WO2006109365A1 - Eccentric weight, vibrating motor, mobile device, and method of manufacturing eccentric weight - Google Patents

Eccentric weight, vibrating motor, mobile device, and method of manufacturing eccentric weight Download PDF

Info

Publication number
WO2006109365A1
WO2006109365A1 PCT/JP2005/024039 JP2005024039W WO2006109365A1 WO 2006109365 A1 WO2006109365 A1 WO 2006109365A1 JP 2005024039 W JP2005024039 W JP 2005024039W WO 2006109365 A1 WO2006109365 A1 WO 2006109365A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
eccentric
eccentric weight
motor shaft
support
Prior art date
Application number
PCT/JP2005/024039
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichi Shimodaira
Takaomi Tanaka
Yoshito Hirata
Hidehiko Ichikawa
Akira Shimojima
Hikaru Yoshizawa
Kenichi Kusano
Original Assignee
Nanshin Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanshin Co., Ltd. filed Critical Nanshin Co., Ltd.
Publication of WO2006109365A1 publication Critical patent/WO2006109365A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • H02K7/061Means for converting reciprocating motion into rotary motion or vice versa using rotary unbalanced masses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/10Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy
    • B06B1/16Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving rotary unbalanced masses

Definitions

  • the present invention relates to an eccentric weight, a vibration motor, a portable device, and a method for manufacturing an eccentric weight.
  • FIG. 17 is a view for explaining the first vibration motor 3000 and the first eccentric weight 3020 among the conventional vibration motors.
  • Fig. 17 (a) is a perspective view of vibration motor 3000
  • Fig. 17 (b) is a sectional view of eccentric weight 3020 cut by a plane perpendicular to motor shaft 3012
  • Fig. 17 (c) is an eccentric weight 3020.
  • FIG. 6 is a cross-sectional view taken along a plane along the motor shaft 3012. In FIGS. 17 (b) and 17 (c), the position of the eccentric weight 3020 in FIG. 17 (a) is changed in the rotational direction.
  • the first vibration motor 3000 is composed of a small cylindrical motor body 3010 and an eccentric weight 3020 having a substantially fan shape and having a force such as a sintered body of tungsten.
  • the motor shaft 3012 of the motor body 3010 is generally held in the motor shaft holding hole 3022 of the eccentric weight 3020.
  • the eccentric weight 3020 is attached to the tip of the motor shaft 3012 by crimping by deforming the motor shaft holding hole 3022 by applying an external force to the motor shaft holding hole 3022 through which the motor shaft 3012 passes. (For example, see Patent Document 1).
  • FIG. 18 is a diagram for explaining the second eccentric weight.
  • Fig. 18 (a) is a front view of the eccentric weight
  • Fig. 18 (b) is a cross-sectional view along the line A-A in Fig. 18 (a)
  • Fig. 18 (c) is a front view of the component parts.
  • FIG. 18 (d) is a cross-sectional view taken along the line BB in FIG. 18 (c).
  • a part of the motor body 3110 is also shown! /.
  • the second eccentric weight 3120 includes a motor shaft 3112 of the motor body 3110.
  • the center of gravity of the eccentric weight 3120 is arranged at a position where the center force of the motor shaft holding hole 3132 is also separated.
  • the eccentric amount of the eccentric weight 3120 increases, and by using such a second eccentric weight 3120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
  • the weight 3140 is integrally bonded and fixed to a part of the outer surface 3134 of the weight support 3130 via the brazing portion 3150. Therefore, when the vibration motor is used for a long time, there is a problem that the reliability of the connection between the weight 3140 and the weight support 3130 is lowered.
  • a weight holding body having a weight holding portion for holding a weight using the elasticity of a metal plate member is provided. It can be considered that an eccentric weight is used. (For example, see Patent Document 2)
  • FIG. 19 is a view for explaining a third eccentric weight 3220 disclosed in Patent Document 2 among such eccentric weights.
  • the weight support body 3230 having the weight holding part 3234 for holding the weight 3240 using the elasticity of the metal plate-like member is used as the weight support body. Even when the vibration motor is used for a long period of time, it is possible to suppress a decrease in the reliability of the connection between the weight 3240 and the weight support 3230.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-129479
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-245608
  • the weight support 3230 that simply uses the elasticity of the metallic plate-like member as in the third eccentric weight 3220 described above, the weight 3240 and the weight support 3230 are used. It is not always possible to sufficiently suppress the decrease in the reliability of bonding with the.
  • the present invention has been made to solve such a problem, and is light and small.
  • An object of the present invention is to provide an eccentric weight in which deterioration of properties is suppressed.
  • Another object of the present invention is to provide a vibration motor and a portable device having such an excellent eccentric weight.
  • the eccentric weight of the present invention has a weight made of a high specific gravity metal key, a weight holding part for holding the weight, and a motor shaft holding part for holding the motor shaft, An eccentric weight manufactured by integrally joining a weight support that is an elastic body force of a metal having a specific gravity lower than that of a high specific gravity metal constituting the weight, wherein the weight holding portion includes the weight and the weight. It has a weight-side protruding portion that reduces the amount of protrusion to the weight side when the support is integrated.
  • the eccentric weight includes a weight made of a high specific gravity metal and a weight support made of a low specific gravity metal having a lower specific gravity than the high specific gravity metal constituting the weight. Since the eccentric weight is manufactured by integrating the body and the body, the total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
  • the weight support is a weight support made of an elastic body, the weight is held by the weight holding portion by the elastic force of the entire weight holding portion. It will be. For this reason, when the vibration motor (and eccentric weight) is used for a long time, the reliability of the connection between the weight and the weight support is suppressed, and long-term reliability is reduced by using such an eccentric weight.
  • a high vibration motor can be configured.
  • the weight-side protruding portion that reduces the protruding amount to the weight side is provided. Since the weight holding portion has, the weight is held by the weight holding portion with a stronger elastic force to which the elastic force of the weight side protruding portion is added. For this reason, when the vibration motor (and eccentric weight) is used for a long time, it further suppresses the decrease in the reliability of the connection between the weight and the weight support. Therefore, by using such an eccentric weight, a vibration motor with higher long-term reliability can be configured.
  • the weight support is a weight support made of an elastic body
  • the motor shaft is held by the motor shaft holding portion by elastic force. .
  • the vibration motor is used for a long time, it is possible to suppress a decrease in the reliability of the connection between the motor shaft and the weight support, and it is possible to configure the vibration motor with high long-term reliability.
  • the size of the inner peripheral portion of the weight holding portion before integrating the weight and the weight support is smaller than the size of the outer peripheral portion of the weight. Is preferable.
  • the weight is held by the weight holding portion by the elastic force of the entire weight holding portion.
  • the inner diameter of the motor shaft holding portion is smaller than the outer diameter of the motor shaft.
  • “integrating a weight and a weight support” includes all bonding of the weight and the weight support by some method.
  • the weight support is an elastic body manufactured by subjecting a thin metal member to plastic deformation and then performing a hardening treatment.
  • it consists of
  • the weight support manufactured by performing the hardening process after plastic deformation of the thin metal member into a predetermined shape is used, so that the weight support is the weight and the motor shaft.
  • the vibration motor (and eccentric weight) is used for a long time. can do.
  • a vibration motor with high long-term reliability can be configured by using such an eccentric weight.
  • the thin metal member is plastically deformed into a predetermined shape. Since the weight support manufactured by performing the curing process after the formation is used, the amount of the material constituting the weight support can be made extremely small while maintaining the required strength. As a result, the total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be further increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with a lighter weight and less power consumption.
  • the weight support body can hold the weight with a strong elastic force and can hold the motor shaft with a strong elastic force. From this point of view, it is more preferable that the Vickers hardness (Hv) of the weight support is 200 or more.
  • the weight support is manufactured by plastic deformation starting from the motor shaft holding portion. .
  • the motor shaft holding part preferably has a structure in which the thin metal member is wound at least twice. .
  • the motor shaft can be more firmly held by the motor shaft holding portion, and the motor by the motor shaft holding portion can be used when the vibration motor is used for a long time. It can suppress that the holding
  • the weight-side protruding portion has a shape in which a width is narrowed by directing toward a tip portion of the weight-side protruding portion. It is preferable to have it.
  • the motor shaft holding portion may be arranged on the motor shaft side when the motor shaft is inserted into the motor shaft holding portion. It is preferable to have a motor shaft side protrusion that reduces the amount of protrusion.
  • the motor shaft is held by the motor shaft holding portion with a stronger elastic force to which the elastic force of the motor shaft side protruding portion is added. For this reason, when the vibration motor is used for a long time, it is possible to suppress a decrease in the reliability of the connection between the motor shaft and the weight support, and thus a vibration motor with high long-term reliability can be configured.
  • the motor shaft side protruding portion has a shape in which the width is narrowed toward the tip of the motor shaft side protruding portion.
  • the motor shaft when the eccentric weight is attached to the motor shaft during the manufacturing process of the vibration motor, the motor shaft is inserted into the motor shaft holding portion when the motor shaft is inserted into the motor shaft holding portion. As it is inserted, the motor shaft can gradually push the motor shaft side protrusion outward. For this reason, when the vibration motor is used for a long period of time, it is possible to suppress a decrease in the reliability of the connection between the motor shaft and the weight support, and thus it is possible to configure the vibration motor with high long-term reliability. .
  • the weight has a recess for receiving the weight side protrusion at a portion corresponding to the weight side protrusion. It is preferable that
  • the eccentric weight of the present invention has a weight made of a high specific gravity metal and the weight is retained.
  • a metal plate holding portion and a motor shaft holding portion for holding the motor shaft, and a sheet metal member having a specific gravity lower than that of the high specific gravity metal constituting the weight is plastically deformed into a predetermined shape and then subjected to a hardening process.
  • the portion has a structure that holds the weight with a stronger elastic force.
  • the eccentric weight is made of a weight made of a high specific gravity metal and a specific gravity lower than that of a high specific gravity metal constituting the weight! Since the eccentric weight is manufactured by integrally joining the weight support made of metal, the total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
  • the weight support body is a weight support body made of an elastic body, the weight is held by the weight holding portion by elastic force. For this reason, when the vibration motor (and the eccentric weight) is used for a long time, it is possible to suppress a decrease in the reliability of the connection between the weight and the weight support.By using such an eccentric weight, long-term reliability can be improved. High vibration motors can be constructed.
  • the weight support manufactured by subjecting the thin metal member to plastic deformation to a predetermined shape and then performing a hardening treatment is used.
  • the weight support body can hold the weight and the motor shaft firmly by elastic force, and when the vibration motor (and eccentric weight) is used for a long time, the reliability of the connection between the weight and the weight support body is improved. It can suppress sufficiently that it falls. For this reason, a vibration motor with high long-term reliability can be configured by using such an eccentric weight.
  • the eccentric weight described in the above (10) since a thin plate metal member is plastically deformed into a predetermined shape and then subjected to hardening treatment, it is used as a weight support made of an elastic body. Thus, the amount of the material constituting the weight support can be made extremely small while maintaining the required strength. As a result, the total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be further increased. For this reason, such an eccentric weight is used. By virtue of this, it is possible to configure a vibration motor that can obtain the required amount of vibration with lighter and less power consumption.
  • the weight holding portion holds the weight with a stronger elastic force. Since the weight support body has such a structure, the weight is held by the weight holding portion with a stronger elastic force when the motor shaft is inserted into the motor shaft holding portion. For this reason, when the vibration motor (and the eccentric weight) is used for a long time, it is possible to further suppress the decrease in the reliability of the connection between the weight and the weight support, so that such an eccentric weight is used. Thus, a vibration motor with higher long-term reliability can be configured.
  • the eccentric weight of the present invention has a weight made of a high specific gravity metal key, a weight holding portion for holding the weight, and a motor shaft holding portion for holding the motor shaft, Manufactured by integrating a thin plate metal member having a specific gravity lower than that of the high specific gravity metal that composes the weight into a predetermined shape and then integrating it with a weight support made of an elastic body. It is an eccentric weight, and the weight support body has a structure in which a space defined by the motor shaft holding portion is reduced when the weight and the weight support body are integrated together.
  • the eccentric weight is made of a weight made of a high specific gravity metal and a specific gravity lower than that of the high specific gravity metal constituting the weight! Since the eccentric weight is manufactured by integrally joining the weight support made of metal, the total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
  • the weight support body is a weight support body made of an elastic body, the weight is held by the weight holding portion by elastic force. For this reason, when the vibration motor (and the eccentric weight) is used for a long time, it is possible to suppress a decrease in the reliability of the connection between the weight and the weight support.By using such an eccentric weight, long-term reliability can be improved. High vibration motors can be constructed.
  • the thin metal member is plastically deformed into a predetermined shape. Since the weight support manufactured by performing the curing process after being formed is used, the weight support can hold the weight and the motor shaft firmly by elastic force, and the vibration motor ( Further, it is possible to sufficiently suppress the decrease in the reliability of the connection between the weight and the weight support when the eccentric weight is used for a long time. For this reason, a vibration motor with high long-term reliability can be configured by using such an eccentric weight.
  • the eccentric weight described in the above (11) since a thin plate metal member is plastically deformed into a predetermined shape and then subjected to hardening treatment, it is used as a weight support made of an elastic body. Thus, the amount of the material constituting the weight support can be made extremely small while maintaining the required strength. As a result, the total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be further increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter weight and less power consumption.
  • the weight hardness (Hv) of the weight support is preferably 150 or more.
  • the weight support can hold the weight with a strong elastic force and can hold the motor shaft with a strong elastic force. From this point of view, it is more preferable that the Vickers hardness (Hv) of the weight support is 200 or more.
  • the weight holding portion holds the weight over the entire outer peripheral portion of the weight.
  • the entire outer peripheral portion refers to the entire outer periphery of the weight in a plane perpendicular to the longitudinal direction of the weight (that is, a plane perpendicular to the motor shaft).
  • the weight may be held in the weight holding portion throughout the longitudinal direction of the weight, but is not necessarily held in the weight holding portion throughout the longitudinal direction of the weight. ,.
  • the weight support is the weight. It is preferable that the notched portion provided between the holding portion and the motor shaft holding portion has a structure in which the thin metal member intersects!
  • the weight support body can hold the weight and the motor shaft more firmly by the elastic force.
  • the weight pushes the inner peripheral part of the weight holding part outward, and as a result, the inner peripheral part of the motor shaft holding part is narrowed.
  • the motor shaft is inserted into the motor shaft holding part, the motor shaft is in a state of pushing the inner peripheral part of the motor shaft holding part outward, so that the inner peripheral part of the weight holding part is restricted. To do.
  • the synergistic effect of these actions makes it possible to hold the weight more firmly on the weight holding part, and it is possible to hold the motor shaft more firmly on the motor shaft holding part.
  • the size of the inner peripheral portion of the weight holding portion before the weight and the weight support are integrated is smaller than the size of the outer peripheral portion of the weight. Further, it is preferable that the inner diameter of the motor shaft holding portion is smaller than the outer shape of the motor shaft.
  • the weight support is a weight that holds the weight from one side or both sides in a direction along the motor shaft. It is preferable to have a holding frame.
  • the weight support can hold the weight from one side or both sides in the direction along the motor shaft. For this reason, when the vibration motor (and the eccentric weight) is used for a long time, it is possible to further suppress the reduction in the reliability of the connection between the weight and the weight holding portion. Therefore, it is possible to configure a vibration motor with higher long-term reliability.
  • the weight has a weight having a circular cross section in a plane orthogonal to a direction along the motor shaft.
  • the weight can be inserted into the weight holding portion from either end side of the weight holding portion, so that it is possible to freely place the weight in the weight holding portion.
  • the degree is increased and workability is improved.
  • the weight is a simple columnar shape, it becomes possible to use a sintered body having a round bar force cut short as it is, and it becomes easy to manufacture the weight. For this reason, the manufacturing cost at the time of manufacturing an eccentric weight can be made low.
  • the thin plate metal member has one or more holes for lightening the weight support. Is preferably provided.
  • the thickness of the thin metal member is preferably in the range of 0.05 mm to 0.5 mm. .
  • the thickness of the thin metal member is less than 0.05 mm, the strength required for the weight support may not be obtained, and if the thickness of the thin metal member exceeds 0.5 mm, This is because if the total weight of the weight support is reduced and the eccentric amount of the eccentric weight can be further increased, the effect may not be obtained. From these viewpoints, the thickness of the thin metal member is 0.008mn! More preferably within the range of ⁇ 0.3mm Good.
  • a length of the weight holding portion along a longitudinal direction of the weight is shorter than the weight.
  • the part preferably holds the weight at a position eccentric along the longitudinal direction of the weight.
  • the thin plate metal part is made of a metal having quenching hardenability, a metal having age hardenability, and work hardenability. It is preferable to have a metal or shape memory alloy power.
  • a weight support or a motor shaft support is formed by using a metal having quench hardening property, a metal having age hardening property, a metal having work hardening property, or a shape memory alloy, thereby forming a weight. It becomes possible to give a predetermined elastic force to the support body or the motor shaft support body.
  • Examples of the metal having quenching hardenability include martensitic stainless steel. Since martensitic stainless steel is originally a material with high corrosion resistance and resistance to glare, it is not necessary to apply plating to the entire eccentric weight. For this reason, the joint portion between the eccentric weight and the plating film and the plating itself are not cracked, and it is possible to suppress a decrease in the reliability related to holding the motor shaft in the motor shaft holding portion.
  • martensitic stainless steel is more viscous than tungsten, tungsten alloys, and the like, it is brittle and fragile. By holding the weight with martensitic stainless steel, a material constituting the weight is obtained. The problem of being easily broken can also be suppressed.
  • martensitic stainless steel is less expensive than tungsten or tungsten alloys, it is possible to manufacture an eccentric weight by forming a shaft body with such relatively inexpensive martensitic stainless steel. Cost can be reduced.
  • Examples of martensitic stainless steels include SUS403, SUS410, SUS416, SUS420, SUS429, SUS431, and SUS440.
  • the quenching process gives a Vickers hardness (Hv) of about 300-600.
  • age-hardening metals include precipitation hardening stainless steel, beryllium copper alloy, nickel manganese copper alloy, precipitation hardening titanium alloy, and aluminum alloy.
  • the age-hardening metal is a precipitation hardening stainless steel
  • the same effect as in the case of the martensitic stainless steel described above is obtained, and moreover than in the case of the martensitic stainless steel. If the corrosion resistance is excellent, the effect is obtained.
  • precipitation hardening stainless steel include SUS630 and SUS631. In this case, a value S of about 300 to 450 is obtained as a Vickers hardness (Hv) by precipitation hardening at 420 ° C. for 2 hours.
  • the age-hardening metal is a beryllium copper alloy
  • the effects of easy plastic deformation and excellent mechanical strength after precipitation hardening are obtained.
  • An example of the beryllium copper alloy is a beryllium copper alloy containing 0.8% to 4.0% (more preferably 1.5% to 3.5%) of beryllium.
  • a Vickers hardness (Hv) of about 200 to 350 is obtained by precipitation hardening for 2 hours at 320 ° C to 330 ° C.
  • the age-hardening metal is a nickel manganese copper alloy (nickel manganese white)
  • nickel manganese copper alloy nickel manganese copper alloy containing about 20% nickel and about 20% manganese, with the balance being copper.
  • Hv Vickers hardness
  • the age-hardening metal is a precipitation hardening titanium alloy
  • the effects of easy plastic deformation and excellent mechanical strength after precipitation hardening can be obtained.
  • Precipitation hardening Since the titanium alloy has a relatively low specific gravity, it is possible to further reduce the total weight of the weight support and further increase the amount of eccentricity in the eccentric weight. For this reason, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter weight and less power consumption.
  • Low specific gravity precipitation-hardening titanium alloys include titanium alloys containing approximately 6% aluminum and approximately 4% vanadium (Ti-6A1-4V) and titanium alloys including approximately 6% aluminum and approximately 2% vanadium (Ti — 6A1— 2V). In this case, a value of about 300 Vickers hardness (Hv) can be obtained by precipitation hardening for 2 hours at 450 ° C.
  • the age-hardening metal is an aluminum alloy
  • the effects of easy plastic deformation and excellent corrosion resistance and mechanical strength can be obtained.
  • the aluminum alloy has a lower specific gravity than other metals, the total weight of the weight support can be further reduced and the amount of eccentricity in the eccentric weight can be further increased. For this reason, it is possible to configure a vibration motor that can obtain a necessary vibration amount with less power consumption and less power.
  • Aluminum alloys include Al-Cu aluminum alloys (duralumin), Al-Mn aluminum alloys, A1-Mg aluminum alloys, A1-Mg-Si aluminum alloys or Al-Zn aluminum alloys. Can be illustrated.
  • Various metals including stainless steel can be used as the work-hardening metal.
  • the weight support can have the necessary elasticity by cold rolling at room temperature (for example, 30 to 80% rolling).
  • a nickel titanium alloy or a copper zinc aluminum alloy can be exemplified.
  • the shape memory alloy is a nickel titanium alloy
  • an effect that the corrosion resistance is superior to that of martensitic stainless steel is obtained.
  • the nickel titanium alloy has a relatively low specific gravity
  • the total weight of the weight support can be further reduced and the amount of eccentricity in the eccentric weight can be further increased. For this reason, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
  • the shape memory alloy is a copper zinc aluminum alloy
  • substantially the same effect as that of the nickel titanium alloy described above can be obtained, and the specific gravity is further lower, so It is possible to further reduce the weight and further increase the amount of eccentricity in the eccentric weight. For this reason, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
  • the weight is selected from the group consisting of tungsten, tungsten alloy, osmium, osmium alloy, gold, gold alloy, iridium or iridium alloy. I prefer to be.
  • tungsten, tungsten alloy, osmium, osmium alloy, gold, gold alloy, iridium or iridium alloy has a very high specific gravity, and therefore the amount of eccentricity in the eccentric weight can be further increased. . Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with less power consumption.
  • the weight a metal having a specific gravity higher than that of the metal constituting the weight support, such as silver, copper, brass, lead, molybdenum, or nickel, in addition to the above metal. It is also preferable to use.
  • the metal constituting the weight can be appropriately selected from viewpoints such as ease of processing, cost, and corrosion resistance. When a material with a relatively low specific gravity is used, the necessary eccentricity can be obtained by increasing the volume of the weight.
  • the weight since the weight does not need a function for holding the motor shaft, the weight has a very simple shape (for example, a cross-section such as a circle, an ellipse, or a sector). Can be adopted. For this reason, as a weight, a sintered body sintered in the shape of a weight, or a sintered body with a deformed bar force having the same cross-sectional shape as a weight (for example, a circle, an ellipse, a fan shape, etc.) is cut short. Can be used. In addition, it is possible to use a cut body obtained by cutting a sintered body made of a round bar and cutting it into the same cross-sectional shape as that of the weight. In addition, when the cross-sectional shape of the weight is a circle, a sintered body that also has a round bar force can be used as it is cut short.
  • a vibration motor according to the present invention includes a motor main body and the eccentric weight according to any one of (1) to (21).
  • the eccentric weight that can be suitably used for a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption when this type of vibration motor is used for a long period of time, it is equipped with an excellent eccentric weight that sufficiently suppresses the decrease in the reliability of the connection between the weight and the weight support. In addition, the required amount of vibration can be obtained with power consumption, and the vibration motor is reliable for a long time.
  • the weight holding portion in which the weight holding portion along the longitudinal direction of the weight is shorter than the weight is used as the eccentric weight.
  • An eccentric weight for holding the weight at an eccentric position along the longitudinal direction of the weight is provided, and the eccentric weight is closer to the motor body in a direction in which the distance between the motor shaft holding portion and the motor body is closer. Preferred to be fixed to ,.
  • a portable device of the present invention is characterized by including the vibration motor according to (22) or (23).
  • the required amount of vibration can be obtained with light weight and low power consumption, and since the vibration motor with high reliability for a long time is provided, light weight and low power consumption are required. A large amount of vibration can be obtained, long-term reliability is high, and it becomes a portable device.
  • An eccentric weight manufacturing method is an eccentric weight manufacturing method for manufacturing an eccentric weight according to claim 1, wherein a process corresponding to the weight side protruding portion is performed.
  • the method includes a second step of manufacturing the weight support and a third step of integrating the weight and the weight holding portion in the weight support.
  • the thin plate metal member is hardened to form the weight support, so that the weight support includes the weight and the motor shaft. It becomes possible to hold firmly, and when the vibration motor (and eccentric weight) is used for a long time, it is possible to sufficiently suppress the reduction of the holding force of the weight and the motor shaft by the weight support. . Therefore, by using such an eccentric weight, it is possible to configure a vibration motor with high long-term reliability.
  • the weight holding portion having the weight side protruding portion since the weight holding portion having the weight side protruding portion is formed, the weight has the elastic force of the weight side protruding portion. In addition, it is possible to hold the weight holding portion with a stronger elastic force. For this reason, when the vibration motor (and the eccentric weight) is used for a long time, it is possible to further suppress the reduction in the reliability of the connection between the weight and the weight support, and thus by using such an eccentric weight, In addition, a vibration motor with higher long-term reliability can be configured.
  • the second step is to perform a Vickers hardness (Hv) by subjecting the weight support precursor to a curing treatment.
  • Hv Vickers hardness
  • the weight support can hold the weight with a strong elastic force and can hold the motor shaft with a strong elastic force.
  • the Vickers hardness (Hv) of the weight support is preferably 200 or more, more preferably 250 or more.
  • the size of the inner peripheral portion of the weight support portion is equal to the outer peripheral portion of the weight.
  • the thin metal member is plastically deformed so as to be larger than the size, and the eccentric weight is produced by the method of manufacturing the eccentric weight in a state in which the weight is inserted into the weight support and the double side force in the direction along the motor shaft is applied.
  • the method further includes a fourth step including a step of fixing the weight holding portion to the weight holding portion.
  • the size of the inner peripheral portion of the weight support portion becomes larger than the size of the outer peripheral portion of the weight, so that it becomes easy to insert the weight into the weight support body, and the eccentric weight. It becomes possible to improve productivity at the time of manufacturing.
  • FIG. 1 is a view for explaining an eccentric weight 120 according to a first embodiment.
  • FIG. 2 is a view for explaining a method of manufacturing the eccentric weight 120 according to the first embodiment.
  • FIG. 3 is a view for explaining the vibration motor 100 according to the first embodiment.
  • FIG. 4 is a view for explaining an eccentric weight 220 according to Embodiment 2.
  • FIG. 5 is a view for explaining an eccentric weight 320 according to Embodiment 3.
  • FIG. 6 is a view for explaining an eccentric weight 420 according to Embodiment 4.
  • FIG. 7 is a view for explaining an eccentric weight 520 according to a fifth embodiment.
  • FIG. 8 is a view for explaining an eccentric weight 620 according to a sixth embodiment.
  • FIG. 9 is a perspective view of an eccentric weight 720 according to Embodiment 7.
  • FIG. 10 is a view for explaining an eccentric weight 820 according to an eighth embodiment.
  • FIG. 11 is a view for explaining an eccentric weight 920 according to the ninth embodiment.
  • FIG. 12 is a view for explaining an eccentric weight 1020 according to the ninth embodiment.
  • FIG. 13 is a view for explaining a method of manufacturing the eccentric weight 1020 according to the tenth embodiment.
  • FIG. 14 is a view for explaining a vibration motor 1000 according to the tenth embodiment.
  • FIG. 15 is a view for explaining an eccentric weight 1120 according to the eleventh embodiment.
  • FIG. 16 is a schematic view for explaining the method of manufacturing the eccentric weight 1120 according to the eleventh embodiment.
  • FIG. 17 is a diagram shown for explaining the first vibration motor 3000 and the first eccentric weight 3020. is there.
  • FIG. 18 is a view for explaining a second eccentric weight 3120.
  • FIG. 19 is a view for explaining a third eccentric weight 3220.
  • FIG. 1 is a view for explaining an eccentric weight 120 according to the first embodiment.
  • Fig. 1 (a) is a view of the weight support 130 of the eccentric weight 120 as viewed from the front
  • Fig. 1 (b) is a view of the weight support 130 of the eccentric weight 120 viewed from the side.
  • Is a view of the weight support 130 of the eccentric weight 120 from the bottom
  • Fig. 1 (d) is a cross-sectional view taken along the line A1-A1 in Fig. 1 (a).
  • FIG. 1 (f) is a perspective view of an eccentric weight 120.
  • FIG. 1 (a) is a view of the weight support 130 of the eccentric weight 120 as viewed from the front
  • Fig. 1 (b) is a view of the weight support 130 of the eccentric weight 120 viewed from the side.
  • Is a view of the weight support 130 of the eccentric weight 120 from the bottom
  • Fig. 1 (d) is a cross-sectional view taken along the line A1-A1 in
  • FIG. 2 is a view for explaining the method of manufacturing the eccentric weight 120 according to the first embodiment.
  • FIG. 2 (a) to FIG. 2 (h) are diagrams showing each step.
  • the eccentric weight 120 is manufactured by integrally joining two weights 140 having a circular cross section and a weight support 130.
  • Weight 140 is made of high specific gravity metal.
  • the weight support 130 also has an elastic force of a metal having a specific gravity lower than that of the high specific gravity metal constituting the weight 140.
  • the weight support 130 has a weight holding part 134 for holding the weight 140 and a motor shaft holding part 132 for holding the motor shaft 112 (see FIG. 3).
  • the weight holding part 134 has a weight side protruding part 135 that reduces a protruding amount force S toward the weight 140 when the weight 140 and the weight support 130 are assembled together.
  • the weight support 130 is a weight support manufactured by plastically deforming the thin metal member 130a into a predetermined shape and then performing a hardening process.
  • the eccentric weight 120 includes the weight 140 made of a high specific gravity metal, and the weight support having a lower specific gravity than the high specific gravity metal constituting the weight 140. Since the eccentric weight 120 is manufactured by combining with 130, the total weight of the eccentric weight 120 can be reduced and the amount of eccentricity in the eccentric weight 120 can be increased. wear. Therefore, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
  • the weight support 130 is a weight support made of an elastic body, the weight is used when the vibration motor (and the eccentric weight 120) is used for a long time. It can suppress that the reliability of joining of 140 and the weight support body 130 falls. Therefore, by using such an eccentric weight 120, it is possible to configure a vibration motor with high long-term reliability.
  • the eccentric weight 120 when the weight holding part 134 is integrally formed with the weight 140 and the weight support body 130, the weight amount that protrudes toward the weight 140 side becomes smaller. Since the weight holding portion having the side protrusion 135 is used, the weight 140 is held by the weight holding portion 134 with a stronger elastic force to which the elastic force of the weight side protrusion 135 is applied. For this reason, it is possible to further suppress the decrease in the reliability of the connection between the weight 140 and the weight support 130 when the vibration motor (and the eccentric weight 120) is used for a long time. By using 120, a vibration motor with higher long-term reliability can be configured.
  • the weight support 130 is a weight support made of an elastic body, so that the motor shaft 112 (see Fig. 3) is held by the elastic force. Part 1 32 will be held. For this reason, when the vibration motor is used for a long time, it is possible to suppress a decrease in the reliability of joining between the motor shaft 112 and the weight support 130, and it is possible to configure the vibration motor with high long-term reliability.
  • the size of the inner peripheral portion of the weight holding portion 134 before the weight 140 and the weight support 130 are integrated is larger than the size of the outer peripheral portion of the weight 140. It is small. As a result, the weight 140 is inserted into the weight holding part 134 in a state where the inner peripheral part is expanded, so that the weight 140 is held by the weight holding part 134 by the elastic force of the entire weight holding part 134. Become.
  • the inner diameter of the motor shaft holding portion 132 be smaller than the outer diameter of the motor shaft 112 (see FIG. 3).
  • the weight side protrusion 135 has a structure in which the width is narrowed toward the tip of the weight side protrusion 135.
  • the weight side protrusion of the weight support 130 protrudes.
  • the weight 140 is inserted into the wide side force of the portion 135, the weight 140 gradually pushes the weight side protruding portion 135 outward. For this reason, the operation of inserting the weight 140 into the weight holding portion 134 is facilitated, and the manufacturing cost for manufacturing the eccentric weight 120 can be reduced.
  • the motor shaft holding part 132 inserts the motor shaft 112 into the motor shaft holding part 132 as shown in FIGS. 1 (a) and 1 (d).
  • the motor shaft side protruding portion 133 has a small amount of protrusion to the motor shaft 112 side.
  • the motor shaft 112 is held by the motor shaft holding portion 132 by a stronger elastic force to which the elastic force of the motor shaft side protruding portion 133 is added. become. For this reason, it is possible to suppress a decrease in the reliability of the joint between the motor shaft 112 and the weight support 130 when the vibration motor is used for a long time. can do.
  • the motor shaft side protruding portion 133 has a shape whose width is narrowed by applying a force toward the tip of the motor shaft side protruding portion 133.
  • the width of the weight side protruding portion 133 of the motor shaft holding portion 132 is When the motor shaft 112 is inserted from the wide side, the motor shaft 112 gradually pushes the motor shaft side protruding portion 133 outward as the motor shaft 112 is inserted into the motor shaft holding portion. . For this reason, when the vibration motor is used for a long period of time, it is possible to suppress a decrease in the reliability of the connection between the motor shaft and the weight support, and thus it is possible to configure the vibration motor with high long-term reliability. .
  • the weight support 130 has two weights 140. In order to hold the two weights 140 so as to surround the outer peripheral force. This part is called a weight holding part 134.
  • the weight support 130 has a shape that surrounds the motor shaft 112 with an outer peripheral force in order to hold the motor shaft 112. This part is called a motor shaft holding part 132.
  • the weight 140 is held by the weight holding portion 134 over the entire outer peripheral portion (see FIG. 1 (f).) 0
  • the “entire outer peripheral portion” means the entire outer periphery of the weight 140 on a plane perpendicular to the longitudinal direction of the weight 140 (ie, a plane perpendicular to the motor shaft 112).
  • the weight 140 may be held in the weight holding portion over the entire longitudinal direction of the weight 140, but as in the case of the eccentric weight 120 according to the first embodiment, it is not always necessary. It is not necessary that the weight 140 is held by the weight holding portion 134 over the entire length of the weight 140 (see FIG. 1 (f);).
  • the weight support body 130 is plastically deformed starting from the motor shaft holding portion 132.
  • the weight support 134 can be easily formed, and an eccentric weight is produced. Productivity can be improved.
  • the motor shaft holding portion 132 is formed by wrapping a thin metal member twice.
  • the motor shaft holding part 132 can hold the motor shaft 112 firmly, and when the vibration motor is used for a long time, the holding force of the motor shaft 112 by the motor shaft holding part 132 is reduced. It can suppress that it falls. Therefore, by using such an eccentric weight 120, a vibration motor with high long-term reliability can be configured.
  • the weight support 130 is the weight holding portion 134. And a notch 137a, 137b (see Fig. 2 (a)) provided between the motor shaft holding part 132 and V and a sheet metal member intersect! (See (e).)
  • the weight support 130 can hold the weight 140 and the motor shaft 112 (see FIG. 3) more firmly by the elastic force. That is, when the weight holding part 134 and the weight 140 are integrated, the weight 140 pushes the inner peripheral part of the weight holding part 134 outward. As a result, the inner peripheral part of the motor shaft holding part 132 is narrowed. Acts like a whole. Further, when the motor shaft is inserted into the motor shaft holding portion 132, the motor shaft 112 is in a state of pushing the inner peripheral portion of the motor shaft holding portion 132 outward. As a result, the inner peripheral portion of the weight holding portion 134 is It works to narrow down.
  • the weight 140 can be held more firmly by the weight holding part 134, and the motor shaft 112 can be held more firmly by the motor shaft holding part 132. For this reason, when a vibration motor (and eccentric weight) is used for a long time, the reliability of the connection between the weight 140 and the weight support 134 and the reliability of the connection between the motor shaft 112 and the weight support 134 are reduced. Since this can be further suppressed, by using such an eccentric weight 120, it is possible to configure a vibration motor with higher long-term reliability.
  • the weight support 130 is an elastic body force produced by subjecting the thin metal member 130a to plastic deformation and then performing a hardening process. (See Figure 2).
  • the weight support body 130 manufactured by performing a hardening process after plastically deforming the thin metal member 130a into a predetermined shape is used.
  • the weight support body 130 can hold the weight 140 and the motor shaft 112 more firmly by the elastic force, and the weight 140 and weight when the vibration motor (and the eccentric weight) are used for a long time. It can be sufficiently suppressed that the reliability of bonding with the support 130 is lowered. Therefore, by using such an eccentric weight 120, it is possible to configure a vibration motor with high long-term reliability.
  • the amount of the material constituting the weight support 130 can be made extremely small while maintaining the required strength. This reduces the total weight of the eccentric weight 120 and reduces the amount of eccentricity in the eccentric weight 120. It can be made even larger. For this reason, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary amount of vibration with lighter and less power consumption.
  • the Vickers hardness (HV) of the weight support 130 is 150 or more.
  • the weight support 130 can hold the weight 140 with a strong elastic force and can hold the motor shaft 112 with a strong elastic force.
  • the Vickers hardness (Hv) of the weight support 130 is preferably 200 or more, more preferably 250 or more.
  • the thickness of the thin metal member 130a is 0.1 mm. Therefore, while maintaining the strength required for the weight support 130, the total weight of the weight support 130 can be reduced and the amount of eccentricity in the eccentric weight 120 can be further increased.
  • the length along the motor shaft 112 in the weight 140 (along the longitudinal direction of the weight 140) is 4 mm. is there. Further, the length along the motor shaft 112 in the weight holder 134 of the weight support 130 is also 4 mm, and the length along the motor shaft 112 in the motor shaft holder 132 of the weight support 130 is also 4 mm.
  • the weight 140 is held by the weight holding portion 134 in the weight support 130 in all the lengths (4 mm) along the length direction of the weight 140. ing. As a result, the weight 140 is firmly held on the weight support 130.
  • the weight 140 has a circular cross section. For this reason, the weight 140 can be inserted into the weight holding part 134 from either end (refer to the end SI and S2 shown in Fig. 1 (b). The degree of freedom is improved when placing 140. Also, the weight 140 is a simple cylindrical shape, so a sintered body made of a round bar must be cut as it is. And easy to manufacture the weight 140 Become. For this reason, the manufacturing cost at the time of manufacturing the eccentric weight 120 can be made low.
  • the weight 140 is made of a tungsten sintered alloy
  • the weight support 130 is made of martensitic stainless steel having a specific gravity lower than that of the tungsten alloy.
  • the weight support 130 is also a martensitic stainless steel after the elastic hardening treatment, the durability of the weight support 130 is improved, and the weight support 130 and the weight 140 are In addition, the reliability of bonding between the weight 140 and the weight support 130 is further reduced when the vibration motor (and the eccentric weight 120) is used for a long time. Can be suppressed. Therefore, by using such an eccentric weight 120, a vibration motor with high long-term reliability can be configured.
  • martensitic stainless steel is a material having relatively high corrosion resistance and resistance to cracking, even if it is used as a weight support, it is not necessary to apply a plating. As a result, the joint between the weight support 130 and the plating film and the plating film itself are not cracked, and no cracks are generated due to cracks. It can suppress that the reliability regarding the holding
  • martensitic stainless steels are more viscous than tungsten alloys, so brittle and fragile weights 140 such as tungsten alloys are retained throughout the circumference with viscous martensitic stainless steels. By doing so, the weight can be easily broken!
  • the weight support 130 is made of such relatively inexpensive martensitic stainless steel, so that the eccentric weight 120 of It becomes easy to lower the manufacturing cost.
  • the weight 140 has a tungsten alloy strength. Since the tungsten alloy has a very high specific gravity, the amount of eccentricity in the eccentric weight 120 can be further increased. For this reason, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with further reduced power consumption. [0146] In the eccentric weight 120 according to the first embodiment, the weight 140 itself does not need a function for holding the motor shaft 112. Therefore, the weight is extremely simple (cylindrical shape). Is adopted.
  • a manufacturing method of the weight 140 a manufacturing method in which a tungsten alloy is sintered in the shape of a weight to obtain the weight 140 can be adopted.
  • a tungsten alloy is used in the eccentric weight 120 according to the first embodiment.
  • a round bar with a simple shape is made by sintering, and the round bar is cut into short pieces to produce a weight of 140.
  • the amount of the additive (for example, copper) contained in the tandasten alloy can be reduced, so that the specific gravity can be increased and the amount of eccentricity in the eccentric weight 120 can be further increased. become able to.
  • the eccentric weight 120 according to Embodiment 1 can be manufactured, for example, by the following method.
  • a sheet metal member 130a with martensitic stainless steel strength is prepared (Fig. 2 (a)).
  • a portion 135a that becomes the weight side protruding portion 135, a portion 133a that becomes the motor shaft side protruding portion 133, and notches 137a and 137b are already formed.
  • the lines indicated by reference numerals X1 to X6 are virtual lines that serve as a reference during processing.
  • the part from the code X2 to the code X3, the part from the code X3 to X4, and the part from the code X4 force to the code X5 are also deformed, and further in the notches 137a and 137b
  • the thin metal member 130a is deformed by plastic deformation so as to intersect, and a portion corresponding to the weight holding portion 134 is formed (FIGS. 2 (c) to 2 (e)).
  • a weight support 130 having a Vickers hardness (Hv) of 150 or more is manufactured by subjecting a weight support precursor 130b having substantially the same shape as the weight support 130 to hardening treatment by quenching calorie (FIG. 2). (g)).
  • a tungsten alloy round bar having the same cross-sectional shape as that of the weight 140 is prepared. Next, the above-described round bar is cut into a predetermined length to manufacture the weight 140.
  • the weight 140 is inserted into the weight holding part 134 in a state where the inner peripheral part is expanded. At this time, the weight 140 gradually pushes the weight side protruding portion 135 outward as the weight 140 is inserted into the weight holding portion 134. Thereafter, after the weight 140 is completely inserted into the weight holding portion 134, the state in which the inner peripheral portion is expanded is released. Then, the weight 140 is held in the weight holding portion 134 by the elastic force of the weight side protrusion 135 and the elastic force of the entire weight support 134.
  • FIG. 3 is a view for explaining the vibration motor 100 according to the first embodiment.
  • 3 (a) is a perspective view of the vibration motor 100 according to the first embodiment
  • FIG. 3 (b) is a view of the vibration motor 100 according to the first embodiment as viewed from the front
  • FIG. FIG. 3 is a view of a part of the vibration motor 100 according to the first embodiment as viewed from the side.
  • the vibration motor 100 according to the first embodiment is a vibration motor including a motor body 110 and an eccentric weight 120, as shown in FIG.
  • the vibration motor 100 according to the first embodiment is an eccentric weight that can be suitably used for a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption, as described above. It is equipped with an excellent eccentric weight 120 that suppresses a decrease in the reliability of the connection between the weight and the weight support when used for a long time. For this reason, the vibration motor 100 according to the first embodiment is a vibration motor having such an excellent eccentric weight 120, so that a necessary vibration amount can be obtained with light weight and low power consumption, and high reliability for a long time. It becomes a vibration motor.
  • the portable device can be a highly reliable portable device that is lightweight, low power consumption and long-term reliability.
  • FIG. 4 is a view for explaining the eccentric weight 220 according to the second embodiment.
  • Fig. 4 (a) is a view of the weight support 230 of the eccentric weight 220 as viewed from the front
  • Fig. 4 (b) is a view of the weight 240 of the eccentric weight 220 from the front
  • Fig. 4 (c) It is the figure which looked at the eccentric weight 220 from the front.
  • the eccentric weight 220 according to the second embodiment is different from the eccentric weight 120 according to the first embodiment in the number and the cross-sectional shape of the weight (and accordingly, the cross-sectional shape of the weight support). That is, as shown in FIG. 4, the eccentric weight 220 according to the second embodiment includes one weight 240 having a substantially fan-shaped cross-sectional shape (and one weight 240 having a substantially fan-shaped cross-sectional shape accordingly). It has a weight support 230) having a cross-sectional shape to hold.
  • the weight holding part 234 in the weight support body 230 has two weight side protrusions 235 and 235.
  • FIG. 5 is a view for explaining the eccentric weight 320 according to the third embodiment.
  • Fig. 5 (a) is a view of the weight support 330 of the eccentric weight 320 as seen from the front
  • Fig. 5 (b) is a view of the weight 340 of the eccentric weight 320 from the front
  • Fig. 5 (c) It is the figure which looked at the eccentric weight 320 from the front.
  • the eccentric weight 320 according to the third embodiment also has the same number of weights and cross-sectional shape (and the corresponding cross-sectional shape of the weight support body) as the first embodiment. This is different from the case of the eccentric weight 120. That is, as shown in FIG. 5, the eccentric weight 320 according to the third embodiment includes one weight 340 having a substantially fan-shaped cross-sectional shape (and one weight having a substantially fan-shaped cross-sectional shape accordingly).
  • a weight support 330 having a cross-sectional shape to hold 340;
  • the weight holding part 334 in the weight support 330 has four weight side protruding parts 335, 335, 335, 335.
  • the eccentric weights 220 and 320 according to the second or third embodiment include the number of weights and the cross-sectional shape. Although the shape (and thus the cross-sectional shape of the weight support) is different from that of the eccentric weight 120 according to the first embodiment, the eccentric weight is divided into a weight made of a high specific gravity metal and a high specific weight metal constituting the weight. Since the eccentric weights 220 and 320 are manufactured by integrating the weight support made of a metal having a lower specific gravity, the total of the eccentric weights 220 and 320 is the same as the case of the eccentric weight 120 according to the first embodiment. The weight can be reduced and the amount of eccentricity of the eccentric weights 220 and 320 can be increased. Therefore, by using such eccentric weights 220 and 320, it is possible to configure a vibration motor that can obtain a large amount of vibration with light weight and low power consumption.
  • the weight support body is the weight support body 230 or 330 having an elastic force, so that it is the same as the case of the eccentric weight 120 according to the first embodiment.
  • the weights 240 and 340 are held by the weight holding portions 234 and 334 by the elastic force of the entire weight holding portions 234 and 334. For this reason, when the vibration motor (and the eccentric weight) is used for a long time, the reliability of the connection between the weight 240, 340 and the weight support 230, 330 is suppressed, and such an eccentric weight 220, By using 320, a long-term reliable high V vibration motor can be constructed.
  • the weight-side protrusion becomes smaller when the weight and the weight support are reduced. Since the weight holding portions 234 and 334 having the portions 2 35 and 335 are used, the weights 240 and 340 are added with the elastic force of the weight side protruding portions 235 and 335 as in the case of the eccentric weight 120 according to the first embodiment. The weight holding parts 234 and 334 are held by a strong elastic force.
  • FIG. 6 is a view for explaining the eccentric weight 420 according to the fourth embodiment.
  • Fig. 6 (a) is a view of the weight support 430 of the eccentric weight 420
  • Fig. 6 (b) is a cross-sectional view taken along line 2-2A2 in Fig. 6 (a)
  • Fig. 6 (c) is a diagram.
  • Fig. 6 (b) is an A3-A3 cross-sectional view
  • Fig. 6 (d) is a diagram.
  • FIG. 6 (b) is a cross-sectional view taken along line A4-A4
  • FIG. 6 (e) is a view of the eccentric weight 420 as viewed from the front.
  • the eccentric weight 420 according to the fourth embodiment has a structure that is very similar to the eccentric weight 120 according to the first embodiment, but the structure of the weight side protrusion 435 is the same as that of the eccentric weight 120 according to the first embodiment. It is different from the case. That is, the weight side protruding portion 435 of the eccentric weight 420 according to the fourth embodiment has a rib force having a rectangular planar shape as shown in FIG. 6 (b). In the weight side protrusion 435, two opposite sides of the four sides of the rectangle are connected to the body of the weight holder 434, and the other two sides are separated from the weight holder 434! RU
  • FIG. 7 is a view for explaining an eccentric weight 520 according to the fifth embodiment.
  • Fig. 7 (a) is a view of the weight support 530 of the eccentric weight 520, also showing the front force
  • Fig. 7 (b) is a cross-sectional view of Fig. 7 (a) VIII-A5
  • Fig. 7 (c) is a perspective view of the eccentric weight 520
  • FIG. 7D is a perspective view of the eccentric weight 520.
  • FIG. 7D is a perspective view of the eccentric weight 520.
  • the eccentric weight 520 according to the fifth embodiment has a structure similar to that of the eccentric weight 120 according to the first embodiment, but the weight side protruding.
  • the structure of the part is different from that of the eccentric weight 120 according to the first embodiment. That is, the weight side protrusion 535 of the eccentric weight 520 according to the fifth embodiment also has a rib force with a rectangular planar shape as shown in FIG. 7 (b).
  • the weight side protruding portion 535 two opposite sides of the four sides of the rectangle are connected to the body of the weight holding portion 534, and the other two sides are separated from the weight holding portion 534. Speak.
  • the eccentric weights 420 and 520 according to the fourth or fifth embodiment are different from the case of the eccentric weight 120 according to the first embodiment in that the structure of the weight side protrusion is as shown in FIGS.
  • eccentric weights 420, 520 manufactured by integrating a weight made of a high specific gravity metal with a weight support made of a metal having a specific gravity lower than that of the high specific gravity metal constituting the weight. Therefore, as in the case of the eccentric weight 120 according to the first embodiment, the total weight of the eccentric weights 420 and 520 can be reduced and the amount of eccentricity in the eccentric weights 420 and 520 can be increased. For this reason, by using such eccentric weights 420 and 520, it is possible to configure a vibration motor that is lightweight and can obtain a large amount of vibration with low power consumption.
  • the weight support body is the weight support body 430 or 530 having an elastic body force, so that the eccentric weight 120 according to the first embodiment and Similarly, the weights 440 and 540 are held by the weight holding portions 434 and 534 by the elastic force of the entire weight holding portions 434 and 534. For this reason, when the vibration motor (and the eccentric weight) is used for a long time, the reliability of the connection between the weights 440, 540 and the weight support bodies 430, 530 is suppressed, and such an eccentric weight 420, By using 520, a long-term reliable high V vibration motor can be constructed.
  • the weight-side protrusion becomes smaller when the weight is protruded toward the weight side. Since the weight holding portions 434 and 534 having the portions 4 35 and 535 are used, the weights 440 and 540 are added with the elastic force of the weight side protruding portions 435 and 535 as in the case of the eccentric weight 120 according to the first embodiment. The weight holding parts 434 and 534 are held by a strong elastic force.
  • the weight support 530 has both weights in the direction along the motor shaft as shown in FIGS. 7 (b) and 7 (d). It has a weight holding frame 536 for holding.
  • the weight support 530 can hold the weight 540 from both sides in the direction along the motor shaft. (And eccentric weight 520) can be further suppressed from lowering the reliability of the connection between the weight 540 and the weight support 530 when used for a long time, by using such an eccentric weight 520, A vibration motor with higher long-term reliability can be configured.
  • FIG. 8 is a view for explaining the eccentric weight 620 according to the sixth embodiment.
  • 8A is a perspective view of the weight support 630 and the weight 640 of the eccentric weight 620
  • FIG. 8B is a perspective view of the eccentric weight 620.
  • the eccentric weight 620 according to the sixth embodiment is similar in structure to the eccentric weight 120 according to the first embodiment. However, the shape of the weight 640 is different from that of the eccentric weight 120 according to the first embodiment. That is, in the eccentric weight 620 according to the sixth embodiment, the weight 640 has a recess 645 that receives the weight side protrusion 635 in the portion corresponding to the weight side protrusion 635 as shown in FIG. It has been.
  • the eccentric weight 620 according to the sixth embodiment is different from the eccentric weight 120 according to the first embodiment as shown in FIG. Weights made of heavy metals and lower specific gravity than the high specific gravity metals that make up weights! Since the eccentric weight 620 is manufactured by integrating the weight support made of the metal, the total weight of the eccentric weight 620 is reduced and the eccentric weight 620 is reduced as in the case of the eccentric weight 120 according to the first embodiment. The amount of eccentricity at the weight 620 can be increased. Therefore, by using such an eccentric weight 620, it is possible to configure a vibration motor that can obtain a large amount of vibration with light weight and low power consumption.
  • the weight support is the weight support 630 made of an elastic body, so that the weight 640 is the weight as in the case of the eccentric weight 120 according to the first embodiment.
  • the weight holding part 634 is held by the elastic force of the holding part 634 as a whole. For this reason, when the vibration motor (and the eccentric weight) is used for a long time, it is possible to suppress a decrease in the reliability of the connection between the weight 640 and the weight support 630. By using such an eccentric weight 620, A vibration motor with high long-term reliability can be configured.
  • the weight holding portion has the weight side protruding portion 635 that reduces the amount of protrusion to the weight side when the weight and the weight support are integrated. Since the weight holding portion 634 is used, the weight 640 is held by the weight holding portion 634 with a stronger elastic force to which the elastic force of the weight side protruding portion 635 is applied, as in the case of the eccentric weight 120 according to the first embodiment. Will be. For this reason, when the vibration motor (and the eccentric weight) is used for a long time, it is possible to further prevent the reliability of the connection between the weight 640 and the weight support body 630 from being lowered. By using it, a vibration motor with higher long-term reliability can be configured.
  • the weight 640 is removed from the weight holding portion 634 by locking the recess 645 formed in the weight 640 and the weight side protruding portion 635. It is possible to suppress the separation. For this reason, since it is possible to further suppress the decrease in the reliability of the connection between the weight 640 and the weight support 630 when the vibration motor is used for a long time, by using such an eccentric weight 620, A vibration motor with higher long-term reliability can be constructed.
  • FIG. 9 is a perspective view of an eccentric weight 720 according to the seventh embodiment.
  • the eccentric weight 720 according to the seventh embodiment has a structure very similar to the eccentric weight 120 according to the first embodiment, but is implemented in that a weight support body provided with a predetermined opening is used. This is different from the case of the eccentric weight 120 according to Form 1.
  • the weight support 730 is manufactured using a thin metal member provided with a predetermined opening.
  • the amount of the material constituting the weight support 730 can be further reduced while maintaining the required strength.
  • the total weight of the eccentric weight 720 can be further reduced, and the amount of eccentricity in the eccentric weight 720 can be further increased. Therefore, by using such an eccentric weight 720, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
  • FIG. 10 is a view for explaining the eccentric weight 820 according to the eighth embodiment.
  • FIG. 10 (a) is a view of the eccentric weight 820 viewed from the front
  • FIG. 10 (b) is a view of the eccentric weight 820 coupled to the motor shaft 812 viewed from the front.
  • the eccentric weight 820 according to the eighth embodiment is different from the eccentric weight 120 according to the first embodiment, and does not have a weight side protrusion for holding the weight with a strong elastic force. Instead, the weight support 830 in the eighth embodiment has a structure that allows the weight holding portion 832 to hold the weight 840 with a stronger elastic force when the motor shaft 812 is inserted into the motor shaft holding portion 832. is doing.
  • a slight gap is formed between the weight holding portion 834 and the weight 840 before the motor shaft 812 is inserted (FIG. 10 ( a )
  • the motor shaft 812 pushes and spreads the motor shaft holding portion 832, whereby the motor shaft holding portion 832 and the weight holding portion 834 are elastically deformed, and the weight holding portion 834 and the weight 840 There is no gap formed between them (see Fig. 10 (b);). For this reason, the weight holding portion 832 holds the weight 840 with a stronger elastic force.
  • the eccentric weight 820 according to the eighth embodiment it is possible to further suppress a decrease in the reliability of joining between the weight 840 and the weight support 830 when the vibration motor is used for a long time. Therefore, by using such an eccentric weight 820, it is possible to configure a vibration motor with higher long-term reliability.
  • the weight support 830 is made of an elastic body manufactured by plastically deforming a thin metal member into a predetermined shape and then performing a hardening process.
  • the weight support body 830 can hold the weight and the motor shaft 812 more firmly by the elastic force, and the vibration motor ( Further, it is possible to sufficiently suppress the decrease in the reliability of the connection between the weight 840 and the weight support 830 when the eccentric weight is used for a long time. Therefore, by using such an eccentric weight 820, a vibration motor with high long-term reliability can be configured.
  • the amount of the material constituting the weight support 830 can be made extremely small while maintaining the required strength. As a result, the total weight of the eccentric weight 820 can be reduced, and the amount of eccentricity in the eccentric weight 820 can be further increased. For this reason, by using such an eccentric weight 820, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
  • the Vickers hardness (Hv) of the weight support 830 is 150 or more.
  • the weight support 830 can hold the weight 840 with a strong elastic force and can hold the motor shaft 812 with a strong elastic force.
  • the Vickers hardness (Hv) of the weight support 830 is 200 or more. More preferably, the power is 250 or more.
  • FIG. 11 is a view for explaining the eccentric weight 920 according to the ninth embodiment.
  • FIG. 11 (a) is a view of the weight support body 930 of the eccentric weight 920 viewed from the front
  • FIG. 11 (b) is a view of the eccentric weight 920 viewed from the front
  • FIG. 11 (c) is a front view of the eccentric weight 920 coupled to the motor shaft 912.
  • the eccentric weight 920 according to the ninth embodiment does not have a weight side protrusion for holding the weight with a stronger elastic force.
  • the weight support 930 in the ninth embodiment has a space defined by the motor shaft holding portion 932 when the weight 940 is inserted into the weight holding portion 934. The structure is small.
  • the area of the space defined by the motor shaft holding portion 932 is approximately the same as the cross-sectional area of the motor shaft 912 before the weight 940 is inserted. (Refer to Fig. 11 (a).) After the weight 940 is inserted, the weight 940 spreads the weight holding portion 934, whereby the motor shaft holding portion 932 is elastically deformed and the motor shaft holding portion 932 is defined. The space to perform becomes smaller (see Fig. 11 (b);). For this reason, when the motor shaft 912 is inserted into the motor shaft holding portion 932, the motor shaft holding portion 932 holds the motor shaft 912 with a stronger elastic force (see FIG. 11 (c);).
  • the weight holding portion 934 is elastically deformed and tends to be further reduced, so that the weight holding portion 934 applies the weight 940 with a stronger elastic force. Hold it.
  • the eccentric weight 920 when the vibration motor is used for a long time, the reliability of the connection between the weight 940 and the weight support 930 is reduced, or the motor shaft 912 Since it can further suppress that the reliability of joining with the weight support body 930 falls, a vibration motor with higher long-term reliability can be comprised.
  • the weight support 930 is made of an elastic body that is manufactured by plastically deforming a thin metal member into a predetermined shape and then performing a hardening process. [0199] Further, in the eccentric weight 920 according to the ninth embodiment, the weight support 930 manufactured by performing a hardening process after plastically deforming a thin metal member into a predetermined shape is used.
  • the body 930 can hold the weight 940 and the motor shaft 912 more firmly by elastic force, and when the vibration motor (and eccentric weight) is used for a long time, the weight 940 and the weight support 930 It is possible to sufficiently suppress the decrease in bonding reliability. Therefore, by using such an eccentric weight 920, a long-term reliable high-V vibration motor can be configured.
  • the amount of the material constituting the weight support 930 can be made extremely small while maintaining the required strength. Thereby, the total weight of the eccentric weight 920 can be reduced, and the amount of eccentricity in the eccentric weight 920 can be further increased. Therefore, by using such an eccentric weight 920, it is possible to configure a vibration motor that can obtain a necessary vibration amount with a lighter weight and less power consumption.
  • the Vickers hardness (Hv) of the weight support 930 is 150 or more.
  • the weight support 930 can hold the weight 940 with a strong elastic force and can hold the motor shaft 912 with a strong elastic force.
  • the Vickers hardness (Hv) of the weight support 930 is 200 or more, more preferably 250 or more.
  • FIG. 12 is a view for explaining the eccentric weight 1020 according to the tenth embodiment.
  • Fig. 1 2 (a) is a view of the weight support 1030 of the eccentric weight 1020 as seen from the frontal force
  • Fig. 12 (b) is a view of the weight support 1030 of the eccentric weight 1020 as seen from the side force.
  • c) is a view of the weight support 1030 of the eccentric weight 1020 as seen from the bottom
  • Fig. 12 (d) is a cross-sectional view of Fig. 12 (&) 8-6-8
  • FIG. 12 is a perspective view of a weight support 1030 in an eccentric weight 1020
  • FIG. 12 (f) is a perspective view of an eccentric weight 1020.
  • FIG. 13 is a view for explaining the method of manufacturing the eccentric weight 1020 according to the tenth embodiment.
  • FIG. 13 (a) to FIG. 13 (i) are diagrams showing each step.
  • FIG. 14 is a view for explaining the vibration motor 1000 according to the tenth embodiment.
  • FIG. 14 (a) is a perspective view of the vibration motor 1000 according to the tenth embodiment
  • FIG. 14 (b) is a view of the vibration motor 1000 according to the tenth embodiment as viewed from the front
  • FIG. FIG. 10 is a view of a part of a vibration motor 1000 according to a tenth embodiment as viewed from the side.
  • the eccentric weight 1020 according to the tenth embodiment has the weight holding section 1034 when the motor shaft 1012 (see FIG. 14) is inserted into the motor shaft holding section 1032. Furthermore, it has a structure that holds the weight 1040 with a strong elastic force.
  • the motor shaft 1012 when the motor shaft 1012 is inserted, the motor shaft 1012 pushes the motor shaft holding portion 1032 apart, so that the weight holding portion 1034 has a stronger elastic force.
  • the weight 1040 will be held.
  • the weight support 1030 has a weight holding frame 1036 that holds the weight 1040 on one side in the direction along the motor shaft 1012. have.
  • the weight 1040 is made elastic by the weight holding part 1034.
  • the force and weight holding frame 1036 holds the weight holding portion 1034.
  • the weight support 1030 can hold the weight 1040 even in one side force in the direction along the motor shaft 1012 as shown in FIG. This makes it possible to further suppress the decrease in the reliability of the connection between the weight 1040 and the weight support 1030 when the vibration motor (and the eccentric weight 1020) is used for a long time.
  • a vibration motor can be constructed with higher long-term reliability.
  • the eccentric weight 1020 according to Embodiment 10 is related to Embodiment 1 as shown in FIG.
  • the sheet metal member 1030a can be manufactured by plastically deforming it into a predetermined shape and then performing a hardening process.
  • FIG. 15 is a view for explaining the eccentric weight 1120 according to the eleventh embodiment.
  • Fig. 15 (a) is a view of the weight support 1130 of the eccentric weight 1120 as viewed from the front
  • Fig. 15 (b) is a view of the weight support 1130 of the eccentric weight 1120 also showing the side force.
  • FIG. 15C is a perspective view of the eccentric weight 1120
  • FIG. 15D is a view of a part of the vibration motor 1100 according to the eleventh embodiment as viewed from the side.
  • FIG. 16 is a schematic view for explaining the method for manufacturing the eccentric weight according to the eleventh embodiment.
  • Fig. 16 (a), Fig. 16 (b), Fig. 16 (d) and Fig. 16 (f) are front views of the eccentric weight 1 120 in each manufacturing process
  • FIG. 16 (g) is an AA cross-sectional view of the eccentric weight 1120 in each manufacturing process.
  • the eccentric weight 1120 according to the eleventh embodiment has a structure similar to the eccentric weight 120 according to the first embodiment, but the length of the weight holding portion 1130 along the longitudinal direction of the weight 1140 is actual. This is different from the case of the eccentric weight 120 according to the first embodiment. That is, in the eccentric weight 1120 according to the eleventh embodiment, as shown in FIGS. 15 (c) and 15 (d), the length of the weight holding portion 1130 along the longitudinal direction of the weight 1140 is set. Compared to the case of the eccentric weight 120 according to the first embodiment, the length is about 50%.
  • the length of the weight holding portion along the longitudinal direction of the weight is different from that of the eccentric weight 120 according to the first embodiment.
  • the effect of the eccentric weight 120 according to the first embodiment is obtained as it is.
  • the length of the weight holding portion 1130 along the longitudinal direction of the weight 1140 is approximately 50% of the length of the eccentric weight 120 according to the first embodiment. Therefore, the total weight of the eccentric weight 1120 can be further reduced and the amount of eccentricity in the eccentric weight 1120 can be further increased. Therefore, according to the eccentric weight 1120 according to the eleventh embodiment, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption. As shown in FIG. 15 (d), the vibration motor 1100 according to the eleventh embodiment includes a weight holding portion 1134 in which the weight holding portion 1134 along the longitudinal direction of the weight 1140 is shorter than the weight 1140.
  • An eccentric weight 1120 that holds the weight 1140 at an eccentric position along the longitudinal direction of the weight 1140 is provided.
  • the eccentric weight 1120 is fixed to the motor main body 1110 in a direction in which the distance between the motor shaft holding portion 1132 and the motor main body 1110 approaches.
  • the vibration motor 1100 according to the eleventh embodiment the distance between the motor shaft holding portion 1132 of the eccentric weight 1120 and the bearing 1114 of the motor main body 1110 is reduced, so that the motor shaft 1112 is rotated. It is possible to suppress the deflection of the motor shaft 1112. As a result, the eccentric weight 1120 rotates more stably, and the eccentric vibration characteristics of the vibration motor 1100 are improved.
  • the manufacturing method of the eccentric weight according to Embodiment 11 is the same as the manufacturing method of the eccentric weight 120 according to Embodiment 1 described above, and the first step has the following contents, and the fourth process shown below. In addition.
  • the thin metal member is plastically deformed so that the inner peripheral part of the weight support part 134 is larger than the outer peripheral part of the weight 140.
  • the weight 1140 is inserted into the weight support 1130 (FIGS. 16 (a), 16 (b) and 16 (c).
  • both side forces in the direction along the motor shaft also press the weight 1140 (see FIG. 16 (d) and FIG. 16 (e);).
  • the weight 1140 is plastically deformed so that the dimension increases in a direction perpendicular to the pressing direction.
  • the weight 1140 and the weight holding portion 1134 are fixed (see FIG. 16 (f) and FIG. 16 (g)).
  • the dimension of the weight 1140 before the 4th process is L1 (see Fig. 16 (c)) and the weight 1140 after the 4th process is When the dimension is L2 (see Fig. 16 (g)), L1 and L2 have the relationship of LKL2.
  • the weight 1140 and the weight holding portion 1134 are fixed by pressing the weight 1140 and plastically deforming, so the weight 1140 holds the weight. Part 1134 is firmly held. For this reason, when the vibration motor is used for a long time, it is possible to further suppress the decrease in the reliability of the connection between the weight 1140 and the weight support 1130.
  • the force using tungsten alloy as the weight is not limited to this.
  • tungsten, osmium, osmium alloy, gold, gold alloy, iridium, iridium alloy, and other metals having higher specific gravity than the weight support can be used.
  • a metal having a specific gravity higher than that of the metal constituting the weight support such as silver, copper, brass, lead, molybdenum or nickel, can also be used.
  • the force using martensitic stainless steel as the thin metal member is not limited to this.
  • a metal having quenching hardenability other than martensitic stainless steel can be used.
  • the metal which has age-hardening property can also be used.
  • precipitation hardening stainless steel, beryllium copper alloy, nickel manganese copper alloy, precipitation hardening titanium alloy or aluminum alloy can also be used as the age-hardening metal.
  • work-hardening metals, shape memory alloys and other metals can be used.
  • the weight is a round bar.
  • a cut body or a round bar cut out from the sintered body and machined into the same cross-sectional shape as the weight is used, the present invention is not limited to this.
  • a weight a sintered body sintered in the shape of a weight, or a sintered body with a deformed bar force having the same cross-sectional shape as a weight (for example, a circle, an ellipse, a fan shape, etc.) is shortened. A cut one can be used.
  • eccentric weights 720 to 920 of the embodiments 7 to 9 do not have the motor shaft side protruding portion and the weight side protruding portion, these eccentric weights 720 to 920 also implement the above described
  • the motor shaft side protruding portion 133 and the weight side protruding portion 135 as in the eccentric weight 120 of the first embodiment may be provided.
  • the weights 140 to 1140 are held by the elastic force of the weight holding parts 134 to 1134, but the present invention is limited to this. It ’s not something. It is also preferable to apply an adhesive to the joint surface between the weight and the weight holding part to adhere the weight and the weight holding part. As a result, in addition to the elastic force of the weight holding part, the weight and the weight holding part are joined by the adhesive force of the adhesive, so that the weight support body can hold the weight more firmly and vibrate. When the motor (and the eccentric weight) is used for a long time, it is possible to further sufficiently suppress the decrease in the reliability of the connection between the weight and the weight support. Therefore, by using such an eccentric weight, a vibration motor with high long-term reliability can be obtained.
  • the motor shaft is held by the elastic force of the motor shaft holding portions 132 to 1132, but the present invention is not limited to this.
  • the motor shaft holding portion and the motor shaft are joined by the adhesive force of the adhesive, so that the weight support body can hold the motor shaft more firmly.
  • the weight 640 includes the weight side protrusion 635.
  • a recess 645 for receiving the weight side protrusion 635 is formed in the corresponding part, but the present invention is not limited to this. It is also preferable to apply an adhesive to the joint surface between the weight and the weight holding part to bond the weight and the weight holding part using a weight having a groove formed on the joint surface between the weight and the weight holding part in the weight. .
  • the vibration motor of the present invention can be suitably used for portable devices such as mobile phones and PDAs, and can also be suitably used for game machine remote controls, pachinko operating units, electric toothbrushes, and the like. .

Abstract

An eccentric weight, a vibrating motor, a mobile device, and a method of manufacturing the eccentric weight. The method of manufacturing the eccentric weight (120) comprises a step for integrating the weights (140) formed of a high-density metal with a weight support body (130). The weight support body comprises a weight holding part (134) for holding the weights (140) and a motor shaft holding part (132) for holding a motor shaft and formed of a metallic elastic body with a density lower than that of the high-density metal forming the weights (140). The eccentric weight is characterized in that the weight holding part (134) comprises weight side projected parts (135) so formed that, when the weights (140) are integrated with the weight support body (130), their amounts of projection to the weight (140) side can be reduced. By this eccentric weight (120), the overall weight of the eccentric weight (120) can be reduced, and an eccentric amount in the eccentric weight (120) can be increased. Also, when the eccentric weight (120) is used for a long period, the lowering of the joining of the weight (140) to the weight support body (130) can be suppressed.

Description

明 細 書  Specification
偏心分銅、振動モータ、携帯機器及び偏心分銅の製造方法  Eccentric weight, vibration motor, portable device, and manufacturing method of eccentric weight
技術分野  Technical field
[0001] 本発明は、偏心分銅、振動モータ、携帯機器及び偏心分銅の製造方法に関する。  The present invention relates to an eccentric weight, a vibration motor, a portable device, and a method for manufacturing an eccentric weight.
背景技術  Background art
[0002] 携帯電話や PDAなどにおいては、着信を振動で知らせるために振動モータが用い られている。図 17は、従来の振動モータのうち第 1の振動モータ 3000及び第 1の偏 心分銅 3020を説明するために示す図である。図 17 (a)は振動モータ 3000の斜視 図であり、図 17 (b)は偏心分銅 3020をモータ軸 3012に垂直な平面で切った断面 図であり、図 17 (c)は偏心分銅 3020をモータ軸 3012に沿った平面で切った断面図 である。図 17 (b)及び図 17 (c)においては、図 17 (a)における偏心分銅 3020の回 転方向における位置を変えて示して 、る。  In mobile phones and PDAs, vibration motors are used to notify incoming calls by vibration. FIG. 17 is a view for explaining the first vibration motor 3000 and the first eccentric weight 3020 among the conventional vibration motors. Fig. 17 (a) is a perspective view of vibration motor 3000, Fig. 17 (b) is a sectional view of eccentric weight 3020 cut by a plane perpendicular to motor shaft 3012, and Fig. 17 (c) is an eccentric weight 3020. FIG. 6 is a cross-sectional view taken along a plane along the motor shaft 3012. In FIGS. 17 (b) and 17 (c), the position of the eccentric weight 3020 in FIG. 17 (a) is changed in the rotational direction.
[0003] 第 1の振動モータ 3000は、図 17に示すように、小型円筒型のモータ本体 3010と、 タングステンの焼結体など力もなり略扇形状を有する偏心分銅 3020とからなる。偏 心分銅 3020のモータ軸保持穴 3022には、モータ本体 3010のモータ軸 3012が揷 通'保持されている。偏心分銅 3020は、モータ軸 3012を揷通するモータ軸保持穴 3 022の肉薄方向側面力も外力を加えてモータ軸保持穴 3022を変形させることによる カシメ止めで、モータ軸 3012の先端部に取り付けられている(例えば、特許文献 1参 照。)。  As shown in FIG. 17, the first vibration motor 3000 is composed of a small cylindrical motor body 3010 and an eccentric weight 3020 having a substantially fan shape and having a force such as a sintered body of tungsten. The motor shaft 3012 of the motor body 3010 is generally held in the motor shaft holding hole 3022 of the eccentric weight 3020. The eccentric weight 3020 is attached to the tip of the motor shaft 3012 by crimping by deforming the motor shaft holding hole 3022 by applying an external force to the motor shaft holding hole 3022 through which the motor shaft 3012 passes. (For example, see Patent Document 1).
[0004] ところで、携帯電話や PDAなどにぉ 、ては、振動モータとして、軽量かつ少な 、消 費電力で必要な振動量が得られる振動モータが求められている。このため、このよう な振動モータに用いる偏心分銅として、図 18に示すような第 2の偏心分銅が提案さ れている。図 18は、第 2の偏心分銅を説明するために示す図である。図 18 (a)は偏 心分銅の正面図であり、図 18 (b)は図 18 (a)の A— A断面図であり、図 18 (c)は構 成部品の正面図であり、図 18 (d)は図 18 (c)の B— B断面図である。図 18 (a)及び 図 18 (b)にお!/、ては、モータ本体 3110も一部示されて!/、る。  [0004] By the way, for a mobile phone, a PDA, and the like, there is a demand for a vibration motor that can obtain a necessary amount of vibration with low power consumption and light weight. For this reason, a second eccentric weight as shown in FIG. 18 has been proposed as an eccentric weight used in such a vibration motor. FIG. 18 is a diagram for explaining the second eccentric weight. Fig. 18 (a) is a front view of the eccentric weight, Fig. 18 (b) is a cross-sectional view along the line A-A in Fig. 18 (a), and Fig. 18 (c) is a front view of the component parts. FIG. 18 (d) is a cross-sectional view taken along the line BB in FIG. 18 (c). In FIG. 18 (a) and FIG. 18 (b), a part of the motor body 3110 is also shown! /.
[0005] 第 2の偏心分銅 3120は、図 18に示すように、モータ本体 3110のモータ軸 3112を 保持するためのモータ軸保持穴 3132を有し低比重金属力もなる円筒状の分銅支持 体 3130と、高比重金属力もなる略半パイプ状の分銅 3140とからなっている(例えば 、特許文献 1参照。 ) oこのため、分銅 3140が高比重金属力もなるため、偏心分銅 31 20の重心がモータ軸保持穴 3132の中心軸力も離隔された位置に配置されることに なる。その結果、偏心分銅 3120における偏心量が大きくなり、このような第 2の偏心 分銅 3120を用いることにより、軽量かつ少ない消費電力で必要な振動量が得られる 振動モータを構成することができる。 As shown in FIG. 18, the second eccentric weight 3120 includes a motor shaft 3112 of the motor body 3110. A cylindrical weight support 3130 having a motor shaft holding hole 3132 for holding and having a low specific gravity metal force, and a substantially half-pipe weight 3140 having a high specific gravity metal force (see, for example, Patent Document 1) ) O For this reason, since the weight 3140 also has a high specific gravity metal force, the center of gravity of the eccentric weight 3120 is arranged at a position where the center force of the motor shaft holding hole 3132 is also separated. As a result, the eccentric amount of the eccentric weight 3120 increases, and by using such a second eccentric weight 3120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
[0006] し力しながら、上記した第 2の偏心分銅 3120においては、分銅 3140が分銅支持 体 3130の外側面 3134の一部にロウ付け部 3150を介して一体に接合固定されたも のであるため、振動モータを長時間使用した場合に分銅 3140と分銅支持体 3130と の接合の信頼性が低下するという問題があった。  However, in the second eccentric weight 3120 described above, the weight 3140 is integrally bonded and fixed to a part of the outer surface 3134 of the weight support 3130 via the brazing portion 3150. Therefore, when the vibration motor is used for a long time, there is a problem that the reliability of the connection between the weight 3140 and the weight support 3130 is lowered.
[0007] そこで、このような問題を解決するために、上記した分銅支持体 3130の代わりに、 金属製板状部材の弾力性を利用して分銅を保持する分銅保持部を有する分銅保持 体を用いて偏心分銅を構成することが考えられる。(例えば、特許文献 2参照)  Therefore, in order to solve such a problem, instead of the weight support 3130 described above, a weight holding body having a weight holding portion for holding a weight using the elasticity of a metal plate member is provided. It can be considered that an eccentric weight is used. (For example, see Patent Document 2)
[0008] 図 19は、このような偏心分銅のうち、特許文献 2に開示された第 3の偏心分銅 3220 を説明するために示す図である。第 3の偏心分銅 3220によれば、分銅支持体として 、金属製板状部材の弾力性を利用して分銅 3240を保持する分銅保持部 3234を有 する分銅支持体 3230を有しているため、振動モータを長期間使用した場合におい ても分銅 3240と分銅支持体 3230との接合の信頼性が低下することを抑制すること が可能となる。  [0008] FIG. 19 is a view for explaining a third eccentric weight 3220 disclosed in Patent Document 2 among such eccentric weights. According to the third eccentric weight 3220, the weight support body 3230 having the weight holding part 3234 for holding the weight 3240 using the elasticity of the metal plate-like member is used as the weight support body. Even when the vibration motor is used for a long period of time, it is possible to suppress a decrease in the reliability of the connection between the weight 3240 and the weight support 3230.
[0009] 特許文献 1 :特開 2001— 129479号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-129479
特許文献 2:特開 2003 - 245608号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-245608
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] し力しながら、上記した第 3の偏心分銅 3220のように、ただ単に金属性板状部材の 弾力性を利用した分銅支持体 3230を用いたのでは、分銅 3240と分銅支持体 3230 との接合の信頼性が低下することを必ずしも十分に抑制することができない。  [0010] While using the weight support 3230 that simply uses the elasticity of the metallic plate-like member as in the third eccentric weight 3220 described above, the weight 3240 and the weight support 3230 are used. It is not always possible to sufficiently suppress the decrease in the reliability of bonding with the.
[0011] そこで、本発明は、このような問題を解決するためになされたもので、軽量かつ少な い消費電力で必要な振動量が得られる振動モータに好適に用いることができる偏心 分銅であって、このような振動モータを長時間使用した場合においても分銅と分銅支 持体との接合の信頼性が低下することが抑制された偏心分銅を提供することを目的 とする。また、本発明は、このように優れた偏心分銅を備えた振動モータ及び携帯機 器を提供することを目的とする。 [0011] Therefore, the present invention has been made to solve such a problem, and is light and small. An eccentric weight that can be used suitably for vibration motors that can obtain the required amount of vibration with low power consumption. Even when such vibration motors are used for a long time, the reliability of the connection between the weight and the weight support body An object of the present invention is to provide an eccentric weight in which deterioration of properties is suppressed. Another object of the present invention is to provide a vibration motor and a portable device having such an excellent eccentric weight.
課題を解決するための手段  Means for solving the problem
[0012] (1)本発明の偏心分銅は、高比重金属カゝらなる分銅と、前記分銅を保持するための 分銅保持部及びモータ軸を保持するためのモータ軸保持部を有し、前記分銅を構 成する高比重金属よりも比重が低い金属の弾性体力 なる分銅支持体とを一体ィ匕す ることにより製造された偏心分銅であって、前記分銅保持部は、前記分銅と前記分銅 支持体とを一体ィ匕した場合に前記分銅側への突出量が小さくなる分銅側突出部を 有することを特徴とする。  [0012] (1) The eccentric weight of the present invention has a weight made of a high specific gravity metal key, a weight holding part for holding the weight, and a motor shaft holding part for holding the motor shaft, An eccentric weight manufactured by integrally joining a weight support that is an elastic body force of a metal having a specific gravity lower than that of a high specific gravity metal constituting the weight, wherein the weight holding portion includes the weight and the weight. It has a weight-side protruding portion that reduces the amount of protrusion to the weight side when the support is integrated.
[0013] このため、上記(1)に記載の偏心分銅によれば、偏心分銅を、高比重金属からなる 分銅と、分銅を構成する高比重金属よりも比重の低!ヽ金属からなる分銅支持体とを 一体ィ匕することにより製造された偏心分銅としたため、偏心分銅の総重量を軽くする とともに、偏心分銅における偏心量を大きくすることができる。このため、このような偏 心分銅を用いることにより、軽量かつ少ない消費電力で必要な振動量が得られる振 動モータを構成することができる。  [0013] Therefore, according to the eccentric weight described in (1) above, the eccentric weight includes a weight made of a high specific gravity metal and a weight support made of a low specific gravity metal having a lower specific gravity than the high specific gravity metal constituting the weight. Since the eccentric weight is manufactured by integrating the body and the body, the total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
[0014] また、上記(1)に記載の偏心分銅によれば、分銅支持体を弾性体からなる分銅支 持体としたため、分銅は分銅保持部全体の弾性力により分銅保持部に保持されるこ とになる。このため、振動モータ (及び偏心分銅)を長時間使用した場合に分銅と分 銅支持体との接合の信頼性が低下することが抑制され、このような偏心分銅を用いる ことにより、長期信頼性の高い振動モータを構成することができる。  [0014] Further, according to the eccentric weight described in (1) above, since the weight support is a weight support made of an elastic body, the weight is held by the weight holding portion by the elastic force of the entire weight holding portion. It will be. For this reason, when the vibration motor (and eccentric weight) is used for a long time, the reliability of the connection between the weight and the weight support is suppressed, and long-term reliability is reduced by using such an eccentric weight. A high vibration motor can be configured.
[0015] また、上記(1)に記載の偏心分銅によれば、分銅保持部を、分銅と分銅支持体とを 一体ィ匕した場合に分銅側への突出量が小さくなる分銅側突出部を有する分銅保持 部としたため、分銅は、分銅側突出部の弾性力が加わったさらに強い弾性力で分銅 保持部に保持されることになる。このため、振動モータ (及び偏心分銅)を長時間使 用した場合に分銅と分銅支持体との接合の信頼性が低下することをさらに抑制する ことができるため、このような偏心分銅を用いることにより、長期信頼性のさらに高い振 動モータを構成することができる。 [0015] In addition, according to the eccentric weight described in (1) above, when the weight holding portion is integrated with the weight and the weight support, the weight-side protruding portion that reduces the protruding amount to the weight side is provided. Since the weight holding portion has, the weight is held by the weight holding portion with a stronger elastic force to which the elastic force of the weight side protruding portion is added. For this reason, when the vibration motor (and eccentric weight) is used for a long time, it further suppresses the decrease in the reliability of the connection between the weight and the weight support. Therefore, by using such an eccentric weight, a vibration motor with higher long-term reliability can be configured.
[0016] また、上記(1)に記載の偏心分銅によれば、分銅支持体を弾性体からなる分銅支 持体としたため、モータ軸は弾性力によりモータ軸保持部に保持されることになる。こ のため、振動モータを長時間使用した場合にモータ軸と分銅支持体との接合の信頼 性が低下することが抑制され、長期信頼性の高 、振動モータを構成することができる  [0016] Further, according to the eccentric weight described in (1) above, since the weight support is a weight support made of an elastic body, the motor shaft is held by the motor shaft holding portion by elastic force. . For this reason, when the vibration motor is used for a long time, it is possible to suppress a decrease in the reliability of the connection between the motor shaft and the weight support, and it is possible to configure the vibration motor with high long-term reliability.
[0017] 上記(1)に記載の偏心分銅においては、分銅と分銅支持体とを一体化する前の分 銅保持部の内周部の大きさを、分銅の外周部の大きさよりも小さなものとしておくこと が好ましい。これ〖こより、内周部を押し広げた状態の分銅保持部に分銅を挿入するこ とで、分銅は、分銅保持部全体の弾性力により分銅保持部に保持されることになる。 [0017] In the eccentric weight described in (1) above, the size of the inner peripheral portion of the weight holding portion before integrating the weight and the weight support is smaller than the size of the outer peripheral portion of the weight. Is preferable. Thus, by inserting the weight into the weight holding portion in a state where the inner peripheral portion is expanded, the weight is held by the weight holding portion by the elastic force of the entire weight holding portion.
[0018] また、上記(1)に記載の偏心分銅においては、モータ軸保持部の内径をモータ軸 の外径よりも小さなものとしておくことが好ましい。これにより、上記(1)に記載の偏心 分銅を用いて振動モータを組み立てる際に、一旦内径を広げた状態のモータ軸保 持部にモータ軸を挿入することで、挿入後モータ軸は弾性力でモータ軸保持部に保 持されること〖こなる。  [0018] In the eccentric weight described in (1) above, it is preferable that the inner diameter of the motor shaft holding portion is smaller than the outer diameter of the motor shaft. As a result, when the vibration motor is assembled using the eccentric weight described in (1) above, the motor shaft is inserted into the motor shaft holding portion with the inner diameter expanded once, so that the motor shaft after insertion is elastic. With this, it will be held in the motor shaft holder.
[0019] なお、本発明の偏心分銅において、「分銅と分銅支持体とを一体化」するとは、分 銅と分銅支持体とを何らかの方法で結合することすベてを含む。  In the eccentric weight of the present invention, “integrating a weight and a weight support” includes all bonding of the weight and the weight support by some method.
[0020] (2)上記(1)に記載の偏心分銅にぉ 、ては、前記分銅支持体は、薄板金属部材を 所定形状に塑性変形させた後に硬化処理を施すことにより製造された弾性体からな ることが好ましい。  (2) In the eccentric weight described in (1) above, the weight support is an elastic body manufactured by subjecting a thin metal member to plastic deformation and then performing a hardening treatment. Preferably, it consists of
[0021] このように構成することにより、薄板金属部材を所定形状に塑性変形させた後に硬 化処理を施すことにより製造された分銅支持体を用いることとしたため、分銅支持体 が分銅及びモータ軸を弾性力により強固に保持することができるようになり、振動モ ータ (及び偏心分銅)を長時間使用した場合に分銅と分銅支持体との接合の信頼性 が低下することを十分に抑制することができる。このため、このような偏心分銅を用い ることにより、長期信頼性の高い振動モータを構成することができる。  [0021] By configuring in this way, the weight support manufactured by performing the hardening process after plastic deformation of the thin metal member into a predetermined shape is used, so that the weight support is the weight and the motor shaft. Can be held firmly by the elastic force, and sufficiently suppresses the decrease in the reliability of bonding between the weight and the weight support when the vibration motor (and eccentric weight) is used for a long time. can do. For this reason, a vibration motor with high long-term reliability can be configured by using such an eccentric weight.
[0022] また、上記 (2)に記載の偏心分銅によれば、薄板金属部材を所定形状に塑性変形 させた後に硬化処理を施すことにより製造された分銅支持体を用いることとしたため、 必要な強度を維持したまま分銅支持体を構成する材料の使用量を極めて少ないもの にすることができる。これにより、偏心分銅の総重量を軽くするとともに、偏心分銅に おける偏心量をさらに大きくすることができる。このため、このような偏心分銅を用いる ことにより、さらに軽量かっさらに少ない消費電力で必要な振動量が得られる振動モ ータを構成することができる。 [0022] Further, according to the eccentric weight described in the above (2), the thin metal member is plastically deformed into a predetermined shape. Since the weight support manufactured by performing the curing process after the formation is used, the amount of the material constituting the weight support can be made extremely small while maintaining the required strength. As a result, the total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be further increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with a lighter weight and less power consumption.
[0023] (3)上記(2)に記載の偏心分銅にぉ 、ては、前記分銅支持体のビッカース硬さ(Hv (3) The eccentric weight described in the above (2) has a Vickers hardness (Hv of the weight support).
)は、 150以上であることが好ましい。 ) Is preferably 150 or more.
[0024] このように構成することにより、分銅支持体は強い弾性力で分銅を保持することが可 能になるとともに強い弾性力でモータ軸を保持することが可能になる。この観点から 言えば、分銅支持体のビッカース硬さ(Hv)は 200以上であることがより好ましぐ 25[0024] With this configuration, the weight support body can hold the weight with a strong elastic force and can hold the motor shaft with a strong elastic force. From this point of view, it is more preferable that the Vickers hardness (Hv) of the weight support is 200 or more.
0以上であることがさらに好ましい。 More preferably, it is 0 or more.
[0025] (4)上記(2)又は(3)に記載の偏心分銅においては、前記分銅支持体は、前記モー タ軸保持部を起点として塑性変形させて製造されて ヽることが好ま 、。 (4) In the eccentric weight described in the above (2) or (3), it is preferable that the weight support is manufactured by plastic deformation starting from the motor shaft holding portion. .
[0026] このように構成することにより、小さい曲率半径を有する部分を起点として塑性変形 させることが可能となるため、分銅支持体を容易に形成することが可能となり、偏心分 銅を生産する際の生産性を向上させることが可能となる。 [0026] With this configuration, plastic deformation can be performed starting from a portion having a small radius of curvature. Therefore, a weight support can be easily formed, and an eccentric weight can be produced. It becomes possible to improve productivity.
[0027] (5)上記(2)〜 (4)のいずれかに記載の偏心分銅においては、前記モータ軸保持部 は、前記薄板金属部材が少なくとも 2重に巻かれた構造を有することが好ましい。 [0027] (5) In the eccentric weight according to any one of (2) to (4), the motor shaft holding part preferably has a structure in which the thin metal member is wound at least twice. .
[0028] このように構成することにより、モータ軸保持部にモータ軸をさらに強固に保持させ ることができるようになり、振動モータを長時間使用した場合に、モータ軸保持部によ るモータ軸の保持力が低下することを抑制することができる。このため、このような偏 心分銅を用いることにより、長期信頼性の高い振動モータを構成することができる。 [0028] With this configuration, the motor shaft can be more firmly held by the motor shaft holding portion, and the motor by the motor shaft holding portion can be used when the vibration motor is used for a long time. It can suppress that the holding | maintenance force of a axis | shaft falls. For this reason, a vibration motor with high long-term reliability can be configured by using such an eccentric weight.
[0029] (6)上記(1)〜(5)のいずれかに記載の偏心分銅においては、前記分銅側突出部 は、前記分銅側突出部の先端部へ向力つて幅が狭くなる形状を有することが好まし い。 [0029] (6) In the eccentric weight according to any one of (1) to (5), the weight-side protruding portion has a shape in which a width is narrowed by directing toward a tip portion of the weight-side protruding portion. It is preferable to have it.
[0030] このように構成することにより、偏心分銅の製造過程において分銅と分銅支持体と を一体化させる際に、分銅支持体に分銅を挿入していくに従って分銅が分銅側突出 部を徐々に外方に押していくことが可能になる。このため、分銅を分銅保持部に挿入 する作業が容易になり、偏心分銅を製造する際の製造コストを低いものにすることが できる。 [0030] With this configuration, when the weight and the weight support are integrated in the manufacturing process of the eccentric weight, the weight protrudes toward the weight as the weight is inserted into the weight support. It becomes possible to push the part gradually outward. For this reason, the operation of inserting the weight into the weight holding portion is facilitated, and the manufacturing cost for manufacturing the eccentric weight can be reduced.
[0031] (7)上記(1)〜(6)のいずれかに記載の偏心分銅においては、前記モータ軸保持部 は、前記モータ軸を前記モータ軸保持部に挿入した場合に前記モータ軸側への突 出量が小さくなるモータ軸側突出部を有することが好ましい。  [0031] (7) In the eccentric weight according to any one of (1) to (6), the motor shaft holding portion may be arranged on the motor shaft side when the motor shaft is inserted into the motor shaft holding portion. It is preferable to have a motor shaft side protrusion that reduces the amount of protrusion.
[0032] このように構成することにより、モータ軸は、モータ軸側突出部の弾性力が加わった さらに強い弾性力によりモータ軸保持部に保持されることになる。このため、振動モー タを長時間使用した場合にモータ軸と分銅支持体との接合の信頼性が低下すること を抑制することができるため、長期信頼性の高い振動モータを構成することができる  With this configuration, the motor shaft is held by the motor shaft holding portion with a stronger elastic force to which the elastic force of the motor shaft side protruding portion is added. For this reason, when the vibration motor is used for a long time, it is possible to suppress a decrease in the reliability of the connection between the motor shaft and the weight support, and thus a vibration motor with high long-term reliability can be configured.
[0033] (8)上記(7)に記載の偏心分銅においては、前記モータ軸側突出部は、前記モータ 軸側突出部の先端部へ向力つて幅が狭くなる形状を有することが好ましい。 [0033] (8) In the eccentric weight described in (7) above, it is preferable that the motor shaft side protruding portion has a shape in which the width is narrowed toward the tip of the motor shaft side protruding portion.
[0034] このように構成することにより、振動モータの製造過程において偏心分銅をモータ 軸に取り付ける際に、モータ軸保持部にモータ軸を挿入していくと、モータ軸をモー タ軸保持部に挿入していくに従ってモータ軸がモータ軸側突出部を徐々に外方に押 していくことが可能になる。このため、振動モータを長期間使用した場合にモータ軸と 分銅支持体との接合の信頼性が低下することを抑制することができるため、長期信頼 性の高 、振動モータを構成することができる。  With this configuration, when the eccentric weight is attached to the motor shaft during the manufacturing process of the vibration motor, the motor shaft is inserted into the motor shaft holding portion when the motor shaft is inserted into the motor shaft holding portion. As it is inserted, the motor shaft can gradually push the motor shaft side protrusion outward. For this reason, when the vibration motor is used for a long period of time, it is possible to suppress a decrease in the reliability of the connection between the motor shaft and the weight support, and thus it is possible to configure the vibration motor with high long-term reliability. .
[0035] (9)上記(1)〜(8)のいずれかに記載の偏心分銅においては、前記分銅は、前記分 銅側突出部に対応する部分に前記分銅側突出部を受ける窪みが形成されているこ とが好ましい。  [0035] (9) In the eccentric weight according to any one of (1) to (8), the weight has a recess for receiving the weight side protrusion at a portion corresponding to the weight side protrusion. It is preferable that
[0036] このように構成することにより、分銅に形成された窪みと分銅側突出部とを係止させ ることにより、分銅保持部力も分銅が離脱してしまうことを抑制することが可能となる。 このため、振動モータを長期間使用した場合に分銅と分銅支持体との接合の信頼性 が低下することをさらに抑制することができるため、このような偏心分銅を用いることに より、長期信頼性のさらに高い振動モータを構成することができる。  [0036] With this configuration, it is possible to prevent the weight from being separated from the weight holding portion force by locking the recess formed in the weight and the weight side protruding portion. . For this reason, when the vibration motor is used for a long time, it is possible to further suppress the decrease in the reliability of the connection between the weight and the weight support. A higher vibration motor can be constructed.
[0037] (10)本発明の偏心分銅は、高比重金属カゝらなる分銅と、前記分銅を保持するため の分銅保持部及びモータ軸を保持するためのモータ軸保持部を有し、前記分銅を 構成する高比重金属よりも比重が低い薄板金属部材を所定形状に塑性変形させた 後に硬化処理を施すことにより製造された弾性体からなる分銅支持体とを一体化す ることにより製造された偏心分銅であって、前記分銅支持体は、前記モータ軸を前記 モータ軸保持部に挿入した場合に前記分銅保持部がさらに強い弾性力で前記分銅 を保持するような構造を有することを特徴とする。 [0037] (10) The eccentric weight of the present invention has a weight made of a high specific gravity metal and the weight is retained. A metal plate holding portion and a motor shaft holding portion for holding the motor shaft, and a sheet metal member having a specific gravity lower than that of the high specific gravity metal constituting the weight is plastically deformed into a predetermined shape and then subjected to a hardening process. An eccentric weight manufactured by integrating a weight support made of an elastic body manufactured by the method, wherein the weight support holds the weight when the motor shaft is inserted into the motor shaft holding portion. The portion has a structure that holds the weight with a stronger elastic force.
[0038] このため、上記(10)に記載の偏心分銅によれば、偏心分銅を、高比重金属からな る分銅と、分銅を構成する高比重金属よりも比重の低!ヽ金属からなる分銅支持体とを 一体ィ匕することにより製造された偏心分銅としたため、偏心分銅の総重量を軽くする とともに、偏心分銅における偏心量を大きくすることができる。このため、このような偏 心分銅を用いることにより、軽量かつ少ない消費電力で必要な振動量が得られる振 動モータを構成することができる。  [0038] For this reason, according to the eccentric weight described in (10) above, the eccentric weight is made of a weight made of a high specific gravity metal and a specific gravity lower than that of a high specific gravity metal constituting the weight! Since the eccentric weight is manufactured by integrally joining the weight support made of metal, the total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
[0039] また、上記(10)に記載の偏心分銅によれば、分銅支持体を弾性体からなる分銅支 持体としたため、分銅は弾性力により分銅保持部に保持されることになる。このため、 振動モータ (及び偏心分銅)を長時間使用した場合に分銅と分銅支持体との接合の 信頼性が低下することが抑制され、このような偏心分銅を用いることにより、長期信頼 性の高 、振動モータを構成することができる。  [0039] Furthermore, according to the eccentric weight described in (10) above, since the weight support body is a weight support body made of an elastic body, the weight is held by the weight holding portion by elastic force. For this reason, when the vibration motor (and the eccentric weight) is used for a long time, it is possible to suppress a decrease in the reliability of the connection between the weight and the weight support.By using such an eccentric weight, long-term reliability can be improved. High vibration motors can be constructed.
[0040] また、上記(10)に記載の偏心分銅によれば、薄板金属部材を所定形状に塑性変 形させた後に硬化処理を施すことにより製造された分銅支持体を用いることとしたた め、分銅支持体が分銅及びモータ軸を弾性力により強固に保持することができるよう になり、振動モータ (及び偏心分銅)を長時間使用した場合に分銅と分銅支持体との 接合の信頼性が低下することを十分に抑制することができる。このため、このような偏 心分銅を用いることにより、長期信頼性の高い振動モータを構成することができる。  [0040] Further, according to the eccentric weight described in the above (10), the weight support manufactured by subjecting the thin metal member to plastic deformation to a predetermined shape and then performing a hardening treatment is used. The weight support body can hold the weight and the motor shaft firmly by elastic force, and when the vibration motor (and eccentric weight) is used for a long time, the reliability of the connection between the weight and the weight support body is improved. It can suppress sufficiently that it falls. For this reason, a vibration motor with high long-term reliability can be configured by using such an eccentric weight.
[0041] また、上記(10)に記載の偏心分銅によれば、薄板金属部材を所定形状に塑性変 形させた後に硬化処理を施すことにより製造された弾性体からなる分銅支持体とした ため、必要な強度を維持したまま分銅支持体を構成する材料の使用量を極めて少な いものにすることができる。これにより、偏心分銅の総重量を軽くするとともに、偏心分 銅における偏心量をさらに大きくすることができる。このため、このような偏心分銅を用 いることにより、さらに軽量かっさらに少ない消費電力で必要な振動量が得られる振 動モータを構成することができる。 [0041] Further, according to the eccentric weight described in the above (10), since a thin plate metal member is plastically deformed into a predetermined shape and then subjected to hardening treatment, it is used as a weight support made of an elastic body. Thus, the amount of the material constituting the weight support can be made extremely small while maintaining the required strength. As a result, the total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be further increased. For this reason, such an eccentric weight is used. By virtue of this, it is possible to configure a vibration motor that can obtain the required amount of vibration with lighter and less power consumption.
[0042] さらにまた、上記(10)に記載の偏心分銅によれば、分銅支持体を、モータ軸をモ ータ軸保持部に挿入した場合に分銅保持部がさらに強い弾性力で分銅を保持する ような構造を有する分銅支持体としたため、分銅は、モータ軸をモータ軸保持部に挿 入した場合にさらに強い弾性力で分銅保持部に保持されることになる。このため、振 動モータ (及び偏心分銅)を長時間使用した場合に分銅と分銅支持体との接合の信 頼性が低下することをさらに抑制することができるため、このような偏心分銅を用いる ことにより、長期信頼性のさらに高い振動モータを構成することができる。  [0042] Furthermore, according to the eccentric weight described in (10) above, when the weight support is inserted into the motor shaft holding portion, the weight holding portion holds the weight with a stronger elastic force. Since the weight support body has such a structure, the weight is held by the weight holding portion with a stronger elastic force when the motor shaft is inserted into the motor shaft holding portion. For this reason, when the vibration motor (and the eccentric weight) is used for a long time, it is possible to further suppress the decrease in the reliability of the connection between the weight and the weight support, so that such an eccentric weight is used. Thus, a vibration motor with higher long-term reliability can be configured.
[0043] (11)本発明の偏心分銅は、高比重金属カゝらなる分銅と、前記分銅を保持するため の分銅保持部及びモータ軸を保持するためのモータ軸保持部を有し、前記分銅を 構成する高比重金属よりも比重が低い薄板金属部材を所定形状に塑性変形させた 後に硬化処理を施すことにより製造された弾性体からなる分銅支持体とを一体化す ることにより製造された偏心分銅であって、前記分銅支持体は、前記分銅と前記分銅 支持体とを一体ィ匕した場合に前記モータ軸保持部が画定する空間が小さくなるよう な構造を有することを特徴とする。  [0043] (11) The eccentric weight of the present invention has a weight made of a high specific gravity metal key, a weight holding portion for holding the weight, and a motor shaft holding portion for holding the motor shaft, Manufactured by integrating a thin plate metal member having a specific gravity lower than that of the high specific gravity metal that composes the weight into a predetermined shape and then integrating it with a weight support made of an elastic body. It is an eccentric weight, and the weight support body has a structure in which a space defined by the motor shaft holding portion is reduced when the weight and the weight support body are integrated together.
[0044] このため、上記(11)に記載の偏心分銅によれば、偏心分銅を、高比重金属からな る分銅と、分銅を構成する高比重金属よりも比重の低!ヽ金属からなる分銅支持体とを 一体ィ匕することにより製造された偏心分銅としたため、偏心分銅の総重量を軽くする とともに、偏心分銅における偏心量を大きくすることができる。このため、このような偏 心分銅を用いることにより、軽量かつ少ない消費電力で必要な振動量が得られる振 動モータを構成することができる。  [0044] For this reason, according to the eccentric weight described in (11) above, the eccentric weight is made of a weight made of a high specific gravity metal and a specific gravity lower than that of the high specific gravity metal constituting the weight! Since the eccentric weight is manufactured by integrally joining the weight support made of metal, the total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
[0045] また、上記(11)に記載の偏心分銅によれば、分銅支持体を弾性体からなる分銅支 持体としたため、分銅は弾性力により分銅保持部に保持されることになる。このため、 振動モータ (及び偏心分銅)を長時間使用した場合に分銅と分銅支持体との接合の 信頼性が低下することが抑制され、このような偏心分銅を用いることにより、長期信頼 性の高 、振動モータを構成することができる。  Further, according to the eccentric weight described in (11) above, since the weight support body is a weight support body made of an elastic body, the weight is held by the weight holding portion by elastic force. For this reason, when the vibration motor (and the eccentric weight) is used for a long time, it is possible to suppress a decrease in the reliability of the connection between the weight and the weight support.By using such an eccentric weight, long-term reliability can be improved. High vibration motors can be constructed.
[0046] また、上記(11)に記載の偏心分銅によれば、薄板金属部材を所定形状に塑性変 形させた後に硬化処理を施すことにより製造された分銅支持体を用いることとしたた め、分銅支持体が分銅及びモータ軸を弾性力により強固に保持することができるよう になり、振動モータ (及び偏心分銅)を長時間使用した場合に分銅と分銅支持体との 接合の信頼性が低下することを十分に抑制することができる。このため、このような偏 心分銅を用いることにより、長期信頼性の高い振動モータを構成することができる。 [0046] According to the eccentric weight described in (11) above, the thin metal member is plastically deformed into a predetermined shape. Since the weight support manufactured by performing the curing process after being formed is used, the weight support can hold the weight and the motor shaft firmly by elastic force, and the vibration motor ( Further, it is possible to sufficiently suppress the decrease in the reliability of the connection between the weight and the weight support when the eccentric weight is used for a long time. For this reason, a vibration motor with high long-term reliability can be configured by using such an eccentric weight.
[0047] また、上記(11)に記載の偏心分銅によれば、薄板金属部材を所定形状に塑性変 形させた後に硬化処理を施すことにより製造された弾性体からなる分銅支持体とした ため、必要な強度を維持したまま分銅支持体を構成する材料の使用量を極めて少な いものにすることができる。これにより、偏心分銅の総重量を軽くするとともに、偏心分 銅における偏心量をさらに大きくすることができる。このため、このような偏心分銅を用 いることにより、さらに軽量かっさらに少ない消費電力で必要な振動量が得られる振 動モータを構成することができる。  [0047] Further, according to the eccentric weight described in the above (11), since a thin plate metal member is plastically deformed into a predetermined shape and then subjected to hardening treatment, it is used as a weight support made of an elastic body. Thus, the amount of the material constituting the weight support can be made extremely small while maintaining the required strength. As a result, the total weight of the eccentric weight can be reduced and the amount of eccentricity in the eccentric weight can be further increased. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter weight and less power consumption.
[0048] さらにまた、上記(11)に記載の偏心分銅によれば、分銅支持体を、分銅と分銅支 持体とを一体化した場合にモータ軸保持部が画定する空間が小さくなるような構造を 有する分銅支持体としたため、モータ軸は、分銅と分銅支持体とを一体化した場合に さらに強い弾性力でモータ軸保持部に保持されることになる。このため、振動モータ を長時間使用した場合にモータ軸と分銅支持体との接合の信頼性が低下することを さらに抑制することができるため、長期信頼性のさらに高い振動モータを構成すること ができる。  [0048] Furthermore, according to the eccentric weight described in (11) above, when the weight support is integrated with the weight and the weight support, the space defined by the motor shaft holding portion is reduced. Since the weight support body has a structure, the motor shaft is held by the motor shaft holding portion with a stronger elastic force when the weight and the weight support body are integrated. For this reason, when the vibration motor is used for a long time, it is possible to further suppress the decrease in the reliability of the connection between the motor shaft and the weight support, and thus it is possible to configure a vibration motor with higher long-term reliability. it can.
[0049] (12)上記(10)又は(11)に記載の偏心分銅においては、前記分銅支持体のピツカ ース硬さ(Hv)は、 150以上であることが好ましい。  [0049] (12) In the eccentric weight described in (10) or (11) above, the weight hardness (Hv) of the weight support is preferably 150 or more.
[0050] このように構成することにより、分銅支持体は強い弾性力で分銅を保持することが可 能になるとともに強い弾性力でモータ軸を保持することが可能になる。この観点から 言えば、分銅支持体のビッカース硬さ(Hv)は 200以上であることがより好ましぐ 25With this configuration, the weight support can hold the weight with a strong elastic force and can hold the motor shaft with a strong elastic force. From this point of view, it is more preferable that the Vickers hardness (Hv) of the weight support is 200 or more.
0以上であることがさらに好ましい。 More preferably, it is 0 or more.
[0051] (13)上記(1)〜(12)のいずれかに記載の偏心分銅においては、前記分銅保持部 は、前記分銅の外周部分全体にわたって分銅を保持して ヽることが好ま ヽ。 [0051] (13) In the eccentric weight according to any one of (1) to (12), it is preferable that the weight holding portion holds the weight over the entire outer peripheral portion of the weight.
[0052] このように構成することにより、振動モータ (及び偏心分銅)を長時間使用した場合 に分銅と分銅支持体との接合の信頼性が低下することをさらに十分に抑制することが できる。このため、このような偏心分銅を用いることにより、長期信頼性の高い振動モ ータを構成することができる。 [0052] With this configuration, when the vibration motor (and eccentric weight) is used for a long time Further, it is possible to further sufficiently suppress the decrease in the reliability of bonding between the weight and the weight support. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor with high long-term reliability.
[0053] なお、この場合において、「外周部分全体」とは、分銅の長手方向に垂直な平面( すなわち、モータ軸に垂直な平面)における分銅の外周全体のことである。また、本 発明の偏心分銅においては、分銅は、分銅の長手方向全体にわたって分銅保持部 に保持されていてもよいが、必ずしも分銅の長手方向全体にわたって分銅保持部に 保持されて 、る必要はな 、。  In this case, “the entire outer peripheral portion” refers to the entire outer periphery of the weight in a plane perpendicular to the longitudinal direction of the weight (that is, a plane perpendicular to the motor shaft). Further, in the eccentric weight of the present invention, the weight may be held in the weight holding portion throughout the longitudinal direction of the weight, but is not necessarily held in the weight holding portion throughout the longitudinal direction of the weight. ,.
[0054] (14)上記(2)、 (3)、 (4)、 (5)、 (10)、 (11)又は(12)に記載の偏心分銅において は、前記分銅支持体は、前記分銅保持部と前記モータ軸保持部との間に設けた切り 欠き部にお 、て前記薄板金属部材が交差する構造を有して!/、ることが好ま 、。  [0054] (14) In the eccentric weight according to (2), (3), (4), (5), (10), (11) or (12), the weight support is the weight. It is preferable that the notched portion provided between the holding portion and the motor shaft holding portion has a structure in which the thin metal member intersects!
[0055] このように構成することにより、分銅支持体が分銅及びモータ軸を弾性力によりさら に強固に保持することができるようになる。すなわち、分銅保持部と分銅とを一体ィ匕 すると、分銅が分銅保持部の内周部を外側に押し広げる状態となり、その結果、モー タ軸保持部においてはその内周部が絞まるように作用する。また、モータ軸保持部に モータ軸を挿入すると、モータ軸がモータ軸保持部の内周部を外側に押し広げる状 態となり、その結果分銅保持部においてはその内周部が絞まるように作用する。これ らの作用の相乗効果により分銅は分銅保持部にさらに強固に保持されることが可能 となり、また、モータ軸はモータ軸保持部にさらに強固に保持されることが可能となる 。このため、振動モータ (及び偏心分銅)を長時間使用した場合に分銅と分銅支持体 との接合の信頼性及びモータ軸と分銅支持体との接合の信頼性が低下することをさ らに抑制することができるため、このような偏心分銅を用いることにより、長期信頼性 のさらに高 、振動モータを構成することができる。  With this configuration, the weight support body can hold the weight and the motor shaft more firmly by the elastic force. In other words, when the weight holding part and the weight are integrated together, the weight pushes the inner peripheral part of the weight holding part outward, and as a result, the inner peripheral part of the motor shaft holding part is narrowed. Works. In addition, when the motor shaft is inserted into the motor shaft holding part, the motor shaft is in a state of pushing the inner peripheral part of the motor shaft holding part outward, so that the inner peripheral part of the weight holding part is restricted. To do. The synergistic effect of these actions makes it possible to hold the weight more firmly on the weight holding part, and it is possible to hold the motor shaft more firmly on the motor shaft holding part. For this reason, when the vibration motor (and eccentric weight) is used for a long time, the reliability of the connection between the weight and the weight support and the decrease in the reliability of the connection between the motor shaft and the weight support are further suppressed. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor with higher long-term reliability.
[0056] この観点力 言えば、分銅と分銅支持体とを一体ィ匕する前の分銅保持部の内周部 の大きさを、分銅の外周部の大きさよりも小さなものとしておくことが好ましい。また、 モータ軸保持部の内径をモータ軸の外形よりも小さなものとしておくことが好ましい。  [0056] Speaking of this viewpoint, it is preferable that the size of the inner peripheral portion of the weight holding portion before the weight and the weight support are integrated is smaller than the size of the outer peripheral portion of the weight. Further, it is preferable that the inner diameter of the motor shaft holding portion is smaller than the outer shape of the motor shaft.
[0057] (15)上記(1)〜(14)のいずれかに記載の偏心分銅においては、前記分銅支持体 は、モータ軸に沿った方向における一方側又は両側から前記分銅を保持する分銅 保持枠を有することが好ま ヽ。 [0057] (15) In the eccentric weight according to any one of (1) to (14), the weight support is a weight that holds the weight from one side or both sides in a direction along the motor shaft. It is preferable to have a holding frame.
[0058] このように構成することにより、分銅支持体は、モータ軸に沿った方向における一方 側又は両側からも分銅を保持することが可能になる。このため、振動モータ (及び偏 心分銅)を長時間使用した場合に分銅と分銅保持部との接合の信頼性が低下するこ とをさらに抑制することができるため、このような偏心分銅を用いることにより、長期信 頼性のさらに高い振動モータを構成することができる。  By configuring in this way, the weight support can hold the weight from one side or both sides in the direction along the motor shaft. For this reason, when the vibration motor (and the eccentric weight) is used for a long time, it is possible to further suppress the reduction in the reliability of the connection between the weight and the weight holding portion. Therefore, it is possible to configure a vibration motor with higher long-term reliability.
[0059] (16)上記(1)〜(15)に記載の偏心分銅においては、前記分銅として、モータ軸に 沿った方向に直交する面における断面が円形である分銅を有することが好ましい。  [0059] (16) In the eccentric weight described in (1) to (15) above, it is preferable that the weight has a weight having a circular cross section in a plane orthogonal to a direction along the motor shaft.
[0060] このように構成することにより、分銅を分銅保持部のいずれの端部側からも分銅保 持部に挿入することができるようになるため、分銅保持部に分銅を配置する際の自由 度が高まり、作業性が向上する。また、分銅の形状が単純な円柱形状であるため、丸 棒力 なる焼結体をそのまま短く切断したものを用いることができるようになり、分銅を 製造することが容易となる。このため、偏心分銅を製造する際の製造コストを低いもの にすることができる。  [0060] With this configuration, the weight can be inserted into the weight holding portion from either end side of the weight holding portion, so that it is possible to freely place the weight in the weight holding portion. The degree is increased and workability is improved. In addition, since the weight is a simple columnar shape, it becomes possible to use a sintered body having a round bar force cut short as it is, and it becomes easy to manufacture the weight. For this reason, the manufacturing cost at the time of manufacturing an eccentric weight can be made low.
[0061] (17)上記(1)〜(16)のいずれかに記載の偏心分銅においては、前記薄板金属部 材には、前記分銅支持体を軽量ィ匕するための 1つ又は複数の穴が設けられているこ とが好ましい。  [0061] (17) In the eccentric weight according to any one of the above (1) to (16), the thin plate metal member has one or more holes for lightening the weight support. Is preferably provided.
[0062] このように構成することにより、必要な強度を維持したまま分銅支持体を構成する材 料の使用量をさらに軽くするとともに、偏心分銅における偏心量をさらに大きくするこ とができる。このため、このような偏心分銅を用いることにより、さらに軽量かっさらに 少ない消費電力で必要な振動量が得られる振動モータを構成することができる。  [0062] With this configuration, it is possible to further reduce the amount of the material constituting the weight support while maintaining the required strength, and to further increase the amount of eccentricity in the eccentric weight. For this reason, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter weight and less power consumption.
[0063] (18)上記(1)〜(17)のいずれかに記載の偏心分銅においては、前記薄板金属部 材の厚さは、 0. 05mm〜0. 5mmの範囲内にあることが好ましい。  [0063] (18) In the eccentric weight according to any one of (1) to (17), the thickness of the thin metal member is preferably in the range of 0.05 mm to 0.5 mm. .
[0064] すなわち、薄板金属部材の厚さが 0. 05mm未満になると分銅支持体として必要な 強度が得られなくなる場合があるからであり、薄板金属部材の厚さが 0. 5mmを超え ると、分銅支持体の総重量を軽くするとともに偏心分銅における偏心量をさらに大きく することができると!/、う効果が得られなくなる場合があるからである。これらの観点から 言えば、薄板金属部材の厚さは、 0. 08mn!〜 0. 3mmの範囲内にあることがより好 ましい。 That is, if the thickness of the thin metal member is less than 0.05 mm, the strength required for the weight support may not be obtained, and if the thickness of the thin metal member exceeds 0.5 mm, This is because if the total weight of the weight support is reduced and the eccentric amount of the eccentric weight can be further increased, the effect may not be obtained. From these viewpoints, the thickness of the thin metal member is 0.008mn! More preferably within the range of ~ 0.3mm Good.
[0065] (19)上記(1)〜(18)のいずれかに記載の偏心分銅においては、前記分銅の長手 方向に沿った前記分銅保持部の長さは前記分銅よりも短ぐ前記分銅保持部は前記 分銅を前記分銅の長手方向に沿って偏心した位置で保持することが好まし 、。  [0065] (19) In the eccentric weight according to any one of (1) to (18), a length of the weight holding portion along a longitudinal direction of the weight is shorter than the weight. The part preferably holds the weight at a position eccentric along the longitudinal direction of the weight.
[0066] このように構成することにより、偏心分銅をモータ軸に取り付けたとき、偏心分銅の モータ軸保持部とモータ本体の軸受けとの距離を近づけることが可能になるため、モ ータ軸が回転する際にモータ軸にたわみが生じることを抑制することができる。その 結果、偏心分銅がより安定して回転し、振動モータの偏心振動特性が向上する。  [0066] With this configuration, when the eccentric weight is attached to the motor shaft, the distance between the motor weight holding portion of the eccentric weight and the bearing of the motor body can be reduced, so that the motor shaft It is possible to suppress the deflection of the motor shaft when rotating. As a result, the eccentric weight rotates more stably, and the eccentric vibration characteristics of the vibration motor are improved.
[0067] (20)上記(1)〜(19)のいずれかに記載の偏心分銅においては、前記薄板金属部 材は、焼入れ硬化性を有する金属、時効硬化性を有する金属、加工硬化性を有する 金属、又は形状記憶合金力 なることが好ま 、。  [0067] (20) In the eccentric weight according to any one of the above (1) to (19), the thin plate metal part is made of a metal having quenching hardenability, a metal having age hardenability, and work hardenability. It is preferable to have a metal or shape memory alloy power.
[0068] このように、焼き入れ硬化性を有する金属、時効硬化性を有する金属、加工硬化性 を有する金属又は形状記憶合金を用いて分銅支持体又はモータ軸支持体を構成す ることにより、分銅支持体を製造する際に分銅支持体又はモータ軸支持体を十分に 硬化させることが可能になり、信頼性の高い偏心分銅や振動モータを製造することが 可會 になる。  [0068] In this way, by configuring a weight support or a motor shaft support using a quench-hardening metal, an age-hardening metal, a work-hardening metal, or a shape memory alloy, When manufacturing the weight support, the weight support or the motor shaft support can be sufficiently cured, and it is possible to manufacture a highly reliable eccentric weight and vibration motor.
[0069] また、焼き入れ硬化性を有する金属、時効硬化性を有する金属、加工硬化性を有 する金属又は形状記憶合金を用いて分銅支持体又はモータ軸支持体を構成するこ とにより、分銅支持体又はモータ軸支持体に所定の弾性力を持たせることが可能に なる。  [0069] Further, a weight support or a motor shaft support is formed by using a metal having quench hardening property, a metal having age hardening property, a metal having work hardening property, or a shape memory alloy, thereby forming a weight. It becomes possible to give a predetermined elastic force to the support body or the motor shaft support body.
[0070] 焼き入れ硬化性を有する金属としては、マルテンサイト系ステンレス鋼を例示するこ とができる。マルテンサイト系ステンレス鋼はもともと耐食性が高く鲭びにく 、材料であ るので、偏心分銅全体にメツキを施すことが不要になる。このため、偏心分銅とメツキ 膜との間の接合部分及びメツキ自身にひびが入るということがなくなり、モータ軸保持 部におけるモータ軸の保持に関する信頼性が低下することを抑制することができる。  [0070] Examples of the metal having quenching hardenability include martensitic stainless steel. Since martensitic stainless steel is originally a material with high corrosion resistance and resistance to glare, it is not necessary to apply plating to the entire eccentric weight. For this reason, the joint portion between the eccentric weight and the plating film and the plating itself are not cracked, and it is possible to suppress a decrease in the reliability related to holding the motor shaft in the motor shaft holding portion.
[0071] また、マルテンサイト系ステンレス鋼はタングステン、タングステン合金などよりも粘り があるため、このような脆くて割れやす 、分銅をマルテンサイト系ステンレス鋼で保持 することにより、分銅を構成する材料が割れ易いという問題も抑制することができる。 [0072] また、マルテンサイト系ステンレス鋼はタングステンやタングステン合金などに比べ ると安価であるため、このような比較的安価なマルテンサイト系ステンレス鋼で軸体を 構成することにより、偏心分銅の製造コストを下げることが可能になる。 [0071] Further, since martensitic stainless steel is more viscous than tungsten, tungsten alloys, and the like, it is brittle and fragile. By holding the weight with martensitic stainless steel, a material constituting the weight is obtained. The problem of being easily broken can also be suppressed. [0072] In addition, since martensitic stainless steel is less expensive than tungsten or tungsten alloys, it is possible to manufacture an eccentric weight by forming a shaft body with such relatively inexpensive martensitic stainless steel. Cost can be reduced.
[0073] マルテンサイ卜系ステンレス鋼としては、 SUS403、 SUS410、 SUS416、 SUS42 0、 SUS429, SUS431、 SUS440などを伊 [J示すること力 Sできる。この場合、焼き入 れ処理により、ビッカース硬さ(Hv)として約 300〜600の値が得られる。  [0073] Examples of martensitic stainless steels include SUS403, SUS410, SUS416, SUS420, SUS429, SUS431, and SUS440. In this case, the quenching process gives a Vickers hardness (Hv) of about 300-600.
[0074] 時効硬化性を有する金属としては、析出硬化系ステンレス鋼、ベリリウム銅合金、二 ッケルマンガン銅合、析出硬化系チタン合金又はアルミニウム合金を例示することが できる。  [0074] Examples of age-hardening metals include precipitation hardening stainless steel, beryllium copper alloy, nickel manganese copper alloy, precipitation hardening titanium alloy, and aluminum alloy.
[0075] 時効硬化性を有する金属が析出硬化系ステンレス鋼である場合には、上記したマ ルテンサイト系ステンレス鋼の場合とほぼ同様の効果が得られるうえ、マルテンサイト 系ステンレス鋼の場合よりも耐食性に優れると 、う効果が得られる。析出硬化系ステ ンレス鋼としては、 SUS630、 SUS631などを例示することができる。この場合、 420 °Cで 2時間の析出硬化処理により、ビッカース硬さ(Hv)として約 300〜450の値力 S 得られる。  [0075] When the age-hardening metal is a precipitation hardening stainless steel, the same effect as in the case of the martensitic stainless steel described above is obtained, and moreover than in the case of the martensitic stainless steel. If the corrosion resistance is excellent, the effect is obtained. Examples of precipitation hardening stainless steel include SUS630 and SUS631. In this case, a value S of about 300 to 450 is obtained as a Vickers hardness (Hv) by precipitation hardening at 420 ° C. for 2 hours.
[0076] 時効硬化性を有する金属がベリリウム銅合金である場合には、塑性変形加工が容 易で析出硬化処理後の機械的強度に優れるという効果が得られる。ベリリウム銅合金 としては、ベリリウムを 0. 8%〜4. 0% (より好ましくは 1. 5%〜3. 5%)含むベリリウム 銅合金が例示される。この場合、 320°C〜330°Cで 2時間の析出硬化処理により、ビ ッカース硬さ(Hv)として約 200〜 350の値が得られる。  [0076] When the age-hardening metal is a beryllium copper alloy, the effects of easy plastic deformation and excellent mechanical strength after precipitation hardening are obtained. An example of the beryllium copper alloy is a beryllium copper alloy containing 0.8% to 4.0% (more preferably 1.5% to 3.5%) of beryllium. In this case, a Vickers hardness (Hv) of about 200 to 350 is obtained by precipitation hardening for 2 hours at 320 ° C to 330 ° C.
[0077] 時効硬化性を有する金属がニッケルマンガン銅合金(ニッケルマンガン洋白)であ る場合にも、塑性変形加工が容易で析出硬化処理後の機械的強度に優れるという 効果が得られる。ニッケルマンガン銅合金としては、約 20%のニッケル及び約 20% のマンガンを含み残部が銅であるニッケルマンガン銅合金が例示される。この場合、 400°Cで 2時間の析出硬化処理により、ビッカース硬さ(Hv)として約 420の値が得ら れる。  [0077] Even when the age-hardening metal is a nickel manganese copper alloy (nickel manganese white), the effect of easy plastic deformation and excellent mechanical strength after precipitation hardening can be obtained. An example of the nickel manganese copper alloy is a nickel manganese copper alloy containing about 20% nickel and about 20% manganese, with the balance being copper. In this case, a Vickers hardness (Hv) of about 420 is obtained by precipitation hardening for 2 hours at 400 ° C.
[0078] 時効硬化性を有する金属が析出硬化系チタン合金である場合にも、塑性変形加工 が容易で析出硬化処理後の機械的強度に優れるという効果が得られる。析出硬化 系チタン合金は、比較的比重が低いため、分銅支持体の総重量をさらに軽くするとと もに偏心分銅における偏心量をさらに大きくすることができる。このため、さらに軽量 かっさらに少ない消費電力で必要な振動量が得られる振動モータを構成することが できる。低比重析出硬化系チタン合金としては、約 6%のアルミニウム及び約 4%の バナジウムを含むチタン合金(Ti—6A1—4V)や約 6%のアルミニウム及び約 2%の バナジウムを含むチタン合金 (Ti— 6A1— 2V)が例示される。この場合、 450°Cで 2 時間の析出硬化処理により、ビッカース硬さ(Hv)として約 300の値が得られる。 [0078] Even when the age-hardening metal is a precipitation hardening titanium alloy, the effects of easy plastic deformation and excellent mechanical strength after precipitation hardening can be obtained. Precipitation hardening Since the titanium alloy has a relatively low specific gravity, it is possible to further reduce the total weight of the weight support and further increase the amount of eccentricity in the eccentric weight. For this reason, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter weight and less power consumption. Low specific gravity precipitation-hardening titanium alloys include titanium alloys containing approximately 6% aluminum and approximately 4% vanadium (Ti-6A1-4V) and titanium alloys including approximately 6% aluminum and approximately 2% vanadium (Ti — 6A1— 2V). In this case, a value of about 300 Vickers hardness (Hv) can be obtained by precipitation hardening for 2 hours at 450 ° C.
[0079] 時効硬化性を有する金属がアルミニウム合金である場合には、塑性変形加工が容 易で耐食性及び機械的強度に優れるという効果が得られる。アルミニウム合金は、他 の金属と比べて比重が低いため、分銅支持体の総重量をさらに軽くするとともに偏心 分銅における偏心量をさらに大きくすることができる。このため、さらに軽量かっさらに 少な 、消費電力で必要な振動量が得られる振動モータを構成することができる。ァ ルミ-ゥム合金としては、 Al—Cu系アルミニウム合金(ジュラルミン)、 Al—Mn系アル ミニゥム合金、 A1— Mg系アルミニウム合金、 A1— Mg— Si系アルミニウム合金又は A l—Zn系アルミニウム合金を例示することができる。  [0079] When the age-hardening metal is an aluminum alloy, the effects of easy plastic deformation and excellent corrosion resistance and mechanical strength can be obtained. Since the aluminum alloy has a lower specific gravity than other metals, the total weight of the weight support can be further reduced and the amount of eccentricity in the eccentric weight can be further increased. For this reason, it is possible to configure a vibration motor that can obtain a necessary vibration amount with less power consumption and less power. Aluminum alloys include Al-Cu aluminum alloys (duralumin), Al-Mn aluminum alloys, A1-Mg aluminum alloys, A1-Mg-Si aluminum alloys or Al-Zn aluminum alloys. Can be illustrated.
[0080] 加工硬化性を有する金属としては、ステンレス鋼をはじめ各種金属を用いることが できる。  [0080] Various metals including stainless steel can be used as the work-hardening metal.
[0081] この場合、常温での冷間圧延処理 (例えば、 30〜80%の圧延。 )により、分銅支持 体に必要な弾力性を持たせることができる。  [0081] In this case, the weight support can have the necessary elasticity by cold rolling at room temperature (for example, 30 to 80% rolling).
[0082] 形状記憶合金としては、ニッケルチタン合金又は銅亜鉛アルミ合金を例示すること ができる。 [0082] As the shape memory alloy, a nickel titanium alloy or a copper zinc aluminum alloy can be exemplified.
[0083] 形状記憶合金がニッケルチタン合金である場合には、マルテンサイト系ステンレス 鋼の場合よりも耐食性に優れるという効果が得られる。また、ニッケルチタン合金は、 比較的比重が低 、ため、分銅支持体の総重量をさらに軽くするとともに偏心分銅に おける偏心量をさらに大きくすることができる。このため、さらに軽量かっさらに少ない 消費電力で必要な振動量が得られる振動モータを構成することができる。  [0083] When the shape memory alloy is a nickel titanium alloy, an effect that the corrosion resistance is superior to that of martensitic stainless steel is obtained. In addition, since the nickel titanium alloy has a relatively low specific gravity, the total weight of the weight support can be further reduced and the amount of eccentricity in the eccentric weight can be further increased. For this reason, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
[0084] 形状記憶合金が銅亜鉛アルミ合金である場合には、上記したニッケルチタン合金 の場合とほぼ同様の効果が得られるうえ、比重がさらに低いため、分銅支持体の総 重量をさらに軽くするとともに偏心分銅における偏心量をさらに大きくすることができ る。このため、さらに軽量かっさらに少ない消費電力で必要な振動量が得られる振動 モータを構成することができる。 [0084] When the shape memory alloy is a copper zinc aluminum alloy, substantially the same effect as that of the nickel titanium alloy described above can be obtained, and the specific gravity is further lower, so It is possible to further reduce the weight and further increase the amount of eccentricity in the eccentric weight. For this reason, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
[0085] (21)上記(1)〜(20)のいずれかに記載の偏心分銅においては、前記分銅は、タン ダステン、タングステン合金、オスミウム、オスミウム合金、金、金合金、イリジウム又は イリジウム合金力 なることが好まし 、。  [0085] (21) In the eccentric weight according to any one of (1) to (20), the weight is selected from the group consisting of tungsten, tungsten alloy, osmium, osmium alloy, gold, gold alloy, iridium or iridium alloy. I prefer to be.
[0086] このように構成することにより、タングステン、タングステン合金、オスミウム、ォスミゥ ム合金、金、金合金、イリジウム又はイリジウム合金は極めて比重が高いため、偏心 分銅における偏心量をさらに大きくすることができる。このため、このような偏心分銅を 用いることにより、さらに少ない消費電力で必要な振動量が得られる振動モータを構 成することができる。  [0086] With this configuration, tungsten, tungsten alloy, osmium, osmium alloy, gold, gold alloy, iridium or iridium alloy has a very high specific gravity, and therefore the amount of eccentricity in the eccentric weight can be further increased. . Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with less power consumption.
[0087] なお、本発明の偏心分銅においては、分銅として、上記の金属の他に銀、銅、真鍮 、鉛、モリブデン又はニッケル等の、分銅支持体を構成する金属よりも比重の高い金 属を用いることも好ましい。分銅を構成する金属は、加工の容易性、コスト、耐食性等 の観点力 適宜選択することができる。比較的比重が低い材料を用いる場合には、 分銅の体積を大きくすることにより必要な偏心量を得ることができる。  In the eccentric weight of the present invention, as the weight, a metal having a specific gravity higher than that of the metal constituting the weight support, such as silver, copper, brass, lead, molybdenum, or nickel, in addition to the above metal. It is also preferable to use. The metal constituting the weight can be appropriately selected from viewpoints such as ease of processing, cost, and corrosion resistance. When a material with a relatively low specific gravity is used, the necessary eccentricity can be obtained by increasing the volume of the weight.
[0088] また、本発明の偏心分銅においては、分銅には、モータ軸を保持するための機能 は必要ないため、分銅の形状として極めて単純な形状 (例えば、円、長円、扇形など の断面を有する棒形状。)を採用することができるようになる。このため、分銅として、 分銅の形状に焼結した焼結体や、分銅の断面形状 (例えば、円、長円、扇形など。 ) と同じ断面形状を有する異形棒力 なる焼結体を短く切断したものを用いることがで きる。また、丸棒からなる焼結体を削り出して分銅の断面形状と同じ断面形状に加工 した切削体を短く切断したものを用いることもできる。また、分銅の断面形状が円であ る場合には、丸棒力もなる焼結体をそのまま短く切断したものを用いることもできる。  [0088] Further, in the eccentric weight of the present invention, since the weight does not need a function for holding the motor shaft, the weight has a very simple shape (for example, a cross-section such as a circle, an ellipse, or a sector). Can be adopted. For this reason, as a weight, a sintered body sintered in the shape of a weight, or a sintered body with a deformed bar force having the same cross-sectional shape as a weight (for example, a circle, an ellipse, a fan shape, etc.) is cut short. Can be used. In addition, it is possible to use a cut body obtained by cutting a sintered body made of a round bar and cutting it into the same cross-sectional shape as that of the weight. In addition, when the cross-sectional shape of the weight is a circle, a sintered body that also has a round bar force can be used as it is cut short.
[0089] (22)本発明の振動モータは、モータ本体と、上記(1)〜(21)のいずれかに記載の 偏心分銅とを備えたことを特徴とする。  (22) A vibration motor according to the present invention includes a motor main body and the eccentric weight according to any one of (1) to (21).
[0090] このため、本発明の振動モータによれば、上記したように、軽量かつ少ない消費電 力で必要な振動量が得られる振動モータに好適に用いることができる偏心分銅であ つて、このような振動モータを長時間使用した場合に分銅と分銅支持体との接合の信 頼性が低下することが十分に抑制された優れた偏心分銅を備えているため、軽量か つ少な 、消費電力で必要な振動量が得られ、長時間信頼性の高 、振動モータとな る。 Therefore, according to the vibration motor of the present invention, as described above, the eccentric weight that can be suitably used for a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption. In addition, when this type of vibration motor is used for a long period of time, it is equipped with an excellent eccentric weight that sufficiently suppresses the decrease in the reliability of the connection between the weight and the weight support. In addition, the required amount of vibration can be obtained with power consumption, and the vibration motor is reliable for a long time.
[0091] (23)上記(22)に記載の振動モータにおいては、前記偏心分銅として、前記分銅の 長手方向に沿った前記分銅保持部の長さが前記分銅よりも短ぐ前記分銅保持部が 前記分銅を前記分銅の長手方向に沿って偏心した位置で保持する偏心分銅を備え 、前記偏心分銅は、前記モータ本体に対して、前記モータ軸保持部と前記モータ本 体との距離が近づく方向に固定されて 、ることが好ま 、。  (23) In the vibration motor according to (22), the weight holding portion in which the weight holding portion along the longitudinal direction of the weight is shorter than the weight is used as the eccentric weight. An eccentric weight for holding the weight at an eccentric position along the longitudinal direction of the weight is provided, and the eccentric weight is closer to the motor body in a direction in which the distance between the motor shaft holding portion and the motor body is closer. Preferred to be fixed to ,.
[0092] このように構成することにより、偏心分銅のモータ軸保持部とモータ本体の軸受けと の距離が近くなるため、モータ軸が回転する際にモータ軸にたわみが生じることを抑 制することができる。その結果、偏心分銅がより安定して回転し、振動モータの偏心 振動特性が向上する。  [0092] By configuring in this way, the distance between the motor weight holding portion of the eccentric weight and the bearing of the motor main body is reduced, so that the motor shaft is prevented from being bent when the motor shaft rotates. Can do. As a result, the eccentric weight rotates more stably, and the eccentric vibration characteristics of the vibration motor are improved.
[0093] (24)本発明の携帯機器は、上記(22)又は(23)に記載の振動モータを備えたことを 特徴とする。  (24) A portable device of the present invention is characterized by including the vibration motor according to (22) or (23).
[0094] このため、本発明の携帯機器によれば、軽量かつ少ない消費電力で必要な振動量 が得られ、長時間信頼性の高い振動モータを備えているため、軽量かつ少ない消費 電力で必要な振動量が得られ、長時間信頼性の高!、携帯機器となる。  [0094] For this reason, according to the portable device of the present invention, the required amount of vibration can be obtained with light weight and low power consumption, and since the vibration motor with high reliability for a long time is provided, light weight and low power consumption are required. A large amount of vibration can be obtained, long-term reliability is high, and it becomes a portable device.
[0095] (25)本発明の偏心分銅の製造方法は、請求項 1に記載の偏心分銅を製造するため の偏心分銅の製造方法であって、前記分銅側突出部に対応する加工が施された薄 板金属部材を塑性変形させることにより、前記分銅支持体と略同一の形状を有する 分銅支持体前駆体を製造する第 1工程と、前記分銅支持体前駆体に硬化処理を施 すことにより前記分銅支持体を製造する第 2工程と、前記分銅と前記分銅支持体に おける前記分銅保持部とを一体化させる第 3工程とを含むことを特徴とする。  (25) An eccentric weight manufacturing method according to the present invention is an eccentric weight manufacturing method for manufacturing an eccentric weight according to claim 1, wherein a process corresponding to the weight side protruding portion is performed. A first step of producing a weight support precursor having substantially the same shape as the weight support by plastically deforming the thin sheet metal member, and by subjecting the weight support precursor to a curing treatment. The method includes a second step of manufacturing the weight support and a third step of integrating the weight and the weight holding portion in the weight support.
[0096] このため、上記(25)に記載の偏心分銅の製造方法によれば、偏心分銅の総重量 を軽くするとともに、偏心分銅における偏心量が大きい偏心分銅を製造することがで きる。このため、このような偏心分銅を用いることにより、軽量かつ少ない消費電力で 必要な振動量が得られる振動モータを構成することができる。 [0097] また、上記(25)に記載の偏心分銅の製造方法によれば、薄板金属部材を所定形 状に塑性変形させる工程を経て分銅支持体を製造することとしているため、肉厚の薄 い分銅支持体を製造することが可能となり、偏心分銅の総重量を軽くするとともに、偏 心分銅における偏心量をさらに大きくすることができる。 [0096] Therefore, according to the method of manufacturing the eccentric weight described in (25) above, it is possible to reduce the total weight of the eccentric weight and to manufacture an eccentric weight having a large amount of eccentricity. Therefore, by using such an eccentric weight, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption. [0097] Further, according to the eccentric weight manufacturing method described in (25) above, since the weight support is manufactured through a step of plastically deforming the thin metal member into a predetermined shape, the thin weight metal member is manufactured. It is possible to manufacture a weight support, which can reduce the total weight of the eccentric weight and further increase the amount of eccentricity in the eccentric weight.
[0098] また、上記(25)に記載の偏心分銅の製造方法によれば、薄板金属部材に硬化処 理を施して分銅支持体を形成することとしたため、分銅支持体が分銅およびモータ 軸を強固に保持することができるようになり、振動モータ (及び偏心分銅)を長時間使 用した場合に、分銅支持体による分銅及びモータ軸の保持力が低下することを十分 に抑制することができる。このため、このような偏心分銅を用いることにより、長期信頼 性の高 、振動モータを構成することができる。  [0098] Further, according to the method of manufacturing the eccentric weight described in (25) above, the thin plate metal member is hardened to form the weight support, so that the weight support includes the weight and the motor shaft. It becomes possible to hold firmly, and when the vibration motor (and eccentric weight) is used for a long time, it is possible to sufficiently suppress the reduction of the holding force of the weight and the motor shaft by the weight support. . Therefore, by using such an eccentric weight, it is possible to configure a vibration motor with high long-term reliability.
[0099] さらにまた、上記(25)に記載の偏心分銅の製造方法によれば、分銅側突出部を有 する分銅保持部を形成することとしたため、分銅は、分銅側突出部の弾性力が加わ つたさらに強い弾性力で分銅保持部に保持されることが可能になる。このため、振動 モータ (及び偏心分銅)を長時間使用した場合に分銅と分銅支持体との接合の信頼 性が低下することをさらに抑制することができるため、このような偏心分銅を用いること により、長期信頼性のさらに高い振動モータを構成することができる。  [0099] Furthermore, according to the method of manufacturing the eccentric weight described in (25) above, since the weight holding portion having the weight side protruding portion is formed, the weight has the elastic force of the weight side protruding portion. In addition, it is possible to hold the weight holding portion with a stronger elastic force. For this reason, when the vibration motor (and the eccentric weight) is used for a long time, it is possible to further suppress the reduction in the reliability of the connection between the weight and the weight support, and thus by using such an eccentric weight, In addition, a vibration motor with higher long-term reliability can be configured.
[0100] (26)上記(25)に記載の偏心分銅の製造方法にお!、ては、前記第 2工程は、前記 分銅支持体前駆体に硬化処理を施すことによりビッカース硬さ (Hv)が 150以上であ る前記分銅支持体とすることを特徴とする偏心分銅の製造方法。  [0100] (26) In the method for producing an eccentric weight according to the above (25), the second step is to perform a Vickers hardness (Hv) by subjecting the weight support precursor to a curing treatment. A method for producing an eccentric weight, characterized in that the weight support is 150 or more.
[0101] このような方法とすることにより、分銅支持体は強い弾性力で分銅を保持することが 可能になるとともに強い弾性力でモータ軸を保持することが可能になる。この観点か ら言えば、分銅支持体のビッカース硬さ (Hv)を 200以上とすることがより好ましぐ 25 0以上とすることがさらに好ましい。  [0101] By adopting such a method, the weight support can hold the weight with a strong elastic force and can hold the motor shaft with a strong elastic force. From this point of view, the Vickers hardness (Hv) of the weight support is preferably 200 or more, more preferably 250 or more.
[0102] (27)上記(25)又は(26)に記載の偏心分銅の製造方法においては、前記第 1工程 においては、前記分銅支持部における内周部の大きさが前記分銅の外周部の大き さより大きくなるように前記薄板金属部材を塑性変形させ、前記偏心分銅の製造方法 は、前記分銅支持体に前記分銅を挿入した状態で、前記モータ軸に沿った方向に おける両側力 前記分銅を押圧して前記分銅を塑性変形させることにより、前記分銅 と前記分銅保持部とを固着させる工程を含む第 4工程をさらに含むことが好ましい。 [0102] (27) In the method of manufacturing the eccentric weight according to (25) or (26), in the first step, the size of the inner peripheral portion of the weight support portion is equal to the outer peripheral portion of the weight. The thin metal member is plastically deformed so as to be larger than the size, and the eccentric weight is produced by the method of manufacturing the eccentric weight in a state in which the weight is inserted into the weight support and the double side force in the direction along the motor shaft is applied. By pressing and plastically deforming the weight, the weight Preferably, the method further includes a fourth step including a step of fixing the weight holding portion to the weight holding portion.
[0103] このような方法とすることにより、分銅支持部における内周部の大きさが分銅の外周 部の大きさより大きくなるため、分銅支持体に分銅を挿入することが容易になり、偏心 分銅を製造する際の生産性を向上させることが可能となる。 [0103] By adopting such a method, the size of the inner peripheral portion of the weight support portion becomes larger than the size of the outer peripheral portion of the weight, so that it becomes easy to insert the weight into the weight support body, and the eccentric weight. It becomes possible to improve productivity at the time of manufacturing.
[0104] また、分銅を押圧して塑性変形させることにより分銅と分銅保持部とを固着させるた め、分銅保持部の弾性力により分銅は分銅保持部に強固に保持されるようになる。こ のため、振動モータを長時間使用した場合に分銅と分銅支持体との接合の信頼性が 低下することをさらに抑制することができる。 [0104] Further, since the weight and the weight holding portion are fixed by pressing the weight and plastically deforming, the weight is firmly held by the weight holding portion by the elastic force of the weight holding portion. For this reason, when the vibration motor is used for a long time, it is possible to further suppress the decrease in the reliability of the connection between the weight and the weight support.
図面の簡単な説明  Brief Description of Drawings
[0105] [図 1]実施形態 1に係る偏心分銅 120を説明するために示す図である。 FIG. 1 is a view for explaining an eccentric weight 120 according to a first embodiment.
[図 2]実施形態 1に係る偏心分銅 120の製造方法を説明するために示す図である。  FIG. 2 is a view for explaining a method of manufacturing the eccentric weight 120 according to the first embodiment.
[図 3]実施形態 1に係る振動モータ 100を説明するために示す図である。  FIG. 3 is a view for explaining the vibration motor 100 according to the first embodiment.
[図 4]実施形態 2に係る偏心分銅 220を説明するために示す図である。  FIG. 4 is a view for explaining an eccentric weight 220 according to Embodiment 2.
[図 5]実施形態 3に係る偏心分銅 320を説明するために示す図である。  FIG. 5 is a view for explaining an eccentric weight 320 according to Embodiment 3.
[図 6]実施形態 4に係る偏心分銅 420を説明するために示す図である。  FIG. 6 is a view for explaining an eccentric weight 420 according to Embodiment 4.
[図 7]実施形態 5に係る偏心分銅 520を説明するために示す図である。  FIG. 7 is a view for explaining an eccentric weight 520 according to a fifth embodiment.
[図 8]実施形態 6に係る偏心分銅 620を説明するために示す図である。  FIG. 8 is a view for explaining an eccentric weight 620 according to a sixth embodiment.
[図 9]実施形態 7に係る偏心分銅 720の斜視図である。  FIG. 9 is a perspective view of an eccentric weight 720 according to Embodiment 7.
[図 10]実施形態 8に係る偏心分銅 820を説明するために示す図である。  FIG. 10 is a view for explaining an eccentric weight 820 according to an eighth embodiment.
[図 11]実施形態 9に係る偏心分銅 920を説明するために示す図である。  FIG. 11 is a view for explaining an eccentric weight 920 according to the ninth embodiment.
[図 12]実施形態 9に係る偏心分銅 1020を説明するために示す図である。  FIG. 12 is a view for explaining an eccentric weight 1020 according to the ninth embodiment.
[図 13]実施形態 10に係る偏心分銅 1020の製造方法を説明するために示す図であ る。  FIG. 13 is a view for explaining a method of manufacturing the eccentric weight 1020 according to the tenth embodiment.
[図 14]実施形態 10に係る振動モータ 1000を説明するために示す図である。  FIG. 14 is a view for explaining a vibration motor 1000 according to the tenth embodiment.
[図 15]実施形態 11に係る偏心分銅 1120を説明するために示す図である。  FIG. 15 is a view for explaining an eccentric weight 1120 according to the eleventh embodiment.
[図 16]実施形態 11に係る偏心分銅 1120の製造方法を説明するために示す模式図 である。  FIG. 16 is a schematic view for explaining the method of manufacturing the eccentric weight 1120 according to the eleventh embodiment.
[図 17]第 1の振動モータ 3000及び第 1の偏心分銅 3020を説明するために示す図で ある。 FIG. 17 is a diagram shown for explaining the first vibration motor 3000 and the first eccentric weight 3020. is there.
[図 18]第 2の偏心分銅 3120を説明するために示す図である。  FIG. 18 is a view for explaining a second eccentric weight 3120.
[図 19]第 3の偏心分銅 3220を説明するために示す図である。  FIG. 19 is a view for explaining a third eccentric weight 3220.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0106] 以下、本発明の偏心分銅、振動モータ、携帯機器及び偏心分銅の製造方法につ いて、図に示す実施の形態に基づいて説明する。  Hereinafter, the eccentric weight, vibration motor, portable device, and manufacturing method of the eccentric weight according to the present invention will be described based on the embodiments shown in the drawings.
[0107] 〔実施形態 1〕  [Embodiment 1]
図 1は、実施形態 1に係る偏心分銅 120を説明するために示す図である。図 1 (a) は偏心分銅 120における分銅支持体 130を正面力も見た図であり、図 1 (b)は偏心 分銅 120における分銅支持体 130を側面から見た図であり、図 1 (c)は偏心分銅 12 0における分銅支持体 130を底面から見た図であり、図 1 (d)は図 1 (a)の A1— A1断 面図であり、図 1 (e)は偏心分銅 120における分銅支持体 130の斜視図であり、図 1 ( f)は偏心分銅 120の斜視図である。  FIG. 1 is a view for explaining an eccentric weight 120 according to the first embodiment. Fig. 1 (a) is a view of the weight support 130 of the eccentric weight 120 as viewed from the front, and Fig. 1 (b) is a view of the weight support 130 of the eccentric weight 120 viewed from the side. ) Is a view of the weight support 130 of the eccentric weight 120 from the bottom, and Fig. 1 (d) is a cross-sectional view taken along the line A1-A1 in Fig. 1 (a). FIG. 1 (f) is a perspective view of an eccentric weight 120. FIG.
図 2は、実施形態 1に係る偏心分銅 120の製造方法を説明するために示す図であ る。図 2 (a)〜図 2 (h)は各工程を示す図である。  FIG. 2 is a view for explaining the method of manufacturing the eccentric weight 120 according to the first embodiment. FIG. 2 (a) to FIG. 2 (h) are diagrams showing each step.
[0108] 実施形態 1に係る偏心分銅 120は、図 1及び図 2に示すように、円形の断面を有す る 2個の分銅 140と、分銅支持体 130とを一体ィ匕することにより製造された偏心分銅 である。分銅 140は高比重金属カゝらなる。分銅支持体 130は、分銅 140を構成する 高比重金属よりも比重の低い金属の弾性体力もなる。分銅支持体 130は、分銅 140 を保持するための分銅保持部 134及びモータ軸 112 (図 3参照。)を保持するための モータ軸保持部 132を有している。分銅保持部 134は、分銅 140と分銅支持体 130 とを一体ィ匕した場合に分銅 140側への突出量力 S小さくなる分銅側突出部 135を有し ている。分銅支持体 130は、図 2に示すように、薄板金属部材 130aを所定形状に塑 性変形させた後に硬化処理を施すことにより製造された分銅支持体である。  As shown in FIGS. 1 and 2, the eccentric weight 120 according to the first embodiment is manufactured by integrally joining two weights 140 having a circular cross section and a weight support 130. Is an eccentric weight. Weight 140 is made of high specific gravity metal. The weight support 130 also has an elastic force of a metal having a specific gravity lower than that of the high specific gravity metal constituting the weight 140. The weight support 130 has a weight holding part 134 for holding the weight 140 and a motor shaft holding part 132 for holding the motor shaft 112 (see FIG. 3). The weight holding part 134 has a weight side protruding part 135 that reduces a protruding amount force S toward the weight 140 when the weight 140 and the weight support 130 are assembled together. As shown in FIG. 2, the weight support 130 is a weight support manufactured by plastically deforming the thin metal member 130a into a predetermined shape and then performing a hardening process.
[0109] このため、実施形態 1に係る偏心分銅 120によれば、偏心分銅を、高比重金属から なる分銅 140と、分銅 140を構成する高比重金属よりも比重の低い金属力もなる分銅 支持体 130とを一体ィ匕することにより製造された偏心分銅 120としたため、偏心分銅 120の総重量を軽くするとともに、偏心分銅 120における偏心量を大きくすることがで きる。このため、このような偏心分銅 120を用いることにより、軽量かつ少ない消費電 力で必要な振動量が得られる振動モータを構成することができる。 [0109] Therefore, according to the eccentric weight 120 according to the first embodiment, the eccentric weight includes the weight 140 made of a high specific gravity metal, and the weight support having a lower specific gravity than the high specific gravity metal constituting the weight 140. Since the eccentric weight 120 is manufactured by combining with 130, the total weight of the eccentric weight 120 can be reduced and the amount of eccentricity in the eccentric weight 120 can be increased. wear. Therefore, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption.
[0110] また、実施形態 1に係る偏心分銅 120によれば、分銅支持体 130を弾性体カゝらなる 分銅支持体としたため、振動モータ (及び偏心分銅 120)を長時間使用した場合に 分銅 140と分銅支持体 130との接合の信頼性が低下することを抑制することができる 。このため、このような偏心分銅 120を用いることにより、長期信頼性の高い振動モー タを構成することができる。  [0110] Further, according to the eccentric weight 120 according to the first embodiment, since the weight support 130 is a weight support made of an elastic body, the weight is used when the vibration motor (and the eccentric weight 120) is used for a long time. It can suppress that the reliability of joining of 140 and the weight support body 130 falls. Therefore, by using such an eccentric weight 120, it is possible to configure a vibration motor with high long-term reliability.
[0111] また、実施形態 1に係る偏心分銅 120によれば、分銅保持部 134を、分銅 140と分 銅支持体 130とを一体ィ匕した場合に分銅 140側への突出量力 S小さくなる分銅側突出 部 135を有する分銅保持部としたため、分銅 140は、分銅側突出部 135の弾性力が 加わったさらに強い弾性力で分銅保持部 134に保持されることになる。このため、振 動モータ (及び偏心分銅 120)を長時間使用した場合に分銅 140と分銅支持体 130 との接合の信頼性が低下することをさらに抑制することができるため、このような偏心 分銅 120を用いることにより、長期信頼性のさらに高い振動モータを構成することが できる。  [0111] Further, according to the eccentric weight 120 according to the first embodiment, when the weight holding part 134 is integrally formed with the weight 140 and the weight support body 130, the weight amount that protrudes toward the weight 140 side becomes smaller. Since the weight holding portion having the side protrusion 135 is used, the weight 140 is held by the weight holding portion 134 with a stronger elastic force to which the elastic force of the weight side protrusion 135 is applied. For this reason, it is possible to further suppress the decrease in the reliability of the connection between the weight 140 and the weight support 130 when the vibration motor (and the eccentric weight 120) is used for a long time. By using 120, a vibration motor with higher long-term reliability can be configured.
[0112] また、実施形態 1に係る偏心分銅 120によれば、分銅支持体 130を弾性体カゝらなる 分銅支持体としたため、モータ軸 112 (図 3参照。)は弾性力によりモータ軸保持部 1 32に保持されることになる。このため、振動モータを長時間使用した場合にモータ軸 112と分銅支持体 130との接合の信頼性が低下することが抑制され、長期信頼性の 高 、振動モータを構成することができる。  [0112] Further, according to the eccentric weight 120 according to the first embodiment, the weight support 130 is a weight support made of an elastic body, so that the motor shaft 112 (see Fig. 3) is held by the elastic force. Part 1 32 will be held. For this reason, when the vibration motor is used for a long time, it is possible to suppress a decrease in the reliability of joining between the motor shaft 112 and the weight support 130, and it is possible to configure the vibration motor with high long-term reliability.
[0113] 実施形態 1に係る偏心分銅 120においては、分銅 140と分銅支持体 130とを一体 化する前の分銅保持部 134の内周部の大きさを、分銅 140の外周部の大きさよりも 小さなものとしている。これにより、内周部を押し広げた状態の分銅保持部 134に分 銅 140を挿入することで、分銅 140は、分銅保持部 134全体の弾性力により分銅保 持部 134に保持されることになる。  [0113] In the eccentric weight 120 according to the first embodiment, the size of the inner peripheral portion of the weight holding portion 134 before the weight 140 and the weight support 130 are integrated is larger than the size of the outer peripheral portion of the weight 140. It is small. As a result, the weight 140 is inserted into the weight holding part 134 in a state where the inner peripheral part is expanded, so that the weight 140 is held by the weight holding part 134 by the elastic force of the entire weight holding part 134. Become.
[0114] 実施形態 1に係る偏心分銅 120においては、モータ軸保持部 132の内径をモータ 軸 112 (図 3参照。)の外径よりも小さなものとしておくことが好ましい。これにより、偏 心分銅 120を用いて振動モータ 100 (図 3 (a)参照。)を組み立てる際にモータ軸保 持部 132にモータ軸 112を挿入することで、モータ軸 112は弾性力でモータ軸保持 部 132に保持されることになる。 In the eccentric weight 120 according to the first embodiment, it is preferable that the inner diameter of the motor shaft holding portion 132 be smaller than the outer diameter of the motor shaft 112 (see FIG. 3). As a result, when assembling the vibration motor 100 (see Fig. 3 (a)) using the eccentric weight 120, the motor shaft is maintained. By inserting the motor shaft 112 into the holding portion 132, the motor shaft 112 is held by the motor shaft holding portion 132 by an elastic force.
[0115] 実施形態 1に係る偏心分銅 120においては、分銅側突出部 135は、分銅側突出部 135の先端部へ向力つて幅が狭くなる形状を有する構造となっている。  [0115] In the eccentric weight 120 according to the first embodiment, the weight side protrusion 135 has a structure in which the width is narrowed toward the tip of the weight side protrusion 135.
[0116] このため、実施形態 1に係る偏心分銅 120によれば、偏心分銅 120の製造過程に おいて分銅 140と分銅支持体 130とを一体化させる際に、分銅支持体 130の分銅側 突出部 135の幅が広い側力も分銅 140を挿入していくに従って分銅 140が分銅側突 出部 135を徐々に外方に押していくことになる。このため、分銅 140を分銅保持部 13 4に挿入する作業が容易になり、偏心分銅 120を製造する際の製造コストを低いもの にすることができる。  Therefore, according to the eccentric weight 120 according to the first embodiment, when the weight 140 and the weight support 130 are integrated in the manufacturing process of the eccentric weight 120, the weight side protrusion of the weight support 130 protrudes. As the weight 140 is inserted into the wide side force of the portion 135, the weight 140 gradually pushes the weight side protruding portion 135 outward. For this reason, the operation of inserting the weight 140 into the weight holding portion 134 is facilitated, and the manufacturing cost for manufacturing the eccentric weight 120 can be reduced.
[0117] また、実施形態 1に係る偏心分銅 120においては、モータ軸保持部 132は、図 1 (a )及び図 1 (d)に示すように、モータ軸 112をモータ軸保持部 132に挿入した場合に モータ軸 112側への突出量が小さくなるモータ軸側突出部 133を有している。  Further, in the eccentric weight 120 according to the first embodiment, the motor shaft holding part 132 inserts the motor shaft 112 into the motor shaft holding part 132 as shown in FIGS. 1 (a) and 1 (d). In this case, the motor shaft side protruding portion 133 has a small amount of protrusion to the motor shaft 112 side.
[0118] このため、実施形態 1に係る偏心分銅 120によれば、モータ軸 112は、モータ軸側 突出部 133の弾性力が加わったさらに強い弾性力によりモータ軸保持部 132に保持 されることになる。このため、振動モータを長時間使用した場合にモータ軸 112と分 銅支持体 130との接合の信頼性が低下することを抑制することができるため、長期信 頼性の高 、振動モータを構成することができる。  [0118] Therefore, according to the eccentric weight 120 according to the first embodiment, the motor shaft 112 is held by the motor shaft holding portion 132 by a stronger elastic force to which the elastic force of the motor shaft side protruding portion 133 is added. become. For this reason, it is possible to suppress a decrease in the reliability of the joint between the motor shaft 112 and the weight support 130 when the vibration motor is used for a long time. can do.
[0119] 実施形態 1に係る偏心分銅 120においては、モータ軸側突出部 133は、モータ軸 側突出部 133の先端部へ向力つて幅が狭くなる形状を有している。  In the eccentric weight 120 according to the first embodiment, the motor shaft side protruding portion 133 has a shape whose width is narrowed by applying a force toward the tip of the motor shaft side protruding portion 133.
[0120] このため、実施形態 1に係る偏心分銅 120によれば、振動モータの製造過程にお いて偏心分銅 120をモータ軸に取り付ける際に、モータ軸保持部 132の分銅側突出 部 133の幅が広い側からモータ軸 112を挿入していくと、モータ軸 112をモータ軸保 持部に挿入していくに従ってモータ軸 112がモータ軸側突出部 133を徐々に外方に 押していくことになる。このため、振動モータを長期間使用した場合にモータ軸と分銅 支持体との接合の信頼性が低下することを抑制することができるため、長期信頼性の 高 、振動モータを構成することができる。  Therefore, according to the eccentric weight 120 according to the first embodiment, when the eccentric weight 120 is attached to the motor shaft in the manufacturing process of the vibration motor, the width of the weight side protruding portion 133 of the motor shaft holding portion 132 is When the motor shaft 112 is inserted from the wide side, the motor shaft 112 gradually pushes the motor shaft side protruding portion 133 outward as the motor shaft 112 is inserted into the motor shaft holding portion. . For this reason, when the vibration motor is used for a long period of time, it is possible to suppress a decrease in the reliability of the connection between the motor shaft and the weight support, and thus it is possible to configure the vibration motor with high long-term reliability. .
[0121] 実施形態 1に係る偏心分銅 120においては、分銅支持体 130は、 2個の分銅 140 を保持するために 2個の分銅 140を外周力も取り囲むような形状を有している。この 部分を分銅保持部 134という。また、分銅支持体 130は、モータ軸 112を保持するた めにモータ軸 112を外周力も取り囲むような形状を有して!/、る。この部分をモータ軸 保持部 132という。 [0121] In the eccentric weight 120 according to Embodiment 1, the weight support 130 has two weights 140. In order to hold the two weights 140 so as to surround the outer peripheral force. This part is called a weight holding part 134. In addition, the weight support 130 has a shape that surrounds the motor shaft 112 with an outer peripheral force in order to hold the motor shaft 112. This part is called a motor shaft holding part 132.
[0122] 実施形態 1に係る偏心分銅 120においては、分銅 140は外周部分全体にわたって 分銅保持部 134に保持されている(図 1 (f)参照。 )0 [0122] In the eccentric weight 120 according to the first embodiment, the weight 140 is held by the weight holding portion 134 over the entire outer peripheral portion (see FIG. 1 (f).) 0
[0123] このため、振動モータ (及び偏心分銅 120)を長時間使用した場合に分銅 140と分 銅支持体 130との接合の信頼性が低下することを十分に抑制することができる。この ため、このような偏心分銅 120を用いることにより、長期信頼性の高い振動モータを 構成することができる。 [0123] For this reason, it is possible to sufficiently suppress a decrease in the reliability of joining of the weight 140 and the weight support 130 when the vibration motor (and the eccentric weight 120) is used for a long time. Therefore, by using such an eccentric weight 120, a vibration motor with high long-term reliability can be configured.
[0124] なお、この場合において、「外周部分全体」とは、分銅 140の長手方向に垂直な平 面(すなわち、モータ軸 112に垂直な平面)における分銅 140の外周全体のことであ る。また、本発明の偏心分銅においては、分銅 140は、分銅 140の長手方向全体に わたって分銅保持部に保持されていてもよいが、実施形態 1に係る偏心分銅 120の 場合のように、必ずしも分銅 140の長手方向全体にわたって分銅保持部 134に保持 されている必要はない(図 1 (f)参照。;)。  In this case, the “entire outer peripheral portion” means the entire outer periphery of the weight 140 on a plane perpendicular to the longitudinal direction of the weight 140 (ie, a plane perpendicular to the motor shaft 112). Further, in the eccentric weight of the present invention, the weight 140 may be held in the weight holding portion over the entire longitudinal direction of the weight 140, but as in the case of the eccentric weight 120 according to the first embodiment, it is not always necessary. It is not necessary that the weight 140 is held by the weight holding portion 134 over the entire length of the weight 140 (see FIG. 1 (f);).
[0125] 実施形態 1に係る偏心分銅 120においては、図 2に示すように、分銅支持体 130は 、モータ軸保持部 132を起点として塑性変形させている。  In the eccentric weight 120 according to the first embodiment, as shown in FIG. 2, the weight support body 130 is plastically deformed starting from the motor shaft holding portion 132.
[0126] このため、後述するように、小さい曲率半径を有する部分を起点として塑性変形さ せることが可能となるため、分銅支持体 134を容易に形成することが可能となり、偏心 分銅を生産する際の生産性を向上させることが可能となる。  [0126] Therefore, as described later, since it is possible to plastically deform from a portion having a small radius of curvature, the weight support 134 can be easily formed, and an eccentric weight is produced. Productivity can be improved.
[0127] 実施形態 1に係る偏心分銅 120においては、図 2に示すように、モータ軸保持部 13 2は、薄板金属部材が 2重に巻かれて形成されている。  In the eccentric weight 120 according to the first embodiment, as shown in FIG. 2, the motor shaft holding portion 132 is formed by wrapping a thin metal member twice.
[0128] このため、モータ軸保持部 132がモータ軸 112を強固に保持することができるように なり、振動モータを長時間使用した場合に、モータ軸保持部 132によるモータ軸 112 の保持力が低下することを抑制することができる。このため、このような偏心分銅 120 を用いることにより、長期信頼性の高い振動モータを構成することができる。  [0128] Therefore, the motor shaft holding part 132 can hold the motor shaft 112 firmly, and when the vibration motor is used for a long time, the holding force of the motor shaft 112 by the motor shaft holding part 132 is reduced. It can suppress that it falls. Therefore, by using such an eccentric weight 120, a vibration motor with high long-term reliability can be configured.
[0129] 実施形態 1に係る偏心分銅 120においては、分銅支持体 130は、分銅保持部 134 とモータ軸保持部 132との間に設けた切り欠き部 137a, 137b (図 2 (a)参照。)にお V、て薄板金属部材が交差する構造を有して!/、る(図 2 (e)参照。 )。 In the eccentric weight 120 according to the first embodiment, the weight support 130 is the weight holding portion 134. And a notch 137a, 137b (see Fig. 2 (a)) provided between the motor shaft holding part 132 and V and a sheet metal member intersect! (See (e).)
[0130] このため、分銅支持体 130が分銅 140及びモータ軸 112 (図 3参照)を弾性力によ りさらに強固に保持することができるようになる。すなわち、分銅保持部 134と分銅 14 0とを一体化すると、分銅 140が分銅保持部 134の内周部を外側に押し広げる状態 となり、その結果モータ軸保持部 132においてはその内周部が絞まるように作用する 。また、モータ軸保持部 132にモータ軸を挿入すると、モータ軸 112がモータ軸保持 部 132の内周部を外側に押し広げる状態となり、その結果、分銅保持部 134におい てはその内周部が絞まるように作用する。これらの作用の相乗効果により分銅 140は 分銅保持部 134にさらに強固に保持されることが可能となり、また、モータ軸 112は モータ軸保持部 132にさらに強固に保持されることが可能となる。このため、振動モ ータ (及び偏心分銅)を長時間使用した場合に分銅 140と分銅支持体 134との接合 の信頼性及びモータ軸 112と分銅支持体 134との接合の信頼性が低下することをさ らに抑制することができるため、このような偏心分銅 120を用いることにより、長期信頼 性のさらに高 、振動モータを構成することができる。  [0130] Therefore, the weight support 130 can hold the weight 140 and the motor shaft 112 (see FIG. 3) more firmly by the elastic force. That is, when the weight holding part 134 and the weight 140 are integrated, the weight 140 pushes the inner peripheral part of the weight holding part 134 outward. As a result, the inner peripheral part of the motor shaft holding part 132 is narrowed. Acts like a whole. Further, when the motor shaft is inserted into the motor shaft holding portion 132, the motor shaft 112 is in a state of pushing the inner peripheral portion of the motor shaft holding portion 132 outward. As a result, the inner peripheral portion of the weight holding portion 134 is It works to narrow down. Due to the synergistic effect of these actions, the weight 140 can be held more firmly by the weight holding part 134, and the motor shaft 112 can be held more firmly by the motor shaft holding part 132. For this reason, when a vibration motor (and eccentric weight) is used for a long time, the reliability of the connection between the weight 140 and the weight support 134 and the reliability of the connection between the motor shaft 112 and the weight support 134 are reduced. Since this can be further suppressed, by using such an eccentric weight 120, it is possible to configure a vibration motor with higher long-term reliability.
[0131] 実施形態 1に係る偏心分銅 120においては、分銅支持体 130は、上記したように、 薄板金属部材 130aを所定形状に塑性変形させた後に硬化処理を施すことにより製 造された弾性体力 なっている(図 2参照)。  [0131] In the eccentric weight 120 according to the first embodiment, as described above, the weight support 130 is an elastic body force produced by subjecting the thin metal member 130a to plastic deformation and then performing a hardening process. (See Figure 2).
[0132] このため、実施形態 1に係る偏心分銅 120によれば、薄板金属部材 130aを所定形 状に塑性変形させた後に硬化処理を施すことにより製造された分銅支持体 130を用 いることとしたため、分銅支持体 130が分銅 140及びモータ軸 112を弾性力によりさ らに強固に保持することができるようになり、振動モータ (及び偏心分銅)を長時間使 用した場合に分銅 140と分銅支持体 130との接合の信頼性が低下することを十分に 抑制することができる。このため、このような偏心分銅 120を用いることにより、長期信 頼性の高 、振動モータを構成することができる。  [0132] For this reason, according to the eccentric weight 120 according to the first embodiment, the weight support body 130 manufactured by performing a hardening process after plastically deforming the thin metal member 130a into a predetermined shape is used. As a result, the weight support body 130 can hold the weight 140 and the motor shaft 112 more firmly by the elastic force, and the weight 140 and weight when the vibration motor (and the eccentric weight) are used for a long time. It can be sufficiently suppressed that the reliability of bonding with the support 130 is lowered. Therefore, by using such an eccentric weight 120, it is possible to configure a vibration motor with high long-term reliability.
[0133] このため、実施形態 1に係る偏心分銅 120によれば、必要な強度を維持したまま分 銅支持体 130を構成する材料の使用量を極めて少ないものにすることができる。これ により、偏心分銅 120の総重量を軽くするとともに、偏心分銅 120における偏心量を さらに大きくすることができる。このため、このような偏心分銅 120を用いることにより、 さらに軽量かっさらに少ない消費電力で必要な振動量が得られる振動モータを構成 することができる。 [0133] Therefore, according to the eccentric weight 120 according to the first embodiment, the amount of the material constituting the weight support 130 can be made extremely small while maintaining the required strength. This reduces the total weight of the eccentric weight 120 and reduces the amount of eccentricity in the eccentric weight 120. It can be made even larger. For this reason, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary amount of vibration with lighter and less power consumption.
[0134] 実施形態 1に係る偏心分銅 120においては、分銅支持体 130のビッカース硬さ (H V)は 150以上である。  [0134] In the eccentric weight 120 according to the first embodiment, the Vickers hardness (HV) of the weight support 130 is 150 or more.
[0135] このように構成することにより、分銅支持体 130は強い弾性力で分銅 140を保持す ることが可能になるとともに強い弾性力でモータ軸 112を保持することが可能になる。 この観点力も言えば、分銅支持体 130のビッカース硬さ(Hv)は 200以上であること 力 り好ましぐ 250以上であることがさらに好ましい。  With this configuration, the weight support 130 can hold the weight 140 with a strong elastic force and can hold the motor shaft 112 with a strong elastic force. Speaking also from this viewpoint, the Vickers hardness (Hv) of the weight support 130 is preferably 200 or more, more preferably 250 or more.
[0136] 実施形態 1に係る偏心分銅 120においては、薄板金属部材 130aの厚さを 0. lmm としている。このため、分銅支持体 130に必要な強度を維持したまま、分銅支持体 13 0の総重量を軽くするとともに偏心分銅 120における偏心量をさらに大きくすることが できる。  [0136] In the eccentric weight 120 according to the first embodiment, the thickness of the thin metal member 130a is 0.1 mm. Therefore, while maintaining the strength required for the weight support 130, the total weight of the weight support 130 can be reduced and the amount of eccentricity in the eccentric weight 120 can be further increased.
[0137] 実施形態 1に係る偏心分銅 120においては、図 1 (d)に示すように、分銅 140にお けるモータ軸 112に沿った (分銅 140の長手方向に沿った)長さは 4mmである。また 、分銅支持体 130の分銅保持部 134におけるモータ軸 112に沿った長さも 4mmで あり、分銅支持体 130のモータ軸保持部 132におけるモータ軸 112に沿った長さも 4 mmである。  In the eccentric weight 120 according to the first embodiment, as shown in FIG. 1 (d), the length along the motor shaft 112 in the weight 140 (along the longitudinal direction of the weight 140) is 4 mm. is there. Further, the length along the motor shaft 112 in the weight holder 134 of the weight support 130 is also 4 mm, and the length along the motor shaft 112 in the motor shaft holder 132 of the weight support 130 is also 4 mm.
[0138] このため、実施形態 1に係る偏心分銅 120においては、分銅 140は、分銅 140の長 手方向に沿った長さ(4mm)のすべてにおいて分銅支持体 130における分銅保持 部 134に保持されている。その結果、分銅 140は、分銅支持体 130に強固に保持さ れること〖こなる。  Therefore, in the eccentric weight 120 according to the first embodiment, the weight 140 is held by the weight holding portion 134 in the weight support 130 in all the lengths (4 mm) along the length direction of the weight 140. ing. As a result, the weight 140 is firmly held on the weight support 130.
[0139] 実施形態 1に係る偏心分銅 120においては、図 1に示すように、分銅 140は断面が 円形である形状を有している。このため、分銅 140をいずれの端部(図 1 (b)に示す 端部 SI, S2参照。 M則からも分銅保持部 134に挿入することができるようになるため 、分銅保持部 134に分銅 140を配置する際の自由度が高まり、作業性が向上する。 また、分銅 140の形状が単純な円柱形状であるため、丸棒からなる焼結体をそのま ま短く切断したものを用いることができるようになり、分銅 140を製造することが容易と なる。このため、偏心分銅 120を製造する際の製造コストを低いものにすることができ る。 In the eccentric weight 120 according to the first embodiment, as shown in FIG. 1, the weight 140 has a circular cross section. For this reason, the weight 140 can be inserted into the weight holding part 134 from either end (refer to the end SI and S2 shown in Fig. 1 (b). The degree of freedom is improved when placing 140. Also, the weight 140 is a simple cylindrical shape, so a sintered body made of a round bar must be cut as it is. And easy to manufacture the weight 140 Become. For this reason, the manufacturing cost at the time of manufacturing the eccentric weight 120 can be made low.
[0140] 実施形態 1に係る偏心分銅 120においては、分銅 140は、タングステン焼結合金か らなり、分銅支持体 130は、タングステン合金よりも比重の低いマルテンサイト系ステ ンレス鋼からなる。  [0140] In the eccentric weight 120 according to the first embodiment, the weight 140 is made of a tungsten sintered alloy, and the weight support 130 is made of martensitic stainless steel having a specific gravity lower than that of the tungsten alloy.
[0141] このため、分銅支持体 130は弾力性のある硬化処理後のマルテンサイト系ステンレ ス鋼カもなるため、分銅支持体 130の耐久性が向上するとともに、分銅支持体 130と 分銅 140とをさらに強固に一体ィ匕させることができるようになり、振動モータ (及び偏 心分銅 120)を長時間使用した場合に分銅 140と分銅支持体 130との接合の信頼性 が低下することをさらに抑制することができる。このため、このような偏心分銅 120を用 いることにより、長期信頼性の高い振動モータを構成することができる。  [0141] For this reason, since the weight support 130 is also a martensitic stainless steel after the elastic hardening treatment, the durability of the weight support 130 is improved, and the weight support 130 and the weight 140 are In addition, the reliability of bonding between the weight 140 and the weight support 130 is further reduced when the vibration motor (and the eccentric weight 120) is used for a long time. Can be suppressed. Therefore, by using such an eccentric weight 120, a vibration motor with high long-term reliability can be configured.
[0142] また、マルテンサイト系ステンレス鋼は比較的耐食性が高く鲭びにくい材料であるの で、これを分銅支持体として用いたとしてもメツキを施すことが不要になる。その結果 、分銅支持体 130とメツキ膜との接合部分及びメツキ膜自身にひびが入るということが なくなり、ひびなどに起因して鲭びが発生するということがなくなり、モータ軸保持部 1 32におけるモータ軸 112の保持に関する信頼性が低下することを抑制することがで きる。  [0142] Further, since martensitic stainless steel is a material having relatively high corrosion resistance and resistance to cracking, even if it is used as a weight support, it is not necessary to apply a plating. As a result, the joint between the weight support 130 and the plating film and the plating film itself are not cracked, and no cracks are generated due to cracks. It can suppress that the reliability regarding the holding | maintenance of the motor shaft 112 falls.
[0143] また、マルテンサイト系ステンレス鋼はタングステン合金に比べて粘りがあるため、タ ングステン合金のような脆くて割れやすい分銅 140を粘りのあるマルテンサイト系ステ ンレス鋼で全周にわたつて保持することにより、分銅が割れ易!ヽと ヽぅ問題も抑制す ることがでさる。  [0143] In addition, martensitic stainless steels are more viscous than tungsten alloys, so brittle and fragile weights 140 such as tungsten alloys are retained throughout the circumference with viscous martensitic stainless steels. By doing so, the weight can be easily broken!
[0144] また、マルテンサイト系ステンレス鋼はタングステン合金などに比べると安価である ため、このような比較的安価なマルテンサイト系ステンレス鋼で分銅支持体 130を構 成することにより、偏心分銅 120の製造コストを下げることが容易になる。  [0144] Further, since martensitic stainless steel is cheaper than tungsten alloys and the like, the weight support 130 is made of such relatively inexpensive martensitic stainless steel, so that the eccentric weight 120 of It becomes easy to lower the manufacturing cost.
[0145] 実施形態 1に係る偏心分銅 120においては、分銅 140は、タングステン合金力ゝらな る。タングステン合金は極めて比重が高いため、偏心分銅 120における偏心量をさら に大きくすることができる。このため、このような偏心分銅 120を用いることにより、さら に少ない消費電力で必要な振動量が得られる振動モータを構成することができる。 [0146] なお、実施形態 1に係る偏心分銅 120においては、分銅 140自体には、モータ軸 1 12を保持するための機能は必要としないため、分銅の形状として極めて単純な形状 (円柱形状)を採用している。 [0145] In the eccentric weight 120 according to the first embodiment, the weight 140 has a tungsten alloy strength. Since the tungsten alloy has a very high specific gravity, the amount of eccentricity in the eccentric weight 120 can be further increased. For this reason, by using such an eccentric weight 120, it is possible to configure a vibration motor that can obtain a necessary vibration amount with further reduced power consumption. [0146] In the eccentric weight 120 according to the first embodiment, the weight 140 itself does not need a function for holding the motor shaft 112. Therefore, the weight is extremely simple (cylindrical shape). Is adopted.
[0147] 分銅 140の製造方法としては、分銅の形状にタングステン合金を焼結して分銅 140 とする製造方法を採用することもできるが、実施形態 1に係る偏心分銅 120において は、タングステン合金を焼結して単純な形状の丸棒を作り、この丸棒を短く切断して 分銅 140とする製造方法を採用することとしている。このようにすることにより、タンダス テン合金に含まれる添加物(例えば、銅。)の量を減じることができるため、比重を高く することができ、偏心分銅 120における偏心量をさらに大きくすることができるようにな る。  [0147] As a manufacturing method of the weight 140, a manufacturing method in which a tungsten alloy is sintered in the shape of a weight to obtain the weight 140 can be adopted. However, in the eccentric weight 120 according to the first embodiment, a tungsten alloy is used. A round bar with a simple shape is made by sintering, and the round bar is cut into short pieces to produce a weight of 140. By doing so, the amount of the additive (for example, copper) contained in the tandasten alloy can be reduced, so that the specific gravity can be increased and the amount of eccentricity in the eccentric weight 120 can be further increased. become able to.
[0148] 実施形態 1に係る偏心分銅 120は、例えば以下のような方法で製造することができ る。  [0148] The eccentric weight 120 according to Embodiment 1 can be manufactured, for example, by the following method.
[0149] (1)第 1工程  [0149] (1) First step
マルテンサイト系ステンレス鋼力もなる薄板金属部材 130aを準備する(図 2 (a) )。こ の薄板金属部材 130aには、分銅側突出部 135となる部分 135a、モータ軸側突出 部 133となる部分 133a及び切り欠き 137a、 137bがすでに形成されている。なお、 図 2 (a)において、符号 X1〜X6で示す線は、加工の際に基準となる仮想線である。  A sheet metal member 130a with martensitic stainless steel strength is prepared (Fig. 2 (a)). In this thin metal member 130a, a portion 135a that becomes the weight side protruding portion 135, a portion 133a that becomes the motor shaft side protruding portion 133, and notches 137a and 137b are already formed. In FIG. 2 (a), the lines indicated by reference numerals X1 to X6 are virtual lines that serve as a reference during processing.
[0150] 次に、分銅支持体のモータ軸保持部 132が塑性変形の起点となるように、薄板金 属部材 130aの一方の端部 E1から符号 XIに至る部分を塑性カ卩ェにより丸くして、モ ータ軸保持部 132に対応する部分を形成する(図 2 (b) )。  [0150] Next, the portion from one end E1 of the thin metal member 130a to the symbol XI is rounded with a plastic cage so that the motor shaft holding portion 132 of the weight support body becomes the starting point of plastic deformation. Thus, a portion corresponding to the motor shaft holding portion 132 is formed (FIG. 2 (b)).
[0151] 次に、薄板金属部材 130aにおける符号 X2から符号 X3に至る部分、符号 X3から X 4に至る部分及び符号 X4力も符号 X5に至る部分を変形させ、さらに切り欠き部 137 a、 137bにおいて交差するように薄板金属部材 130aを塑性変形により変形させて、 分銅保持部 134に対応する部分を形成する(図 2 (c)〜図 2 (e) )。  [0151] Next, in the thin metal member 130a, the part from the code X2 to the code X3, the part from the code X3 to X4, and the part from the code X4 force to the code X5 are also deformed, and further in the notches 137a and 137b The thin metal member 130a is deformed by plastic deformation so as to intersect, and a portion corresponding to the weight holding portion 134 is formed (FIGS. 2 (c) to 2 (e)).
[0152] 次に、薄板金属部材 130aにおける符号 X6から他方の端部 E2に至る部分を塑性 加工により丸くして、薄板金属部材が 2重に巻かれた状態になるようにモータ軸保持 部 132に対応する部分を形成して、分銅支持体 130と概略同じ形状を有する分銅支 持体前駆体 130bを形成する(図 2 (f) )。 [0153] (2)第 2工程 [0152] Next, a portion of the thin metal member 130a extending from the symbol X6 to the other end E2 is rounded by plastic working so that the thin metal member is wound in a doubled state. A weight support precursor 130b having approximately the same shape as the weight support 130 is formed (FIG. 2 (f)). [0153] (2) Second step
分銅支持体 130と概略同じ形状を有する分銅支持体前駆体 130bに、焼き入れカロ ェによる硬化処理を施して、ビッカース硬さ(Hv)が 150以上である分銅支持体 130 を製造する(図 2 (g) )。  A weight support 130 having a Vickers hardness (Hv) of 150 or more is manufactured by subjecting a weight support precursor 130b having substantially the same shape as the weight support 130 to hardening treatment by quenching calorie (FIG. 2). (g)).
[0154] (3)第 3工程  [0154] (3) Third step
分銅 140の断面と同じ断面形状を有するタングステン合金の丸棒を準備する。 次に、上記した丸棒を所定の長さに切断して分銅 140を製造する。  A tungsten alloy round bar having the same cross-sectional shape as that of the weight 140 is prepared. Next, the above-described round bar is cut into a predetermined length to manufacture the weight 140.
[0155] 次に、内周部を押し広げた状態の分銅保持部 134に分銅 140を挿入する。このとき 分銅 140は、分銅 140を分銅保持部 134に挿入していくに従って、分銅側突出部 13 5を徐々に外方に押していくことになる。その後、分銅保持部 134に分銅 140を完全 に挿入した後に内周部を押し広げた状態を解除する。すると、分銅 140は、分銅側 突出部 135の弾性力及び分銅支持体 134全体の弾性力によって分銅保持部 134に 保持された状態になる。  [0155] Next, the weight 140 is inserted into the weight holding part 134 in a state where the inner peripheral part is expanded. At this time, the weight 140 gradually pushes the weight side protruding portion 135 outward as the weight 140 is inserted into the weight holding portion 134. Thereafter, after the weight 140 is completely inserted into the weight holding portion 134, the state in which the inner peripheral portion is expanded is released. Then, the weight 140 is held in the weight holding portion 134 by the elastic force of the weight side protrusion 135 and the elastic force of the entire weight support 134.
[0156] これにより、分銅 140が弾性力により分銅保持部 134に強力に保持された偏心分 銅 120が製造される(図 2 (h) )。  As a result, the eccentric weight 120 in which the weight 140 is strongly held by the weight holding portion 134 by the elastic force is manufactured (FIG. 2 (h)).
[0157] 図 3は、実施形態 1に係る振動モータ 100を説明するために示す図である。図 3 (a) は実施形態 1に係る振動モータ 100の斜視図であり、図 3 (b)は実施形態 1に係る振 動モータ 100を正面から見た図であり、図 3 (c)は実施形態 1に係る振動モータ 100 の一部を側面から見た図である。  FIG. 3 is a view for explaining the vibration motor 100 according to the first embodiment. 3 (a) is a perspective view of the vibration motor 100 according to the first embodiment, FIG. 3 (b) is a view of the vibration motor 100 according to the first embodiment as viewed from the front, and FIG. FIG. 3 is a view of a part of the vibration motor 100 according to the first embodiment as viewed from the side.
[0158] 実施形態 1に係る振動モータ 100は、図 3に示すように、モータ本体 110と、偏心分 銅 120とを備えた振動モータである。そして、実施形態 1に係る振動モータ 100は、 上記したように、軽量かつ少ない消費電力で必要な振動量が得られる振動モータに 好適に用いることができる偏心分銅であって、このような振動モータを長時間使用し た場合に分銅と分銅支持体との接合の信頼性が低下することが抑制された優れた偏 心分銅 120を備えている。このため、実施形態 1に係る振動モータ 100は、このような 優れた偏心分銅 120を備えた振動モータであるため、軽量かつ少ない消費電力で 必要な振動量が得られ、長時間信頼性の高 、振動モータとなる。  [0158] The vibration motor 100 according to the first embodiment is a vibration motor including a motor body 110 and an eccentric weight 120, as shown in FIG. The vibration motor 100 according to the first embodiment is an eccentric weight that can be suitably used for a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption, as described above. It is equipped with an excellent eccentric weight 120 that suppresses a decrease in the reliability of the connection between the weight and the weight support when used for a long time. For this reason, the vibration motor 100 according to the first embodiment is a vibration motor having such an excellent eccentric weight 120, so that a necessary vibration amount can be obtained with light weight and low power consumption, and high reliability for a long time. It becomes a vibration motor.
[0159] このため、このように軽量かつ少ない消費電力で必要な振動量が得られ、長時間信 頼性の高い優れた振動モータ 100を携帯機器の振動モータとして用いることにより、 携帯機器を、軽量かつ低消費電力で長時間信頼性の高 ヽ携帯機器とすることができ る。 [0159] For this reason, the necessary amount of vibration can be obtained with such light weight and low power consumption, and long-time transmission is achieved. By using the highly reliable vibration motor 100 with high reliability as the vibration motor of a portable device, the portable device can be a highly reliable portable device that is lightweight, low power consumption and long-term reliability.
[0160] 〔実施形態 2〜3〕  [Embodiments 2 to 3]
図 4は、実施形態 2に係る偏心分銅 220を説明するために示す図である。図 4 (a) は偏心分銅 220における分銅支持体 230を正面力も見た図であり、図 4 (b)は偏心 分銅 220における分銅 240を正面から見た図であり、図 4 (c)は偏心分銅 220を正面 から見た図である。  FIG. 4 is a view for explaining the eccentric weight 220 according to the second embodiment. Fig. 4 (a) is a view of the weight support 230 of the eccentric weight 220 as viewed from the front, Fig. 4 (b) is a view of the weight 240 of the eccentric weight 220 from the front, and Fig. 4 (c) It is the figure which looked at the eccentric weight 220 from the front.
[0161] 実施形態 2に係る偏心分銅 220は、分銅の数及び断面形状 (並びにそれに伴って 分銅支持体の断面形状)が実施形態 1に係る偏心分銅 120の場合とは異なっている 。すなわち、実施形態 2に係る偏心分銅 220は、図 4に示すように、略扇形状の断面 形状を有する 1つの分銅 240 (及びそれに伴って、略扇形状の断面形状を有する 1 つの分銅 240を保持するような断面形状を有する分銅支持体 230)を有して ヽる。分 銅支持体 230における分銅保持部 234は、 2つの分銅側突出部 235, 235を有して いる。  [0161] The eccentric weight 220 according to the second embodiment is different from the eccentric weight 120 according to the first embodiment in the number and the cross-sectional shape of the weight (and accordingly, the cross-sectional shape of the weight support). That is, as shown in FIG. 4, the eccentric weight 220 according to the second embodiment includes one weight 240 having a substantially fan-shaped cross-sectional shape (and one weight 240 having a substantially fan-shaped cross-sectional shape accordingly). It has a weight support 230) having a cross-sectional shape to hold. The weight holding part 234 in the weight support body 230 has two weight side protrusions 235 and 235.
[0162] 図 5は、実施形態 3に係る偏心分銅 320を説明するために示す図である。図 5 (a) は偏心分銅 320における分銅支持体 330を正面力も見た図であり、図 5 (b)は偏心 分銅 320における分銅 340を正面から見た図であり、図 5 (c)は偏心分銅 320を正面 から見た図である。  FIG. 5 is a view for explaining the eccentric weight 320 according to the third embodiment. Fig. 5 (a) is a view of the weight support 330 of the eccentric weight 320 as seen from the front, Fig. 5 (b) is a view of the weight 340 of the eccentric weight 320 from the front, and Fig. 5 (c) It is the figure which looked at the eccentric weight 320 from the front.
[0163] 実施形態 3に係る偏心分銅 320も、実施形態 2に係る偏心分銅 220の場合と同様 に、分銅の数及び断面形状 (並びにそれに伴って分銅支持体の断面形状)が実施 形態 1に係る偏心分銅 120の場合とは異なっている。すなわち、実施形態 3に係る偏 心分銅 320は、図 5に示すように、略扇形状の断面形状を有する 1つの分銅 340 (及 びそれに伴って、略扇形状の断面形状を有する 1つの分銅 340を保持するような断 面形状を有する分銅支持体 330)を有している。但し、実施形態 2に係る偏心分銅 2 20の場合とは異なり、分銅支持体 330における分銅保持部 334は、 4つの分銅側突 出部 335, 335, 335, 335を有している。  [0163] Similarly to the eccentric weight 220 according to the second embodiment, the eccentric weight 320 according to the third embodiment also has the same number of weights and cross-sectional shape (and the corresponding cross-sectional shape of the weight support body) as the first embodiment. This is different from the case of the eccentric weight 120. That is, as shown in FIG. 5, the eccentric weight 320 according to the third embodiment includes one weight 340 having a substantially fan-shaped cross-sectional shape (and one weight having a substantially fan-shaped cross-sectional shape accordingly). A weight support 330) having a cross-sectional shape to hold 340; However, unlike the case of the eccentric weight 220 according to the second embodiment, the weight holding part 334 in the weight support 330 has four weight side protruding parts 335, 335, 335, 335.
[0164] このように、実施形態 2又は 3に係る偏心分銅 220, 320は、分銅の数及び断面形 状 (並びにそれに伴って分銅支持体の断面形状)が実施形態 1に係る偏心分銅 120 の場合とは異なるが、偏心分銅を、高比重金属カゝらなる分銅と、分銅を構成する高比 重金属よりも比重の低い金属からなる分銅支持体とを一体化することにより製造され た偏心分銅 220, 320としたため、実施形態 1に係る偏心分銅 120の場合と同様に、 偏心分銅 220, 320の総重量を軽くするとともに、偏心分銅 220, 320における偏心 量を大きくすることができる。このため、このような偏心分銅 220, 320を用いることに より、軽量かつ少ない消費電力で大きな振動量が得られる振動モータを構成すること ができる。 [0164] As described above, the eccentric weights 220 and 320 according to the second or third embodiment include the number of weights and the cross-sectional shape. Although the shape (and thus the cross-sectional shape of the weight support) is different from that of the eccentric weight 120 according to the first embodiment, the eccentric weight is divided into a weight made of a high specific gravity metal and a high specific weight metal constituting the weight. Since the eccentric weights 220 and 320 are manufactured by integrating the weight support made of a metal having a lower specific gravity, the total of the eccentric weights 220 and 320 is the same as the case of the eccentric weight 120 according to the first embodiment. The weight can be reduced and the amount of eccentricity of the eccentric weights 220 and 320 can be increased. Therefore, by using such eccentric weights 220 and 320, it is possible to configure a vibration motor that can obtain a large amount of vibration with light weight and low power consumption.
[0165] また、実施形態 2又は 3に係る偏心分銅 220, 320によれば、分銅支持体を弾性体 力もなる分銅支持体 230, 330としたため、実施形態 1に係る偏心分銅 120の場合と 同様に、分銅 240, 340は分銅保持部 234, 334全体の弾性力により分銅保持部 23 4, 334に保持されることになる。このため、振動モータ (及び偏心分銅)を長時間使 用した場合に分銅 240, 340と分銅支持体 230, 330との接合の信頼性が低下する ことが抑制され、このような偏心分銅 220, 320を用いることにより、長期信頼性の高 V、振動モータを構成することができる。  [0165] Further, according to the eccentric weights 220 and 320 according to the second or third embodiment, the weight support body is the weight support body 230 or 330 having an elastic force, so that it is the same as the case of the eccentric weight 120 according to the first embodiment. Further, the weights 240 and 340 are held by the weight holding portions 234 and 334 by the elastic force of the entire weight holding portions 234 and 334. For this reason, when the vibration motor (and the eccentric weight) is used for a long time, the reliability of the connection between the weight 240, 340 and the weight support 230, 330 is suppressed, and such an eccentric weight 220, By using 320, a long-term reliable high V vibration motor can be constructed.
[0166] また、実施形態 2又は 3に係る偏心分銅 220, 320によれば、分銅保持部を、分銅 と分銅支持体とを一体ィヒした場合に分銅側への突出量力小さくなる分銅側突出部 2 35, 335を有する分銅保持部 234, 334としたため、実施形態 1に係る偏心分銅 120 の場合と同様に、分銅 240, 340は、分銅側突出部 235, 335の弾性力が加わった さらに強い弾性力で分銅保持部 234, 334に保持されることになる。このため、振動 モータ (及び偏心分銅 220, 320)を長時間使用した場合に分銅 240, 340と分銅支 持体 230, 330との接合の信頼性が低下することをさらに抑制することができるため、 このような偏心分銅 220, 320を用いることにより、長期信頼性のさらに高い振動モー タを構成することができる。  [0166] Also, according to the eccentric weights 220 and 320 according to the second or third embodiment, when the weight holding part is integrated with the weight and the weight support, the weight-side protrusion becomes smaller when the weight and the weight support are reduced. Since the weight holding portions 234 and 334 having the portions 2 35 and 335 are used, the weights 240 and 340 are added with the elastic force of the weight side protruding portions 235 and 335 as in the case of the eccentric weight 120 according to the first embodiment. The weight holding parts 234 and 334 are held by a strong elastic force. For this reason, when the vibration motor (and the eccentric weights 220 and 320) is used for a long time, it is possible to further suppress the deterioration of the reliability of the connection between the weights 240 and 340 and the weight support bodies 230 and 330. By using such eccentric weights 220 and 320, it is possible to configure a vibration motor with higher long-term reliability.
[0167] 〔実施形態 4〜5〕  [Embodiments 4 to 5]
図 6は、実施形態 4に係る偏心分銅 420を説明するために示す図である。図 6 (a) は偏心分銅 420における分銅支持体 430を正面力も見た図であり、図 6 (b)は図 6 (a )の八2— A2断面図であり、図 6 (c)は図 6 (b)の A3— A3断面図であり、図 6 (d)は図 6 (b)の A4— A4断面図であり、図 6 (e)は偏心分銅 420を正面から見た図である。 FIG. 6 is a view for explaining the eccentric weight 420 according to the fourth embodiment. Fig. 6 (a) is a view of the weight support 430 of the eccentric weight 420, and Fig. 6 (b) is a cross-sectional view taken along line 2-2A2 in Fig. 6 (a), and Fig. 6 (c) is a diagram. Fig. 6 (b) is an A3-A3 cross-sectional view, and Fig. 6 (d) is a diagram. FIG. 6 (b) is a cross-sectional view taken along line A4-A4, and FIG. 6 (e) is a view of the eccentric weight 420 as viewed from the front.
[0168] 実施形態 4に係る偏心分銅 420は、実施形態 1に係る偏心分銅 120とよく似た構造 を有しているが、分銅側突出部 435の構造が実施形態 1に係る偏心分銅 120の場合 とは異なっている。すなわち、実施形態 4に係る偏心分銅 420における分銅側突出 部 435は、図 6 (b)に示すように、平面形状が長方形のリブ力 なる。そして、分銅側 突出部 435においては、長方形における 4辺のうち相対向する 2辺は分銅保持部 43 4の本体とつながって 、て、他の 2辺は分銅保持部 434とは分離されて!、る。  [0168] The eccentric weight 420 according to the fourth embodiment has a structure that is very similar to the eccentric weight 120 according to the first embodiment, but the structure of the weight side protrusion 435 is the same as that of the eccentric weight 120 according to the first embodiment. It is different from the case. That is, the weight side protruding portion 435 of the eccentric weight 420 according to the fourth embodiment has a rib force having a rectangular planar shape as shown in FIG. 6 (b). In the weight side protrusion 435, two opposite sides of the four sides of the rectangle are connected to the body of the weight holder 434, and the other two sides are separated from the weight holder 434! RU
[0169] 図 7は、実施形態 5に係る偏心分銅 520を説明するために示す図である。図 7 (a) は偏心分銅 520における分銅支持体 530を正面力も見た図であり、図 7 (b)は図 7 (a )の八5— A5断面図であり、図 7 (c)は偏心分銅 520を正面力も見た図であり、図 7 (d )は偏心分銅 520の斜視図である。  FIG. 7 is a view for explaining an eccentric weight 520 according to the fifth embodiment. Fig. 7 (a) is a view of the weight support 530 of the eccentric weight 520, also showing the front force, Fig. 7 (b) is a cross-sectional view of Fig. 7 (a) VIII-A5, and Fig. 7 (c) FIG. 7D is a perspective view of the eccentric weight 520, and FIG. 7D is a perspective view of the eccentric weight 520. FIG.
[0170] 実施形態 5に係る偏心分銅 520も、実施形態 4に係る偏心分銅 420の場合と同様 に、実施形態 1に係る偏心分銅 120とよく似た構造を有しているが、分銅側突出部の 構造が実施形態 1に係る偏心分銅 120の場合とは異なっている。すなわち、実施形 態 5に係る偏心分銅 520における分銅側突出部 535は、図 7 (b)に示すように、平面 形状が長方形のリブ力もなる。そして、分銅側突出部 535においては、長方形におけ る 4辺のうち相対向する 2辺は分銅保持部 534の本体とつながつていて、他の 2辺は 分銅保持部 534とは分離されて ヽる。  [0170] Similarly to the eccentric weight 420 according to the fourth embodiment, the eccentric weight 520 according to the fifth embodiment has a structure similar to that of the eccentric weight 120 according to the first embodiment, but the weight side protruding. The structure of the part is different from that of the eccentric weight 120 according to the first embodiment. That is, the weight side protrusion 535 of the eccentric weight 520 according to the fifth embodiment also has a rib force with a rectangular planar shape as shown in FIG. 7 (b). In the weight side protruding portion 535, two opposite sides of the four sides of the rectangle are connected to the body of the weight holding portion 534, and the other two sides are separated from the weight holding portion 534. Speak.
[0171] このように、実施形態 4又は 5に係る偏心分銅 420, 520は、図 6及び図 7に示すよう に、分銅側突出部の構造が実施形態 1に係る偏心分銅 120の場合とは異なるが、偏 心分銅を、高比重金属からなる分銅と、分銅を構成する高比重金属よりも比重の低 い金属からなる分銅支持体とを一体化することにより製造された偏心分銅 420, 520 としたため、実施形態 1に係る偏心分銅 120の場合と同様に、偏心分銅 420, 520の 総重量を軽くするとともに、偏心分銅 420, 520における偏心量を大きくすることがで きる。このため、このような偏心分銅 420, 520を用いることにより、軽量かつ少ない消 費電力で大きな振動量が得られる振動モータを構成することができる。  [0171] As described above, the eccentric weights 420 and 520 according to the fourth or fifth embodiment are different from the case of the eccentric weight 120 according to the first embodiment in that the structure of the weight side protrusion is as shown in FIGS. Although different, eccentric weights 420, 520 manufactured by integrating a weight made of a high specific gravity metal with a weight support made of a metal having a specific gravity lower than that of the high specific gravity metal constituting the weight. Therefore, as in the case of the eccentric weight 120 according to the first embodiment, the total weight of the eccentric weights 420 and 520 can be reduced and the amount of eccentricity in the eccentric weights 420 and 520 can be increased. For this reason, by using such eccentric weights 420 and 520, it is possible to configure a vibration motor that is lightweight and can obtain a large amount of vibration with low power consumption.
[0172] また、実施形態 4又は 5に係る偏心分銅 420, 520によれば、分銅支持体を弾性体 力もなる分銅支持体 430, 530としたため、実施形態 1に係る偏心分銅 120の場合と 同様に、分銅 440, 540は分銅保持部 434, 534全体の弾性力により分銅保持部 43 4, 534に保持されることになる。このため、振動モータ (及び偏心分銅)を長時間使 用した場合に分銅 440, 540と分銅支持体 430, 530との接合の信頼性が低下する ことが抑制され、このような偏心分銅 420, 520を用いることにより、長期信頼性の高 V、振動モータを構成することができる。 [0172] Further, according to the eccentric weights 420 and 520 according to the fourth or fifth embodiment, the weight support body is the weight support body 430 or 530 having an elastic body force, so that the eccentric weight 120 according to the first embodiment and Similarly, the weights 440 and 540 are held by the weight holding portions 434 and 534 by the elastic force of the entire weight holding portions 434 and 534. For this reason, when the vibration motor (and the eccentric weight) is used for a long time, the reliability of the connection between the weights 440, 540 and the weight support bodies 430, 530 is suppressed, and such an eccentric weight 420, By using 520, a long-term reliable high V vibration motor can be constructed.
[0173] また、実施形態 4又は 5に係る偏心分銅 420, 520によれば、分銅保持部を、分銅 と分銅支持体とを一体ィヒした場合に分銅側への突出量力小さくなる分銅側突出部 4 35, 535を有する分銅保持部 434, 534としたため、実施形態 1に係る偏心分銅 120 の場合と同様に、分銅 440, 540は、分銅側突出部 435, 535の弾性力が加わった さらに強い弾性力で分銅保持部 434, 534に保持されることになる。このため、振動 モータ (及び偏心分銅)を長時間使用した場合に分銅 440, 540と分銅支持体 430, 530との接合の信頼性が低下することをさらに抑制することができるため、このような 偏心分銅 420, 520を用いることにより、長期信頼性のさらに高い振動モータを構成 することができる。 [0173] Also, according to the eccentric weights 420 and 520 according to the embodiment 4 or 5, when the weight holding portion is integrated with the weight and the weight support body, the weight-side protrusion becomes smaller when the weight is protruded toward the weight side. Since the weight holding portions 434 and 534 having the portions 4 35 and 535 are used, the weights 440 and 540 are added with the elastic force of the weight side protruding portions 435 and 535 as in the case of the eccentric weight 120 according to the first embodiment. The weight holding parts 434 and 534 are held by a strong elastic force. For this reason, it is possible to further suppress the decrease in the reliability of the connection between the weights 440, 540 and the weight support bodies 430, 530 when the vibration motor (and the eccentric weight) is used for a long time. By using the eccentric weights 420 and 520, a vibration motor with higher long-term reliability can be configured.
[0174] なお、実施形態 5に係る偏心分銅 520においては、分銅支持体 530は、図 7 (b)及 び図 7 (d)に示すように、モータ軸に沿った方向における両側力も分銅 540を保持す る分銅保持枠 536を有して 、る。  [0174] In the eccentric weight 520 according to the fifth embodiment, the weight support 530 has both weights in the direction along the motor shaft as shown in FIGS. 7 (b) and 7 (d). It has a weight holding frame 536 for holding.
[0175] このため、実施形態 5に係る偏心分銅 520によれば、分銅支持体 530は、モータ軸 に沿った方向における両側からも分銅 540を保持することが可能になるため、振動モ ータ (及び偏心分銅 520)を長時間使用した場合に分銅 540と分銅支持体 530との 接合の信頼性が低下することをさらに抑制することができるため、このような偏心分銅 520を用いることにより、長期信頼性のさらに高い振動モータを構成することができる  [0175] Therefore, according to the eccentric weight 520 according to the fifth embodiment, the weight support 530 can hold the weight 540 from both sides in the direction along the motor shaft. (And eccentric weight 520) can be further suppressed from lowering the reliability of the connection between the weight 540 and the weight support 530 when used for a long time, by using such an eccentric weight 520, A vibration motor with higher long-term reliability can be configured.
[0176] 〔実施形態 6〕 [Embodiment 6]
図 8は、実施形態 6に係る偏心分銅 620を説明するために示す図である。図 8 (a) は偏心分銅 620における分銅支持体 630及び分銅 640の斜視図であり、図 8 (b)は 偏心分銅 620の斜視図である。  FIG. 8 is a view for explaining the eccentric weight 620 according to the sixth embodiment. 8A is a perspective view of the weight support 630 and the weight 640 of the eccentric weight 620, and FIG. 8B is a perspective view of the eccentric weight 620. FIG.
[0177] 実施形態 6に係る偏心分銅 620は、実施形態 1に係る偏心分銅 120とよく似た構造 を有して!/ヽるが、分銅 640の形状が実施形態 1に係る偏心分銅 120の場合とは異な つている。すなわち、実施形態 6に係る偏心分銅 620においては、分銅 640には、図 8 (a)に示すように、分銅側突出部 635に対応する部分に分銅側突出部 635を受け る窪み 645が形成されて 、る。 [0177] The eccentric weight 620 according to the sixth embodiment is similar in structure to the eccentric weight 120 according to the first embodiment. However, the shape of the weight 640 is different from that of the eccentric weight 120 according to the first embodiment. That is, in the eccentric weight 620 according to the sixth embodiment, the weight 640 has a recess 645 that receives the weight side protrusion 635 in the portion corresponding to the weight side protrusion 635 as shown in FIG. It has been.
[0178] このように、実施形態 6に係る偏心分銅 620は、図 8に示すように、分銅の構造が実 施形態 1に係る偏心分銅 120の場合とは異なるが、偏心分銅を、高比重金属からな る分銅と、分銅を構成する高比重金属よりも比重の低!ヽ金属からなる分銅支持体とを 一体化することにより製造された偏心分銅 620としたため、実施形態 1に係る偏心分 銅 120の場合と同様に、偏心分銅 620の総重量を軽くするとともに、偏心分銅 620に おける偏心量を大きくすることができる。このため、このような偏心分銅 620を用いるこ とにより、軽量かつ少ない消費電力で大きな振動量が得られる振動モータを構成す ることがでさる。 [0178] Thus, the eccentric weight 620 according to the sixth embodiment is different from the eccentric weight 120 according to the first embodiment as shown in FIG. Weights made of heavy metals and lower specific gravity than the high specific gravity metals that make up weights! Since the eccentric weight 620 is manufactured by integrating the weight support made of the metal, the total weight of the eccentric weight 620 is reduced and the eccentric weight 620 is reduced as in the case of the eccentric weight 120 according to the first embodiment. The amount of eccentricity at the weight 620 can be increased. Therefore, by using such an eccentric weight 620, it is possible to configure a vibration motor that can obtain a large amount of vibration with light weight and low power consumption.
[0179] また、実施形態 6に係る偏心分銅 620によれば、分銅支持体を弾性体からなる分銅 支持体 630としたため、実施形態 1に係る偏心分銅 120の場合と同様に、分銅 640 は分銅保持部 634全体の弾性力により分銅保持部 634に保持されることになる。この ため、振動モータ (及び偏心分銅)を長時間使用した場合に分銅 640と分銅支持体 6 30との接合の信頼性が低下することが抑制され、このような偏心分銅 620を用いるこ とにより、長期信頼性の高い振動モータを構成することができる。  [0179] Also, according to the eccentric weight 620 according to the sixth embodiment, the weight support is the weight support 630 made of an elastic body, so that the weight 640 is the weight as in the case of the eccentric weight 120 according to the first embodiment. The weight holding part 634 is held by the elastic force of the holding part 634 as a whole. For this reason, when the vibration motor (and the eccentric weight) is used for a long time, it is possible to suppress a decrease in the reliability of the connection between the weight 640 and the weight support 630. By using such an eccentric weight 620, A vibration motor with high long-term reliability can be configured.
[0180] また、実施形態 6に係る偏心分銅 620によれば、分銅保持部を、分銅と分銅支持体 とを一体化した場合に分銅側への突出量が小さくなる分銅側突出部 635を有する分 銅保持部 634としたため、実施形態 1に係る偏心分銅 120の場合と同様に、分銅 64 0は、分銅側突出部 635の弾性力が加わったさらに強い弾性力で分銅保持部 634に 保持されることになる。このため、振動モータ (及び偏心分銅)を長時間使用した場合 に分銅 640と分銅支持体 630との接合の信頼性が低下することをさらに抑制すること ができるため、このような偏心分銅 620を用いることにより、長期信頼性のさらに高い 振動モータを構成することができる。  [0180] In addition, according to the eccentric weight 620 according to the sixth embodiment, the weight holding portion has the weight side protruding portion 635 that reduces the amount of protrusion to the weight side when the weight and the weight support are integrated. Since the weight holding portion 634 is used, the weight 640 is held by the weight holding portion 634 with a stronger elastic force to which the elastic force of the weight side protruding portion 635 is applied, as in the case of the eccentric weight 120 according to the first embodiment. Will be. For this reason, when the vibration motor (and the eccentric weight) is used for a long time, it is possible to further prevent the reliability of the connection between the weight 640 and the weight support body 630 from being lowered. By using it, a vibration motor with higher long-term reliability can be configured.
[0181] さらにまた、実施形態 6に係る偏心分銅 620によれば、分銅 640に形成された窪み 645と分銅側突出部 635とを係止させることにより、分銅保持部 634から分銅 640が 離脱してしまうことを抑制することが可能となる。このため、振動モータを長期間使用 した場合に分銅 640と分銅支持体 630との接合の信頼性が低下することをさらに抑 制することができるため、このような偏心分銅 620を用いることにより、長期信頼性のさ らに高い振動モータを構成することができる。 [0181] Furthermore, according to the eccentric weight 620 according to the sixth embodiment, the weight 640 is removed from the weight holding portion 634 by locking the recess 645 formed in the weight 640 and the weight side protruding portion 635. It is possible to suppress the separation. For this reason, since it is possible to further suppress the decrease in the reliability of the connection between the weight 640 and the weight support 630 when the vibration motor is used for a long time, by using such an eccentric weight 620, A vibration motor with higher long-term reliability can be constructed.
[0182] 〔実施形態 7〕  [Embodiment 7]
図 9は、実施形態 7に係る偏心分銅 720の斜視図である。  FIG. 9 is a perspective view of an eccentric weight 720 according to the seventh embodiment.
[0183] 実施形態 7に係る偏心分銅 720は、実施形態 1に係る偏心分銅 120とよく似た構造 を有しているが、所定の開口が設けられた分銅支持体を用いた点で、実施形態 1に 係る偏心分銅 120の場合とは異なる。実施形態 7に係る偏心分銅 720においては、 図 9に示すように、所定の開口が設けられた薄板金属部材を用いて分銅支持体 730 を製造している。  [0183] The eccentric weight 720 according to the seventh embodiment has a structure very similar to the eccentric weight 120 according to the first embodiment, but is implemented in that a weight support body provided with a predetermined opening is used. This is different from the case of the eccentric weight 120 according to Form 1. In the eccentric weight 720 according to the seventh embodiment, as shown in FIG. 9, the weight support 730 is manufactured using a thin metal member provided with a predetermined opening.
[0184] このため、実施形態 7に係る偏心分銅 720によれば、必要な強度を維持したまま分 銅支持体 730を構成する材料の使用量をさらに少ないものにすることができる。これ により、偏心分銅 720の総重量をさらに軽くするとともに、偏心分銅 720における偏心 量をさらに大きくすることができる。このため、このような偏心分銅 720を用いることに より、さらに軽量かっさらに少ない消費電力で必要な振動量が得られる振動モータを 構成することができる。  [0184] For this reason, according to the eccentric weight 720 according to the seventh embodiment, the amount of the material constituting the weight support 730 can be further reduced while maintaining the required strength. As a result, the total weight of the eccentric weight 720 can be further reduced, and the amount of eccentricity in the eccentric weight 720 can be further increased. Therefore, by using such an eccentric weight 720, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
[0185] 〔実施形態 8〕  [Embodiment 8]
図 10は、実施形態 8に係る偏心分銅 820を説明するために示す図である。図 10 (a )は偏心分銅 820を正面力も見た図であり、図 10 (b)はモータ軸 812と結合した偏心 分銅 820を正面から見た図である。  FIG. 10 is a view for explaining the eccentric weight 820 according to the eighth embodiment. FIG. 10 (a) is a view of the eccentric weight 820 viewed from the front, and FIG. 10 (b) is a view of the eccentric weight 820 coupled to the motor shaft 812 viewed from the front.
[0186] 実施形態 8に係る偏心分銅 820は、実施形態 1に係る偏心分銅 120の場合とは異 なり、さらに強力な弾性力で分銅を保持するための分銅側突出部を有していない。そ の代わりに、実施形態 8における分銅支持体 830は、モータ軸 812をモータ軸保持 部 832に挿入した場合に分銅保持部 832がさらに強い弾性力で分銅 840を保持す るような構造を有している。  [0186] The eccentric weight 820 according to the eighth embodiment is different from the eccentric weight 120 according to the first embodiment, and does not have a weight side protrusion for holding the weight with a strong elastic force. Instead, the weight support 830 in the eighth embodiment has a structure that allows the weight holding portion 832 to hold the weight 840 with a stronger elastic force when the motor shaft 812 is inserted into the motor shaft holding portion 832. is doing.
[0187] すなわち、実施形態 8に係る偏心分銅 820においては、モータ軸 812が挿入される 前には分銅保持部 834と分銅 840との間に若干の空隙が形成されているが(図 10 (a )の符号 Cの部分参照。)、モータ軸 812が挿入された後には、モータ軸 812がモー タ軸保持部 832を押し広げることにより、モータ軸保持部 832及び分銅保持部 834が 弾性変形し、分銅保持部 834と分銅 840との間に形成されていた空隙がなくなる(図 10 (b)参照。;)。このため、分銅保持部 832がさらに強い弾性力で分銅 840を保持す るようになるのである。 That is, in the eccentric weight 820 according to the eighth embodiment, a slight gap is formed between the weight holding portion 834 and the weight 840 before the motor shaft 812 is inserted (FIG. 10 ( a ) Refer to the part of code C. ) After the motor shaft 812 is inserted, the motor shaft 812 pushes and spreads the motor shaft holding portion 832, whereby the motor shaft holding portion 832 and the weight holding portion 834 are elastically deformed, and the weight holding portion 834 and the weight 840 There is no gap formed between them (see Fig. 10 (b);). For this reason, the weight holding portion 832 holds the weight 840 with a stronger elastic force.
[0188] このため、実施形態 8に係る偏心分銅 820によれば、振動モータを長時間使用した 場合に分銅 840と分銅支持体 830との接合の信頼性が低下することをさらに抑制す ることができるため、このような偏心分銅 820を用いることにより、長期信頼性のさらに 高 、振動モータを構成することができる。  [0188] For this reason, according to the eccentric weight 820 according to the eighth embodiment, it is possible to further suppress a decrease in the reliability of joining between the weight 840 and the weight support 830 when the vibration motor is used for a long time. Therefore, by using such an eccentric weight 820, it is possible to configure a vibration motor with higher long-term reliability.
[0189] 実施形態 8に係る偏心分銅 820においては、分銅支持体 830は、薄板金属部材を 所定形状に塑性変形させた後に硬化処理を施すことにより製造された弾性体からな つている。  [0189] In the eccentric weight 820 according to the eighth embodiment, the weight support 830 is made of an elastic body manufactured by plastically deforming a thin metal member into a predetermined shape and then performing a hardening process.
[0190] このため、実施形態 8に係る偏心分銅 820によれば、分銅支持体 830が分銅及 84 0びモータ軸 812を弾性力によりさらに強固に保持することができるようになり、振動 モータ (及び偏心分銅)を長時間使用した場合に分銅 840と分銅支持体 830との接 合の信頼性が低下することを十分に抑制することができる。このため、このような偏心 分銅 820を用いることにより、長期信頼性の高い振動モータを構成することができる。  Therefore, according to the eccentric weight 820 according to the eighth embodiment, the weight support body 830 can hold the weight and the motor shaft 812 more firmly by the elastic force, and the vibration motor ( Further, it is possible to sufficiently suppress the decrease in the reliability of the connection between the weight 840 and the weight support 830 when the eccentric weight is used for a long time. Therefore, by using such an eccentric weight 820, a vibration motor with high long-term reliability can be configured.
[0191] また、実施形態 8に係る偏心分銅 820によれば、必要な強度を維持したまま分銅支 持体 830を構成する材料の使用量を極めて少ないものにすることができる。これによ り、偏心分銅 820の総重量を軽くするとともに、偏心分銅 820における偏心量をさら に大きくすることができる。このため、このような偏心分銅 820を用いることにより、さら に軽量かっさらに少ない消費電力で必要な振動量が得られる振動モータを構成する ことができる。  [0191] Also, according to the eccentric weight 820 according to the eighth embodiment, the amount of the material constituting the weight support 830 can be made extremely small while maintaining the required strength. As a result, the total weight of the eccentric weight 820 can be reduced, and the amount of eccentricity in the eccentric weight 820 can be further increased. For this reason, by using such an eccentric weight 820, it is possible to configure a vibration motor that can obtain a necessary vibration amount with lighter and less power consumption.
[0192] また、実施形態 8に係る偏心分銅 820においては、分銅支持体 830のビッカース硬 さ(Hv)は 150以上である。  [0192] In the eccentric weight 820 according to the eighth embodiment, the Vickers hardness (Hv) of the weight support 830 is 150 or more.
[0193] このように構成することにより、分銅支持体 830は強い弾性力で分銅 840を保持す ることが可能になるとともに強い弾性力でモータ軸 812を保持することが可能になる。 この観点力も言えば、分銅支持体 830のビッカース硬さ(Hv)は 200以上であること 力 り好ましぐ 250以上であることがさらに好ましい。 [0193] With this configuration, the weight support 830 can hold the weight 840 with a strong elastic force and can hold the motor shaft 812 with a strong elastic force. Speaking of this viewpoint, the Vickers hardness (Hv) of the weight support 830 is 200 or more. More preferably, the power is 250 or more.
[0194] 〔実施形態 9〕  [Embodiment 9]
図 11は、実施形態 9に係る偏心分銅 920を説明するために示す図である。図 11 (a )は偏心分銅 920における分銅支持体 930を正面力も見た図であり、図 11 (b)は偏 心分銅 920を正面から見た図であり。図 11 (c)はモータ軸 912と結合した偏心分銅 9 20を正面から見た図である。  FIG. 11 is a view for explaining the eccentric weight 920 according to the ninth embodiment. FIG. 11 (a) is a view of the weight support body 930 of the eccentric weight 920 viewed from the front, and FIG. 11 (b) is a view of the eccentric weight 920 viewed from the front. FIG. 11 (c) is a front view of the eccentric weight 920 coupled to the motor shaft 912. FIG.
[0195] 実施形態 9に係る偏心分銅 920は、実施形態 8に係る偏心分銅 820の場合と同様 に、さらに強力な弾性力で分銅を保持するための分銅側突出部を有していない。伹 し、実施形態 9における分銅支持体 930は、実施形態 8に係る偏心分銅 820の場合 とは異なり、分銅 940を分銅保持部 934に挿入した場合に、モータ軸保持部 932が 画定する空間が小さくなるような構造を有している。  [0195] As with the eccentric weight 820 according to the eighth embodiment, the eccentric weight 920 according to the ninth embodiment does not have a weight side protrusion for holding the weight with a stronger elastic force. However, unlike the case of the eccentric weight 820 according to the eighth embodiment, the weight support 930 in the ninth embodiment has a space defined by the motor shaft holding portion 932 when the weight 940 is inserted into the weight holding portion 934. The structure is small.
[0196] 実施形態 9に係る偏心分銅 920においては、分銅 940が挿入される前にはモータ 軸保持部 932が画定する空間の面積はモータ軸 912の断面積とほぼ同じ大きさであ るが(図 11 (a)参照。)、分銅 940が挿入された後には、分銅 940が分銅保持部 934 を押し広げることにより、モータ軸保持部 932が弾性変形して、モータ軸保持部 932 が画定する空間が小さくなる(図 11 (b)参照。;)。このため、モータ軸 912をモータ軸 保持部 932に挿入した場合に、モータ軸保持部 932がさらに強い弾性力でモータ軸 912を保持するようになる(図 11 (c)参照。;)。また、この場合、モータ軸 912をモータ 軸保持部 932に挿入した場合には、分銅保持部 934が弾性変形してさらに小さくな ろうとするため、分銅保持部 934がさらに強い弾性力で分銅 940を保持するようにな る。  [0196] In the eccentric weight 920 according to Embodiment 9, the area of the space defined by the motor shaft holding portion 932 is approximately the same as the cross-sectional area of the motor shaft 912 before the weight 940 is inserted. (Refer to Fig. 11 (a).) After the weight 940 is inserted, the weight 940 spreads the weight holding portion 934, whereby the motor shaft holding portion 932 is elastically deformed and the motor shaft holding portion 932 is defined. The space to perform becomes smaller (see Fig. 11 (b);). For this reason, when the motor shaft 912 is inserted into the motor shaft holding portion 932, the motor shaft holding portion 932 holds the motor shaft 912 with a stronger elastic force (see FIG. 11 (c);). Further, in this case, when the motor shaft 912 is inserted into the motor shaft holding portion 932, the weight holding portion 934 is elastically deformed and tends to be further reduced, so that the weight holding portion 934 applies the weight 940 with a stronger elastic force. Hold it.
[0197] このため、実施形態 9に係る偏心分銅 920によれば、振動モータを長時間使用した 場合に、分銅 940と分銅支持体 930との接合の信頼性が低下したり、モータ軸 912と 分銅支持体 930との接合の信頼性が低下したりすることをさらに抑制することができ るため、長期信頼性のさらに高い振動モータを構成することができる。  Therefore, according to the eccentric weight 920 according to the ninth embodiment, when the vibration motor is used for a long time, the reliability of the connection between the weight 940 and the weight support 930 is reduced, or the motor shaft 912 Since it can further suppress that the reliability of joining with the weight support body 930 falls, a vibration motor with higher long-term reliability can be comprised.
[0198] 実施形態 9に係る偏心分銅 920においては、分銅支持体 930は、薄板金属部材を 所定形状に塑性変形させた後に硬化処理を施すことにより製造された弾性体からな つている。 [0199] また、実施形態 9に係る偏心分銅 920においては、薄板金属部材を所定形状に塑 性変形させた後に硬化処理を施すことにより製造された分銅支持体 930を用いること としたため、分銅支持体 930が分銅及 940びモータ軸 912を弾性力によりさらに強固 に保持することができるようになり、振動モータ (及び偏心分銅)を長時間使用した場 合に分銅 940と分銅支持体 930との接合の信頼性が低下することを十分に抑制する ことができる。このため、このような偏心分銅 920を用いることにより、長期信頼性の高 V、振動モータを構成することができる。 [0198] In the eccentric weight 920 according to the ninth embodiment, the weight support 930 is made of an elastic body that is manufactured by plastically deforming a thin metal member into a predetermined shape and then performing a hardening process. [0199] Further, in the eccentric weight 920 according to the ninth embodiment, the weight support 930 manufactured by performing a hardening process after plastically deforming a thin metal member into a predetermined shape is used. The body 930 can hold the weight 940 and the motor shaft 912 more firmly by elastic force, and when the vibration motor (and eccentric weight) is used for a long time, the weight 940 and the weight support 930 It is possible to sufficiently suppress the decrease in bonding reliability. Therefore, by using such an eccentric weight 920, a long-term reliable high-V vibration motor can be configured.
[0200] このため、実施形態 9に係る偏心分銅 920によれば、必要な強度を維持したまま分 銅支持体 930を構成する材料の使用量を極めて少ないものにすることができる。これ により、偏心分銅 920の総重量を軽くするとともに、偏心分銅 920における偏心量を さらに大きくすることができる。このため、このような偏心分銅 920を用いることにより、 さらに軽量かっさらに少ない消費電力で必要な振動量が得られる振動モータを構成 することができる。  [0200] For this reason, according to the eccentric weight 920 according to the ninth embodiment, the amount of the material constituting the weight support 930 can be made extremely small while maintaining the required strength. Thereby, the total weight of the eccentric weight 920 can be reduced, and the amount of eccentricity in the eccentric weight 920 can be further increased. Therefore, by using such an eccentric weight 920, it is possible to configure a vibration motor that can obtain a necessary vibration amount with a lighter weight and less power consumption.
[0201] また、実施形態 9に係る偏心分銅 920においては、分銅支持体 930のビッカース硬 さ(Hv)は 150以上である。  [0201] In the eccentric weight 920 according to Embodiment 9, the Vickers hardness (Hv) of the weight support 930 is 150 or more.
[0202] このように構成することにより、分銅支持体 930は強い弾性力で分銅 940を保持す ることが可能になるとともに強い弾性力でモータ軸 912を保持することが可能になる。 この観点力も言えば、分銅支持体 930のビッカース硬さ(Hv)は 200以上であること 力 り好ましぐ 250以上であることがさらに好ましい。  With this configuration, the weight support 930 can hold the weight 940 with a strong elastic force and can hold the motor shaft 912 with a strong elastic force. Speaking also from this viewpoint, the Vickers hardness (Hv) of the weight support 930 is 200 or more, more preferably 250 or more.
[0203] 〔実施形態 10〕  [Embodiment 10]
図 12は、実施形態 10に係る偏心分銅 1020を説明するために示す図である。図 1 2 (a)は偏心分銅 1020における分銅支持体 1030を正面力も見た図であり、図 12 (b )は偏心分銅 1020における分銅支持体 1030を側面力も見た図であり、図 12 (c)は 偏心分銅 1020における分銅支持体 1030を底面から見た図であり、図 12 (d)は図 1 2 (&)の八6—八6断面図でぁり、図 12 (e)は偏心分銅 1020における分銅支持体 103 0の斜視図であり、図 12 (f)は偏心分銅 1020の斜視図である。  FIG. 12 is a view for explaining the eccentric weight 1020 according to the tenth embodiment. Fig. 1 2 (a) is a view of the weight support 1030 of the eccentric weight 1020 as seen from the frontal force, and Fig. 12 (b) is a view of the weight support 1030 of the eccentric weight 1020 as seen from the side force. c) is a view of the weight support 1030 of the eccentric weight 1020 as seen from the bottom, and Fig. 12 (d) is a cross-sectional view of Fig. 12 (&) 8-6-8, and Fig. 12 (e) FIG. 12 is a perspective view of a weight support 1030 in an eccentric weight 1020, and FIG. 12 (f) is a perspective view of an eccentric weight 1020.
[0204] 図 13は、実施形態 10に係る偏心分銅 1020の製造方法を説明するために示す図 である。図 13 (a)〜図 13 (i)は各工程を示す図である。 図 14は、実施形態 10に係る振動モータ 1000を説明するために示す図である。図 14 (a)は実施形態 10に係る振動モータ 1000の斜視図であり、図 14 (b)は実施形態 10に係る振動モータ 1000を正面から見た図であり、図 14 (c)は実施形態 10に係る 振動モータ 1000の一部を側面から見た図である。 FIG. 13 is a view for explaining the method of manufacturing the eccentric weight 1020 according to the tenth embodiment. FIG. 13 (a) to FIG. 13 (i) are diagrams showing each step. FIG. 14 is a view for explaining the vibration motor 1000 according to the tenth embodiment. FIG. 14 (a) is a perspective view of the vibration motor 1000 according to the tenth embodiment, FIG. 14 (b) is a view of the vibration motor 1000 according to the tenth embodiment as viewed from the front, and FIG. FIG. 10 is a view of a part of a vibration motor 1000 according to a tenth embodiment as viewed from the side.
[0205] 実施形態 10に係る偏心分銅 1020は、実施形態 8に係る偏心分銅 820と同様に、 モータ軸 1012 (図 14参照。)をモータ軸保持部 1032に挿入した場合に分銅保持部 1034がさらに強い弾性力で分銅 1040を保持するような構造を有している。  [0205] As with the eccentric weight 820 according to the eighth embodiment, the eccentric weight 1020 according to the tenth embodiment has the weight holding section 1034 when the motor shaft 1012 (see FIG. 14) is inserted into the motor shaft holding section 1032. Furthermore, it has a structure that holds the weight 1040 with a strong elastic force.
[0206] すなわち、実施形態 10に係る偏心分銅 1020においては、モータ軸 1012が挿入さ れると、モータ軸 1012がモータ軸保持部 1032を押し広げることにより、分銅保持部 1034がさらに強い弾性力で分銅 1040を保持するようになるのである。  That is, in the eccentric weight 1020 according to the tenth embodiment, when the motor shaft 1012 is inserted, the motor shaft 1012 pushes the motor shaft holding portion 1032 apart, so that the weight holding portion 1034 has a stronger elastic force. The weight 1040 will be held.
[0207] このため、実施形態 10に係る偏心分銅 1020によれば、実施形態 8に係る偏心分 銅 820の場合と同様に、振動モータ 1000を長時間使用した場合に分銅 1040と分 銅支持体 1030との接合の信頼性が低下することをさらに抑制することができるため、 このような偏心分銅を用いることにより、長期信頼性のさらに高い振動モータを構成 することができる。  Therefore, according to the eccentric weight 1020 according to the tenth embodiment, the weight 1040 and the weight support when the vibration motor 1000 is used for a long time as in the case of the eccentric weight 820 according to the eighth embodiment. Since it can further suppress that the reliability of joining with 1030 falls, by using such an eccentric weight, a vibration motor with higher long-term reliability can be constituted.
[0208] 実施形態 10に係る偏心分銅 1020においては、図 12〜図 14に示すように、分銅 支持体 1030は、モータ軸 1012に沿った方向における一方側に分銅 1040を保持 する分銅保持枠 1036を有している。分銅支持体 1030における他方側(図 12 (e)に おける分銅保持枠 1036が形成されていない側)から分銅保持部 1034に分銅 1040 を挿入することにより、分銅 1040は、分銅保持部 1034の弾性力及び分銅保持枠 10 36により分銅保持部 1034に保持されることになる。  In the eccentric weight 1020 according to the tenth embodiment, as shown in FIGS. 12 to 14, the weight support 1030 has a weight holding frame 1036 that holds the weight 1040 on one side in the direction along the motor shaft 1012. have. By inserting the weight 1040 into the weight holding part 1034 from the other side of the weight support 1030 (the side where the weight holding frame 1036 in FIG. 12 (e) is not formed), the weight 1040 is made elastic by the weight holding part 1034. The force and weight holding frame 1036 holds the weight holding portion 1034.
[0209] このため、実施形態 10に係る偏心分銅 1020によれば、分銅支持体 1030は、図 1 4に示すように、モータ軸 1012に沿った方向における一方側力も分銅 1040を保持 することが可能になるため、振動モータ (及び偏心分銅 1020)を長時間使用した場 合に分銅 1040と分銅支持体 1030との接合の信頼性が低下することをさらに抑制す ることができるため、このような偏心分銅 1020を用いることにより、長期信頼性のさら に高 、振動モータを構成することができる。  Therefore, according to the eccentric weight 1020 according to the tenth embodiment, the weight support 1030 can hold the weight 1040 even in one side force in the direction along the motor shaft 1012 as shown in FIG. This makes it possible to further suppress the decrease in the reliability of the connection between the weight 1040 and the weight support 1030 when the vibration motor (and the eccentric weight 1020) is used for a long time. By using an eccentric weight 1020, a vibration motor can be constructed with higher long-term reliability.
[0210] なお、実施形態 10に係る偏心分銅 1020は、図 13に示すように、実施形態 1に係る 偏心分銅 120の場合と同様に、 1枚の薄板金属部材 1030aを所定形状に塑性変形 させた後に硬化処理を施すことにより製造することができる。 [0210] The eccentric weight 1020 according to Embodiment 10 is related to Embodiment 1 as shown in FIG. As in the case of the eccentric weight 120, the sheet metal member 1030a can be manufactured by plastically deforming it into a predetermined shape and then performing a hardening process.
[0211] 〔実施形態 11〕  [Embodiment 11]
図 15は、実施形態 11に係る偏心分銅 1120を説明するために示す図である。図 1 5 (a)は偏心分銅 1120における分銅支持体 1130を正面から見た図であり、図 15 (b )は偏心分銅 1120における分銅支持体 1130を側面力も見た図であり、図 15 (c)は 偏心分銅 1120の斜視図であり、図 15 (d)は実施形態 11に係る振動モータ 1100の 一部を側面から見た図である。  FIG. 15 is a view for explaining the eccentric weight 1120 according to the eleventh embodiment. Fig. 15 (a) is a view of the weight support 1130 of the eccentric weight 1120 as viewed from the front, and Fig. 15 (b) is a view of the weight support 1130 of the eccentric weight 1120 also showing the side force. FIG. 15C is a perspective view of the eccentric weight 1120, and FIG. 15D is a view of a part of the vibration motor 1100 according to the eleventh embodiment as viewed from the side.
[0212] 図 16は、実施形態 11に係る偏心分銅の製造方法を説明するために示す模式図で ある。図 16 (a)、図 16 (b)、図 16 (d)及び図 16 (f)は各製造工程における偏心分銅 1 120の正面図であり、図 16 (c)、図 16 (e)及び図 16 (g)は各製造工程における偏心 分銅 1120の A— A断面図である。  FIG. 16 is a schematic view for explaining the method for manufacturing the eccentric weight according to the eleventh embodiment. Fig. 16 (a), Fig. 16 (b), Fig. 16 (d) and Fig. 16 (f) are front views of the eccentric weight 1 120 in each manufacturing process, and Fig. 16 (c), Fig. 16 (e) and Fig. 16 FIG. 16 (g) is an AA cross-sectional view of the eccentric weight 1120 in each manufacturing process.
[0213] 実施形態 11に係る偏心分銅 1120は、実施形態 1に係る偏心分銅 120とよく似た 構造を有しているが、分銅 1140の長手方向に沿った分銅保持部 1130の長さが実 施形態 1に係る偏心分銅 120の場合とは異なる。すなわち、実施形態 11に係る偏心 分銅 1120にお!/、ては、図 15 (c)及び図 15 (d)に示すように、分銅 1140の長手方向 に沿った分銅保持部 1130の長さを実施形態 1に係る偏心分銅 120の場合に比べて 約 50%の長さとしている。  [0213] The eccentric weight 1120 according to the eleventh embodiment has a structure similar to the eccentric weight 120 according to the first embodiment, but the length of the weight holding portion 1130 along the longitudinal direction of the weight 1140 is actual. This is different from the case of the eccentric weight 120 according to the first embodiment. That is, in the eccentric weight 1120 according to the eleventh embodiment, as shown in FIGS. 15 (c) and 15 (d), the length of the weight holding portion 1130 along the longitudinal direction of the weight 1140 is set. Compared to the case of the eccentric weight 120 according to the first embodiment, the length is about 50%.
[0214] このように、実施形態 11に係る偏心分銅 1120においては、分銅の長手方向に沿 つた分銅保持部の長さが実施形態 1に係る偏心分銅 120の場合とは異なるが、これ 以外の点では、実施形態 1に係る偏心分銅 120と同様の構成を有しているため、実 施形態 1に係る偏心分銅 120が有する効果をそのまま有する。  [0214] Thus, in the eccentric weight 1120 according to the eleventh embodiment, the length of the weight holding portion along the longitudinal direction of the weight is different from that of the eccentric weight 120 according to the first embodiment. In this respect, since the configuration is the same as that of the eccentric weight 120 according to the first embodiment, the effect of the eccentric weight 120 according to the first embodiment is obtained as it is.
[0215] また、実施形態 11に係る偏心分銅 1120によれば、分銅 1140の長手方向に沿つ た分銅保持部 1130の長さを実施形態 1に係る偏心分銅 120の場合に比べて約 50 %の長さとしているため、偏心分銅 1120の総重量をさらに軽くするとともに、偏心分 銅 1120における偏心量をさらに大きくすることができる。このため、実施形態 11に係 る偏心分銅 1120によれば、軽量かつ少ない消費電力で必要な振動量が得られる振 動モータを構成することができる。 [0216] 実施形態 11に係る振動モータ 1100は、図 15 (d)に示すように、分銅 1140の長手 方向に沿った分銅保持部 1134の長さが分銅 1140よりも短ぐ分銅保持部 1134が 分銅 1140を分銅 1140の長手方向に沿って偏心した位置で保持する偏心分銅 112 0を備えている。そして、偏心分銅 1120は、モータ本体 1110に対して、モータ軸保 持部 1132とモータ本体 1110との距離が近づく方向に固定されて 、る。 [0215] Further, according to the eccentric weight 1120 according to the eleventh embodiment, the length of the weight holding portion 1130 along the longitudinal direction of the weight 1140 is approximately 50% of the length of the eccentric weight 120 according to the first embodiment. Therefore, the total weight of the eccentric weight 1120 can be further reduced and the amount of eccentricity in the eccentric weight 1120 can be further increased. Therefore, according to the eccentric weight 1120 according to the eleventh embodiment, it is possible to configure a vibration motor that can obtain a necessary vibration amount with light weight and low power consumption. As shown in FIG. 15 (d), the vibration motor 1100 according to the eleventh embodiment includes a weight holding portion 1134 in which the weight holding portion 1134 along the longitudinal direction of the weight 1140 is shorter than the weight 1140. An eccentric weight 1120 that holds the weight 1140 at an eccentric position along the longitudinal direction of the weight 1140 is provided. The eccentric weight 1120 is fixed to the motor main body 1110 in a direction in which the distance between the motor shaft holding portion 1132 and the motor main body 1110 approaches.
[0217] このため、実施形態 11に係る振動モータ 1100によれば、偏心分銅 1120のモータ 軸保持部 1132とモータ本体 1110の軸受け 1114との距離が近くなるため、モータ軸 1112が回転する際にモータ軸 1112にたわみが生じることを抑制することができる。 その結果、偏心分銅 1120がより安定して回転し、振動モータ 1100の偏心振動特性 が向上する。  Therefore, according to the vibration motor 1100 according to the eleventh embodiment, the distance between the motor shaft holding portion 1132 of the eccentric weight 1120 and the bearing 1114 of the motor main body 1110 is reduced, so that the motor shaft 1112 is rotated. It is possible to suppress the deflection of the motor shaft 1112. As a result, the eccentric weight 1120 rotates more stably, and the eccentric vibration characteristics of the vibration motor 1100 are improved.
[0218] 実施形態 11に係る偏心分銅の製造方法は、上記の実施形態 1に係る偏心分銅 12 0の製造方法において、第 1工程が以下に示す内容となり、また、以下に示す第 4ェ 程をさらに含んでいる。  [0218] The manufacturing method of the eccentric weight according to Embodiment 11 is the same as the manufacturing method of the eccentric weight 120 according to Embodiment 1 described above, and the first step has the following contents, and the fourth process shown below. In addition.
[0219] 第 1工程  [0219] Step 1
分銅支持部 134における内周部の大きさが分銅 140における外周部の大きさより 大きくなるように薄板金属部材を塑性変形させる。  The thin metal member is plastically deformed so that the inner peripheral part of the weight support part 134 is larger than the outer peripheral part of the weight 140.
[0220] 第 4工程 [0220] Fourth step
まず、分銅支持体 1130に分銅 1140を挿入する(図 16 (a)、図 16 (b)及び図 16 (c First, the weight 1140 is inserted into the weight support 1130 (FIGS. 16 (a), 16 (b) and 16 (c).
)参照。)。 )reference. ).
次に、分銅支持体 1130に分銅 1140を挿入した状態で、モータ軸に沿った方向に おける両側力も分銅 1140を押圧する(図 16 (d)及び図 16 (e)参照。;)。このとき、分 銅 1140は、押圧方向に対して垂直な方向に寸法が大きくなるように塑性変形させる 。これにより、分銅 1140と分銅保持部 1134とが固着する(図 16 (f)及び図 16 (g)参 照。)。  Next, with the weight 1140 inserted into the weight support 1130, both side forces in the direction along the motor shaft also press the weight 1140 (see FIG. 16 (d) and FIG. 16 (e);). At this time, the weight 1140 is plastically deformed so that the dimension increases in a direction perpendicular to the pressing direction. As a result, the weight 1140 and the weight holding portion 1134 are fixed (see FIG. 16 (f) and FIG. 16 (g)).
第 4工程の前後で、 A— A断面における分銅 1140の寸法を比較すると、第 4工程 前の分銅 1140の寸法を L1 (図 16 (c)参照。)とし、第 4工程後の分銅 1140の寸法 を L2 (図 16 (g)参照。)としたとき、 L1及び L2は、 LKL2の関係となっている。  Before and after the 4th process, comparing the dimensions of the weight 1140 in the A-A cross section, the dimension of the weight 1140 before the 4th process is L1 (see Fig. 16 (c)) and the weight 1140 after the 4th process is When the dimension is L2 (see Fig. 16 (g)), L1 and L2 have the relationship of LKL2.
[0221] 実施形態 11に係る偏心分銅 1120の製造方法によれば、分銅支持部 1134におけ る内周部の大きさが分銅 1140の外周部の大きさより大きくなるように薄板金属部材を 塑性変形させるため、第 3工程において分銅支持体 1130に分銅 1140を挿入するこ とが容易になり、偏心分銅 1120を製造する際の生産性を向上させることが可能とな る。 [0221] According to the manufacturing method of the eccentric weight 1120 according to the eleventh embodiment, in the weight support portion 1134, Since the sheet metal member is plastically deformed so that the size of the inner peripheral portion is larger than the size of the outer peripheral portion of the weight 1140, it is easy to insert the weight 1140 into the weight support 1130 in the third step. Productivity when manufacturing the eccentric weight 1120 can be improved.
[0222] また、実施形態 11に係る偏心分銅 1120の製造方法によれば、分銅 1140を押圧 して塑性変形させることにより分銅 1140と分銅保持部 1134とを固着させるため、分 銅 1140は分銅保持部 1134に強固に保持されるようになる。このため、振動モータを 長時間使用した場合に分銅 1140と分銅支持体 1130との接合の信頼性が低下する ことをさらに抑制することができる。  [0222] Also, according to the manufacturing method of the eccentric weight 1120 according to the eleventh embodiment, the weight 1140 and the weight holding portion 1134 are fixed by pressing the weight 1140 and plastically deforming, so the weight 1140 holds the weight. Part 1134 is firmly held. For this reason, when the vibration motor is used for a long time, it is possible to further suppress the decrease in the reliability of the connection between the weight 1140 and the weight support 1130.
[0223] 以上、本発明の偏心分銅、振動モータ及び携帯機器を上記の各実施形態に基づ いて説明したが、本発明は上記の各実施形態に限定されるものではなぐその要旨 を逸脱しない範囲において種々の態様において実施することが可能であり、例えば 次のような変形も可能である。  [0223] Although the eccentric weight, vibration motor, and portable device of the present invention have been described based on the above embodiments, the present invention is not limited to the above embodiments and does not depart from the gist thereof. The present invention can be implemented in various modes within the scope, and for example, the following modifications are possible.
[0224] (1)上記各実施形態の偏心分銅 120〜1120においては、分銅としてタングステン合 金を用いた力 本発明はこれに限定されるものではない。例えば、タングステン、ォス ミゥム、オスミウム合金、金、金合金、イリジウム、イリジウム合金、その他の分銅支持 体よりも比重の高い金属を用いることもできる。また、上記の金属の他に、銀、銅、真 鍮、鉛、モリブデン又はニッケル等の、分銅支持体を構成する金属よりも比重の高い 金属を用いることもできる。  (1) In the eccentric weights 120 to 1120 of the above embodiments, the force using tungsten alloy as the weight is not limited to this. For example, tungsten, osmium, osmium alloy, gold, gold alloy, iridium, iridium alloy, and other metals having higher specific gravity than the weight support can be used. In addition to the above metal, a metal having a specific gravity higher than that of the metal constituting the weight support, such as silver, copper, brass, lead, molybdenum or nickel, can also be used.
[0225] (2)上記各実施形態の偏心分銅 120〜1120においては、薄板金属部材として、マ ルテンサイト系ステンレス鋼を用いた力 本発明はこれに限定されるものではない。例 えば、マルテンサイト系ステンレス鋼以外の焼き入れ硬化性を有する金属を用いるこ ともできる。また、時効硬化性を有する金属を用いることもできる。この場合、時効硬 化性を有する金属として、析出硬化系ステンレス鋼、ベリリウム銅合金、ニッケルマン ガン銅合金、析出硬化系チタン合金又はアルミニウム合金を用いることもできる。さら にまた、加工硬化性を有する金属、形状記憶合金その他の金属を用いることもできる  (2) In the eccentric weights 120 to 1120 of each of the above embodiments, the force using martensitic stainless steel as the thin metal member is not limited to this. For example, a metal having quenching hardenability other than martensitic stainless steel can be used. Moreover, the metal which has age-hardening property can also be used. In this case, precipitation hardening stainless steel, beryllium copper alloy, nickel manganese copper alloy, precipitation hardening titanium alloy or aluminum alloy can also be used as the age-hardening metal. In addition, work-hardening metals, shape memory alloys and other metals can be used.
[0226] (3)上記各実施形態の偏心分銅 120〜1020においては、分銅として、丸棒からなる 焼結体を削り出して分銅の断面形状と同じ断面形状に加工した切削体又は丸棒を 短く切断したものを用いたが、本発明はこれに限定されるものではない。例えば、分 銅として、分銅の形状に焼結した焼結体や、分銅の断面形状 (例えば、円、長円、扇 形など。 )と同じ断面形状を有する異形棒力もなる焼結体を短く切断したものを用いる ことができる。 [0226] (3) In the eccentric weights 120 to 2020 of each of the above embodiments, the weight is a round bar. Although a cut body or a round bar cut out from the sintered body and machined into the same cross-sectional shape as the weight is used, the present invention is not limited to this. For example, as a weight, a sintered body sintered in the shape of a weight, or a sintered body with a deformed bar force having the same cross-sectional shape as a weight (for example, a circle, an ellipse, a fan shape, etc.) is shortened. A cut one can be used.
[0227] (4)上記各実施形態 7〜9の偏心分銅 720〜920は、モータ軸側突出部及び分銅側 突出部を有していないが、これらの偏心分銅 720〜920においても、上記実施形態 1の偏心分銅 120におけるようなモータ軸側突出部 133及び分銅側突出部 135を有 していてもよい。  (4) Although the eccentric weights 720 to 920 of the embodiments 7 to 9 do not have the motor shaft side protruding portion and the weight side protruding portion, these eccentric weights 720 to 920 also implement the above described The motor shaft side protruding portion 133 and the weight side protruding portion 135 as in the eccentric weight 120 of the first embodiment may be provided.
[0228] (5)上記各実施形態の偏心分銅 120〜1120においては、分銅 140〜1140を分銅 保持部 134〜1134の弾性力により保持させることとしているが、本発明はこれに限 定されるものではな ヽ。分銅と分銅保持部との接合面に接着剤を塗布して分銅と分 銅保持部とを接着させることも好ましい。これにより、分銅保持部の弾性力に加えて、 接着剤の接着力により分銅と分銅保持部とが接合されるため、分銅支持体が分銅を さらに強固に保持することができるようになり、振動モータ (及び偏心分銅)を長時間 使用した場合に分銅と分銅支持体との接合の信頼性が低下することをさらに十分に 抑制することができる。このため、このような偏心分銅を用いることにより、長期信頼性 の高 、振動モータを得ることができる。  [0228] (5) In the eccentric weights 120 to 1120 of each of the above embodiments, the weights 140 to 1140 are held by the elastic force of the weight holding parts 134 to 1134, but the present invention is limited to this. It ’s not something. It is also preferable to apply an adhesive to the joint surface between the weight and the weight holding part to adhere the weight and the weight holding part. As a result, in addition to the elastic force of the weight holding part, the weight and the weight holding part are joined by the adhesive force of the adhesive, so that the weight support body can hold the weight more firmly and vibrate. When the motor (and the eccentric weight) is used for a long time, it is possible to further sufficiently suppress the decrease in the reliability of the connection between the weight and the weight support. Therefore, by using such an eccentric weight, a vibration motor with high long-term reliability can be obtained.
[0229] (6)上記各実施形態の偏心分銅 120〜1120においては、モータ軸保持部 132〜1 132の弾性力によりモータ軸を保持させることとしているが、本発明はこれに限定され るものではな!/ヽ。モータ軸保持部とモータ軸との接合面に接着剤を塗布してモータ軸 保持部とモータ軸とを接着させることも好ましい。これにより、モータ軸保持部の弾性 力に加えて、接着剤の接着力によりモータ軸保持部とモータ軸とが接合されるため、 分銅支持体がモータ軸をさらに強固に保持することができるようになり、振動モータ( 及び偏心分銅)を長時間使用した場合にモータ軸と分銅支持体との接合の信頼性 が低下することをさらに十分に抑制することができる。このため、このような偏心分銅を 用いることにより、長期信頼性の高い振動モータを得ることができる。  [0229] (6) In the eccentric weights 120 to 1120 of each of the above embodiments, the motor shaft is held by the elastic force of the motor shaft holding portions 132 to 1132, but the present invention is not limited to this. Well then! It is also preferable to apply an adhesive to the joint surface between the motor shaft holding portion and the motor shaft to bond the motor shaft holding portion and the motor shaft. As a result, in addition to the elastic force of the motor shaft holding portion, the motor shaft holding portion and the motor shaft are joined by the adhesive force of the adhesive, so that the weight support body can hold the motor shaft more firmly. Thus, when the vibration motor (and the eccentric weight) is used for a long time, it is possible to further sufficiently suppress the reduction in the reliability of the connection between the motor shaft and the weight support. For this reason, a vibration motor with high long-term reliability can be obtained by using such an eccentric weight.
[0230] (7)実施形態 6に係る偏心分銅 620においては、分銅 640には分銅側突出部 635に 対応する部分に分銅側突出部 635を受ける窪み 645が形成されているが、本発明は これに限定されるものではない。分銅における分銅と分銅保持部との接合面に溝が 形成された分銅を用いて、分銅と分銅保持部との接合面に接着剤を塗布して分銅と 分銅保持部とを接着させることも好ましい。これにより、分銅に形成された溝に接着剤 が溜まる接着剤溜まりが形成されて分銅支持体と分銅とが強固に接着されるため、 分銅保持部の弾性力に加えて、接着剤の接着力により分銅保持部と分銅とがさら〖こ 強固に接合される。このため、振動モータ (及び偏心分銅)を長時間使用した場合に モータ軸と分銅支持体との接合の信頼性が低下することをさらに十分に抑制すること ができ、このような偏心分銅を用いることにより、長期信頼性の高い振動モータを得る ことができる。 (7) In the eccentric weight 620 according to the sixth embodiment, the weight 640 includes the weight side protrusion 635. A recess 645 for receiving the weight side protrusion 635 is formed in the corresponding part, but the present invention is not limited to this. It is also preferable to apply an adhesive to the joint surface between the weight and the weight holding part to bond the weight and the weight holding part using a weight having a groove formed on the joint surface between the weight and the weight holding part in the weight. . As a result, an adhesive pool in which the adhesive accumulates in a groove formed in the weight is formed, and the weight support and weight are firmly bonded.In addition to the elastic force of the weight holding part, the adhesive strength of the adhesive As a result, the weight holding portion and the weight are firmly bonded to each other. For this reason, when the vibration motor (and the eccentric weight) is used for a long time, it is possible to further sufficiently suppress the decrease in the reliability of the connection between the motor shaft and the weight support, and such an eccentric weight is used. As a result, a vibration motor with high long-term reliability can be obtained.
(8)本発明の振動モータは、携帯電話、 PDAなどの携帯機器に好適に用いることが できるほか、ゲーム機のリモコン、パチンコの操作部、電動歯ブラシなどにも好適に用 いることがでさる。 (8) The vibration motor of the present invention can be suitably used for portable devices such as mobile phones and PDAs, and can also be suitably used for game machine remote controls, pachinko operating units, electric toothbrushes, and the like. .

Claims

請求の範囲 The scope of the claims
[1] 高比重金属力 なる分銅と、  [1] High specific gravity metal weight,
前記分銅を保持するための分銅保持部及びモータ軸を保持するためのモータ軸 保持部を有し、前記分銅を構成する高比重金属よりも比重が低 ヽ金属の弾性体から なる分銅支持体とを一体化することにより製造された偏心分銅であって、  A weight support made of an elastic body having a weight holding portion for holding the weight and a motor shaft holding portion for holding the motor shaft, and having a specific gravity lower than that of the high specific gravity metal constituting the weight; Is an eccentric weight manufactured by integrating
前記分銅保持部は、前記分銅と前記分銅支持体とを一体化した場合に前記分銅 側への突出量力 S小さくなる分銅側突出部を有することを特徴とする偏心分銅。  The eccentric weight is characterized in that the weight holding portion has a weight side protruding portion that reduces a protruding amount force S toward the weight side when the weight and the weight support are integrated.
[2] 請求項 1に記載の偏心分銅において、 [2] In the eccentric weight according to claim 1,
前記分銅支持体は、薄板金属部材を所定形状に塑性変形させた後に硬化処理を 施すことにより製造された弾性体からなることを特徴とする偏心分銅。  The eccentric weight is characterized in that the weight support is made of an elastic body manufactured by plastically deforming a thin metal member into a predetermined shape and then performing a hardening process.
[3] 請求項 2に記載の偏心分銅において、 [3] In the eccentric weight according to claim 2,
前記分銅支持体のビッカース硬さ(Hv)は、 150以上であることを特徴とする偏心 分銅。  An eccentric weight, wherein the weight support has a Vickers hardness (Hv) of 150 or more.
[4] 請求項 2又は 3に記載の偏心分銅において、  [4] In the eccentric weight according to claim 2 or 3,
前記分銅支持体は、前記モータ軸保持部を起点として塑性変形させて製造されて V、ることを特徴とする偏心分銅。  The eccentric weight is characterized in that the weight support is manufactured by plastic deformation starting from the motor shaft holding portion as V.
[5] 請求項 2〜4の 、ずれかに記載の偏心分銅にお!、て、 [5] In the eccentric weight according to any one of claims 2 to 4, the eccentric weight!
前記モータ軸保持部は、前記薄板金属部材が少なくとも 2重に巻かれた構造を有 することを特徴とする偏心分銅。  The eccentric weight is characterized in that the motor shaft holding portion has a structure in which the thin metal member is wound at least twice.
[6] 請求項 1〜5のいずれかに記載の偏心分銅において、 [6] In the eccentric weight according to any one of claims 1 to 5,
前記分銅側突出部は、前記分銅側突出部の先端部へ向力つて幅が狭くなる形状 を有することを特徴とする偏心分銅。  The eccentric weight is characterized in that the weight side protruding portion has a shape that becomes narrower in width toward the tip of the weight side protruding portion.
[7] 請求項 1〜6のいずれかに記載の偏心分銅において、 [7] In the eccentric weight according to any one of claims 1 to 6,
前記モータ軸保持部は、前記モータ軸を前記モータ軸保持部に挿入した場合に前 記モータ軸側への突出量が小さくなるモータ軸側突出部を有することを特徴とする偏 心分銅。  The eccentric weight, wherein the motor shaft holding portion has a motor shaft side protruding portion that reduces the amount of protrusion to the motor shaft side when the motor shaft is inserted into the motor shaft holding portion.
[8] 請求項 7に記載の偏心分銅において、  [8] In the eccentric weight according to claim 7,
前記モータ軸側突出部は、前記モータ軸側突出部の先端部へ向かって幅が狭くな る形状を有することを特徴とする偏心分銅。 The motor shaft side protrusion is narrower toward the tip of the motor shaft side protrusion. An eccentric weight characterized by having a shape.
請求項 1〜8のいずれかに記載の偏心分銅において、  In the eccentric weight according to any one of claims 1 to 8,
前記分銅は、前記分銅側突出部に対応する部分に前記分銅側突出部を受ける窪 みが形成されて 、ることを特徴とする偏心分銅。  The eccentric weight is characterized in that the weight has a recess for receiving the weight side protrusion at a portion corresponding to the weight side protrusion.
高比重金属力 なる分銅と、  A high specific gravity metal power weight,
前記分銅を保持するための分銅保持部及びモータ軸を保持するためのモータ軸 保持部を有し、前記分銅を構成する高比重金属よりも比重が低 ヽ薄板金属部材を所 定形状に塑性変形させた後に硬化処理を施すことにより製造された弾性体からなる 分銅支持体とを一体化することにより製造された偏心分銅であって、  It has a weight holding part for holding the weight and a motor shaft holding part for holding the motor shaft, and has a specific gravity lower than that of the high specific gravity metal constituting the weight. An eccentric weight manufactured by integrating a weight support made of an elastic body manufactured by applying a curing treatment after
前記分銅支持体は、前記モータ軸を前記モータ軸保持部に挿入した場合に前記 分銅保持部がさらに強い弾性力で前記分銅を保持するような構造を有することを特 徴とする偏心分銅。  The eccentric weight is characterized in that the weight support has a structure in which the weight holding part holds the weight with a stronger elastic force when the motor shaft is inserted into the motor shaft holding part.
高比重金属力 なる分銅と、  A high specific gravity metal power weight,
前記分銅を保持するための分銅保持部及びモータ軸を保持するためのモータ軸 保持部を有し、前記分銅を構成する高比重金属よりも比重が低 ヽ薄板金属部材を所 定形状に塑性変形させた後に硬化処理を施すことにより製造された弾性体からなる 分銅支持体とを一体化することにより製造された偏心分銅であって、  It has a weight holding part for holding the weight and a motor shaft holding part for holding the motor shaft, and has a specific gravity lower than that of the high specific gravity metal constituting the weight. An eccentric weight manufactured by integrating a weight support made of an elastic body manufactured by applying a curing treatment after
前記分銅支持体は、前記分銅と前記分銅支持体とを一体化した場合に前記モータ 軸保持部が画定する空間が小さくなるような構造を有することを特徴とする偏心分銅 請求項 10又は 11に記載の偏心分銅にぉ 、て、  The eccentric weight according to claim 10 or 11, wherein the weight support has a structure such that a space defined by the motor shaft holding portion is reduced when the weight and the weight support are integrated. To the eccentric weights listed,
前記分銅支持体のビッカース硬さ(Hv)は、 150以上であることを特徴とする偏心 分銅。  An eccentric weight, wherein the weight support has a Vickers hardness (Hv) of 150 or more.
請求項 1〜12のいずれかに記載の偏心分銅において、  In the eccentric weight according to any one of claims 1 to 12,
前記分銅保持部は、前記分銅の外周部分全体にわたって分銅を保持して ヽること を特徴とする偏心分銅。  The eccentric weight is characterized in that the weight holding portion holds the weight over the entire outer peripheral portion of the weight.
請求項 2、 3、 4、 5、 10、 11又は 12に記載の偏心分銅において、  In the eccentric weight according to claim 2, 3, 4, 5, 10, 11 or 12,
前記分銅支持体は、前記分銅保持部と前記モータ軸保持部との間に設けた切り欠 き部において前記薄板金属部材が交差する構造を有していることを特徴とする偏心 分銅。 The weight support is a notch provided between the weight holding portion and the motor shaft holding portion. The eccentric weight is characterized in that the thin metal member intersects at the groove portion.
[15] 請求項 1〜14のいずれかに記載の偏心分銅において、  [15] The eccentric weight according to any one of claims 1 to 14,
前記分銅支持体は、モータ軸に沿った方向における一方側又は両側から前記分 銅を保持する分銅保持枠を有することを特徴とする偏心分銅。  The eccentric weight is characterized in that the weight support body has a weight holding frame for holding the weight from one side or both sides in a direction along the motor shaft.
[16] 請求項 1〜 15に記載の偏心分銅にお 、て、 [16] In the eccentric weight according to claims 1 to 15,
前記分銅として、モータ軸に沿つた方向に直交する面における断面が円形である 分銅を有することを特徴とする偏心分銅。  An eccentric weight having a weight whose cross section in a plane perpendicular to the direction along the motor shaft is circular as the weight.
[17] 請求項 1〜16のいずれかに記載の偏心分銅において、 [17] In the eccentric weight according to any one of claims 1 to 16,
前記薄板金属部材には、前記分銅支持体を軽量化するための 1つ又は複数の穴 が設けられて 、ることを特徴とする偏心分銅。  An eccentric weight, wherein the thin metal member is provided with one or more holes for reducing the weight of the weight support.
[18] 請求項 1〜17のいずれかに記載の偏心分銅において、 [18] In the eccentric weight according to any one of claims 1 to 17,
前記薄板金属部材の厚さは、 0. 05mm〜0. 5mmの範囲内にあることを特徴とす る偏心分銅。  An eccentric weight, wherein the thickness of the thin metal member is in the range of 0.05 mm to 0.5 mm.
[19] 請求項 1〜18のいずれかに記載の偏心分銅において、  [19] In the eccentric weight according to any one of claims 1 to 18,
前記分銅の長手方向に沿った前記分銅保持部の長さは前記分銅よりも短ぐ前記 分銅保持部は前記分銅を前記分銅の長手方向に沿って偏心した位置で保持するこ とを特徴とする偏心分銅。  The length of the weight holding part along the longitudinal direction of the weight is shorter than the weight. The weight holding part holds the weight at an eccentric position along the longitudinal direction of the weight. Eccentric weight.
[20] 請求項 1〜 19に記載の偏心分銅にお 、て、 [20] In the eccentric weight according to claims 1 to 19,
前記薄板金属部材は、焼入れ硬化性を有する金属、時効硬化性を有する金属、加 工硬化性を有する金属、又は形状記憶合金からなることを特徴とする偏心分銅。  The eccentric weight is characterized in that the thin metal member is made of a quench-hardening metal, an age-hardening metal, a work-hardening metal, or a shape memory alloy.
[21] 請求項 1〜20のいずれかに記載の偏心分銅において、 [21] In the eccentric weight according to any one of claims 1 to 20,
前記分銅は、タングステン、タングステン合金、オスミウム、オスミウム合金、金、金合 金、イリジウム又はイリジウム合金力もなることを特徴とする偏心分銅。  The eccentric weight is characterized in that the weight is tungsten, tungsten alloy, osmium, osmium alloy, gold, gold alloy, iridium or iridium alloy force.
[22] モータ本体と、請求項 1〜21のいずれかに記載の偏心分銅とを備えたことを特徴と する振動モータ。 [22] A vibration motor comprising a motor body and the eccentric weight according to any one of claims 1 to 21.
[23] 請求項 22に記載の振動モータにおいて、 [23] The vibration motor according to claim 22,
前記偏心分銅として、前記分銅の長手方向に沿った前記分銅保持部の長さが前 記分銅よりも短ぐ前記分銅保持部が前記分銅を前記分銅の長手方向に沿って偏心 した位置で保持する偏心分銅を備え、 As the eccentric weight, the length of the weight holding portion along the longitudinal direction of the weight is the front. The weight holding portion shorter than the weight includes an eccentric weight that holds the weight in an eccentric position along the longitudinal direction of the weight,
前記偏心分銅は、前記モータ本体に対して、前記モータ軸保持部と前記モータ本 体との距離が近づく方向に固定されていることを特徴とする振動モータ。  The eccentric weight is fixed to the motor main body in a direction in which the distance between the motor shaft holding portion and the motor body approaches.
[24] 請求項 22又は 23に記載の振動モータを備えたことを特徴とする携帯機器。  [24] A portable device comprising the vibration motor according to claim 22 or 23.
[25] 請求項 1に記載の偏心分銅を製造するための偏心分銅の製造方法であって、 前記分銅側突出部に対応する加工が施された薄板金属部材を塑性変形させること により、前記分銅支持体と略同一の形状を有する分銅支持体前駆体を製造する第 1 工程と、 [25] An eccentric weight manufacturing method for manufacturing the eccentric weight according to claim 1, wherein the weight is obtained by plastically deforming a thin metal member subjected to processing corresponding to the weight side protruding portion. A first step of producing a weight support precursor having substantially the same shape as the support;
前記分銅支持体前駆体に硬化処理を施すことにより前記分銅支持体を製造する第 2工程と、  A second step of producing the weight support by subjecting the weight support precursor to a curing treatment;
前記分銅と前記分銅支持体における前記分銅保持部とを一体化させる第 3工程と を含むことを特徴とする偏心分銅の製造方法。  And a third step of integrating the weight and the weight holding portion in the weight support. The method for producing an eccentric weight, comprising:
[26] 請求項 25に記載の偏心分銅の製造方法において、 [26] The method for producing an eccentric weight according to claim 25,
前記第 2工程は、前記分銅支持体前駆体に硬化処理を施すことによりビッカース硬 さ (Hv)が 150以上である前記分銅支持体とすることを特徴とする偏心分銅の製造方 法。  The method for producing an eccentric weight, wherein the second step uses the weight support having a Vickers hardness (Hv) of 150 or more by subjecting the weight support precursor to a curing treatment.
[27] 請求項 25又は 26に記載の偏心分銅の製造方法において、  [27] The method for producing an eccentric weight according to claim 25 or 26,
前記第 1工程においては、前記分銅支持部における内周部の大きさが前記分銅の 外周部の大きさより大きくなるように前記薄板金属部材を塑性変形させ、  In the first step, the sheet metal member is plastically deformed so that the size of the inner peripheral portion of the weight support portion is larger than the size of the outer peripheral portion of the weight,
前記偏心分銅の製造方法は、前記分銅支持体に前記分銅を挿入した状態で、前 記モータ軸に沿った方向における両側から前記分銅を押圧して前記分銅を塑性変 形させることにより、前記分銅と前記分銅保持部とを固着させる工程を含む第 4工程 をさらに含むことを特徴とする偏心分銅の製造方法。  The eccentric weight is manufactured by pressing the weight from both sides in the direction along the motor shaft and plastically deforming the weight with the weight inserted into the weight support. A method for producing an eccentric weight, further comprising a fourth step including a step of fixing the weight holding portion to the weight holding portion.
PCT/JP2005/024039 2005-04-05 2005-12-28 Eccentric weight, vibrating motor, mobile device, and method of manufacturing eccentric weight WO2006109365A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2005/006659 WO2006109350A1 (en) 2005-04-05 2005-04-05 Eccentric weight, vibration motor, and portable apparatus
JPPCT/JP2005/006659 2005-04-05

Publications (1)

Publication Number Publication Date
WO2006109365A1 true WO2006109365A1 (en) 2006-10-19

Family

ID=37086648

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2005/006659 WO2006109350A1 (en) 2005-04-05 2005-04-05 Eccentric weight, vibration motor, and portable apparatus
PCT/JP2005/024039 WO2006109365A1 (en) 2005-04-05 2005-12-28 Eccentric weight, vibrating motor, mobile device, and method of manufacturing eccentric weight

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006659 WO2006109350A1 (en) 2005-04-05 2005-04-05 Eccentric weight, vibration motor, and portable apparatus

Country Status (1)

Country Link
WO (2) WO2006109350A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079179A (en) * 2000-09-11 2002-03-19 Mabuchi Motor Co Ltd Small-sized motor for vibration generation
JP2003245608A (en) * 2002-02-25 2003-09-02 Namiki Precision Jewel Co Ltd Counterweight for vibration motor and vibration motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079179A (en) * 2000-09-11 2002-03-19 Mabuchi Motor Co Ltd Small-sized motor for vibration generation
JP2003245608A (en) * 2002-02-25 2003-09-02 Namiki Precision Jewel Co Ltd Counterweight for vibration motor and vibration motor

Also Published As

Publication number Publication date
WO2006109350A1 (en) 2006-10-19

Similar Documents

Publication Publication Date Title
US6033321A (en) Metallic hollow golf club head
US20020158528A1 (en) Vibration motor
US9705386B2 (en) Laminated core for motor and method for manufacturing the same
JPWO2006132171A1 (en) Rotating electrical machine armature and manufacturing method thereof
JP5955431B2 (en) Press-fit fixing structure
JP2004216131A (en) Golf club head and golf club
WO2003048422A3 (en) Elastic current collector
WO2006109365A1 (en) Eccentric weight, vibrating motor, mobile device, and method of manufacturing eccentric weight
US10270079B2 (en) Lead material for battery
WO2006022354A1 (en) Eccentric weight and method of producing the weight, vibrating motor and method of producing the motor, and portable apparatus
US6707193B2 (en) Miniature motor with vibrator secured to an irregular portion of the motor shaft
WO2006049144A1 (en) Eccentric weight, vibration motor, portable apparatus and method for producing eccentric weight
JP3084778U (en) Stacked power transmission
JP2010110123A (en) Laminate core and manufacturing method thereof
AT411559B (en) ELECTROACOUSTIC TRANSFORMER WITH SMALL DIMENSIONS
JP6393077B2 (en) Hermetic electric compressor
JP3958981B2 (en) Weight for vibration motor and vibration motor
JP2008278597A (en) Rotor core
EP0084976B1 (en) Method of manufacturing the rotor for ac generator
JP5146077B2 (en) Motor and manufacturing method thereof
GB2385907A (en) A penetrator
JP3348058B2 (en) Laminated core and mold equipment
WO2006040808A1 (en) Eccentric weight, method for producing the same, vibration motor and portable apparatus
GB2405032A (en) Positioning mechanism and antenna apparatus
JP3006321U (en) Vibration generator of paging motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05844808

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5844808

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP