WO2006018976A1 - 内燃機関のくすぶり判定方法 - Google Patents

内燃機関のくすぶり判定方法 Download PDF

Info

Publication number
WO2006018976A1
WO2006018976A1 PCT/JP2005/014222 JP2005014222W WO2006018976A1 WO 2006018976 A1 WO2006018976 A1 WO 2006018976A1 JP 2005014222 W JP2005014222 W JP 2005014222W WO 2006018976 A1 WO2006018976 A1 WO 2006018976A1
Authority
WO
WIPO (PCT)
Prior art keywords
smoldering
ion current
detected
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2005/014222
Other languages
English (en)
French (fr)
Inventor
Morito Asano
Mitsuhiro Izumi
Original Assignee
Daihatsu Motor Co., Ltd.
Diamond Electric Mfg. Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co., Ltd., Diamond Electric Mfg. Co., Ltd. filed Critical Daihatsu Motor Co., Ltd.
Priority to US11/659,659 priority Critical patent/US7451640B2/en
Priority to EP05768516A priority patent/EP1783362A1/en
Publication of WO2006018976A1 publication Critical patent/WO2006018976A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • F02P2017/121Testing characteristics of the spark, ignition voltage or current by measuring spark voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • F02P2017/125Measuring ionisation of combustion gas, e.g. by using ignition circuits

Definitions

  • the present invention relates to a method for determining smoldering of a spark plug using an ionic current in a spark ignition type internal combustion engine.
  • an ignition plug is used to detect an ionic current generated in the combustion chamber after ignition, and knocking is performed based on the magnitude of the detected ionic current and the generation time. It is known to detect the operating state of an internal combustion engine such as a combustion limit and to adjust the ignition timing and correct the fuel injection amount based on the detection result. In the detection of ion current using such a spark plug, if there is no abnormality in the spark plug, the ion current can be detected for each ignition.
  • a spark plug may be in a so-called smoldering state in which carbon contained in soot generated by combustion of an air-fuel mixture adheres to the electrode and an insulator portion in the vicinity of the electrode.
  • smoldering occurs, leakage current due to smoldering is superimposed when detecting the ionic current.
  • the leakage current becomes continuous. If it is short-circuited, it will be judged erroneously. For this reason, it is necessary to detect smoldering and determine that the ignition plug is short-circuited.
  • Patent Document 1 it is prohibited to determine the smoldering of the spark plug when the engine speed of the internal combustion engine is within a predetermined speed range. In a state where it cannot be distinguished whether the smoldering or the electrode of the spark plug is short-circuited, specifically, in a state where the ignition timing force of one cylinder overlaps with the period during which the ion current is detected in any of the other cylinders Those that do not perform smoldering are known.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-108298
  • the present invention aims to solve such problems.
  • the smoldering determination method for an internal combustion engine of the present invention detects an ionic current generated in a combustion chamber after ignition through a spark plug in a spark ignition type internal combustion engine equipped with a spark plug and mounted on a vehicle.
  • the smoldering of the spark plug is determined based on the detected ion current.
  • the operating state of the internal combustion engine is detected, and the detected operating state has a predetermined rotation speed as an upper limit and a predetermined intake pipe pressure as a lower limit.
  • the smoldering of the spark plug is determined when the detected ion current satisfies a predetermined condition when it is within the operation determination region set corresponding to the operation region where the intake pipe pressure is close to atmospheric pressure. It is a feature.
  • the operation determination region is set corresponding to the operation region in which the intake pipe pressure is close to the atmospheric pressure with the predetermined rotation speed as the upper limit and the predetermined intake pipe pressure as the lower limit.
  • the threshold value set based on the ion current in the normal combustion state exceeds the time set for the generation of the detected ion current.
  • the number of times exceeds the number of determinations.
  • the detection of the operating state may be performed based on the engine speed and the intake pipe pressure.
  • the present invention corresponds to the operation determination region in which the predetermined rotation speed is the upper limit and the predetermined intake pipe pressure is the lower limit and the intake pipe pressure is close to the atmospheric pressure.
  • the leakage current force due to smoldering can secure sufficient time to disappear during the period of detection of the on-current, and it becomes easy to distinguish between leakage current and ion current in normal combustion.
  • the determination accuracy can be improved.
  • FIG. 1 is a schematic configuration explanatory diagram showing a schematic configuration of an engine and an electronic control device according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the relationship between the ion current and leakage current and the generation angle in the same embodiment.
  • FIG. 3 is a graph showing the relationship between the engine speed and the intake pipe pressure that define the operation determination region of the embodiment.
  • FIG. 4 is a flowchart showing a control procedure of the embodiment.
  • FIG. 5 is a graph showing the relationship between the engine speed and the intake pipe pressure defining another operation determination region in the same embodiment.
  • the engine 100 shown schematically in Fig. 1 is a multi-cylinder for automobiles, and its intake system 1 is not shown in the figure!
  • a throttle valve 2 that opens and closes in response to the accelerator pedal is arranged.
  • Surge tank 3 on the downstream side Is provided.
  • a fuel injection valve 5 is further provided in the vicinity of one end communicating with the surge tank 3, and the fuel injection valve 5 is controlled to be opened by an electronic control unit 6 based on a basic injection amount described later. Yes.
  • a spark plug 18 is attached at a position corresponding to the ceiling portion of the combustion chamber 10.
  • the exhaust system 20 is provided with an O sensor 21 for measuring the oxygen concentration in the exhaust gas in a pipe line leading to a muffler (not shown).
  • the three-way catalyst 22 is attached at a position upstream.
  • the configuration of the cylinder portion representatively shows the configuration of one cylinder.
  • the electronic control unit 6 is mainly configured by a microcomputer system including a central processing unit 7, a storage unit 8, an input interface 9, and an output interface 11.
  • the interface 9 outputs the intake pressure signal a output from the intake pressure sensor 13 for detecting the pressure in the surge tank 3 as the intake pipe pressure, and the output from the cam position sensor 14 for detecting the rotation state of the engine 100.
  • the output interface 11 outputs a fuel injection signal f force to the fuel injection valve 5 and an idling noise g to the spark plug 18.
  • the spark plug 18 is connected to a bias power source 24 and an ion current measurement circuit 25 for measuring an ion current.
  • Various circuits known in the art can be used as the ion current measuring circuit 25 itself including the bias power source 24.
  • the bias power source 24 applies a voltage to the spark plug 18 so that an ionic current flows through the combustion chamber 10 after ignition.
  • the ion current measuring circuit 25 is electrically connected to the input interface 9 of the electronic control unit 6 and measures the ion current generated by applying a voltage in an analog manner, and corresponds to the generated ion current. An analog signal is input to the electronic control unit 6.
  • the electronic control unit 6 uses the intake pressure signal a output from the intake pressure sensor 13 and the rotation speed signal b output from the cam position sensor 14 as main information, depending on the engine condition.
  • the effective injection time is obtained by correcting the basic injection time with various correction factors that are determined, the fuel injection valve opening time, that is, the final energization time of the injector is determined based on the effective injection time, and the fuel is determined based on the determined energization time.
  • a program for controlling the injection valve 5 to inject fuel according to the engine load from the fuel injection valve 5 toward the combustion chamber 10 is stored.
  • the electronic control unit 6 detects the ionic current generated in the combustion chamber 10 after ignition through the ignition plug 18, and determines the smoldering of the ignition plug 18 based on the detected ion current!
  • Stores a smoldering determination program that determines the smoldering of the spark plug when the detected ion current satisfies a predetermined condition when it is within the determination region
  • the ion current is generated during the ion current detection period TDP set by the crank angle until the ignition force exhaust stroke is completed. It is detected in terms of angle. For this reason, when the engine 100 is operated at a low speed, the time of the ion current detection period TDP becomes long, and in the high speed operation state, the time of the ion current detection period TDP becomes short.
  • the crank angle reference position signal G2 output from the cam position sensor 14 is also counted when the force becomes LI or more, and when the ionic current becomes less than the reference level L1, counting of the crank angle reference position signal G2 is stopped. Ion current generation angle GA is measured.
  • the measured generation angle GA is stored in the storage device 8 temporarily, that is, until the smoldering determination described later.
  • TDP ion current detection period
  • the reference level L1 is set to a value smaller than the average current value of the leak current in order to detect the leak current. Therefore, even a very small leak current can be detected, and in a state where no leak current is generated, it can be accurately detected until immediately before the ion current disappears.
  • the operation determination region RD is set by the engine speed and the intake pipe pressure as follows.
  • FIG. 3 schematically shows this operation determination region RD.
  • the predetermined rotation speed Nel that defines the operation determination region RD exceeds the idle rotation speed, and it is possible to secure sufficient time for the leakage current due to smolder to disappear within the ion current detection period TDP.
  • the maximum engine speed for example, about 3000rpm.
  • the predetermined intake pipe pressure PT1 is set to a lower limit intake pipe pressure that hardly increases the temperature of the ignition plug 18 at which the combustion temperature is low.
  • the predetermined intake pipe pressure PT1 is an intake pipe pressure necessary for controlling the engine speed to become the idle target speed in an idle operation state where no load force is applied to the engine 100.
  • the operation determination region RD is set in an intake pipe pressure region in which the intake pipe pressure is close to the atmospheric pressure from the predetermined intake pipe pressure PT1 in the rotational speed region below the predetermined rotational speed Nel.
  • the engine 100 is operated in a test with the smoldering plug 18 smoldered, and the engine speed gradually changes to cause the leakage current force S ion current detection period to disappear within the TDP.
  • the rotational speed is obtained, and the obtained engine rotational speed is set as a predetermined rotational speed Nel, which is set in the operation range up to the predetermined rotational speed Nel. In this case, the obtained engine speed must exceed the idle speed.
  • the time of the ion current detection period TDP is shortened because the engine speed is high, and it is difficult to secure a sufficient time for the leakage current to disappear.
  • the combustion temperature becomes high, and as a result, the temperature of the spark plug 18 also rises, so that the carbon adhering to the spark plug 18 decreases and the leakage current decreases.
  • the leak current disappears within the ion current detection period TDP.
  • the self-cleaning function of the spark plug 18 functions and carbon is taken from the spark plug 18, so that the state in which smoldering is substantially generated does not continue, In other words, the smoldering is eliminated during the operation, so that it becomes an operating region where it is not necessary to determine smoldering.
  • the self-cleaning property of the spark plug 18 is exhibited even in the high load operation region.
  • the operation region closer to the atmospheric pressure than the predetermined intake pipe pressure PT1 is an operation region excluding the intake pipe pressure region in which ion current is generated over almost the entire ion current detection period TDP. It is what you point to. That is, in a low intake pipe pressure region other than such an operation region, the amount of fuel in the air-fuel mixture decreases, and therefore combustion becomes longer. For this reason, the time during which the ion current flows is long, and the ion current is detected after the leak current disappears, so that a state in which the leak current and the ion current cannot be distinguished occurs. Gatsutsu Thus, such a low intake pipe pressure region is excluded.
