WO2019047634A1 - 一种直线距离上平均流体流速测量系统 - Google Patents

一种直线距离上平均流体流速测量系统 Download PDF

Info

Publication number
WO2019047634A1
WO2019047634A1 PCT/CN2018/097941 CN2018097941W WO2019047634A1 WO 2019047634 A1 WO2019047634 A1 WO 2019047634A1 CN 2018097941 W CN2018097941 W CN 2018097941W WO 2019047634 A1 WO2019047634 A1 WO 2019047634A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
fluid flow
terminal
flow rate
ultrasonic wave
Prior art date
Application number
PCT/CN2018/097941
Other languages
English (en)
French (fr)
Inventor
华亮
申冰冰
顾菊平
蒋凌
王胜锋
赵凤申
季霆
程天宇
刘明
沈杰
Original Assignee
南通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通大学 filed Critical 南通大学
Publication of WO2019047634A1 publication Critical patent/WO2019047634A1/zh
Priority to ZA2020/01166A priority Critical patent/ZA202001166B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/24Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave
    • G01P5/245Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave by measuring transit time of acoustical waves

Definitions

  • the present invention relates to an average fluid flow rate measurement system over a linear distance.
  • Fluid flow has always been a hot research direction.
  • digital signal processing technology, image processing technology and computer technology fluid flow rate measurement technology has also been developed.
  • Flow detection instruments and systems are now widely used in cement, chemical, textile, pharmaceutical, paper, water supply and drainage, food and beverage and other technical departments. All parties face increasing demands on automatic detection technology, and their products Performance, quality and reliability directly affect the economics of the company.
  • the flow meter system for measuring relevant fluid discharge is an indispensable tool for quantitative management of corporate fluid wastewater discharge.
  • Traditional fluid flow rate measurement methods mostly use sensors to measure signals, which are then amplified by the signal processing circuit, filtered, etc., and sent to the controller for analysis and calculation to calculate the flow rate. This measurement method can only measure the instantaneous flow rate and total flow rate at fixed points, and it is difficult to dynamically measure the average flow rate on a straight line.
  • a linear distance of the average fluid velocity measurement system which is characterized in: comprising a controller, a motor, an ultrasonic reception side A and B, the ultrasonic transmitter C, photoreceiving side A, and B, and, C photoemission end,; the a photoelectric and ultrasonic wave reception terminal receiving end a, is placed in the same position, the terminal a receives the ultrasonic wave reception signal from the ultrasonic transmitting terminal C, terminal a photoelectric receiver, the transmitter receives from the photoelectric C, a signal; and the ultrasound receiving terminal B Optical receiving end B, placed in the same position, the receiving terminal B receives the ultrasonic signal from the ultrasonic transmitting terminal C, B photo receiving end, the transmitting end receives a signal from the photoelectric C,; and the ultrasonic wave transmitting terminal C and terminal C photoemission, Placed in the same position for signal generation and transmission; the position of the ultrasonic receiving end A of the system (ie, the photoelectric receiving end A , the position) and the position of the
  • the receiving end photosensor A, and B, and C received from the photo transmitter within a certain time, signal, using a high frequency pulse is filled, the calculated A,, B, the number of pulses received are N 1 - N 2 From this, we know .
  • the ultrasonic wave velocity c is known, and the formula is satisfied.
  • t is the time from when ultrasonic waves are sent from C to when ultrasonic waves are received by B.
  • the optoelectronic receiver terminal B receiving the end of photoemission C, will be the optical signal emitted by the controller, the feedback signal immediately to C, causing it to emit ultrasonic waves; this case emits ultrasonic waves to the time B from the received ultrasonic waves by C t Controller acquisition; using formula , to calculate the magnitude of the instantaneous flow rate v, .
  • the ultrasonic wave transmitting end C point In order to measure the average flow velocity on the line where the AC is located, the ultrasonic wave transmitting end C point needs to move on the straight line of AC; at different positions of C, the fluid velocity v i of the corresponding position is calculated; the controller samples the signal once every certain time, remember n times; calculate the average flow rate on the line where AC is located .
  • the invention has simple structure and reasonable method, and the average value of the fluid flow rate is measured, and the interference of a certain point and the measurement uncertainty are avoided, and the measured straight line is perpendicular to the direction of the fluid flow velocity, and does not interfere with the actual flow velocity, and can be realized in a larger sense.
  • the measurement of the fluid flow rate provides more accurate and efficient data for the analysis of fluid flow rate.
  • Figure 1 is a schematic illustration of one embodiment of the invention.
  • a linear distance of the average fluid velocity measurement system comprising a controller, a motor, an ultrasonic reception side A and B, the ultrasonic transmitter C, photoreceiving side A, and B, and, C photoemission end,; the ultrasonic wave reception end A a photoreceiving side and, placed in the same position, the receiving end a receives the ultrasonic signal from the ultrasonic transmitting terminal C, terminal a photoelectric receiver, the transmitter receives from the photoelectric C, a signal; said ultrasonic receiving terminal B and the photoreceptor terminal B , placed in the same position, the receiving terminal B receives the ultrasonic signal from the ultrasonic transmitting terminal C, B photo receiving end, the receiving end from the photoemission C, a signal; C and end of the ultrasonic transmission photoemission terminal C, placed in the same position For the generation and transmission of signals; the position of the ultrasonic receiving end A (ie, the photoelectric receiving end A , the position) and the position of the ultrasonic receiving end B (ie
  • the flow velocity v, ⁇ CAB 90°, the C point can move freely in the straight line of the AC to detect the fluid velocity at different positions;
  • the straight line to be measured is the straight line where AC is located, and the average fluid flow velocity is the average flow velocity on the straight line where AC is located.
  • the receiving end photosensor A, and B, and C received from the photo transmitter within a certain time, signal, using a high frequency pulse is filled, the calculated A,, B, the number of pulses received are N 1 - N 2 From this, we know .
  • the ultrasonic wave velocity c is known, and the formula is satisfied.
  • t is the time from when ultrasonic waves are sent from C to when ultrasonic waves are received by B.
  • the optoelectronic receiver terminal B receiving the end of photoemission C, will be the optical signal emitted by the controller, the feedback signal immediately to C, causing it to emit ultrasonic waves; this case emits ultrasonic waves to the time B from the received ultrasonic waves by C t Controller acquisition; using formula , to calculate the magnitude of the instantaneous flow rate v, .
  • the ultrasonic wave transmitting end C point In order to measure the average flow velocity on the line where the AC is located, the ultrasonic wave transmitting end C point needs to move on the straight line of AC; at different positions of C, the fluid velocity v i of the corresponding position is calculated; the controller samples the signal once every certain time, remember n times; calculate the average flow rate on the line where AC is located .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种直线距离上平均流体流速测量系统,包括控制器、电机、超声波接收端A和B、超声波发射端C、光电接收端A'和B'、光电发射端C';所述超声波接收端A和光电接收端A,置于同一位置;所述超声波接收端B和光电接收端B,置于同一位置;所述超声波发射端C和光电发射端C'置于同一位置,用于信号的产生及发射;超声波接收端A位置、超声波接收端B位置固定,位于测量的同一端,并处在同一水平直线上,超声波接收端A和超声波发射端C所在直线AC始终垂直于流体流速v,∠CAB=90°,C点可在AC所在直线自由移动。该系统结构简单,实用性强,而且流体流速测量精度高。

Description

一种直线距离上平均流体流速测量系统 技术领域
本发明涉及一种直线距离上平均流体流速测量系统。
背景技术
流体流动一直以来都是研究的热点方向,伴随着芯片技术、数字信号处理技术、图像处理技术以及计算机技术的日益成熟,流体流速测量技术也得到了发展。流量检测仪表与系统现已被广泛应用于水泥、化工、轻纺、医药、造纸、给排水、食品饮料等技术部门,各方面对自动检测技术提出了越来越高的要求,其产品的性能、质量和可靠性直接影响了企业的经济效益。但伴随而来的流体污水排放问题已成为相关政府职能部门的重要工作任务,计量相关流体排放的流量仪表系统是定量管理企业流体污水排放不可或缺的工具。传统的流体流速测量方法,大都是通过传感器测取信号,后经信号处理电路放大、滤波等转换,送给控制器分析处理以计算出流速。这种测量方法只能测量出定点瞬时流量和总流量,很难动态测量出某一直线上的平均流速。
技术问题
本发明的目的在于提供一种方法合理,测取流体流速平均值,避免某一点的干扰及测量不确定性的直线距离上平均流体流速测量系统。
技术解决方案
一种直线距离上平均流体流速测量系统,其特征是:包括控制器、电机、超声波接收端A和B、超声波发射端C、光电接收端A 和B 、光电发射端C ;所述超声波接收端A和光电接收端A 置于同一位置,超声波接收端A接收来自超声波发射端C的信号,光电接收端A 接收来自光电发射端C 的信号;所述超声波接收端B和光电接收端B 置于同一位置,超声波接收端B接收来自超声波发射端C的信号,光电接收端B 接收来自光电发射端C 的信号;所述超声波发射端C和光电发射端C 置于同一位置,用于信号的产生及发射;该系统所述超声波接收端A位置(即光电接收端A 位置)、超声波接收端B位置(即光电接收端B 位置)固定,位于测量的同一端,并处在同一水平直线上,此时AB的距离固定已知为L;所述超声波接收端A和超声波发射端C所在直线AC始终垂直于流体流速v,∠CAB=90°,C点可在AC所在直线自由移动,以检测不同位置流体速度;所述待测直线即AC所在直线,所述平均流体流速即AC所在直线上的平均流速。
所述超声波发射端C和光电发射端C 由恒力矩控制的电机带动旋转,流体流速变化情况下,电机转速仍然保持不变;采用光电传感器并结合高频脉冲插值,计算出∠ACB的角度值,又因为∠CAB=90°,得
Figure 304061dest_path_image001
所述光电传感器接收端A 和B 在一定时间内接收来自光电发射端C 的信号,利用高频脉冲填充,计算出A 、B 接收到的脉冲数量分别为N 1和N 2,由此可知
Figure 844940dest_path_image002
所述超声波从发射端C发射给接收端B时,超声波波速 c已知,满足公式
Figure 442274dest_path_image003
;其中t为从C发出超声波至B接收到超声波的时间。
所述光电接收端B 接收到光电发射端C 发出的光信号后,通过控制器,马上反馈信号给C,使其发射超声波;此时从C发出超声波至B接收到超声波的时间t通过控制器获取;利用公式
Figure 604265dest_path_image004
,推算出瞬时流量v的大小,
Figure 603445dest_path_image005
为了测得AC所在直线上的平均流速,超声波发射端C点需要在AC所在直线上移动;C所在不同位置,计算出对应位置的流体流速v i;控制器每隔一定时间采样信号一次,记为 n次;计算出AC所在直线上的平均流速
Figure 58435dest_path_image006
有益效果
本发明结构简单,方法合理,测取流体流速平均值,避免了某一点的干扰及测量不确定性,所测直线垂直于流体流速方向,并不会干扰到实际流速,可以更大意义上实现对流体流速的测量效果,为流体流速的分析处理提供了更准确有效的数据。
附图说明
图1是本发明一个实施例的示意图。
本发明的最佳实施方式
一种直线距离上平均流体流速测量系统,包括控制器、电机、超声波接收端A和B、超声波发射端C、光电接收端A 和B 、光电发射端C ;所述超声波接收端A和光电接收端A 置于同一位置,超声波接收端A接收来自超声波发射端C的信号,光电接收端A 接收来自光电发射端C 的信号;所述超声波接收端B和光电接收端B 置于同一位置,超声波接收端B接收来自超声波发射端C的信号,光电接收端B 接收来自光电发射端C 的信号;所述超声波发射端C和光电发射端C 置于同一位置,用于信号的产生及发射;该系统所述超声波接收端A位置(即光电接收端A 位置)、超声波接收端B位置(即光电接收端B 位置)固定,位于测量的同一端,并处在同一水平直线上,此时AB的距离固定已知为L;所述超声波接收端A和超声波发射端C所在直线AC始终垂直于流体流速v,∠CAB=90°,C点可在AC所在直线自由移动,以检测不同位置流体速度;所述待测直线即AC所在直线,所述平均流体流速即AC所在直线上的平均流速。
所述超声波发射端C和光电发射端C 由恒力矩控制的电机带动旋转,流体流速变化情况下,电机转速仍然保持不变;采用光电传感器并结合高频脉冲插值,计算出∠ACB的角度值,又因为∠CAB=90°,得
Figure 408645dest_path_image001
所述光电传感器接收端A 和B 在一定时间内接收来自光电发射端C 的信号,利用高频脉冲填充,计算出A 、B 接收到的脉冲数量分别为N 1和N 2,由此可知
Figure 374327dest_path_image002
所述超声波从发射端C发射给接收端B时,超声波波速 c已知,满足公式
Figure 463899dest_path_image003
;其中t为从C发出超声波至B接收到超声波的时间。
所述光电接收端B 接收到光电发射端C 发出的光信号后,通过控制器,马上反馈信号给C,使其发射超声波;此时从C发出超声波至B接收到超声波的时间t通过控制器获取;利用公式
Figure 856834dest_path_image004
,推算出瞬时流量v的大小,
Figure 694340dest_path_image005
为了测得AC所在直线上的平均流速,超声波发射端C点需要在AC所在直线上移动;C所在不同位置,计算出对应位置的流体流速v i;控制器每隔一定时间采样信号一次,记为 n次;计算出AC所在直线上的平均流速
Figure 463713dest_path_image007

Claims (6)

  1. 一种直线距离上平均流体流速测量系统,其特征是:包括控制器、电机、超声波接收端A和B、超声波发射端C、光电接收端A 和B 、光电发射端C ;所述超声波接收端A和光电接收端A 置于同一位置,超声波接收端A接收来自超声波发射端C的信号,光电接收端A 接收来自光电发射端C 的信号;所述超声波接收端B和光电接收端B 置于同一位置,超声波接收端B接收来自超声波发射端C的信号,光电接收端B 接收来自光电发射端C 的信号;所述超声波发射端C和光电发射端C 置于同一位置,用于信号的产生及发射;该系统所述超声波接收端A位置、超声波接收端B位置固定,位于测量的同一端,并处在同一水平直线上,此时AB的距离固定已知为L;所述超声波接收端A和超声波发射端C所在直线AC始终垂直于流体流速v,∠CAB=90°,C点可在AC所在直线自由移动,以检测不同位置流体速度;所述待测直线即AC所在直线,所述平均流体流速即AC所在直线上的平均流速。
  2. 根据权利要求1所述的一种直线距离上平均流体流速测量系统,其特征是:所述超声波发射端C和光电发射端C 由恒力矩控制的电机带动旋转,流体流速变化情况下,电机转速仍然保持不变;采用光电传感器并结合高频脉冲插值,计算出∠ACB的角度值,又因为∠CAB=90°,得
    Figure 674287dest_path_image001
  3. 根据权利要求1或2所述的一种直线距离上平均流体流速测量系统,其特征是:所述光电传感器接收端A 和B 在一定时间内接收来自光电发射端C 的信号,利用高频脉冲填充,计算出A 、B 接收到的脉冲数量分别为N 1和N 2,由此可知
    Figure 706965dest_path_image002
  4. 根据权利要求1或2所述的一种直线距离上平均流体流速测量系统,其特征是:所述超声波从发射端C发射给接收端B时,超声波波速 c已知,满足公式
    Figure 31767dest_path_image003
    ;其中t为从C发出超声波至B接收到超声波的时间。
  5. 根据权利要求1或2所述的一种直线距离上平均流体流速测量系统,其特征是:所述光电接收端B 接收到光电发射端C 发出的光信号后,通过控制器,马上反馈信号给C,使其发射超声波;此时从C发出超声波至B接收到超声波的时间t通过控制器获取;利用公式
    Figure 837786dest_path_image004
    ,推算出瞬时流量v的大小,
    Figure 338169dest_path_image005
  6. 根据权利要求1或2所述的一种直线距离上平均流体流速测量系统,其特征是:为了测得AC所在直线上的平均流速,超声波发射端C点需要在AC所在直线上移动;C所在不同位置,计算出对应位置的流体流速v i;控制器每隔一定时间采样信号一次,记为 n次;计算出AC所在直线上的平均流速
    Figure 72907dest_path_image006
PCT/CN2018/097941 2017-09-06 2018-08-01 一种直线距离上平均流体流速测量系统 WO2019047634A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2020/01166A ZA202001166B (en) 2017-09-06 2020-02-25 Average fluid flow rate measurement system in straight-line distance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710796565.9A CN107505476B (zh) 2017-09-06 2017-09-06 一种直线距离上平均流体流速测量系统
CN201710796565.9 2017-09-06

Publications (1)

Publication Number Publication Date
WO2019047634A1 true WO2019047634A1 (zh) 2019-03-14

Family

ID=60694997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097941 WO2019047634A1 (zh) 2017-09-06 2018-08-01 一种直线距离上平均流体流速测量系统

Country Status (3)

Country Link
CN (1) CN107505476B (zh)
WO (1) WO2019047634A1 (zh)
ZA (1) ZA202001166B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107505476B (zh) * 2017-09-06 2019-10-25 南通大学 一种直线距离上平均流体流速测量系统
CN114563593B (zh) * 2022-02-21 2022-11-29 武汉新烽光电股份有限公司 一种多普勒超声波流速仪

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6420416A (en) * 1987-07-15 1989-01-24 Oval Eng Co Ltd Flow velocity/flow rate meter
CN202793482U (zh) * 2012-09-21 2013-03-13 上海迪纳声科技股份有限公司 一种可直接获得流体平均流速的单声道超声流量计
CN103940495A (zh) * 2014-04-14 2014-07-23 重庆大学 基于流线的小流量超声流量计误差估算方法
CN105403263A (zh) * 2014-09-05 2016-03-16 阿自倍尔株式会社 超声波流量计及流量的计测方法
CN105758474A (zh) * 2016-05-30 2016-07-13 天津大学 一种提高气体超声流量计测量精度的方法
CN106767745A (zh) * 2016-12-09 2017-05-31 清华大学 一种光电传感器测角系统的信号处理方法
CN107505476A (zh) * 2017-09-06 2017-12-22 南通大学 一种直线距离上平均流体流速测量系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6420416A (en) * 1987-07-15 1989-01-24 Oval Eng Co Ltd Flow velocity/flow rate meter
CN202793482U (zh) * 2012-09-21 2013-03-13 上海迪纳声科技股份有限公司 一种可直接获得流体平均流速的单声道超声流量计
CN103940495A (zh) * 2014-04-14 2014-07-23 重庆大学 基于流线的小流量超声流量计误差估算方法
CN105403263A (zh) * 2014-09-05 2016-03-16 阿自倍尔株式会社 超声波流量计及流量的计测方法
CN105758474A (zh) * 2016-05-30 2016-07-13 天津大学 一种提高气体超声流量计测量精度的方法
CN106767745A (zh) * 2016-12-09 2017-05-31 清华大学 一种光电传感器测角系统的信号处理方法
CN107505476A (zh) * 2017-09-06 2017-12-22 南通大学 一种直线距离上平均流体流速测量系统

Also Published As

Publication number Publication date
ZA202001166B (en) 2021-06-30
CN107505476A (zh) 2017-12-22
CN107505476B (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
CN106643939B (zh) 用于超声波流量计计算超声波传播时间的方法
CN104501889B (zh) 基于互相关时差法超声波流量的检测方法
CN206930321U (zh) 非满管超声波流量计
JP2014509733A5 (zh)
CN105403265A (zh) 一种自动校正零点漂移的超声水表及其校正方法
CN107860430B (zh) 一种基于时差法的超声波气体流量计时间差测量方法
US20060016243A1 (en) Acoustic flowmeter calibration method
WO2016091208A1 (zh) 测量方法及系统
WO2019047634A1 (zh) 一种直线距离上平均流体流速测量系统
JP2006078362A (ja) 同一軸型ドップラー超音波流速計
CN110440896B (zh) 一种超声波测量系统及测量方法
KR101764870B1 (ko) 초음파 유량계의 신호처리시스템
JP2010256075A (ja) 流量計及び流量計測方法
KR100739506B1 (ko) 정합필터의 간략한 계산을 사용한 초음파 거리 정밀측정방법
EP2443422A1 (en) Device for volume measuring and quality control of liquid fuel
CN106885538A (zh) 一种超声波测厚仪系统
CN106885542A (zh) 一种具备温度检测功能的超声波测厚仪
EP2751530B1 (en) An ultrasonic measurement device and a method for operating the same
KR101379934B1 (ko) 배관 내 스케일 측정 장치 및 그 방법
CN203489926U (zh) 超声波流量计
JP2012058186A (ja) 超音波流量計
CN114689104B (zh) 一种大型烟道用超声波传感设备自校准系统及方法
US10571320B2 (en) Flow measurement using ultrasound to detect a time of flight difference using noise measurements
KR20160002030A (ko) 도플러 센서를 이용한 대상체 감지 방법 및 장치
CN103217196A (zh) 超声波流量传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18854132

Country of ref document: EP

Kind code of ref document: A1