WO2006041045A1 - Eccentric weight, vibration motor, portable apparatus, and method of producing eccentric weight - Google Patents

Eccentric weight, vibration motor, portable apparatus, and method of producing eccentric weight Download PDF

Info

Publication number
WO2006041045A1
WO2006041045A1 PCT/JP2005/018666 JP2005018666W WO2006041045A1 WO 2006041045 A1 WO2006041045 A1 WO 2006041045A1 JP 2005018666 W JP2005018666 W JP 2005018666W WO 2006041045 A1 WO2006041045 A1 WO 2006041045A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
eccentric
motor shaft
eccentric weight
holding portion
Prior art date
Application number
PCT/JP2005/018666
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichi Shimodaira
Takaomi Tanaka
Yoshito Hirata
Hidehiko Ichikawa
Akira Shimojima
Hikaru Yoshizawa
Kenichi Kusano
Original Assignee
Nanshin Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanshin Co., Ltd. filed Critical Nanshin Co., Ltd.
Publication of WO2006041045A1 publication Critical patent/WO2006041045A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/10Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy
    • B06B1/16Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving rotary unbalanced masses

Definitions

  • the present invention relates to an eccentric weight, a vibration motor, a portable device, and a method for manufacturing an eccentric weight.
  • FIG. 25 is a view for explaining a conventional vibration motor 3000 and an eccentric weight 3020.
  • Fig. 25 (a) is a perspective view of vibration motor 3000
  • Fig. 25 (b) is a cross-sectional view of eccentric weight 3020 cut by a plane perpendicular to the motor axis
  • Fig. 25 (c) is eccentric weight 302 0. It is sectional drawing cut
  • the eccentric weight 3020 in FIG. 25 (a) is shown in a different position in the rotational direction.
  • a conventional vibration motor 3000 includes a small cylindrical motor main body 3010 and an eccentric weight 3020 having a substantially fan shape and having a force such as a sintered body of tungsten.
  • the motor shaft 3012 of the motor body 3010 is generally held in the motor shaft holding hole 3022 of the eccentric weight 3020.
  • the eccentric weight 3020 is a caulking stop by deforming the motor shaft holding hole 3022 by applying an external force to the motor shaft holding hole 3022 through which the motor shaft 3012 passes. It is attached (for example, see Patent Document 1).
  • FIG. 26 is a view for explaining another conventional eccentric weight 3120.
  • Fig. 26 (a) is a front view of the eccentric weight 3120
  • Fig. 26 (b) is an A-A cross-sectional view of Fig. 26 (a)
  • Fig. 26 (c) is a front view of the component parts.
  • 26 (d) is a cross-sectional view taken along the line BB in FIG. 26 (c).
  • a part of the motor body 3110 is also shown.
  • another conventional eccentric weight 3120 includes a motor shaft 3 of a motor main body 3110. It consists of a cylindrical weight support 3130 having a motor shaft holding hole 3132 for holding 112 and a low specific gravity metal force, and a substantially semi-pipe weight 3140 also having a high specific gravity metal force (for example, patents) Refer to Reference 1.) For this reason, since the weight 3140 also has a high specific gravity metal force, the center of gravity of the eccentric weight 3120 is disposed at a position separated from the center axis of the motor shaft holding hole 3132. As a result, the eccentric amount of the eccentric weight 3120 increases, and by using such other conventional eccentric weight 3120, a vibration motor that can obtain a required vibration amount with light weight and low power consumption can be configured.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-129479
  • the weight 3240 is integrally joined and fixed to a part of the outer surface 3234 of the weight support 3230 via the brazing portion 3250.
  • an object of the present invention is to provide an eccentric weight and a method of manufacturing the same, in which the reliability of bonding between the weight and the weight support is suppressed even when the vibration motor is used for a long time. Moreover, an object of this invention is to provide the vibration motor and portable apparatus provided with the eccentric weight which was excellent in this way.
  • the eccentric weight of the present invention includes a weight having a high specific gravity metal force, a weight holding portion for holding the weight over a half circumference, a motor shaft holding portion for holding the motor shaft, and the weight described above.
  • An eccentric weight having a holding portion and a connecting portion for connecting the motor shaft holding portion, and comprising a weight support made of a metal having a specific gravity lower than that of the high specific gravity metal constituting the weight, wherein the connecting portion is And a thin region having a thickness smaller than the length of the motor shaft holding portion along the motor shaft.
  • the eccentric weight is made of a high specific gravity metal.
  • Eccentric weights with a weight and a weight support that is made of a metal that has a lower specific gravity than the high-density metal that constitutes the weight are reduced to reduce the total weight of the eccentric weight and reduce the amount of eccentricity in the eccentric weight. Can be bigger. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
  • the vibration motor (and the eccentric weight) is used for a long time.
  • vibration motor can be configured.
  • the weight holding portion and the motor at the connecting portion having a thin region having a thickness smaller than the length of the motor shaft holding portion along the motor shaft. Since the shaft holding portion is connected, the total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be further increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter weight and less power consumption.
  • the thickness of the thin region may have a value of 50% or less of the length of the motor shaft holding portion along the motor shaft. preferable.
  • the total weight of the eccentric weight can be reduced, and the amount of eccentricity in the eccentric weight can be further increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with a lighter weight and less power consumption.
  • the weight support is formed from a plate-like member having a thickness substantially equal to the thickness of the thin region by a press drawing method. Preferably it is manufactured.
  • the eccentric weight of the present invention includes a weight having a high specific gravity metal force, a weight holding portion for holding the weight over a half circumference, a motor shaft holding portion for holding the motor shaft, and the weight described above.
  • a weight support body having a connection portion for connecting the holding portion and the motor shaft holding portion, and having a structure in which a plurality of thin plate members made of a metal having a specific gravity lower than that of the high specific gravity metal constituting the weight are laminated.
  • Each of the coupling parts has a thin region having a thickness smaller than the length of the motor shaft holding part along the motor shaft.
  • the eccentric weight includes a weight made of a high specific gravity metal, and a plurality of low weight metals having a specific gravity lower than that of the high specific gravity metal constituting the weight. Since the eccentric weight includes a weight support body having a structure in which thin plate members are laminated, the total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
  • the vibration motor (and the eccentric weight) is used for a long time.
  • the eccentric weight described in the above (4) since the predetermined thin wall region is provided in the connecting portion of each thin plate member, the total weight of the eccentric weight is further reduced, and the eccentric weight is reduced. The amount of eccentricity can be further increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with a lighter weight and less power consumption.
  • the sum of the thicknesses of the thin regions of the plurality of thin plate members is the length of the motor shaft holding portion along the motor shaft. It is preferred that the value is less than 50%.
  • the thin plate member is formed by pressing a plate member having a thickness substantially equal to the thickness of the thin region by a press drawing method. Preferably it is manufactured.
  • the thin member is simultaneously formed in the press drawing process, so that the thin plate member can be easily manufactured as compared with the case of using the cutting method. Further, material waste is reduced as compared with the case of using the cutting method.
  • the length of the motor shaft holding portion along the motor shaft is equal to the inner diameter of the motor shaft holding portion. It is preferable to have a value twice or more.
  • the motor shaft holding section is configured to hold the motor shaft with a sufficient holding force. For this reason, when a vibration motor is used for a long time, it can suppress that the reliability regarding the holding
  • the larger the thin region the lighter the total weight of the eccentric weight and the larger the amount of eccentricity in the eccentric weight.
  • the benefit of being able to if the size of the thin region is made too large, the mechanical strength of the connecting portion is lowered, and there is a disadvantage that the reliability of the eccentric weight is impaired. Therefore, in the eccentric weight described in any one of (1) to (7) above, it is preferable to determine the size of the thin-wall region in the connecting portion by weighing these benefits and disadvantages.
  • the length of the thin region along the radial direction of the motor shaft is 0.4 mm or more. preferable.
  • the weight can be arranged as much as possible in the outer peripheral portion, so that the amount of eccentricity in the eccentric weight can be further increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with less power consumption.
  • the eccentric weight is perpendicular to the motor shaft.
  • the thickness of the weight holding portion on a flat surface is preferably 0.4 mm or less.
  • the weight can be increased as much as possible, and therefore the amount of eccentricity in the eccentric weight can be further increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with less power consumption.
  • the thickness of the weight holding part in the plane perpendicular to the motor shaft is
  • it is 0.3 mm or less, and further preferably 0.2 mm or less.
  • a thickness of the motor shaft holding portion on a surface perpendicular to the motor shaft is 0.4 mm or less. It is preferable.
  • the total weight of the eccentric weight can be further reduced, and the amount of eccentricity in the eccentric weight can be further increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter weight and less power consumption.
  • the thickness of the motor shaft holding portion in the plane perpendicular to the motor shaft is more preferably 0.3 mm or less, and further preferably 0.2 mm or less.
  • the connecting portion is formed inside the thin area of the weight support or the thin area of the thin plate member. It is preferable to have struts or struts formed at the ends of the thin area of the weight support or the thin area of the thin plate member.
  • the mechanical strength of the weight support can be increased, so that a more reliable vibration motor can be configured. Further, since the mechanical strength of the weight support can be increased, the weight region of the weight support can be further reduced by increasing the thin region of the weight support. For this reason, the total weight of the eccentric weight can be further reduced, and the eccentric amount of the eccentric weight can be further increased. As a result, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with a lighter weight and less power consumption.
  • the weight is the weight of the weight. It is preferable that the weight holding portion of the weight support is held by a portion having a length of at least half of the length along the longitudinal direction. With this configuration, the weight is held on the weight support by tension, and when the vibration motor (and the eccentric weight) is used for a long time, the weight holding force by the weight support is increased. It can suppress that it falls. For this reason, a vibration motor with high long-term reliability can be configured by using such an eccentric weight.
  • the eccentric weight of the present invention has a weight that also has a high specific gravity metal force, a weight holding portion that holds the weight over a half circumference, and a motor shaft holding portion for holding the motor shaft,
  • An eccentric weight provided with a weight support having a metal force lower in specific gravity than a high specific gravity metal constituting the weight, wherein the weight support is longer than a length of the motor shaft holding portion along the motor shaft. It has a thin region having a small thickness, and the thickness of the motor shaft holding portion along the motor shaft has a value more than twice the inner diameter of the motor shaft holding portion.
  • the eccentric weight of the present invention has a weight that also has a high specific gravity metal force, a weight holding portion that holds the weight over a half circumference, and a motor shaft holding portion for holding the motor shaft,
  • the thickness of the motor shaft holding portion along the motor shaft has a value more than twice the inner diameter of the motor shaft holding portion.
  • the eccentric weight of the present invention includes a weight having a high specific gravity metal force, a weight holding portion for holding the weight over a half circumference, a motor shaft holding portion for holding a motor shaft, and the weight holding Connecting rod and the motor shaft holding portion, and has a single connecting rod when viewed from the direction along the motor shaft, and has a lower specific gravity than the high specific gravity metal constituting the weight.
  • An eccentric weight including a weight support, wherein the thickness of the motor shaft holding portion along the motor shaft has a value more than twice the inner diameter of the motor shaft holding portion.
  • the eccentric weight has a specific gravity lower than that of the weight having a high specific gravity metal force and the high specific gravity metal constituting the weight. Metal power Therefore, the total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
  • the thickness of the motor shaft holding portion along the motor shaft is more than twice the inner diameter of the motor shaft holding portion. Therefore, the motor shaft holder will hold the motor shaft with sufficient holding force. For this reason, when a vibration motor is used for a long time, it can suppress that the reliability regarding the holding
  • a weight support As a weight support, a weight support having a predetermined thin region, a weight support having a predetermined through hole Or the weight holding part and the motor shaft holding part are equipped with any one of the weight supports that are connected by a predetermined connecting part, so the total weight of the eccentric weight is reduced and the amount of eccentricity in the eccentric weight Can be further increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter weight and less power consumption.
  • the weight support is formed by a cutting method
  • the cutting method is preferably performed using, for example, an end mill.
  • the weight support is preferably manufactured by a metal powder injection molding method. With this configuration, the eccentric weight described in any one of (12) to (14) can be manufactured by a relatively simple method.
  • the thickness of the weight holding part and the motor shaft holding part can be reduced, so that the weight is reduced and the power consumption is reduced.
  • a vibration motor capable of obtaining a necessary vibration amount can be configured.
  • material waste is reduced as compared with the case of manufacturing by a cutting method.
  • the degree of freedom in the shape of the weight support and weight in the eccentric weight can be increased.
  • half or more means half or more of the entire outer periphery of the weight in a plane perpendicular to the longitudinal direction of the weight. is there.
  • the weight may be held in the weight holding portion over the entire length of the weight, but it is not necessarily required to be held in the weight holding portion over the entire length of the weight.
  • the motor shaft holding portion has an opening portion that opens laterally.
  • the weight support is preferably made of stainless steel.
  • a material constituting a weight for example, tungsten, tungsten alloy, etc.
  • the eccentric weight as a whole has a high corrosion resistance and is difficult to crack (for example, nickel. ).
  • the joint between the eccentric weight and the plating film and the plating film itself can easily crack.
  • the reliability related to holding the motor shaft in the motor shaft holding portion decreases.
  • stainless steel is originally a material with high corrosion resistance and resistance to cracking, so it is not necessary to apply a plating. For this reason, cracks do not occur at the joint between the eccentric weight and the plating film, and the reliability related to holding the motor shaft in the motor shaft holding portion is reduced.
  • non-magnetic stainless steel can be preferably used in order to reduce the influence on the motor.
  • the weight support is made of a metal having quench hardening properties, a metal having age hardening properties, or a metal having work hardening properties. Or the shape memory alloy power is also preferred.
  • a weight support is formed by a press drawing method by forming a weight support with a quench-hardening metal, an age-hardening metal, a work-hardening metal, or a shape memory alloy. It is possible to sufficiently harden the weight support when manufacturing the iron, and it is possible to manufacture a highly reliable eccentric weight and vibration motor.
  • the weight is selected from the group consisting of tungsten, tungsten alloy, osmium, osmium alloy, gold, gold alloy, iridium or iridium alloy. I prefer to be.
  • tungsten, tungsten alloy, osmium, osmium alloy, gold, gold alloy, iridium or iridium alloy has a very high specific gravity, and therefore the amount of eccentricity in the eccentric weight can be further increased. . Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with less power consumption.
  • the weight since the weight does not need a function for holding the motor shaft, the weight has a very simple shape (for example, a cross-section such as a circle, an ellipse, or a sector). Can be adopted. For this reason, as a weight, a sintered body sintered in the shape of a weight, or a sintered body with a deformed bar force having the same cross-sectional shape as a weight (for example, a circle, an ellipse, a fan shape, etc.) is cut short. Can be used. In addition, it is possible to use a cut body obtained by cutting a sintered body made of a round bar and cutting it into the same cross-sectional shape as that of the weight. In addition, when the cross-sectional shape of the weight is a circle, a sintered body that also has a round bar force can be used as it is cut short.
  • the eccentric weight is used by being attached to the motor shaft at a portion where the motor body force protrudes.
  • An eccentric weight characterized by being a weight.
  • the length of the weight support along the longitudinal direction of the weight is the length along the longitudinal direction of the weight.
  • the weight holding part of the weight support shorter than the weight length holds the weight at a position eccentric along the longitudinal direction of the weight.
  • a vibration motor according to the present invention includes a motor main body and the eccentric weight according to any one of (1) to (23).
  • the vibration motor described in the above (24) even when the vibration motor is used for a long time, the reliability of the connection between the weight and the weight support is lowered. Since the eccentric weight has a structure that can be suppressed and can easily increase the amount of eccentricity of the eccentric weight, the vibration motor is excellent in long-term reliability and eccentric vibration characteristics.
  • a vibration motor of the present invention includes a motor main body and the eccentric weight described in (23) above, and the eccentric weight with respect to the motor main body includes the motor shaft holding portion and the motor. It is characterized by being fixed so that the distance from the main body is closer.
  • the vibration motor described in (25) above it is possible to suppress a decrease in the reliability of bonding between the weight and the weight support even when the vibration motor is used for a long time. Furthermore, since the eccentric weight has a structure that makes it easy to increase the amount of eccentricity of the eccentric weight, the vibration motor is excellent in long-term reliability and eccentric vibration characteristics.
  • a portable device of the present invention is characterized by including the vibration motor according to (24) or (25).
  • the portable device of the present invention since the vibration motor having high long-term reliability and eccentric vibration characteristics is provided, the portable device is excellent in long-term reliability and eccentric vibration characteristics.
  • An eccentric weight manufacturing method of the present invention includes a weight made of a high specific gravity metal, a weight holding portion for holding the weight over a half circumference, a motor shaft holding portion for holding a motor shaft, and A weight supporting portion having a connecting portion for connecting the weight holding portion and the motor shaft holding portion, and having a metal force having a specific gravity lower than that of the high specific gravity metal constituting the weight.
  • An eccentric weight manufacturing method for manufacturing an eccentric weight which is smaller than the length of the motor shaft holding portion along the motor shaft! Producing a weight support;
  • the weight support is manufactured from the plate member by the press drawing method, the cutting method is used. It becomes possible to manufacture a weight support easily compared with the above. In addition, material waste is reduced compared to the case of using a cutting method.
  • An eccentric weight manufacturing method of the present invention has a weight having a high specific gravity metal force, a weight holding portion for holding the weight, and a motor shaft holding portion for holding a motor shaft.
  • Both-side forces include a second step of fixing the weight and the weight holding portion by pressing the weight and plastically deforming the weight.
  • the weight is firmly fixed to the weight holding portion because the weight and the weight holding portion are fixed by pressing the weight to cause plastic deformation. Will be held in. For this reason, when a vibration motor is used for a long time, it can further suppress that the reliability of joining of a weight and a weight support body falls.
  • the size of the weight in the first step is the same as the outer circumference of the weight when the weight is inserted into the weight support. It is preferable that the average value of the gap with the inner periphery of the weight holding portion is in a range of 5 ⁇ to 100 / ⁇ m.
  • the weight is firmly held by the weight holding portion, and the productivity when manufacturing the eccentric weight is improved. That is, by setting the average value of the gap between the outer periphery of the weight and the inner periphery of the weight holding portion to 100 m or less, the weight is firmly held by the weight holding portion due to plastic deformation of the weight due to pressing. Even if the weight is plated with nickel to prevent wrinkles, there is no need to increase the amount of plastic deformation and the nickel plating is cracked or peeled off, reducing the weight quality. Can be suppressed. Also, by setting the average value of the gap between the outer periphery of the weight and the inner periphery of the weight holding part to 5 m or less, it becomes easier to insert the weight into the weight support, and the productivity when producing an eccentric weight Can be improved.
  • FIG. 1 is a view for explaining an eccentric weight 120 according to Embodiment 1.
  • FIG. 2 is a view for explaining the vibration motor 100 according to the first embodiment.
  • FIG. 3 is a view for explaining an eccentric weight 220 according to Embodiment 2.
  • FIG. 4 is a view for explaining an eccentric weight 320 according to Embodiment 3.
  • FIG. 5 is a view for explaining an eccentric weight 420 according to a fourth embodiment.
  • FIG. 6 is a view for explaining an eccentric weight 520 according to a fifth embodiment.
  • FIG. 7 is a view for explaining an eccentric weight 620 according to a sixth embodiment.
  • FIG. 8 is a view for explaining an eccentric weight 720 according to a seventh embodiment.
  • FIG. 9 is a view for explaining an eccentric weight 820 according to an eighth embodiment.
  • FIG. 10 is a view for explaining an eccentric weight 920 according to the ninth embodiment.
  • FIG. 11 is a view for explaining a manufacturing method for manufacturing the eccentric weight 920 according to the ninth embodiment.
  • FIG. 12 is a view for explaining an eccentric weight 1020 according to the tenth embodiment.
  • FIG. 13 is a view for explaining an eccentric weight 1120 according to an eleventh embodiment.
  • FIG. 14 is a view for explaining an eccentric weight 1220 according to the twelfth embodiment.
  • FIG. 15 is a view for explaining an eccentric weight 1320 according to the thirteenth embodiment.
  • FIG. 16 is a view for explaining an eccentric weight 1420 according to the fourteenth embodiment.
  • FIG. 17 is a view for explaining an eccentric weight 1520 according to the fifteenth embodiment.
  • FIG. 18 is a view for explaining an eccentric weight 1620 according to the sixteenth embodiment.
  • FIG. 19 is a view for explaining an eccentric weight 1720 according to the seventeenth embodiment.
  • FIG. 20 is a view for explaining a vibration motor 1800 using the eccentric weight 1820 according to the eighteenth embodiment.
  • FIG. 21 is a schematic diagram for explaining the manufacturing method of the eccentric weight according to Embodiment 19.
  • FIG. 22 is a schematic diagram for explaining the manufacturing method of the eccentric weight according to Embodiment 20.
  • 23 A schematic diagram for explaining the manufacturing method of the eccentric weight according to the embodiment 21.
  • FIG. 24 A schematic diagram for explaining the manufacturing method of the eccentric weight according to the embodiment 22. [FIG. It is a figure shown in order to demonstrate the conventional vibration motor 3000 and the eccentric weight 3020
  • FIG. 26 is a view for explaining another conventional eccentric weight 3120.
  • Embodiments 1 and 2 are mainly embodiments for explaining an eccentric weight according to claim 14.
  • FIG. 1 is a view for explaining the eccentric weight 120 according to the first embodiment.
  • Fig. 1 (a) is a view of the eccentric weight 120 from the frontal force
  • Fig. 1 (b) is a cross-sectional view taken along the line A-A in Fig. 1 (a)
  • Fig. 1 (c) is a diagram of Fig. 1 (a).
  • FIG. 1 (d) is a perspective view of the eccentric weight 120
  • FIG. 1 (e) is a perspective view of the eccentric weight 120 as seen from the back side of FIG. 1 (d).
  • the eccentric weight 120 includes a weight 140 having a substantially fan-shaped cross section, and a weight support 130.
  • Weight 140 also has high specific gravity metal power.
  • the weight support body 130 also has a metal force having a specific gravity lower than that of the high specific gravity metal constituting the weight 140.
  • the weight support 130 has a weight holding part 134 that holds the weight 140 over the entire circumference and a motor shaft holding part 132 for holding the motor shaft 112 (see FIG. 2).
  • the weight support body 130 has a thin region 138 having a thickness smaller than the length of the motor shaft holding portion 132 along the motor shaft 112.
  • the length of the motor shaft holder 132 along the motor shaft 112 has a value more than twice the inner diameter of the motor shaft holder 132.
  • the eccentric weight 120 includes the weight 140 made of a high specific gravity metal, and the weight support having a lower specific gravity than the high specific gravity metal constituting the weight 140.
  • the total weight of the eccentric weight 120 can be reduced and the amount of eccentricity of the eccentric weight 120 can be increased. Therefore, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
  • the vibration motor (and the eccentric weight 120) is provided.
  • it is possible to suppress a decrease in the reliability of bonding between the weight 140 and the weight support 130. Therefore, by using such an eccentric weight 120, it is possible to configure a vibration motor with high long-term reliability.
  • the predetermined weight region 138 is provided on the weight support 130, so that the total weight of the eccentric weight 120 is reduced and the eccentric weight 120 is provided.
  • the amount of eccentricity at 120 can be further increased. For this reason, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter weight and less power consumption.
  • the thickness of the motor shaft holding portion 132 along the motor shaft 112 is set to a value more than twice the inner diameter of the motor shaft holding portion 132.
  • the shaft holder 132 holds the motor shaft with a sufficient holding force. For this reason, when the vibration motor (and the eccentric weight 120) is used for a long period of time, it is possible to suppress a decrease in reliability related to the holding of the motor shaft by the motor shaft holding portion.
  • the weight support 130 is formed with a hole having a shape corresponding to the cross-sectional shape of the weight 140 in order to hold the weight 140.
  • the portion around this hole is referred to as a weight holding portion 134.
  • a hole having a shape corresponding to the cross-sectional shape of the motor shaft 112 is formed in the weight support 130 to hold the motor shaft 112.
  • a portion around this hole is referred to as a motor shaft holding portion 132.
  • the entire circumference refers to the entire outer circumference of the weight 140 in a plane perpendicular to the longitudinal direction of the weight 140.
  • the length of the weight 140 along the direction parallel to the motor axis is 4 mm, as shown in FIGS. 1 (b) and 1 (c). .
  • the length of the weight holder 134 along the direction parallel to the motor shaft is 2 mm, and the length of the motor shaft holder 132 along the direction parallel to the motor shaft is 2 mm.
  • the weight 140 is held by the weight holding portion 134 at a portion (2 mm) that is half the length (4 mm) of the weight 140. As a result, the weight 140 is held on the weight support 130 by tension.
  • the thin region 138 has a thickness (0.2 mm) that is 10% of the length of the motor shaft holding portion 132 along the motor shaft. ing. That is, the thin region 138 has a shape in which a portion having a depth of 1.8 mm is deleted by cutting. For this reason, the weight of the weight support 130 can be sufficiently reduced, the total weight of the eccentric weight 120 is further reduced, and the amount of eccentricity in the eccentric weight 120 is further increased. You can make it bigger. For this reason, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and even less power consumption.
  • the thickness of the weight holding portion 134 in the outer peripheral portion that holds the weight 140 from the outer peripheral side of the eccentric weight 120 is 0.25 mm. Therefore, in the eccentric weight 120 according to the first embodiment, the weight 140 can be arranged on the outer peripheral portion as much as possible, and the weight 140 can be made as large as possible. Therefore, the amount of eccentricity in the eccentric weight 120 can be further increased. Can be bigger. Therefore, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with less power consumption.
  • the thickness of the motor shaft holding portion 132 in the direction along the radial direction of the motor shaft 112 is 0.2 mm. For this reason, in the eccentric weight 120 according to the first embodiment, the total weight of the eccentric weight 120 can be further reduced, and the amount of eccentricity in the eccentric weight 120 can be further increased. For this reason, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
  • the weight 140 has a substantially fan-shaped cross section, and includes a predetermined first weight including the central axis of the motor shaft holding portion 132. It has a plane-symmetric shape with a plane (indicated by A–A in Fig. 1 (a)) as a plane of symmetry.
  • the weight 140 is inserted into any end portion (see the end portions SI and S2 shown in Fig. 1 (b).
  • the M-law force is also inserted into the weight holding portion 134.
  • the central axis of the motor shaft holding part 132 means that the central axis of the motor shaft 112 is located when the motor shaft holding part 132 holds the motor shaft 112 (see Fig. 2). It is the axis that will be.
  • the weight 140 is a tungsten sintered alloy.
  • the weight support 130 is made of a molten stainless steel having a specific gravity lower than that of the tungsten alloy.
  • the weight support 130 also has a stainless steel power of a molten material having a specific gravity lower than that of the tungsten sintered alloy constituting the weight 140, the weight support 130 is improved in durability and the weight support 130 is improved. And the weight 140 can be integrated more firmly, and the reliability of the connection between the weight 140 and the weight support 1 30 is reduced when the vibration motor (and the eccentric weight 120) is used for a long time. This can be suppressed. Therefore, by using such an eccentric weight 120, it is possible to configure a vibration motor with high long-term reliability.
  • the weight support 130 is made of such a relatively inexpensive stainless steel, thereby reducing the manufacturing cost of the eccentric weight 120. Can do.
  • the thin region 138 is formed by a cutting method.
  • the eccentric weight 120 according to the first embodiment can be manufactured by a relatively simple method.
  • the cutting method is performed using, for example, an end mill.
  • the weight 140 has a tungsten alloy strength. Since the tungsten alloy has a very high specific gravity, the amount of eccentricity in the eccentric weight 120 can be further increased. For this reason, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with further reduced power consumption.
  • the weight 140 itself includes the motor shaft 1. Since a function for holding 12 is not required, a very simple shape (bar shape having a substantially fan-shaped cross section) is adopted as the weight shape.
  • the weight 140 As a manufacturing method of the weight 140, a manufacturing method in which a tungsten alloy is sintered into a weight shape to obtain the weight 140 can be adopted. However, in the eccentric weight 120 according to the first embodiment, the tungsten alloy is made of The manufacturing method is to make a round bar with a simple shape by sintering and then cut out the round bar to make a weight of 140. By doing so, the amount of the additive (for example, copper) contained in the tandastain alloy can be reduced, so that the specific gravity can be increased and the amount of eccentricity in the eccentric weight 120 can be further increased. become able to.
  • the additive for example, copper
  • the eccentric weight 120 according to Embodiment 1 can be manufactured, for example, by the following method.
  • a member having a shape corresponding to the weight support 130 is manufactured by a press working method (however, the thin region 138 and the motor shaft holding portion 132 are not formed).
  • the weight support body 130 is manufactured by forming the thin region 138 and the motor shaft holding portion 132 on this member by a cutting method.
  • the weight support 140 is held by the weight support 134 by caulking the weight support 130 from the outside with the weight 140 inserted in the weight holding part 134 of the weight support 130.
  • FIG. 2 is a view for explaining the vibration motor 100 according to the first embodiment.
  • Fig. 2 (a) is a perspective view of the vibration motor 100
  • Fig. 2 (b) is a view of the vibration motor 100 as viewed from the front
  • Fig. 2 (c) is a view of the main part of the vibration motor 100 as viewed from the side. It is a figure.
  • the vibration motor 100 according to the first embodiment is a vibration motor including a motor body 110 and an eccentric weight 120. Further, as described above, the vibration motor 100 according to the first embodiment is an eccentric weight that can be suitably used for a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption. It is equipped with an excellent eccentric weight 120 that suppresses a decrease in the reliability of the connection between the weight and the weight support when the motor is used for a long time. For this reason, the vibration motor 100 according to the first embodiment is a vibration motor having such an excellent eccentric weight 120. Therefore, a required amount of vibration can be obtained with light weight and low power consumption, and long-term reliability can be obtained. High vibration motor.
  • the vibration motor 100 that is light and has low power consumption and has the required amount of vibration and has high reliability for a long time as a vibration motor for portable devices, It can be a highly portable device that is lightweight, has low power consumption, and is reliable for a long time.
  • FIG. 3 is a view for explaining the eccentric weight 220 according to the second embodiment.
  • Fig. 3 (a) is a view of the eccentric weight 220 also showing the front force
  • Fig. 3 (b) is a cross-sectional view taken along line AA in Fig. 3 (a).
  • the eccentric weight 220 according to the second embodiment has basically the same structure as the eccentric weight 120 according to the first embodiment. However, the eccentric weight 220 according to the second embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support 230 as shown in FIG. In other words, in the eccentric weight 220 according to the second embodiment, the weight support body 230 has the thin regions 238 that open on both sides in the direction along the motor shaft.
  • the eccentric weight 220 according to the second embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support 230, but the eccentric weight 120 according to the first embodiment is different from the case of the eccentric weight 120 according to the first embodiment.
  • the eccentric weight is an eccentric weight 220 having a weight 240 made of a high specific gravity metal and a weight support body 230 having a metal force with a specific gravity lower than that of the high specific gravity metal constituting the weight 240.
  • the total weight of 220 can be reduced and the amount of eccentricity in the eccentric weight 220 can be increased. For this reason, by using such an eccentric weight 220, the weight is reduced.
  • a vibration motor capable of obtaining a necessary vibration amount with low power consumption can be configured.
  • the weight 240 is held by the weight holding portion 234 in the weight support 230 over the entire circumference, so that the vibration motor (and the eccentric weight 220) is provided.
  • the vibration motor and the eccentric weight 220
  • the predetermined weight region 238 is provided on the weight support 230, so that the total weight of the eccentric weight is reduced and the eccentric weight in the eccentric weight is also provided. The amount can be further increased. For this reason, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter weight and less power consumption.
  • the thickness of the motor shaft holding portion 232 along the motor shaft is set to a value more than twice the inner diameter of the motor shaft holding portion 232.
  • the part 232 holds the motor shaft with a sufficient holding force. For this reason, when the vibration motor (and the eccentric weight 220) is used for a long time, it is possible to suppress a decrease in reliability related to holding the motor shaft by the motor shaft holding portion.
  • the third embodiment is an embodiment mainly for explaining an eccentric weight according to claim 15.
  • FIG. 4 is a view for explaining the eccentric weight 320 according to the third embodiment.
  • Fig. 4 (a) is a view of the eccentric weight 320 as viewed from the front
  • Fig. 4 (b) is a cross-sectional view taken along line AA in Fig. 4 (a).
  • the eccentric weight 320 according to the third embodiment basically has the same structure as the eccentric weight 120 according to the first embodiment. However, the eccentric weight 320 according to the third embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support 330 as shown in FIG. In other words, in the eccentric weight 320 according to the third embodiment, the weight support 330 has a through hole 338 that penetrates in the direction along the motor shaft.
  • the eccentric weight 320 according to the third embodiment has the structure of the weight support 330 as an embodiment. Unlike the case of the eccentric weight 120 according to the state 1, the eccentric weight is composed of a weight 340 having a high specific gravity metal force and a weight support body 330 made of a low density metal having a specific gravity lower than that of the high specific gravity metal constituting the weight 340. Since the eccentric weight 320 is provided, as in the case of the eccentric weight 120 according to the first embodiment, the total weight of the eccentric weight 320 can be reduced and the amount of eccentricity in the eccentric weight 320 can be increased. For this reason, by using such an eccentric weight 320, it is possible to configure a vibration motor that can obtain a large vibration amount with light weight and low power consumption.
  • the weight 340 is held by the weight holding portion 334 in the weight support body 330 over the entire circumference, so that the eccentric weight 120 according to the first embodiment has the Similarly to the case, when the eccentric weight 320 is used for a long time, it is possible to suppress a decrease in the reliability of bonding between the weight 340 and the weight support 330. Therefore, by using such an eccentric weight 320, a vibration motor with high long-term reliability can be configured.
  • the eccentric weight 320 since the predetermined support hole 338 is provided in the weight support 330, the eccentric weight 320 is the same as the case of the eccentric weight 120 according to the first embodiment. As a result, the eccentric weight of the eccentric weight 320 can be further increased. Therefore, by using such an eccentric weight 320, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter weight and less power consumption.
  • the thickness of the motor shaft holding portion 332 along the motor shaft is set to a value more than twice the inner diameter of the motor shaft holding portion 332.
  • the holding part 332 holds the motor shaft with a sufficient holding force. For this reason, when the vibration motor (and the eccentric weight 320) is used for a long period of time, it is possible to suppress a decrease in reliability related to the motor shaft holding by the motor shaft holding portion.
  • Embodiment 4 is an embodiment mainly for explaining an eccentric weight according to claim 16.
  • FIG. 5 is a view for explaining the eccentric weight 420 according to the fourth embodiment.
  • FIG. 5 (a) is a view of the eccentric weight 420 as viewed from the front
  • FIG. 5 (b) is a cross-sectional view taken along line AA in FIG. 5 (a).
  • the eccentric weight 420 according to the fourth embodiment has basically the same structure as the eccentric weight 120 according to the first embodiment. However, the eccentric weight 420 according to the fourth embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support 430, as shown in FIG. That is, in the eccentric weight 420 according to the fourth embodiment, the weight support 430 has a predetermined connecting rod 436 that connects the weight holding portion 434 and the motor shaft holding portion 432.
  • the eccentric weight 420 according to the fourth embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support body 430, but the eccentric weight is divided into components having high specific gravity metal force. Since the eccentric weight 420 is provided with the copper 440 and the weight support body 430 made of a low weight metal having a specific gravity lower than that of the high specific gravity metal constituting the weight 440, the eccentric weight is the same as in the case of the eccentric weight 120 according to the first embodiment. While reducing the total weight of the weight 420, the amount of eccentricity in the eccentric weight 420 can be increased. For this reason, by using such an eccentric weight 420, it is possible to configure a vibration motor that can obtain a large vibration amount with light weight and low power consumption.
  • the weight 440 is held by the weight holding portion 434 in the weight support body 430 over the entire circumference, so that the eccentric weight according to the first embodiment is used.
  • the eccentric weight 420 when the eccentric weight 420 is used for a long time, it is possible to suppress a decrease in the reliability of bonding between the weight 440 and the weight support 430. Therefore, by using such an eccentric weight 420, it is possible to configure a vibration motor with high long-term reliability.
  • the weight holding portion 434 and the motor shaft holding portion 432 are connected by a predetermined connecting portion, so that the eccentric weight 120 according to the first embodiment is used.
  • the total weight of the eccentric weight 420 can be reduced and the amount of eccentricity in the eccentric weight 420 can be further increased. For this reason, by using such an eccentric weight 420, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and even less power consumption.
  • the thickness of the motor shaft holding portion 432 along the motor shaft is set to a value more than twice the inner diameter of the motor shaft holding portion 432.
  • the holding portion 432 holds the motor shaft with a sufficient holding force. For this reason, when the vibration motor (and the eccentric weight 420) is used for a long time, the motor shaft holding part will It can suppress that the reliability regarding the holding
  • Embodiments 5 to 7 are embodiments mainly for explaining an eccentric weight according to claim 14.
  • FIG. 6 is a view for explaining the eccentric weight 520 according to the fifth embodiment.
  • FIG. 6 (a) is a view of the eccentric weight 520 viewed from the front
  • FIG. 6 (b) is a cross-sectional view taken along the line AA in FIG. 6 (a).
  • FIG. 7 is a view for explaining the eccentric weight 620 according to the sixth embodiment.
  • Fig. 7 (a) is a view of the eccentric weight 620 as viewed from the front
  • Fig. 7 (b) is a cross-sectional view taken along line A-A in Fig. 7 (a).
  • FIG. 8 is a view for explaining the eccentric weight 720 according to the seventh embodiment.
  • Fig. 8 (a) is a view of the eccentric weight 720 as seen from the front
  • Fig. 8 (b) is a cross-sectional view taken along the line AA in Fig. 8 (a).
  • the eccentric weight 520 according to the fifth embodiment basically has the same structure as the eccentric weight 120 according to the first embodiment. However, as shown in FIG. 6, the eccentric weight 520 according to the fifth embodiment has the shape of the weight 540 (and the shape of the weight holding portion 534 in the weight support 530) as shown in FIG. It is different from the case of. That is, in the eccentric weight 520 according to the fifth embodiment, the weight 540 has an oval shape.
  • the eccentric weight 620 according to the sixth embodiment has basically the same structure as the eccentric weight 120 according to the first embodiment. However, the eccentric weight 620 according to the sixth embodiment is different from the eccentric weight 120 according to the first embodiment in the shape of the weight support 630 as shown in FIG. That is, in the eccentric weight 620 according to the sixth embodiment, the weight support 630 serves as a weight holding portion instead of the weight holding portion that holds the weight over the entire circumference, over a half circumference with respect to the entire outer circumference of the weight 640. A weight holding portion 634 that holds the weight 640 is provided.
  • the eccentric weight 720 according to the seventh embodiment has basically the same structure as the eccentric weight 120 according to the first embodiment. However, the eccentric weight 720 according to the seventh embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support 730 as shown in FIG. In other words, in the eccentric weight 720 according to the seventh embodiment, the weight support 730 has an opening 7 39 instead of the motor shaft holding portion that holds the motor shaft over the entire circumference as the motor shaft holding portion. A motor shaft holding portion 732 is provided. In this case, the motor shaft is held by the motor shaft After being inserted into the portion 732, the opening is held and held by the weight support 730.
  • the eccentric weights 520, 620, and 720 according to the embodiments 5 to 7 are the shape of the weight 540 (and the shape of the weight holding portion 534 in the weight support 530), the weight support 6 30.
  • the shape of the weight support or the structure of the weight support 730 is different from the case of the eccentric weight 120 according to the first embodiment.
  • the eccentric weight is a weight 540, 640, 740 having a high specific gravity metal force, and the weight 540, 640, Since the eccentric weights 520, 620, and 720 have weight support bodies 530, 630, and 730 made of a metal having a specific gravity lower than that of the high specific gravity metal that constitutes 740, the eccentric weight 120 according to the first embodiment and Similarly, the total weight of the eccentric weights 520, 620, 720 can be reduced and the amount of eccentricity in the eccentric weights 520, 620, 720 can be increased. For this reason, by using such eccentric weights 520, 620, and 720, it is possible to configure
  • Embodiments 5 to 7 [Such deviations, weights 520, 620, 720 [Kyore ryama, weights 540, 640, 740 are weight holding rods in weight support bodies 530, 630, 730 over the entire circumference] 634, 734, so that when the vibration motor (and the eccentric weights 520, 620, 720) is used for a long time, as in the case of the eccentric weight 120 according to the first embodiment, the weights 540, 64 0, 740 It is possible to suppress a decrease in the reliability of joining between the weight support 530, 630, and 730. Therefore, by using such eccentric weights 520, 620, 720, it is possible to configure a vibration motor with high long-term reliability.
  • the predetermined thin regions 538, 638, 738 are provided on the weight support bodies 530, 630, 730.
  • the total weight of the eccentric weights 520, 620, 720 can be reduced, and the amount of eccentricity in the eccentric weights 520, 620, 720 can be further increased.
  • a vibration motor that can obtain the required vibration amount with a lighter weight and even less power consumption can be configured by using such a deviation, weight 520, 620, 720! .
  • the thicknesses of the motor shaft holding portions 532, 632, 732 along the motor shaft are set to the motor shaft holding portions 532, 632, Since the value is more than twice the inner diameter of 732, the motor shaft holders 532, 632, 732 hold the motor shaft with sufficient holding force. For this reason, vibration motors (and eccentric weights 520, 620, 720) when used for a long period of time, it is possible to suppress a decrease in the reliability of the motor shaft holding portion regarding the holding of the motor shaft.
  • the width L2 of the opening in the weight holding part 634 is set to be narrower than the maximum length L1 parallel to the width direction of the opening in the weight 640. For this reason, the weight 640 is held by the weight holding part 634 for a while.
  • Embodiment 8 is an embodiment mainly for explaining an eccentric weight according to claim 18.
  • FIG. 9 is a view for explaining the eccentric weight 820 according to the eighth embodiment.
  • Fig. 9 (a) is a diagram of the eccentric weight 820 viewed from the front
  • Fig. 9 (b) is a schematic diagram of the eccentric weight 820 viewed from the front
  • Fig. 9 (c) is a diagram of Fig. 9 (a).
  • Fig. 9 (d) is a cross-sectional view along B-B in Fig. 9 (a)
  • Fig. 9 (e) is a perspective view of eccentric weight 820
  • Fig. 9 (f) is eccentric.
  • FIG. 10 is a perspective view of the weight 820 as seen from the back side of FIG. 9 (e).
  • the eccentric weight 820 according to the eighth embodiment has basically the same structure as the eccentric weight 420 according to the fourth embodiment. However, the eccentric weight 820 according to the eighth embodiment is different from the eccentric weight 420 according to the fourth embodiment in the method of manufacturing the weight support 830. That is, in the eccentric weight 820 according to Embodiment 8, the weight support 830 is manufactured by the metal powder injection molding method. In FIG. 9 (b), the shaded portion is the connecting portion 836.
  • the eccentric weight 820 according to the eighth embodiment is different from the eccentric weight 420 according to the fourth embodiment in the manufacturing method of the weight support 830, but the eccentric weight is made of a high specific gravity metal.
  • the eccentric weight 820 is provided with the weight 840 and the weight support 830 made of a metal having a specific gravity lower than that of the high specific gravity metal constituting the weight 840.
  • the total weight of the eccentric weight 820 can be reduced and the amount of eccentricity in the eccentric weight 820 can be increased. For this reason, by using such an eccentric weight 820, it is possible to configure a vibration motor that can obtain a large amount of vibration with light weight and low power consumption.
  • the weight 840 is supported over the entire circumference. Since the weight holding part 834 in the holding body 830 is held, the weight 840 and the weight when the vibration motor (and the eccentric weight 820) are used for a long time as in the case of the eccentric weight 420 according to the fourth embodiment. It is possible to suppress a decrease in the reliability of bonding with the support 830. Therefore, by using such an eccentric weight 820, a vibration motor with high long-term reliability can be configured.
  • the thickness of the motor shaft holding portion 832 along the motor shaft is set to a value more than twice the inner diameter of the motor shaft holding portion 832.
  • the part 832 holds the motor shaft with a sufficient holding force. For this reason, when the vibration motor (and the eccentric weight 820) is used for a long period of time, it is possible to suppress a decrease in reliability related to holding the motor shaft by the motor shaft holding portion.
  • the weight holding portion 834 and the motor shaft holding portion 832 are connected by the predetermined connecting portion 836, so the eccentric weight according to the fourth embodiment 4 20 As in the case of, the total weight of the eccentric weight 820 can be reduced and the amount of eccentricity in the eccentric weight 820 can be further increased. For this reason, by using such an eccentric weight 820, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and even less power consumption.
  • the eccentric weight 820 according to the eighth embodiment since the weight support 830 is manufactured by the metal powder injection molding method, the cutting method as in the case of the eccentric weight 420 according to the fourth embodiment. Compared to the case of manufacturing by using a vibration motor, the weight holding part 834 and motor shaft holding part 8 32 can be made thinner, and a vibration motor that can achieve the required amount of vibration with lighter and less power consumption. can do. Therefore, in the eccentric weight 820 according to the eighth embodiment, as shown in FIG. 9 (c), the thickness at the weight holding portion 834 and the motor shaft holding portion 832 is set to 0.15 mm.
  • eccentric weight 820 according to the eighth embodiment, material waste is reduced as compared with the case of manufacturing by a cutting method.
  • the degree of freedom of the shape of the weight support 830 and the weight 840 in the eccentric weight 820 can be increased.
  • Embodiments 9 to 12 are embodiments mainly for explaining a method of manufacturing an eccentric weight according to claim 1 and an eccentric weight according to claim 27.
  • FIG. 10 is a view for explaining the eccentric weight 920 according to the ninth embodiment.
  • Fig. 10 (a) is a diagram of the eccentric weight 920 viewed from the front
  • Fig. 10 (b) is a schematic diagram of the eccentric weight 920 viewed from the front
  • Fig. 10 (c) is A in Fig. 10 (a).
  • Cross-sectional view of A is a cross-sectional view of B—B of FIG. 10 (a)
  • FIG. 10 (e) is a perspective view of an eccentric weight 920
  • FIG. 10 (f) is an eccentric weight.
  • FIG. 11 is a perspective view of 920 as seen from the back side of FIG. 10 (e).
  • FIG. 11 is a view for explaining a manufacturing method for manufacturing the eccentric weight 920 according to the ninth embodiment.
  • FIG. 11 (a) to FIG. 11 (f) are diagrams showing the main parts in the manufacturing process.
  • the eccentric weight 920 according to the ninth embodiment basically has the same structure as the eccentric weights 420 and 820 according to the fourth or eighth embodiment. However, as shown in FIGS. 10 and 11, the eccentric weight 920 according to the ninth embodiment is different from the eccentric weights 420 and 820 according to the fourth or eighth embodiment in the structure and manufacturing method of the connecting portion 936. That is, in the eccentric weight 920 according to the tenth embodiment, the connecting portion 936 (see the shaded portion in FIG. 10 (b)) has a value smaller than the length of the motor shaft holding portion 932 along the motor shaft. It has a thin area with a thickness.
  • the weight support 930 is manufactured by a plate member force press drawing method (see FIG. 11). A column 939 is formed at the end of the thin region 938.
  • the eccentric weight 920 according to the ninth embodiment is different from the eccentric weights 420 and 820 according to the fourth or eighth embodiment in the structure of the connecting portion 936 and the manufacturing method of the weight support 930. Since the weight is an eccentric weight 940 having a weight 940 made of a high specific gravity metal and a weight support 930 having a lower specific gravity than that of the high specific gravity metal constituting the weight 940, the eccentric weight 920 according to the first embodiment is used. As with the weight 120, the total weight of the eccentric weight 920 can be reduced and the amount of eccentricity in the eccentric weight 920 can be increased. Therefore, by using such an eccentric weight 920, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
  • the weight 940 is held by the weight holding portion 934 in the weight support 930 over the entire circumference.
  • the vibration motor and the eccentric weight 920
  • the thickness of the motor shaft holding portion 932 along the motor shaft is set to a value more than twice the inner diameter of the motor shaft holding portion 932.
  • the part 932 holds the motor shaft with a sufficient holding force. For this reason, when the vibration motor (and the eccentric weight 920) is used for a long period of time, it is possible to suppress a decrease in reliability related to holding the motor shaft by the motor shaft holding portion.
  • the eccentric weight 920 according to the ninth embodiment since the weight holding portion 934 and the motor shaft holding portion 932 are connected by the predetermined connecting portion 936, the eccentric weight according to the fourth or eighth embodiment. As in the case of 420 and 820, the total weight of the eccentric weight 920 can be reduced and the amount of eccentricity in the eccentric weight 920 can be further increased. Therefore, by using such an eccentric weight 920, it is possible to configure a vibration motor that can obtain a necessary vibration amount with a lighter weight and less power consumption.
  • the connecting portion 936 having a thin region having a thickness smaller than the length of the motor shaft holding portion 932 along the motor shaft is used as the connecting portion. Therefore, the total weight of the eccentric weight 920 can be further reduced and the amount of eccentricity in the eccentric weight 920 can be further increased as compared with the case of the eccentric weights 420 and 820 according to the fourth or eighth embodiment. For this reason, by using such an eccentric weight 920, it is possible to construct a vibration motor that can obtain a required vibration amount with lighter and less power consumption.
  • the weight support 930 is manufactured from a plate-like member having a thickness substantially equal to the thickness of the thin-walled region by the press drawing method.
  • the thickness of the thin region is a value of 50% or less of the length of the motor shaft holding portion 932 along the motor shaft.
  • the total weight of the eccentric weight 920 can be further reduced, and the amount of eccentricity in the eccentric weight 920 can be further increased. Therefore, by using such an eccentric weight 920, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
  • the length of the thin region 936 along the radial direction of the motor shaft 1712 is 0.4 mm.
  • the weight 940 can be arranged on the outer peripheral portion as much as possible. For this reason, the amount of eccentricity in the eccentric weight 920 can be further increased. Therefore, by using such an eccentric weight 920, it is possible to configure a vibration motor that can obtain a necessary vibration amount with much less power consumption.
  • the thickness of the weight holding portion 934 in the outer peripheral portion that holds the weight 940 from the outer peripheral side of the eccentric weight 920 is: 0.15mm.
  • the weight 940 can be arranged on the outer peripheral portion as much as possible, and the weight 940 can be made as large as possible. Therefore, the amount of eccentricity in the eccentric weight 920 can be further increased. be able to. Therefore, by using such an eccentric weight 920, it is possible to configure a vibration motor that can obtain a necessary vibration amount with less power consumption.
  • the thickness of the motor shaft holding portion 932 is 0.15 mm.
  • the total weight of the eccentric weight 920 can be further reduced, and the amount of eccentricity in the eccentric weight 920 can be further increased. Therefore, by using such an eccentric weight 920, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
  • the weight 940 is a tungsten sintered alloy.
  • the weight support 930 is made of martensitic stainless steel as a metal having quenching hardenability.
  • the weight support 930 can be cured when the weight support is manufactured by the press drawing method, and the eccentricity is highly reliable. Weights and vibration motors can be manufactured.
  • the weight support 930 has the structure shown in Figs. 11 (a) to 11.
  • a work W that is a martensitic stainless steel with a thickness of 0.5 mm at a predetermined position between the die plate 962 in the die for press drawing and the punch plate 972 in the punch die.
  • a plate-shaped member is arranged (see FIG. 11 (a);).
  • the punching die (and punch 974) is lowered toward the workpiece W, and pressure is applied to the part corresponding to the hole of the motor shaft holding part 932 and the part corresponding to the hole of the weight holding part 934. I will go. At this time, the portion constituting the motor shaft holding portion 932 and the portion constituting the weight holding portion 934 cause plastic deformation and extend downward in the drawing (FIG. 11 (b) to FIG. 11). See Figure 11 (d);).
  • This press drawing can be performed by performing a single press, or by performing multiple presses while exchanging the die mold 960 and the punch mold 970.
  • remove the workpiece W from the press stop device 950 is removed by cutting the unnecessary parts min in weight support (see FIG. 11 (e) and FIG. 11 (f).) 0 in this case, unnecessary portions Cut along the broken lines LI, L2, and L3 in Fig. 11 (e), and cut multiple times along the horizontal and vertical directions of the drawing. Thereby, the weight support body 930 is manufactured. In addition, you may cut an unnecessary part along the up-down direction of drawing using a press force grinder.
  • the eccentric weight 920 according to Embodiment 9 can be manufactured.
  • FIG. 12 is a view for explaining the eccentric weight 1020 according to the tenth embodiment.
  • Figure 1 2 (a) is a view of the eccentric weight 1020 as viewed from the front
  • FIG. 12 (b) is a cross-sectional view taken along the line AA in FIG. 12 (a).
  • An eccentric weight 1020 according to the tenth embodiment has basically the same structure as the eccentric weight 920 according to the ninth embodiment. However, the eccentric weight 1020 according to the tenth embodiment is different from the eccentric weight 920 according to the ninth embodiment in the structure of the weight support 1030 as shown in FIG. That is, in the eccentric weight 1020 according to the tenth embodiment, as shown in FIG. 12 (b), the rib 1039 is formed inside the thin region 1038 of the weight support 1030.
  • the mechanical strength of the weight support 1030 can be increased, so that a more reliable vibration motor can be configured.
  • the weight region 1038 of the weight support 1030 can be enlarged to further reduce the weight of the weight support 1030.
  • the total weight of the eccentric weight 1020 can be further reduced, and the amount of eccentricity of the eccentric weight 1020 can be further increased.
  • the eccentric weight 1020 according to the tenth embodiment has the same configuration as the eccentric weight 920 according to the ninth embodiment except for the above, and therefore the eccentric weight 920 according to the ninth embodiment is provided. It has the effect to do as it is.
  • FIG. 13 is a view for explaining the eccentric weight 1120 according to the eleventh embodiment.
  • Figure 1
  • FIG. 3 (a) is a view of the eccentric weight 1120 as viewed from the front
  • FIG. 13 (b) is a cross-sectional view taken along the line AA in FIG. 13 (a).
  • the eccentric weight 1120 according to the eleventh embodiment basically has the same structure as the eccentric weight 920 according to the ninth embodiment. However, the eccentric weight 1120 according to the eleventh embodiment is different from the eccentric weight 920 according to the ninth embodiment in the structure of the weight support 1130 as shown in FIG. That is, in the eccentric weight 1120 according to the eleventh embodiment, a hole 1139 that penetrates in the direction along the motor shaft is formed in the thin region 1138 of the weight support 1130.
  • the weight of the weight support 1130 can be further reduced. For this reason, the total weight of the eccentric weight 1120 is further increased.
  • the eccentric amount of the eccentric weight 1120 can be further increased. Therefore, by using such an eccentric weight 1120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
  • the eccentric weight 1120 according to Embodiment 11 has the same configuration as that of the eccentric weight 920 according to Embodiment 9 in other points, and therefore the eccentric weight 920 according to Embodiment 9 is provided. It has the effect to do as it is.
  • Embodiments 12 to 15 are embodiments mainly for explaining an eccentric weight according to claim 4.
  • FIG. 14 is a view for explaining the eccentric weight 1220 according to the twelfth embodiment.
  • Figure 1
  • FIG. 4 (a) is a view of the eccentric weight 1220 as viewed from the front
  • FIG. 14 (b) is a cross-sectional view taken along the line AA in FIG. 14 (a).
  • FIG. 15 is a view for explaining the eccentric weight 1320 according to the thirteenth embodiment.
  • Figure 1
  • FIG. 15 (a) is a view of the eccentric weight 1320 as seen from the front
  • FIG. 15 (b) is a cross-sectional view taken along the line AA in FIG. 15 (a).
  • FIG. 16 is a view for explaining the eccentric weight 1420 according to the fourteenth embodiment.
  • Figure 1
  • FIG. 16 (a) is a view of the eccentric weight 1420 as seen from the front
  • FIG. 16 (b) is a cross-sectional view taken along the line AA in FIG. 16 (a).
  • FIG. 17 is a view for explaining the eccentric weight 1520 according to the fifteenth embodiment.
  • Fig. 17 (a) is a view of the eccentric weight 1520 as seen from the front
  • Fig. 17 (b) is a cross-sectional view taken along the line AA in Fig. 17 (a).
  • Deviations according to Embodiments 12 to 15, weights 1220, 1320, 1420, 1520 ⁇ , and weights having a structure in which a plurality of thin plate members are laminated as weight support members as shown in FIGS. 14 to 17 This is different from the case of the eccentric weights 920, 1020, 1120 according to Embodiment 9 to L1: in that a support body is used.
  • the embodiment according to the embodiments 12 to 15 uses the weight support body having a structure in which a plurality of thin plate members are laminated, including the weights 1220, 1320, 1420, and 1520 ⁇ .
  • 9 to 11 Eccentric weights according to 1 920, 1020, 1120 Because it has an eccentric weight comprising a weight made of heavy metal and a weight support that has a structure in which a plurality of thin plate members made of metal are laminated, which has a lower specific gravity than the high specific gravity metal that composes the weight
  • the total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be increased.
  • a vibration motor capable of obtaining a necessary vibration amount with light weight and low power consumption can be configured by using such a deviation and weights 1220, 1320, 1420, and 1520.
  • Embodiments 12 to 15 [this deviation, weights 1220, 1320, 1420, 1520 [koyore ryoko, because the weight is held by each weight holding portion in the weight support over a half circumference
  • Embodiments 9 to 9 As with the eccentric weights 920, 1020, and 1120 related to L1, the reliability of the connection between the weight and the weight support decreases when the vibration motor (and the eccentric weight) is used for a long time. Can be suppressed. Therefore, by using such eccentric weights 1220, 1320, 1420, 1520, a vibration motor with high long-term reliability can be configured.
  • Embodiments 12 to 15 [this eccentricity, weight 1220, 1320, 1420, 1520 [koyore ryoko, because a predetermined thin area is provided in the connecting portion of each thin plate member, the total weight of the eccentric weights] Can be further reduced, and the amount of eccentricity in the eccentric weight can be further increased. For this reason, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
  • Embodiments 12 to 15 [Such deviations, weights 1220, 1320, 1420, 1520 [Correspondingly, the sum of the thicknesses of the thin regions in the plurality of thin plate members is the sum of The value is 50% or less of the length of the motor shaft holding portion along the shaft.
  • Embodiments 12 to 15 [this eccentricity, weights 1220, 1320, 1420, 1520 [koyore], the total weight of the eccentric weight can be reduced, and the amount of eccentricity in the eccentric weight can be further increased. it can. For this reason, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter weight and less power consumption.
  • Embodiments 12 to 15 are a plate member force press having a thickness substantially equal to the thickness of the thin region] Because it is manufactured by the drawing method, thin-walled members are formed at the same time in the press drawing process. Therefore, the thin plate member can be easily manufactured as compared with the case of using the cutting method. In addition, material waste is reduced compared to the case of using a cutting method.
  • the lengths of the motor shaft holding portion along the motor shaft are the inner diameters of the motor shaft holding portions.
  • Embodiments 12 to 15 [Such deviations, weights 1220, 1320, 1420, 1520 It is more than twice the value.
  • Embodiments 12 to 15 [Such deviations, weights 1220, 1320, 1420, 1520 [Correction], the motor shaft holding part holds the motor shaft with a sufficient holding force. For this reason, when a vibration motor is used for a long time, it can suppress that the reliability regarding the holding
  • Embodiments 16 to 17 are mainly embodiments for explaining an eccentric weight according to claim 1.
  • FIG. 18 is a view for explaining the eccentric weight 1620 according to the sixteenth embodiment.
  • Fig. 18 (a) is a view of the eccentric weight 1620 as seen from the front
  • Fig. 18 (b) is a cross-sectional view taken along the line A-A in Fig. 18 (a).
  • the eccentric weight 1620 according to the sixteenth embodiment has basically the same structure as the eccentric weight 920 according to the ninth embodiment. However, the eccentric weight 1620 according to the sixteenth embodiment is different from the eccentric weight 920 according to the ninth embodiment in the structure of the weight support 1630 as shown in FIG. That is, in the eccentric weight 1620 according to the sixteenth embodiment, the thin wall region 1638 extends to both ends in the circumferential direction of the connecting portion 1636 of the weight support 1630. In other words, no struts are formed at the end of the thin region 1638.
  • the weight of the connecting portion 1636 can be further reduced.
  • the total weight of the eccentric weight 1620 can be further reduced, and the eccentric amount of the eccentric weight 1620 can be further increased.
  • the eccentric weight 1620 according to Embodiment 16 has the same configuration as that of the eccentric weight 920 according to Embodiment 9 in other respects, and therefore the eccentric weight 920 according to Embodiment 9 is provided. It has the effect to do as it is.
  • FIG. 19 is a view for explaining an eccentric weight 1720 according to the seventeenth embodiment.
  • Fig. 19 (a) is a view of the eccentric weight 1720 as viewed from the front
  • Fig. 19 (b) is a cross-sectional view taken along line AA in Fig. 19 (a).
  • the eccentric weight 1720 according to the seventeenth embodiment has basically the same structure as the eccentric weight 1620 according to the sixteenth embodiment. However, the eccentric weight 1720 according to the seventeenth embodiment is different from the eccentric weight 1620 according to the sixteenth embodiment in the structure of the weight support 1730 as shown in FIG. That is, in the eccentric weight 1720 according to the seventeenth embodiment, the connecting portion 1736 that connects the weight holding portion 1734 and the motor shaft holding portion 1732 is a single connecting rod when viewed from the direction along the motor shaft 1712. It has a shape like this.
  • the connecting portion 1736 has a shape that forms a single connecting rod when viewed from the direction along the motor shaft 1 712. Therefore, the eccentric weight 172 0 As a result, the eccentric weight of the eccentric weight 1720 can be further increased. For this reason, by using such an eccentric weight 1720, a vibration motor that is lighter and has a smaller amount of vibration required for power consumption than that of the eccentric weight 1620 according to Embodiment 16 can be configured. be able to.
  • the eccentric weight 1720 according to the seventeenth embodiment has the same configuration as the eccentric weight 1620 according to the sixteenth embodiment in other points, and therefore, the eccentric weight 162 according to the sixteenth embodiment 162. It has the effect that 0 has.
  • Embodiment 18 is an embodiment for mainly explaining the eccentric weight according to claim 23 and the vibration motor according to claim 25.
  • FIG. 20 is a view for explaining a vibration motor 1800 including the eccentric weight 1820 according to the eighteenth embodiment.
  • FIG. 20 (a) is a diagram showing a vibration motor 900 including the eccentric weight 920 according to the ninth embodiment
  • FIG. 20 (b) is a diagram illustrating a vibration motor 1800 including the eccentric weight 1820 according to the eighteenth embodiment. It is.
  • the eccentric weight 1820 includes a weight 1840 in which the weight support 1830 along the longitudinal direction of the weight 940 extends along the longitudinal direction of the weight 1840. of The weight support 1834 of the weight support 1830 shorter than the length holds the weight 1840 in an eccentric position along the length of the weight 1840.
  • the eccentric weight 1820 is connected to the motor body 1810 with respect to the motor shaft holding portion 1832 and the motor body 18.
  • the vibration motor By configuring the vibration motor so that the distance to 10 is closer, the distance between the motor shaft holder 1832 of the eccentric weight 1820 and the bearing 1814 of the motor body 1810 can be reduced.
  • the shaft 1812 rotates, the deflection of the motor shaft 1812 can be suppressed.
  • the eccentric weight 1820 rotates more stably, and the eccentric vibration characteristics of the vibration motor 1800 are further improved.
  • Embodiments 19 to 22 are embodiments for mainly explaining an eccentric weight manufacturing method according to claim 28.
  • FIG. 21 is a schematic diagram for explaining the method for manufacturing the eccentric weight according to the nineteenth embodiment.
  • Fig. 21 (a), Fig. 21 (b), Fig. 21 (d) and Fig. 21 (f) are front views of the eccentric weight 1 920 in each manufacturing process
  • FIG. 21 (g) is an AA cross-sectional view of the eccentric weight 1920 in each manufacturing process.
  • a high-density metal power comprised weight 1940, prepared a weight support 1930 formed of a metal lower specific gravity than the high specific gravity metal (FIG. 21 (a) see.) 0
  • a weight 1940 is inserted into the weight support 1930 (see FIG. 21 (a);).
  • the weight 1940 is pressed from both sides in the direction along the motor shaft (see FIGS. 21 (d) and 21 (e);).
  • the weight 1940 is plastically deformed so that its dimension increases in a direction perpendicular to the pressing direction.
  • the weight 1940 and the weight holding portion 1934 are fixed (see FIG. 21 (f) and FIG. 21 (g);).
  • the dimension of the weight 1940 before the second process is L3 (see Fig. 21 (c)), and the weight after the second process is 1940 dimensions Is L4 (see Fig. 21 (g)), L3 and L4 have a relationship of L3 and L4.
  • the eccentric weight 1920 can be manufactured.
  • the weight 1940 prepared in the first step is the gap between the outer periphery of the weight 1940 and the inner periphery of the weight holding portion 1934 when the weight 1940 is inserted into the weight holding portion 1934 of the weight support 1930. Is set to a size that falls within the range of 5 m ⁇ : LOO / zm (see Fig. 21 (b) and Fig. 21 (c)).
  • the weight 1940 and the weight holding portion 1934 are fixed by pressing the weight 1940 and plastically deforming. 1934 is firmly held. For this reason, when the vibration motor is used for a long time, it is possible to further suppress a decrease in the reliability of joining of the weight 1940 and the weight support 1934.
  • the weight 1240 is firmly attached to the weight holding portion 1934 due to plastic deformation of the weight 1940 due to pressing. Will be held in. Even if the weight 1940 is nickel-plated to prevent wrinkles, there is no need to increase the amount of plastic deformation. Can be prevented from decreasing. Also, by setting the average value of the gap between the outer circumference of the weight 1940 and the inner circumference of the weight holding part 1934 to 5 m or less, it becomes easy to insert the weight 1940 into the weight support 1930, and the eccentric weight 1920 is manufactured. It is possible to improve the productivity when doing so.
  • FIG. 22 is a schematic diagram for explaining the method for manufacturing the eccentric weight according to the twentieth embodiment.
  • FIG. 22 (a) is a perspective view of the eccentric weight 2020
  • FIG. 22 (b) is a cross-sectional view of the eccentric weight 2020 in the second step.
  • the manufacturing method of the eccentric weight according to the twentieth embodiment includes basically the same steps as the manufacturing method of the eccentric weight according to the nineteenth embodiment.
  • the manufacturing method of the eccentric weight according to the embodiment 20 differs from the manufacturing method of the eccentric weight according to the embodiment 19 in the structure of the weight support prepared in the first step. . That is, in the eccentric weight manufacturing method according to the twentieth embodiment, the weight support 2030 having no thin region is prepared in the first step.
  • the eccentric weight manufacturing method according to Embodiment 20 is different from the eccentric weight manufacturing method according to Embodiment 19 in the structure of the weight support prepared in the first step, but the weight support In the state where the weight 2040 is inserted into the body 2030, the second step of fixing the weight 2040 and the weight holding portion 2034 by pressing the weight 2040 and plastically deforming the weight 2040 also in the direction along the motor shaft is performed. Therefore, the weight 2040 is firmly held by the weight holding portion 2034. For this reason, when the vibration motor is used for a long time, it is possible to further suppress a decrease in the reliability of bonding between the weight 2040 and the weight support 2030.
  • the eccentric weight manufacturing method according to Embodiment 20 includes the same steps as the eccentric weight manufacturing method according to Embodiment 19 in the other respects. It has the effect which the manufacturing method of copper has as it is.
  • FIG. 23 is a schematic view for explaining the method for manufacturing the eccentric weight according to the twenty-first embodiment.
  • FIG. 23 (a) is a perspective view of the eccentric weight 2120
  • FIG. 23 (b) is a cross-sectional view of the eccentric weight 2120 in the second step.
  • the manufacturing method of the eccentric weight according to Embodiment 21 includes basically the same steps as the manufacturing method of the eccentric weight according to Embodiment 19. However, the eccentric weight manufacturing method according to Embodiment 21 is different from the eccentric weight manufacturing method according to Embodiment 19 in the structure of the weight support prepared in the first step, as shown in FIG. 23 (a). . That is, in the eccentric weight manufacturing method according to Embodiment 21, as shown in FIG. 23, in the first step, a weight support 2130 having a structure in which a plurality of thin plate members 2 131 are stacked is prepared. Yes.
  • the eccentric weight manufacturing method according to Embodiment 21 differs from the eccentric weight manufacturing method according to Embodiment 19 in the structure of the weight support prepared in the first step.
  • the manufacturing method of the eccentric weight according to Embodiment 21 includes the same steps as the manufacturing method of the eccentric weight according to Embodiment 19 in other points, the eccentric weight according to Embodiment 19 is included. It has the effect which the manufacturing method of copper has as it is.
  • FIG. 24 is a schematic diagram for explaining the method for manufacturing the eccentric weight according to the twenty-second embodiment.
  • FIG. 24A is a perspective view of the eccentric weight 2220
  • FIG. 24B is a cross-sectional view of the eccentric weight 2220 in the second step.
  • the manufacturing method of the eccentric weight according to the twenty-second embodiment includes basically the same steps as the manufacturing method of the eccentric weight according to the nineteenth embodiment.
  • the eccentric weight manufacturing method according to Embodiment 22 is different from the eccentric weight manufacturing method according to Embodiment 19 in the structure of the weight support prepared in the first step, as shown in FIG. . That is, as shown in FIG. 24, in the eccentric weight manufacturing method according to Embodiment 22, in the first step, a plurality of thin plate members 2231 are stacked, and the weight holding portion 2234 extends from the motor shaft holding portion 2232.
  • a weight support 2230 having an arm portion for holding the weight 2240 by elastic force and having a structure in which the motor shaft holding portion 2232 has a notch is prepared.
  • the eccentric weight manufacturing method according to Embodiment 22 is different from the eccentric weight manufacturing method according to Embodiment 19 in the structure of the weight support prepared in the first step.
  • the eccentric weight manufacturing method according to Embodiment 22 includes the same steps as the eccentric weight manufacturing method according to Embodiment 19 in other respects, the eccentric weight according to Embodiment 19 is included. It has the effect which the manufacturing method of copper has as it is.
  • the force using tungsten alloy as the weight is not limited to this.
  • a metal having a specific gravity higher than that of tungsten, osmium, osmium alloy, gold, gold alloy, iridium, iridium alloy, and other weight supports can be used.
  • the weight support 930 is a force using martensitic stainless steel as a metal having quench hardening properties.
  • the present invention is limited to this. is not.
  • a quench-hardening metal other than martensitic stainless steel, an age-hardening metal, a work-hardening metal, a shape memory alloy, and other metals can be used.
  • a sintered body made of a round bar is cut as a weight, and the cut body processed into the same cross-sectional shape as the weight is cut short.
  • the present invention is not limited to this.
  • a sintered body sintered in the shape of a weight, or a sintered body with a deformed bar force that has the same cross-sectional shape as a weight is cut short.
  • the manufacturing method of the eccentric weight according to the first embodiment includes the step of crimping the weight support 130 in a state where the weight 140 is inserted into the weight holding hole 134 of the weight support 130. Although it is a manufacturing method, this invention is not limited to this.
  • the manufacturing method may include a step of press-fitting the weight 140 into the weight holding hole 134 in the weight support body 130 with a tight margin, and the temperature of the weight support body 130 is higher than the temperature of the weight 140
  • the manufacturing method may include a step of inserting the weight 140 into the weight holding hole 134 in the weight support 130.
  • the manufacturing method including the process of joining the weight 140 and the weight support body 130 by brazing, adhesion
  • the manufacturing method may include a step of inserting the material of the weight support 130 into the mold in a state where a part or all of the weight 140 is placed in a predetermined mold.
  • the manufacturing method which used the above-mentioned process together may be sufficient.
  • a manufacturing method including a step of bonding after crimping, a manufacturing method including a step of bonding after brazing, a manufacturing method including a step of spot welding after crimping, and brazing after spot welding A manufacturing method including a process is also possible.
  • the vibration motor of the present invention can also be suitably used for a remote control of a power game machine, a pachinko operation unit, an electric toothbrush and the like suitably used for portable devices such as mobile phones and PDAs.

Abstract

An eccentric weight (920) has a weight (940) made from high specific weight metal, a weight holding section (934) for holding the weight (940) over its entire outer periphery, a motor shaft holding section (932) for holding a motor shaft, a connection section (936) for connecting the weight holding section (934) and the motor shaft holding section (932), and a weight support body (930) made from metal having lower specific gravity than the high specific gravity metal that forms the weight (940). The connection section (936) has a thin wall region (938) having a thickness (0.5 mm) less than the length (2 mm), measured along the motor shaft, of the motor shaft holding section (932). The total weight of the eccentric weight (920) can be reduced and the quantity of eccentricity in the eccentric weight (920) can be increased. Further, lowering of reliability of the joint between the weight (940) and the shaft body (930) can be suppressed even when the eccentric weight (920) is used for long periods of time.

Description

偏心分銅、振動モータ、携帯機器及び偏心分銅の製造方法 技術分野  Eccentric weight, vibration motor, portable device, and manufacturing method of eccentric weight
[0001] 本発明は、偏心分銅、振動モータ、携帯機器及び偏心分銅の製造方法に関する。 背景技術  The present invention relates to an eccentric weight, a vibration motor, a portable device, and a method for manufacturing an eccentric weight. Background art
[0002] 携帯電話や PDAなどにおいては、着信を振動で知らせるために振動モータが用い られている。図 25は、従来の振動モータ 3000及び偏心分銅 3020を説明するため に示す図である。図 25 (a)は振動モータ 3000の斜視図であり、図 25 (b)は偏心分 銅 3020をモータ軸に垂直な平面で切った断面図であり、図 25 (c)は偏心分銅 302 0をモータ軸に沿った平面で切った断面図である。図 25 (b)及び図 25 (c)において は、図 25 (a)における偏心分銅 3020の回転方向における位置を変えて示している。  In mobile phones and PDAs, vibration motors are used to notify incoming calls by vibration. FIG. 25 is a view for explaining a conventional vibration motor 3000 and an eccentric weight 3020. Fig. 25 (a) is a perspective view of vibration motor 3000, Fig. 25 (b) is a cross-sectional view of eccentric weight 3020 cut by a plane perpendicular to the motor axis, and Fig. 25 (c) is eccentric weight 302 0. It is sectional drawing cut | disconnected by the plane along a motor shaft. In FIGS. 25 (b) and 25 (c), the eccentric weight 3020 in FIG. 25 (a) is shown in a different position in the rotational direction.
[0003] 従来の振動モータ 3000は、図 25に示すように、小型円筒型のモータ本体 3010と 、タングステンの焼結体など力もなり略扇形状を有する偏心分銅 3020とからなる。偏 心分銅 3020のモータ軸保持穴 3022には、モータ本体 3010のモータ軸 3012が揷 通'保持されている。偏心分銅 3020は、モータ軸 3012を揷通するモータ軸保持穴 3 022の肉薄方向からの側面力も外力を加えてモータ軸保持穴 3022を変形させること によるカシメ止めで、モータ軸 3012の先端部に取り付けられている(例えば、特許文 献 1参照。)。  As shown in FIG. 25, a conventional vibration motor 3000 includes a small cylindrical motor main body 3010 and an eccentric weight 3020 having a substantially fan shape and having a force such as a sintered body of tungsten. The motor shaft 3012 of the motor body 3010 is generally held in the motor shaft holding hole 3022 of the eccentric weight 3020. The eccentric weight 3020 is a caulking stop by deforming the motor shaft holding hole 3022 by applying an external force to the motor shaft holding hole 3022 through which the motor shaft 3012 passes. It is attached (for example, see Patent Document 1).
[0004] ところで、携帯電話や PDAなどにぉ 、ては、振動モータとして、軽量かつ少な 、消 費電力で必要な振動量が得られる振動モータが求められている。このため、このよう な振動モータに用いる偏心分銅として、図 26に示すような他の偏心分銅 3120が提 案されている。図 26は、従来の他の偏心分銅 3120を説明するために示す図である 。図 26 (a)は偏心分銅 3120の正面図であり、図 26 (b)は図 26 (a)の A— A断面図 であり、図 26 (c)は構成部品の正面図であり、図 26 (d)は図 26 (c)の B— B断面図で ある。図 26 (a)及び図 26 (b)においては、モータ本体 3110も一部示されている。  [0004] By the way, for a mobile phone, a PDA, and the like, there is a demand for a vibration motor that can obtain a necessary amount of vibration with low power consumption and light weight. For this reason, another eccentric weight 3120 as shown in FIG. 26 has been proposed as an eccentric weight used in such a vibration motor. FIG. 26 is a view for explaining another conventional eccentric weight 3120. Fig. 26 (a) is a front view of the eccentric weight 3120, Fig. 26 (b) is an A-A cross-sectional view of Fig. 26 (a), and Fig. 26 (c) is a front view of the component parts. 26 (d) is a cross-sectional view taken along the line BB in FIG. 26 (c). In FIG. 26 (a) and FIG. 26 (b), a part of the motor body 3110 is also shown.
[0005] 従来の他の偏心分銅 3120は、図 26に示すように、モータ本体 3110のモータ軸 3 112を保持するためのモータ軸保持穴 3132を有し低比重金属力もなる円筒状の分 銅支持体 3130と、高比重金属力もなる略半パイプ状の分銅 3140とからなっている( 例えば、特許文献 1参照。 ) oこのため、分銅 3140が高比重金属力もなるため、偏心 分銅 3120の重心がモータ軸保持穴 3132の中心軸から離隔された位置に配置され ることになる。その結果、偏心分銅 3120における偏心量が大きくなり、このような従来 の他の偏心分銅 3120を用いることにより、軽量かつ少ない消費電力で必要な振動 量が得られる振動モータを構成することができる。 As shown in FIG. 26, another conventional eccentric weight 3120 includes a motor shaft 3 of a motor main body 3110. It consists of a cylindrical weight support 3130 having a motor shaft holding hole 3132 for holding 112 and a low specific gravity metal force, and a substantially semi-pipe weight 3140 also having a high specific gravity metal force (for example, patents) Refer to Reference 1.) For this reason, since the weight 3140 also has a high specific gravity metal force, the center of gravity of the eccentric weight 3120 is disposed at a position separated from the center axis of the motor shaft holding hole 3132. As a result, the eccentric amount of the eccentric weight 3120 increases, and by using such other conventional eccentric weight 3120, a vibration motor that can obtain a required vibration amount with light weight and low power consumption can be configured.
[0006] 特許文献 1 :特開 2001— 129479号公報 [0006] Patent Document 1: Japanese Patent Application Laid-Open No. 2001-129479
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] しかしながら、上記した従来の他の偏心分銅 3220においては、分銅 3240が分銅 支持体 3230の外側面 3234の一部にロウ付け部 3250を介して一体に接合固定さ れたものであるため、振動モータ (及び偏心分銅)を長時間使用した場合に分銅と分 銅支持体との接合の信頼性が低下するという問題があった。  However, in the other conventional eccentric weight 3220, the weight 3240 is integrally joined and fixed to a part of the outer surface 3234 of the weight support 3230 via the brazing portion 3250. When the vibration motor (and the eccentric weight) is used for a long time, there is a problem that the reliability of the connection between the weight and the weight support is lowered.
[0008] そこで、本発明は、このような問題を解決するためになされたもので、軽量かつ少な い消費電力で必要な振動量が得られる振動モータに好適に用いることができ、このよ うな振動モータを長時間使用した場合においても分銅と分銅支持体との接合の信頼 性が低下することが抑制された偏心分銅及びその製造方法を提供することを目的と する。また、本発明は、このように優れた偏心分銅を備えた振動モータ及び携帯機器 を提供することを目的とする。  Therefore, the present invention has been made to solve such a problem, and can be suitably used for a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption. An object of the present invention is to provide an eccentric weight and a method of manufacturing the same, in which the reliability of bonding between the weight and the weight support is suppressed even when the vibration motor is used for a long time. Moreover, an object of this invention is to provide the vibration motor and portable apparatus provided with the eccentric weight which was excellent in this way.
課題を解決するための手段  Means for solving the problem
[0009] (1)本発明の偏心分銅は、高比重金属力もなる分銅と、前記分銅を半周以上にわた つて保持する分銅保持部及びモータ軸を保持するためのモータ軸保持部並びに前 記分銅保持部及び前記モータ軸保持部を連結する連結部を有し、前記分銅を構成 する高比重金属よりも比重の低い金属からなる分銅支持体とを備えた偏心分銅であ つて、前記連結部は、前記モータ軸に沿った前記モータ軸保持部の長さよりも小さい 値の肉厚を有する薄肉領域を有することを特徴とする。 [0009] (1) The eccentric weight of the present invention includes a weight having a high specific gravity metal force, a weight holding portion for holding the weight over a half circumference, a motor shaft holding portion for holding the motor shaft, and the weight described above. An eccentric weight having a holding portion and a connecting portion for connecting the motor shaft holding portion, and comprising a weight support made of a metal having a specific gravity lower than that of the high specific gravity metal constituting the weight, wherein the connecting portion is And a thin region having a thickness smaller than the length of the motor shaft holding portion along the motor shaft.
[0010] このため、上記(1)に記載の偏心分銅によれば、偏心分銅を、高比重金属からなる 分銅と、分銅を構成する高比重金属よりも比重の低!ヽ金属からなる分銅支持体とを 備えた偏心分銅としたため、偏心分銅の総重量を軽くするとともに、偏心分銅におけ る偏心量を大きくすることができる。このため、このような偏心分銅を用いることにより、 軽量かつ少ない消費電力で必要な振動量が得られる振動モータを構成することがで きる。 [0010] Therefore, according to the eccentric weight described in the above (1), the eccentric weight is made of a high specific gravity metal. Eccentric weights with a weight and a weight support that is made of a metal that has a lower specific gravity than the high-density metal that constitutes the weight are reduced to reduce the total weight of the eccentric weight and reduce the amount of eccentricity in the eccentric weight. Can be bigger. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
[0011] また、上記(1)に記載の偏心分銅によれば、分銅を半周以上にわたって分銅支持 体における分銅保持部に保持させることとしたため、振動モータ (及び偏心分銅)を 長時間使用した場合に分銅と分銅支持体との接合の信頼性が低下することを抑制 することができる。このため、このような偏心分銅を用いることにより、長期信頼性の高 [0011] Further, according to the eccentric weight described in (1) above, since the weight is held by the weight holding portion in the weight support body over a half circumference, the vibration motor (and the eccentric weight) is used for a long time. In addition, it is possible to suppress a decrease in the reliability of bonding between the weight and the weight support. Therefore, by using such an eccentric weight, long-term reliability is high.
V、振動モータを構成することができる。 V, vibration motor can be configured.
[0012] また、上記(1)に記載の偏心分銅によれば、モータ軸に沿ったモータ軸保持部の 長さよりも小さい値の肉厚を有する薄肉領域を有する連結部で分銅保持部とモータ 軸保持部とを連結することとしたため、偏心分銅の総重量を軽くするとともに、偏心分 銅における偏心量をさらに大きくすることができる。このため、このような偏心分銅を用 いることにより、さらに軽量かっさらに少ない消費電力で必要な振動量が得られる振 動モータを構成することができる。 [0012] Further, according to the eccentric weight described in (1) above, the weight holding portion and the motor at the connecting portion having a thin region having a thickness smaller than the length of the motor shaft holding portion along the motor shaft. Since the shaft holding portion is connected, the total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be further increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter weight and less power consumption.
[0013] (2)上記(1)に記載の偏心分銅においては、前記薄肉領域の肉厚は、前記モータ軸 に沿った前記モータ軸保持部の長さの 50%以下の値を有することが好ましい。  (2) In the eccentric weight described in (1) above, the thickness of the thin region may have a value of 50% or less of the length of the motor shaft holding portion along the motor shaft. preferable.
[0014] このように構成することにより、偏心分銅の総重量を軽くするとともに、偏心分銅に おける偏心量をさらに大きくすることができる。このため、このような偏心分銅を用いる ことにより、さらに軽量かっさらに少ない消費電力で必要な振動量が得られる振動モ ータを構成することができる。  [0014] With this configuration, the total weight of the eccentric weight can be reduced, and the amount of eccentricity in the eccentric weight can be further increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with a lighter weight and less power consumption.
[0015] (3)上記(1)又は(2)に記載の偏心分銅においては、前記分銅支持体は、前記薄肉 領域の肉厚に略等しい肉厚を有する板状部材からプレス絞り加工法によって製造さ れていることが好ましい。  [0015] (3) In the eccentric weight described in (1) or (2) above, the weight support is formed from a plate-like member having a thickness substantially equal to the thickness of the thin region by a press drawing method. Preferably it is manufactured.
[0016] このように構成することにより、プレス絞り加工工程で薄肉部材が同時に成形される ため、切削加工法を用いる場合と比較して容易に分銅支持体を製造することが可能 になる。また、切削加工法を用いる場合と比較して、材料の無駄が少なくなる。 [0017] (4)本発明の偏心分銅は、高比重金属力もなる分銅と、前記分銅を半周以上にわた つて保持する分銅保持部及びモータ軸を保持するためのモータ軸保持部並びに前 記分銅保持部及び前記モータ軸保持部を連結する連結部を有し、前記分銅を構成 する高比重金属よりも比重の低い金属からなる複数の薄板部材が積層された構造を 有する分銅支持体とを備えた偏心分銅であって、前記連結部のそれぞれは、前記モ ータ軸に沿った前記モータ軸保持部の長さよりも小さい値の肉厚を有する薄肉領域 を有することを特徴とする。 With this configuration, the thin member is simultaneously formed in the press drawing process, so that the weight support can be easily manufactured as compared with the case of using the cutting method. Further, material waste is reduced as compared with the case of using the cutting method. [0017] (4) The eccentric weight of the present invention includes a weight having a high specific gravity metal force, a weight holding portion for holding the weight over a half circumference, a motor shaft holding portion for holding the motor shaft, and the weight described above. A weight support body having a connection portion for connecting the holding portion and the motor shaft holding portion, and having a structure in which a plurality of thin plate members made of a metal having a specific gravity lower than that of the high specific gravity metal constituting the weight are laminated. Each of the coupling parts has a thin region having a thickness smaller than the length of the motor shaft holding part along the motor shaft.
[0018] このため、上記 (4)に記載の偏心分銅によれば、偏心分銅を、高比重金属からなる 分銅と、分銅を構成する高比重金属よりも比重の低!ヽ金属からなる複数の薄板部材 が積層された構造を有する分銅支持体とを備えた偏心分銅としたため、偏心分銅の 総重量を軽くするとともに、偏心分銅における偏心量を大きくすることができる。この ため、このような偏心分銅を用いることにより、軽量かつ少ない消費電力で必要な振 動量が得られる振動モータを構成することができる。  [0018] Therefore, according to the eccentric weight described in (4) above, the eccentric weight includes a weight made of a high specific gravity metal, and a plurality of low weight metals having a specific gravity lower than that of the high specific gravity metal constituting the weight. Since the eccentric weight includes a weight support body having a structure in which thin plate members are laminated, the total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
[0019] また、上記 (4)に記載の偏心分銅によれば、分銅を半周以上にわたって分銅支持 体における分銅保持部に保持させることとしたため、振動モータ (及び偏心分銅)を 長時間使用した場合に分銅と分銅支持体との接合の信頼性が低下することを抑制 することができる。このため、このような偏心分銅を用いることにより、長期信頼性の高 V、振動モータを構成することができる。  [0019] Further, according to the eccentric weight described in (4) above, since the weight is held by the weight holding portion of the weight support body over a half circumference, the vibration motor (and the eccentric weight) is used for a long time. In addition, it is possible to suppress a decrease in the reliability of bonding between the weight and the weight support. Therefore, by using such an eccentric weight, a long-term reliable high-V vibration motor can be configured.
[0020] また、上記 (4)に記載の偏心分銅によれば、各薄板部材の連結部に所定の薄肉領 域を設けるようにしたため、偏心分銅の総重量をさらに軽くするとともに、偏心分銅に おける偏心量をさらに大きくすることができる。このため、このような偏心分銅を用いる ことにより、さらに軽量かっさらに少ない消費電力で必要な振動量が得られる振動モ ータを構成することができる。  [0020] Further, according to the eccentric weight described in the above (4), since the predetermined thin wall region is provided in the connecting portion of each thin plate member, the total weight of the eccentric weight is further reduced, and the eccentric weight is reduced. The amount of eccentricity can be further increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with a lighter weight and less power consumption.
[0021] (5)上記 (4)に記載の偏心分銅においては、前記複数の薄板部材における各薄肉 領域の肉厚を合計した値は、前記モータ軸に沿った前記モータ軸保持部の長さの 5 0%以下の値であることが好まし 、。  [0021] (5) In the eccentric weight described in (4) above, the sum of the thicknesses of the thin regions of the plurality of thin plate members is the length of the motor shaft holding portion along the motor shaft. It is preferred that the value is less than 50%.
[0022] このように構成することにより、偏心分銅の総重量を軽くするとともに、偏心分銅に おける偏心量をさらに大きくすることができる。このため、このような偏心分銅を用いる ことにより、さらに軽量かっさらに少ない消費電力で必要な振動量が得られる振動モ ータを構成することができる。 With this configuration, the total weight of the eccentric weight can be reduced, and the amount of eccentricity in the eccentric weight can be further increased. For this reason, such an eccentric weight is used. Thus, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
[0023] (6)上記 (4)又は(5)に記載の偏心分銅においては、前記薄板部材は、前記薄肉領 域の肉厚に略等しい肉厚を有する板状部材からプレス絞り加工法によって製造され ていることが好ましい。  [0023] (6) In the eccentric weight described in (4) or (5), the thin plate member is formed by pressing a plate member having a thickness substantially equal to the thickness of the thin region by a press drawing method. Preferably it is manufactured.
[0024] このように構成することにより、プレス絞り加工工程で薄肉部材が同時に成形される ため、切削加工法を用いる場合と比較して容易に薄板部材を製造することができる。 また、切削加工法を用いる場合と比較して、材料の無駄が少なくなる。  [0024] With this configuration, the thin member is simultaneously formed in the press drawing process, so that the thin plate member can be easily manufactured as compared with the case of using the cutting method. Further, material waste is reduced as compared with the case of using the cutting method.
[0025] (7)上記(1)〜(6)のいずれかに記載の偏心分銅においては、前記モータ軸に沿つ た前記モータ軸保持部の長さは、前記モータ軸保持部の内径の 2倍以上の値を有 することが好ましい。  (7) In the eccentric weight according to any one of the above (1) to (6), the length of the motor shaft holding portion along the motor shaft is equal to the inner diameter of the motor shaft holding portion. It is preferable to have a value twice or more.
[0026] このように構成することにより、モータ軸保持部は十分な保持力をもってモータ軸を 保持するよう〖こなる。このため、振動モータを長期間使用した場合に、モータ軸保持 部によるモータ軸の保持に関する信頼性が低下することを抑制することができる。  [0026] With this configuration, the motor shaft holding section is configured to hold the motor shaft with a sufficient holding force. For this reason, when a vibration motor is used for a long time, it can suppress that the reliability regarding the holding | maintenance of the motor shaft by a motor shaft holding part falls.
[0027] なお、上記(1)〜(7)のいずれかに記載の偏心分銅においては、薄肉領域を大きく すればするほど、偏心分銅の総重量を軽くするとともに、偏心分銅における偏心量を 大きくすることができるという利益が得られる。その一方において、薄肉領域の大きさ を大きくしすぎると、連結部の機械的強度が低下して偏心分銅の信頼性を損ねるとい う不利益が生じてしまうこととなる。そこで、上記(1)〜(7)のいずれかに記載の偏心 分銅においては、これらの利益と不利益とを衡量して、連結部における薄肉領域の 大きさを決定することが好まし 、。  [0027] In the eccentric weight described in any one of the above (1) to (7), the larger the thin region, the lighter the total weight of the eccentric weight and the larger the amount of eccentricity in the eccentric weight. The benefit of being able to On the other hand, if the size of the thin region is made too large, the mechanical strength of the connecting portion is lowered, and there is a disadvantage that the reliability of the eccentric weight is impaired. Therefore, in the eccentric weight described in any one of (1) to (7) above, it is preferable to determine the size of the thin-wall region in the connecting portion by weighing these benefits and disadvantages.
[0028] (8)上記(1)〜(7)のいずれかに記載の偏心分銅においては、前記モータ軸の径方 向に沿った前記薄肉領域の長さは 0. 4mm以上であることが好ましい。  (8) In the eccentric weight according to any of (1) to (7), the length of the thin region along the radial direction of the motor shaft is 0.4 mm or more. preferable.
[0029] このように構成することにより、分銅をできるだけ外周部に配置することができるよう になるため、偏心分銅における偏心量をさらに大きくすることができる。このため、この ような偏心分銅を用いることにより、さらに少ない消費電力で必要な振動量が得られ る振動モータを構成することができる。  [0029] With this configuration, the weight can be arranged as much as possible in the outer peripheral portion, so that the amount of eccentricity in the eccentric weight can be further increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with less power consumption.
[0030] (9)上記(1)〜(8)のいずれかに記載の偏心分銅においては、前記モータ軸に垂直 な面における前記分銅保持部の肉厚は、 0. 4mm以下であることが好ましい。 [0030] (9) In the eccentric weight according to any one of (1) to (8) above, the eccentric weight is perpendicular to the motor shaft. The thickness of the weight holding portion on a flat surface is preferably 0.4 mm or less.
[0031] このように構成することにより、分銅をできるだけ大きくすることができるようになるた め、偏心分銅における偏心量をさらに大きくすることができる。このため、このような偏 心分銅を用いることにより、さらに少ない消費電力で必要な振動量が得られる振動モ ータを構成することができる。 [0031] With this configuration, the weight can be increased as much as possible, and therefore the amount of eccentricity in the eccentric weight can be further increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with less power consumption.
この観点力 言えば、前記モータ軸に垂直な面における前記分銅保持部の肉厚は Speaking of this viewpoint, the thickness of the weight holding part in the plane perpendicular to the motor shaft is
、0. 3mm以下であることがより好ましぐ 0. 2mm以下であることがさらに好ましい。 More preferably, it is 0.3 mm or less, and further preferably 0.2 mm or less.
[0032] (10)上記(1)〜(9)のいずれかに記載の偏心分銅においては、前記モータ軸に垂 直な面における前記モータ軸保持部の肉厚は、 0. 4mm以下であることが好ましい。 [0032] (10) In the eccentric weight according to any one of (1) to (9), a thickness of the motor shaft holding portion on a surface perpendicular to the motor shaft is 0.4 mm or less. It is preferable.
[0033] このように構成することにより、偏心分銅の総重量をさらに軽くするとともに、偏心分 銅における偏心量をさらに大きくすることができる。このため、このような偏心分銅を用 いることにより、さらに軽量かっさらに少ない消費電力で必要な振動量が得られる振 動モータを構成することができる。 With this configuration, the total weight of the eccentric weight can be further reduced, and the amount of eccentricity in the eccentric weight can be further increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter weight and less power consumption.
この観点力 言えば、前記モータ軸に垂直な面における前記モータ軸保持部の肉 厚は、 0. 3mm以下であることがより好ましぐ 0. 2mm以下であることがさらに好まし い。  From this viewpoint, the thickness of the motor shaft holding portion in the plane perpendicular to the motor shaft is more preferably 0.3 mm or less, and further preferably 0.2 mm or less.
[0034] (11)上記(1)〜(10)のいずれかに記載の偏心分銅においては、前記連結部は、前 記分銅支持体の薄肉領域若しくは前記薄板部材の薄肉領域の内部に形成されたリ ブ又は前記分銅支持体の薄肉領域若しくは前記薄板部材の薄肉領域の端部に形 成された支柱を有することが好ま U、。  [0034] (11) In the eccentric weight according to any one of (1) to (10), the connecting portion is formed inside the thin area of the weight support or the thin area of the thin plate member. It is preferable to have struts or struts formed at the ends of the thin area of the weight support or the thin area of the thin plate member.
[0035] このように構成することにより、分銅支持体の機械的強度を高めることができるため 、さらに信頼性の高い振動モータを構成することができる。また、分銅支持体の機械 的強度を高めることができることから、分銅支持体における薄肉領域を大きくして、分 銅支持体の重量をさらに軽くすることもできる。このため、偏心分銅の総重量をさらに 軽くするとともに、偏心分銅における偏心量をさらに大きくすることができる。その結果 、このような偏心分銅を用いることにより、さらに軽量かっさらに少ない消費電力で必 要な振動量が得られる振動モータを構成することができる。  [0035] With this configuration, the mechanical strength of the weight support can be increased, so that a more reliable vibration motor can be configured. Further, since the mechanical strength of the weight support can be increased, the weight region of the weight support can be further reduced by increasing the thin region of the weight support. For this reason, the total weight of the eccentric weight can be further reduced, and the eccentric amount of the eccentric weight can be further increased. As a result, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with a lighter weight and less power consumption.
[0036] なお、上記(1)〜(11)のいずれかに記載の偏心分銅においては、分銅は、分銅の 長手方向に沿った長さの半分以上の長さの部分において分銅支持体における分銅 保持部に保持されていることが好ましい。このように構成することにより、分銅は、分銅 支持体にしつ力り保持されることになり、振動モータ (及び偏心分銅)を長時間使用し た場合に、分銅支持体による分銅の保持力が低下することを抑制することができる。 このため、このような偏心分銅を用いることにより、長期信頼性の高い振動モータを構 成することができる。 [0036] In the eccentric weight described in any of (1) to (11) above, the weight is the weight of the weight. It is preferable that the weight holding portion of the weight support is held by a portion having a length of at least half of the length along the longitudinal direction. With this configuration, the weight is held on the weight support by tension, and when the vibration motor (and the eccentric weight) is used for a long time, the weight holding force by the weight support is increased. It can suppress that it falls. For this reason, a vibration motor with high long-term reliability can be configured by using such an eccentric weight.
[0037] (12)本発明の偏心分銅は、高比重金属力もなる分銅と、前記分銅を半周以上にわ たって保持する分銅保持部及びモータ軸を保持するためのモータ軸保持部を有し、 前記分銅を構成する高比重金属よりも比重の低い金属力 なる分銅支持体とを備え た偏心分銅であって、前記分銅支持体は、前記モータ軸に沿った前記モータ軸保持 部の長さよりも小さい値の肉厚を有する薄肉領域を有し、前記モータ軸に沿った前記 モータ軸保持部の厚さは、前記モータ軸保持部の内径の 2倍以上の値を有すること を特徴とする。  (12) The eccentric weight of the present invention has a weight that also has a high specific gravity metal force, a weight holding portion that holds the weight over a half circumference, and a motor shaft holding portion for holding the motor shaft, An eccentric weight provided with a weight support having a metal force lower in specific gravity than a high specific gravity metal constituting the weight, wherein the weight support is longer than a length of the motor shaft holding portion along the motor shaft. It has a thin region having a small thickness, and the thickness of the motor shaft holding portion along the motor shaft has a value more than twice the inner diameter of the motor shaft holding portion.
[0038] (13)本発明の偏心分銅は、高比重金属力もなる分銅と、前記分銅を半周以上にわ たって保持する分銅保持部及びモータ軸を保持するためのモータ軸保持部を有し、 前記分銅を構成する高比重金属よりも比重の低い金属力 なる分銅支持体とを備え た偏心分銅であって、前記分銅支持体は、前記モータ軸に沿った方向に貫通する貫 通穴を有し、前記モータ軸に沿った前記モータ軸保持部の厚さは、前記モータ軸保 持部の内径の 2倍以上の値を有することを特徴とする。  (13) The eccentric weight of the present invention has a weight that also has a high specific gravity metal force, a weight holding portion that holds the weight over a half circumference, and a motor shaft holding portion for holding the motor shaft, An eccentric weight having a weight support having a metal strength lower than that of a high specific gravity metal constituting the weight, the weight support having a through hole penetrating in a direction along the motor shaft. The thickness of the motor shaft holding portion along the motor shaft has a value more than twice the inner diameter of the motor shaft holding portion.
[0039] (14)本発明の偏心分銅は、高比重金属力もなる分銅と、前記分銅を半周以上にわ たって保持する分銅保持部及びモータ軸を保持するためのモータ軸保持部並びに 前記分銅保持部及び前記モータ軸保持部を連結する連結棒であって前記モータ軸 に沿った方向から見て一本の連結棒を有し、前記分銅を構成する高比重金属よりも 比重の低い金属力 なる分銅支持体とを備えた偏心分銅であって、前記モータ軸に 沿った前記モータ軸保持部の厚さは、前記モータ軸保持部の内径の 2倍以上の値を 有することを特徴とする。  [0039] (14) The eccentric weight of the present invention includes a weight having a high specific gravity metal force, a weight holding portion for holding the weight over a half circumference, a motor shaft holding portion for holding a motor shaft, and the weight holding Connecting rod and the motor shaft holding portion, and has a single connecting rod when viewed from the direction along the motor shaft, and has a lower specific gravity than the high specific gravity metal constituting the weight. An eccentric weight including a weight support, wherein the thickness of the motor shaft holding portion along the motor shaft has a value more than twice the inner diameter of the motor shaft holding portion.
[0040] このため、上記(12)〜(14)のいずれかに記載の偏心分銅によれば、偏心分銅を 、高比重金属力 なる分銅と、分銅を構成する高比重金属よりも比重の低い金属力 なる分銅支持体とを備えた偏心分銅としたため、偏心分銅の総重量を軽くするととも に、偏心分銅における偏心量を大きくすることができる。このため、このような偏心分 銅を用いることにより、軽量かつ少ない消費電力で必要な振動量が得られる振動モ ータを構成することができる。 [0040] Therefore, according to the eccentric weight described in any one of (12) to (14) above, the eccentric weight has a specific gravity lower than that of the weight having a high specific gravity metal force and the high specific gravity metal constituting the weight. Metal power Therefore, the total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
[0041] また、上記(12)〜(14)のいずれかに記載の偏心分銅によれば、分銅を半周以上 にわたつて分銅支持体における分銅保持部に保持させることとしたため、振動モータ (及び偏心分銅)を長時間使用した場合に分銅と分銅支持体との接合の信頼性が低 下することを抑制することができる。このため、このような偏心分銅を用いることにより、 長期信頼性の高 、振動モータを構成することができる。  [0041] Further, according to the eccentric weight described in any of (12) to (14) above, since the weight is held by the weight holding portion in the weight support for more than half a circumference, the vibration motor (and When the eccentric weight is used for a long time, it is possible to prevent the reliability of bonding between the weight and the weight support from being lowered. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor with high long-term reliability.
[0042] また、上記(12)〜(14)のいずれかに記載の偏心分銅によれば、モータ軸に沿つ たモータ軸保持部の厚さをモータ軸保持部の内径の 2倍以上の値にしたため、モー タ軸保持部は十分な保持力をもってモータ軸を保持するようになる。このため、振動 モータを長期間使用した場合に、モータ軸保持部によるモータ軸の保持に関する信 頼性が低下することを抑制することができる。  [0042] According to the eccentric weight described in any of (12) to (14) above, the thickness of the motor shaft holding portion along the motor shaft is more than twice the inner diameter of the motor shaft holding portion. Therefore, the motor shaft holder will hold the motor shaft with sufficient holding force. For this reason, when a vibration motor is used for a long time, it can suppress that the reliability regarding the holding | maintenance of the motor shaft by a motor shaft holding part falls.
[0043] なお、上記(12)〜(14)のいずれかに記載の偏心分銅によれば、分銅支持体とし て、所定の薄肉領域を有する分銅支持体、所定の貫通穴を有する分銅支持体又は 分銅保持部とモータ軸保持部とが所定の連結部で連結された分銅支持体のうちの いずれかを備えているため、偏心分銅の総重量を軽くするとともに、偏心分銅におけ る偏心量をさらに大きくすることができる。このため、このような偏心分銅を用いること により、さらに軽量かっさらに少ない消費電力で必要な振動量が得られる振動モータ を構成することができる。  [0043] According to the eccentric weight described in any of (12) to (14) above, as a weight support, a weight support having a predetermined thin region, a weight support having a predetermined through hole Or the weight holding part and the motor shaft holding part are equipped with any one of the weight supports that are connected by a predetermined connecting part, so the total weight of the eccentric weight is reduced and the amount of eccentricity in the eccentric weight Can be further increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter weight and less power consumption.
[0044] (15)上記(12)〜(14)のいずれかに記載の偏心分銅においては、前記分銅支持体 は、切削加工法によって形成されて!、ることが好ま U、。  [0044] (15) In the eccentric weight according to any one of (12) to (14), it is preferable that the weight support is formed by a cutting method!
[0045] このように構成することにより、比較的簡単な方法で上記(12)〜( 14)に記載の偏 心分銅を製造することができる。  [0045] With this configuration, the eccentric weights described in the above (12) to (14) can be manufactured by a relatively simple method.
この場合、切削加工法は、例えばエンドミルを用いて実施することが好ましい。  In this case, the cutting method is preferably performed using, for example, an end mill.
[0046] (16)上記(12)〜(14)のいずれかに記載の偏心分銅においては、前記分銅支持体 は、金属粉末射出成形法によって製造されて 、ることが好ま U、。 [0047] このように構成することにより、比較的簡単な方法で上記(12)〜( 14)のいずれか に記載の偏心分銅を製造することができる。 [0046] (16) In the eccentric weight according to any one of the above (12) to (14), the weight support is preferably manufactured by a metal powder injection molding method. With this configuration, the eccentric weight described in any one of (12) to (14) can be manufactured by a relatively simple method.
この場合、切削加工法を用いて分銅支持体を製造する場合と比較して、分銅保持 部やモータ軸保持部の肉厚を薄く形成することができるため、さらに軽量力つさらに 少な 、消費電力で必要な振動量が得られる振動モータを構成することができる。また 、切削加工法によって製造する場合と比較して、材料の無駄が少なくなる。さらにま た、偏心分銅における分銅支持体及び分銅の形状の自由度を増すことができる。  In this case, compared with the case where the weight support is manufactured using the cutting method, the thickness of the weight holding part and the motor shaft holding part can be reduced, so that the weight is reduced and the power consumption is reduced. Thus, a vibration motor capable of obtaining a necessary vibration amount can be configured. In addition, material waste is reduced as compared with the case of manufacturing by a cutting method. Furthermore, the degree of freedom in the shape of the weight support and weight in the eccentric weight can be increased.
[0048] なお、上記(1)〜(16)のいずれかに記載の偏心分銅においては、「半周以上」とは 、分銅の長手方向に垂直な平面における分銅の外周全体に対する半周以上のこと である。なお、分銅は、分銅の長手方向全体にわたって分銅保持部に保持されてい てもよいが、必ずしも分銅の長手方向全体にわたって分銅保持部に保持されている 必要はない。 [0048] In the eccentric weight described in any one of (1) to (16) above, "half or more" means half or more of the entire outer periphery of the weight in a plane perpendicular to the longitudinal direction of the weight. is there. The weight may be held in the weight holding portion over the entire length of the weight, but it is not necessarily required to be held in the weight holding portion over the entire length of the weight.
[0049] (17)上記(1)〜(16)のいずれかに記載の偏心分銅においては、前記分銅は全周 にわたつて前記分銅保持部に保持されて!ヽることが好ま 、。  [0049] (17) In the eccentric weight according to any one of (1) to (16), it is preferable that the weight is held by the weight holding portion over the entire circumference.
[0050] このように構成することにより、分銅は全周にわたって分銅支持体における分銅保 持部に保持されることになる。このため、振動モータを長時間使用した場合に分銅と 分銅支持体との接合の信頼性が低下することをさらに抑制することができる。 [0050] With this configuration, the weight is held by the weight holding portion of the weight support over the entire circumference. For this reason, when the vibration motor is used for a long time, it is possible to further suppress the decrease in the reliability of the connection between the weight and the weight support.
[0051] (18)上記(1)〜(17)に記載の偏心分銅においては、前記モータ軸保持部は、側方 に開口する開口部を有することが好ましい。 [0051] (18) In the eccentric weight described in (1) to (17) above, it is preferable that the motor shaft holding portion has an opening portion that opens laterally.
[0052] このように構成することにより、開口部力もモータ軸を挿入した後、開口部を力しめ ることによりモータ軸を保持することが可能となり、モータ軸への偏心分銅の取り付け が容易となる。 [0052] With this configuration, it is possible to hold the motor shaft by applying force to the opening after inserting the motor shaft, and it is easy to attach the eccentric weight to the motor shaft. Become.
[0053] (19)上記(1)〜(18)のいずれかに記載の偏心分銅において、前記分銅支持体は、 ステンレス鋼力 なることが好まし 、。  [0053] (19) In the eccentric weight according to any one of (1) to (18), the weight support is preferably made of stainless steel.
[0054] 一般に分銅を構成する材料 (例えば、タングステン、タングステン合金など。 )は耐 食性が低く鲭びやすい傾向にあるので、従来より偏心分銅全体を耐食性が高く鲭び にくい材料 (例えば、ニッケル。)でメツキすることが行われている。し力しながら、この ような場合、偏心分銅とメツキ膜との接合部分及びメツキ膜自身にひびが入り易ぐそ の結果、このひびなどに起因して鲭びが発生し易くなる。このため、モータ軸保持部 におけるモータ軸の保持に関する信頼性が低下するという問題があった。これに対し て、ステンレス鋼はもともと耐食性が高く鲭びにくい材料であるので、メツキを施すこと が不要になる。このため、偏心分銅とメツキ膜との間の接合部分でひびが入るというこ とがなくなり、モータ軸保持部におけるモータ軸の保持に関する信頼性が低下すると V、う問題を解決することができる。 [0054] In general, a material constituting a weight (for example, tungsten, tungsten alloy, etc.) has a low corrosion resistance and tends to crack. Therefore, the eccentric weight as a whole has a high corrosion resistance and is difficult to crack (for example, nickel. ). However, in such a case, the joint between the eccentric weight and the plating film and the plating film itself can easily crack. As a result, it becomes easy to generate creases due to such cracks. For this reason, there has been a problem that the reliability related to holding the motor shaft in the motor shaft holding portion decreases. On the other hand, stainless steel is originally a material with high corrosion resistance and resistance to cracking, so it is not necessary to apply a plating. For this reason, cracks do not occur at the joint between the eccentric weight and the plating film, and the reliability related to holding the motor shaft in the motor shaft holding portion is reduced.
[0055] また、一般に分銅を構成する材料 (例えば、タングステン、タングステン合金など。 ) は脆いため、割れ易いという問題があった。これに対して、ステンレス鋼は粘りがある ため、このような脆くて割れやすい分銅をステンレス鋼で半周以上にわたって保持す ることにより、分銅を構成する材料が割れ易いという問題を解決することができる。  [0055] In addition, there is a problem that a material constituting the weight (for example, tungsten, tungsten alloy, etc.) is generally fragile and easily broken. On the other hand, since stainless steel is sticky, it is possible to solve the problem that the material constituting the weight is easily broken by holding such a brittle and easily broken weight with stainless steel for more than half a circumference. .
[0056] また、一般に分銅を構成する材料 (例えば、タングステン、タングステン合金など。 ) は高価であるため、偏心分銅の製造コストを下げるのが容易ではないという問題があ つた。これに対して、ステンレス鋼はタングステンやタングステン合金などに比べると 安価であるため、このような比較的安価なステンレス鋼で分銅支持体を構成すること により、偏心分銅の製造コストを下げるのが容易ではないという問題を解決することが できる。  [0056] In addition, since materials (for example, tungsten and tungsten alloys) constituting weights are generally expensive, there is a problem that it is not easy to reduce the manufacturing cost of the eccentric weight. On the other hand, stainless steel is cheaper than tungsten and tungsten alloys, so it is easy to reduce the manufacturing cost of eccentric weight by configuring a weight support with such a relatively inexpensive stainless steel. Can solve the problem.
[0057] ステンレス鋼としては、モータに与える影響を小さなものにするために、非磁性のス テンレス鋼を好ましく用いることができる。  [0057] As the stainless steel, non-magnetic stainless steel can be preferably used in order to reduce the influence on the motor.
[0058] (20)上記(3)又は(6)に記載の偏心分銅においては、前記分銅支持体は、焼き入 れ硬化性を有する金属、時効硬化性を有する金属、加工硬化性を有する金属又は 形状記憶合金力もなることが好まし 、。 [0058] (20) In the eccentric weight described in (3) or (6) above, the weight support is made of a metal having quench hardening properties, a metal having age hardening properties, or a metal having work hardening properties. Or the shape memory alloy power is also preferred.
[0059] このように、焼き入れ硬化性を有する金属、時効硬化性を有する金属、加工硬化性 を有する金属又は形状記憶合金で分銅支持体を構成することにより、プレス絞り加工 法によって分銅支持体を製造する際に分銅支持体を十分に硬化させることが可能に なり、信頼性の高い偏心分銅や振動モータを製造することが可能になる。 [0059] Thus, a weight support is formed by a press drawing method by forming a weight support with a quench-hardening metal, an age-hardening metal, a work-hardening metal, or a shape memory alloy. It is possible to sufficiently harden the weight support when manufacturing the iron, and it is possible to manufacture a highly reliable eccentric weight and vibration motor.
[0060] (21)上記(1)〜(20)のいずれかに記載の偏心分銅においては、前記分銅は、タン ダステン、タングステン合金、オスミウム、オスミウム合金、金、金合金、イリジウム又は イリジウム合金力 なることが好まし 、。 [0061] このように構成することにより、タングステン、タングステン合金、オスミウム、ォスミゥ ム合金、金、金合金、イリジウム又はイリジウム合金は極めて比重が高いため、偏心 分銅における偏心量をさらに大きくすることができる。このため、このような偏心分銅を 用いることにより、さらに少ない消費電力で必要な振動量が得られる振動モータを構 成することができる。 [0060] (21) In the eccentric weight according to any one of (1) to (20), the weight is selected from the group consisting of tungsten, tungsten alloy, osmium, osmium alloy, gold, gold alloy, iridium or iridium alloy. I prefer to be. [0061] With this configuration, tungsten, tungsten alloy, osmium, osmium alloy, gold, gold alloy, iridium or iridium alloy has a very high specific gravity, and therefore the amount of eccentricity in the eccentric weight can be further increased. . Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with less power consumption.
[0062] なお、本発明の偏心分銅においては、分銅には、モータ軸を保持するための機能 は必要ないため、分銅の形状として極めて単純な形状 (例えば、円、長円、扇形など の断面を有する棒形状。)を採用することができるようになる。このため、分銅として、 分銅の形状に焼結した焼結体や、分銅の断面形状 (例えば、円、長円、扇形など。 ) と同じ断面形状を有する異形棒力 なる焼結体を短く切断したものを用いることがで きる。また、丸棒からなる焼結体を削り出して分銅の断面形状と同じ断面形状に加工 した切削体を短く切断したものを用いることもできる。また、分銅の断面形状が円であ る場合には、丸棒力もなる焼結体をそのまま短く切断したものを用いることもできる。  [0062] In the eccentric weight of the present invention, since the weight does not need a function for holding the motor shaft, the weight has a very simple shape (for example, a cross-section such as a circle, an ellipse, or a sector). Can be adopted. For this reason, as a weight, a sintered body sintered in the shape of a weight, or a sintered body with a deformed bar force having the same cross-sectional shape as a weight (for example, a circle, an ellipse, a fan shape, etc.) is cut short. Can be used. In addition, it is possible to use a cut body obtained by cutting a sintered body made of a round bar and cutting it into the same cross-sectional shape as that of the weight. In addition, when the cross-sectional shape of the weight is a circle, a sintered body that also has a round bar force can be used as it is cut short.
[0063] (22)上記(1)〜(21)の 、ずれかに記載の偏心分銅にお!、ては、前記偏心分銅は、 モータ本体力 突出する部分における前記モータ軸に取り付けて用いる偏心分銅で あることを特徴とする偏心分銅。  [0063] (22) In the eccentric weight according to any one of (1) to (21), the eccentric weight is used by being attached to the motor shaft at a portion where the motor body force protrudes. An eccentric weight characterized by being a weight.
[0064] このように構成することにより、偏心分銅の回転径を小さくすることができ、少ない消 費電力で必要な振動量が得られる振動モータを構成することができる。  By configuring in this way, it is possible to reduce the rotational diameter of the eccentric weight, and it is possible to configure a vibration motor that can obtain a necessary amount of vibration with less power consumption.
[0065] (23)上記(1)〜(22)のいずれかに記載の偏心分銅においては、前記分銅の長手 方向に沿った前記分銅支持体の長さが前記分銅の長手方向に沿った前記分銅の 長さよりも短ぐ前記分銅支持体の分銅保持部が前記分銅を前記分銅の長手方向に 沿って偏心した位置で保持することを特徴とする。  (23) In the eccentric weight according to any one of (1) to (22), the length of the weight support along the longitudinal direction of the weight is the length along the longitudinal direction of the weight. The weight holding part of the weight support shorter than the weight length holds the weight at a position eccentric along the longitudinal direction of the weight.
[0066] このように構成することにより、このような偏心分銅を、モータ本体に対して、モータ 軸保持部とモータ本体との距離が近づく向きに固定して振動モータを構成することに より、偏心分銅のモータ軸保持部とモータ本体の軸受けとの距離を近くすることが可 能になるため、モータ軸が回転する際にモータ軸のたわみを抑制することができる。 その結果、偏心分銅がより安定して回転し、振動モータの偏心振動特性がさらに向 上する。 [0067] (24)本発明の振動モータは、モータ本体と、上記(1)〜(23)のいずれかに記載の 偏心分銅とを備えたことを特徴とする。 By configuring in this way, such an eccentric weight is fixed to the motor body so that the distance between the motor shaft holding part and the motor body approaches, thereby constituting a vibration motor. Since it is possible to reduce the distance between the motor weight holding portion of the eccentric weight and the bearing of the motor body, the deflection of the motor shaft can be suppressed when the motor shaft rotates. As a result, the eccentric weight rotates more stably, and the eccentric vibration characteristics of the vibration motor are further improved. (24) A vibration motor according to the present invention includes a motor main body and the eccentric weight according to any one of (1) to (23).
[0068] このため、上記(24)に記載の振動モータによれば、上記したように、振動モータを 長時間使用した場合においても分銅と分銅支持体との接合の信頼性が低下すること を抑制することが可能で、さらに、偏心分銅における偏心量を大きくすることが容易な 構造を有する偏心分銅を備えているため、長時間信頼性及び偏心振動特性に優れ た振動モータとなる。  [0068] Therefore, according to the vibration motor described in the above (24), as described above, even when the vibration motor is used for a long time, the reliability of the connection between the weight and the weight support is lowered. Since the eccentric weight has a structure that can be suppressed and can easily increase the amount of eccentricity of the eccentric weight, the vibration motor is excellent in long-term reliability and eccentric vibration characteristics.
[0069] (25)本発明の振動モータは、モータ本体と、上記(23)に記載の偏心分銅とを備え、 前記偏心分銅は、前記モータ本体に対して、前記モータ軸保持部と前記モータ本 体との距離が近づく向きに固定されていることを特徴とする。  (25) A vibration motor of the present invention includes a motor main body and the eccentric weight described in (23) above, and the eccentric weight with respect to the motor main body includes the motor shaft holding portion and the motor. It is characterized by being fixed so that the distance from the main body is closer.
[0070] このため、上記(25)に記載の振動モータによれば、振動モータを長時間使用した 場合においても分銅と分銅支持体との接合の信頼性が低下することを抑制すること が可能で、さらに、偏心分銅における偏心量を大きくすることが容易な構造を有する 偏心分銅を備えているため、長時間信頼性及び偏心振動特性に優れた振動モータ となる。  [0070] For this reason, according to the vibration motor described in (25) above, it is possible to suppress a decrease in the reliability of bonding between the weight and the weight support even when the vibration motor is used for a long time. Furthermore, since the eccentric weight has a structure that makes it easy to increase the amount of eccentricity of the eccentric weight, the vibration motor is excellent in long-term reliability and eccentric vibration characteristics.
[0071] また、上記(25)に記載の振動モータによれば、偏心分銅のモータ軸保持部とモー タ本体の軸受けとの距離が近くなるため、モータ軸が回転する際にモータ軸のたわ みを抑制することができる。その結果、偏心分銅がより安定して回転し、振動モータの 偏心振動特性がさらに向上する。  [0071] Further, according to the vibration motor described in (25) above, since the distance between the motor shaft holding portion of the eccentric weight and the bearing of the motor main body is close, the motor shaft is rotated when the motor shaft rotates. Deflection can be suppressed. As a result, the eccentric weight rotates more stably, and the eccentric vibration characteristics of the vibration motor are further improved.
[0072] (26)本発明の携帯機器は、上記(24)又は(25)に記載の振動モータを備えたことを 特徴とする。 (26) A portable device of the present invention is characterized by including the vibration motor according to (24) or (25).
[0073] このため、本発明の携帯機器によれば、長時間信頼性及び偏心振動特性の高い 振動モータを備えているため、長時間信頼性及び偏心振動特性に優れた携帯機器 となる。  Therefore, according to the portable device of the present invention, since the vibration motor having high long-term reliability and eccentric vibration characteristics is provided, the portable device is excellent in long-term reliability and eccentric vibration characteristics.
[0074] (27)本発明の偏心分銅の製造方法は、高比重金属からなる分銅と、前記分銅を半 周以上にわたって保持する分銅保持部及びモータ軸を保持するためのモータ軸保 持部並びに前記分銅保持部及び前記モータ軸保持部を連結する連結部を有し、前 記分銅を構成する高比重金属よりも比重の低い金属力 なる分銅支持体とを備えた 偏心分銅を製造するための偏心分銅の製造方法であって、前記モータ軸に沿った 前記モータ軸保持部の長さよりも小さ!/ヽ値の肉厚を有する板状部材からプレス絞り加 工法によって分銅支持体を製造する工程と、 (27) An eccentric weight manufacturing method of the present invention includes a weight made of a high specific gravity metal, a weight holding portion for holding the weight over a half circumference, a motor shaft holding portion for holding a motor shaft, and A weight supporting portion having a connecting portion for connecting the weight holding portion and the motor shaft holding portion, and having a metal force having a specific gravity lower than that of the high specific gravity metal constituting the weight. An eccentric weight manufacturing method for manufacturing an eccentric weight, which is smaller than the length of the motor shaft holding portion along the motor shaft! Producing a weight support;
前記分銅支持体に、前記分銅を挿入する工程とを含むことを特徴とする。  And a step of inserting the weight into the weight support.
[0075] このため、上記(27)に記載の偏心分銅の製造方法によれば、偏心分銅の総重量 を軽くするとともに、偏心分銅における偏心量が大きい偏心分銅を製造することがで きる。このため、このような偏心分銅を用いることにより、軽量かつ少ない消費電力で 必要な振動量が得られる振動モータを構成することができる。  [0075] For this reason, according to the method of manufacturing the eccentric weight described in (27) above, it is possible to reduce the total weight of the eccentric weight and to manufacture an eccentric weight having a large amount of eccentricity. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
[0076] また、上記(27)に記載の偏心分銅の製造方法によれば、板状部材力 プレス絞り 加工法によって分銅支持体を製造することとしているため、肉厚の薄い分銅支持体 を製造することが可能となり、偏心分銅の総重量を軽くするとともに、偏心分銅におけ る偏心量をさら〖こ大きくすることができる。  [0076] Further, according to the eccentric weight manufacturing method described in (27), since the weight support is manufactured by the plate member force press drawing method, a thin weight support is manufactured. This makes it possible to reduce the total weight of the eccentric weight and to further increase the amount of eccentricity in the eccentric weight.
[0077] さらにまた、上記(27)に記載の偏心分銅の製造方法によれば、板状部材からプレ ス絞り加工法によって分銅支持体を製造することとしているため、切削加工法を用い る場合と比較して容易に分銅支持体を製造することが可能になる。また、切削加工法 を用いる場合と比較して、材料の無駄が少なくなる。  [0077] Furthermore, according to the eccentric weight manufacturing method described in (27) above, since the weight support is manufactured from the plate member by the press drawing method, the cutting method is used. It becomes possible to manufacture a weight support easily compared with the above. In addition, material waste is reduced compared to the case of using a cutting method.
[0078] なお、(27)に記載の偏心分銅の製造方法においては、分銅支持体を製造するェ 程において、プレス絞り加工法によって製造された複数の薄板部材を積層して分銅 支持体を製造することとしてもょ 、。  [0078] In the method of manufacturing the eccentric weight described in (27), in the process of manufacturing the weight support, a weight support is manufactured by laminating a plurality of thin plate members manufactured by the press drawing method. As you do.
[0079] (28)本発明の偏心分銅の製造方法は、高比重金属力 なる分銅を準備するとともに 、前記分銅を保持する分銅保持部及びモータ軸を保持するためのモータ軸保持部 を有し、前記分銅を構成する高比重金属よりも比重の低 、金属からなる分銅支持体 を準備する第 1工程と、前記分銅支持体に前記分銅を挿入した状態で、前記モータ 軸に沿った方向における両側力 前記分銅を押圧して前記分銅を塑性変形させるこ とにより、前記分銅と前記分銅保持部とを固着させる第 2工程とを含むことを特徴とす る。  (28) An eccentric weight manufacturing method of the present invention has a weight having a high specific gravity metal force, a weight holding portion for holding the weight, and a motor shaft holding portion for holding a motor shaft. A first step of preparing a weight support made of metal having a specific gravity lower than that of the high specific gravity metal constituting the weight, and in a direction along the motor shaft in a state where the weight is inserted into the weight support. Both-side forces include a second step of fixing the weight and the weight holding portion by pressing the weight and plastically deforming the weight.
[0080] このため、上記(28)に記載の偏心分銅の製造方法によれば、偏心分銅の総重量 を軽くするとともに、偏心分銅における偏心量が大きい偏心分銅を製造することがで きる。このため、このような偏心分銅を用いることにより、軽量かつ少ない消費電力で 必要な振動量が得られる振動モータを構成することができる。 [0080] Therefore, according to the method of manufacturing the eccentric weight described in (28) above, it is possible to reduce the total weight of the eccentric weight and to manufacture an eccentric weight having a large amount of eccentricity. wear. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
[0081] また、上記(28)に記載の偏心分銅の製造方法によれば、分銅を押圧して塑性変 形させることにより分銅と分銅保持部とを固着させるため、分銅は分銅保持部に強固 に保持されるようになる。このため、振動モータを長時間使用した場合に分銅と分銅 支持体との接合の信頼性が低下することをさらに抑制することができる。  [0081] Further, according to the method of manufacturing the eccentric weight described in (28) above, the weight is firmly fixed to the weight holding portion because the weight and the weight holding portion are fixed by pressing the weight to cause plastic deformation. Will be held in. For this reason, when a vibration motor is used for a long time, it can further suppress that the reliability of joining of a weight and a weight support body falls.
[0082] (28)に記載の偏心分銅の製造方法においては、前記第 1工程における前記分銅の 大きさは、前記分銅支持体に前記分銅を挿入した状態のとき、前記分銅の外周と前 記分銅保持部の内周との間隙の平均値が 5 πι〜100 /ζ mの範囲内となるような大 きさであることが好ましい。  [0082] In the method for producing an eccentric weight according to (28), the size of the weight in the first step is the same as the outer circumference of the weight when the weight is inserted into the weight support. It is preferable that the average value of the gap with the inner periphery of the weight holding portion is in a range of 5πι to 100 / ζ m.
[0083] このように構成することにより、分銅は分銅保持部に強固に保持されるようになり、偏 心分銅を製造する際の生産性が向上する。すなわち、分銅の外周と分銅保持部の 内周との間隙の平均値を 100 m以下とすることで、押圧による分銅の塑性変形で 分銅が分銅保持部に強固に保持されるようになる。鲭の発生を防ぐ目的で分銅に- ッケルめっき等がなされている場合であっても、塑性変形量を大きなものにする必要 がなくなり、ニッケルめっき等が割れたり剥がれたりして分銅の品質が低下してしまう ことを抑制することができる。また、分銅の外周と分銅保持部の内周との間隙の平均 値を 5 m以下とすることで、分銅支持体に分銅を挿入することが容易になり、偏心 分銅を製造する際の生産性を向上させることが可能となる。  With this configuration, the weight is firmly held by the weight holding portion, and the productivity when manufacturing the eccentric weight is improved. That is, by setting the average value of the gap between the outer periphery of the weight and the inner periphery of the weight holding portion to 100 m or less, the weight is firmly held by the weight holding portion due to plastic deformation of the weight due to pressing. Even if the weight is plated with nickel to prevent wrinkles, there is no need to increase the amount of plastic deformation and the nickel plating is cracked or peeled off, reducing the weight quality. Can be suppressed. Also, by setting the average value of the gap between the outer periphery of the weight and the inner periphery of the weight holding part to 5 m or less, it becomes easier to insert the weight into the weight support, and the productivity when producing an eccentric weight Can be improved.
図面の簡単な説明  Brief Description of Drawings
[0084] [図 1]実施形態 1に係る偏心分銅 120を説明するために示す図である。 FIG. 1 is a view for explaining an eccentric weight 120 according to Embodiment 1.
[図 2]実施形態 1に係る振動モータ 100を説明するために示す図である。  FIG. 2 is a view for explaining the vibration motor 100 according to the first embodiment.
[図 3]実施形態 2に係る偏心分銅 220を説明するために示す図である。  FIG. 3 is a view for explaining an eccentric weight 220 according to Embodiment 2.
[図 4]実施形態 3に係る偏心分銅 320を説明するために示す図である。  FIG. 4 is a view for explaining an eccentric weight 320 according to Embodiment 3.
[図 5]実施形態 4に係る偏心分銅 420を説明するために示す図である。  FIG. 5 is a view for explaining an eccentric weight 420 according to a fourth embodiment.
[図 6]実施形態 5に係る偏心分銅 520を説明するために示す図である。  FIG. 6 is a view for explaining an eccentric weight 520 according to a fifth embodiment.
[図 7]実施形態 6に係る偏心分銅 620を説明するために示す図である。  FIG. 7 is a view for explaining an eccentric weight 620 according to a sixth embodiment.
[図 8]実施形態 7に係る偏心分銅 720を説明するために示す図である。 [図 9]実施形態 8に係る偏心分銅 820を説明するために示す図である。 FIG. 8 is a view for explaining an eccentric weight 720 according to a seventh embodiment. FIG. 9 is a view for explaining an eccentric weight 820 according to an eighth embodiment.
[図 10]実施形態 9に係る偏心分銅 920を説明するために示す図である。  FIG. 10 is a view for explaining an eccentric weight 920 according to the ninth embodiment.
[図 11]実施形態 9に係る偏心分銅 920を製造するための製造方法を説明するために 示す図である。  FIG. 11 is a view for explaining a manufacturing method for manufacturing the eccentric weight 920 according to the ninth embodiment.
[図 12]実施形態 10に係る偏心分銅 1020を説明するために示す図である。  FIG. 12 is a view for explaining an eccentric weight 1020 according to the tenth embodiment.
[図 13]実施形態 11に係る偏心分銅 1120を説明するために示す図である。  FIG. 13 is a view for explaining an eccentric weight 1120 according to an eleventh embodiment.
[図 14]実施形態 12に係る偏心分銅 1220を説明するために示す図である。  FIG. 14 is a view for explaining an eccentric weight 1220 according to the twelfth embodiment.
[図 15]実施形態 13に係る偏心分銅 1320を説明するために示す図である。  FIG. 15 is a view for explaining an eccentric weight 1320 according to the thirteenth embodiment.
[図 16]実施形態 14に係る偏心分銅 1420を説明するために示す図である。  FIG. 16 is a view for explaining an eccentric weight 1420 according to the fourteenth embodiment.
[図 17]実施形態 15に係る偏心分銅 1520を説明するために示す図である。  FIG. 17 is a view for explaining an eccentric weight 1520 according to the fifteenth embodiment.
[図 18]実施形態 16に係る偏心分銅 1620を説明するために示す図である。  FIG. 18 is a view for explaining an eccentric weight 1620 according to the sixteenth embodiment.
[図 19]実施形態 17に係る偏心分銅 1720を説明するために示す図である。  FIG. 19 is a view for explaining an eccentric weight 1720 according to the seventeenth embodiment.
[図 20]実施形態 18に係る偏心分銅 1820を用いた振動モータ 1800を説明するため に示す図である。  FIG. 20 is a view for explaining a vibration motor 1800 using the eccentric weight 1820 according to the eighteenth embodiment.
[図 21]実施形態 19に係る偏心分銅の製造方法を説明するために示す模式図である [図 22]実施形態 20に係る偏心分銅の製造方法を説明するために示す模式図である [図 23]実施形態 21に係る偏心分銅の製造方法を説明するために示す模式図である [図 24]実施形態 22に係る偏心分銅の製造方法を説明するために示す模式図である [図 25]従来の振動モータ 3000及び偏心分銅 3020を説明するために示す図である  FIG. 21 is a schematic diagram for explaining the manufacturing method of the eccentric weight according to Embodiment 19. FIG. 22 is a schematic diagram for explaining the manufacturing method of the eccentric weight according to Embodiment 20. 23] A schematic diagram for explaining the manufacturing method of the eccentric weight according to the embodiment 21. [FIG. 24] A schematic diagram for explaining the manufacturing method of the eccentric weight according to the embodiment 22. [FIG. It is a figure shown in order to demonstrate the conventional vibration motor 3000 and the eccentric weight 3020
[図 26]従来の他の偏心分銅 3120を説明するために示す図である。 FIG. 26 is a view for explaining another conventional eccentric weight 3120.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の偏心分銅、振動モータ、携帯機器及び偏心分銅の製造方法につ いて、図に示す実施の形態に基づいて説明する。 [0086] 〔実施形態 1〜2〕 Hereinafter, the eccentric weight, vibration motor, portable device, and manufacturing method of the eccentric weight of the present invention will be described based on the embodiments shown in the drawings. [0086] Embodiments 1 and 2
実施形態 1〜2は、主として請求項 14に係る偏心分銅を説明するための実施形態 である。  Embodiments 1 and 2 are mainly embodiments for explaining an eccentric weight according to claim 14.
[0087] 図 1は、実施形態 1に係る偏心分銅 120を説明するために示す図である。図 1 (a) は偏心分銅 120を正面力も見た図であり、図 1 (b)は図 1 (a)の A— A断面図であり、 図 1 (c)は図 1 (a)の B— B断面図であり、図 1 (d)は偏心分銅 120の斜視図であり、図 1 (e)は偏心分銅 120の、図 1 (d)の裏面側から見た斜視図である。  FIG. 1 is a view for explaining the eccentric weight 120 according to the first embodiment. Fig. 1 (a) is a view of the eccentric weight 120 from the frontal force, Fig. 1 (b) is a cross-sectional view taken along the line A-A in Fig. 1 (a), and Fig. 1 (c) is a diagram of Fig. 1 (a). FIG. 1 (d) is a perspective view of the eccentric weight 120, and FIG. 1 (e) is a perspective view of the eccentric weight 120 as seen from the back side of FIG. 1 (d).
[0088] 実施形態 1に係る偏心分銅 120は、図 1に示すように、略扇形状の断面を有する分 銅 140と、分銅支持体 130とを備えている。分銅 140は高比重金属力もなる。分銅支 持体 130は、分銅 140を構成する高比重金属よりも比重の低い金属力もなる。分銅 支持体 130は、分銅 140を全周にわたつて保持する分銅保持部 134及びモータ軸 1 12 (図 2参照。)を保持するためのモータ軸保持部 132を有している。分銅支持体 13 0は、モータ軸 112に沿ったモータ軸保持部 132の長さよりも小さい値の肉厚を有す る薄肉領域 138を有している。モータ軸 112に沿ったモータ軸保持部 132の長さは、 モータ軸保持部 132の内径の 2倍以上の値を有して!/、る。  As shown in FIG. 1, the eccentric weight 120 according to the first embodiment includes a weight 140 having a substantially fan-shaped cross section, and a weight support 130. Weight 140 also has high specific gravity metal power. The weight support body 130 also has a metal force having a specific gravity lower than that of the high specific gravity metal constituting the weight 140. The weight support 130 has a weight holding part 134 that holds the weight 140 over the entire circumference and a motor shaft holding part 132 for holding the motor shaft 112 (see FIG. 2). The weight support body 130 has a thin region 138 having a thickness smaller than the length of the motor shaft holding portion 132 along the motor shaft 112. The length of the motor shaft holder 132 along the motor shaft 112 has a value more than twice the inner diameter of the motor shaft holder 132.
[0089] このため、実施形態 1に係る偏心分銅 120によれば、偏心分銅を、高比重金属から なる分銅 140と、分銅 140を構成する高比重金属よりも比重の低い金属力もなる分銅 支持体 130とを備えた偏心分銅 120としたため、偏心分銅 120の総重量を軽くすると ともに、偏心分銅 120における偏心量を大きくすることができる。このため、このような 偏心分銅 120を用いることにより、軽量かつ少ない消費電力で必要な振動量が得ら れる振動モータを構成することができる。  Therefore, according to the eccentric weight 120 according to the first embodiment, the eccentric weight includes the weight 140 made of a high specific gravity metal, and the weight support having a lower specific gravity than the high specific gravity metal constituting the weight 140. Thus, the total weight of the eccentric weight 120 can be reduced and the amount of eccentricity of the eccentric weight 120 can be increased. Therefore, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
[0090] また、実施形態 1に係る偏心分銅 120によれば、分銅 140を全周にわたって分銅支 持体 130における分銅保持部 134に保持させることとしたため、振動モータ (及び偏 心分銅 120)を長時間使用した場合に分銅 140と分銅支持体 130との接合の信頼性 が低下することを抑制することができる。このため、このような偏心分銅 120を用いるこ とにより、長期信頼性の高い振動モータを構成することができる。  Further, according to the eccentric weight 120 according to the first embodiment, since the weight 140 is held by the weight holding portion 134 in the weight support 130 over the entire circumference, the vibration motor (and the eccentric weight 120) is provided. When used for a long time, it is possible to suppress a decrease in the reliability of bonding between the weight 140 and the weight support 130. Therefore, by using such an eccentric weight 120, it is possible to configure a vibration motor with high long-term reliability.
[0091] また、実施形態 1に係る偏心分銅 120によれば、分銅支持体 130に所定の薄肉領 域 138を設けるようにしたため、偏心分銅 120の総重量を軽くするとともに、偏心分銅 120における偏心量をさらに大きくすることができる。このため、このような偏心分銅 1 20を用いることにより、さらに軽量かっさらに少ない消費電力で必要な振動量が得ら れる振動モータを構成することができる。 [0091] Further, according to the eccentric weight 120 according to the first embodiment, the predetermined weight region 138 is provided on the weight support 130, so that the total weight of the eccentric weight 120 is reduced and the eccentric weight 120 is provided. The amount of eccentricity at 120 can be further increased. For this reason, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter weight and less power consumption.
[0092] また、実施形態 1に係る偏心分銅 120によれば、モータ軸 112に沿ったモータ軸保 持部 132の厚さをモータ軸保持部 132の内径の 2倍以上の値にしたため、モータ軸 保持部 132は十分な保持力をもってモータ軸を保持するようになる。このため、振動 モータ (及び偏心分銅 120)を長期間使用した場合に、モータ軸保持部によるモータ 軸の保持に関する信頼性が低下することを抑制することができる。  Further, according to the eccentric weight 120 according to the first embodiment, the thickness of the motor shaft holding portion 132 along the motor shaft 112 is set to a value more than twice the inner diameter of the motor shaft holding portion 132. The shaft holder 132 holds the motor shaft with a sufficient holding force. For this reason, when the vibration motor (and the eccentric weight 120) is used for a long period of time, it is possible to suppress a decrease in reliability related to the holding of the motor shaft by the motor shaft holding portion.
[0093] なお、分銅支持体 130には、分銅 140を保持するために分銅 140の断面形状に対 応する形状を有する穴が形成されて ヽる。実施形態 1に係る偏心分銅 120にお ヽて は、この穴の周囲の部分を分銅保持部 134という。また、分銅支持体 130には、モー タ軸 112を保持するためにモータ軸 112の断面形状に対応する形状を有する穴が 形成されている。実施形態 1に係る偏心分銅 120においては、この穴の周囲の部分 をモータ軸保持部 132という。  Note that the weight support 130 is formed with a hole having a shape corresponding to the cross-sectional shape of the weight 140 in order to hold the weight 140. In the eccentric weight 120 according to the first embodiment, the portion around this hole is referred to as a weight holding portion 134. In addition, a hole having a shape corresponding to the cross-sectional shape of the motor shaft 112 is formed in the weight support 130 to hold the motor shaft 112. In the eccentric weight 120 according to the first embodiment, a portion around this hole is referred to as a motor shaft holding portion 132.
[0094] また、実施形態 1及び後述する各実施形態においては、「全周」とは、分銅 140の 長手方向に垂直な平面における分銅 140の外周全周のことである。  In the first embodiment and each of the embodiments described later, “the entire circumference” refers to the entire outer circumference of the weight 140 in a plane perpendicular to the longitudinal direction of the weight 140.
[0095] 実施形態 1に係る偏心分銅 120においては、図 1 (b)及び図 1 (c)に示すように、モ ータ軸に平行な方向に沿った分銅 140の長さは 4mmである。また、モータ軸に平行 な方向に沿つた分銅保持部 134の長さは 2mmであり、モータ軸に平行な方向に沿 つたモータ軸保持部 132の長さも 2mmである。  In the eccentric weight 120 according to Embodiment 1, the length of the weight 140 along the direction parallel to the motor axis is 4 mm, as shown in FIGS. 1 (b) and 1 (c). . The length of the weight holder 134 along the direction parallel to the motor shaft is 2 mm, and the length of the motor shaft holder 132 along the direction parallel to the motor shaft is 2 mm.
[0096] このため、実施形態 1に係る偏心分銅 120においては、分銅 140は、分銅 140の長 さ(4mm)の半分の長さ(2mm)の部分で分銅保持部 134に保持されている。その結 果、分銅 140は分銅支持体 130にしつ力り保持されることになる。  Therefore, in the eccentric weight 120 according to the first embodiment, the weight 140 is held by the weight holding portion 134 at a portion (2 mm) that is half the length (4 mm) of the weight 140. As a result, the weight 140 is held on the weight support 130 by tension.
[0097] また、実施形態 1に係る偏心分銅 120においては、薄肉領域 138は、モータ軸に沿 つたモータ軸保持部 132の長さの 10%の値の肉厚(0. 2mm)を有している。すなわ ち、薄肉領域 138は、 1. 8mmの深さの部分が切削により削除された形状を有してい る。このため、分銅支持体 130の重量を十分に軽くすることができるようになり、偏心 分銅 120の総重量をさらに軽くするとともに、偏心分銅 120における偏心量をさらに 大きくすることができるようになる。このため、このような偏心分銅 120を用いることによ り、さらに軽量かっさらに少ない消費電力で必要な振動量が得られる振動モータを構 成することができる。 In the eccentric weight 120 according to the first embodiment, the thin region 138 has a thickness (0.2 mm) that is 10% of the length of the motor shaft holding portion 132 along the motor shaft. ing. That is, the thin region 138 has a shape in which a portion having a depth of 1.8 mm is deleted by cutting. For this reason, the weight of the weight support 130 can be sufficiently reduced, the total weight of the eccentric weight 120 is further reduced, and the amount of eccentricity in the eccentric weight 120 is further increased. You can make it bigger. For this reason, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and even less power consumption.
[0098] 実施形態 1に係る偏心分銅 120においては、分銅 140を偏心分銅 120の外周側か ら保持する外周部分における、分銅保持部 134の肉厚は、 0. 25mmである。このた め、実施形態 1に係る偏心分銅 120においては、分銅 140をできるだけ外周部に配 置するとともに、分銅 140をできるだけ大きくすることができるようになるため、偏心分 銅 120における偏心量をさらに大きくすることができる。このため、このような偏心分銅 120を用いることにより、さらに少ない消費電力で必要な振動量が得られる振動モー タを構成することができる。  In the eccentric weight 120 according to the first embodiment, the thickness of the weight holding portion 134 in the outer peripheral portion that holds the weight 140 from the outer peripheral side of the eccentric weight 120 is 0.25 mm. Therefore, in the eccentric weight 120 according to the first embodiment, the weight 140 can be arranged on the outer peripheral portion as much as possible, and the weight 140 can be made as large as possible. Therefore, the amount of eccentricity in the eccentric weight 120 can be further increased. Can be bigger. Therefore, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with less power consumption.
[0099] 実施形態 1に係る偏心分銅 120においては、モータ軸保持部 132のモータ軸 112 の径方向に沿った方向の肉厚は、 0. 2mmである。このため、実施形態 1に係る偏心 分銅 120においては、偏心分銅 120の総重量をさらに軽くするとともに、偏心分銅 12 0における偏心量をさらに大きくすることができる。このため、このような偏心分銅 120 を用いることにより、さらに軽量かっさらに少ない消費電力で必要な振動量が得られ る振動モータを構成することができる。  In the eccentric weight 120 according to the first embodiment, the thickness of the motor shaft holding portion 132 in the direction along the radial direction of the motor shaft 112 is 0.2 mm. For this reason, in the eccentric weight 120 according to the first embodiment, the total weight of the eccentric weight 120 can be further reduced, and the amount of eccentricity in the eccentric weight 120 can be further increased. For this reason, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
[0100] 実施形態 1に係る偏心分銅 120においては、図 1に示すように、分銅 140は、断面 が略扇形状を有しており、モータ軸保持部 132の中心軸を含む所定の第 1平面(図 1 (a)中、 A— Aで示す。)を対称面とする面対称の形状を有している。  In the eccentric weight 120 according to the first embodiment, as shown in FIG. 1, the weight 140 has a substantially fan-shaped cross section, and includes a predetermined first weight including the central axis of the motor shaft holding portion 132. It has a plane-symmetric shape with a plane (indicated by A–A in Fig. 1 (a)) as a plane of symmetry.
[0101] このため、実施形態 1に係る偏心分銅 120においては、分銅 140をいずれの端部( 図 1 (b)に示す端部 SI, S2参照。 M則力も分銅保持部 134に挿入することもできるよ うになるため、分銅保持部 134に分銅 140を配置する際の自由度が高まり、作業性 が向上する。このため、偏心分銅 120を製造する際の製造コストを低いものにするこ とがでさる。  [0101] Therefore, in the eccentric weight 120 according to the first embodiment, the weight 140 is inserted into any end portion (see the end portions SI and S2 shown in Fig. 1 (b). The M-law force is also inserted into the weight holding portion 134. As a result, the degree of freedom when placing the weight 140 in the weight holding part 134 is improved and the workability is improved, so that the manufacturing cost for manufacturing the eccentric weight 120 can be reduced. It is out.
[0102] なお、ここで、 「モータ軸保持部 132の中心軸」とは、モータ軸保持部 132がモータ 軸 112 (図 2参照。)を保持した場合にモータ軸 112の中心軸が位置することになる 軸のことである。  [0102] Here, "the central axis of the motor shaft holding part 132" means that the central axis of the motor shaft 112 is located when the motor shaft holding part 132 holds the motor shaft 112 (see Fig. 2). It is the axis that will be.
[0103] 実施形態 1に係る偏心分銅 120においては、分銅 140は、タングステン焼結合金か らなり、分銅支持体 130は、タングステン合金よりも比重の低い熔成材のステンレス鋼 からなる。 [0103] In the eccentric weight 120 according to the first embodiment, the weight 140 is a tungsten sintered alloy. Thus, the weight support 130 is made of a molten stainless steel having a specific gravity lower than that of the tungsten alloy.
[0104] このため、分銅支持体 130は分銅 140を構成するタングステン焼結合金よりも比重 の低い熔成材のステンレス鋼力もなるため、分銅支持体 130の耐久性が向上すると ともに、分銅支持体 130と分銅 140とをより強固に一体化させることができるようになり 、振動モータ (及び偏心分銅 120)を長時間使用した場合に分銅 140と分銅支持体 1 30との接合の信頼性が低下することを抑制することができる。このため、このような偏 心分銅 120を用いることにより、長期信頼性の高い振動モータを構成することができ る。  [0104] For this reason, since the weight support 130 also has a stainless steel power of a molten material having a specific gravity lower than that of the tungsten sintered alloy constituting the weight 140, the weight support 130 is improved in durability and the weight support 130 is improved. And the weight 140 can be integrated more firmly, and the reliability of the connection between the weight 140 and the weight support 1 30 is reduced when the vibration motor (and the eccentric weight 120) is used for a long time. This can be suppressed. Therefore, by using such an eccentric weight 120, it is possible to configure a vibration motor with high long-term reliability.
[0105] また、ステンレス鋼はもともと耐食性が高く鲭びにく!、材料であるので、これを分銅 支持体として用いたとしてもメツキを施すことが不要になる。その結果、分銅支持体 1 30とメツキ膜との接合部分及びメツキ膜自身にでひびが入るということがなくなる。こ れによりう、ひびなどに起因して鲭びが発生するということがなくなり、モータ軸保持部 132におけるモータ軸 112の保持に関する信頼性を高めることができる。  [0105] Since stainless steel is originally a material with high corrosion resistance and resistance to rust, it is not necessary to apply a plating even if it is used as a weight support. As a result, cracks do not occur at the junction between the weight support 130 and the plating film and at the plating film itself. As a result, the occurrence of cracks due to cracks or the like is eliminated, and the reliability of holding the motor shaft 112 in the motor shaft holding part 132 can be improved.
[0106] また、ステンレス鋼は粘りがあるため、タングステン合金のような脆くて割れやすい分 銅を粘りのあるステンレス鋼で全周にわたって保持することにより、分銅が割れ易いと V、う問題を解決することができる。  [0106] In addition, since stainless steel is sticky, a brittle and fragile weight such as a tungsten alloy is held around the entire circumference with sticky stainless steel, which solves the V and U problem when the weight is easily broken. can do.
[0107] また、ステンレス鋼はタングステン合金などに比べると安価であるため、このような比 較的安価なステンレス鋼で分銅支持体 130を構成することにより、偏心分銅 120の製 造コストを下げることができる。  [0107] Since stainless steel is less expensive than tungsten alloy and the like, the weight support 130 is made of such a relatively inexpensive stainless steel, thereby reducing the manufacturing cost of the eccentric weight 120. Can do.
[0108] 実施形態 1に係る偏心分銅 120においては、薄肉領域 138は、切削加工法によつ て形成されている。このため、比較的簡単な方法で、実施形態 1に係る偏心分銅 120 を製造することができる。切削加工法は、例えばエンドミルを用いて実施する。  [0108] In the eccentric weight 120 according to the first embodiment, the thin region 138 is formed by a cutting method. For this reason, the eccentric weight 120 according to the first embodiment can be manufactured by a relatively simple method. The cutting method is performed using, for example, an end mill.
[0109] 実施形態 1に係る偏心分銅 120においては、分銅 140は、タングステン合金力ゝらな る。タングステン合金は極めて比重が高いため、偏心分銅 120における偏心量をさら に大きくすることができる。このため、このような偏心分銅 120を用いることにより、さら に少ない消費電力で必要な振動量が得られる振動モータを構成することができる。  [0109] In the eccentric weight 120 according to the first embodiment, the weight 140 has a tungsten alloy strength. Since the tungsten alloy has a very high specific gravity, the amount of eccentricity in the eccentric weight 120 can be further increased. For this reason, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with further reduced power consumption.
[0110] なお、実施形態 1に係る偏心分銅 120においては、分銅 140自体には、モータ軸 1 12を保持するための機能は必要としないため、分銅の形状として極めて単純な形状 (略扇形の断面を有する棒形状。)を採用している。 [0110] In the eccentric weight 120 according to the first embodiment, the weight 140 itself includes the motor shaft 1. Since a function for holding 12 is not required, a very simple shape (bar shape having a substantially fan-shaped cross section) is adopted as the weight shape.
[0111] 分銅 140の製造方法としては、分銅の形状にタングステン合金を焼結して分銅 140 とする製造方法を採用することもできるが、実施形態 1に係る偏心分銅 120において は、タングステン合金を焼結して単純な形状の丸棒を作り、この丸棒を削り出して分 銅 140とする製造方法を採用することとしている。このようにすることにより、タンダステ ン合金に含まれる添加物(例えば、銅。)の量を減じることができるため、比重を高く することができ、偏心分銅 120における偏心量をさらに大きくすることができるようにな る。 [0111] As a manufacturing method of the weight 140, a manufacturing method in which a tungsten alloy is sintered into a weight shape to obtain the weight 140 can be adopted. However, in the eccentric weight 120 according to the first embodiment, the tungsten alloy is made of The manufacturing method is to make a round bar with a simple shape by sintering and then cut out the round bar to make a weight of 140. By doing so, the amount of the additive (for example, copper) contained in the tandastain alloy can be reduced, so that the specific gravity can be increased and the amount of eccentricity in the eccentric weight 120 can be further increased. become able to.
[0112] 実施形態 1に係る偏心分銅 120は、例えば以下のような方法で製造することができ る。  [0112] The eccentric weight 120 according to Embodiment 1 can be manufactured, for example, by the following method.
[0113] (1)プレス加工法により分銅支持体 130に相当する形状を有する部材 (但し、薄肉領 域 138及びモータ軸保持部 132は形成されていない。)を製造する。  [0113] (1) A member having a shape corresponding to the weight support 130 is manufactured by a press working method (however, the thin region 138 and the motor shaft holding portion 132 are not formed).
(2)切削加工法により、この部材に薄肉領域 138及びモータ軸保持部 132を形成し て分銅支持体 130を製造する。  (2) The weight support body 130 is manufactured by forming the thin region 138 and the motor shaft holding portion 132 on this member by a cutting method.
[0114] (3)分銅 140の断面よりも大きな断面を有するタングステン合金の丸棒を準備する。  (3) A tungsten alloy round bar having a cross section larger than that of the weight 140 is prepared.
(4)次に、上記した丸棒の外周を切削して、分銅 140の断面形状に対応する断面形 状を有する棒材を製造する。  (4) Next, the outer circumference of the round bar described above is cut to produce a bar having a cross-sectional shape corresponding to the cross-sectional shape of the weight 140.
(5)次に、上記した棒材を所定の長さに切断して分銅 140を製造する。  (5) Next, the above-described bar is cut into a predetermined length to produce a weight 140.
[0115] (6)分銅支持体 130における分銅保持部 134に、分銅 140を挿入した状態で、分銅 支持体 130を外側からかしめることにより、分銅支持体 134に分銅 140を保持させる  [6] (6) The weight support 140 is held by the weight support 134 by caulking the weight support 130 from the outside with the weight 140 inserted in the weight holding part 134 of the weight support 130.
(7)これにより、分銅 140が全周にわたって分銅支持体 130における分銅保持部 13 4に保持された偏心分銅 120が製造される。 (7) Thereby, the eccentric weight 120 in which the weight 140 is held by the weight holding portion 134 in the weight support 130 over the entire circumference is manufactured.
[0116] このような方法とすることにより、分銅 140は全周にわたって分銅支持体 130におけ る分銅保持部 134にしつかりと保持されることになるため、振動モータ (及び偏心分銅 120)を長時間使用した場合に分銅 140と分銅支持体 130との接合の信頼性が低下 することを抑帘 Uすることができる。 [0117] 図 2は、実施形態 1に係る振動モータ 100を説明するために示す図である。図 2 (a) は振動モータ 100の斜視図であり、図 2 (b)は振動モータ 100を正面から見た図であ り、図 2 (c)は振動モータ 100の要部を側面から見た図である。 [0116] By adopting such a method, the weight 140 is held firmly by the weight holding part 134 in the weight support 130 over the entire circumference, so that the vibration motor (and the eccentric weight 120) is lengthened. It is possible to suppress a decrease in the reliability of bonding between the weight 140 and the weight support 130 when used for a long time. FIG. 2 is a view for explaining the vibration motor 100 according to the first embodiment. Fig. 2 (a) is a perspective view of the vibration motor 100, Fig. 2 (b) is a view of the vibration motor 100 as viewed from the front, and Fig. 2 (c) is a view of the main part of the vibration motor 100 as viewed from the side. It is a figure.
[0118] 実施形態 1に係る振動モータ 100は、モータ本体 110と、偏心分銅 120とを備えた 振動モータである。そして、実施形態 1に係る振動モータ 100は、上記したように、軽 量かつ少ない消費電力で必要な振動量が得られる振動モータに好適に用いることが できる偏心分銅であって、このような振動モータを長時間使用した場合に分銅と分銅 支持体との接合の信頼性が低下することが抑制された優れた偏心分銅 120を備えて いる。このため、実施形態 1に係る振動モータ 100は、このような優れた偏心分銅 12 0を備えた振動モータであるため、軽量かつ少ない消費電力で必要な振動量が得ら れ、長時間信頼性の高い振動モータとなる。  The vibration motor 100 according to the first embodiment is a vibration motor including a motor body 110 and an eccentric weight 120. Further, as described above, the vibration motor 100 according to the first embodiment is an eccentric weight that can be suitably used for a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption. It is equipped with an excellent eccentric weight 120 that suppresses a decrease in the reliability of the connection between the weight and the weight support when the motor is used for a long time. For this reason, the vibration motor 100 according to the first embodiment is a vibration motor having such an excellent eccentric weight 120. Therefore, a required amount of vibration can be obtained with light weight and low power consumption, and long-term reliability can be obtained. High vibration motor.
[0119] このため、このように軽量かつ少ない消費電力で必要な振動量が得られ、長時間信 頼性の高い優れた振動モータ 100を携帯機器の振動モータとして用いることにより、 携帯機器を、軽量かつ低消費電力で長時間信頼性の高 ヽ携帯機器とすることができ る。 [0119] For this reason, by using the vibration motor 100 that is light and has low power consumption and has the required amount of vibration and has high reliability for a long time as a vibration motor for portable devices, It can be a highly portable device that is lightweight, has low power consumption, and is reliable for a long time.
[0120] 図 3は、実施形態 2に係る偏心分銅 220を説明するために示す図である。図 3 (a) は偏心分銅 220を正面力も見た図であり、図 3 (b)は図 3 (a)の A— A断面図である。 実施形態 2に係る偏心分銅 220は、実施形態 1に係る偏心分銅 120と基本的には 同様の構造を有している。但し、実施形態 2に係る偏心分銅 220は、図 3に示すよう に、分銅支持体 230の構造が実施形態 1に係る偏心分銅 120の場合と異なる。すな わち、実施形態 2に係る偏心分銅 220においては、分銅支持体 230が、モータ軸に 沿った方向における両側に開口する薄肉領域 238を有して 、る。  FIG. 3 is a view for explaining the eccentric weight 220 according to the second embodiment. Fig. 3 (a) is a view of the eccentric weight 220 also showing the front force, and Fig. 3 (b) is a cross-sectional view taken along line AA in Fig. 3 (a). The eccentric weight 220 according to the second embodiment has basically the same structure as the eccentric weight 120 according to the first embodiment. However, the eccentric weight 220 according to the second embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support 230 as shown in FIG. In other words, in the eccentric weight 220 according to the second embodiment, the weight support body 230 has the thin regions 238 that open on both sides in the direction along the motor shaft.
[0121] このように、実施形態 2に係る偏心分銅 220は、分銅支持体 230の構造が実施形 態 1に係る偏心分銅 120の場合とは異なるが、実施形態 1に係る偏心分銅 120の場 合と同様に、偏心分銅を、高比重金属からなる分銅 240と、分銅 240を構成する高 比重金属よりも比重の低い金属力もなる分銅支持体 230とを備えた偏心分銅 220と したため、偏心分銅 220の総重量を軽くするとともに、偏心分銅 220における偏心量 を大きくすることができる。このため、このような偏心分銅 220を用いることにより、軽量 かつ少ない消費電力で必要な振動量が得られる振動モータを構成することができる [0121] As described above, the eccentric weight 220 according to the second embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support 230, but the eccentric weight 120 according to the first embodiment is different from the case of the eccentric weight 120 according to the first embodiment. In the same way, the eccentric weight is an eccentric weight 220 having a weight 240 made of a high specific gravity metal and a weight support body 230 having a metal force with a specific gravity lower than that of the high specific gravity metal constituting the weight 240. The total weight of 220 can be reduced and the amount of eccentricity in the eccentric weight 220 can be increased. For this reason, by using such an eccentric weight 220, the weight is reduced. A vibration motor capable of obtaining a necessary vibration amount with low power consumption can be configured.
[0122] また、実施形態 2に係る偏心分銅 220によれば、分銅 240を全周にわたって分銅支 持体 230における分銅保持部 234に保持させることとしたため、振動モータ (及び偏 心分銅 220)を長時間使用した場合に分銅 240と分銅支持体 230との接合の信頼性 が低下することを抑制することができる。このため、このような偏心分銅 220を用いるこ とにより、長期信頼性の高い振動モータを構成することができる。 [0122] Further, according to the eccentric weight 220 according to the second embodiment, the weight 240 is held by the weight holding portion 234 in the weight support 230 over the entire circumference, so that the vibration motor (and the eccentric weight 220) is provided. When used for a long time, it is possible to suppress a decrease in the reliability of bonding between the weight 240 and the weight support 230. Therefore, by using such an eccentric weight 220, it is possible to configure a vibration motor with high long-term reliability.
[0123] また、実施形態 2に係る偏心分銅 220によれば、分銅支持体 230に所定の薄肉領 域 238を設けるようにしたため、偏心分銅の総重量を軽くするとともに、偏心分銅にお ける偏心量をさらに大きくすることができる。このため、このような偏心分銅を用いるこ とにより、さらに軽量かっさらに少ない消費電力で必要な振動量が得られる振動モー タを構成することができる。  [0123] Further, according to the eccentric weight 220 according to the second embodiment, the predetermined weight region 238 is provided on the weight support 230, so that the total weight of the eccentric weight is reduced and the eccentric weight in the eccentric weight is also provided. The amount can be further increased. For this reason, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter weight and less power consumption.
[0124] また、実施形態 2に係る偏心分銅 220によれば、モータ軸に沿ったモータ軸保持部 232の厚さをモータ軸保持部 232の内径の 2倍以上の値にしたため、モータ軸保持 部 232は十分な保持力をもってモータ軸を保持するようになる。このため、振動モー タ (及び偏心分銅 220)を長期間使用した場合に、モータ軸保持部によるモータ軸の 保持に関する信頼性が低下することを抑制することができる。  [0124] Further, according to the eccentric weight 220 according to the second embodiment, the thickness of the motor shaft holding portion 232 along the motor shaft is set to a value more than twice the inner diameter of the motor shaft holding portion 232. The part 232 holds the motor shaft with a sufficient holding force. For this reason, when the vibration motor (and the eccentric weight 220) is used for a long time, it is possible to suppress a decrease in reliability related to holding the motor shaft by the motor shaft holding portion.
[0125] 〔実施形態 3〕  [Embodiment 3]
実施形態 3は、主として請求項 15に係る偏心分銅を説明するための実施形態であ る。  The third embodiment is an embodiment mainly for explaining an eccentric weight according to claim 15.
図 4は、実施形態 3に係る偏心分銅 320を説明するために示す図である。図 4 (a) は偏心分銅 320を正面力も見た図であり、図 4 (b)は図 4 (a)の A— A断面図である。  FIG. 4 is a view for explaining the eccentric weight 320 according to the third embodiment. Fig. 4 (a) is a view of the eccentric weight 320 as viewed from the front, and Fig. 4 (b) is a cross-sectional view taken along line AA in Fig. 4 (a).
[0126] 実施形態 3に係る偏心分銅 320は、実施形態 1に係る偏心分銅 120と基本的には 同様の構造を有している。但し、実施形態 3に係る偏心分銅 320は、図 4に示すよう に、分銅支持体 330の構造が実施形態 1に係る偏心分銅 120の場合と異なる。すな わち、実施形態 3に係る偏心分銅 320においては、分銅支持体 330が、モータ軸に 沿った方向に貫通する貫通穴 338を有して 、る。  [0126] The eccentric weight 320 according to the third embodiment basically has the same structure as the eccentric weight 120 according to the first embodiment. However, the eccentric weight 320 according to the third embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support 330 as shown in FIG. In other words, in the eccentric weight 320 according to the third embodiment, the weight support 330 has a through hole 338 that penetrates in the direction along the motor shaft.
[0127] このように、実施形態 3に係る偏心分銅 320は、分銅支持体 330の構造が実施形 態 1に係る偏心分銅 120の場合とは異なるが、偏心分銅を、高比重金属力もなる分 銅 340と、分銅 340を構成する高比重金属よりも比重の低 ヽ金属からなる分銅支持 体 330とを備えた偏心分銅 320としたため、実施形態 1に係る偏心分銅 120の場合と 同様に、偏心分銅 320の総重量を軽くするとともに、偏心分銅 320における偏心量を 大きくすることができる。このため、このような偏心分銅 320を用いることにより、軽量か つ少ない消費電力で大きな振動量が得られる振動モータを構成することができる。 As described above, the eccentric weight 320 according to the third embodiment has the structure of the weight support 330 as an embodiment. Unlike the case of the eccentric weight 120 according to the state 1, the eccentric weight is composed of a weight 340 having a high specific gravity metal force and a weight support body 330 made of a low density metal having a specific gravity lower than that of the high specific gravity metal constituting the weight 340. Since the eccentric weight 320 is provided, as in the case of the eccentric weight 120 according to the first embodiment, the total weight of the eccentric weight 320 can be reduced and the amount of eccentricity in the eccentric weight 320 can be increased. For this reason, by using such an eccentric weight 320, it is possible to configure a vibration motor that can obtain a large vibration amount with light weight and low power consumption.
[0128] また、実施形態 3に係る偏心分銅 320によれば、分銅 340を全周にわたって分銅支 持体 330における分銅保持部 334に保持させることとしたため、実施形態 1に係る偏 心分銅 120の場合と同様に、偏心分銅 320を長時間使用した場合に分銅 340と分 銅支持体 330との接合の信頼性が低下することを抑制することができる。このため、こ のような偏心分銅 320を用いることにより、長期信頼性の高い振動モータを構成する ことができる。 Further, according to the eccentric weight 320 according to the third embodiment, the weight 340 is held by the weight holding portion 334 in the weight support body 330 over the entire circumference, so that the eccentric weight 120 according to the first embodiment has the Similarly to the case, when the eccentric weight 320 is used for a long time, it is possible to suppress a decrease in the reliability of bonding between the weight 340 and the weight support 330. Therefore, by using such an eccentric weight 320, a vibration motor with high long-term reliability can be configured.
[0129] また、実施形態 3に係る偏心分銅 320によれば、分銅支持体 330に所定の貫通孔 338を設けるようにしたため、実施形態 1に係る偏心分銅 120の場合と同様に、偏心 分銅 320の総重量を軽くするとともに、偏心分銅 320における偏心量をさらに大きく することができる。このため、このような偏心分銅 320を用いることにより、さらに軽量 かっさらに少ない消費電力で必要な振動量が得られる振動モータを構成することが できる。  [0129] Further, according to the eccentric weight 320 according to the third embodiment, since the predetermined support hole 338 is provided in the weight support 330, the eccentric weight 320 is the same as the case of the eccentric weight 120 according to the first embodiment. As a result, the eccentric weight of the eccentric weight 320 can be further increased. Therefore, by using such an eccentric weight 320, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter weight and less power consumption.
[0130] さらにまた、実施形態 3に係る偏心分銅 320によれば、モータ軸に沿ったモータ軸 保持部 332の厚さをモータ軸保持部 332の内径の 2倍以上の値にしたため、モータ 軸保持部 332は十分な保持力をもってモータ軸を保持するようになる。このため、振 動モータ (及び偏心分銅 320)を長期間使用した場合に、モータ軸保持部によるモー タ軸の保持に関する信頼性が低下することを抑制することができる。  [0130] Furthermore, according to the eccentric weight 320 according to the third embodiment, the thickness of the motor shaft holding portion 332 along the motor shaft is set to a value more than twice the inner diameter of the motor shaft holding portion 332. The holding part 332 holds the motor shaft with a sufficient holding force. For this reason, when the vibration motor (and the eccentric weight 320) is used for a long period of time, it is possible to suppress a decrease in reliability related to the motor shaft holding by the motor shaft holding portion.
[0131] 〔実施形態 4〕  [Embodiment 4]
実施形態 4は、主として請求項 16に係る偏心分銅を説明するための実施形態であ る。  Embodiment 4 is an embodiment mainly for explaining an eccentric weight according to claim 16.
図 5は、実施形態 4に係る偏心分銅 420を説明するために示す図である。図 5 (a) は偏心分銅 420を正面力も見た図であり、図 5 (b)は図 5 (a)の A— A断面図である。 [0132] 実施形態 4に係る偏心分銅 420は、実施形態 1に係る偏心分銅 120と基本的には 同様の構造を有している。但し、実施形態 4に係る偏心分銅 420は、図 5に示すよう に、分銅支持体 430の構造が実施形態 1に係る偏心分銅 120の場合と異なる。すな わち、実施形態 4に係る偏心分銅 420においては、分銅支持体 430が分銅保持部 4 34とモータ軸保持部 432とを連結する所定の連結棒 436を有している。 FIG. 5 is a view for explaining the eccentric weight 420 according to the fourth embodiment. FIG. 5 (a) is a view of the eccentric weight 420 as viewed from the front, and FIG. 5 (b) is a cross-sectional view taken along line AA in FIG. 5 (a). [0132] The eccentric weight 420 according to the fourth embodiment has basically the same structure as the eccentric weight 120 according to the first embodiment. However, the eccentric weight 420 according to the fourth embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support 430, as shown in FIG. That is, in the eccentric weight 420 according to the fourth embodiment, the weight support 430 has a predetermined connecting rod 436 that connects the weight holding portion 434 and the motor shaft holding portion 432.
[0133] このように、実施形態 4に係る偏心分銅 420は、分銅支持体 430の構造が実施形 態 1に係る偏心分銅 120の場合とは異なるが、偏心分銅を、高比重金属力もなる分 銅 440と、分銅 440を構成する高比重金属よりも比重の低 ヽ金属からなる分銅支持 体 430とを備えた偏心分銅 420としたため、実施形態 1に係る偏心分銅 120の場合と 同様に、偏心分銅 420の総重量を軽くするとともに、偏心分銅 420における偏心量を 大きくすることができる。このため、このような偏心分銅 420を用いることにより、軽量か つ少ない消費電力で大きな振動量が得られる振動モータを構成することができる。  [0133] As described above, the eccentric weight 420 according to the fourth embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support body 430, but the eccentric weight is divided into components having high specific gravity metal force. Since the eccentric weight 420 is provided with the copper 440 and the weight support body 430 made of a low weight metal having a specific gravity lower than that of the high specific gravity metal constituting the weight 440, the eccentric weight is the same as in the case of the eccentric weight 120 according to the first embodiment. While reducing the total weight of the weight 420, the amount of eccentricity in the eccentric weight 420 can be increased. For this reason, by using such an eccentric weight 420, it is possible to configure a vibration motor that can obtain a large vibration amount with light weight and low power consumption.
[0134] また、実施形態 4に係る偏心分銅 420によれば、分銅 440を全周にわたつて分銅支 持体 430における分銅保持部 434に保持させることとしたため、実施形態 1に係る偏 心分銅 120の場合と同様に、偏心分銅 420を長時間使用した場合に分銅 440と分 銅支持体 430との接合の信頼性が低下することを抑制することができる。このため、こ のような偏心分銅 420を用いることにより、長期信頼性の高い振動モータを構成する ことができる。  In addition, according to the eccentric weight 420 according to the fourth embodiment, the weight 440 is held by the weight holding portion 434 in the weight support body 430 over the entire circumference, so that the eccentric weight according to the first embodiment is used. As in the case of 120, when the eccentric weight 420 is used for a long time, it is possible to suppress a decrease in the reliability of bonding between the weight 440 and the weight support 430. Therefore, by using such an eccentric weight 420, it is possible to configure a vibration motor with high long-term reliability.
[0135] また、実施形態 4に係る偏心分銅 420によれば、分銅保持部 434とモータ軸保持部 432とを所定の連結部で連結するようにしたため、実施形態 1に係る偏心分銅 120の 場合と同様に、偏心分銅 420の総重量を軽くするとともに、偏心分銅 420における偏 心量をさらに大きくすることができる。このため、このような偏心分銅 420を用いること により、さらに軽量かっさらに少ない消費電力で必要な振動量が得られる振動モータ を構成することができる。  Further, according to the eccentric weight 420 according to the fourth embodiment, the weight holding portion 434 and the motor shaft holding portion 432 are connected by a predetermined connecting portion, so that the eccentric weight 120 according to the first embodiment is used. Similarly to the above, the total weight of the eccentric weight 420 can be reduced and the amount of eccentricity in the eccentric weight 420 can be further increased. For this reason, by using such an eccentric weight 420, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and even less power consumption.
[0136] さらにまた、実施形態 4に係る偏心分銅 420によれば、モータ軸に沿ったモータ軸 保持部 432の厚さをモータ軸保持部 432の内径の 2倍以上の値にしたため、モータ 軸保持部 432は十分な保持力をもってモータ軸を保持するようになる。このため、振 動モータ (及び偏心分銅 420)を長期間使用した場合に、モータ軸保持部によるモー タ軸の保持に関する信頼性が低下することを抑制することができる。 [0136] Furthermore, according to the eccentric weight 420 according to the fourth embodiment, the thickness of the motor shaft holding portion 432 along the motor shaft is set to a value more than twice the inner diameter of the motor shaft holding portion 432. The holding portion 432 holds the motor shaft with a sufficient holding force. For this reason, when the vibration motor (and the eccentric weight 420) is used for a long time, the motor shaft holding part will It can suppress that the reliability regarding the holding | maintenance of a data axis falls.
[0137] 〔実施形態 5〜7〕  [Embodiments 5 to 7]
実施形態 5〜7は、主として請求項 14に係る偏心分銅を説明するための実施形態 である。  Embodiments 5 to 7 are embodiments mainly for explaining an eccentric weight according to claim 14.
[0138] 図 6は、実施形態 5に係る偏心分銅 520を説明するために示す図である。図 6 (a) は偏心分銅 520を正面力も見た図であり、図 6 (b)は図 6 (a)の A— A断面図である。 図 7は、実施形態 6に係る偏心分銅 620を説明するために示す図である。図 7 (a) は偏心分銅 620を正面力も見た図であり、図 7 (b)は図 7 (a)の A— A断面図である。 図 8は、実施形態 7に係る偏心分銅 720を説明するために示す図である。  FIG. 6 is a view for explaining the eccentric weight 520 according to the fifth embodiment. FIG. 6 (a) is a view of the eccentric weight 520 viewed from the front, and FIG. 6 (b) is a cross-sectional view taken along the line AA in FIG. 6 (a). FIG. 7 is a view for explaining the eccentric weight 620 according to the sixth embodiment. Fig. 7 (a) is a view of the eccentric weight 620 as viewed from the front, and Fig. 7 (b) is a cross-sectional view taken along line A-A in Fig. 7 (a). FIG. 8 is a view for explaining the eccentric weight 720 according to the seventh embodiment.
図 8 (a)は偏心分銅 720を正面力も見た図であり、図 8 (b)は図 8 (a)の A— A断面 図である。  Fig. 8 (a) is a view of the eccentric weight 720 as seen from the front, and Fig. 8 (b) is a cross-sectional view taken along the line AA in Fig. 8 (a).
[0139] 実施形態 5に係る偏心分銅 520は、実施形態 1に係る偏心分銅 120と基本的には 同様の構造を有している。但し、実施形態 5に係る偏心分銅 520は、図 6に示すよう に、分銅 540の形状 (及びそれに伴って、分銅支持体 530における分銅保持部 534 の形状)が実施形態 1に係る偏心分銅 120の場合と異なる。すなわち、実施形態 5〖こ 係る偏心分銅 520にお 、ては、分銅 540は長円型の形状をして 、る。  [0139] The eccentric weight 520 according to the fifth embodiment basically has the same structure as the eccentric weight 120 according to the first embodiment. However, as shown in FIG. 6, the eccentric weight 520 according to the fifth embodiment has the shape of the weight 540 (and the shape of the weight holding portion 534 in the weight support 530) as shown in FIG. It is different from the case of. That is, in the eccentric weight 520 according to the fifth embodiment, the weight 540 has an oval shape.
[0140] 実施形態 6に係る偏心分銅 620は、実施形態 1に係る偏心分銅 120と基本的には 同様の構造を有している。ただし、実施形態 6に係る偏心分銅 620は、図 7に示すよ うに、分銅支持体 630の形状が実施形態 1に係る偏心分銅 120の場合と異なる。す なわち、実施形態 6に係る偏心分銅 620においては、分銅支持体 630は、分銅保持 部として、全周にわたって分銅を保持する分銅保持部に代えて、分銅 640の外周全 周に対する半周以上にわたって分銅 640を保持する分銅保持部 634を有している。  [0140] The eccentric weight 620 according to the sixth embodiment has basically the same structure as the eccentric weight 120 according to the first embodiment. However, the eccentric weight 620 according to the sixth embodiment is different from the eccentric weight 120 according to the first embodiment in the shape of the weight support 630 as shown in FIG. That is, in the eccentric weight 620 according to the sixth embodiment, the weight support 630 serves as a weight holding portion instead of the weight holding portion that holds the weight over the entire circumference, over a half circumference with respect to the entire outer circumference of the weight 640. A weight holding portion 634 that holds the weight 640 is provided.
[0141] 実施形態 7に係る偏心分銅 720は、実施形態 1に係る偏心分銅 120と基本的には 同様の構造を有している。但し、実施形態 7に係る偏心分銅 720は、図 8に示すよう に、分銅支持体 730の構造が実施形態 1に係る偏心分銅 120の場合と異なる。すな わち、実施形態 7に係る偏心分銅 720においては、分銅支持体 730は、モータ軸保 持部として、全周にわたってモータ軸を保持するモータ軸保持部に代えて、開口部 7 39を有するモータ軸保持部 732を有している。この場合、モータ軸は、モータ軸保持 部 732に挿入後、その開口部をカゝしめることにより、分銅支持体 730に保持される。 [0141] The eccentric weight 720 according to the seventh embodiment has basically the same structure as the eccentric weight 120 according to the first embodiment. However, the eccentric weight 720 according to the seventh embodiment is different from the eccentric weight 120 according to the first embodiment in the structure of the weight support 730 as shown in FIG. In other words, in the eccentric weight 720 according to the seventh embodiment, the weight support 730 has an opening 7 39 instead of the motor shaft holding portion that holds the motor shaft over the entire circumference as the motor shaft holding portion. A motor shaft holding portion 732 is provided. In this case, the motor shaft is held by the motor shaft After being inserted into the portion 732, the opening is held and held by the weight support 730.
[0142] このように、実施形態 5〜7に係る偏心分銅 520, 620, 720は、分銅 540の形状( 及びそれに伴って分銅支持体 530における分銅保持部 534の形状)、分銅支持体 6 30の形状、又は、分銅支持体 730の構造のそれぞれが実施形態 1に係る偏心分銅 120の場合とは異なる力 偏心分銅を、高比重金属力もなる分銅 540, 640, 740と 、分銅 540, 640, 740を構成する高比重金属よりも比重の低い金属からなる分銅支 持体 530, 630, 730とを備えた偏 、分銅 520, 620, 720としたため、実施形態 1に 係る偏心分銅 120の場合と同様に、偏心分銅 520, 620, 720の総重量を軽くすると ともに、偏心分銅 520, 620, 720における偏心量を大きくすることができる。このため 、このような偏心分銅 520, 620, 720を用いることにより、軽量かつ少ない消費電力 で大きな振動量が得られる振動モータを構成することができる。  As described above, the eccentric weights 520, 620, and 720 according to the embodiments 5 to 7 are the shape of the weight 540 (and the shape of the weight holding portion 534 in the weight support 530), the weight support 6 30. The shape of the weight support or the structure of the weight support 730 is different from the case of the eccentric weight 120 according to the first embodiment.The eccentric weight is a weight 540, 640, 740 having a high specific gravity metal force, and the weight 540, 640, Since the eccentric weights 520, 620, and 720 have weight support bodies 530, 630, and 730 made of a metal having a specific gravity lower than that of the high specific gravity metal that constitutes 740, the eccentric weight 120 according to the first embodiment and Similarly, the total weight of the eccentric weights 520, 620, 720 can be reduced and the amount of eccentricity in the eccentric weights 520, 620, 720 can be increased. For this reason, by using such eccentric weights 520, 620, and 720, it is possible to configure a vibration motor that is lightweight and can obtain a large amount of vibration with low power consumption.
[0143] また、実施形態 5〜7【こ係る偏 、分銅 520, 620, 720【こよれ ίま、、分銅 540, 640, 740を全周にわたって分銅支持体 530, 630, 730における分銅保持咅 634, 734に保持させることとしたため、実施形態 1に係る偏心分銅 120の場合と同様に、 振動モータ (及び偏心分銅 520, 620, 720)を長時間使用した場合に分銅 540, 64 0, 740と分銅支持体 530, 630, 730との接合の信頼性が低下することを抑制する ことができる。このため、このような偏心分銅 520, 620, 720を用いることにより、長期 信頼性の高 、振動モータを構成することができる。  [0143] In addition, Embodiments 5 to 7 [Such deviations, weights 520, 620, 720 [Kyore ryama, weights 540, 640, 740 are weight holding rods in weight support bodies 530, 630, 730 over the entire circumference] 634, 734, so that when the vibration motor (and the eccentric weights 520, 620, 720) is used for a long time, as in the case of the eccentric weight 120 according to the first embodiment, the weights 540, 64 0, 740 It is possible to suppress a decrease in the reliability of joining between the weight support 530, 630, and 730. Therefore, by using such eccentric weights 520, 620, 720, it is possible to configure a vibration motor with high long-term reliability.
[0144] また、実施形態 5〜7に係る偏心分銅 520, 620, 720によれば、分銅支持体 530, 630, 730に所定の薄肉領域 538, 638, 738を設けることとしたため、実施形態 1に 係る偏心分銅 120の場合と同様に、偏心分銅 520, 620, 720の総重量を軽くすると ともに、偏心分銅 520, 620, 720における偏心量をさらに大きくすることができる。こ のため、このような偏'、分銅 520, 620, 720を用! /、ることにより、さらに軽量力つさら に少ない消費電力で必要な振動量が得られる振動モータを構成することができる。  [0144] Further, according to the eccentric weights 520, 620, 720 according to the fifth to seventh embodiments, the predetermined thin regions 538, 638, 738 are provided on the weight support bodies 530, 630, 730. As in the case of the eccentric weight 120 according to the above, the total weight of the eccentric weights 520, 620, 720 can be reduced, and the amount of eccentricity in the eccentric weights 520, 620, 720 can be further increased. For this reason, a vibration motor that can obtain the required vibration amount with a lighter weight and even less power consumption can be configured by using such a deviation, weight 520, 620, 720! .
[0145] さらにまた、実施形態 5〜7に係る偏心分銅 520, 620, 720によれば、モータ軸に 沿ったモータ軸保持部 532, 632, 732の厚さをモータ軸保持部 532, 632, 732の 内径の 2倍以上の値にしたため、モータ軸保持部 532, 632, 732は十分な保持力 をもってモータ軸を保持するようになる。このため、振動モータ (及び偏心分銅 520, 620, 720)を長期間使用した場合に、モータ軸保持部によるモータ軸の保持に関す る信頼性が低下することを抑制することができる。 Furthermore, according to the eccentric weights 520, 620, 720 according to Embodiments 5 to 7, the thicknesses of the motor shaft holding portions 532, 632, 732 along the motor shaft are set to the motor shaft holding portions 532, 632, Since the value is more than twice the inner diameter of 732, the motor shaft holders 532, 632, 732 hold the motor shaft with sufficient holding force. For this reason, vibration motors (and eccentric weights 520, 620, 720) when used for a long period of time, it is possible to suppress a decrease in the reliability of the motor shaft holding portion regarding the holding of the motor shaft.
[0146] なお、実施形態 6に係る偏心分銅 620においては、分銅保持部 634における開口 の幅 L2は、分銅 640における開口の幅方向に平行な最大長さ L1よりも狭く設定され ている。このため、分銅 640は分銅保持部 634にしつカゝりと保持されることになる。 Note that, in the eccentric weight 620 according to the sixth embodiment, the width L2 of the opening in the weight holding part 634 is set to be narrower than the maximum length L1 parallel to the width direction of the opening in the weight 640. For this reason, the weight 640 is held by the weight holding part 634 for a while.
[0147] 〔実施形態 8〕 [Embodiment 8]
実施形態 8は、主として請求項 18に係る偏心分銅を説明するための実施形態であ る。  Embodiment 8 is an embodiment mainly for explaining an eccentric weight according to claim 18.
図 9は、実施形態 8に係る偏心分銅 820を説明するために示す図である。図 9 (a) は偏心分銅 820を正面力も見た図であり、図 9 (b)は偏心分銅 820を正面から見た模 式図であり、図 9 (c)は図 9 (a)の A— A断面図であり、図 9 (d)は図 9 (a)の B— B断面 図であり、図 9 (e)は偏心分銅 820の斜視図であり、図 9 (f)は偏心分銅 820の、図 9 ( e)の裏面側力 見た斜視図である。  FIG. 9 is a view for explaining the eccentric weight 820 according to the eighth embodiment. Fig. 9 (a) is a diagram of the eccentric weight 820 viewed from the front, Fig. 9 (b) is a schematic diagram of the eccentric weight 820 viewed from the front, and Fig. 9 (c) is a diagram of Fig. 9 (a). Fig. 9 (d) is a cross-sectional view along B-B in Fig. 9 (a), Fig. 9 (e) is a perspective view of eccentric weight 820, and Fig. 9 (f) is eccentric. FIG. 10 is a perspective view of the weight 820 as seen from the back side of FIG. 9 (e).
[0148] 実施形態 8に係る偏心分銅 820は、実施形態 4に係る偏心分銅 420と基本的には 同様の構造を有している。但し、実施形態 8に係る偏心分銅 820は、分銅支持体 83 0の製造方法が実施形態 4に係る偏心分銅 420の場合と異なる。すなわち、実施形 態 8に係る偏心分銅 820においては、分銅支持体 830は、金属粉末射出成形法によ つて製造されている。なお、図 9 (b)においては、網掛けを施している部分が連結部 8 36である。 [0148] The eccentric weight 820 according to the eighth embodiment has basically the same structure as the eccentric weight 420 according to the fourth embodiment. However, the eccentric weight 820 according to the eighth embodiment is different from the eccentric weight 420 according to the fourth embodiment in the method of manufacturing the weight support 830. That is, in the eccentric weight 820 according to Embodiment 8, the weight support 830 is manufactured by the metal powder injection molding method. In FIG. 9 (b), the shaded portion is the connecting portion 836.
[0149] このように、実施形態 8に係る偏心分銅 820は、分銅支持体 830の製造方法が実 施形態 4に係る偏心分銅 420の場合とは異なるが、偏心分銅を、高比重金属からな る分銅 840と、分銅 840を構成する高比重金属よりも比重の低 ヽ金属からなる分銅 支持体 830とを備えた偏心分銅 820としたため、実施形態 4に係る偏心分銅 420の 場合と同様に、偏心分銅 820の総重量を軽くするとともに、偏心分銅 820における偏 心量を大きくすることができる。このため、このような偏心分銅 820を用いることにより、 軽量かつ少ない消費電力で大きな振動量が得られる振動モータを構成することがで きる。  [0149] As described above, the eccentric weight 820 according to the eighth embodiment is different from the eccentric weight 420 according to the fourth embodiment in the manufacturing method of the weight support 830, but the eccentric weight is made of a high specific gravity metal. In the same way as the eccentric weight 420 according to the fourth embodiment, the eccentric weight 820 is provided with the weight 840 and the weight support 830 made of a metal having a specific gravity lower than that of the high specific gravity metal constituting the weight 840. The total weight of the eccentric weight 820 can be reduced and the amount of eccentricity in the eccentric weight 820 can be increased. For this reason, by using such an eccentric weight 820, it is possible to configure a vibration motor that can obtain a large amount of vibration with light weight and low power consumption.
[0150] また、実施形態 8に係る偏心分銅 820によれば、分銅 840を全周にわたって分銅支 持体 830における分銅保持部 834に保持させることとしたため、実施形態 4に係る偏 心分銅 420の場合と同様に、振動モータ (及び偏心分銅 820)を長時間使用した場 合に分銅 840と分銅支持体 830との接合の信頼性が低下することを抑制することが できる。このため、このような偏心分銅 820を用いることにより、長期信頼性の高い振 動モータを構成することができる。 [0150] Also, according to the eccentric weight 820 according to the eighth embodiment, the weight 840 is supported over the entire circumference. Since the weight holding part 834 in the holding body 830 is held, the weight 840 and the weight when the vibration motor (and the eccentric weight 820) are used for a long time as in the case of the eccentric weight 420 according to the fourth embodiment. It is possible to suppress a decrease in the reliability of bonding with the support 830. Therefore, by using such an eccentric weight 820, a vibration motor with high long-term reliability can be configured.
[0151] また、実施形態 8に係る偏心分銅 820によれば、モータ軸に沿ったモータ軸保持部 832の厚さをモータ軸保持部 832の内径の 2倍以上の値にしたため、モータ軸保持 部 832は十分な保持力をもってモータ軸を保持するようになる。このため、振動モー タ (及び偏心分銅 820)を長期間使用した場合に、モータ軸保持部によるモータ軸の 保持に関する信頼性が低下することを抑制することができる。  [0151] Further, according to the eccentric weight 820 according to the eighth embodiment, the thickness of the motor shaft holding portion 832 along the motor shaft is set to a value more than twice the inner diameter of the motor shaft holding portion 832. The part 832 holds the motor shaft with a sufficient holding force. For this reason, when the vibration motor (and the eccentric weight 820) is used for a long period of time, it is possible to suppress a decrease in reliability related to holding the motor shaft by the motor shaft holding portion.
[0152] また、実施形態 8に係る偏心分銅 820によれば、分銅保持部 834とモータ軸保持部 832とを所定の連結部 836で連結するようにしたため、実施形態 4に係る偏心分銅 4 20の場合と同様に、偏心分銅 820の総重量を軽くするとともに、偏心分銅 820にお ける偏心量をさらに大きくすることができる。このため、このような偏心分銅 820を用い ることにより、さらに軽量かっさらに少ない消費電力で必要な振動量が得られる振動 モータを構成することができる。  [0152] Further, according to the eccentric weight 820 according to the eighth embodiment, the weight holding portion 834 and the motor shaft holding portion 832 are connected by the predetermined connecting portion 836, so the eccentric weight according to the fourth embodiment 4 20 As in the case of, the total weight of the eccentric weight 820 can be reduced and the amount of eccentricity in the eccentric weight 820 can be further increased. For this reason, by using such an eccentric weight 820, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and even less power consumption.
[0153] また、実施形態 8に係る偏心分銅 820によれば、分銅支持体 830が金属粉末射出 成形法によって製造されているため、実施形態 4に係る偏心分銅 420の場合のように 切削加工法によって製造する場合と比較して、分銅保持部 834やモータ軸保持部 8 32の肉厚を薄く形成することができ、さらに軽量かっさらに少ない消費電力で必要な 振動量が得られる振動モータを構成することができる。従って、実施形態 8に係る偏 心分銅 820においては、図 9 (c)に示すように、分銅保持部 834やモータ軸保持部 8 32における肉厚を、 0. 15mmにしている。  [0153] Also, according to the eccentric weight 820 according to the eighth embodiment, since the weight support 830 is manufactured by the metal powder injection molding method, the cutting method as in the case of the eccentric weight 420 according to the fourth embodiment. Compared to the case of manufacturing by using a vibration motor, the weight holding part 834 and motor shaft holding part 8 32 can be made thinner, and a vibration motor that can achieve the required amount of vibration with lighter and less power consumption. can do. Therefore, in the eccentric weight 820 according to the eighth embodiment, as shown in FIG. 9 (c), the thickness at the weight holding portion 834 and the motor shaft holding portion 832 is set to 0.15 mm.
また、実施形態 8に係る偏心分銅 820によれば、切削加工法によって製造する場合 と比較して、材料の無駄が少なくなる。  Further, according to the eccentric weight 820 according to the eighth embodiment, material waste is reduced as compared with the case of manufacturing by a cutting method.
さらにまた、実施形態 8に係る偏心分銅 820によれば、偏心分銅 820における分銅 支持体 830及び分銅 840の形状の自由度を増すことができる。  Furthermore, according to the eccentric weight 820 according to the eighth embodiment, the degree of freedom of the shape of the weight support 830 and the weight 840 in the eccentric weight 820 can be increased.
[0154] 〔実施形態 9〜 12〕 実施形態 9〜12は、主として請求項 1に係る偏心分銅及び請求項 27に係る偏心分 銅の製造方法を説明するための実施形態である。 [Embodiments 9 to 12] Embodiments 9 to 12 are embodiments mainly for explaining a method of manufacturing an eccentric weight according to claim 1 and an eccentric weight according to claim 27.
[0155] 図 10は、実施形態 9に係る偏心分銅 920を説明するために示す図である。図 10 (a )は偏心分銅 920を正面力も見た図であり、図 10 (b)は偏心分銅 920を正面から見 た模式図であり、図 10 (c)は図 10 (a)の A— A断面図であり、図 10 (d)は図 10 (a)の B— B断面図であり、図 10 (e)は偏心分銅 920の斜視図であり、図 10 (f)は偏心分銅 920の、図 10 (e)の裏面側から見た斜視図である。 FIG. 10 is a view for explaining the eccentric weight 920 according to the ninth embodiment. Fig. 10 (a) is a diagram of the eccentric weight 920 viewed from the front, Fig. 10 (b) is a schematic diagram of the eccentric weight 920 viewed from the front, and Fig. 10 (c) is A in Fig. 10 (a). — Cross-sectional view of A, FIG. 10 (d) is a cross-sectional view of B—B of FIG. 10 (a), FIG. 10 (e) is a perspective view of an eccentric weight 920, and FIG. 10 (f) is an eccentric weight. FIG. 11 is a perspective view of 920 as seen from the back side of FIG. 10 (e).
図 11は、実施形態 9に係る偏心分銅 920を製造するための製造方法を説明するた めに示す図である。図 11 (a)〜図 11 (f)は、その製造工程における要部を示す図で ある。  FIG. 11 is a view for explaining a manufacturing method for manufacturing the eccentric weight 920 according to the ninth embodiment. FIG. 11 (a) to FIG. 11 (f) are diagrams showing the main parts in the manufacturing process.
[0156] 実施形態 9に係る偏心分銅 920は、実施形態 4又は 8に係る偏心分銅 420, 820と 基本的には同様の構造を有している。但し、実施形態 9に係る偏心分銅 920は、図 1 0及び図 11に示すように、連結部 936の構造及び製造方法が実施形態 4又は 8に係 る偏心分銅 420, 820の場合と異なる。すなわち、実施形態 10に係る偏心分銅 920 においては、連結部 936 (図 10 (b)の網掛け部分参照。)は、モータ軸に沿ったモー タ軸保持部 932の長さよりも小さい値の肉厚を有する薄肉領域を有する。そして、分 銅支持体 930は、板状部材力 プレス絞り加工法によって製造されている(図 11参 照。;)。薄肉領域 938の端部には支柱 939が形成されている。  [0156] The eccentric weight 920 according to the ninth embodiment basically has the same structure as the eccentric weights 420 and 820 according to the fourth or eighth embodiment. However, as shown in FIGS. 10 and 11, the eccentric weight 920 according to the ninth embodiment is different from the eccentric weights 420 and 820 according to the fourth or eighth embodiment in the structure and manufacturing method of the connecting portion 936. That is, in the eccentric weight 920 according to the tenth embodiment, the connecting portion 936 (see the shaded portion in FIG. 10 (b)) has a value smaller than the length of the motor shaft holding portion 932 along the motor shaft. It has a thin area with a thickness. The weight support 930 is manufactured by a plate member force press drawing method (see FIG. 11). A column 939 is formed at the end of the thin region 938.
[0157] このように、実施形態 9に係る偏心分銅 920は、連結部 936の構造及び分銅支持 体 930の製造方法が実施形態 4又は 8に係る偏心分銅 420, 820の場合とは異なる 力 偏心分銅を、高比重金属カゝらなる分銅 940と、分銅 940を構成する高比重金属 よりも比重の低い金属力もなる分銅支持体 930とを備えた偏心分銅 920としたため、 実施形態 1に係る偏心分銅 120の場合と同様に、偏心分銅 920の総重量を軽くする とともに、偏心分銅 920における偏心量を大きくすることができる。このため、このよう な偏心分銅 920を用いることにより、軽量かつ少ない消費電力で必要な振動量が得 られる振動モータを構成することができる。  As described above, the eccentric weight 920 according to the ninth embodiment is different from the eccentric weights 420 and 820 according to the fourth or eighth embodiment in the structure of the connecting portion 936 and the manufacturing method of the weight support 930. Since the weight is an eccentric weight 940 having a weight 940 made of a high specific gravity metal and a weight support 930 having a lower specific gravity than that of the high specific gravity metal constituting the weight 940, the eccentric weight 920 according to the first embodiment is used. As with the weight 120, the total weight of the eccentric weight 920 can be reduced and the amount of eccentricity in the eccentric weight 920 can be increased. Therefore, by using such an eccentric weight 920, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
[0158] また、実施形態 9に係る偏心分銅 920によれば、分銅 940を全周にわたって分銅支 持体 930における分銅保持部 934に保持させることとしたため、実施形態 4又は 8に 係る偏心分銅 420, 820の場合と同様に、振動モータ (及び偏心分銅 920)を長時間 使用した場合に分銅 940と分銅支持体 930との接合の信頼性が低下することを抑制 することができる。このため、このような偏心分銅 920を用いることにより、長期信頼性 の高 、振動モータを構成することができる。 [0158] Also, according to the eccentric weight 920 according to the ninth embodiment, the weight 940 is held by the weight holding portion 934 in the weight support 930 over the entire circumference. As in the case of the eccentric weights 420 and 820, it is possible to suppress a decrease in the reliability of bonding between the weight 940 and the weight support 930 when the vibration motor (and the eccentric weight 920) is used for a long time. . Therefore, by using such an eccentric weight 920, it is possible to configure a vibration motor with high long-term reliability.
[0159] また、実施形態 9に係る偏心分銅 920によれば、モータ軸に沿ったモータ軸保持部 932の厚さをモータ軸保持部 932の内径の 2倍以上の値にしたため、モータ軸保持 部 932は十分な保持力をもってモータ軸を保持するようになる。このため、振動モー タ (及び偏心分銅 920)を長期間使用した場合に、モータ軸保持部によるモータ軸の 保持に関する信頼性が低下することを抑制することができる。  [0159] Also, according to the eccentric weight 920 according to the ninth embodiment, the thickness of the motor shaft holding portion 932 along the motor shaft is set to a value more than twice the inner diameter of the motor shaft holding portion 932. The part 932 holds the motor shaft with a sufficient holding force. For this reason, when the vibration motor (and the eccentric weight 920) is used for a long period of time, it is possible to suppress a decrease in reliability related to holding the motor shaft by the motor shaft holding portion.
[0160] また、実施形態 9に係る偏心分銅 920によれば、分銅保持部 934とモータ軸保持部 932とを所定の連結部 936で連結するようにしたため、実施形態 4又は 8に係る偏心 分銅 420, 820の場合と同様に、偏心分銅 920の総重量を軽くするとともに、偏心分 銅 920における偏心量をさらに大きくすることができる。このため、このような偏心分銅 920を用いることにより、さらに軽量かっさらに少ない消費電力で必要な振動量が得 られる振動モータを構成することができる。  [0160] Further, according to the eccentric weight 920 according to the ninth embodiment, since the weight holding portion 934 and the motor shaft holding portion 932 are connected by the predetermined connecting portion 936, the eccentric weight according to the fourth or eighth embodiment. As in the case of 420 and 820, the total weight of the eccentric weight 920 can be reduced and the amount of eccentricity in the eccentric weight 920 can be further increased. Therefore, by using such an eccentric weight 920, it is possible to configure a vibration motor that can obtain a necessary vibration amount with a lighter weight and less power consumption.
[0161] また、実施形態 9に係る偏心分銅 920によれば、連結部として、モータ軸に沿った モータ軸保持部 932の長さよりも小さい値の肉厚を有する薄肉領域を有する連結部 936を用いたため、実施形態 4又は 8に係る偏心分銅 420, 820の場合よりも、偏心 分銅 920の総重量をさらに軽くするとともに、偏心分銅 920における偏心量をさらに 大きくすることができる。このため、このような偏心分銅 920を用いることにより、さらに 軽量かっさらに少ない消費電力で必要な振動量が得られる振動モータを構成するこ とがでさる。  [0161] Also, according to the eccentric weight 920 according to the ninth embodiment, the connecting portion 936 having a thin region having a thickness smaller than the length of the motor shaft holding portion 932 along the motor shaft is used as the connecting portion. Therefore, the total weight of the eccentric weight 920 can be further reduced and the amount of eccentricity in the eccentric weight 920 can be further increased as compared with the case of the eccentric weights 420 and 820 according to the fourth or eighth embodiment. For this reason, by using such an eccentric weight 920, it is possible to construct a vibration motor that can obtain a required vibration amount with lighter and less power consumption.
[0162] 実施形態 9に係る偏心分銅 920においては、分銅支持体 930が、薄肉領域の肉厚 に略等しい肉厚を有する板状部材からプレス絞り加工法によって製造されて!、る。  [0162] In the eccentric weight 920 according to the ninth embodiment, the weight support 930 is manufactured from a plate-like member having a thickness substantially equal to the thickness of the thin-walled region by the press drawing method.
[0163] このため、実施形態 9に係る偏心分銅 920によれば、プレス絞り加工工程で薄肉部 材が同時に成形されるため、切削加工法を用いる場合と比較して容易に分銅支持体 を製造することが可能になる。また、切削加工法を用いる場合と比較して、材料の無 駄が少、なくなる。 [0164] 実施形態 9に係る偏心分銅 920においては、図 10 (c)に示すように、薄肉領域の 肉厚は、モータ軸に沿ったモータ軸保持部 932の長さの 50%以下の値を有している [0163] Therefore, according to the eccentric weight 920 according to the ninth embodiment, since the thin-walled material is simultaneously formed in the press drawing process, the weight support is easily manufactured as compared with the case of using the cutting method. It becomes possible to do. In addition, there is less waste of material compared to using the cutting method. [0164] In the eccentric weight 920 according to the ninth embodiment, as shown in Fig. 10 (c), the thickness of the thin region is a value of 50% or less of the length of the motor shaft holding portion 932 along the motor shaft. have
[0165] このため、実施形態 9に係る偏心分銅 920によれば、偏心分銅 920の総重量をさら に軽くするとともに、偏心分銅 920における偏心量をさらに大きくすることができる。こ のため、このような偏心分銅 920を用いることにより、さらに軽量かっさらに少ない消 費電力で必要な振動量が得られる振動モータを構成することができる。 Therefore, according to the eccentric weight 920 according to the ninth embodiment, the total weight of the eccentric weight 920 can be further reduced, and the amount of eccentricity in the eccentric weight 920 can be further increased. Therefore, by using such an eccentric weight 920, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
[0166] 実施形態 9に係る偏心分銅 920においては、図 10 (c)に示すように、モータ軸 171 2の径方向に沿った薄肉領域 936の長さは 0. 4mmである  In the eccentric weight 920 according to Embodiment 9, as shown in FIG. 10 (c), the length of the thin region 936 along the radial direction of the motor shaft 1712 is 0.4 mm.
[0167] このため、実施形態 9に係る偏心分銅 920においては、分銅 940をできるだけ外周 部に配置することができるようになる。このため、偏心分銅 920における偏心量をさら に大きくすることができる。このため、このような偏心分銅 920を用いることにより、さら に少ない消費電力で必要な振動量が得られる振動モータを構成することができる。  [0167] Therefore, in the eccentric weight 920 according to the ninth embodiment, the weight 940 can be arranged on the outer peripheral portion as much as possible. For this reason, the amount of eccentricity in the eccentric weight 920 can be further increased. Therefore, by using such an eccentric weight 920, it is possible to configure a vibration motor that can obtain a necessary vibration amount with much less power consumption.
[0168] 実施形態 9に係る偏心分銅 920においては、図 10 (c)に示すように、分銅 940を偏 心分銅 920の外周側から保持する外周部分における、分銅保持部 934の肉厚は、 0 . 15mmである。  In the eccentric weight 920 according to the ninth embodiment, as shown in FIG. 10 (c), the thickness of the weight holding portion 934 in the outer peripheral portion that holds the weight 940 from the outer peripheral side of the eccentric weight 920 is: 0.15mm.
[0169] このため、実施形態 9に係る偏心分銅 920においては、分銅 940をできるだけ外周 部に配置するとともに、分銅 940をできるだけ大きくすることができるため、偏心分銅 9 20における偏心量をさらに大きくすることができる。このため、このような偏心分銅 92 0を用いることにより、さらに少ない消費電力で必要な振動量が得られる振動モータを 構成することができる。  [0169] Therefore, in the eccentric weight 920 according to the ninth embodiment, the weight 940 can be arranged on the outer peripheral portion as much as possible, and the weight 940 can be made as large as possible. Therefore, the amount of eccentricity in the eccentric weight 920 can be further increased. be able to. Therefore, by using such an eccentric weight 920, it is possible to configure a vibration motor that can obtain a necessary vibration amount with less power consumption.
[0170] 実施形態 9に係る偏心分銅 920においては、図 10 (c)に示すように、モータ軸保持 部 932の肉厚は、 0. 15mmである。  In the eccentric weight 920 according to the ninth embodiment, as shown in FIG. 10 (c), the thickness of the motor shaft holding portion 932 is 0.15 mm.
[0171] このため、実施形態 9に係る偏心分銅 920においては、偏心分銅 920の総重量を さらに軽くするとともに、偏心分銅 920における偏心量をさらに大きくすることができる 。このため、このような偏心分銅 920を用いることにより、さらに軽量かっさらに少ない 消費電力で必要な振動量が得られる振動モータを構成することができる。  Therefore, in the eccentric weight 920 according to the ninth embodiment, the total weight of the eccentric weight 920 can be further reduced, and the amount of eccentricity in the eccentric weight 920 can be further increased. Therefore, by using such an eccentric weight 920, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
[0172] 実施形態 9に係る偏心分銅 920においては、分銅 940は、タングステン焼結合金か らなり、分銅支持体 930は、焼き入れ硬化性を有する金属としてのマルテンサイト系 ステンレス鋼からなる。 [0172] In the eccentric weight 920 according to Embodiment 9, the weight 940 is a tungsten sintered alloy. The weight support 930 is made of martensitic stainless steel as a metal having quenching hardenability.
[0173] このため、実施形態 9に係る偏心分銅 920によれば、プレス絞り加工法によって分 銅支持体を製造する際に分銅支持体 930を硬化させることが可能になり、信頼性の 高い偏心分銅や振動モータを製造することが可能になる。  [0173] Therefore, according to the eccentric weight 920 according to the ninth embodiment, the weight support 930 can be cured when the weight support is manufactured by the press drawing method, and the eccentricity is highly reliable. Weights and vibration motors can be manufactured.
[0174] 実施形態 9に係る偏心分銅 920においては、分銅支持体 930は、図 11 (a)〜図 11  [0174] In the eccentric weight 920 according to the ninth embodiment, the weight support 930 has the structure shown in Figs. 11 (a) to 11.
(f)に示すように、プレス絞り加工法によって製造されている。  As shown in (f), it is manufactured by a press drawing method.
[0175] (1)ワークの配置  [0175] (1) Work placement
まず、プレス絞り装置のダイ用金型におけるダイプレート 962とパンチ用金型にお けるパンチプレート 972との間の所定位置に肉厚 0. 5mmのマルテンサイト系ステン レス鋼力 なるワーク Wとしての板状部材を配置する(図 11 (a)参照。;)。  First, as a work W that is a martensitic stainless steel with a thickness of 0.5 mm at a predetermined position between the die plate 962 in the die for press drawing and the punch plate 972 in the punch die. A plate-shaped member is arranged (see FIG. 11 (a);).
[0176] (2)プレス絞り加工  [0176] (2) Press drawing
次に、ワーク Wに向けてパンチ用金型(及びパンチ 974)を下降させて、モータ軸保 持部 932の穴に対応する部分と、分銅保持部 934の穴に対応する部分に圧力をか けていく。このとき、モータ軸保持部 932を構成することになる部分及び分銅保持部 9 34を構成することになる部分は塑性変形を起こし、図面の下方向に延びてゆく(図 1 1 (b)〜図 11 (d)参照。;)。このプレス絞り加工は、 1回のプレスを行うことによって行う こともできるし、ダイ金型 960及びパンチ金型 970を交換しながら複数回のプレスを 行うこと〖こよって行うこともできる。  Next, the punching die (and punch 974) is lowered toward the workpiece W, and pressure is applied to the part corresponding to the hole of the motor shaft holding part 932 and the part corresponding to the hole of the weight holding part 934. I will go. At this time, the portion constituting the motor shaft holding portion 932 and the portion constituting the weight holding portion 934 cause plastic deformation and extend downward in the drawing (FIG. 11 (b) to FIG. 11). See Figure 11 (d);). This press drawing can be performed by performing a single press, or by performing multiple presses while exchanging the die mold 960 and the punch mold 970.
[0177] (3)不要部分の除去  [0177] (3) Removal of unnecessary parts
次に、ワーク Wをプレス絞り装置 950から取り外し、分銅支持体において不要な部 分を切断して除去する(図 11 (e)及び図 11 (f)参照。 )0この場合、不要な部分の切 断は、図 11 (e)中の破線 LI, L2, L3に沿って行い、図面の左右方向及び上下方向 に沿って複数回行う。これにより、分銅支持体 930が製造される。なお、不要な部分 の切断は、プレス力卩工機を用いて、図面の上下方向に沿って行ってもよい。 Next, remove the workpiece W from the press stop device 950, is removed by cutting the unnecessary parts min in weight support (see FIG. 11 (e) and FIG. 11 (f).) 0 in this case, unnecessary portions Cut along the broken lines LI, L2, and L3 in Fig. 11 (e), and cut multiple times along the horizontal and vertical directions of the drawing. Thereby, the weight support body 930 is manufactured. In addition, you may cut an unnecessary part along the up-down direction of drawing using a press force grinder.
[0178] このように製造された分銅支持体 930に分銅 940を挿入することにより、実施形態 9 に係る偏心分銅 920を製造することができる。  [0178] By inserting the weight 940 into the weight support 930 thus manufactured, the eccentric weight 920 according to Embodiment 9 can be manufactured.
[0179] 図 12は、実施形態 10に係る偏心分銅 1020を説明するために示す図である。図 1 2 (a)は偏心分銅 1020を正面から見た図であり、図 12 (b)は図 12 (a)の A— A断面 図である。 [0179] FIG. 12 is a view for explaining the eccentric weight 1020 according to the tenth embodiment. Figure 1 2 (a) is a view of the eccentric weight 1020 as viewed from the front, and FIG. 12 (b) is a cross-sectional view taken along the line AA in FIG. 12 (a).
[0180] 実施形態 10に係る偏心分銅 1020は、実施形態 9に係る偏心分銅 920と基本的に は同様の構造を有している。但し、実施形態 10に係る偏心分銅 1020は、図 12に示 すように、分銅支持体 1030の構造が実施形態 9に係る偏心分銅 920の場合と異な る。すなわち、実施形態 10に係る偏心分銅 1020においては、図 12 (b)に示すように 、分銅支持体 1030の薄肉領域 1038の内部にリブ 1039が形成されている。  [0180] An eccentric weight 1020 according to the tenth embodiment has basically the same structure as the eccentric weight 920 according to the ninth embodiment. However, the eccentric weight 1020 according to the tenth embodiment is different from the eccentric weight 920 according to the ninth embodiment in the structure of the weight support 1030 as shown in FIG. That is, in the eccentric weight 1020 according to the tenth embodiment, as shown in FIG. 12 (b), the rib 1039 is formed inside the thin region 1038 of the weight support 1030.
[0181] このため、実施形態 10に係る偏心分銅 1020においては、分銅支持体 1030の機 械的強度を高めることができるため、さらに信頼性の高い振動モータを構成すること ができる。また、分銅支持体 1030の機械的強度を高めることができることから、分銅 支持体 1030の薄肉領域 1038を大きくして、分銅支持体 1030の重量をさらに軽くす ることもできる。このため、偏心分銅 1020の総重量をさらに軽くするとともに、偏心分 銅 1020における偏心量をさらに大きくすることができる。その結果、このような偏心分 銅 1020を用いることにより、さらに軽量かっさらに少ない消費電力で必要な振動量 が得られる振動モータを構成することができる。  [0181] For this reason, in the eccentric weight 1020 according to the tenth embodiment, the mechanical strength of the weight support 1030 can be increased, so that a more reliable vibration motor can be configured. In addition, since the mechanical strength of the weight support 1030 can be increased, the weight region 1038 of the weight support 1030 can be enlarged to further reduce the weight of the weight support 1030. For this reason, the total weight of the eccentric weight 1020 can be further reduced, and the amount of eccentricity of the eccentric weight 1020 can be further increased. As a result, by using such an eccentric weight 1020, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and even less power consumption.
[0182] なお、実施形態 10に係る偏心分銅 1020は、これ以外の点では、実施形態 9に係る 偏心分銅 920と同様の構成を有しているため、実施形態 9に係る偏心分銅 920が有 する効果をそのまま有する。  [0182] The eccentric weight 1020 according to the tenth embodiment has the same configuration as the eccentric weight 920 according to the ninth embodiment except for the above, and therefore the eccentric weight 920 according to the ninth embodiment is provided. It has the effect to do as it is.
[0183] 図 13は、実施形態 11に係る偏心分銅 1120を説明するために示す図である。図 1 FIG. 13 is a view for explaining the eccentric weight 1120 according to the eleventh embodiment. Figure 1
3 (a)は偏心分銅 1120を正面から見た図であり、図 13 (b)は図 13 (a)の A— A断面 図である。 3 (a) is a view of the eccentric weight 1120 as viewed from the front, and FIG. 13 (b) is a cross-sectional view taken along the line AA in FIG. 13 (a).
[0184] 実施形態 11に係る偏心分銅 1120は、実施形態 9に係る偏心分銅 920と基本的に は同様の構造を有している。但し、実施形態 11に係る偏心分銅 1120は、図 13に示 すように、分銅支持体 1130の構造が実施形態 9に係る偏心分銅 920の場合と異な る。すなわち、実施形態 11に係る偏心分銅 1120においては、分銅支持体 1130の 薄肉領域 1138には、モータ軸に沿った方向に貫通する穴 1139が形成されている。  [0184] The eccentric weight 1120 according to the eleventh embodiment basically has the same structure as the eccentric weight 920 according to the ninth embodiment. However, the eccentric weight 1120 according to the eleventh embodiment is different from the eccentric weight 920 according to the ninth embodiment in the structure of the weight support 1130 as shown in FIG. That is, in the eccentric weight 1120 according to the eleventh embodiment, a hole 1139 that penetrates in the direction along the motor shaft is formed in the thin region 1138 of the weight support 1130.
[0185] このため、実施形態 11に係る偏心分銅 1120においては、分銅支持体 1130の重 量をさらに軽くすることができるようになる。このため、偏心分銅 1120の総重量をさら に軽くするとともに、偏心分銅 1120における偏心量をさらに大きくすることができるよ うになる。このため、このような偏心分銅 1120を用いることにより、さらに軽量かっさら に少ない消費電力で必要な振動量が得られる振動モータを構成することができる。 [0185] Therefore, in the eccentric weight 1120 according to the eleventh embodiment, the weight of the weight support 1130 can be further reduced. For this reason, the total weight of the eccentric weight 1120 is further increased. The eccentric amount of the eccentric weight 1120 can be further increased. Therefore, by using such an eccentric weight 1120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
[0186] なお、実施形態 11に係る偏心分銅 1120は、これ以外の点では、実施形態 9に係る 偏心分銅 920と同様の構成を有しているため、実施形態 9に係る偏心分銅 920が有 する効果をそのまま有する。  [0186] The eccentric weight 1120 according to Embodiment 11 has the same configuration as that of the eccentric weight 920 according to Embodiment 9 in other points, and therefore the eccentric weight 920 according to Embodiment 9 is provided. It has the effect to do as it is.
[0187] 〔実施形態 12〜15〕  [Embodiments 12 to 15]
実施形態 12〜15は、主として請求項 4に係る偏心分銅を説明するための実施形 態である。  Embodiments 12 to 15 are embodiments mainly for explaining an eccentric weight according to claim 4.
図 14は、実施形態 12に係る偏心分銅 1220を説明するために示す図である。図 1 FIG. 14 is a view for explaining the eccentric weight 1220 according to the twelfth embodiment. Figure 1
4 (a)は偏心分銅 1220を正面から見た図であり、図 14 (b)は図 14 (a)の A— A断面 図である。 4 (a) is a view of the eccentric weight 1220 as viewed from the front, and FIG. 14 (b) is a cross-sectional view taken along the line AA in FIG. 14 (a).
図 15は、実施形態 13に係る偏心分銅 1320を説明するために示す図である。図 1 FIG. 15 is a view for explaining the eccentric weight 1320 according to the thirteenth embodiment. Figure 1
5 (a)は偏心分銅 1320を正面から見た図であり、図 15 (b)は図 15 (a)の A— A断面 図である。 5 (a) is a view of the eccentric weight 1320 as seen from the front, and FIG. 15 (b) is a cross-sectional view taken along the line AA in FIG. 15 (a).
図 16は、実施形態 14に係る偏心分銅 1420を説明するために示す図である。図 1 FIG. 16 is a view for explaining the eccentric weight 1420 according to the fourteenth embodiment. Figure 1
6 (a)は偏心分銅 1420を正面から見た図であり、図 16 (b)は図 16 (a)の A— A断面 図である。 6 (a) is a view of the eccentric weight 1420 as seen from the front, and FIG. 16 (b) is a cross-sectional view taken along the line AA in FIG. 16 (a).
図 17は、実施形態 15に係る偏心分銅 1520を説明するために示す図である。図 1 7 (a)は偏心分銅 1520を正面から見た図であり、図 17 (b)は図 17 (a)の A— A断面 図である。  FIG. 17 is a view for explaining the eccentric weight 1520 according to the fifteenth embodiment. Fig. 17 (a) is a view of the eccentric weight 1520 as seen from the front, and Fig. 17 (b) is a cross-sectional view taken along the line AA in Fig. 17 (a).
[0188] 実施形態 12〜 15に係る偏'、分銅 1220, 1320, 1420, 1520ίま、図 14〜図 17に 示すように、分銅支持体として、複数の薄板部材が積層された構造を有する分銅支 持体を用いた点で、実施形態 9〜: L1に係る偏心分銅 920, 1020, 1120の場合とは 異なっている。  [0188] Deviations according to Embodiments 12 to 15, weights 1220, 1320, 1420, 1520ί, and weights having a structure in which a plurality of thin plate members are laminated as weight support members as shown in FIGS. 14 to 17 This is different from the case of the eccentric weights 920, 1020, 1120 according to Embodiment 9 to L1: in that a support body is used.
[0189] このように、実施形態 12〜 15に係る偏'、分銅 1220, 1320, 1420, 1520ίま、複 数の薄板部材が積層された構造を有する分銅支持体を用いた点で、実施形態 9〜1 1に係る偏心分銅 920, 1020, 1120の場合とは異なっている力 偏心分銅を、高比 重金属からなる分銅と、分銅を構成する高比重金属よりも比重の低!ヽ金属からなる複 数の薄板部材が積層された構造を有する分銅支持体とを備えた偏心分銅としたため[0189] As described above, the embodiment according to the embodiments 12 to 15 uses the weight support body having a structure in which a plurality of thin plate members are laminated, including the weights 1220, 1320, 1420, and 1520ί. 9 to 11 Eccentric weights according to 1 920, 1020, 1120 Because it has an eccentric weight comprising a weight made of heavy metal and a weight support that has a structure in which a plurality of thin plate members made of metal are laminated, which has a lower specific gravity than the high specific gravity metal that composes the weight
、実施形態 9〜 11に係る偏心分銅 920, 1020, 1120の場合と同様に、偏心分銅の 総重量を軽くするとともに、偏心分銅における偏心量を大きくすることができる。この ため、このような偏'、分銅 1220, 1320, 1420, 1520を用! /、ることにより、軽量力つ 少ない消費電力で必要な振動量が得られる振動モータを構成することができる。 As in the case of the eccentric weights 920, 1020, and 1120 according to the ninth to eleventh embodiments, the total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be increased. For this reason, a vibration motor capable of obtaining a necessary vibration amount with light weight and low power consumption can be configured by using such a deviation and weights 1220, 1320, 1420, and 1520.
[0190] また、実施形態 12〜 15【こ係る偏 、分銅 1220, 1320, 1420, 1520【こよれ ί 、分 銅を半周以上にわたって分銅支持体における各分銅保持部に保持させることとした ため、実施形態 9〜: L1に係る偏心分銅 920, 1020, 1120の場合と同様に、振動モ ータ (及び偏心分銅)を長時間使用した場合に分銅と分銅支持体との接合の信頼性 が低下することを抑制することができる。このため、このような偏心分銅 1220, 1320 , 1420, 1520を用いることにより、長期信頼性の高い振動モータを構成することが できる。 [0190] Further, Embodiments 12 to 15 [this deviation, weights 1220, 1320, 1420, 1520 [koyore ryoko, because the weight is held by each weight holding portion in the weight support over a half circumference, Embodiments 9 to 9: As with the eccentric weights 920, 1020, and 1120 related to L1, the reliability of the connection between the weight and the weight support decreases when the vibration motor (and the eccentric weight) is used for a long time. Can be suppressed. Therefore, by using such eccentric weights 1220, 1320, 1420, 1520, a vibration motor with high long-term reliability can be configured.
[0191] また、実施形態 12〜 15【こ係る偏 、分銅 1220, 1320, 1420, 1520【こよれ ί 、各 薄板部材の連結部に所定の薄肉領域を設けるようにしたため、偏心分銅の総重量を さらに軽くするとともに、偏心分銅における偏心量をさらに大きくすることができる。こ のため、このような偏心分銅を用いることにより、さらに軽量かっさらに少ない消費電 力で必要な振動量が得られる振動モータを構成することができる。  [0191] In addition, Embodiments 12 to 15 [this eccentricity, weight 1220, 1320, 1420, 1520 [koyore ryoko, because a predetermined thin area is provided in the connecting portion of each thin plate member, the total weight of the eccentric weights] Can be further reduced, and the amount of eccentricity in the eccentric weight can be further increased. For this reason, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
[0192] また、実施形態 12〜 15【こ係る偏 、分銅 1220, 1320, 1420, 1520【こお!ヽて、複 数の薄板部材における各薄肉領域の肉厚を合計した値は、前記モータ軸に沿った 前記モータ軸保持部の長さの 50%以下の値である。  [0192] In addition, Embodiments 12 to 15 [Such deviations, weights 1220, 1320, 1420, 1520 [Correspondingly, the sum of the thicknesses of the thin regions in the plurality of thin plate members is the sum of The value is 50% or less of the length of the motor shaft holding portion along the shaft.
[0193] このため、実施形態 12〜15【こ係る偏 、分銅 1220, 1320, 1420, 1520【こよれ ί 、偏心分銅の総重量を軽くするとともに、偏心分銅における偏心量をさらに大きくする ことができる。このため、このような偏心分銅を用いることにより、さらに軽量かっさらに 少ない消費電力で必要な振動量が得られる振動モータを構成することができる。  [0193] For this reason, Embodiments 12 to 15 [this eccentricity, weights 1220, 1320, 1420, 1520 [koyore], the total weight of the eccentric weight can be reduced, and the amount of eccentricity in the eccentric weight can be further increased. it can. For this reason, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter weight and less power consumption.
[0194] また、実施形態 12〜 15【こ係る偏 、分銅 1220, 1320, 1420, 1520【こよれ ί 、薄 板部材は、薄肉領域の肉厚に略等しい肉厚を有する板状部材力 プレス絞り加工法 によって製造されているため、プレス絞り加工工程で薄肉部材が同時に成形されるた め、切削加工法を用いる場合と比較して容易に薄板部材を製造することができる。ま た、切削加工法を用いる場合と比較して、材料の無駄が少なくなる。 [0194] Also, Embodiments 12 to 15 [Such deviations, weights 1220, 1320, 1420, 1520 [Correction, thin plate member is a plate member force press having a thickness substantially equal to the thickness of the thin region] Because it is manufactured by the drawing method, thin-walled members are formed at the same time in the press drawing process. Therefore, the thin plate member can be easily manufactured as compared with the case of using the cutting method. In addition, material waste is reduced compared to the case of using a cutting method.
[0195] また、実施形態 12〜 15【こ係る偏 、分銅 1220, 1320, 1420, 1520【こよれ ί 、モ ータ軸に沿ったモータ軸保持部の長さは、モータ軸保持部の内径の 2倍以上の値を 有している。  [0195] In addition, the lengths of the motor shaft holding portion along the motor shaft are the inner diameters of the motor shaft holding portions. Embodiments 12 to 15 [Such deviations, weights 1220, 1320, 1420, 1520 It is more than twice the value.
[0196] このため、実施形態 12〜15【こ係る偏 、分銅 1220, 1320, 1420, 1520【こよれ ί 、モータ軸保持部は十分な保持力をもってモータ軸を保持するようになる。このため、 振動モータを長期間使用した場合に、モータ軸保持部によるモータ軸の保持に関す る信頼性が低下することを抑制することができる。  For this reason, Embodiments 12 to 15 [Such deviations, weights 1220, 1320, 1420, 1520 [Correction], the motor shaft holding part holds the motor shaft with a sufficient holding force. For this reason, when a vibration motor is used for a long time, it can suppress that the reliability regarding the holding | maintenance of the motor shaft by a motor shaft holding part falls.
[0197] 〔実施形態 16〜17〕  [Embodiments 16 to 17]
実施形態 16〜17は、主として請求項 1に係る偏心分銅を説明するための実施形 態である。  Embodiments 16 to 17 are mainly embodiments for explaining an eccentric weight according to claim 1.
図 18は、実施形態 16に係る偏心分銅 1620を説明するために示す図である。図 1 8 (a)は偏心分銅 1620を正面から見た図であり、図 18 (b)は図 18 (a)の A— A断面 図である。  FIG. 18 is a view for explaining the eccentric weight 1620 according to the sixteenth embodiment. Fig. 18 (a) is a view of the eccentric weight 1620 as seen from the front, and Fig. 18 (b) is a cross-sectional view taken along the line A-A in Fig. 18 (a).
[0198] 実施形態 16に係る偏心分銅 1620は、実施形態 9に係る偏心分銅 920と基本的に は同様の構造を有している。但し、実施形態 16に係る偏心分銅 1620は、図 18に示 すように、分銅支持体 1630の構造が実施形態 9に係る偏心分銅 920の場合と異な る。すなわち、実施形態 16に係る偏心分銅 1620においては、分銅支持体 1630の 連結部 1636における周方向の両端まで薄肉領域 1638とされている。言い換えると 、薄肉領域 1638の端部には支柱が形成されていないのである。  [0198] The eccentric weight 1620 according to the sixteenth embodiment has basically the same structure as the eccentric weight 920 according to the ninth embodiment. However, the eccentric weight 1620 according to the sixteenth embodiment is different from the eccentric weight 920 according to the ninth embodiment in the structure of the weight support 1630 as shown in FIG. That is, in the eccentric weight 1620 according to the sixteenth embodiment, the thin wall region 1638 extends to both ends in the circumferential direction of the connecting portion 1636 of the weight support 1630. In other words, no struts are formed at the end of the thin region 1638.
[0199] このため、実施形態 16に係る偏心分銅 1620によれば、連結部 1636の重量をさら に軽くすることもできる。これにより、偏心分銅 1620の総重量をさらに軽くするとともに 、偏心分銅 1620における偏心量をさらに大きくすることができるようになる。その結果 、このような偏心分銅 1620を用いることにより、さらに軽量かっさらに少ない消費電 力で必要な振動量が得られる振動モータを構成することができる。  [0199] For this reason, according to the eccentric weight 1620 according to the sixteenth embodiment, the weight of the connecting portion 1636 can be further reduced. As a result, the total weight of the eccentric weight 1620 can be further reduced, and the eccentric amount of the eccentric weight 1620 can be further increased. As a result, by using such an eccentric weight 1620, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
[0200] なお、実施形態 16に係る偏心分銅 1620は、これ以外の点では、実施形態 9に係る 偏心分銅 920と同様の構成を有しているため、実施形態 9に係る偏心分銅 920が有 する効果をそのまま有する。 [0200] The eccentric weight 1620 according to Embodiment 16 has the same configuration as that of the eccentric weight 920 according to Embodiment 9 in other respects, and therefore the eccentric weight 920 according to Embodiment 9 is provided. It has the effect to do as it is.
[0201] 図 19は、実施形態 17に係る偏心分銅 1720を説明するために示す図である。図 1 9 (a)は偏心分銅 1720を正面から見た図であり、図 19 (b)は図 19 (a)の A— A断面 図である。  [0201] FIG. 19 is a view for explaining an eccentric weight 1720 according to the seventeenth embodiment. Fig. 19 (a) is a view of the eccentric weight 1720 as viewed from the front, and Fig. 19 (b) is a cross-sectional view taken along line AA in Fig. 19 (a).
[0202] 実施形態 17に係る偏心分銅 1720は、実施形態 16に係る偏心分銅 1620と基本的 には同様の構造を有している。但し、実施形態 17に係る偏心分銅 1720は、図 19に 示すように、分銅支持体 1730の構造が実施形態 16に係る偏心分銅 1620の場合と 異なる。すなわち、実施形態 17に係る偏心分銅 1720においては、分銅保持部 173 4及びモータ軸保持部 1732を連結する連結部 1736は、モータ軸 1712に沿った方 向から見て一本の連結棒となるような形状を有して 、る。  [0202] The eccentric weight 1720 according to the seventeenth embodiment has basically the same structure as the eccentric weight 1620 according to the sixteenth embodiment. However, the eccentric weight 1720 according to the seventeenth embodiment is different from the eccentric weight 1620 according to the sixteenth embodiment in the structure of the weight support 1730 as shown in FIG. That is, in the eccentric weight 1720 according to the seventeenth embodiment, the connecting portion 1736 that connects the weight holding portion 1734 and the motor shaft holding portion 1732 is a single connecting rod when viewed from the direction along the motor shaft 1712. It has a shape like this.
[0203] このため、実施形態 17に係る偏心分銅 1720によれば、連結部 1736をモータ軸 1 712に沿った方向から見て一本の連結棒となるような形状にしたため、偏心分銅 172 0の総重量を軽くするとともに、偏心分銅 1720における偏心量をさらに大きくすること ができる。このため、このような偏心分銅 1720を用いることにより、実施形態 16に係る 偏心分銅 1620の場合と比較して、さらに軽量かっさらに少な 、消費電力で必要な 振動量が得られる振動モータを構成することができる。  [0203] For this reason, according to the eccentric weight 1720 according to the seventeenth embodiment, the connecting portion 1736 has a shape that forms a single connecting rod when viewed from the direction along the motor shaft 1 712. Therefore, the eccentric weight 172 0 As a result, the eccentric weight of the eccentric weight 1720 can be further increased. For this reason, by using such an eccentric weight 1720, a vibration motor that is lighter and has a smaller amount of vibration required for power consumption than that of the eccentric weight 1620 according to Embodiment 16 can be configured. be able to.
[0204] なお、実施形態 17に係る偏心分銅 1720は、これ以外の点では、実施形態 16に係 る偏心分銅 1620と同様の構成を有して 、るため、実施形態 16に係る偏心分銅 162 0が有する効果をそのまま有する。  [0204] The eccentric weight 1720 according to the seventeenth embodiment has the same configuration as the eccentric weight 1620 according to the sixteenth embodiment in other points, and therefore, the eccentric weight 162 according to the sixteenth embodiment 162. It has the effect that 0 has.
[0205] 〔実施形態 18〕  [Embodiment 18]
実施形態 18は、主として請求項 23に係る偏心分銅及び請求項 25に係る振動モー タを説明するための実施形態である。  Embodiment 18 is an embodiment for mainly explaining the eccentric weight according to claim 23 and the vibration motor according to claim 25.
図 20は、実施形態 18に係る偏心分銅 1820を備えた振動モータ 1800を説明する ために示す図である。図 20 (a)は実施形態 9に係る偏心分銅 920を備えた振動モー タ 900を示す図であり、図 20 (b)は実施形態 18に係る偏心分銅 1820を備えた振動 モータ 1800を示す図である。  FIG. 20 is a view for explaining a vibration motor 1800 including the eccentric weight 1820 according to the eighteenth embodiment. FIG. 20 (a) is a diagram showing a vibration motor 900 including the eccentric weight 920 according to the ninth embodiment, and FIG. 20 (b) is a diagram illustrating a vibration motor 1800 including the eccentric weight 1820 according to the eighteenth embodiment. It is.
[0206] 実施形態 18に係る偏心分銅 1820は、図 20 (b)に示すように、分銅 940の長手方 向に沿った分銅支持体 1830の長さが分銅 1840の長手方向に沿った分銅 1840の 長さよりも短ぐ分銅支持体 1830の分銅保持部 1834が分銅 1840を分銅 1840の長 手方向に沿って偏心した位置で保持して 、る。 As shown in FIG. 20 (b), the eccentric weight 1820 according to the eighteenth embodiment includes a weight 1840 in which the weight support 1830 along the longitudinal direction of the weight 940 extends along the longitudinal direction of the weight 1840. of The weight support 1834 of the weight support 1830 shorter than the length holds the weight 1840 in an eccentric position along the length of the weight 1840.
[0207] このため、実施形態 18に係る偏心分銅 1820のよれば、図 20 (b)に示すように、偏 心分銅 1820を、モータ本体 1810に対して、モータ軸保持部 1832とモータ本体 18 10との距離が近づく向きに固定して振動モータを構成することにより、偏心分銅 182 0のモータ軸保持部 1832とモータ本体 1810の軸受け 1814との距離を近くすること が可能になるため、モータ軸 1812が回転する際にモータ軸 1812のたわみを抑制す ることができる。その結果、偏心分銅 1820がより安定して回転し、振動モータ 1800 の偏心振動特性がさらに向上する。  Therefore, according to the eccentric weight 1820 according to the eighteenth embodiment, as shown in FIG. 20 (b), the eccentric weight 1820 is connected to the motor body 1810 with respect to the motor shaft holding portion 1832 and the motor body 18. By configuring the vibration motor so that the distance to 10 is closer, the distance between the motor shaft holder 1832 of the eccentric weight 1820 and the bearing 1814 of the motor body 1810 can be reduced. When the shaft 1812 rotates, the deflection of the motor shaft 1812 can be suppressed. As a result, the eccentric weight 1820 rotates more stably, and the eccentric vibration characteristics of the vibration motor 1800 are further improved.
[0208] 〔実施形態 19〜22〕  [Embodiments 19 to 22]
実施形態 19〜22は、主として請求項 28に係る偏心分銅の製造方法を説明するた めの実施形態である。  Embodiments 19 to 22 are embodiments for mainly explaining an eccentric weight manufacturing method according to claim 28.
[0209] 図 21は、実施形態 19に係る偏心分銅の製造方法を説明するために示す模式図で ある。図 21 (a)、図 21 (b)、図 21 (d)及び図 21 (f)は各製造工程における偏心分銅 1 920の正面図であり、図 21 (c)、図 21 (e)及び図 21 (g)は各製造工程における偏心 分銅 1920の A— A断面図である。  FIG. 21 is a schematic diagram for explaining the method for manufacturing the eccentric weight according to the nineteenth embodiment. Fig. 21 (a), Fig. 21 (b), Fig. 21 (d) and Fig. 21 (f) are front views of the eccentric weight 1 920 in each manufacturing process, and Fig. 21 (c), Fig. 21 (e) and Fig. 21 FIG. 21 (g) is an AA cross-sectional view of the eccentric weight 1920 in each manufacturing process.
[0210] 以下に、実施形態 19に係る偏心分銅の製造方法を工程順に説明する。  [0210] The method for manufacturing the eccentric weight according to Embodiment 19 will be described below in the order of steps.
[0211] (1)第 1工程  [0211] (1) First step
まず、高比重金属力 なる分銅 1940と、高比重金属よりも比重の低い金属からなる 分銅支持体 1930とを準備する(図 21 (a)参照。 )0 First, a high-density metal power comprised weight 1940, prepared a weight support 1930 formed of a metal lower specific gravity than the high specific gravity metal (FIG. 21 (a) see.) 0
[0212] (2)第 2工程  [0212] (2) Second step
まず、分銅支持体 1930に分銅 1940を挿入する(図 21 (a)参照。;)。次に、分銅支 持体 1930に分銅 1940を挿入した状態で、モータ軸に沿つた方向における両側から 分銅 1940を押圧する(図 21 (d)及び図 21 (e)参照。;)。このとき、分銅 1940は、押 圧方向に対して垂直な方向に寸法が大きくなるように塑性変形する。これにより、分 銅 1940と分銅保持部 1934とが固着する(図 21 (f)及び図 21 (g)参照。;)。第 2工程 の前後で、モータ軸に垂直な平面における分銅 1940の寸法を比較すると、第 2工程 前の分銅 1940の寸法を L3 (図 21 (c)参照。)とし、第 2工程後の分銅 1940の寸法 を L4 (図 21 (g)参照。)としたとき、 L3及び L4は、 L3く L4の関係となっている。 First, a weight 1940 is inserted into the weight support 1930 (see FIG. 21 (a);). Next, with the weight 1940 inserted into the weight support 1930, the weight 1940 is pressed from both sides in the direction along the motor shaft (see FIGS. 21 (d) and 21 (e);). At this time, the weight 1940 is plastically deformed so that its dimension increases in a direction perpendicular to the pressing direction. Thereby, the weight 1940 and the weight holding portion 1934 are fixed (see FIG. 21 (f) and FIG. 21 (g);). Before and after the second process, comparing the dimensions of the weight 1940 in the plane perpendicular to the motor shaft, the dimension of the weight 1940 before the second process is L3 (see Fig. 21 (c)), and the weight after the second process is 1940 dimensions Is L4 (see Fig. 21 (g)), L3 and L4 have a relationship of L3 and L4.
[0213] これらの工程を経ること〖こより、偏心分銅 1920を製造することができる。 [0213] Through these steps, the eccentric weight 1920 can be manufactured.
[0214] なお、第 1工程で準備する分銅 1940は、分銅 1940を分銅支持体 1930の分銅保 持部 1934に挿入した状態のとき、分銅 1940の外周と分銅保持部 1934の内周との 間隙の平均値が 5 m〜: LOO /z mの範囲内となるような大きさに設定されている(図 2 1 (b)及び図 21 (c)参照)。 [0214] The weight 1940 prepared in the first step is the gap between the outer periphery of the weight 1940 and the inner periphery of the weight holding portion 1934 when the weight 1940 is inserted into the weight holding portion 1934 of the weight support 1930. Is set to a size that falls within the range of 5 m ~: LOO / zm (see Fig. 21 (b) and Fig. 21 (c)).
[0215] このため、実施形態 19に係る偏心分銅の製造方法によれば、分銅 1940を押圧し て塑性変形させることにより分銅 1940と分銅保持部 1934とを固着させるため、分銅 1940は分銅保持部 1934に強固に保持されるようになる。このため、振動モータを長 時間使用した場合に分銅 1940と分銅支持体 1934との接合の信頼性が低下するこ とをさらに抑制することができる。 [0215] Therefore, according to the manufacturing method of the eccentric weight according to the nineteenth embodiment, the weight 1940 and the weight holding portion 1934 are fixed by pressing the weight 1940 and plastically deforming. 1934 is firmly held. For this reason, when the vibration motor is used for a long time, it is possible to further suppress a decrease in the reliability of joining of the weight 1940 and the weight support 1934.
[0216] また、実施形態 19に係る偏心分銅の製造方法によれば、分銅 1940を分銅支持体 1930の分銅保持部 1934に挿入した状態のとき、分銅 1940の外周と分銅保持部 1 934の内周との間隙の平均値が 5 μ m〜100 μ mの範囲内となるようにすることにより 、分銅 1940は分銅保持部 1934に強固に保持されるようになり、偏心分銅 1920を製 造する際の生産性が向上する。 [0216] Also, according to the eccentric weight manufacturing method according to Embodiment 19, when the weight 1940 is inserted into the weight holding portion 1934 of the weight support 1930, the outer periphery of the weight 1940 and the weight holding portion 1934 By setting the average value of the gap to the circumference within the range of 5 μm to 100 μm, the weight 1940 is firmly held by the weight holding portion 1934, and the eccentric weight 1920 is manufactured. Productivity.
[0217] すなわち、分銅 1940の外周と分銅保持部 1934の内周との間隙の平均値を 100 μ m以下とすることで、押圧による分銅 1940の塑性変形で分銅 1240が分銅保持部 1934に強固に保持されるようになる。鲭の発生を防ぐ目的で分銅 1940にニッケル めっき等がなされている場合であっても、塑性変形量を大きなものにする必要がなく なり、ニッケルめっき等が割れたり剥がれたりして分銅 1940の品質が低下してしまう ことを抑制することができる。また、分銅 1940の外周と分銅保持部 1934の内周との 間隙の平均値を 5 m以下とすることで、分銅支持体 1930に分銅 1940を挿入する ことが容易になり、偏心分銅 1920を製造する際の生産性を向上させることが可能と なる。 That is, by setting the average value of the gap between the outer circumference of the weight 1940 and the inner circumference of the weight holding portion 1934 to 100 μm or less, the weight 1240 is firmly attached to the weight holding portion 1934 due to plastic deformation of the weight 1940 due to pressing. Will be held in. Even if the weight 1940 is nickel-plated to prevent wrinkles, there is no need to increase the amount of plastic deformation. Can be prevented from decreasing. Also, by setting the average value of the gap between the outer circumference of the weight 1940 and the inner circumference of the weight holding part 1934 to 5 m or less, it becomes easy to insert the weight 1940 into the weight support 1930, and the eccentric weight 1920 is manufactured. It is possible to improve the productivity when doing so.
[0218] 図 22は、実施形態 20に係る偏心分銅の製造方法を説明するために示す模式図で ある。図 22 (a)は偏心分銅 2020の斜視図であり、図 22 (b)は第 2工程における偏心 分銅 2020の断面図である。 [0219] 実施形態 20に係る偏心分銅の製造方法は、実施形態 19に係る偏心分銅の製造 方法とは基本的に同様の工程を含んでいる。但し、実施形態 20に係る偏心分銅の 製造方法は、図 22 (a)に示すように、実施形態 19に係る偏心分銅の製造方法とは、 第 1工程で準備する分銅支持体の構造が異なる。すなわち、実施形態 20に係る偏 心分銅の製造方法においては、第 1工程で、薄肉領域を有さない分銅支持体 2030 を準備することとしている。 FIG. 22 is a schematic diagram for explaining the method for manufacturing the eccentric weight according to the twentieth embodiment. FIG. 22 (a) is a perspective view of the eccentric weight 2020, and FIG. 22 (b) is a cross-sectional view of the eccentric weight 2020 in the second step. [0219] The manufacturing method of the eccentric weight according to the twentieth embodiment includes basically the same steps as the manufacturing method of the eccentric weight according to the nineteenth embodiment. However, as shown in FIG. 22 (a), the manufacturing method of the eccentric weight according to the embodiment 20 differs from the manufacturing method of the eccentric weight according to the embodiment 19 in the structure of the weight support prepared in the first step. . That is, in the eccentric weight manufacturing method according to the twentieth embodiment, the weight support 2030 having no thin region is prepared in the first step.
[0220] このように、実施形態 20に係る偏心分銅の製造方法は、第 1工程で準備する分銅 支持体の構造が実施形態 19に係る偏心分銅の製造方法の場合とは異なるが、分銅 支持体 2030に分銅 2040を挿入した状態で、モータ軸に沿った方向における両側 力も分銅 2040を押圧して分銅 2040を塑性変形させることにより、分銅 2040と分銅 保持部 2034とを固着させる第 2工程を含むため、分銅 2040は分銅保持部 2034に 強固に保持されるようになる。このため、振動モータを長時間使用した場合に分銅 20 40と分銅支持体 2030との接合の信頼性が低下することをさらに抑制することができ る。  [0220] Thus, the eccentric weight manufacturing method according to Embodiment 20 is different from the eccentric weight manufacturing method according to Embodiment 19 in the structure of the weight support prepared in the first step, but the weight support In the state where the weight 2040 is inserted into the body 2030, the second step of fixing the weight 2040 and the weight holding portion 2034 by pressing the weight 2040 and plastically deforming the weight 2040 also in the direction along the motor shaft is performed. Therefore, the weight 2040 is firmly held by the weight holding portion 2034. For this reason, when the vibration motor is used for a long time, it is possible to further suppress a decrease in the reliability of bonding between the weight 2040 and the weight support 2030.
[0221] 実施形態 20に係る偏心分銅の製造方法は、これ以外の点では、実施形態 19に係 る偏心分銅の製造方法と同様の工程を含んで ヽるため、実施形態 19に係る偏心分 銅の製造方法が有する効果をそのまま有する。  [0221] The eccentric weight manufacturing method according to Embodiment 20 includes the same steps as the eccentric weight manufacturing method according to Embodiment 19 in the other respects. It has the effect which the manufacturing method of copper has as it is.
[0222] 図 23は、実施形態 21に係る偏心分銅の製造方法を説明するために示す模式図で ある。図 23 (a)は偏心分銅 2120の斜視図であり、図 23 (b)は第 2工程における偏心 分銅 2120の断面図である。  FIG. 23 is a schematic view for explaining the method for manufacturing the eccentric weight according to the twenty-first embodiment. FIG. 23 (a) is a perspective view of the eccentric weight 2120, and FIG. 23 (b) is a cross-sectional view of the eccentric weight 2120 in the second step.
[0223] 実施形態 21に係る偏心分銅の製造方法は、実施形態 19に係る偏心分銅の製造 方法とは基本的に同様の工程を含んでいる。但し、実施形態 21に係る偏心分銅の 製造方法は、図 23 (a)に示すように、実施形態 19に係る偏心分銅の製造方法とは、 第 1工程で準備する分銅支持体の構造が異なる。すなわち、実施形態 21に係る偏 心分銅の製造方法においては、図 23に示すように、第 1工程で、複数の薄板部材 2 131が積層された構造を有する分銅支持体 2130を準備することとしている。  [0223] The manufacturing method of the eccentric weight according to Embodiment 21 includes basically the same steps as the manufacturing method of the eccentric weight according to Embodiment 19. However, the eccentric weight manufacturing method according to Embodiment 21 is different from the eccentric weight manufacturing method according to Embodiment 19 in the structure of the weight support prepared in the first step, as shown in FIG. 23 (a). . That is, in the eccentric weight manufacturing method according to Embodiment 21, as shown in FIG. 23, in the first step, a weight support 2130 having a structure in which a plurality of thin plate members 2 131 are stacked is prepared. Yes.
[0224] このように、実施形態 21に係る偏心分銅の製造方法は、第 1工程で準備する分銅 支持体の構造が実施形態 19に係る偏心分銅の製造方法の場合とは異なるが、分銅 支持体 2130に分銅 2140を挿入した状態で、モータ軸に沿つた方向における両側 力も分銅 2140を押圧して分銅 2140を塑性変形させることにより、分銅 2140と分銅 保持部 2134とを固着させる第 2工程を含むため、分銅 2140は分銅保持部 2134に 強固に保持されるようになる。このため、振動モータを長時間使用した場合に分銅 21 40と分銅支持体 2130との接合の信頼性が低下することをさらに抑制することができ る。 Thus, the eccentric weight manufacturing method according to Embodiment 21 differs from the eccentric weight manufacturing method according to Embodiment 19 in the structure of the weight support prepared in the first step. The second step of fixing the weight 2140 and the weight holding part 2134 by pressing the weight 2140 and plastically deforming the weight 2140 by pressing the weight 2140 with the weight 2140 inserted into the support 2130. Therefore, the weight 2140 is firmly held by the weight holding portion 2134. For this reason, when the vibration motor is used for a long time, it is possible to further suppress a decrease in the reliability of joining between the weight 2140 and the weight support 2130.
[0225] 実施形態 21に係る偏心分銅の製造方法は、これ以外の点では、実施形態 19に係 る偏心分銅の製造方法と同様の工程を含んで ヽるため、実施形態 19に係る偏心分 銅の製造方法が有する効果をそのまま有する。  [0225] Since the manufacturing method of the eccentric weight according to Embodiment 21 includes the same steps as the manufacturing method of the eccentric weight according to Embodiment 19 in other points, the eccentric weight according to Embodiment 19 is included. It has the effect which the manufacturing method of copper has as it is.
[0226] 図 24は、実施形態 22に係る偏心分銅の製造方法を説明するために示す模式図で ある。図 24 (a)は偏心分銅 2220の斜視図であり、図 24 (b)は第 2工程における偏心 分銅 2220の断面図である。  FIG. 24 is a schematic diagram for explaining the method for manufacturing the eccentric weight according to the twenty-second embodiment. FIG. 24A is a perspective view of the eccentric weight 2220, and FIG. 24B is a cross-sectional view of the eccentric weight 2220 in the second step.
[0227] 実施形態 22に係る偏心分銅の製造方法は、実施形態 19に係る偏心分銅の製造 方法とは基本的に同様の工程を含んでいる。但し、実施形態 22に係る偏心分銅の 製造方法は、図 24 (a)に示すように、実施形態 19に係る偏心分銅の製造方法とは、 第 1工程で準備する分銅支持体の構造が異なる。すなわち、図 24に示すように、実 施形態 22に係る偏心分銅の製造方法においては、第 1工程で、複数の薄板部材 22 31が積層され、分銅保持部 2234がモータ軸保持部 2232から延在し両側力 分銅 2240を弾性力で把持するアーム部を有し、モータ軸保持部 2232が切り欠き部を有 する構造を有する分銅支持体 2230を準備することとしている。  [0227] The manufacturing method of the eccentric weight according to the twenty-second embodiment includes basically the same steps as the manufacturing method of the eccentric weight according to the nineteenth embodiment. However, the eccentric weight manufacturing method according to Embodiment 22 is different from the eccentric weight manufacturing method according to Embodiment 19 in the structure of the weight support prepared in the first step, as shown in FIG. . That is, as shown in FIG. 24, in the eccentric weight manufacturing method according to Embodiment 22, in the first step, a plurality of thin plate members 2231 are stacked, and the weight holding portion 2234 extends from the motor shaft holding portion 2232. A weight support 2230 having an arm portion for holding the weight 2240 by elastic force and having a structure in which the motor shaft holding portion 2232 has a notch is prepared.
[0228] このように、実施形態 22に係る偏心分銅の製造方法は、第 1工程で準備する分銅 支持体の構造が実施形態 19に係る偏心分銅の製造方法の場合とは異なるが、分銅 支持体 2230に分銅 2240を挿入した状態で、モータ軸に沿った方向における両側 力も分銅 2240を押圧して分銅 2240を塑性変形させることにより、分銅 2240と分銅 保持部 2234とを固着させる第 2工程を含むため、分銅 2240は分銅保持部 2234に 強固に保持されるようになる。このため、振動モータを長時間使用した場合に分銅 22 40と分銅支持体 2230との接合の信頼性が低下することをさらに抑制することができ る。 [0229] 実施形態 22に係る偏心分銅の製造方法は、これ以外の点では、実施形態 19に係 る偏心分銅の製造方法と同様の工程を含んで ヽるため、実施形態 19に係る偏心分 銅の製造方法が有する効果をそのまま有する。 [0228] Thus, the eccentric weight manufacturing method according to Embodiment 22 is different from the eccentric weight manufacturing method according to Embodiment 19 in the structure of the weight support prepared in the first step. With the weight 2240 inserted into the body 2230, the second step of fixing the weight 2240 and the weight holding part 2234 by pressing the weight 2240 and also plastically deforming the weight 2240 by pressing the weight 2240 in the direction along the motor shaft. Accordingly, the weight 2240 is firmly held by the weight holding portion 2234. For this reason, when the vibration motor is used for a long time, it is possible to further suppress a decrease in the reliability of joining between the weight 2240 and the weight support 2230. [0229] Since the eccentric weight manufacturing method according to Embodiment 22 includes the same steps as the eccentric weight manufacturing method according to Embodiment 19 in other respects, the eccentric weight according to Embodiment 19 is included. It has the effect which the manufacturing method of copper has as it is.
[0230] 以上、本発明の偏心分銅、振動モータ、携帯機器及び偏心分銅の製造方法を上 記の各実施形態に基づいて説明したが、本発明は上記の各実施形態に限られるも のではなぐその要旨を逸脱しな 、範囲にぉ 、て種々の態様にぉ 、て実施すること が可能であり、例えば次のような変形も可能である。  [0230] While the eccentric weight, vibration motor, portable device, and manufacturing method of the eccentric weight of the present invention have been described based on the above embodiments, the present invention is not limited to the above embodiments. Without departing from the spirit of the present invention, the present invention can be carried out in various modes within the scope, and the following modifications are possible, for example.
[0231] (1)上記各実施形態の偏心分銅 120〜2220においては、分銅としてタングステン合 金を用いた力 本発明はこれに限られない。例えば、タングステン、オスミウム、ォスミ ゥム合金、金、金合金、イリジウム、イリジウム合金、その他の分銅支持体よりも比重の 高 、金属を用いることもできる。  (1) In the eccentric weights 120 to 2220 of the above embodiments, the force using tungsten alloy as the weight is not limited to this. For example, a metal having a specific gravity higher than that of tungsten, osmium, osmium alloy, gold, gold alloy, iridium, iridium alloy, and other weight supports can be used.
[0232] (2)上記各実施形態の偏心分銅 120〜2220においては、分銅支持体として、鍛造 加工法により製造した部材を切削加工したもの、金属粉末射出成型法により製造し たもの、プレス絞り成形法により製造したものを用いた力 本発明はこれに限られない 。例えば、鍛造加工法により製造したものや、バーリング加工法により製造したもの、 铸造カ卩工法により製造したものを用いることもできる。  [0232] (2) In the eccentric weights 120 to 2220 of each of the above embodiments, as a weight support, a member manufactured by a forging method, a member manufactured by a metal powder injection molding method, a press drawing The force using what was manufactured by the forming method The present invention is not limited to this. For example, a product manufactured by a forging method, a product manufactured by a burring method, or a product manufactured by a forging method can be used.
[0233] (3)実施形態 9に係る偏心分銅 920においては、分銅支持体 930は、焼き入れ硬化 性を有する金属としてマルテンサイト系ステンレス鋼を用いた力 本発明はこれに限 定されるものではない。例えば、マルテンサイト系ステンレス鋼以外の焼き入れ硬化 性を有する金属、時効硬化性を有する金属、加工硬化性を有する金属、形状記憶合 金その他の金属を用いることもできる。  [0233] (3) In the eccentric weight 920 according to Embodiment 9, the weight support 930 is a force using martensitic stainless steel as a metal having quench hardening properties. The present invention is limited to this. is not. For example, a quench-hardening metal other than martensitic stainless steel, an age-hardening metal, a work-hardening metal, a shape memory alloy, and other metals can be used.
[0234] (4)上記各実施形態の偏心分銅 120〜2220においては、分銅として、丸棒からなる 焼結体を削りだして分銅の断面形状と同じ断面形状に加工した切削体を短く切断し たものを用いたが、本発明はこれに限られない。例えば、分銅として、分銅の形状に 焼結した焼結体や、分銅の断面形状 (例えば、円、長円、扇形など。)と同じ断面形 状を有する異形棒力 なる焼結体を短く切断したものを用いることができる。また、分 銅の断面形状が円である場合には、例えば、丸棒力もなる焼結体をそのまま短く切 断したものを用いることができる。 [0235] (5)実施形態 1に係る偏心分銅の製造方法は、分銅 140を分銅支持体 130の分銅 保持穴 134の所定位置に挿入した状態で、分銅支持体 130をカゝしめる工程を含む 製造方法であるが、本発明はこれに限られない。例えば、分銅 140を分銅支持体 13 0における分銅保持穴 134に締めしろをもって圧入する工程を含む製造方法であつ てもよい、また、分銅支持体 130の温度が分銅 140の温度よりも高くした状態で、分 銅 140を分銅支持体 130における分銅保持穴 134に挿入する工程を含む製造方法 であってもよい。また、分銅 140と分銅支持体 130とを、ロウ付け、接着又は溶着によ つて接合する工程を含む製造方法であってもよい。また、分銅 140の一部又は全部 を所定の型に入れた状態で、型の中に分銅支持体 130の材料を铸込む工程を含む 製造方法であってもよい。また、上記した工程を併用した製造方法であってもよい。 例えば、カゝしめ後に接着を行う工程を含む製造方法、ロウ付け後に接着を行う工程を 含む製造方法、カゝしめ後にスポット溶接を行う工程を含む製造方法、スポット溶接後 にロウ付け等を施す工程を含む製造方法等も可能である。 [0234] (4) In the eccentric weights 120 to 2220 of each of the above embodiments, a sintered body made of a round bar is cut as a weight, and the cut body processed into the same cross-sectional shape as the weight is cut short. However, the present invention is not limited to this. For example, as a weight, a sintered body sintered in the shape of a weight, or a sintered body with a deformed bar force that has the same cross-sectional shape as a weight (for example, a circle, an ellipse, a fan shape, etc.) is cut short. Can be used. In addition, when the cross-sectional shape of the weight is a circle, for example, a sintered body having a round bar force can be used as it is cut short. [0235] (5) The manufacturing method of the eccentric weight according to the first embodiment includes the step of crimping the weight support 130 in a state where the weight 140 is inserted into the weight holding hole 134 of the weight support 130. Although it is a manufacturing method, this invention is not limited to this. For example, the manufacturing method may include a step of press-fitting the weight 140 into the weight holding hole 134 in the weight support body 130 with a tight margin, and the temperature of the weight support body 130 is higher than the temperature of the weight 140 Thus, the manufacturing method may include a step of inserting the weight 140 into the weight holding hole 134 in the weight support 130. Moreover, the manufacturing method including the process of joining the weight 140 and the weight support body 130 by brazing, adhesion | attachment, or welding may be sufficient. Further, the manufacturing method may include a step of inserting the material of the weight support 130 into the mold in a state where a part or all of the weight 140 is placed in a predetermined mold. Moreover, the manufacturing method which used the above-mentioned process together may be sufficient. For example, a manufacturing method including a step of bonding after crimping, a manufacturing method including a step of bonding after brazing, a manufacturing method including a step of spot welding after crimping, and brazing after spot welding A manufacturing method including a process is also possible.
[0236] (6)本発明の偏心分銅をモータ本体に固定する際には、本発明の偏心分銅におけ るモータ軸保持部にモータ本体におけるモータ軸を接合することにより行うが、その 接合方法としては、上記 (5)に示したような分銅と分銅支持体との接合方法と同様な 接合方法を採用することができる。  (6) When the eccentric weight of the present invention is fixed to the motor main body, the motor shaft in the motor main body is joined to the motor shaft holding portion of the eccentric weight of the present invention. For this, a joining method similar to the joining method of the weight and the weight support as shown in (5) above can be adopted.
[0237] (7)本発明の偏心分銅における分銅に対する分銅保持部の長手方向での接合位置 及び本発明の振動モータにおける偏心分銅とモータ軸との長手方向での接合位置 は、上記実施形態 18に示す位置関係に限定されるものではない。従って、実施形態 18に示す位置関係は、上記したすべての実施形態に共通して適用できるものである  [0237] (7) The joining position in the longitudinal direction of the weight holding portion with respect to the weight in the eccentric weight of the present invention and the joining position in the longitudinal direction of the eccentric weight and the motor shaft in the vibration motor of the present invention are as described in the above embodiment 18. It is not limited to the positional relationship shown in FIG. Therefore, the positional relationship shown in the embodiment 18 can be commonly applied to all the embodiments described above.
[0238] (8)本発明の振動モータは、携帯電話、 PDAなどの携帯機器に好適に用いられるほ 力 ゲーム機のリモコン、パチンコの操作部、電動歯ブラシなどにも好適に用いること ができる。 (8) The vibration motor of the present invention can also be suitably used for a remote control of a power game machine, a pachinko operation unit, an electric toothbrush and the like suitably used for portable devices such as mobile phones and PDAs.

Claims

請求の範囲 The scope of the claims
[1] 高比重金属力 なる分銅と、  [1] High specific gravity metal weight,
前記分銅を半周以上にわたって保持する分銅保持部及びモータ軸を保持するた めのモータ軸保持部並びに前記分銅保持部及び前記モータ軸保持部を連結する連 結部を有し、前記分銅を構成する高比重金属よりも比重の低 、金属力 なる分銅支 持体とを備えた偏心分銅であって、  A weight holding portion for holding the weight over a half circumference; a motor shaft holding portion for holding the motor shaft; and a connecting portion for connecting the weight holding portion and the motor shaft holding portion to constitute the weight. An eccentric weight equipped with a weight support body having a lower specific gravity and higher metal strength than a high specific gravity metal,
前記連結部は、前記モータ軸に沿った前記モータ軸保持部の長さよりも小さい値 の肉厚を有する薄肉領域を有することを特徴とする偏心分銅。  The eccentric weight is characterized in that the connecting portion has a thin region having a thickness smaller than the length of the motor shaft holding portion along the motor shaft.
[2] 請求項 1に記載の偏心分銅において、  [2] In the eccentric weight according to claim 1,
前記薄肉領域の肉厚は、前記モータ軸に沿った前記モータ軸保持部の長さの 50 %以下の値を有することを特徴とする偏心分銅。  An eccentric weight, wherein the thickness of the thin region has a value of 50% or less of the length of the motor shaft holding portion along the motor shaft.
[3] 請求項 1又は 2に記載の偏心分銅において、 [3] In the eccentric weight according to claim 1 or 2,
前記分銅支持体は、前記薄肉領域の肉厚に略等しい肉厚を有する板状部材から プレス絞り加工法によって製造されていることを特徴とする偏心分銅。  The eccentric weight is characterized in that the weight support is manufactured by a press drawing method from a plate-like member having a thickness substantially equal to the thickness of the thin region.
[4] 高比重金属力 なる分銅と、 [4] High specific gravity metal strength
前記分銅を半周以上にわたって保持する分銅保持部及びモータ軸を保持するた めのモータ軸保持部並びに前記分銅保持部及び前記モータ軸保持部を連結する連 結部を有し、前記分銅を構成する高比重金属よりも比重の低 、金属からなる複数の 薄板部材が積層された構造を有する分銅支持体とを備えた偏心分銅であって、 前記連結部のそれぞれは、前記モータ軸に沿った前記モータ軸保持部の長さより も小さい値の肉厚を有する薄肉領域を有することを特徴とする偏心分銅。  A weight holding portion for holding the weight over a half circumference; a motor shaft holding portion for holding the motor shaft; and a connecting portion for connecting the weight holding portion and the motor shaft holding portion to constitute the weight. An eccentric weight comprising a weight support body having a structure in which a plurality of thin plate members made of metal are laminated, each having a specific gravity lower than that of a high specific gravity metal, wherein each of the connecting portions is arranged along the motor shaft. An eccentric weight characterized by having a thin wall region having a thickness smaller than the length of the motor shaft holding portion.
[5] 請求項 4に記載の偏心分銅において、 [5] The eccentric weight according to claim 4,
前記複数の薄板部材における各薄肉領域の肉厚を合計した値は、前記モータ軸 に沿った前記モータ軸保持部の長さの 50%以下の値であることを特徴とする偏心分 銅。  An eccentric weight characterized in that the total thickness of each thin region in the plurality of thin plate members is a value of 50% or less of the length of the motor shaft holding portion along the motor shaft.
[6] 請求項 4又は 5に記載の偏心分銅において、  [6] In the eccentric weight according to claim 4 or 5,
前記薄板部材は、前記薄肉領域の肉厚に略等しい肉厚を有する板状部材カもプ レス絞り加工法によって製造されていることを特徴とする偏心分銅。 The eccentric weight is characterized in that the thin plate member is also manufactured by a press drawing method in which a plate-shaped member cap having a thickness substantially equal to the thickness of the thin region is also provided.
[7] 請求項 1〜6のいずれかに記載の偏心分銅において、 [7] In the eccentric weight according to any one of claims 1 to 6,
前記モータ軸に沿った前記モータ軸保持部の長さは、前記モータ軸保持部の内径 の 2倍以上の値を有することを特徴とする偏心分銅。  The length of the motor shaft holding portion along the motor shaft has a value more than twice the inner diameter of the motor shaft holding portion.
[8] 請求項 1〜7のいずれかに記載の偏心分銅において、 [8] In the eccentric weight according to any one of claims 1 to 7,
前記モータ軸の径方向に沿った前記薄肉領域の長さは 0. 4mm以上であることを 特徴とする偏心分銅。  An eccentric weight, wherein a length of the thin region along a radial direction of the motor shaft is 0.4 mm or more.
[9] 請求項 1〜8のいずれかに記載の偏心分銅において、 [9] In the eccentric weight according to any one of claims 1 to 8,
前記モータ軸に垂直な面における前記分銅保持部の肉厚は、 0. 4mm以下である ことを特徴とする偏心分銅。  An eccentric weight, wherein a thickness of the weight holding portion on a surface perpendicular to the motor shaft is 0.4 mm or less.
[10] 請求項 1〜9のいずれかに記載の偏心分銅において、 [10] In the eccentric weight according to any one of claims 1 to 9,
前記モータ軸に垂直な面における前記モータ軸保持部の肉厚は、 0. 4mm以下で あることを特徴とする偏心分銅。  An eccentric weight, wherein a thickness of the motor shaft holding portion in a plane perpendicular to the motor shaft is 0.4 mm or less.
[11] 請求項 1〜12のいずれかに記載の偏心分銅において、 [11] In the eccentric weight according to any one of claims 1 to 12,
前記連結部は、前記分銅支持体の薄肉領域若しくは前記薄板部材の薄肉領域の 内部に形成されたリブ又は前記分銅支持体の薄肉領域若しくは前記薄板部材の薄 肉領域の端部に形成された支柱を有することを特徴とする偏心分銅。  The connecting portion is a rib formed inside the thin area of the weight support or the thin area of the thin plate member, or a support column formed at the end of the thin area of the weight support or the thin area of the thin plate member. The eccentric weight characterized by having.
[12] 請求項 3又は 6に記載の偏心分銅において、 [12] In the eccentric weight according to claim 3 or 6,
前記分銅支持体は、焼き入れ硬化性を有する金属、時効硬化性を有する金属、加 工硬化性を有する金属又は形状記憶合金からなることを特徴とする偏心分銅。  The eccentric weight is characterized in that the weight support is made of a quench-hardening metal, an age-hardening metal, a work-hardening metal, or a shape memory alloy.
[13] 高比重金属力 なる分銅と、 [13] High specific gravity metal weight,
前記分銅を半周以上にわたって保持する分銅保持部及びモータ軸を保持するた めのモータ軸保持部を有し、前記分銅を構成する高比重金属よりも比重の低い金属 力もなる分銅支持体とを備えた偏心分銅であって、  A weight holding portion for holding the weight over a half circumference and a motor shaft holding portion for holding the motor shaft, and a weight support body having a lower specific gravity than a high specific gravity metal constituting the weight. An eccentric weight,
前記分銅支持体は、前記モータ軸に沿った前記モータ軸保持部の長さよりも小さ い値の肉厚を有する薄肉領域を有し、  The weight support has a thin region having a thickness smaller than the length of the motor shaft holding portion along the motor shaft,
前記モータ軸に沿った前記モータ軸保持部の厚さは、前記モータ軸保持部の内径 の 2倍以上の値を有することを特徴とする偏心分銅。  The eccentric weight, wherein the thickness of the motor shaft holding portion along the motor shaft has a value more than twice the inner diameter of the motor shaft holding portion.
[14] 高比重金属力 なる分銅と、 前記分銅を半周以上にわたって保持する分銅保持部及びモータ軸を保持するた めのモータ軸保持部を有し、前記分銅を構成する高比重金属よりも比重の低い金属 力もなる分銅支持体とを備えた偏心分銅であって、 [14] Weight with high specific gravity metal power, A weight holding portion for holding the weight over a half circumference and a motor shaft holding portion for holding the motor shaft, and a weight support body having a lower specific gravity than a high specific gravity metal constituting the weight. An eccentric weight,
前記分銅支持体は、前記モータ軸に沿った方向に貫通する貫通穴を有し、 前記モータ軸に沿った前記モータ軸保持部の厚さは、前記モータ軸保持部の内径 の 2倍以上の値を有することを特徴とする偏心分銅。  The weight support body has a through-hole penetrating in a direction along the motor shaft, and the thickness of the motor shaft holding portion along the motor shaft is at least twice the inner diameter of the motor shaft holding portion. An eccentric weight characterized by having a value.
[15] 高比重金属力 なる分銅と、 [15] A high specific gravity metal weight,
前記分銅を半周以上にわたって保持する分銅保持部及びモータ軸を保持するた めのモータ軸保持部並びに前記分銅保持部及び前記モータ軸保持部を連結する連 結棒であって前記モータ軸に沿った方向から見て一本の連結棒を有し、前記分銅を 構成する高比重金属よりも比重の低い金属からなる分銅支持体とを備えた偏心分銅 であって、  A weight holding part for holding the weight over a half circumference, a motor shaft holding part for holding the motor shaft, and a connecting rod for connecting the weight holding part and the motor shaft holding part, along the motor shaft An eccentric weight having a connecting rod as viewed from the direction and comprising a weight support made of a metal having a specific gravity lower than that of the high specific gravity metal constituting the weight,
前記モータ軸に沿った前記モータ軸保持部の厚さは、前記モータ軸保持部の内径 の 2倍以上の値を有することを特徴とする偏心分銅。  The eccentric weight, wherein the thickness of the motor shaft holding portion along the motor shaft has a value more than twice the inner diameter of the motor shaft holding portion.
[16] 請求項 13〜15のいずれかに記載の偏心分銅において、 [16] In the eccentric weight according to any one of claims 13 to 15,
前記分銅支持体は、切削加工法によって形成されて!ヽることを特徴とする偏心分 銅。  An eccentric weight, wherein the weight support is formed by a cutting method.
[17] 請求項 13〜15のいずれかに記載の偏心分銅において、  [17] In the eccentric weight according to any one of claims 13 to 15,
前記分銅支持体は、金属粉末射出成形法によって製造されていることを特徴とす る偏心分銅。  The eccentric weight is characterized in that the weight support is manufactured by a metal powder injection molding method.
[18] 請求項 1〜17のいずれかに記載の偏心分銅において、  [18] In the eccentric weight according to any one of claims 1 to 17,
前記分銅は、全周にわたって前記分銅保持部に保持されていることを特徴とする 偏心分銅。  The eccentric weight is characterized in that the weight is held in the weight holding portion over the entire circumference.
[19] 請求項 1〜18のいずれかに記載の偏心分銅において、  [19] In the eccentric weight according to any one of claims 1 to 18,
前記モータ軸保持部は、側方に開口する開口部を有することを特徴とする偏心分 銅。  The eccentric weight, wherein the motor shaft holding part has an opening part that opens laterally.
[20] 請求項 1〜19のいずれかに記載の偏心分銅において、  [20] In the eccentric weight according to any one of claims 1 to 19,
前記分銅支持体は、ステンレス鋼力 なることを特徴とする偏心分銅。 The eccentric weight is characterized in that the weight support is made of stainless steel.
[21] 請求項 1〜20のいずれかに記載の偏心分銅において、 [21] In the eccentric weight according to any one of claims 1 to 20,
前記分銅は、タングステン、タングステン合金、オスミウム、オスミウム合金、金、金合 金、イリジウム又はイリジウム合金力もなることを特徴とする偏心分銅。  The eccentric weight is characterized in that the weight is tungsten, tungsten alloy, osmium, osmium alloy, gold, gold alloy, iridium or iridium alloy force.
[22] 請求項 1〜21のいずれかに記載の偏心分銅において、 [22] In the eccentric weight according to any one of claims 1 to 21,
前記偏心分銅は、モータ本体力 突出する部分における前記モータ軸に取り付け て用いる偏心分銅であることを特徴とする偏心分銅。  The eccentric weight is an eccentric weight used by being attached to the motor shaft at a portion where the motor body force protrudes.
[23] 請求項 1〜22のいずれかに記載の偏心分銅において、 [23] In the eccentric weight according to any one of claims 1 to 22,
前記分銅の長手方向に沿った前記分銅支持体の長さが前記分銅の長手方向に沿 つた前記分銅の長さよりも短ぐ前記分銅支持体の分銅保持部が前記分銅を前記分 銅の長手方向に沿って偏心した位置で保持することを特徴とする偏心分銅。  The length of the weight support along the longitudinal direction of the weight is shorter than the length of the weight along the longitudinal direction of the weight. The weight holding portion of the weight support supports the weight in the longitudinal direction of the weight. An eccentric weight characterized by being held at an eccentric position along the axis.
[24] モータ本体と、請求項 1〜23のいずれかに記載の偏心分銅とを備えたことを特徴と する振動モータ。 [24] A vibration motor comprising a motor main body and the eccentric weight according to any one of claims 1 to 23.
[25] モータ本体と、請求項 23に記載の偏心分銅とを備え、 [25] A motor main body and the eccentric weight according to claim 23,
前記偏心分銅は、前記モータ本体に対して、前記モータ軸保持部と前記モータ本 体との距離が近づく向きに固定されていることを特徴とする振動モータ。  The vibration motor according to claim 1, wherein the eccentric weight is fixed in a direction in which a distance between the motor shaft holding portion and the motor body approaches the motor body.
[26] 請求項 24又は 25に記載の振動モータを備えたことを特徴とする携帯機器。 26. A portable device comprising the vibration motor according to claim 24 or 25.
[27] 高比重金属力 なる分銅と、 [27] A high specific gravity metal weight,
前記分銅を半周以上にわたって保持する分銅保持部及びモータ軸を保持するた めのモータ軸保持部並びに前記分銅保持部及び前記モータ軸保持部を連結する連 結部を有し、前記分銅を構成する高比重金属よりも比重の低 、金属力 なる分銅支 持体とを備えた偏心分銅を製造するための偏心分銅の製造方法であって、  A weight holding portion for holding the weight over a half circumference; a motor shaft holding portion for holding the motor shaft; and a connecting portion for connecting the weight holding portion and the motor shaft holding portion to constitute the weight. An eccentric weight manufacturing method for manufacturing an eccentric weight having a weight support body having a specific gravity lower than that of a high specific gravity metal and having a metallic force,
前記モータ軸に沿った前記モータ軸保持部の長さよりも小さい値の肉厚を有する 板状部材からプレス絞り加工法によって分銅支持体を製造する工程と、  Producing a weight support by a press drawing method from a plate-like member having a thickness smaller than the length of the motor shaft holding portion along the motor shaft;
前記分銅支持体に、前記分銅を挿入する工程とを含むことを特徴とする偏心分銅 の製造方法。  And a step of inserting the weight into the weight support.
[28] 高比重金属カゝらなる分銅を準備するとともに、前記分銅を保持する分銅保持部及 びモータ軸を保持するためのモータ軸保持部を有し、前記分銅を構成する高比重金 属よりも比重の低い金属力 なる分銅支持体を準備する第 1工程と、 前記分銅支持体に前記分銅を挿入した状態で、前記モータ軸に沿った方向にお ける両側力 前記分銅を押圧して前記分銅を塑性変形させることにより、前記分銅と 前記分銅保持部とを固着させる第 2工程とを含むことを特徴とする偏心分銅の製造 方法。 [28] A high specific gravity metal comprising a weight comprising a high specific gravity metal cover and having a weight holding portion for holding the weight and a motor shaft holding portion for holding the motor shaft, and constituting the weight A first step of preparing a weight support having a lower specific gravity and a metal force; With the weight inserted into the weight support, both side forces in the direction along the motor shaft press the weight to plastically deform the weight, thereby fixing the weight and the weight holding portion. And a second step of producing an eccentric weight.
請求項 28に記載の偏心分銅の製造方法において、  The method for producing an eccentric weight according to claim 28,
前記第 1工程における前記分銅の大きさは、前記分銅支持体に前記分銅を挿入した 状態のとき、前記分銅の外周と前記分銅保持部の内周との間隙の平均値が 5 μ m〜 100 /z mの範囲内となるような大きさであることを特徴とする偏心分銅の製造方法。 The size of the weight in the first step is such that the average value of the gap between the outer periphery of the weight and the inner periphery of the weight holding portion is 5 μm to 100 when the weight is inserted into the weight support. A method for producing an eccentric weight, wherein the size is within a range of / zm.
PCT/JP2005/018666 2004-10-08 2005-10-07 Eccentric weight, vibration motor, portable apparatus, and method of producing eccentric weight WO2006041045A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2004/014972 WO2006040808A1 (en) 2004-10-08 2004-10-08 Eccentric weight, method for producing the same, vibration motor and portable apparatus
JPPCT/JP2004/014972 2004-10-08

Publications (1)

Publication Number Publication Date
WO2006041045A1 true WO2006041045A1 (en) 2006-04-20

Family

ID=36148110

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2004/014972 WO2006040808A1 (en) 2004-10-08 2004-10-08 Eccentric weight, method for producing the same, vibration motor and portable apparatus
PCT/JP2005/018666 WO2006041045A1 (en) 2004-10-08 2005-10-07 Eccentric weight, vibration motor, portable apparatus, and method of producing eccentric weight

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014972 WO2006040808A1 (en) 2004-10-08 2004-10-08 Eccentric weight, method for producing the same, vibration motor and portable apparatus

Country Status (1)

Country Link
WO (2) WO2006040808A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08251862A (en) * 1995-03-07 1996-09-27 Takashi Nosaka Flywheel device, and its motor, and its generator
JPH09182363A (en) * 1995-12-22 1997-07-11 Kesamori Ide Eccentric weight for vibration
JPH11127553A (en) * 1997-10-22 1999-05-11 Mitsumi Electric Co Ltd Rotor for oscillation generating motor
JP2000262969A (en) * 1999-03-15 2000-09-26 Matsushita Electric Ind Co Ltd Flat vibration motor
JP2001062398A (en) * 1999-08-27 2001-03-13 Mitsumi Electric Co Ltd Vibration generating motor
JP2003245608A (en) * 2002-02-25 2003-09-02 Namiki Precision Jewel Co Ltd Counterweight for vibration motor and vibration motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08251862A (en) * 1995-03-07 1996-09-27 Takashi Nosaka Flywheel device, and its motor, and its generator
JPH09182363A (en) * 1995-12-22 1997-07-11 Kesamori Ide Eccentric weight for vibration
JPH11127553A (en) * 1997-10-22 1999-05-11 Mitsumi Electric Co Ltd Rotor for oscillation generating motor
JP2000262969A (en) * 1999-03-15 2000-09-26 Matsushita Electric Ind Co Ltd Flat vibration motor
JP2001062398A (en) * 1999-08-27 2001-03-13 Mitsumi Electric Co Ltd Vibration generating motor
JP2003245608A (en) * 2002-02-25 2003-09-02 Namiki Precision Jewel Co Ltd Counterweight for vibration motor and vibration motor

Also Published As

Publication number Publication date
WO2006040808A1 (en) 2006-04-20

Similar Documents

Publication Publication Date Title
US7918007B2 (en) Caulked assembly of metal plate body with columnar body, caulked assembly of resin molded body with columnar body, and method for producing the same
CN104411423B (en) The end portion segmentation method of metallic plate or metal bar, use metal parts and joint method thereof that this end portion segmentation method manufactures
JP2008062008A (en) Method of manufacturing club head face
CN104884203B (en) A kind of method of the metal sleeve for the carrier for manufacturing the abrasive material for being used as saw pearl
US20150367404A1 (en) Method of and a device for forming a projection on a metal member and a metal part processed by the method of forming a projection
CN103692150B (en) The manufacture method of one-body molded forging glof club head
CN101362280B (en) Production method of ball valve core
WO2006041045A1 (en) Eccentric weight, vibration motor, portable apparatus, and method of producing eccentric weight
JP2018144606A (en) Manufacturing method of headrest stay
JP6502226B2 (en) Ceramic heater
WO2006022354A1 (en) Eccentric weight and method of producing the weight, vibrating motor and method of producing the motor, and portable apparatus
JP2008064526A (en) Pressure sensor and its manufacturing method
CN209120231U (en) Novel aluminum alloy welds center
WO2006049144A1 (en) Eccentric weight, vibration motor, portable apparatus and method for producing eccentric weight
WO2008029762A1 (en) Dry cell negative electrode collector
JP2007090371A (en) Stock for wire drawing die, and wire drawing die
JP6004532B2 (en) Sizing core mold
WO2006109365A1 (en) Eccentric weight, vibrating motor, mobile device, and method of manufacturing eccentric weight
JP2001015188A5 (en)
CN215434905U (en) High-speed extruder mold core
CN220680502U (en) Tool bit and tool
JPH1092395A (en) Battery can forming material and manufacture thereof
JP2001129479A (en) Eccentric sash weight for vibration motor
WO2016031074A1 (en) Metal-member manufacturing apparatus
JP3701666B1 (en) Vibration generator and manufacturing method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05790180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP