120 can be further increased. For this reason, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with further reduced power consumption.
[0091] なお、実施形態 1に係る偏心分銅 120においては、分銅 140自体には、モータ軸 1 12を保持するための機能は必要としないため、分銅の形状として極めて単純な形状 (略扇形の断面を有する棒形状。)を採用している。  Note that, in the eccentric weight 120 according to the first embodiment, the weight 140 itself does not need a function for holding the motor shaft 112. Therefore, the weight is extremely simple (substantially fan-shaped). Adopting a bar shape with a cross section.).
[0092] 分銅 140の製造方法としては、分銅の形状にタングステン合金を焼結して分銅 140 とする製造方法を採用することもできるが、実施形態 1に係る偏心分銅 120において は、タングステン合金を焼結して単純な形状の丸棒を作り、この丸棒を削り出して分 銅 140とする製造方法を採用することとしている。このようにすることにより、タンダステ ン合金に含まれる添加物(例えば、銅。)の量を減じることができるため、比重を高く することができ、偏心分銅 120における偏心量をさらに大きくすることができるようにな る。 [0092] As a manufacturing method of the weight 140, a manufacturing method in which a tungsten alloy is sintered into a weight shape to obtain the weight 140 can be adopted. However, in the eccentric weight 120 according to the first embodiment, the tungsten alloy is made of The manufacturing method is to make a round bar with a simple shape by sintering and then cut out the round bar to make a weight of 140. By doing so, the amount of the additive (for example, copper) contained in the tandastain alloy can be reduced, so that the specific gravity can be increased and the amount of eccentricity in the eccentric weight 120 can be further increased. I can do it The
[0093] 実施形態 1に係る偏心分銅 120は、例えば以下のような方法で製造することができ る。  [0093] The eccentric weight 120 according to Embodiment 1 can be manufactured, for example, by the following method.
[0094] (1)プレス加工法により分銅支持体 130に相当する形状を有する部材 (但し、薄肉領 域 138及びモータ軸保持部 132は形成されていない。)を製造する。  (1) A member having a shape corresponding to the weight support 130 is manufactured by a press working method (however, the thin region 138 and the motor shaft holding portion 132 are not formed).
(2)切削加工法により、この部材に薄肉領域 138及びモータ軸保持部 132を形成し て分銅支持体 130を製造する。  (2) The weight support body 130 is manufactured by forming the thin region 138 and the motor shaft holding portion 132 on this member by a cutting method.
[0095] (3)分銅 140の断面よりも大きな断面を有するタングステン合金の丸棒を準備する。  (3) A tungsten alloy round bar having a cross section larger than that of the weight 140 is prepared.
(4)次に、上記した丸棒の外周を切削して、分銅 140の断面形状に対応する断面形 状を有する棒材を製造する。  (4) Next, the outer circumference of the round bar described above is cut to produce a bar having a cross-sectional shape corresponding to the cross-sectional shape of the weight 140.
(5)次に、上記した棒材を所定の長さに切断して分銅 140を製造する。  (5) Next, the above-described bar is cut into a predetermined length to produce a weight 140.
[0096] (6)分銅支持体 130における分銅保持部 134に、分銅 140を挿入した状態で、分銅 支持体 130を外側からかしめることにより、分銅支持体 134に分銅 140を保持させる  [0096] (6) The weight support 134 is held by the weight support 134 by caulking the weight support 130 from the outside in a state where the weight 140 is inserted into the weight holding part 134 of the weight support 130.
(7)これにより、分銅 140が全周に渡って分銅支持体 130における分銅保持部 134 に保持された偏心分銅 120が製造される。 (7) Thereby, the eccentric weight 120 in which the weight 140 is held by the weight holding portion 134 in the weight support 130 is manufactured over the entire circumference.
[0097] このような方法とすることにより、分銅 140は全周に渡って分銅支持体 130における 分銅保持部 134にしつかりと保持されることになるため、振動モータ (及び偏心分銅 1With this method, the weight 140 is held firmly by the weight holding portion 134 in the weight support 130 over the entire circumference, so that the vibration motor (and the eccentric weight 1
20)を長時間使用した場合に分銅 140と分銅支持体 130との接合の信頼性が低下 することが抑制されるよう〖こなる。 When 20) is used for a long time, it is possible to suppress a decrease in the reliability of the connection between the weight 140 and the weight support 130.
[0098] 図 2は、実施形態 1に係る振動モータを説明するために示す図である。図 2 (a)は実 施形態 1に係る振動モータの斜視図であり、図 2 (b)は実施形態 1に係る振動モータ を正面から見た図であり、図 2 (c)は実施形態 1に係る振動モータの一部を側面から 見た図である。 FIG. 2 is a view for explaining the vibration motor according to the first embodiment. Fig. 2 (a) is a perspective view of the vibration motor according to Embodiment 1, Fig. 2 (b) is a view of the vibration motor according to Embodiment 1, and Fig. 2 (c) is the embodiment. 1 is a side view of a part of a vibration motor according to 1. FIG.
[0099] 実施形態 1に係る振動モータ 100は、モータ本体 110と、偏心分銅 120とを備えた 振動モータである。そして、実施形態 1に係る振動モータ 100は、上記したように、軽 量かつ少ない消費電力で必要な振動量が得られる振動モータに好適に用いることが できる偏心分銅であって、このような振動モータを長時間使用した場合に分銅と分銅 支持体との接合の信頼性が低下することが抑制された優れた偏心分銅 120を備えて いる。このため、実施形態 1に係る振動モータ 100は、このような優れた偏心分銅 12 0を備えた振動モータであるため、軽量かつ少ない消費電力で必要な振動量が得ら れ、長時間信頼性の高い振動モータとなる。 The vibration motor 100 according to the first embodiment is a vibration motor including a motor body 110 and an eccentric weight 120. Further, as described above, the vibration motor 100 according to the first embodiment is an eccentric weight that can be suitably used for a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption. Weight and weight when the motor is used for a long time An excellent eccentric weight 120 is provided in which deterioration of the reliability of bonding with the support is suppressed. For this reason, the vibration motor 100 according to the first embodiment is a vibration motor having such an excellent eccentric weight 120. Therefore, a required amount of vibration can be obtained with light weight and low power consumption, and long-term reliability can be obtained. High vibration motor.
[0100] このため、このように軽量かつ少な 、消費電力で必要な振動量が得られ、長時間信 頼性の高い優れた振動モータ 100を携帯機器の振動モータとして用いることにより、 携帯機器を、軽量かつ低消費電力で長時間信頼性の高 ヽ携帯機器とすることができ る。 [0100] For this reason, by using the vibration motor 100 that is light and has a small amount of vibration with low power consumption and has high reliability for a long time as a vibration motor for portable devices, It can be a highly portable device that is lightweight, has low power consumption, and is reliable for a long time.
[0101] 〔実施形態 2〕  [Embodiment 2]
図 3は、実施形態 2に係る偏心分銅を説明するために示す図である。図 3 (a)は実 施形態 2に係る偏心分銅を正面から見た図であり、図 3 (b)は図 3 (a)の A— A断面図 である。  FIG. 3 is a view for explaining the eccentric weight according to the second embodiment. Fig. 3 (a) is a front view of the eccentric weight according to Embodiment 2, and Fig. 3 (b) is an AA cross-sectional view of Fig. 3 (a).
[0102] 実施形態 2に係る偏心分銅 220は、実施形態 1に係る偏心分銅 120と基本的には 同様の構造を有している。但し、実施形態 2に係る偏心分銅 220は、図 3に示すよう に、分銅支持体 230の構造が実施形態 1に係る偏心分銅 120の場合と異なる。すな わち、実施形態 2に係る偏心分銅 220においては、分銅支持体 230の連結部 236が 、モータ軸に沿った両側に開口する薄肉領域 238を有している。  [0102] The eccentric weight 220 according to the second embodiment basically has the same structure as the eccentric weight 120 according to the first embodiment. However, the eccentric weight 220 according to the second embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support 230 as shown in FIG. That is, in the eccentric weight 220 according to the second embodiment, the connecting portion 236 of the weight support 230 has a thin region 238 that opens on both sides along the motor shaft.
[0103] このように、実施形態 2に係る偏心分銅 220は、分銅支持体 230の構造が実施形 態 1に係る偏心分銅 120の場合とは異なるが、偏心分銅を、高比重金属力もなる分 銅 240と、分銅 240を構成する高比重金属よりも比重の低 ヽ金属からなる分銅支持 体 230とを備えた偏心分銅 220としたため、実施形態 1に係る偏心分銅 120の場合と 同様に、偏心分銅 220の総重量を軽くするとともに、偏心分銅 220における偏心量を 大きくすることができる。このため、このような偏心分銅 220を用いることにより、軽量か つ少ない消費電力で大きな振動量が得られる振動モータを構成することができる。  [0103] As described above, the eccentric weight 220 according to the second embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support 230, but the eccentric weight is divided into components having high specific gravity metal force. Since the eccentric weight 220 is provided with the copper 240 and the weight support body 230 made of a metal having a specific gravity lower than that of the high specific gravity metal constituting the weight 240, the eccentric weight is the same as in the case of the eccentric weight 120 according to the first embodiment. The total weight of the weight 220 can be reduced and the amount of eccentricity in the eccentric weight 220 can be increased. Therefore, by using such an eccentric weight 220, it is possible to configure a vibration motor that can obtain a large amount of vibration with light weight and low power consumption.
[0104] また、実施形態 2に係る偏心分銅 220によれば、分銅 240を全周に渡って分銅支 持体 230における分銅保持部 234に保持させることとしたため、実施形態 1に係る偏 心分銅 120の場合と同様に、偏心分銅 220を長時間使用した場合に分銅 240と分 銅支持体 230との接合の信頼性が低下することが抑制される。このため、このような 偏心分銅 220を用いることにより、長期信頼性の高い振動モータを構成することがで きる。 [0104] Also, according to the eccentric weight 220 according to the second embodiment, the weight 240 is held by the weight holding portion 234 in the weight support body 230 over the entire circumference, so the eccentric weight according to the first embodiment. As in the case of 120, when the eccentric weight 220 is used for a long time, it is possible to prevent the reliability of the connection between the weight 240 and the weight support 230 from being lowered. For this reason, By using the eccentric weight 220, a vibration motor with high long-term reliability can be configured.
[0105] また、実施形態 2に係る偏心分銅 220によれば、分銅保持部 234及びモータ軸保 持部 232を連結する連結部 236に所定の薄肉領域 238を設けることとしたため、実 施形態 1に係る偏心分銅 120の場合と同様に、偏心分銅 220の総重量を軽くすると ともに、偏心分銅 220における偏心量をさらに大きくすることができる。このため、この ような偏心分銅 220を用いることにより、さらに軽量かっさらに少ない消費電力で必要 な振動量が得られる振動モータを構成することができる。  In addition, according to the eccentric weight 220 according to the second embodiment, the predetermined thin region 238 is provided in the connecting portion 236 that connects the weight holding portion 234 and the motor shaft holding portion 232. As in the case of the eccentric weight 120 according to the above, the total weight of the eccentric weight 220 can be reduced and the amount of eccentricity in the eccentric weight 220 can be further increased. For this reason, by using such an eccentric weight 220, it is possible to configure a vibration motor that can obtain a necessary vibration amount with a lighter and less power consumption.
