WO2006019487A2 - Acoustic flowmeter calibration method - Google Patents

Acoustic flowmeter calibration method Download PDF

Info

Publication number
WO2006019487A2
WO2006019487A2 PCT/US2005/021548 US2005021548W WO2006019487A2 WO 2006019487 A2 WO2006019487 A2 WO 2006019487A2 US 2005021548 W US2005021548 W US 2005021548W WO 2006019487 A2 WO2006019487 A2 WO 2006019487A2
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic
path
transducer
flowmeter
transit time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2005/021548
Other languages
English (en)
French (fr)
Other versions
WO2006019487A3 (en
Inventor
Timothy A. Nevius
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Instruments Inc
Original Assignee
Horiba Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Instruments Inc filed Critical Horiba Instruments Inc
Priority to DE112005001773.7T priority Critical patent/DE112005001773B4/de
Priority to JP2007522508A priority patent/JP4724714B2/ja
Publication of WO2006019487A2 publication Critical patent/WO2006019487A2/en
Priority to GB0700762A priority patent/GB2430261B/en
Anticipated expiration legal-status Critical
Publication of WO2006019487A3 publication Critical patent/WO2006019487A3/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/04Compensating or correcting for variations in pressure, density or temperature of gases to be measured
    • G01F15/043Compensating or correcting for variations in pressure, density or temperature of gases to be measured using electrical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/022Compensating or correcting for variations in pressure, density or temperature using electrical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters

Definitions

  • the invention relates to acoustic flowmeters including ultrasonic flowmeters used to measure flowing exhaust gas velocity.
  • Transmitting pulses of acoustic energy through a fluid is useful for measuring the state and properties of the fluid, specifically the velocity and temperature.
  • Piezoceramic elements are commonly used in acoustic transducers to generate ultrasonic acoustic pulses or continuous wave fields.
  • the ultrasonic flowmeter measures the flowing exhaust gas velocity using the relation
  • Tl ultrasonic pulse transit time upstream
  • T2 ultrasonic pulse transit time downstream
  • V velocity of the gas through the pipe
  • angle between the ultrasonic beam and the pipe
  • L path length of the ultrasonic beam between the transmitter and receiver transducers.
  • the transit time (i.e. Tl and T2 ) is measured by sending a pulse of ultrasound across the pipe, and measuring the time differential (i.e. transit time ) for the pulse to be detected at the receiving transducer.
  • a typical transit time is about 220/xs with a 3.1 inch path length.
  • the gas velocity is about 150 ft/s, with a resulting upstream transit time measuring about 256 ⁇ s, and a downstream transit time measuring about 34 ⁇ s.
  • the measured transit times are affected by the temperature of the gas.
  • the speed of sound in air changes with temperature using the relation:
  • T gas is 298 K and C equals 345 m/s, or 1135 ft/s. With a high gas temperature of 425 0 C, T gas is 698 K and C equals 529 m/s, or 1736 ft/s.
  • V ( 1/Tl - 1/T2 ) * L / (2* cos ⁇ ).
  • the ultrasonic pulse typically requires about 12 ⁇ s to propagate through the transducer and associated measurement electronic amplifiers and coaxial cables in a tested arrangement at 298 K.
  • the invention recognizes that this delay time changes with temperature.
  • the invention involves aspects of calibrating the ultrasonic flowmeter. In a broad sense, these aspects address the variations in the delay time with changes in temperature. In one aspect, calibration of the path length between the sending and receiving transducers and calibration of the transducer delay time over a wide temperature range are optimized. In another aspect, the flowmeter output is temperature compensated based on the flowmeter gas temperature (beyond the typical 1/T density compensation). These two mentioned aspects may be embodied in an ultrasonic flowmeter individually or in combination in accordance with the invention. Comprehended methods may be used in various applications involving an acoustic flowmeter, for example, in a sampling system for exhaust gas.
  • FIGURE 1 illustrates a bag mini-diluter sampling system made in accordance with the invention
  • FIGURE 2 illustrates the flowmeter in the system of Figure 1 ;
  • FIGURE 3 is a graph depicting speed of sound error with optimized calibration of the path length and transducer delay time according to one aspect of the invention.
  • FIGURE 4 is a graph depicting measured volume error, this error is corrected by temperature compensation according to another aspect of the invention.
  • FIG. 1 illustrates a bag mini-diluter sampling system at 10.
  • Sampling system 10 includes a main conduit having an inlet 12 for receiving exhaust.
  • Flowmeter 14 measures the flow of fluid through the main conduit, and total exhaust volume is accumulated.
  • Flowmeter 14 provides a direct exhaust flow measurement signal, and is calibrated according to the invention.
  • a blower 16 may assist fluid flow through the conduit.
  • a sample line 18 samples exhaust from the main conduit.
  • a dilution inlet 20 receives a dilution gas.
  • Fixed flow control 22 and fixed flow control 24 (mass flow controllers or critical flow Venturis) control the flow of dilution gas and sampled exhaust gas, respectively, to provide a generally fixed ratio at the mixing section.
  • Pump 26 pumps the mixture of the dilution gas and the exhaust gas sample for eventual collection in bags 32.
  • Proportional flow device 28 provides a flow to sample collecting bags 32 that is proportional to the flow through the main conduit. Accordingly, bypass 30 is provided to allow some of the mixture to bypass the collections.
  • Figure 2 illustrates flowmeter 14 in greater detail showing a pair of acoustic transducers 40 arranged in an opposed fashion across the conduit.
  • the flowmeter 14 may be made in any suitable way.
  • the transducers 40 may be made in any suitable way. That is, the invention relates to aspects of calibrating an acoustic flowmeter, and is exemplified in the calibration of a pair of ultrasonic flowmeters in a sampling system.
  • the calibration of the path length between the sending and receiving transducers and the calibration of the transducer delay time over a wide temperature range are optimized.
  • the flowmeter output is temperature compensated based on the exhaust flowmeter gas temperature (beyond the typical 1/T density compensation).
  • the ultrasonic flowmeter in the working example was calibrated by flowing air at 298 K, and the path length was measured using calipers as 3.260 inches. The transit times were adjusted for correct measurement of gas velocity, with the resulting transducer delay times:
  • Figure 4 shows a consistent error in measured volume with temperature in the working example.
  • the working example uses a second aspect of the invention to correct this error.
  • this correction is included in the ultrasonic flowmeter user functions with the following results: FTP75 within 0.8% of CVS for weighted fuel economy, HWFE within .6% , and US06 within .6% .
  • the preferred embodiment of the invention incorporates two separate aspects of the invention in combination into a calibration method to address time delay variations with temperature.
  • the preferred approaches for these two separate aspects are described in the working example. It is to be appreciated that other approaches could be taken to calibrate path length and calibrate transducer delay time over a wide temperature range, and to temperature compensate flowmeter output.
  • Embodiments of the invention employing one or both aspects of the invention may provide acceptable operation over a wide temperature range.
  • ultrasonic flowmeters are only operable in a very limited temperature range, and a large heat exchanger is used to assure that gas temperature is in the range.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measuring Volume Flow (AREA)
PCT/US2005/021548 2004-07-21 2005-06-17 Acoustic flowmeter calibration method Ceased WO2006019487A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112005001773.7T DE112005001773B4 (de) 2004-07-21 2005-06-17 Verfahren zum Eichen akustischer Durchflussmesser
JP2007522508A JP4724714B2 (ja) 2004-07-21 2005-06-17 音響流量計の校正方法
GB0700762A GB2430261B (en) 2004-07-21 2007-01-16 Acoustic flowmeter calibration method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/895,625 2004-07-21
US10/895,625 US7124621B2 (en) 2004-07-21 2004-07-21 Acoustic flowmeter calibration method

Publications (2)

Publication Number Publication Date
WO2006019487A2 true WO2006019487A2 (en) 2006-02-23
WO2006019487A3 WO2006019487A3 (en) 2007-01-25

Family

ID=35655709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/021548 Ceased WO2006019487A2 (en) 2004-07-21 2005-06-17 Acoustic flowmeter calibration method

Country Status (5)

Country Link
US (1) US7124621B2 (enExample)
JP (1) JP4724714B2 (enExample)
DE (1) DE112005001773B4 (enExample)
GB (1) GB2430261B (enExample)
WO (1) WO2006019487A2 (enExample)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9354093B2 (en) 2011-06-24 2016-05-31 Avl List Gmbh Method for determining the flow rate of fluids using the ultrasonic transit time method
US10156500B2 (en) 2012-06-01 2018-12-18 Horiba, Ltd. Exhaust gas dilution device
CN111256788A (zh) * 2020-03-24 2020-06-09 青岛清万水技术有限公司 一种时差法超声波流量计的校验方法
WO2020155084A1 (zh) * 2019-02-01 2020-08-06 深圳市汇顶科技股份有限公司 信号处理电路以及相关芯片、流量计及方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2345876B1 (en) * 2010-01-18 2019-09-11 Flow-Tronic S.A. Method for avoiding jumps in measurement results and improving accuracy in hybrid flow meters
US8302455B2 (en) * 2011-02-11 2012-11-06 Daniel Measurement And Control, Inc. Determining delay times for ultrasonic flow meters
US20140069207A1 (en) 2011-03-18 2014-03-13 Soneter, LLC Methods and apparatus for fluid flow measurement
CN102901515A (zh) * 2012-09-28 2013-01-30 浙江大学 一种光纤陀螺渡越时间的在线快速测量方法
CN103063275B (zh) * 2012-12-26 2015-03-18 宁波水表股份有限公司 一种超声水流量换能器综合性能试验装置及其使用方法
DE102013107988A1 (de) * 2013-07-26 2015-02-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Waschwasserpumpenvorrichtung und Verfahren zur Steuerung
US9927325B2 (en) * 2014-03-13 2018-03-27 Siemens Energy, Inc. Method and system for determining distribution of temperature and velocity in a gas turbine engine
CN103837214B (zh) * 2014-03-25 2017-02-01 重庆市计量质量检测研究院 容器组合式pVTt法气体流量检测装置
US9927306B2 (en) * 2014-03-25 2018-03-27 Greg Haber Apparatus and method for monitoring fuel oil delivery
US9897474B2 (en) * 2014-03-25 2018-02-20 Greg Haber Apparatus and method for monitoring fuel oil delivery
JP6404030B2 (ja) * 2014-08-12 2018-10-10 株式会社堀場製作所 排ガス測定用情報処理装置、排ガス測定システム及びプログラム
CN104406642B (zh) * 2014-11-24 2017-10-03 天津商业大学 一种时差法超声波流量计精确测量方法
JP6830887B2 (ja) * 2015-04-22 2021-02-17 日機装株式会社 血液透析システムの流量計の校正方法
DE102015107750A1 (de) * 2015-05-18 2016-11-24 Endress + Hauser Flowtec Ag Meßsystem zum Messen wenigstens eines Parameters eines Fluids
AT521017B1 (de) * 2018-04-06 2019-10-15 Avl List Gmbh Verfahren zur Kalibrierung eines Massenstrommessers in einer Constant Volume Sampling (CVS) Abgasanalyseanlage
ES2735648B2 (es) * 2018-06-19 2020-05-20 Sedal S L U Dispositivo de mezcla de liquidos con control electronico de alta dinamica de regulacion y metodo de funcionamiento del mismo
WO2020112950A1 (en) * 2018-11-30 2020-06-04 Baker Hughes, A Ge Company, Llc In situ ultrasonic flow meter validation
US12449290B2 (en) 2018-12-26 2025-10-21 Texas Instruments Incorporated Dynamic temperature calibration of ultrasonic transducers
EP3719451B1 (en) 2019-02-01 2023-09-13 Shenzhen Goodix Technology Co., Ltd. Signal processing circuit, and related chip, flowmeter and method
US12085430B2 (en) * 2020-01-07 2024-09-10 Trustees Of Tufts College Systems and methods for operation of a sonic anemometer
CN115452075A (zh) * 2022-07-29 2022-12-09 广东艾科技术股份有限公司 一种超声波水表测温方法、系统、计算机设备及存储介质

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3935735A (en) * 1974-09-03 1976-02-03 Badger Meter, Inc. Ultrasonic flow meter
US4297607A (en) 1980-04-25 1981-10-27 Panametrics, Inc. Sealed, matched piezoelectric transducer
US4336719A (en) 1980-07-11 1982-06-29 Panametrics, Inc. Ultrasonic flowmeters using waveguide antennas
US4397193A (en) * 1981-04-07 1983-08-09 Fischer & Porter Company Transducer drive circuit for ultrasonic flowmeter
CA1257793A (en) 1985-10-03 1989-07-25 Cheng Kuei-Jen Longitudinal mode fiber acoustic waveguide with solid core and solid cladding
US5217018A (en) 1989-05-16 1993-06-08 Hewlett-Packard Company Acoustic transmission through cladded core waveguide
US5159838A (en) 1989-07-27 1992-11-03 Panametrics, Inc. Marginally dispersive ultrasonic waveguides
JP2747618B2 (ja) * 1990-11-05 1998-05-06 株式会社トキメック 超音波流速測定方法およびその装置
GB9119742D0 (en) * 1991-09-16 1991-10-30 British Gas Plc Measurement system
US5241287A (en) 1991-12-02 1993-08-31 National Research Council Of Canada Acoustic waveguides having a varying velocity distribution with reduced trailing echoes
US5440936A (en) * 1992-11-16 1995-08-15 Triton Technology, Inc. Compact x-cross transducer array for a transit time flowmeter, particularly for use during in-vivo blood flow measurement
JP2927144B2 (ja) 1993-06-23 1999-07-28 松下電器産業株式会社 超音波トランスデューサ
AU7358194A (en) * 1993-07-06 1995-02-06 Daniel Industries, Inc. Method and apparatus for measuring the time of flight of a signal
DE4421692A1 (de) * 1994-06-21 1996-01-04 Christof Dipl Phys Ing Salz Präzisions Durchflusszähler
JP3216769B2 (ja) * 1995-03-20 2001-10-09 富士電機株式会社 クランプオン型超音波流量計における温度圧力補償方法
US6343511B1 (en) 1995-06-07 2002-02-05 Panametrics, Inc. Ultrasonic path bundle and systems
US5756360A (en) 1995-09-29 1998-05-26 Horiba Instruments Inc. Method and apparatus for providing diluted gas to exhaust emission analyzer
US5753824A (en) * 1996-06-12 1998-05-19 Welch Allyn, Inc. Sampling method and apparatus for use with ultrasonic flowmeters
US5831175A (en) * 1996-06-12 1998-11-03 Welch Allyn, Inc. Method and apparatus for correcting temperature variations in ultrasonic flowmeters
US6390999B1 (en) * 1996-06-28 2002-05-21 Rocky Mountain Research, Inc. Method and apparatus for flow measurement with temperature and density compensation
US6062091A (en) * 1997-04-22 2000-05-16 Baumoel; Joseph Method and apparatus for determining ultrasonic pulse arrival in fluid using phase correlation
US6067861A (en) * 1998-06-18 2000-05-30 Battelle Memorial Institute Method and apparatus for ultrasonic doppler velocimetry using speed of sound and reflection mode pulsed wideband doppler
US6494105B1 (en) * 1999-05-07 2002-12-17 James E. Gallagher Method for determining flow velocity in a channel
JP2000346686A (ja) * 1999-06-08 2000-12-15 Fuji Electric Co Ltd 超音波流量計
US6307302B1 (en) 1999-07-23 2001-10-23 Measurement Specialities, Inc. Ultrasonic transducer having impedance matching layer
US6487916B1 (en) * 2000-02-02 2002-12-03 Bechtel Bxwt Idaho, Llc Ultrasonic flow metering system
US6816808B2 (en) * 2002-01-03 2004-11-09 Daniel Industries, Inc. Peak switch detector for transit time ultrasonic meters
EP1376069A1 (de) * 2002-06-13 2004-01-02 Krohne AG Ultraschalldurchflussmessverfahren
DE10312034B3 (de) * 2003-03-06 2004-03-18 Krohne Ag Ultraschalldurchflußmeßverfahren
US6950768B2 (en) * 2003-09-08 2005-09-27 Daniel Industries, Inc. Self-tuning ultrasonic meter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9354093B2 (en) 2011-06-24 2016-05-31 Avl List Gmbh Method for determining the flow rate of fluids using the ultrasonic transit time method
US10156500B2 (en) 2012-06-01 2018-12-18 Horiba, Ltd. Exhaust gas dilution device
WO2020155084A1 (zh) * 2019-02-01 2020-08-06 深圳市汇顶科技股份有限公司 信号处理电路以及相关芯片、流量计及方法
US11441933B2 (en) 2019-02-01 2022-09-13 Shenzhen GOODIX Technology Co., Ltd. Signal processing circuit and related chip, flow meter and method
CN111256788A (zh) * 2020-03-24 2020-06-09 青岛清万水技术有限公司 一种时差法超声波流量计的校验方法

Also Published As

Publication number Publication date
DE112005001773B4 (de) 2014-05-22
JP2008507693A (ja) 2008-03-13
US20060016243A1 (en) 2006-01-26
WO2006019487A3 (en) 2007-01-25
GB2430261A (en) 2007-03-21
DE112005001773T5 (de) 2007-07-26
US7124621B2 (en) 2006-10-24
GB2430261B (en) 2009-02-18
GB0700762D0 (en) 2007-02-21
JP4724714B2 (ja) 2011-07-13

Similar Documents

Publication Publication Date Title
US20060016243A1 (en) Acoustic flowmeter calibration method
CN101078640B (zh) 超声波气流计和测量内燃发动机废气流量的装置以及获取气体流量的方法
CN1105292C (zh) 带有空速管的平均压力流量计
Zhou et al. Multipath ultrasonic gas flow-meter based on multiple reference waves
US7426443B2 (en) Device for determining and/or monitoring the volume flow rate and/or mass flow rate of a medium to be measured
US20040176917A1 (en) Ultrasonic flow-measuring method
EP2435799A1 (en) Method and apparatus for monitoring multiphase fluid flow
AU2005225994A1 (en) Method and system for calculating the transit time of an ultrasonic pulse
WO2011019829A1 (en) Method and apparatus for monitoring multiphase fluid flow
WO1988008516A1 (en) Ultrasonic fluid flowmeter
US20070151363A1 (en) Non-invasive sensing technique for measuring gas flow and temperature
CN103765170B (zh) 超声波测量装置及其操作方法
CN117782271A (zh) 气体超声波流量计跳波现象校正方法、系统、设备及介质
CN101326427A (zh) 用于确定质量流的装置
JP2002340644A (ja) 超音波流量/流速測定装置および流量/流速測定方法
GB2443750A (en) Compensation for the effects of temperature and transducer delay time in an ultrasonic transit time flowmeter
WO2019047634A1 (zh) 一种直线距离上平均流体流速测量系统
CN205246150U (zh) 一种自动校正零点漂移的超声水表
Li et al. A novel differential time-of-flight algorithm for high-precision ultrasonic gas flow measurement
JP3103264B2 (ja) 超音波流量計
Guenther et al. Advancements in exhaust flow measurement technology
JPS60115810A (ja) 超音波流量計
CN101253393B (zh) 流量计校准方法和系统
CN119666094B (zh) 一种温度自适应的超声波流量测量方法及系统
CN114689104B (zh) 一种大型烟道用超声波传感设备自校准系统及方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 0700762.8

Country of ref document: GB

Ref document number: 0700762

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 2007522508

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120050017737

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112005001773

Country of ref document: DE

Date of ref document: 20070726

Kind code of ref document: P

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607