  • step S1 the operating state of engine 100 is detected.
  • the operating state of the engine 100 is detected by detecting the engine speed and the intake pipe pressure.
  • step S2 it is determined whether or not the detected engine speed and intake pipe pressure are within the set operation determination region RD. That is, the detected engine speed is less than the predetermined engine speed Nel, and the detected intake pipe pressure is closer to the atmospheric pressure than the predetermined intake pipe pressure PT1! If so, it is determined that the detected operation state is within the operation determination region RD. If the detected operating state is not within the driving determination area RD, the current smoldering determination ends.
  • the generation angle GA measured in the ion current detection is read in step S3.
  • the spark plug 18 is smoldered, the leakage current due to smoldering is superimposed on the ionic current (shown as “ion current + leakage current” in FIG. 2). Is a leak current.
  • the read generation angle GA exceeds the threshold value for smoldering determination. This threshold value is set to, for example, a value obtained by adding several percent to the average value based on the average value of the generation angle of the ionic current in a normal combustion state. If the read generation angle GA does not exceed the threshold value, it is determined in step S5 that smoldering has not occurred.
  • step S6 determines whether or not the number of times that the threshold value is continuously exceeded exceeds the predetermined number of times, that is, the number of smolder determination times.
  • the determination in step S6 is for determining whether the read generation angle GA force is on-current or leakage current. If it is determined in step S6 that the number of smoldering determinations has been exceeded, smoldering occurs in step S7. It is determined that On the other hand, if the number of smolder determinations is not reached, the process proceeds to step S5 and it is determined that there is no smolder.
  • the number of smoldering determinations is set to 50 (50 ignitions), for example.
  • 50 ignitions 50 ignitions
  • the ion current generation angle GA exceeds the threshold value, it is normal while the number of smolder determinations is counted. Since the generation angle of the ionic current becomes a state where the generation angle continuously exceeds the threshold value V, the smolder is not judged.
  • step S6 and step S7 is normal combustion, and even if a state where the detected ion current generation angle exceeds the threshold value occurs multiple times that does not reach the number of smoldering determinations. In this case, it is determined that the spark plug 18 is not in an abnormal state as smoldering. Therefore, even if the ionic current generation angle is large due to the influence of the driving environment of the vehicle or the load on the engine 100, it is avoided that the ignition plug 18 is erroneously determined to be abnormal smoldering. It is something that can be done.
  • a warning is visually issued by turning on an indicator light such as an LED or a lamp at a position where the driver's power is visible or in the engine room of the vehicle, for example. It may be a thing.
  • an indicator lamp may be turned on when smoldering is determined and turned off when smoldering is resolved.
  • the ion current on which the leakage current detected by detecting the ion current in each cylinder for each ignition is superimposed. Smoldering occurs when the angle of occurrence GA exceeds the threshold and the number of times that the operating angle in the operation judgment area RD continues to exceed the threshold is greater than or equal to the number of smoldering judgments. It is determined. As described above, in the operation determination region RD set by the engine speed and the intake pipe pressure, the ion current detection period TDP takes a long time and the leakage current disappears reliably. And leakage current can be easily distinguished, and the accuracy of smolder detection can be improved. it can.
  • smoldering is also generated in this embodiment because smoldering is determined only when the number of times the read generation angle GA exceeds the threshold is equal to or greater than the number of smoldering determinations. In this case, it is possible to reliably determine the case where the combustion angle is slow due to some cause and the generation angle of the ionic current is long despite the normal combustion state.
  • the operation determination region RD is set such that the lower limit intake pipe pressure that defines the operation determination region RD approaches the atmospheric pressure as the engine speed increases. It's okay. That is, the closer the intake pipe pressure is to atmospheric pressure and the higher the engine speed, the higher the temperature of the spark plug 18, so the amount of carbon adhering to the spark plug 18 decreases and the leakage current itself decreases. Become. For this reason, the time required for the leakage current to disappear is shortened, and even if the time of the ion current detection period TDP is shortened by the increase in the engine speed, the end of the ion current detection period TDP from the disappearance of the leakage current. Since there is a period in which no ion current is superimposed with the leak current up to the point in time, smoldering can be determined as described above.
  • the self-cleaning property of the spark plug 18 is also reduced by narrowing the operation determination region in accordance with the increase in intake pipe pressure (approach to atmospheric pressure) and the increase in engine speed, as described above. Therefore, when smoldering is eliminated, it is possible to prevent smoldering from being erroneously determined in an operation state in which the read generation angle GA exceeds the threshold value.
  • the basic operation determination area is set to be the same as that in the above embodiment.
  • the intake pipe pressure that defines the operation determination area RD is increased by a correction amount that is set based on the heavy load, so that the actual operation determination area
  • the smolder determination is executed by narrowing.
  • the vehicle speed when the vehicle is running, the shift position in the automatic transmission is within the running range even when the vehicle is stopped, the blower of the air conditioner that is an electrical load is activated by the fan Detecting that the load was strong by detecting It is.
  • step S1 in the above embodiment the operating state is detected based on the detected engine speed, intake pipe pressure, and load.
  • the predetermined intake pipe pressure PT1 is corrected by the set correction amount, and the corrected operation determination region is set.
  • the lower limit value PTL of the intake pipe pressure that defines the corrected operation determination area is indicated by a dotted line in FIG. 3 (the same applies to the example shown in FIG. 5). It is determined whether or not the detected operating state is within the corrected operation determination area, and if it is within the operation determination area, the measured generation angle GA is read, and the generation angle GA is set to step S4. In step S6, it is determined that smoldering has occurred when the conditions specified in step S6 are satisfied.
  • the engine 100 is driven by an external driving force in an operating state in which the intake pipe pressure varies depending on the load state, for example, even though the vehicle is traveling. It is possible to prevent erroneous determination that smoldering has occurred when the combustion is prolonged due to being driven by this and the generation angle of ion current detected along with this increases.
  • the engine 100 when traveling downhill, or when the amount of operation of the accelerator pedal is reduced while traveling on flat ground, the engine 100 may be driven by wheels. In such a case, the accelerator pedal is operated. The engine 100 is driven by an external driving force, resulting in an increase in the engine speed. As a result, the amount of fuel with respect to the intake air amount is reduced and combustion is increased. Is. Therefore, the ion current generation angle increases according to the length of combustion, and if the smolder is not generated, that is, if no leak current is flowing, such an ion current generation angle is detected continuously. It may be judged as smoldering.
  • the value of the intake pipe pressure in the operation determination region is set to the value during normal traveling, that is, the engine 100 is rotated only by the internal driving force.
  • the margin for determining the driving condition against fluctuations in the load during driving is set by making the driving judgment area narrower (making the load condition stricter). In this case, as described above, the engine speed is changed due to a change in load. Considering the fact that the angle of generation of the ion current increases as the value increases, the correction amount of the intake pipe pressure is set to increase as the engine speed increases.
  • the ion current detection period TDP may be set to 180 ° CA from ignition.
  • the ignition of the cylinder that becomes the next ignition stroke from the ignition timing of one cylinder is performed. You may set by the crank angle to time.
  • the smolder determination described above is combined with the presence or absence of an ionic current during fuel cut during deceleration driving or deceleration after racing to determine whether the ignition and ion detection system including the spark plug 18 are short-circuited. You may do. In other words, smoldering occurs when smoldering is determined during the operation until fuel cut is performed, and ion current is detected even after there is no combustion after shifting to the fuel cut operating state. For example, it is determined that the spark plug 18 is short-circuited.
  • the generation angle GA of the ion signal (including the ionic current on which the leakage current is superimposed due to smoldering) is determined to be extinguished and regenerated within the ionic current force ion current detection period TDP.
  • the ion current is equal to or higher than the reference level L1 and the crank angle is totaled and measured to determine whether or not the measured ion current exceeds the threshold value. If the generated angle obtained by adding the angles at which the current is equal to or higher than the reference level L1 (corresponding to CA1, CA2, and CA3 in FIG. 2) satisfies the predetermined condition, the threshold in the above embodiment is set. It may be judged that it has been exceeded.
  • the crank angle in the case where the generated angle is equal to or larger than the generated angle in the normal combustion state or corresponds to a period corresponding to a large period of, for example, 90% of the ion current detection period TDP. It is an angle.
  • the spark plug 18 constituting the ion current detection system and the ion current measurement It is also possible to determine when a short circuit occurs in the circuit 25 or the like. In other words, when a short circuit occurs, a current signal that does not change at the time of ion current detection may be detected.
  • the current signal When noise is superimposed on such a current signal, the current signal is divided by the noise, which is different from the current signal at the time of short circuit. If it is determined that the generation angle exceeds the threshold value in the above embodiment by satisfying the predetermined condition at the time of such a short circuit, it is possible to prevent a short circuit from being erroneously determined.
  • the present invention is widely applied to a spark ignition type internal combustion engine mounted on a vehicle or the like including an automobile, which is configured to generate an ionic current using a spark plug immediately after the start of combustion. Can do.
  • a spark ignition type internal combustion engine mounted on a vehicle or the like including an automobile, which is configured to generate an ionic current using a spark plug immediately after the start of combustion.
  • Can do In such an internal combustion engine, it is possible to discriminate between a state in which smoldering occurs in the spark plug and leakage current flows, and a state in which ion current is generated for a long time due to smoldering.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

本発明は、点火プラグを備え車両に搭載される火花点火式の内燃機関において、点火プラグを介して点火後に燃焼室に生じるイオン電流を検出し、検出したイオン電流に基づいて点火プラグのくすぶりを判定するものであって、内燃機関の運転状態を検出し、検出した運転状態が、所定回転数を上限とし、かつ所定の吸気管圧力を下限として大気圧に近い吸気管圧力となる運転領域に対応して設定される運転判定領域内でのものである場合に検出したイオン電流が所定条件を満たすことで点火プラグのくすぶりを判定する。

Description

明 細 書
内燃機関のくすぶり判定方法
技術分野
[0001] 本発明は、火花点火式の内燃機関において、イオン電流を用いて点火プラグのく すぶりを判定する方法に関するものである。
背景技術
[0002] 従来、火花点火式の内燃機関においては、点火プラグを用いて点火の後に燃焼室 内に発生するイオン電流を検出し、検出したイオン電流の大きさや発生している時間 などから、ノッキングや燃焼限界などの内燃機関の運転状態を検出し、その検出結 果に基づ ヽて点火時期を調整したり燃料噴射量を補正するものが知られて ヽる。こ のような点火プラグを使用したイオン電流の検出では、点火プラグに異常がなければ 点火毎にイオン電流を検出することができる。
[0003] 通常、点火プラグには、混合気が燃焼されることにより発生する煤に含まれる炭素 がその電極や電極近傍の碍子部分に付着するくすぶりと呼ばれる状態になることが ある。このように、くすぶりが生じると、イオン電流を検出する際に、くすぶりに起因す るリーク電流が重畳する。そして、点火間隔が短くなる高回転運転状態では、イオン 電流に重畳したリーク電流が消滅する前にイオン電流の検出を行うと、リーク電流が 連続して 、るようになるために、点火プラグが短絡して 、ると誤って判定することが生 じる。このため、くすぶりを検出して、点火プラグの短絡状態と判別する必要がある。
[0004] このような状況に鑑みて、例えば特許文献 1に示されるように、内燃機関の機関回 転速度が所定速度領域内である時に点火プラグのくすぶりを判定することを禁止す ることで、くすぶりか点火プラグの電極が短絡しているのかを区別できない状態、具 体的には、ある気筒の点火タイミング力 他のいずれかの気筒においてイオン電流を 検出している期間と重なる状態においては、くすぶり判定を実施しないものが知られ ている。
特許文献 1 :特開 2004— 108298号公報
発明の開示 発明が解決しょうとする課題
[0005] ところで、上述の内燃機関においては、同一機関回転速度であっても、内燃機関の 負荷が大きくなると、燃焼温度が高くなることによって点火プラグの温度も高くなり、付 着していた炭素が少なくなることでくすぶりに起因するリーク電流が流れなくなるまで の時間が短くなる。このような状況にあっては、イオン電流を検出する期間内におい てリーク電流が減衰して消滅するので、実際に短絡している状態と、リーク電流により 短絡と見做す状態とを判別しやすい状態にあるが、特許文献 1にあっては、このよう な運転状態にある場合では、くすぶりを判定しない運転状態にあるため、くすぶり判 定を実施できな ヽことがあった。
[0006] この結果、内燃機関の負荷が大きくなる運転領域においては、くすぶりを判定でき ないため、その判定精度が低下するものとなった。
[0007] 本発明は、このような不具合を解消することを目的としている。
課題を解決するための手段
[0008] すなわち、本発明の内燃機関のくすぶり判定方法は、点火プラグを備え車両に搭 載される火花点火式の内燃機関において、点火プラグを介して点火後に燃焼室に 生じるイオン電流を検出し、検出したイオン電流に基づいて点火プラグのくすぶりを 判定するものであって、内燃機関の運転状態を検出し、検出した運転状態が、所定 回転数を上限とし、かつ所定の吸気管圧力を下限として大気圧に近い吸気管圧力と なる運転領域に対応して設定される運転判定領域内でのものである場合に検出した イオン電流が所定条件を満たすことで点火プラグのくすぶりを判定することを特徴と する。
[0009] このような構成によれば、運転判定領域を、所定回転数を上限とし、かつ所定の吸 気管圧力を下限として大気圧に近い吸気管圧力となる運転領域に対応して設定する ことにより、くすぶりによるリーク電流力 Sイオン電流を検出する期間において消滅する に十分な時間を確保し得るものとなる。このため、リーク電流と正常な燃焼におけるィ オン電流との判別が容易になるため、くすぶりの判定精度が向上する。
[0010] 以上の構成において、車両の走行状態や負荷の状態に応じて内燃機関の運転状 況が変化する場合に、誤ってくすぶりを判定しないようにするためには、内燃機関が 無負荷運転状態以外の運転状態である場合に、前記運転判定領域を狭くすることが 好ましい。
[0011] また、点火プラグのくすぶりを判定するための所定条件としては、正常な燃焼状態 におけるイオン電流に基づ 、て設定される閾値を、検出したイオン電流の発生して ヽ る時間が上回り、かつ上回る回数が判定回数以上となることとするものが好ましい。
[0012] 力!]えて、運転判定領域を狭くする具体的な例として、機関回転数が高くなるのに応 じて吸気管圧力を高くするものが挙げられる。
[0013] さらには、運転状態の検出は、機関回転数と吸気管圧力とにより行うものが挙げら れる。
発明の効果
[0014] 本発明は、以上説明したように、運転判定領域を、所定回転数を上限とし、かつ所 定の吸気管圧力を下限として大気圧に近い吸気管圧力となる運転領域に対応して 設定するので、くすぶりによるリーク電流力 オン電流を検出する期間において消滅 するに十分な時間を確保することができ、リーク電流と正常な燃焼におけるイオン電 流との判別が容易になるため、くすぶりの判定精度を向上させることができる。
図面の簡単な説明
[0015] [図 1]本発明の実施形態におけるエンジン及び電子制御装置の概略構成を示す概 略構成説明図。
[図 2]同実施形態のイオン電流及びリーク電流と発生角度との関係を示すグラフ。
[図 3]同実施形態の運転判定領域を規定するエンジン回転数と吸気管圧力との関係 を示すグラフ。
[図 4]同実施形態の制御手順を示すフローチャート。
[図 5]同実施形態における他の運転判定領域を規定するエンジン回転数と吸気管圧 力との関係を示すグラフ。
発明を実施するための最良の形態
[0016] 以下、本発明の一実施例を、図面を参照して説明する。図 1に概略的に示したェン ジン 100は自動車用の多気筒のもので、その吸気系 1には図示しな!、アクセルぺダ ルに応動して開閉するスロットルバルブ 2が配設され、その下流側にはサージタンク 3 が設けられている。サージタンク 3に連通する一方の端部近傍には、さらに燃料噴射 弁 5が設けてあり、この燃料噴射弁 5を、電子制御装置 6により後述する基本噴射量 に基づいて開成制御するようにしている。そして、燃焼室 10の天井部分に対応する 位置には、点火プラグ 18が取り付けてある。また排気系 20には、排気ガス中の酸素 濃度を測定するための Oセンサ 21が、図示しないマフラに至るまでの管路に配設さ
2
れた三元触媒 22の上流の位置に取り付けられている。なお、図 1にあって、シリンダ 部分の構成にあっては 1気筒の構成を代表的に示すものである。
[0017] 電子制御装置 6は、中央演算処理装置 7と、記憶装置 8と、入力インターフ ース 9 と、出力インターフェース 11とを具備してなるマイクロコンピュータシステムを主体に 構成されており、その入力インターフェース 9には、吸気管圧力としてサージタンク 3 内の圧力を検出するための吸気圧センサ 13から出力される吸気圧信号 a、エンジン 100の回転状態を検出するためのカムポジションセンサ 14から出力される気筒判別 信号 G1とクランク角度基準位置信号 G2とエンジン回転数信号 b、車速を検出するた めの車速センサ 15から出力される車速信号 c、スロットルバルブ 2の開閉状態を検出 するためのアイドルスィッチ 16からの LL信号 d、エンジンの冷却水温を検出するため の水温センサ 17からの水温信号 e、上記した Oセンサ 21からの電流信号 hなどが入
2
力される。一方、出力インターフェース 11からは、燃料噴射弁 5に対して燃料噴射信 号 f力 また点火プラグ 18に対してイダ-ッシヨンノ ルス gが出力されるようになってい る。
[0018] また点火プラグ 18には、イオン電流を測定するためのバイアス用電源 24及びィォ ン電流測定用回路 25が接続されて 、る。このバイアス用電源 24を含むイオン電流測 定用回路 25それ自体は、当該分野で知られている種々のものが使用できる。バイァ ス用電源 24は、点火後イオン電流を燃焼室 10内に流すべく電圧を点火プラグ 18に 印加する。また、イオン電流測定用回路 25は、電気的に電子制御装置 6の入力イン ターフェース 9に接続され、電圧の印加により発生したイオン電流をアナログ的に計 測し、発生したイオン電流に対応するアナログ信号を電子制御装置 6に入力する。
[0019] 電子制御装置 6には、吸気圧センサ 13から出力される吸気圧信号 aとカムポジショ ンセンサ 14から出力される回転数信号 bとをおもな情報とし、エンジン状態に応じて 決まる各種の補正係数で基本噴射時間を補正して有効噴射時間を求め、その有効 噴射時間に基づいて燃料噴射弁開成時間すなわちインジ クタ最終通電時間を決 定し、その決定された通電時間により燃料噴射弁 5を制御して、エンジン負荷に応じ た燃料を該燃料噴射弁 5から燃焼室 10に向けて噴射させるためのプログラムが格納 してある。
[0020] また、電子制御装置 6には、点火プラグ 18を介して点火後に燃焼室 10に生じるィ オン電流を検出し、検出したイオン電流に基づ!/ヽて点火プラグ 18のくすぶりを判定 するものであって、エンジン 100の運転状態を検出し、検出した運転状態が、所定回 転数を下回る回転数領域で、かつ所定の吸気管圧力より大気圧に近い負荷領域で 設定される運転判定領域内でのものである場合に検出したイオン電流が所定条件を 満たすことで点火プラグのくすぶりを判定するくすぶり判定プログラムが格納してある
[0021] この実施形態にあっては、イオン電流は、点火力 排気行程が終了するまでの、ク ランク角度で設定してあるイオン電流検出期間 TDPにおいて、その発生して 、る時 間をクランク角度に換算して検出されるものである。このため、エンジン 100を低回転 で運転して 、る場合はイオン電流検出期間 TDPの時間は長くなり、高回転の運転状 態ではイオン電流検出期間 TDPの時間は短くなる。
[0022] イオン電流は、図 2に点線で示すように、点火直後にバイアス用電源 24から点火プ ラグ 18にバイアス電圧を印加すると、正常燃焼の場合、急激に流れた後、膨張行程 における上死点 TDC近傍で減少した後再び増加し、燃焼圧が最大となるクランク角 度近傍でその電流値が最大となるピーク値になるように燃焼室 10内に流れる。このよ うな挙動を示すイオン電流を各気筒において、点火毎にイオン電流の発生している( 流れている)時間(以下、発生角度 GAと称する)をクランク角度により計測する。
[0023] 具体的には、点火プラグ 18を介してイオン電流測定用回路 25から出力されるィォ ン電流と、点火プラグ 18のくすぶりにより生じるリーク電流を検出し得るように設定す る基準レベル L1とを比較し、その基準レベル L1以上となる電流値のイオン電流が発 生して!/、る時間つまり発生角度 GAを、イオン電流検出期間 TDP内にぉ 、て計測す ることによってイオン電流を検出するものである。具体的には、イオン電流が基準レべ ル LI以上となった時点力もカムポジションセンサ 14から出力されるクランク角度基準 位置信号 G2を計数し、イオン電流が基準レベル L1未満となった時点でクランク角度 基準位置信号 G2の計数を停止し、イオン電流の発生角度 GAを計測するものである 。計測した発生角度 GAは、一時的に、つまり後述するくすぶり判定の時まで記憶装 置 8に保存される。なお、イオン電流検出期間 TDP内において、図 2に示すように、ィ オン電流が発生と消滅とを繰り返す場合は、基準レベル L1以上となっている角度( 同図中、 CA1、 CA2及び CA3にて示す)をそれぞれ計測し、計測した角度を合計し てイオン電流の発生角度 GAとするものである。
[0024] 基準レベル L1は、リーク電流を検出するために、平均的なリーク電流の電流値より も小さい値に設定してある。したがって、ごく微小なリーク電流についても検出し得る とともに、リーク電流が発生していない状態においては、イオン電流を消滅する直前 まで正確に検出し得るものとなる。
[0025] 次に、運転判定領域 RDは、以下のように、エンジン回転数と吸気管圧力とにより設 定してある。図 3は、この運転判定領域 RDを模式的に図示したものである。すなわち 、運転判定領域 RDを規定する、所定回転数 Nelは、アイドル回転数を上回り、ィォ ン電流検出期間 TDP内においてくすぶりによるリーク電流が消滅するのに十分な時 間を確保することが可能な上限のエンジン回転数、例えば 3000rpm程度のエンジン 回転数に設定する。同様に、所定の吸気管圧力 PT1は、燃焼温度が低ぐ点火ブラ グ 18の温度を上昇させることが少ない下限の吸気管圧力に設定する。具体的には、 この所定の吸気管圧力 PT1は、エンジン 100に負荷力かかっていないアイドル運転 状態において、エンジン回転数がアイドル目標回転数になるように制御するのに必 要な吸気管圧力に対応するものである。したがって、運転判定領域 RDは、所定回転 数 Nelより下側の回転数領域で、かつ所定の吸気管圧力 PT1から大気圧に近い吸 気管圧力となる吸気管圧力領域に設定されるものである。
[0026] 点火プラグ 18がくすぶっている場合、イオン電流を検出するために点火プラグ 18 に電圧を印加すると、くすぶりのためにリーク電流が点火プラグ 18に流れる。このリー ク電流は、図 2に示すように、時間の経過とともに減衰して、消滅する特性を有してい る。 [0027] エンジン 100がアイドル回転数を上回る低回転数で運転されて ヽる運転領域に相 当する低回転領域にあっては、イオン電流検出期間 TDPのクランク角度は高回転領 域の場合と同じではある力 エンジン回転数が低いためにイオン電流検出期間 TDP の時間が長くなる。したがって、発生したリーク電流力 オン電流検出期間 TDP内に 消滅するのに十分な時間を確保し得るものである。言い換えれば、リーク電流が消滅 した後からイオン電流検出期間 TDPが終了するまでの間に、点火プラグ 18を介して 検出する電流つまりイオン電流とリーク電流とがな 、状態が生じるものである。それゆ え、このような低回転領域は、点火プラグ 18がくすぶった状態でエンジン 100を試験 運転し、エンジン回転数を徐々に変化させてリーク電流力 Sイオン電流検出期間 TDP 内に消滅するエンジン回転数を求め、得られたエンジン回転数を所定回転数 Nelと して、その所定回転数 Nelに至るまでの運転領域に設定するものである。この場合、 得られたエンジン回転数は、アイドル回転数を上回って ヽることが必要である。
[0028] このような低回転領域以外の高回転領域においては、エンジン回転数が高いため にイオン電流検出期間 TDPの時間が短くなり、リーク電流が消滅するに十分な時間 を確保しにくい状態である力 高回転でエンジン 100を運転している状態では、燃焼 温度が高くなり、それにより点火プラグ 18の温度も高くなつて、点火プラグ 18に付着 した炭素が減少し、リーク電流が小さくなるため、イオン電流検出期間 TDP内にリー ク電流が消滅するものである。その一方で、点火プラグ 18の温度が高くなると、点火 プラグ 18の自己清浄性が機能して、炭素が点火プラグ 18から取れ、したがって、実 質的にくすぶりが生じている状態が継続せず、つまり運転途中でくすぶりが解消され るため、くすぶりを判定する必要も生じない運転領域となる。この点火プラグ 18の自 己清浄性は、高負荷運転領域にぉ ヽても発揮されるものである。
[0029] 次に、所定の吸気管圧力 PT1より大気圧に近い運転領域とは、イオン電流検出期 間 TDPのほぼ全体にわたってイオン電流が発生するような吸気管圧力の領域を除 いた運転領域を指すものである。つまり、このような運転領域以外の低吸気管圧力領 域では、混合気における燃料量が少なくなるため、燃焼が長くなる。このため、イオン 電流が流れている時間が長くなり、リーク電流が消滅した後にイオン電流が検出され ることで、リーク電流とイオン電流とを判別できない状態が生じることとなる。したがつ て、このような低吸気管圧力領域を除外するものである。
[0030] 以上のようにして運転判定領域 RDを設定してあるくすぶり判定プログラムの概要は 、図 4に示すようなものである。このくすぶり判定プログラムは、各気筒の点火毎に実 行するイオン電流の検出、したがってイオン電流の発生角度 GAの計測の後に実行 される。
[0031] まず、ステップ S1において、エンジン 100の運転状態を検出する。エンジン 100の 運転状態は、エンジン回転数と吸気管圧力とを検出することにより検出する。次に、 ステップ S2において、検出したエンジン回転数と吸気管圧力とが、設定された運転 判定領域 RD内であるか否かを判定する。すなわち、検出したエンジン回転数が所 定回転数 Nel以下で、かつ検出した吸気管圧力が所定の吸気管圧力 PT1より大気 圧に近!ヽものであれば、検出された運転状態が運転判定領域 RD内であると判定す る。検出された運転状態が運転判定領域 RD内でない場合は、今回のくすぶり判定 を終了する。
[0032] 検出された運転状態が運転判定領域 RD内であると判定した場合は、ステップ S3 において、イオン電流検出において計測した発生角度 GAを読み込む。この場合に 、点火プラグ 18がくすぶっている場合には、イオン電流にくすぶりによるリーク電流が 重畳するので(図 2に、「イオン電流 +リーク電流」として示す)、読み込んだ発生角度 GAは実質的にはリーク電流のものである。この後、ステップ S4では、読み込んだ発 生角度 GAがくすぶり判定のための閾値を上回る力否かを判定する。この閾値は、正 常な燃焼状態におけるイオン電流の発生角度の平均値に基づいて、例えば平均値 に数パーセント上乗せした値に設定するものである。読み込んだ発生角度 GAが閾 値を超えていない場合は、ステップ S 5において、くすぶりが発生していないと判定す る。
[0033] 一方、読み込んだ発生角度 GAが閾値を超えている場合は、ステップ S6において 、連続して閾値を上回る回数が所定回数つまりくすぶり判定回数以上力否かを判定 する。このステップ S6における判定は、読み込んだ発生角度 GA力 オン電流のもの 力 あるいはリーク電流のものかを判定するためのものである。ステップ S6において、 くすぶり判定回数以上と判定した場合は、ステップ S7において、くすぶりが発生して いると判定する。これに対して、くすぶり判定回数に満たない場合は、ステップ S5に 移行して、くすぶりはないと判定する。
[0034] くすぶり判定回数は、例えば 50回(50点火回数)に設定する。一般的に、くすぶり が発生している場合、点火プラグ 18の自己清浄性が発揮されるか、もしくは点火ブラ グ 18がくすぶりの発生していないものに交換されない限り解消されない。これに対し て、正常燃焼であるにもかかわらず何らかの原因で燃焼時間が長ぐその結果イオン 電流の発生角度 GAが閾値を超えている場合には、くすぶり判定回数を計数してい る間に正常なイオン電流の発生角度となることで、連続して発生角度が閾値を超えて V、る状態とならな 、ため、くすぶりを判定しな 、ものとなる。
[0035] 言い換えれば、ステップ S6及びステップ S7における処理は、正常な燃焼にあって 、検出したイオン電流の発生角度が閾値を超えるような状態がくすぶり判定回数に至 らない複数回発生しても、この場合はくすぶりと言った点火プラグ 18の異常な状態で はないと判定することにある。それゆえ、車両の走行環境の影響やエンジン 100にか 力る負荷の状況などにより、イオン電流の発生角度が大きくなつても、点火プラグ 18 の異常であるくすぶりと誤って判定することを回避することができるものである。
[0036] このようにしてくすぶりを判定した場合には、例えば運転者力 見える位置あるいは 車両のエンジンルームなどに LEDやランプなどの表示灯を点灯することにより、可視 的に警告を発するようにするものであってよい。このような表示灯は、くすぶりを判定 した時点から点灯しておき、くすぶりが解消された時点で消灯するようにするものであ つてよい。
[0037] このように、エンジン 100が運転判定領域 RD内に対応する運転状態である場合に 、点火毎に各気筒においてイオン電流を検出することで検出されるリーク電流が重畳 しているイオン電流の発生角度 GAが閾値を上回り、かつ運転判定領域 RD内での 運転状態が連続して発生角度 GAが閾値を上回る回数が連続してくすぶり判定回数 以上である場合に、くすぶりが発生していると判定するものである。上述のように、ェ ンジン回転数と吸気管圧力とにより設定する運転判定領域 RD内においては、イオン 電流検出期間 TDPの時間が長ぐ確実にリーク電流が消滅するものであるので、ィ オン電流とリーク電流との判別が容易になり、くすぶり検出の精度を向上させることが できる。
[0038] し力も、この実施形態においては、読み込んだ発生角度 GAが閾値を上回る回数 が連続してくすぶり判定回数以上である場合にのみくすぶりが発生していると判定す るので、くすぶりが発生しておらずに、正常な燃焼状態であるにもかかわらず、何らか の原因により燃焼が緩慢になって、イオン電流の発生角度が長くなつている場合など を確実に判別することができる。
[0039] なお、運転判定領域 RDとしては、図 5に示すように、運転判別領域 RDを規定する 下限の吸気管圧力を、エンジン回転数の上昇とともに大気圧に近づくように設定する ものであってよい。すなわち吸気管圧力が大気圧に近くなるほど、また、エンジン回 転数が高くなるほど、点火プラグ 18の温度が高くなり易いので、点火プラグ 18に付着 する炭素の量が少なくなり、リーク電流自体が小さくなる。このため、リーク電流が消 滅するまでに要する時間は短くなり、イオン電流検出期間 TDPの時間はエンジン回 転数が高くなることで短くなつても、リーク電流の消滅からイオン電流検出期間 TDP の終了時点までにリーク電流が重畳したイオン電流が発生していない期間が存在す るため、上述と同様にくすぶりを判定し得るものとなる。
[0040] し力も、上述のように、吸気管圧力の上昇(大気圧への接近)、及びエンジン回転数 の上昇に応じて運転判定領域を狭くすることにより、点火プラグ 18の自己清浄性によ つてくすぶりを解消した場合に、読み込まれた発生角度 GAが閾値を超えるような運 転状態においてくすぶりを誤って判定することを防止することができる。
[0041] 次に、運転状態を、エンジン回転数及び吸気管圧力に加えて、エンジン 100に対 する電気負荷を含む負荷を検出することにより検出する例を説明する。
[0042] この例の場合、基本となる運転判定領域は上記実施形態と同じに設定するもので ある。そして、エンジン 100に負荷力かかっている場合は、運転判定領域 RDを定義 する吸気管圧力を、力かった負荷に基づいて設定される補正量だけ増カロさせて、実 質的な運転判定領域を狭くして、くすぶり判定を実行するものである。車両が走行し ている場合の車速、車両が停止中であっても自動変速機における変速位置が走行 レンジにあること、オルタネータゃ電気負荷であるエアコンディショナのブロアある ヽ はファンが作動していることなどを検出することで、負荷が力かったことを検出するも のである。
[0043] この例にあっては、上記実施形態におけるステップ S1において、検出したエンジン 回転数と吸気管圧力と負荷とにより運転状態を検出する。そして、負荷を検出した場 合には、ステップ S1を実行した後に、設定された補正量により所定の吸気管圧力 PT 1を補正して、補正した運転判定領域を設定する。この補正した運転判定領域を規 定する吸気管圧力の下限値 PTLを、図 3にお 、て点線にて示す(図 5に示す例の場 合も同様である。 ) oこの後、上記実施形態と同じぐ検出した運転状態が補正した運 転判定領域内であるか否かを判定し、運転判定領域内である場合には計測した発 生角度 GAを読み込み、その発生角度 GAがステップ S4及びステップ S6にお 、て規 定する条件を満たす場合にくすぶりが発生していると判定するものである。
[0044] このように、運転判定領域を狭くすることにより、負荷の状態により吸気管圧力が変 動するような運転状態において、例えば走行しているにもかかわらず、エンジン 100 が外部の駆動力により駆動されることで燃焼が長くなり、これに伴って検出されるィォ ン電流の発生角度も大きくなる場合に、くすぶりが発生していると誤って判定すること を防止することができる。
[0045] 例えば、降坂走行中、ある!/、は平地走行中にアクセルペダルの操作量を減じた場 合などでは、車輪によりエンジン 100が駆動される運転状態になることがある。このよ うな場合、アクセルペダルは操作されている力 エンジン 100が外部の駆動力により 駆動されることでエンジン回転数が高くなり、その結果、吸入空気量に対する燃料量 が少なくなり、燃焼が長くなるものである。したがって、燃焼の長さに応じて、イオン電 流の発生角度も大きくなり、くすぶりが生じていない、つまりリーク電流が流れていな い場合にこのようなイオン電流の発生角度を連続して検出すると、くすぶりと判定する ことが生じる。
[0046] したがって、このような運転状態にある場合にあっては、運転判定領域における吸 気管圧力の値を、通常の走行時、つまりエンジン 100が内部の駆動力でのみ駆動さ れて回転している場合に比較して大きくして、運転判定領域を狭くする (負荷条件を 厳しくする)ことで、走行中の負荷の変動に対する運転状態の判定のためのマージン を設定するものである。この場合、上述のように、負荷の変化によりエンジン回転数が 高くなつてイオン電流の発生角度が大きくなることを考慮して、吸気管圧力の補正量 は、エンジン回転数が高 、ほど多くなるように設定してある。
[0047] このようにして、エンジン 100にかかる負荷の状態に応じて運転判定領域を変更す るので、くすぶりが負荷の変動によりイオン電流の発生角度が長くなる場合を、くすぶ りと誤って判定することを確実に防止することができる。
[0048] なお、本発明は、上記実施形態に限定されるものではない。
[0049] イオン電流検出期間 TDPは、点火から 180° CAに設定するものであってもよい。
また、各気筒のイオン電流を直列に一つのイオン電流測定用回路に入力して、各気 筒の点火毎に処理するものでは、ある気筒の点火時期からその次に点火行程となる 気筒の点火時期までのクランク角度で設定するものであってもよい。
[0050] また、以上に説明したくすぶりの判定に、減速走行もしくはレーシング後の減速運 転における燃料カット中のイオン電流の有無を組み合わせて、点火プラグ 18を含む 点火及びイオン検出系の短絡を判定するものであってもよい。すなわち、燃料カット を実行するまでの運転にぉ 、てくすぶりを判定し、燃料カットの運転状態に移行した 後に燃焼がないにもかかわらずイオン電流を検出した場合には、くすぶりが発生して いるのではなく例えば点火プラグ 18が短絡していると判定するものである。
[0051] 加えて上記実施形態においては、イオン信号 (くすぶりによりリーク電流が重畳して いるイオン電流も含む)の発生角度 GAを、イオン電流力イオン電流検出期間 TDP 内に消滅と再発生とを繰り返す場合、イオン電流が基準レベル L1以上となっている クランク角度を合計して計測して、計測したイオン電流が閾値を超えた力否かを判定 したが、このような閾値に替えて、イオン電流が基準レベル L1以上となっている角度( 図 2における CA1、 CA2、 CA3に相当)を加算して得られる発生角度が所定条件を 満たして!/、る場合に、上記実施形態における閾値を超えたと判定するものであってよ い。
[0052] この場合の所定条件としては、発生角度が、通常の燃焼状態における発生角度以 上である、あるいは、イオン電流検出期間 TDPの多くの期間例えば 90%にあたる期 間に対応する場合のクランク角度である、などである。このように所定条件を設定する ことにより、例えばイオン電流の検出系を構成する点火プラグ 18やイオン電流測定 用回路 25などにおいて短絡した場合をも判定できるものとなる。つまり、短絡が生じ た場合、イオン電流検出時において何ら変化しない電流信号を検出することがある。 このような電流信号に対して、ノイズが重畳すると、その電流信号がノイズにより分断 され、短絡時の電流信号と相違してくる。このような短絡時に、発生角度が上記所定 条件を満たすことにより上記実施形態における閾値を超えたとする判定を実行すれ ば、短絡して 、な 、と誤って判定することを防止することができる。
[0053] その他、各部の具体的構成についても上記実施形態に限られるものではなぐ本 発明の趣旨を逸脱しな 、範囲で種々変形が可能である。
産業上の利用可能性
[0054] 本発明は、自動車を含む車両などに搭載される火花点火式の内燃機関において、 燃焼の開始直後に点火プラグを用 、てイオン電流を発生させるように構成したものに 広く適用することができる。そして、このような内燃機関において、点火プラグにくすぶ りが生じてリーク電流が流れて 、る状態と、くすぶって 、な 、状態でイオン電流が長く 発生している状態とを判別することが可能になり、イオン電流を用いて燃料噴射制御 や点火時期制御を好ましく実行することを可能にするものである。

Claims

請求の範囲
[1] 点火プラグを備え車両に搭載される火花点火式の内燃機関において、点火プラグを 介して点火後に燃焼室に生じるイオン電流を検出し、検出したイオン電流に基づ!/、 て点火プラグのくすぶりを判定するものであって、
内燃機関の運転状態を検出し、
検出した運転状態が、所定回転数を上限とし、かつ所定の吸気管圧力を下限とし て大気圧に近い吸気管圧力となる運転領域に対応して設定される運転判定領域内 でのものである場合に検出したイオン電流が所定条件を満たすことで点火プラグのく すぶりを判定する内燃機関のくすぶり判定方法。
[2] 内燃機関が無負荷運転状態以外の運転状態である場合に、前記運転判定領域を 狭くする請求の範囲第 1項記載の内燃機関のくすぶり判定方法。
[3] 所定条件が、正常な燃焼状態におけるイオン電流に基づいて設定される閾値を、検 出したイオン電流の発生している時間が上回り、かつ上回る回数が判定回数以上と なることである請求の範囲第 1項記載の内燃機関のくすぶり判定方法。
[4] 機関回転数が高くなるのに応じて吸気管圧力を高くして運転判定領域を狭くする請 求の範囲第 2項記載の内燃機関のくすぶり判定方法。
[5] 運転状態を、機関回転数と吸気管圧力とにより検出する請求の範囲第 1項記載の内 燃機関のくすぶり判定方法。
PCT/JP2005/014222 2004-08-20 2005-08-03 内燃機関のくすぶり判定方法 WO2006018976A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/659,659 US7451640B2 (en) 2004-08-20 2005-08-03 Smoldering determination method of internal combustion engine
EP05768516A EP1783362A1 (en) 2004-08-20 2005-08-03 Method of determining carbon fouling of internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004240642A JP4416602B2 (ja) 2004-08-20 2004-08-20 内燃機関のくすぶり判定方法
JP2004-240642 2004-08-20

Publications (1)

Publication Number Publication Date
WO2006018976A1 true WO2006018976A1 (ja) 2006-02-23

Family

ID=35907366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014222 WO2006018976A1 (ja) 2004-08-20 2005-08-03 内燃機関のくすぶり判定方法

Country Status (5)

Country Link
US (1) US7451640B2 (ja)
EP (1) EP1783362A1 (ja)
JP (1) JP4416602B2 (ja)
CN (1) CN100560964C (ja)
WO (1) WO2006018976A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4619299B2 (ja) * 2006-02-06 2011-01-26 ダイハツ工業株式会社 内燃機関の燃焼状態判定方法
JP4799200B2 (ja) 2006-02-06 2011-10-26 ダイハツ工業株式会社 内燃機関のイオン電流に基づく運転制御方法
JP4445020B2 (ja) * 2008-01-09 2010-04-07 三菱電機株式会社 内燃機関の燃焼状態検出装置および燃焼状態検出方法
JP5005640B2 (ja) * 2008-08-28 2012-08-22 ダイヤモンド電機株式会社 内燃機関の失火検出装置
JP4906884B2 (ja) * 2009-04-09 2012-03-28 三菱電機株式会社 内燃機関の燃焼状態検出装置
JP2013087667A (ja) * 2011-10-17 2013-05-13 Mitsubishi Electric Corp 点火制御装置
US9618422B2 (en) 2014-11-18 2017-04-11 Ford Global Technologies, Llc Spark plug fouling detection
DE102017111917B4 (de) * 2016-06-07 2023-08-24 Borgwarner Ludwigsburg Gmbh Verfahren zum Ermitteln der Notwendigkeit eines Zündkerzenwechsels
EP3578804A1 (en) * 2018-06-07 2019-12-11 Caterpillar Energy Solutions GmbH Spark plug electrode wear rate determination for a spark-ignited engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263745A (ja) * 1992-03-19 1993-10-12 Honda Motor Co Ltd 内燃機関の失火検出装置
JPH1136971A (ja) * 1997-07-18 1999-02-09 Denso Corp 内燃機関のイオン電流検出装置
JP2003286932A (ja) * 2002-03-28 2003-10-10 Mitsubishi Electric Corp 内燃機関のノック制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0521207B1 (en) * 1991-07-04 1997-10-29 Hitachi, Ltd. Induction discharge type ignition device for an internal combustion engine
JP2721604B2 (ja) * 1991-09-30 1998-03-04 株式会社日立製作所 燃焼状態診断装置
US5241937A (en) 1991-12-09 1993-09-07 Honda Giken Kogyo Kabushiki Kaisha Misfire-detecting system for internal combustion engines
JP3281624B2 (ja) * 2000-02-25 2002-05-13 ダイハツ工業株式会社 イオン電流による内燃機関のノック検出方法
US6920783B2 (en) * 2001-04-09 2005-07-26 Delphi Technologies, Inc. Automotive ignition monitoring system with misfire and fouled plug detection
JP2003021034A (ja) * 2001-07-03 2003-01-24 Honda Motor Co Ltd 内燃機関の燃焼状態判別装置
JP4127373B2 (ja) 2002-09-19 2008-07-30 株式会社デンソー 内燃機関のイオン電流検出装置
CN101002016B (zh) * 2004-08-09 2011-10-12 金刚石电机有限公司 用于内燃机的离子电流检测设备
JP4297848B2 (ja) * 2004-08-20 2009-07-15 ダイハツ工業株式会社 内燃機関の燃焼状態判定方法
JP4434065B2 (ja) * 2005-04-22 2010-03-17 株式会社デンソー 点火装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263745A (ja) * 1992-03-19 1993-10-12 Honda Motor Co Ltd 内燃機関の失火検出装置
JPH1136971A (ja) * 1997-07-18 1999-02-09 Denso Corp 内燃機関のイオン電流検出装置
JP2003286932A (ja) * 2002-03-28 2003-10-10 Mitsubishi Electric Corp 内燃機関のノック制御装置

Also Published As

Publication number Publication date
CN100560964C (zh) 2009-11-18
EP1783362A1 (en) 2007-05-09
US7451640B2 (en) 2008-11-18
JP4416602B2 (ja) 2010-02-17
CN101006271A (zh) 2007-07-25
JP2006057543A (ja) 2006-03-02
US20070245995A1 (en) 2007-10-25

Similar Documents

Publication Publication Date Title
US9068548B2 (en) Spark plug degradation detection
WO2006018976A1 (ja) 内燃機関のくすぶり判定方法
US6732707B2 (en) Control system and method for internal combustion engine
JP2010256142A (ja) 排出ガスセンサのヒータ劣化診断装置
US6520159B2 (en) Engine converter misfire protection method and apparatus
WO2007091457A1 (ja) 内燃機関のイオン電流に基づく運転制御方法
KR940004347B1 (ko) 내연기관 연료제어시스팀
JP2005188309A (ja) スロットル系の異常判定装置
JP4619299B2 (ja) 内燃機関の燃焼状態判定方法
JP5022347B2 (ja) 内燃機関の失火判定方法
JP3502206B2 (ja) 内燃機関の図示平均有効圧検出装置
JP2570287B2 (ja) 2次空気供給装置の機能診断表示装置
JP3339107B2 (ja) 負荷制御装置における異常検出装置
JP3186339B2 (ja) ホットワイヤ式エアフローメータの異常検出装置
JP2007182844A (ja) 内燃機関のイオン電流検出系の判定方法
JP4532516B2 (ja) エンジン制御装置
US20220003182A1 (en) Method and system for diagnosing misfire of engine
JP4186517B2 (ja) 内燃機関用エアクリーナの目詰まり検出装置
JP4345853B2 (ja) 吸気系センサの異常診断装置
JP2009025251A (ja) 排出ガスセンサの異常診断装置
WO2007080800A1 (ja) イオン電流に基づく内燃機関の空燃比判定方法
JP2004245108A (ja) 吸気系センサの異常診断装置
KR100279966B1 (ko) 엔진 희박연소장치의 고장진단 방법
JPH07293310A (ja) エンジン誤制御禁止方法
JP2550560B2 (ja) 内燃機関の触媒過熱防止装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005768516

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11659659

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580027684.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005768516

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11659659

Country of ref document: US