[0106] 〔実施形態 3〕  [Embodiment 3]
図 4は、実施形態 3に係る偏心分銅を説明するために示す図である。図 4 (a)は実 施形態 3に係る偏心分銅を正面から見た図であり、図 4 (b)は図 4 (a)の A— A断面図 である。  FIG. 4 is a view for explaining the eccentric weight according to the third embodiment. 4 (a) is a front view of the eccentric weight according to Embodiment 3, and FIG. 4 (b) is a cross-sectional view taken along line AA in FIG. 4 (a).
[0107] 実施形態 3に係る偏心分銅 320は、実施形態 1に係る偏心分銅 120と基本的には 同様の構造を有している。但し、実施形態 3に係る偏心分銅 320は、図 4に示すよう に、分銅支持体 330の構造が実施形態 1に係る偏心分銅 120の場合と異なる。すな わち、実施形態 3に係る偏心分銅 320においては、分銅支持体 330の連結部 336が 、モータ軸に沿った両側に開口する穴 338を有している。  The eccentric weight 320 according to the third embodiment has basically the same structure as the eccentric weight 120 according to the first embodiment. However, the eccentric weight 320 according to the third embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support 330 as shown in FIG. That is, in the eccentric weight 320 according to the third embodiment, the connecting portion 336 of the weight support 330 has holes 338 that are open on both sides along the motor shaft.
[0108] このように、実施形態 3に係る偏心分銅 320は、分銅支持体 330の構造が実施形 態 1に係る偏心分銅 120の場合とは異なるが、偏心分銅を、高比重金属力もなる分 銅 340と、分銅 340を構成する高比重金属よりも比重の低 ヽ金属からなる分銅支持 体 330とを備えた偏心分銅 320としたため、実施形態 1に係る偏心分銅 120の場合と 同様に、偏心分銅 320の総重量を軽くするとともに、偏心分銅 320における偏心量を 大きくすることができる。このため、このような偏心分銅 320を用いることにより、軽量か つ少ない消費電力で大きな振動量が得られる振動モータを構成することができる。  As described above, the eccentric weight 320 according to the third embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support 330, but the eccentric weight is used as a component having a high specific gravity metal force. Since the eccentric weight 320 is provided with the copper 340 and the weight support body 330 made of a low density metal having a specific gravity lower than that of the high specific gravity metal constituting the weight 340, the eccentric weight is the same as in the case of the eccentric weight 120 according to the first embodiment. The total weight of the weight 320 can be reduced and the amount of eccentricity of the eccentric weight 320 can be increased. For this reason, by using such an eccentric weight 320, it is possible to configure a vibration motor that can obtain a large vibration amount with light weight and low power consumption.
[0109] また、実施形態 3に係る偏心分銅 320によれば、分銅 340を全周に渡って分銅支 持体 330における分銅保持部 334に保持させることとしたため、実施形態 1に係る偏 心分銅 120の場合と同様に、偏心分銅 320を長時間使用した場合に分銅 340と分 銅支持体 330との接合の信頼性が低下することが抑制される。このため、このような 偏心分銅 320を用いることにより、長期信頼性の高い振動モータを構成することがで きる。 [0109] Also, according to the eccentric weight 320 according to the third embodiment, the weight 340 is held by the weight holding portion 334 in the weight support body 330 over the entire circumference, so the eccentric weight according to the first embodiment. As in the case of 120, when the eccentric weight 320 is used for a long time, it is possible to suppress a decrease in the reliability of bonding between the weight 340 and the weight support 330. For this reason, By using the eccentric weight 320, a vibration motor with high long-term reliability can be configured.
[0110] また、実施形態 3に係る偏心分銅 320によれば、分銅保持部 334及びモータ軸保 持部 332を連結する連結部 336に所定の穴 338を設けることとしたため、実施形態 1 に係る偏心分銅 120の場合と同様に、偏心分銅 320の総重量を軽くするとともに、偏 心分銅 320における偏心量をさらに大きくすることができる。このため、このような偏心 分銅 320を用いることにより、さらに軽量かっさらに少ない消費電力で必要な振動量 が得られる振動モータを構成することができる。  [0110] Further, according to the eccentric weight 320 according to the third embodiment, the predetermined hole 338 is provided in the connecting portion 336 that connects the weight holding portion 334 and the motor shaft holding portion 332, and therefore, according to the first embodiment. As in the case of the eccentric weight 120, the total weight of the eccentric weight 320 can be reduced and the amount of eccentricity in the eccentric weight 320 can be further increased. Therefore, by using such an eccentric weight 320, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
[0111] 〔実施形態 4〕  [Embodiment 4]
図 5は、実施形態 4に係る偏心分銅を説明するために示す図である。図 5 (a)は実 施形態 4に係る偏心分銅を正面から見た図であり、図 5 (b)は図 5 (a)の A— A断面図 である。  FIG. 5 is a view for explaining the eccentric weight according to the fourth embodiment. FIG. 5 (a) is a front view of the eccentric weight according to Embodiment 4, and FIG. 5 (b) is an AA cross-sectional view of FIG. 5 (a).
[0112] 実施形態 4に係る偏心分銅 420は、実施形態 1に係る偏心分銅 120と基本的には 同様の構造を有している。但し、実施形態 4に係る偏心分銅 420は、図 5に示すよう に、分銅支持体 430の構造が実施形態 1に係る偏心分銅 120の場合と異なる。すな わち、実施形態 4に係る偏心分銅 420においては、分銅支持体 430の連結部 436が 、モータ軸に沿った方向から見て一本の連結棒となるような形状を有している。  [0112] The eccentric weight 420 according to the fourth embodiment has basically the same structure as the eccentric weight 120 according to the first embodiment. However, the eccentric weight 420 according to the fourth embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support 430, as shown in FIG. That is, in the eccentric weight 420 according to the fourth embodiment, the connecting portion 436 of the weight support 430 has a shape that forms a single connecting rod when viewed from the direction along the motor shaft. .
[0113] このように、実施形態 4に係る偏心分銅 420は、分銅支持体 430の構造が実施形 態 1に係る偏心分銅 120の場合とは異なるが、偏心分銅を、高比重金属力もなる分 銅 440と、分銅 440を構成する高比重金属よりも比重の低 ヽ金属からなる分銅支持 体 430とを備えた偏心分銅 420としたため、実施形態 1に係る偏心分銅 120の場合と 同様に、偏心分銅 420の総重量を軽くするとともに、偏心分銅 420における偏心量を 大きくすることができる。このため、このような偏心分銅 420を用いることにより、軽量か つ少ない消費電力で大きな振動量が得られる振動モータを構成することができる。  [0113] As described above, the eccentric weight 420 according to the fourth embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support body 430, but the eccentric weight is divided into components having high specific gravity metal force. Since the eccentric weight 420 is provided with the copper 440 and the weight support body 430 made of a low weight metal having a specific gravity lower than that of the high specific gravity metal constituting the weight 440, the eccentric weight is the same as in the case of the eccentric weight 120 according to the first embodiment. While reducing the total weight of the weight 420, the amount of eccentricity in the eccentric weight 420 can be increased. For this reason, by using such an eccentric weight 420, it is possible to configure a vibration motor that can obtain a large vibration amount with light weight and low power consumption.
[0114] また、実施形態 4に係る偏心分銅 420によれば、分銅 440を全周に渡って分銅支 持体 430における分銅保持部 434に保持させることとしたため、実施形態 1に係る偏 心分銅 120の場合と同様に、偏心分銅 420を長時間使用した場合に分銅 440と分 銅支持体 430との接合の信頼性が低下することが抑制される。このため、このような 偏心分銅 420を用いることにより、長期信頼性の高い振動モータを構成することがで きる。 [0114] Furthermore, according to the eccentric weight 420 according to the fourth embodiment, the weight 440 is held by the weight holding portion 434 in the weight support body 430 over the entire circumference, and therefore the eccentric weight according to the first embodiment. As in the case of 120, when the eccentric weight 420 is used for a long time, it is possible to suppress a decrease in the reliability of the connection between the weight 440 and the weight support 430. For this reason, By using the eccentric weight 420, a vibration motor with high long-term reliability can be configured.
[0115] また、実施形態 4に係る偏心分銅 420によれば、分銅保持部 434及びモータ軸保 持部 432を連結する連結部 436をモータ軸に沿った方向力も見て一本の連結棒とな るような形状にしたため、偏心分銅 420の総重量を軽くするとともに、偏心分銅 420に おける偏心量をさらに大きくすることができる。このため、このような偏心分銅 420を用 いること〖こより、実施形態 1に係る偏心分銅 120の場合と同様に、さらに軽量かっさら に少ない消費電力で必要な振動量が得られる振動モータを構成することができる。  [0115] Further, according to the eccentric weight 420 according to the fourth embodiment, the connecting portion 436 that connects the weight holding portion 434 and the motor shaft holding portion 432 is formed with a single connecting rod by looking at the directional force along the motor shaft. Therefore, the total weight of the eccentric weight 420 can be reduced and the amount of eccentricity in the eccentric weight 420 can be further increased. For this reason, the use of such an eccentric weight 420 makes it possible to construct a vibration motor that can obtain the required amount of vibration with a lighter weight and less power consumption, as in the case of the eccentric weight 120 according to the first embodiment. can do.
[0116] 〔実施形態 5〕  [Embodiment 5]
図 6は、実施形態 5に係る偏心分銅を説明するために示す図である。図 6 (a)は実 施形態 5に係る偏心分銅を正面から見た図であり、図 6 (b)は図 6 (a)の A— A断面図 である。  FIG. 6 is a view for explaining the eccentric weight according to the fifth embodiment. FIG. 6 (a) is a front view of the eccentric weight according to Embodiment 5, and FIG. 6 (b) is an AA cross-sectional view of FIG. 6 (a).
[0117] 実施形態 5に係る偏心分銅 520は、実施形態 1に係る偏心分銅 120と基本的には 同様の構造を有している。但し、実施形態 5に係る偏心分銅 520は、図 6に示すよう に、分銅 540の形状 (及びそれに伴って、分銅支持体 530における分銅保持部 534 の形状)が実施形態 1に係る偏心分銅 120の場合と異なる。すなわち、実施形態 5〖こ 係る偏心分銅 520にお 、ては、分銅 540は長円型の形状をして 、る。  [0117] The eccentric weight 520 according to the fifth embodiment has basically the same structure as the eccentric weight 120 according to the first embodiment. However, as shown in FIG. 6, the eccentric weight 520 according to the fifth embodiment has the shape of the weight 540 (and the shape of the weight holding portion 534 in the weight support 530) as shown in FIG. It is different from the case of. That is, in the eccentric weight 520 according to the fifth embodiment, the weight 540 has an oval shape.
[0118] このように、実施形態 5に係る偏心分銅 520は、分銅 540の形状 (及びそれに伴つ て、分銅支持体 530における分銅保持部 534の形状)が実施形態 1に係る偏心分銅 120の場合とは異なる力 偏心分銅を、高比重金属カゝらなる分銅 540と、分銅 540を 構成する高比重金属よりも比重の低い金属からなる分銅支持体 530とを備えた偏心 分銅 520としたため、実施形態 1に係る偏心分銅 120の場合と同様に、偏心分銅 52 0の総重量を軽くするとともに、偏心分銅 520における偏心量を大きくすることができ る。このため、このような偏心分銅 520を用いることにより、軽量かつ少ない消費電力 で大きな振動量が得られる振動モータを構成することができる。  As described above, the eccentric weight 520 according to the fifth embodiment has the shape of the weight 540 (and the shape of the weight holding portion 534 in the weight support 530) corresponding to the eccentric weight 120 according to the first embodiment. Because the eccentric weight is an eccentric weight 520 having a weight 540 made of a high specific gravity metal and a weight support 530 made of a metal having a specific gravity lower than that of the high specific gravity metal constituting the weight 540, As in the case of the eccentric weight 120 according to the first embodiment, the total weight of the eccentric weight 520 can be reduced and the amount of eccentricity in the eccentric weight 520 can be increased. Therefore, by using such an eccentric weight 520, it is possible to configure a vibration motor that can obtain a large vibration amount with light weight and low power consumption.
[0119] また、実施形態 5に係る偏心分銅 520によれば、分銅 540を全周に渡って分銅支 持体 530における分銅保持部 534に保持させることとしたため、実施形態 1に係る偏 心分銅 120の場合と同様に、振動モータ (及び偏心分銅 520)を長時間使用した場 合に分銅 540と分銅支持体 530との接合の信頼性が低下することが抑制される。こ のため、このような偏心分銅 520を用いることにより、長期信頼性の高い振動モータを 構成することができる。 [0119] Also, according to the eccentric weight 520 according to the fifth embodiment, the weight 540 is held by the weight holding portion 534 in the weight support body 530 over the entire circumference, and therefore the eccentric weight according to the first embodiment. As with 120, if the vibration motor (and eccentric weight 520) is used for a long time, In this case, it is possible to suppress a decrease in the reliability of joining between the weight 540 and the weight support 530. Therefore, by using such an eccentric weight 520, it is possible to configure a vibration motor with high long-term reliability.
[0120] また、実施形態 5に係る偏心分銅 520によれば、分銅保持部 534及びモータ軸保 持部 532を連結する連結部 536に所定の薄肉領域 538を設けることとしたため、実 施形態 1に係る偏心分銅 120の場合と同様に、偏心分銅 520の総重量を軽くすると ともに、偏心分銅 520における偏心量をさらに大きくすることができる。このため、この ような偏心分銅 520を用いることにより、さらに軽量かっさらに少ない消費電力で必要 な振動量が得られる振動モータを構成することができる。  [0120] Also, according to the eccentric weight 520 according to the fifth embodiment, the predetermined thin region 538 is provided in the connecting portion 536 that connects the weight holding portion 534 and the motor shaft holding portion 532, so that Embodiment 1 As in the case of the eccentric weight 120 according to the above, the total weight of the eccentric weight 520 can be reduced and the amount of eccentricity in the eccentric weight 520 can be further increased. For this reason, by using such an eccentric weight 520, it is possible to configure a vibration motor that can obtain a required vibration amount with lighter and less power consumption.
[0121] 〔実施形態 6〕  [Embodiment 6]
図 7は、実施形態 6に係る偏心分銅を説明するために示す図である。図 7 (a)は実 施形態 6に係る偏心分銅を正面から見た図であり、図 7 (b)は図 7 (a)の A— A断面図 である。  FIG. 7 is a view for explaining the eccentric weight according to the sixth embodiment. FIG. 7 (a) is a front view of the eccentric weight according to Embodiment 6, and FIG. 7 (b) is an AA cross-sectional view of FIG. 7 (a).
[0122] 実施形態 6に係る偏心分銅 620は、実施形態 1に係る偏心分銅 120と基本的には 同様の構造を有している。但し、実施形態 6に係る偏心分銅 620は、図 7に示すよう に、分銅支持体 630の形状が実施形態 1に係る偏心分銅 120の場合と異なる。すな わち、実施形態 6に係る偏心分銅 620においては、分銅支持体 630は、分銅保持部 として、全周に渡って分銅を保持する分銅保持部に代えて、分銅 640の外周全体に 対する半周以上に渡って分銅 640を保持する分銅保持部 634を有している。  [0122] The eccentric weight 620 according to the sixth embodiment has basically the same structure as the eccentric weight 120 according to the first embodiment. However, the eccentric weight 620 according to the sixth embodiment is different from the eccentric weight 120 according to the first embodiment in the shape of the weight support 630 as shown in FIG. That is, in the eccentric weight 620 according to the sixth embodiment, the weight support 630 serves as the weight holding portion instead of the weight holding portion that holds the weight over the entire circumference, and covers the entire outer periphery of the weight 640. There is a weight holding part 634 for holding the weight 640 over a half circumference.
[0123] このように、実施形態 6に係る偏心分銅 620は、分銅支持体 630の構造が実施形 態 1に係る偏心分銅 120の場合とは異なるが、偏心分銅を、高比重金属力もなる分 銅 640と、分銅 640を構成する高比重金属よりも比重の低 ヽ金属からなる分銅支持 体 630とを備えた偏心分銅 620としたため、実施形態 1に係る偏心分銅 120の場合と 同様に、偏心分銅 620の総重量を軽くするとともに、偏心分銅 620における偏心量を 大きくすることができる。このため、このような偏心分銅 620を用いることにより、軽量か つ少ない消費電力で大きな振動量が得られる振動モータを構成することができる。  [0123] As described above, the eccentric weight 620 according to the sixth embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support 630, but the eccentric weight is divided into components having high specific gravity metal force. Since the eccentric weight 620 includes the copper 640 and the weight support body 630 made of a low weight metal having a specific gravity lower than that of the high specific gravity metal constituting the weight 640, the eccentric weight 120 is the same as in the case of the eccentric weight 120 according to the first embodiment. The total weight of the weight 620 can be reduced and the amount of eccentricity in the eccentric weight 620 can be increased. Therefore, by using such an eccentric weight 620, it is possible to configure a vibration motor that can obtain a large amount of vibration with light weight and low power consumption.
[0124] また、実施形態 6に係る偏心分銅 620によれば、分銅 640を半周以上に渡って分 銅支持体 630における分銅保持部 634に保持させることとしたため、実施形態 1に係 る偏心分銅 120の場合と同様に、振動モータ (及び偏心分銅 620)を長時間使用し た場合に分銅 640と分銅支持体 630との接合の信頼性が低下することが抑制される 。このため、このような偏心分銅 620を用いることにより、長期信頼性の高い振動モー タを構成することができる。 [0124] Further, according to the eccentric weight 620 according to the sixth embodiment, the weight 640 is held by the weight holding portion 634 in the weight support 630 over more than half a circumference. As in the case of the eccentric weight 120, the deterioration of the bonding reliability between the weight 640 and the weight support 630 is suppressed when the vibration motor (and the eccentric weight 620) is used for a long time. Therefore, by using such an eccentric weight 620, a vibration motor with high long-term reliability can be configured.
[0125] また、実施形態 6に係る偏心分銅 620によれば、分銅保持部 634及びモータ軸保 持部 632を連結する連結部 636に所定の薄肉領域 638を設けることとしたため、実 施形態 1に係る偏心分銅 120の場合と同様に、偏心分銅 620の総重量を軽くすると ともに、偏心分銅 620における偏心量をさらに大きくすることができる。このため、この ような偏心分銅 620を用いることにより、さらに軽量かっさらに少ない消費電力で必要 な振動量が得られる振動モータを構成することができる。  [0125] Also, according to the eccentric weight 620 according to the sixth embodiment, the predetermined thin region 638 is provided in the connecting portion 636 that connects the weight holding portion 634 and the motor shaft holding portion 632, so that Embodiment 1 As in the case of the eccentric weight 120 according to the above, the total weight of the eccentric weight 620 can be reduced and the amount of eccentricity in the eccentric weight 620 can be further increased. For this reason, by using such an eccentric weight 620, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and even less power consumption.
[0126] なお、分銅保持部 634における開口の幅 Lは、分銅 640における開口の幅方向に  [0126] The width L of the opening in the weight holding portion 634 is in the width direction of the opening in the weight 640.
2  2
平行な最大長さ Lよりも狭く設定されている。このため、分銅 640は分銅保持部 634 にしつ力りと保持されることになる。  It is set narrower than the maximum parallel length L. For this reason, the weight 640 is firmly held by the weight holding portion 634.
[0127] 〔実施形態 7〕 [Embodiment 7]
図 8は、実施形態 7に係る偏心分銅を説明するために示す図である。図 8 (a)は実 施形態 7に係る偏心分銅を正面から見た図であり、図 8 (b)は図 8 (a)の A— A断面図 である。  FIG. 8 is a view for explaining the eccentric weight according to the seventh embodiment. FIG. 8 (a) is a front view of the eccentric weight according to Embodiment 7, and FIG. 8 (b) is an AA cross-sectional view of FIG. 8 (a).
[0128] 実施形態 7に係る偏心分銅 720は、実施形態 1に係る偏心分銅 120と基本的には 同様の構造を有している。但し、実施形態 7に係る偏心分銅 720は、図 8に示すよう に、分銅支持体 730の構造が実施形態 1に係る偏心分銅 120の場合と異なる。すな わち、実施形態 7に係る偏心分銅 720においては、分銅支持体 730は、モータ軸保 持部として、全周に渡ってモータ軸を保持するモータ軸保持部に代えて、モータ軸を 三方力も保持するモータ軸保持部 732を有している。モータ軸は、モータ軸保持部 7 32に挿入後、その開口部を力しめることにより、分銅支持体 730にしつ力りと保持さ れる。  The eccentric weight 720 according to the seventh embodiment basically has the same structure as the eccentric weight 120 according to the first embodiment. However, the eccentric weight 720 according to the seventh embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support 730 as shown in FIG. That is, in the eccentric weight 720 according to the seventh embodiment, the weight support 730 replaces the motor shaft holding portion that holds the motor shaft over the entire circumference as the motor shaft holding portion. A motor shaft holding portion 732 that also holds a three-way force is provided. After the motor shaft is inserted into the motor shaft holding portion 732, the opening is forced and held by the weight support 730 with tension.
[0129] このように、実施形態 7に係る偏心分銅 720は、分銅支持体 730の構造が実施形 態 1に係る偏心分銅 120の場合とは異なるが、偏心分銅を、高比重金属力もなる分 銅 740と、分銅 740を構成する高比重金属よりも比重の低 ヽ金属からなる分銅支持 体 730とを備えた偏心分銅 720としたため、実施形態 1に係る偏心分銅 120の場合と 同様に、偏心分銅 720の総重量を軽くするとともに、偏心分銅 720における偏心量を 大きくすることができる。このため、このような偏心分銅 720を用いることにより、軽量か つ少ない消費電力で大きな振動量が得られる振動モータを構成することができる。 As described above, the eccentric weight 720 according to the seventh embodiment is different from the eccentric weight 120 according to the first embodiment in that the structure of the weight support 730 is different from that of the eccentric weight 120 according to the first embodiment. Weight support made of copper 740 and a low-density metal with a specific gravity higher than that of the high specific gravity metal that composes weight 740 Since the eccentric weight 720 including the body 730 is used, as in the case of the eccentric weight 120 according to the first embodiment, the total weight of the eccentric weight 720 can be reduced and the amount of eccentricity in the eccentric weight 720 can be increased. Therefore, by using such an eccentric weight 720, it is possible to configure a vibration motor that can obtain a large amount of vibration with light weight and low power consumption.
[0130] また、実施形態 7に係る偏心分銅 720によれば、分銅 740を全周に渡って分銅支 持体 730における分銅保持部 734に保持させることとしたため、実施形態 1に係る偏 心分銅 120の場合と同様に、振動モータ (及び偏心分銅 720)を長時間使用した場 合に分銅 740と分銅支持体 730との接合の信頼性が低下することが抑制される。こ のため、このような偏心分銅 720を用いることにより、長期信頼性の高い振動モータを 構成することができる。 [0130] Also, according to the eccentric weight 720 according to the seventh embodiment, the weight 740 is held by the weight holding portion 734 in the weight support body 730 over the entire circumference, and therefore the eccentric weight according to the first embodiment. As in the case of 120, when the vibration motor (and the eccentric weight 720) is used for a long time, it is possible to suppress a decrease in the reliability of the connection between the weight 740 and the weight support 730. Therefore, by using such an eccentric weight 720, a vibration motor with high long-term reliability can be configured.
[0131] また、実施形態 7に係る偏心分銅 720によれば、分銅保持部 734及びモータ軸保 持部 732を連結する連結部 736に所定の薄肉領域 738を設けることとしたため、実 施形態 1に係る偏心分銅 120の場合と同様に、偏心分銅 720の総重量を軽くすると ともに、偏心分銅 720における偏心量をさらに大きくすることができる。このため、この ような偏心分銅 720を用いることにより、さらに軽量かっさらに少ない消費電力で必要 な振動量が得られる振動モータを構成することができる。  [0131] Furthermore, according to the eccentric weight 720 according to the seventh embodiment, the predetermined thin region 738 is provided in the connecting portion 736 that connects the weight holding portion 734 and the motor shaft holding portion 732, so that the first embodiment 1 Similarly to the case of the eccentric weight 120 according to the above, the total weight of the eccentric weight 720 can be reduced and the amount of eccentricity in the eccentric weight 720 can be further increased. Therefore, by using such an eccentric weight 720, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
[0132] 〔実施形態 8〕  [Embodiment 8]
図 9は、実施形態 8に係る偏心分銅を説明するために示す図である。図 9 (a)は実 施形態 8に係る偏心分銅を正面から見た図であり、図 9 (b)は実施形態 8に係る偏心 分銅を正面から見た模式図であり、図 9 (c)は図 9 (a)の A— A断面図であり、図 9 (d) は図 9 (a)の B— B断面図であり、図 9 (e)は実施形態 8に係る偏心分銅の斜視図であ り、図 9 (f)は実施形態 8に係る偏心分銅の、図 9 (e)の裏面側力 見た斜視図である  FIG. 9 is a view for explaining the eccentric weight according to the eighth embodiment. Fig. 9 (a) is a diagram of the eccentric weight according to Embodiment 8 as viewed from the front, and Fig. 9 (b) is a schematic diagram of the eccentric weight according to Embodiment 8 as viewed from the front. ) Is a cross-sectional view taken along the line A-A in FIG. 9 (a), FIG. 9 (d) is a cross-sectional view taken along the line BB in FIG. 9 (a), and FIG. 9 (e) is a cross-sectional view of the eccentric weight according to the eighth embodiment. FIG. 9 (f) is a perspective view of the eccentric weight according to Embodiment 8 as seen from the rear side force in FIG. 9 (e).
[0133] 実施形態 8に係る偏心分銅 820は、実施形態 4に係る偏心分銅 420と基本的には 同様の構造を有している。但し、実施形態 8に係る偏心分銅 820は、分銅支持体 83 0の製造方法が実施形態 4に係る偏心分銅 420の場合と異なる。すなわち、実施形 態 8に係る偏心分銅 820においては、分銅支持体 830は、金属粉末射出成形法によ つて製造されている。 [0134] このように、実施形態 8に係る偏心分銅 820は、分銅支持体 830の製造方法が実 施形態 4に係る偏心分銅 420の場合とは異なるが、偏心分銅を、高比重金属からな る分銅 840と、分銅 840を構成する高比重金属よりも比重の低 ヽ金属からなる分銅 支持体 830とを備えた偏心分銅 820としたため、実施形態 4に係る偏心分銅 420の 場合と同様に、偏心分銅 820の総重量を軽くするとともに、偏心分銅 820における偏 心量を大きくすることができる。このため、このような偏心分銅 820を用いることにより、 軽量かつ少ない消費電力で大きな振動量が得られる振動モータを構成することがで きる。 [0133] The eccentric weight 820 according to the eighth embodiment basically has the same structure as the eccentric weight 420 according to the fourth embodiment. However, the eccentric weight 820 according to the eighth embodiment is different from the eccentric weight 420 according to the fourth embodiment in the method of manufacturing the weight support 830. That is, in the eccentric weight 820 according to Embodiment 8, the weight support 830 is manufactured by the metal powder injection molding method. As described above, the eccentric weight 820 according to the eighth embodiment is different from the eccentric weight 420 according to the fourth embodiment in the manufacturing method of the weight support 830, but the eccentric weight is made of a high specific gravity metal. In the same way as the eccentric weight 420 according to the fourth embodiment, the eccentric weight 820 is provided with the weight 840 and the weight support 830 made of a metal having a specific gravity lower than that of the high specific gravity metal constituting the weight 840. The total weight of the eccentric weight 820 can be reduced and the amount of eccentricity in the eccentric weight 820 can be increased. For this reason, by using such an eccentric weight 820, it is possible to configure a vibration motor that can obtain a large amount of vibration with light weight and low power consumption.
[0135] また、実施形態 8に係る偏心分銅 820によれば、分銅 840を全周に渡って分銅支 持体 830における分銅保持部 834に保持させることとしたため、実施形態 4に係る偏 心分銅 420の場合と同様に、振動モータ (及び偏心分銅 820)を長時間使用した場 合に分銅 840と分銅支持体 830との接合の信頼性が低下することが抑制される。こ のため、このような偏心分銅 820を用いることにより、長期信頼性の高い振動モータを 構成することができる。  In addition, according to the eccentric weight 820 according to the eighth embodiment, the weight 840 is held by the weight holding portion 834 in the weight support 830 over the entire circumference, so that the eccentric weight according to the fourth embodiment. As in the case of 420, when the vibration motor (and the eccentric weight 820) is used for a long time, it is possible to suppress a decrease in the reliability of the connection between the weight 840 and the weight support 830. Therefore, by using such an eccentric weight 820, a vibration motor with high long-term reliability can be configured.
[0136] また、実施形態 8に係る偏心分銅 820によれば、分銅保持部 834及びモータ軸保 持部 832を連結する連結部 836をモータ軸に沿った方向力も見て一本の連結棒とな るような形状にしたため、実施形態 4に係る偏心分銅 420の場合と同様に、偏心分銅 820の総重量を軽くするとともに、偏心分銅 820における偏心量をさらに大きくするこ とができる。このため、このような偏心分銅 820を用いることにより、さらに軽量かっさら に少ない消費電力で必要な振動量が得られる振動モータを構成することができる。  [0136] Also, according to the eccentric weight 820 according to the eighth embodiment, the connecting portion 836 for connecting the weight holding portion 834 and the motor shaft holding portion 832 has a single connecting rod and a directional force along the motor shaft. Therefore, as in the case of the eccentric weight 420 according to the fourth embodiment, the total weight of the eccentric weight 820 can be reduced and the amount of eccentricity in the eccentric weight 820 can be further increased. For this reason, by using such an eccentric weight 820, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
[0137] また、実施形態 8に係る偏心分銅 820によれば、金属粉末射出成形法によって製 造されているため、実施形態 4に係る偏心分銅 420の場合のように切削加工法によ つて製造するよりも、分銅保持部 834やモータ軸保持部 832における肉厚を薄く形 成することができ、さらに軽量かっさらに少ない消費電力で必要な振動量が得られる 振動モータを構成することができる。従って、実施形態 8に係る偏心分銅 820におい ては、図 9 (c)に示すように、分銅保持部 834やモータ軸保持部 832における肉厚を 、 0. 15mm【こして!/ヽる。  [0137] Further, according to the eccentric weight 820 according to the eighth embodiment, since it is manufactured by the metal powder injection molding method, it is manufactured by the cutting method as in the case of the eccentric weight 420 according to the fourth embodiment. Rather than that, the thickness of the weight holding part 834 and the motor shaft holding part 832 can be reduced, and a vibration motor that can obtain the necessary vibration amount with lighter and less power consumption can be configured. Therefore, in the eccentric weight 820 according to the eighth embodiment, as shown in FIG. 9C, the thicknesses of the weight holding portion 834 and the motor shaft holding portion 832 are 0.15 mm.
また、実施形態 8に係る偏心分銅 820によれば、切削加工法によって製造する場合 と比較して、材料の無駄が少なくなるという効果も得られる。 Further, according to the eccentric weight 820 according to the eighth embodiment, when manufactured by a cutting method As compared with the above, an effect that the waste of the material is reduced can be obtained.
さらにまた、実施形態 8に係る偏心分銅 820によれば、偏心分銅 820における分銅 支持体 830及び分銅 840の形状の自由度を増すことができるという効果も得られる。  Furthermore, according to the eccentric weight 820 according to the eighth embodiment, there is an effect that the degree of freedom of the shape of the weight support 830 and the weight 840 in the eccentric weight 820 can be increased.
[0138] 〔実施形態 9〕 [Embodiment 9]
図 10は、実施形態 9に係る偏心分銅を説明するために示す図である。図 10 (a)は 実施形態 9に係る偏心分銅を正面から見た図であり、図 10 (b)は実施形態 9に係る 偏心分銅を正面から見た模式図であり、図 10 (c)は図 10 (a)の A— A断面図であり、 図 10 (d)は図 10 (a)の B— B断面図であり、図 10 (e)は実施形態 9に係る偏心分銅の 斜視図であり、図 10 (f)は実施形態 9に係る偏心分銅の、図 10 (e)の裏面側から見 た斜視図である。  FIG. 10 is a view for explaining the eccentric weight according to the ninth embodiment. Fig. 10 (a) is a diagram of the eccentric weight according to Embodiment 9 as viewed from the front, and Fig. 10 (b) is a schematic diagram of the eccentric weight according to Embodiment 9 as viewed from the front. Fig. 10 (a) is a cross-sectional view taken along the line A-A, Fig. 10 (d) is a cross-sectional view taken along the line BB of Fig. 10 (a), and Fig. 10 (e) is a perspective view of the eccentric weight according to the ninth embodiment. FIG. 10 (f) is a perspective view of the eccentric weight according to Embodiment 9 as seen from the back side of FIG. 10 (e).
図 11は、実施形態 9に係る偏心分銅を製造するための製造方法を説明するために 示す図である。図 11 (a)—図 11 (f)は、その製造工程における要部を示す図である  FIG. 11 is a view for explaining the manufacturing method for manufacturing the eccentric weight according to the ninth embodiment. FIG. 11 (a) -FIG. 11 (f) are diagrams showing the main part in the manufacturing process.
[0139] 実施形態 9に係る偏心分銅 920は、分銅支持体 930の製造方法が実施形態 1又は 8に係る偏心分銅 120, 820の場合と異なる。すなわち、実施形態 9に係る偏心分銅 920においては、分銅支持体 930は、プレス絞り加工法によって製造されている。 [0139] The eccentric weight 920 according to the ninth embodiment is different from the eccentric weight 120, 820 according to the first or eighth embodiment in the method of manufacturing the weight support 930. That is, in the eccentric weight 920 according to the ninth embodiment, the weight support 930 is manufactured by a press drawing method.
[0140] 実施形態 9に係る偏心分銅 920は、以下のような工程により製造される。  [0140] The eccentric weight 920 according to the ninth embodiment is manufactured by the following process.
[0141] (1)ワークの配置  [0141] (1) Work placement
まず、プレス絞り装置のダイ用金型におけるダイプレート 962とパンチ用金型にお けるパンチプレート 972との間の所定位置に肉厚 0. 5mmのステンレス鋼からなるヮ ーク Wを配置する(図 11 (a)参照。)。  First, a workpiece W made of stainless steel having a thickness of 0.5 mm is disposed at a predetermined position between a die plate 962 in the die for press drawing and a punch plate 972 in the punch die ( (See Figure 11 (a).)
[0142] (2)プレス絞り加工  [0142] (2) Press drawing
次に、ワーク Wに向けてパンチ用金型(及びパンチ 974)を下降させて、モータ軸保 持部 932における薄肉領域 938に対応する部分と、分銅保持部 934における穴に対 応する部分を塑性変形させる。このとき、モータ軸保持部 932を構成することになる 部分及び分銅保持部 934を構成することになる部分も塑性変形を起こし、図面の下 方向に延びてゆく(図 11 (b)—図 11 (d)参照。;)。このプレス絞り加工は、 1回のプレ スを行うことによって行うこともできるし、ダイ金型 960及びパンチ金型 970を交換しな 力 複数回のプレスを行うことによって行うこともできる。 Next, the punching die (and punch 974) is lowered toward the workpiece W, and a portion corresponding to the thin region 938 in the motor shaft holding portion 932 and a portion corresponding to the hole in the weight holding portion 934 are formed. Plastically deform. At this time, the portion constituting the motor shaft holding portion 932 and the portion constituting the weight holding portion 934 are also plastically deformed and extend downward in the drawing (FIG. 11 (b) —FIG. 11). See (d);). This press drawing process can be performed by performing a single press, and the die mold 960 and the punch mold 970 must not be replaced. Force Can also be done by pressing multiple times.
[0143] (3)不要部分の除去  [0143] (3) Removal of unnecessary parts
次に、ワーク Wをプレス絞り装置 950から取り外し、分銅支持体において不要な部 分を切断して除去する(図 11 (e)及び図 11 (f)参照。 )0この場合、不要な部分の切 断は、図 11 (e)中の破線 L , L , Lに沿って行い、図面の左右方向及び上下方向 Next, remove the workpiece W from the press stop device 950, is removed by cutting the unnecessary parts min in weight support (see FIG. 11 (e) and FIG. 11 (f).) 0 in this case, unnecessary portions Cut along the broken lines L, L, L in Fig. 11 (e).
1 2 3  one two Three
に沿って複数回行う。これにより、分銅支持体 930が製造される。なお、不要な部分 の切断は、プレス力卩工機を用いて、図面の上下方向に沿って行ってもよい。  Perform multiple times along. Thereby, the weight support body 930 is manufactured. In addition, you may cut an unnecessary part along the up-down direction of drawing using a press force grinder.
[0144] このように、実施形態 9に係る偏心分銅 920は、分銅支持体 930の製造方法が実 施形態 1又は 8に係る偏心分銅 120, 820の場合とは異なる力 偏心分銅を、高比重 金属からなる分銅 940と、分銅 940を構成する高比重金属よりも比重の低 ヽ金属から なる分銅支持体 930とを備えた偏心分銅 920としたため、実施形態 1又は 8に係る偏 心分銅 120, 820の場合と同様に、偏心分銅 920の総重量を軽くするとともに、偏心 分銅 920における偏心量を大きくすることができる。このため、このような偏心分銅 92 0を用いることにより、軽量かつ少ない消費電力で大きな振動量が得られる振動モー タを構成することができる。  As described above, the eccentric weight 920 according to the ninth embodiment is different from the eccentric weight 120, 820 according to the first or eighth embodiment in that the method of manufacturing the weight support 930 is different from the eccentric weight 120, 820 in the high specific gravity. Since the eccentric weight 920 includes a weight 940 made of a metal and a weight support 930 made of a low weight metal having a specific gravity lower than that of the high specific gravity metal constituting the weight 940, the eccentric weight 120 according to the first or eighth embodiment 120, As in the case of 820, the total weight of the eccentric weight 920 can be reduced and the amount of eccentricity in the eccentric weight 920 can be increased. Therefore, by using such an eccentric weight 920, it is possible to configure a vibration motor that can obtain a large vibration amount with light weight and low power consumption.
[0145] また、実施形態 9に係る偏心分銅 920によれば、分銅 940を全周に渡って分銅支 持体 930における分銅保持部 934に保持させることとしたため、実施形態 1又は 8に 係る偏心分銅 120, 820の場合と同様に、振動モータ (及び偏心分銅 920)を長時間 使用した場合に分銅 940と分銅支持体 930との接合の信頼性が低下することが抑制 される。このため、このような偏心分銅 920を用いることにより、長期信頼性の高い振 動モータを構成することができる。  [0145] Further, according to the eccentric weight 920 according to the ninth embodiment, the weight 940 is held by the weight holding portion 934 in the weight support body 930 over the entire circumference, so that the eccentric weight according to the first or eighth embodiment is used. As in the case of the weights 120 and 820, when the vibration motor (and the eccentric weight 920) is used for a long time, it is possible to suppress a decrease in the reliability of the connection between the weight 940 and the weight support 930. Therefore, by using such an eccentric weight 920, a vibration motor with high long-term reliability can be configured.
[0146] また、実施形態 9に係る偏心分銅 920によれば、分銅保持部 934及びモータ軸保 持部 932を連結する連結部 936に所定の薄肉領域 938を設けることとしたため、実 施形態 1又は 8に係る偏心分銅 120, 820の場合と同様に、偏心分銅 920の総重量 を軽くするとともに、偏心分銅 920における偏心量をさらに大きくすることができる。こ のため、このような偏心分銅 920を用いることにより、さらに軽量かっさらに少ない消 費電力で必要な振動量が得られる振動モータを構成することができる。  Further, according to the eccentric weight 920 according to the ninth embodiment, the predetermined thin region 938 is provided in the connecting portion 936 that connects the weight holding portion 934 and the motor shaft holding portion 932. Alternatively, as in the case of the eccentric weights 120 and 820 according to 8, the total weight of the eccentric weight 920 can be reduced and the amount of eccentricity in the eccentric weight 920 can be further increased. Therefore, by using such an eccentric weight 920, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
[0147] また、実施形態 9に係る偏心分銅 920によれば、実施形態 1又は 8に係る偏心分銅 120, 820の場合のように、切削加工法又は金属粉末射出成形法によって製造する よりも、分銅保持部やモータ軸保持部における肉厚を薄く形成することができるため 、さらに軽量かっさらに少ない消費電力で必要な振動量が得られる振動モータを構 成することができる。従って、実施形態 9に係る偏心分銅 920においては、図 10 (c) に示すように、分銅保持部 934やモータ軸保持部 932における肉厚を、 0. 15mmに している。 [0147] Further, according to the eccentric weight 920 according to the ninth embodiment, the eccentric weight according to the first or eighth embodiment. As in the case of 120, 820, the thickness of the weight holding part and the motor shaft holding part can be made thinner than that produced by the cutting method or metal powder injection molding method. It is possible to configure a vibration motor that can obtain the required amount of vibration with electric power. Therefore, in the eccentric weight 920 according to the ninth embodiment, as shown in FIG. 10 (c), the thickness of the weight holding part 934 and the motor shaft holding part 932 is 0.15 mm.
また、実施形態 9に係る偏心分銅 920によれば、切削加工法によって製造する場合 と比較して、材料の無駄が少なくなるという効果も得られる。  Further, according to the eccentric weight 920 according to the ninth embodiment, an effect that the waste of material is reduced as compared with the case of manufacturing by a cutting method is also obtained.
[0148] 〔実施形態 10〕 [Embodiment 10]
図 12は、実施形態 10に係る偏心分銅を説明するために示す図である。図 12 (a) は実施形態 10に係る偏心分銅を正面力も見た図であり、図 12 (b)は図 12 (a)の A— A断面図である。  FIG. 12 is a view for explaining the eccentric weight according to the tenth embodiment. FIG. 12 (a) is a view of the eccentric weight according to Embodiment 10 as viewed from the front, and FIG. 12 (b) is a cross-sectional view taken along line AA in FIG. 12 (a).
[0149] 実施形態 10に係る偏心分銅 1020は、実施形態 9に係る偏心分銅 920と基本的に は同様の構造を有している。但し、実施形態 10に係る偏心分銅 1020は、図 12に示 すように、分銅支持体 1030の構造が実施形態 9に係る偏心分銅 920の場合と異な る。すなわち、実施形態 10に係る偏心分銅 1020においては、図 12 (b)に示すように 、分銅支持体 1030における連結部 1036の薄肉領域 1038には、リブ 1039が形成 されている。  [0149] The eccentric weight 1020 according to the tenth embodiment basically has the same structure as the eccentric weight 920 according to the ninth embodiment. However, the eccentric weight 1020 according to the tenth embodiment is different from the eccentric weight 920 according to the ninth embodiment in the structure of the weight support 1030 as shown in FIG. That is, in the eccentric weight 1020 according to the tenth embodiment, as shown in FIG. 12B, ribs 1039 are formed in the thin region 1038 of the connecting portion 1036 in the weight support 1030.
[0150] このため、実施形態 10に係る偏心分銅 1020においては、連結部 1036の機械的 強度を高めることができるため、さらに信頼性の高い振動モータを構成することができ るようになる。また、連結部 1036の機械的強度を高めることができることから、連結部 1036の薄肉領域 1038を大きくして、連結部 1036の重量をさらに軽くすることもでき るようになる。このため、偏心分銅 1020の総重量をさらに軽くするとともに、偏心分銅 1020における偏心量をさらに大きくすることができるようになる。このため、このような 偏心分銅 1020を用いることにより、さらに軽量かっさらに少ない消費電力で必要な 振動量が得られる振動モータを構成することができる。  [0150] For this reason, in the eccentric weight 1020 according to the tenth embodiment, the mechanical strength of the connecting portion 1036 can be increased, so that a more reliable vibration motor can be configured. In addition, since the mechanical strength of the connecting portion 1036 can be increased, the thin area 1038 of the connecting portion 1036 can be enlarged to further reduce the weight of the connecting portion 1036. Therefore, the total weight of the eccentric weight 1020 can be further reduced, and the amount of eccentricity in the eccentric weight 1020 can be further increased. Therefore, by using such an eccentric weight 1020, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
[0151] なお、実施形態 10に係る偏心分銅 1020は、これ以外の点では、実施形態 9に係る 偏心分銅 920と同様の構成を有しているため、実施形態 9に係る偏心分銅 920が有 する効果をそのまま有する。 [0151] The eccentric weight 1020 according to the tenth embodiment has the same configuration as the eccentric weight 920 according to the ninth embodiment except for the above, and thus the eccentric weight 920 according to the ninth embodiment is provided. It has the effect to do as it is.
[0152] 〔実施形態 11〕  [Embodiment 11]
図 13は、実施形態 11に係る偏心分銅を説明するために示す図である。図 13 (a) は実施形態 11に係る偏心分銅を正面力も見た図であり、図 13 (b)は図 13 (a)の A— A断面図である。  FIG. 13 is a view for explaining the eccentric weight according to the eleventh embodiment. FIG. 13 (a) is a view of the eccentric weight according to the eleventh embodiment as viewed from the front, and FIG. 13 (b) is a cross-sectional view taken along the line AA in FIG. 13 (a).
[0153] 実施形態 11に係る偏心分銅 1120は、実施形態 9に係る偏心分銅 920と基本的に は同様の構造を有している。但し、実施形態 11に係る偏心分銅 1120は、図 13に示 すように、分銅支持体 1130の構造が実施形態 9に係る偏心分銅 920の場合と異な る。すなわち、実施形態 11に係る偏心分銅 1120においては、分銅支持体 1130に おける連結部 1136には、穴 1138が形成されている。  [0153] The eccentric weight 1120 according to the eleventh embodiment basically has the same structure as the eccentric weight 920 according to the ninth embodiment. However, the eccentric weight 1120 according to the eleventh embodiment is different from the eccentric weight 920 according to the ninth embodiment in the structure of the weight support 1130 as shown in FIG. That is, in the eccentric weight 1120 according to the eleventh embodiment, a hole 1138 is formed in the connecting portion 1136 in the weight support 1130.
[0154] このため、実施形態 11に係る偏心分銅 1120においては、連結部 1130の重量をさ らに軽くすることができるようになる。このため、偏心分銅 1120の総重量をさらに軽く するとともに、偏心分銅 1120における偏心量をさらに大きくすることができるようにな る。このため、このような偏心分銅 1120を用いることにより、さらに軽量かっさらに少 ない消費電力で必要な振動量が得られる振動モータを構成することができる。  [0154] Therefore, in the eccentric weight 1120 according to the eleventh embodiment, the weight of the connecting portion 1130 can be further reduced. Therefore, the total weight of the eccentric weight 1120 can be further reduced, and the amount of eccentricity in the eccentric weight 1120 can be further increased. Therefore, by using such an eccentric weight 1120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with a lighter and less power consumption.
[0155] なお、実施形態 11に係る偏心分銅 1120は、これ以外の点では、実施形態 9に係る 偏心分銅 920と同様の構成を有しているため、実施形態 9に係る偏心分銅 920が有 する効果をそのまま有する。  Note that the eccentric weight 1120 according to the eleventh embodiment has the same configuration as the eccentric weight 920 according to the ninth embodiment except for the above, and therefore the eccentric weight 920 according to the ninth embodiment is provided. It has the effect to do as it is.
[0156] 〔実施形態 12— 15〕  [Embodiment 12-15]
図 14は、実施形態 12に係る偏心分銅を説明するために示す図である。図 14 (a) は実施形態 12に係る偏心分銅を正面力も見た図であり、図 14 (b)は図 14 (a)の A— A断面図である。  FIG. 14 is a view for explaining the eccentric weight according to the twelfth embodiment. FIG. 14 (a) is a view of the eccentric weight according to the twelfth embodiment as viewed from the front, and FIG. 14 (b) is a cross-sectional view taken along line AA in FIG. 14 (a).
図 15は、実施形態 13に係る偏心分銅を説明するために示す図である。図 15 (a) は実施形態 13に係る偏心分銅を正面力も見た図であり、図 15 (b)は図 15 (a)の A— A断面図である。  FIG. 15 is a view for explaining the eccentric weight according to the thirteenth embodiment. FIG. 15 (a) is a diagram of the eccentric weight according to the thirteenth embodiment as viewed from the front, and FIG. 15 (b) is a cross-sectional view taken along the line AA in FIG. 15 (a).
図 16は、実施形態 14に係る偏心分銅を説明するために示す図である。図 16 (a) は実施形態 14に係る偏心分銅を正面力も見た図であり、図 16 (b)は図 16 (a)の A— A断面図である。 図 17は、実施形態 15に係る偏心分銅を説明するために示す図である。図 17 (a) は実施形態 15に係る偏心分銅を正面力も見た図であり、図 17 (b)は図 17 (a)の A— A断面図である。 FIG. 16 is a view for explaining the eccentric weight according to the fourteenth embodiment. FIG. 16 (a) is a view of the eccentric weight according to the embodiment 14 as viewed from the front, and FIG. 16 (b) is a cross-sectional view taken along line AA in FIG. 16 (a). FIG. 17 is a view for explaining the eccentric weight according to the fifteenth embodiment. FIG. 17 (a) is a view of the eccentric weight according to the fifteenth embodiment as viewed from the front, and FIG. 17 (b) is a cross-sectional view taken along line AA in FIG. 17 (a).
[0157] 実施形態 12一 15に係る偏'、分銅 1220, 1320, 1420, 1520ίま、図 14一図 17に 示すように、分銅支持体として、複数の薄板部材が積層された構造を有する分銅支 持体を用 ヽた点で、実施形態 1一 11に係る偏心分銅 120-1120の場合とは異なつ ている。  [0157] Deviations according to Embodiments 12-15, weights 1220, 1320, 1420, 1520ί, and weights having a structure in which a plurality of thin plate members are laminated as weight support members as shown in FIG. This is different from the case of the eccentric weight 120-1120 according to Embodiments 1-11 in that the support body is used.
[0158] し力しな力 Sら、実施形態 12— 15に係る偏 、分銅 1220, 1320, 1420, 1520によ れば、偏心分銅を、高比重金属カゝらなる分銅と、分銅を構成する高比重金属よりも比 重の低い金属からなる複数の薄板部材が積層された構造を有する分銅支持体とを 備えた偏心分銅としたため、実施形態 1一 11に係る偏心分銅 120— 1120の場合と 同様に、偏心分銅の総重量を軽くするとともに、偏心分銅における偏心量を大きくす ること力 Sできる。このため、このような偏'、分銅 1220, 1320, 1420, 1520を用!ヽるこ とにより、軽量かつ少ない消費電力で必要な振動量が得られる振動モータを構成す ることがでさる。  [0158] According to the eccentric force S, et al., The weights 1220, 1320, 1420, and 1520 according to the embodiments 12-15, the eccentric weight is composed of the weight of the high specific gravity metal and the weight. In the case of the eccentric weight 120-1120 according to the embodiment 11-11, the eccentric weight includes a weight support body having a structure in which a plurality of thin plate members made of a metal having a specific gravity lower than that of the high specific gravity metal is laminated. Similarly, it is possible to reduce the total weight of the eccentric weight and increase the amount of eccentricity of the eccentric weight. For this reason, it is possible to construct a vibration motor that can obtain a required vibration amount with light weight and low power consumption by using such a deviation and weights 1220, 1320, 1420, and 1520.
[0159] また、実施形態 12一 15【こ係る偏 、分銅 1220, 1320, 1420, 1520【こよれ ί 、分 銅を半周以上に渡って分銅支持体における各分銅保持部に保持させることとしたた め、実施形態 1一 11に係る偏心分銅 120— 1120の場合と同様に、振動モータ (及 び偏心分銅)を長時間使用した場合に分銅と分銅支持体との接合の信頼性が低下 すること力 S抑制される。このため、このような偏心分銅 1220, 1320, 1420, 1520を 用いることにより、長期信頼性の高い振動モータを構成することができる。  [0159] In addition, Embodiment 12 1-15 [this deviation, weights 1220, 1320, 1420, 1520 [koyore ryoko, weights are held by each weight holding portion in the weight support over a half circumference] Therefore, as in the case of the eccentric weight 120-1120 according to Embodiment 1-11 11, when the vibration motor (and the eccentric weight) is used for a long time, the reliability of the connection between the weight and the weight support decreases. That force S is suppressed. Therefore, by using such eccentric weights 1220, 1320, 1420, 1520, a vibration motor with high long-term reliability can be configured.
[0160] 〔実施形態 16〕  [Embodiment 16]
図 18は、実施形態 16に係る偏心分銅を説明するために示す図である。図 18 (a) は実施形態 16に係る偏心分銅を正面力も見た図であり、図 18 (b)は図 18 (a)の Α— A断面図である。  FIG. 18 is a view for explaining the eccentric weight according to the sixteenth embodiment. FIG. 18 (a) is a view of the eccentric weight according to the embodiment 16 as viewed from the front, and FIG. 18 (b) is a cross-sectional view taken along the line A-A in FIG. 18 (a).
[0161] 実施形態 16に係る偏心分銅 1620は、実施形態 9に係る偏心分銅 920と基本的に は同様の構造を有している。但し、実施形態 16に係る偏心分銅 1620は、図 18に示 すように、分銅支持体 1630の構造が実施形態 9に係る偏心分銅 920の場合と異な る。すなわち、実施形態 16に係る偏心分銅 1620においては、分銅支持体 1630の 連結部 1636における周方向の両端まで薄肉領域 1638とされている。 [0161] An eccentric weight 1620 according to the sixteenth embodiment has basically the same structure as the eccentric weight 920 according to the ninth embodiment. However, the eccentric weight 1620 according to Embodiment 16 is different from the eccentric weight 920 according to Embodiment 9 in the structure of the weight support 1630 as shown in FIG. The That is, in the eccentric weight 1620 according to the sixteenth embodiment, the thin wall region 1638 extends to both ends in the circumferential direction of the connecting portion 1636 of the weight support 1630.
[0162] このため、実施形態 16に係る偏心分銅 1620によれば、連結部 1636の重量をさら に軽くすることもできるようになる。このため、偏心分銅 1620の総重量をさらに軽くす るとともに、偏心分銅 1620における偏心量をさらに大きくすることができるようになる。 このため、このような偏心分銅 1620を用いることにより、さらに軽量かっさらに少ない 消費電力で必要な振動量が得られる振動モータを構成することができる。  Therefore, according to the eccentric weight 1620 according to the sixteenth embodiment, the weight of the connecting portion 1636 can be further reduced. Therefore, the total weight of the eccentric weight 1620 can be further reduced, and the amount of eccentricity in the eccentric weight 1620 can be further increased. Therefore, by using such an eccentric weight 1620, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter weight and less power consumption.
また、実施形態 16に係る偏心分銅 1620によれば、プレス絞り加工法により分銅支 持体を製造するのが容易になると!ヽぅ効果もある。  Further, according to the eccentric weight 1620 according to the sixteenth embodiment, it is possible to easily produce the weight support body by the press drawing method, which also has an effect.
[0163] なお、実施形態 16に係る偏心分銅 1620は、これ以外の点では、実施形態 9に係る 偏心分銅 920と同様の構成を有しているため、実施形態 9に係る偏心分銅 920が有 する効果をそのまま有する。  [0163] The eccentric weight 1620 according to Embodiment 16 has the same configuration as that of the eccentric weight 920 according to Embodiment 9 in other points, and therefore the eccentric weight 920 according to Embodiment 9 is provided. It has the effect to do as it is.
[0164] 〔実施形態 17〕  [Embodiment 17]
図 19は、実施形態 17に係る偏心分銅を説明するために示す図である。図 19 (a) は実施形態 17に係る偏心分銅を正面力も見た図であり、図 19 (b)は図 19 (a)の A— A断面図である。  FIG. 19 is a view for explaining the eccentric weight according to the seventeenth embodiment. FIG. 19 (a) is a view of the eccentric weight according to the seventeenth embodiment when the front force is also seen, and FIG. 19 (b) is a cross-sectional view taken along line AA in FIG. 19 (a).
図 20は、実施形態 17に係る偏心分銅を備えた振動モータを説明するために示す 図である。図 20 (a)は実施形態 17に係る偏心分銅を備えた振動モータを示す図で あり、図 20 (b)は実施形態 17に係る偏心分銅を備えた別の振動モータを示す図で ある。  FIG. 20 is a view for explaining the vibration motor including the eccentric weight according to the seventeenth embodiment. FIG. 20 (a) is a view showing a vibration motor provided with the eccentric weight according to the seventeenth embodiment, and FIG. 20 (b) is a view showing another vibration motor provided with the eccentric weight according to the seventeenth embodiment.
[0165] 実施形態 17に係る偏心分銅 1720は、実施形態 16に係る偏心分銅 1620と基本的 には同様の構造を有している。但し、実施形態 17に係る偏心分銅 1720は、図 19に 示すように、分銅支持体 1730の構造が実施形態 16に係る偏心分銅 1620の場合と 異なる。すなわち、実施形態 17に係る偏心分銅 1720においては、分銅保持部 173 4及びモータ軸保持部 1732を連結する連結部 1736は、モータ軸 1712に沿った方 向から見て一本の連結棒となるような形状を有して 、る。  [0165] The eccentric weight 1720 according to the seventeenth embodiment has basically the same structure as the eccentric weight 1620 according to the sixteenth embodiment. However, the eccentric weight 1720 according to the seventeenth embodiment is different from the eccentric weight 1620 according to the sixteenth embodiment in the structure of the weight support 1730 as shown in FIG. That is, in the eccentric weight 1720 according to the seventeenth embodiment, the connecting portion 1736 that connects the weight holding portion 1734 and the motor shaft holding portion 1732 is a single connecting rod when viewed from the direction along the motor shaft 1712. It has a shape like this.
[0166] このため、実施形態 17に係る偏心分銅 1720によれば、連結部 1736をモータ軸 1 712に沿った方向から見て一本の連結棒となるような形状にしたため、偏心分銅 172 0の総重量を軽くするとともに、偏心分銅 1720における偏心量をさらに大きくすること ができる。このため、このような偏心分銅 1720を用いることにより、実施形態 16に係る 偏心分銅 1620の場合と比較して、さらに軽量かっさらに少な 、消費電力で必要な 振動量が得られる振動モータを構成することができる。 [0166] Therefore, according to the eccentric weight 1720 according to the seventeenth embodiment, the connecting portion 1736 has a shape that forms a single connecting rod when viewed from the direction along the motor shaft 1 712. Therefore, the eccentric weight 172 The total weight of 0 can be reduced and the amount of eccentricity in the eccentric weight 1720 can be further increased. For this reason, by using such an eccentric weight 1720, a vibration motor that is lighter and has a smaller amount of vibration required for power consumption than that of the eccentric weight 1620 according to Embodiment 16 can be configured. be able to.
[0167] なお、実施形態 17に係る偏心分銅 1720は、これ以外の点では、実施形態 16に係 る偏心分銅 1620と同様の構成を有して 、るため、実施形態 16に係る偏心分銅 162[0167] The eccentric weight 1720 according to the seventeenth embodiment has the same configuration as the eccentric weight 1620 according to the sixteenth embodiment except for this, and therefore, the eccentric weight 162 according to the sixteenth embodiment 162.
0が有する効果をそのまま有する。 It has the effect that 0 has.
[0168] 実施形態 17に係る偏心分銅 1720は、図 20 (a)に示すように、モータ本体 1710の モータ軸 1712を、偏心分銅 1720のモータ軸保持部 1732 (図 19参照。)に挿入してIn the eccentric weight 1720 according to the seventeenth embodiment, as shown in FIG. 20 (a), the motor shaft 1712 of the motor body 1710 is inserted into the motor shaft holding portion 1732 (see FIG. 19) of the eccentric weight 1720. The
、使用する。 ,use.
また、実施形態 17に係る偏心分銅 1720は、図 20 (b)に示すように、偏心分銅 172 0の分銅 1740を分銅 1740の長手方向に偏心させて固定するとともに、モータ本体 1 710のモータ軸 1712を、偏心分銅 1720のモータ軸保持部 1732に挿入して、使用 するようにしてもよい。この場合には、モータ本体 1710の軸受け 1714と偏心分銅 17 20のモータ軸保持部 1732との距離が近くなるため、偏心分銅 1720がより安定して 回転するため、偏心特性が向上するという利益が得られる。  Further, as shown in FIG. 20 (b), the eccentric weight 1720 according to the seventeenth embodiment fixes the eccentric weight 1740 of the eccentric weight 1720 in the longitudinal direction of the weight 1740 and fixes the motor shaft of the motor main body 1710. 1712 may be inserted into the motor shaft holder 1732 of the eccentric weight 1720 for use. In this case, since the distance between the bearing 1714 of the motor main body 1710 and the motor shaft holding portion 1732 of the eccentric weight 17 20 becomes short, the eccentric weight 1720 rotates more stably, and thus there is a benefit that the eccentric characteristic is improved. can get.
[0169] 以上、本発明の偏心分銅及びその製造方法並びに振動モータ及び携帯機器を上 記の各実施形態に基づいて説明したが、本発明は上記の各実施形態に限られるも のではなぐその要旨を逸脱しな 、範囲にぉ 、て種々の態様にぉ 、て実施すること が可能であり、例えば次のような変形も可能である。  [0169] Although the eccentric weight, the manufacturing method thereof, the vibration motor, and the portable device of the present invention have been described based on the above embodiments, the present invention is not limited to the above embodiments. Without departing from the gist, the present invention can be carried out in various modes within the scope, and for example, the following modifications are possible.
[0170] (1)上記各実施形態の偏心分銅 120— 1720においては、分銅としてタングステン合 金を用いた力 本発明はこれに限られない。例えば、タングステン、オスミウム、ォスミ ゥム合金、金、金合金、イリジウム、イリジウム合金、その他の分銅支持体よりも比重の 高 、金属を用いることもできる。  (1) In the eccentric weight 120-1720 of each of the above embodiments, the force using tungsten alloy as the weight is not limited to this. For example, a metal having a specific gravity higher than that of tungsten, osmium, osmium alloy, gold, gold alloy, iridium, iridium alloy, and other weight supports can be used.
[0171] (2)上記各実施形態の偏心分銅 120— 1720においては、分銅支持体として、鍛造 加工法により製造した部材を切削加工したもの、金属粉末射出成型法により製造し たもの、プレス絞り成形法により製造したものを用いた力 本発明はこれに限られない 。例えば、鍛造加工法により製造したものや、バーリング加工法により製造したもの、 铸造カ卩工法により製造したものを用いることもできる。 [0171] (2) In the eccentric weight 120-1720 of each of the above embodiments, as a weight support, a member manufactured by a forging method, a member manufactured by a metal powder injection molding method, a press drawing The force using what was manufactured by the forming method The present invention is not limited to this. For example, those manufactured by forging, those manufactured by burring, What was manufactured by the forging method can also be used.
[0172] (3)上記各実施形態の偏心分銅 120— 1720においては、分銅として、丸棒からなる 焼結体を削りだして分銅の断面形状と同じ断面形状に加工した切削体を短く切断し たものを用いたが、本発明はこれに限られない。例えば、分銅として、分銅の形状に 焼結した焼結体や、分銅の断面形状 (例えば、円、長円、扇形など。)と同じ断面形 状を有する異形棒力 なる焼結体を短く切断したものを用いることができる。また、分 銅の断面形状が円である場合には、例えば、丸棒力もなる焼結体をそのまま短く切 断したものを用いることができる。  [0172] (3) In the eccentric weight 120-1720 of each of the above embodiments, a sintered body made of a round bar is cut as a weight, and the cut body processed into the same cross-sectional shape as the weight is cut short. However, the present invention is not limited to this. For example, as a weight, a sintered body sintered in the shape of a weight, or a sintered body with a deformed bar force that has the same cross-sectional shape as a weight (for example, a circle, an ellipse, a fan, etc.) is cut short. Can be used. In addition, when the cross-sectional shape of the weight is a circle, for example, a sintered body having a round bar force can be used as it is cut short.
[0173] (4)実施形態 1に係る偏心分銅の製造方法は、分銅 140を分銅支持体 130の分銅 保持穴 134の所定位置に挿入した状態で、分銅支持体 130をカゝしめる工程を含む 製造方法であるが、本発明はこれに限られない。例えば、分銅 140を分銅支持体 13 0における分銅保持穴 134に締めしろをもって圧入する工程を含む製造方法であつ てもよい、また、分銅支持体 130の温度が分銅 140の温度よりも高くした状態で、分 銅 140を分銅支持体 130における分銅保持穴 134に挿入する工程を含む製造方法 であってもよい。また、分銅 140と分銅支持体 130とを、ロウ付け、接着又は溶着によ つて接合する工程を含む製造方法であってもよい。また、分銅 140の一部又は全部 を所定の型に入れた状態で、型の中に分銅支持体 130の材料を铸込む工程を含む 製造方法であってもよい。また、上記した工程を併用した製造方法であってもよい。 例えば、カゝしめ後に接着を行う工程を含む製造方法、ロウ付け後に接着を行う工程を 含む製造方法、カゝしめ後にスポット溶接を行う工程を含む製造方法、スポット溶接後 にロウ付け等を施す工程を含む製造方法等も可能である。  (4) The manufacturing method of the eccentric weight according to the first embodiment includes a step of clamping the weight support 130 in a state where the weight 140 is inserted into a weight holding hole 134 of the weight support 130. Although it is a manufacturing method, this invention is not limited to this. For example, the manufacturing method may include a step of press-fitting the weight 140 into the weight holding hole 134 in the weight support body 130 with a tightening margin, and the temperature of the weight support body 130 is higher than the temperature of the weight 140 Thus, the manufacturing method may include a step of inserting the weight 140 into the weight holding hole 134 in the weight support 130. Moreover, the manufacturing method including the process of joining the weight 140 and the weight support body 130 by brazing, adhesion | attachment, or welding may be sufficient. Further, the manufacturing method may include a step of inserting the material of the weight support 130 into a mold in a state where a part or all of the weight 140 is placed in a predetermined mold. Moreover, the manufacturing method which used the above-mentioned process together may be sufficient. For example, a manufacturing method including a step of bonding after crimping, a manufacturing method including a step of bonding after brazing, a manufacturing method including a step of spot welding after crimping, and brazing after spot welding. A manufacturing method including a process is also possible.
[0174] (5)本発明の偏心分銅をモータ本体に固定する際には、本発明の偏心分銅におけ るモータ軸保持部にモータ本体におけるモータ軸を接合することにより行うが、その 接合方法としては、上記 (4)に示したような分銅と分銅支持体との接合方法と同様な 接合方法を採用することができる。  [0174] (5) When the eccentric weight of the present invention is fixed to the motor body, the motor shaft in the motor body is joined to the motor shaft holding part in the eccentric weight of the present invention. For example, a joining method similar to the joining method of the weight and the weight support as shown in (4) above can be adopted.
[0175] (6)本発明の偏心分銅における分銅に対する分銅保持部の長手方向での接合位置 及び本発明の振動モータにおける偏心分銅とモータ軸との長手方向での接合位置 は、上記実施形態 17に示す位置関係に限定されるものではない。従って、実施形態 17に示す位置関係は、上記したすべての実施形態に共通して適用できるものである [0175] (6) The joining position in the longitudinal direction of the weight holding part with respect to the weight in the eccentric weight of the present invention and the joining position in the longitudinal direction of the eccentric weight and the motor shaft in the vibration motor of the present invention It is not limited to the positional relationship shown in FIG. Thus, the embodiment The positional relationship shown in 17 can be applied in common to all the above-described embodiments.
(7)本発明の振動モータは、携帯電話、 PDAなどの携帯機器に好適に用いられるほ 力 ゲーム機のリモコン、パチンコの操作部、電動歯ブラシなどにも好適に用いること ができる。 (7) The vibration motor of the present invention can also be suitably used for a remote control of a game machine, a pachinko operation unit, an electric toothbrush, etc. suitably used for portable devices such as mobile phones and PDAs.

Claims

請求の範囲 The scope of the claims
[1] 高比重金属力 なる分銅と、  [1] High specific gravity metal weight,
前記分銅を半周以上に渡って保持する分銅保持部及びモータ軸を保持するため のモータ軸保持部並びに前記分銅保持部及び前記モータ軸保持部を連結する連 結部を有し、前記分銅を構成する高比重金属よりも比重の低 、金属力 なる分銅支 持体とを備えた偏心分銅であって、  A weight holding portion for holding the weight over a half circumference, a motor shaft holding portion for holding the motor shaft, and a connecting portion for connecting the weight holding portion and the motor shaft holding portion, and constituting the weight An eccentric weight having a weight support body having a lower specific gravity and higher metal strength than a high specific gravity metal,
前記連結部は、前記モータ軸保持部における前記モータ軸に沿った長さよりも小さ い値の肉厚を有する薄肉領域及び Z又は前記モータ軸に沿った両側に開口する穴 を有することを特徴とする偏心分銅。  The connecting portion has a thin region having a thickness smaller than a length along the motor shaft in the motor shaft holding portion, and a hole opening on both sides along the Z or the motor shaft. Eccentric weight.
[2] 高比重金属力 なる分銅と、  [2] A high specific gravity metal weight,
前記分銅を半周以上に渡って保持する分銅保持部及びモータ軸を保持するため のモータ軸保持部並びに前記分銅保持部及び前記モータ軸保持部を連結する連 結部を有し、前記分銅を構成する高比重金属よりも比重の低 、金属力 なる分銅支 持体とを備えた偏心分銅であって、  A weight holding portion for holding the weight over a half circumference, a motor shaft holding portion for holding the motor shaft, and a connecting portion for connecting the weight holding portion and the motor shaft holding portion, and constituting the weight An eccentric weight having a weight support body having a lower specific gravity and higher metal strength than a high specific gravity metal,
前記連結部は、前記モータ軸に沿った方向から見て一本の連結棒となるような形 状を有することを特徴とする偏心分銅。  The eccentric weight is characterized in that the connecting portion has a shape that forms a single connecting rod when viewed from a direction along the motor shaft.
[3] 高比重金属力 なる分銅と、 [3] Weight with high specific gravity metal power,
前記分銅を半周以上に渡って保持する分銅保持部及びモータ軸を保持するため のモータ軸保持部並びに前記分銅保持部及び前記モータ軸保持部を連結する連 結部を有し、前記分銅を構成する高比重金属よりも比重の低 、金属からなる複数の 薄板部材が積層された構造を有する分銅支持体とを備えた偏心分銅であって、 前記薄板部材における各連結部は、前記モータ軸保持部における前記モータ軸 に沿った長さよりも小さい値の肉厚を有する薄肉領域及び Z又は前記モータ軸に沿 つた両側に開口する穴を有することを特徴とする偏心分銅。  A weight holding portion for holding the weight over a half circumference, a motor shaft holding portion for holding the motor shaft, and a connecting portion for connecting the weight holding portion and the motor shaft holding portion, and constituting the weight An eccentric weight comprising a weight support body having a structure in which a plurality of thin plate members made of metal having a specific gravity lower than that of the high specific gravity metal are laminated, wherein each connecting portion in the thin plate member holds the motor shaft An eccentric weight, comprising: a thin region having a thickness smaller than a length along the motor shaft in the portion; and a hole opening on both sides along the Z or the motor shaft.
[4] 高比重金属力 なる分銅と、 [4] High specific gravity metal strength
前記分銅を半周以上に渡って保持する分銅保持部及びモータ軸を保持するため のモータ軸保持部並びに前記分銅保持部及び前記モータ軸保持部を連結する連 結部を有し、前記分銅を構成する高比重金属よりも比重の低 、金属からなる複数の 薄板部材が積層された構造を有する分銅支持体とを備えた偏心分銅であって、 前記薄板部材における各連結部は、前記モータ軸に沿った方向から見て一本の連 結棒となるような形状を有することを特徴とする偏心分銅。 A weight holding portion for holding the weight over a half circumference, a motor shaft holding portion for holding the motor shaft, and a connecting portion for connecting the weight holding portion and the motor shaft holding portion, and constituting the weight The specific gravity is lower than the high specific gravity metal. An eccentric weight comprising a weight support body having a structure in which thin plate members are stacked, wherein each connecting portion in the thin plate member is a single connecting rod as viewed from the direction along the motor shaft. An eccentric weight characterized by having a unique shape.
[5] 請求項 1又は 3に記載の偏心分銅において、  [5] In the eccentric weight according to claim 1 or 3,
前記薄肉領域は、前記モータ軸保持部における前記モータ軸に沿った長さの 50 %以下の値の肉厚を有することを特徴とする偏心分銅。  The eccentric weight is characterized in that the thin region has a thickness of 50% or less of a length along the motor shaft in the motor shaft holding portion.
[6] 請求項 1、 3又は 5に記載の偏心分銅において、 [6] In the eccentric weight according to claim 1, 3 or 5,
前記薄肉領域は、リブを有することを特徴とする偏心分銅。  The eccentric weight is characterized in that the thin region has a rib.
[7] 請求項 1一 6のいずれかに記載の偏心分銅において、 [7] In the eccentric weight according to any one of claims 1 to 6,
前記分銅を偏心分銅の外周側カゝら保持する外周部分における前記分銅保持部の 肉厚は、 0. 4mm以下であることを特徴とする偏心分銅。  An eccentric weight, wherein a thickness of the weight holding portion in an outer peripheral portion holding the weight from an outer peripheral side of the eccentric weight is 0.4 mm or less.
[8] 請求項 1一 7のいずれかに記載の偏心分銅において、 [8] In the eccentric weight according to any one of claims 1 to 7,
前記モータ軸保持部の肉厚は、 0. 4mm以下であることを特徴とする偏心分銅。  An eccentric weight, wherein a thickness of the motor shaft holding portion is 0.4 mm or less.
[9] 請求項 1又は 3に記載の偏心分銅において、 [9] In the eccentric weight according to claim 1 or 3,
前記薄肉領域又は前記穴は、切削加工法によって形成されていることを特徴とする 偏心分銅。  The eccentric weight is characterized in that the thin region or the hole is formed by a cutting method.
[10] 請求項 1一 8のいずれかに記載の偏心分銅において、  [10] In the eccentric weight according to any one of claims 1 to 8,
前記分銅支持体又は前記薄板部材は、金属粉末射出成形法によって製造されて V、ることを特徴とする偏心分銅。  The eccentric weight is characterized in that the weight support or the thin plate member is manufactured by a metal powder injection molding method V.
[11] 請求項 1一 8のいずれかに記載の偏心分銅において、 [11] The eccentric weight according to any one of claims 1 to 8,
前記分銅支持体又は前記薄板部材は、プレス絞り加工法によって製造されて 、る ことを特徴とする偏心分銅。  The eccentric weight is characterized in that the weight support or the thin plate member is manufactured by a press drawing method.
[12] 請求項 1一 11のいずれかに記載の偏心分銅において、 [12] The eccentric weight according to any one of claims 1 to 11,
前記分銅は全周に渡って前記分銅保持部に保持されていることを特徴とする偏心 分銅。  The eccentric weight is characterized in that the weight is held by the weight holding portion over the entire circumference.
[13] 請求項 1一 12のいずれかに記載の偏心分銅において、  [13] The eccentric weight according to any one of claims 1 to 12,
前記分銅を構成する高比重金属よりも比重の低 、金属は、ステンレス鋼であること を特徴とする偏心分銅。 An eccentric weight characterized in that the metal is stainless steel having a specific gravity lower than that of the high specific gravity metal constituting the weight.
[14] 請求項 1一 13のいずれかに記載の偏心分銅において、 [14] In the eccentric weight according to any one of claims 1 to 13,
前記分銅は、タングステン、タングステン合金、オスミウム、オスミウム合金、金、金合 金、イリジウム又はイリジウム合金力もなることを特徴とする偏心分銅。  The eccentric weight is characterized in that the weight is tungsten, tungsten alloy, osmium, osmium alloy, gold, gold alloy, iridium or iridium alloy force.
[15] 請求項 1一 14のいずれかに記載の偏心分銅において、 [15] The eccentric weight according to any one of claims 1 to 14,
前記分銅は、前記モータ軸保持部の中心軸を含む所定の第 1平面を対称面とする 面対称の形状を有することを特徴とする偏心分銅。  The eccentric weight is characterized in that the weight has a plane-symmetric shape with a predetermined first plane including the central axis of the motor shaft holding portion as a symmetry plane.
[16] モータ本体と、請求項 1一 15のいずれかに記載の偏心分銅とを備えたことを特徴と する振動モータ。 [16] A vibration motor comprising the motor main body and the eccentric weight according to any one of claims 1 to 15.
[17] 請求項 16に記載の振動モータを備えたことを特徴とする携帯機器。  17. A portable device comprising the vibration motor according to claim 16.
PCT/JP2004/014972 2004-10-08 2004-10-08 Eccentric weight, method for producing the same, vibration motor and portable apparatus WO2006040808A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2004/014972 WO2006040808A1 (en) 2004-10-08 2004-10-08 Eccentric weight, method for producing the same, vibration motor and portable apparatus
PCT/JP2005/018666 WO2006041045A1 (en) 2004-10-08 2005-10-07 Eccentric weight, vibration motor, portable apparatus, and method of producing eccentric weight

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/014972 WO2006040808A1 (en) 2004-10-08 2004-10-08 Eccentric weight, method for producing the same, vibration motor and portable apparatus

Publications (1)

Publication Number Publication Date
WO2006040808A1 true WO2006040808A1 (en) 2006-04-20

Family

ID=36148110

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2004/014972 WO2006040808A1 (en) 2004-10-08 2004-10-08 Eccentric weight, method for producing the same, vibration motor and portable apparatus
PCT/JP2005/018666 WO2006041045A1 (en) 2004-10-08 2005-10-07 Eccentric weight, vibration motor, portable apparatus, and method of producing eccentric weight

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018666 WO2006041045A1 (en) 2004-10-08 2005-10-07 Eccentric weight, vibration motor, portable apparatus, and method of producing eccentric weight

Country Status (1)

Country Link
WO (2) WO2006040808A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08251862A (en) * 1995-03-07 1996-09-27 Takashi Nosaka Flywheel device, and its motor, and its generator
JPH09182363A (en) * 1995-12-22 1997-07-11 Kesamori Ide Eccentric weight for vibration
JPH11127553A (en) * 1997-10-22 1999-05-11 Mitsumi Electric Co Ltd Rotor for oscillation generating motor
JP2000262969A (en) * 1999-03-15 2000-09-26 Matsushita Electric Ind Co Ltd Flat vibration motor
JP2001062398A (en) * 1999-08-27 2001-03-13 Mitsumi Electric Co Ltd Vibration generating motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3958981B2 (en) * 2002-02-25 2007-08-15 並木精密宝石株式会社 Weight for vibration motor and vibration motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08251862A (en) * 1995-03-07 1996-09-27 Takashi Nosaka Flywheel device, and its motor, and its generator
JPH09182363A (en) * 1995-12-22 1997-07-11 Kesamori Ide Eccentric weight for vibration
JPH11127553A (en) * 1997-10-22 1999-05-11 Mitsumi Electric Co Ltd Rotor for oscillation generating motor
JP2000262969A (en) * 1999-03-15 2000-09-26 Matsushita Electric Ind Co Ltd Flat vibration motor
JP2001062398A (en) * 1999-08-27 2001-03-13 Mitsumi Electric Co Ltd Vibration generating motor

Also Published As

Publication number Publication date
WO2006041045A1 (en) 2006-04-20

Similar Documents

Publication Publication Date Title
EP2216119B1 (en) Manufacturing method of impeller
US20080264231A1 (en) Saw blade
EP2213881A2 (en) Method of manufacturing impeller, impeller, and compressor having impeller
JP2009516897A5 (en)
CN107127531B (en) Method for manufacturing impeller
WO2006040808A1 (en) Eccentric weight, method for producing the same, vibration motor and portable apparatus
EP4134553A1 (en) Closed impeller and method for producing closed impeller
WO2006022010A1 (en) Eccentric weight, method of producing the same, vibration motor, and portable apparatus
JP3958981B2 (en) Weight for vibration motor and vibration motor
CN201486843U (en) Wear-resistant part of concrete pump and concrete pump comprising same
JP2004249441A (en) Tool holder
JP2001129479A (en) Eccentric sash weight for vibration motor
WO2006109365A1 (en) Eccentric weight, vibrating motor, mobile device, and method of manufacturing eccentric weight
WO2006049144A1 (en) Eccentric weight, vibration motor, portable apparatus and method for producing eccentric weight
JP3006321U (en) Vibration generator of paging motor
JP3216062U (en) Cutting tool and cutting apparatus provided with the same
JP4037165B2 (en) Carriage for hard disk drive
JP2002273344A (en) Eccentric weight for microvibration motor and its installation method
CN213671349U (en) Die set
JP3633074B2 (en) Vibrator for vibration generator of small wireless paging machine
JPH11123364A (en) Ultrasonic horn
JP3706239B2 (en) Ultrasonic horn
JP6004532B2 (en) Sizing core mold
JPH0865948A (en) Vibration generator of motor for pager
JP2000343495A (en) Rotary punching unit and die used therefor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP