WO2006018863A1 - 回転センサ付軸受 - Google Patents

回転センサ付軸受 Download PDF

Info

Publication number
WO2006018863A1
WO2006018863A1 PCT/JP2004/011768 JP2004011768W WO2006018863A1 WO 2006018863 A1 WO2006018863 A1 WO 2006018863A1 JP 2004011768 W JP2004011768 W JP 2004011768W WO 2006018863 A1 WO2006018863 A1 WO 2006018863A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
bearing
rotation
detected
rotation sensor
Prior art date
Application number
PCT/JP2004/011768
Other languages
English (en)
French (fr)
Inventor
Takashi Koike
Tomomi Ishikawa
Original Assignee
Ntn Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn Corporation filed Critical Ntn Corporation
Priority to PCT/JP2004/011768 priority Critical patent/WO2006018863A1/ja
Publication of WO2006018863A1 publication Critical patent/WO2006018863A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/443Devices characterised by the use of electric or magnetic means for measuring angular speed mounted in bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • G01P13/04Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls

Definitions

  • the present invention can be used for various devices for rotation detection for device control, for example, rotation control for small motors, rotation detection for office device position detection, etc. It relates to a bearing with a rotation sensor that is used for applications that require small size and high resolution.
  • Fig. 15 shows a general shape of a bearing with a rotation sensor.
  • a bearing 51 with a rotation sensor is composed of a rolling bearing comprising an inner ring 52 that is a rotating side race ring, an outer ring 53 that is a fixed side race ring, a rolling element 54, and a cage 55.
  • An annular magnetic encoder 56 is fixed to the inner ring 52 side, and magnetic sensors 57a and 57b are fixed to the non-rotating side (for example, the outer ring 53 side) facing the magnetic encoder 56.
  • Hall elements, Hall ICs, etc. are used as the magnetic sensors 57a and 57b.
  • the magnetic encoder 56 is made of rubber magnet, for example, and has N poles and S poles alternately magnetized in the circumferential direction as shown in FIG.
  • the magnetic sensors 57a and 57b are resin-molded while being inserted into the resin case 58, and the resin case 58 is fixed to the outer ring 53 by being fitted to the outer ring 53 via the metal case 59.
  • Figure 16 shows the arrangement of the magnetic sensor.
  • the two magnetic sensors 57a and 57b are arranged so that the output phase difference (electrical angle) is 90 °.
  • the magnetic sensors 57a and 57b detect the magnetic change of the magnetic encoder 56, and the detected signal is an incremental rotation pulse whose phase is shifted by 90 ° as shown in FIG. Signal. From this signal, it is possible to know the rotation speed and rotation direction of the inner ring 52.
  • This type of bearing with a rotation sensor is small and does not require assembly and adjustment, and has features such as robustness, and is used as a motor support bearing.
  • the number of output pulses per rotation is increased to increase the resolution.
  • the magnetization intensity of the magnetic encoder 56 becomes weaker as the magnetization width becomes smaller, detection by the magnetic sensors 57a and 57b becomes difficult.
  • the magnetized width per pole is approximately 0.47 mm (15 X ⁇ + 100). The smaller the magnetic width, the harder it is to magnetize.
  • the coil wire diameter becomes smaller as the magnetic pole width becomes smaller, so it becomes difficult to flow a large current.
  • the index magnetization method even if the magnetization width is small, the force S can be magnetized, and with the index magnetization method, productivity is poor.
  • the magnetization intensity is small, it is necessary to narrow the gap between the magnetic encoder 56 and the magnetic sensors 57a and 57b.
  • a certain degree of gap management is required, so the gap range is limited.
  • the narrower the width the greater the effect of mounting errors of the magnetic sensors 57a and 57b on the output phase. Therefore, if there is a mechanical backlash in the alignment of the magnetic sensors 57a and 57b, the 90 ° phase difference will be greatly shifted.
  • the deviation of 0.1 mm is an electric angle deviation of about 38 degrees, it is necessary to tighten the pitch tolerance of the resin case 58 for fixing the magnetic sensors 57a and 57b.
  • An object of the present invention is to provide a bearing with a rotation sensor having high resolution without narrowing the magnetization width.
  • a rotation sensor bearing includes a rolling bearing portion including a rotating raceway, a fixed raceway, and rolling elements, and a magnetic characteristic attached to the rotation side raceway in a circumferential direction.
  • a magnetic detection unit composed of an analog output magnetic sensor opposed to the detection unit, and the magnetic characteristics of the detection unit with respect to the magnetic detection unit Change to more than 2 cycles for one rotation of the race,
  • an interpolation division means for interpolating and dividing the signal of the detected part detected by the above for each period is provided.
  • the detection signal of the detected part detected by the magnetic detection part is interpolated and divided every period by the interpolation division means, it is divided into the number of periods of the detected part in one rotation.
  • the resolution of the number multiplied by the number is obtained. For this reason, the resolution can be increased without increasing the number of periods of the detected portion, and therefore the resolution can be increased without reducing the magnetization width.
  • a pulse conversion unit that performs pulse conversion on the output signal divided by the inner wall dividing means may be provided.
  • the output can be handled in the same manner as a general rotation sensor because the rotation detection signal force S pulse signal is obtained.
  • an origin signal generating means which includes a detected portion attached to the rotation-side raceway and a detecting portion disposed opposite to the detected portion. Also good.
  • the origin signal generation means is provided in this way, if the origin signal can be detected even once after the start of rotation detection, the signal of the detected part that has been changed over two cycles per rotation as described above is then used. It is possible to recognize the absolute position of the signal obtained by interpolating and to detect the absolute position with high resolution.
  • the rotation sensor bearing according to the second configuration of the present invention has a rolling bearing portion composed of a rotation-side raceway, a fixed raceway, and rolling elements, and a magnetic property attached to the rotation-side raceway.
  • Two detected parts periodically changed in the circumferential direction, and two magnetic detecting parts composed of analog output magnetic sensors respectively disposed facing the detected parts.
  • One of the two detected parts is for detecting the detailed position by changing the magnetic characteristics of the magnetic detection part over two cycles for one rotation of the rotating side rail wheel, and the other is This is for absolute position detection, in which the magnetic characteristics of the magnetic detector are changed by one cycle for one rotation of the rotating raceway.
  • the signals of the magnetic detectors are interpolated and divided for each cycle. Two inner wing dividing means are provided.
  • the period of the detected portion in one rotation is the same as in the first configuration by the detected portion for detecting the detailed position, the magnetic detecting portion and the interpolating means opposed thereto
  • the number of resolutions obtained by multiplying the number by division can be obtained, and the resolution can be increased without reducing the magnetization width.
  • the absolute position can be detected by the detected portion for detecting the absolute position, the magnetic detection portion and the interpolation / division means facing the detected portion. In this case, since the interpolation division means is also provided for the detection portion for detecting the absolute position, the absolute position can be detected from the start of the rotation detection.
  • the inner split corresponding to the detected part for detailed position detection An absolute position converter that calculates the absolute position of the signal obtained from the means may be provided.
  • the absolute position conversion unit is provided, the absolute position can be detected with high resolution.
  • an isotropic magnet may be used as the magnetic material of the detected portion.
  • the amplitude of the detection signal is more stable than when an anisotropic magnet is used. Therefore, higher accuracy can be achieved.
  • FIG. 1A is a partially cutaway side view of a bearing with force, rotation sensor according to the first embodiment of the present invention.
  • FIG. 1B is a front view of a detected part and a magnetic detection part of the bearing with the rotation sensor.
  • FIG. 1C is a schematic block diagram of a processing circuit of the bearing with the rotation sensor.
  • FIG. 2 is an explanatory diagram of magnetic sensor output.
  • FIG. 3 is an explanatory diagram of processing for performing interpolation division from the magnetic sensor output.
  • FIG. 4 is a block diagram of a processing circuit.
  • FIG. 5A is an explanatory diagram of an output processing example of a magnetic detection unit.
  • FIG. 5B is an explanatory diagram of an output processing example of the magnetic detection unit.
  • FIG. 5C is an explanatory diagram of an output processing example of the magnetic detection unit.
  • FIG. 6 is a circuit diagram of a two-phase signal generating means for creating A phase and B phase.
  • FIG. 7A is a partially cutaway side view of a bearing with force, rotation sensor according to a second embodiment.
  • FIG. 7B is a ZZ sectional view of FIG. 7A.
  • FIG. 7C is a sectional view taken along the line Y—Y in FIG. 7A.
  • FIG. 8 is a partial cross-sectional view of a modification of the bearing with a rotation sensor according to the second embodiment.
  • FIG. 9A is an explanatory diagram of magnetic sensor output in the second embodiment.
  • FIG. 9B is an explanatory diagram of a magnetic sensor output in the second embodiment.
  • FIG. 10 is a block diagram of a processing circuit in the same embodiment.
  • FIG. 11 is an explanatory diagram of a conversion process of an absolute position conversion unit.
  • Fig. 12 is a partial cross-sectional view of a rotation sensor-equipped bearing according to a third embodiment of the present invention.
  • FIG. 13A is a perspective view of each example of the detected part.
  • FIG. 13B is a perspective view of each example of the detected part.
  • FIG. 14 is a waveform diagram of an output example of each magnetic sensor.
  • FIG. 15 is a sectional view of a conventional example.
  • FIG. 16 is a front view showing the relationship between the detected part and the magnetic detection part of the conventional example.
  • FIG. 17 is a waveform diagram of sensor output of the conventional example.
  • the rotation sensor bearing includes a bearing portion 1 having a rotating side race ring 2 and a fixed side race ring 3 that are rotatable with respect to each other via a rolling element 4, and a cover provided at one end of the rotation side race ring 2.
  • a detection unit 7, a magnetic detection unit 8 attached to one end of the stationary-side race 3 against the detection unit 7, and a magnetic detection circuit board 11 are provided.
  • the bearing portion 1 is a deep groove ball bearing.
  • the inner ring is a rotating raceway ring 2 and the outer ring is a fixed side raceway ring 3.
  • the raceway surfaces 2 a and 3 a of the rolling element 4 are formed on the outer diameter surface of the rotation side raceway ring 2 and the inner diameter surface of the fixed side raceway ring 3, and the rolling element 4 is held by a cage 5.
  • the annular space between the rotating side raceway ring 2 and the fixed side raceway ring 3 is sealed with the seal member 6 at the end opposite to the installation side of the detected part 7 and the magnetic detection part 8. It is sealed.
  • the detected part 7 is of a radial type and is an annular part in which the magnetic characteristics with respect to the magnetic detection part 8 are periodically and continuously changed in the circumferential direction. This magnetic property changes over two periods with one rotation of the rotating side raceway 2 and here is P period (P is an integer of 2 or more).
  • the detected portion 7 includes an annular back metal 7b and a pole pair of magnetic poles N and S that are provided on the outer circumferential side thereof and change alternately along the circumferential direction (one pole pair including N and S).
  • Has P magnetized magnetic bodies 7a This detected portion 7 is fixed to the rotating side race 2 via a back metal 7b.
  • a rubber magnet is used as the magnetic body 7a and is vulcanized and bonded to the back metal 7b.
  • the magnetic body 7a may be formed of a plastic magnet or a sintered magnet. In this case, the back metal is not necessarily provided.
  • the magnetic detection unit 8 includes two magnetic sensors 8a and 8b that generate an output signal corresponding to the magnetic flux density. These two magnetic sensors 8a and 8b are arranged at a predetermined interval in the circumferential direction as shown in Fig. IB. Here, the predetermined interval is electrically provided with a phase difference of 90 °, that is, with a phase difference of 90 ° in the period of one pole pair (360 °) of the detected portion 7. . Both of these magnetic sensors 8a and 8b are composed of analog output sensors. For example, a Hall element or an analog output Hall IC can be used. These magnetic detectors 8a and 8b are mounted on a magnetic detection circuit board 11 as shown in FIG.
  • the resin case 9 is fixed to the stationary race 3 via the metal case 10, so that the magnetic detectors 8 a and 8 b and the magnetic detection circuit board 11 are attached to the fixed race 3.
  • the magnetic detection circuit board 11 is a board on which a circuit for supplying power to the magnetic detection unit 8 and a signal processing circuit 12 for processing the output signal of the magnetic detection unit 8 and outputting the processed signal to the outside are mounted.
  • the signal processing circuit 12 is provided with an interpolating means 31 (Fig. 1C) that interpolates and divides the signal of the detected portion 7 detected by the magnetic sensors 8a and 8b every period. Further, a pulse conversion unit 16 that performs pulse conversion of the output divided by the interpolation division means 31 is provided after the inner division means 31.
  • the inner saddle dividing means 31 performs n division (n is an integer of 2 or more) based on the inner saddle, for example.
  • FIG. 2 shows waveforms of detection signals of the magnetic sensors 8a and 8b accompanying the rotation of the rotation-side raceway ring 2.
  • the number P of pole pairs magnetized on the magnetic body 7a of the detected portion 7 is 8, and the P-period (this phase difference is 90 ° during the rotation of the rotating side race ring 2).
  • a sinusoidal signal of 8 cycles is obtained.
  • an analog output Hall IC is used as the magnetic detection unit 8
  • FIG. 3 shows an example of a process for interpolating and dividing one cycle of a 90 ° phase difference sine wave by the inner saddle dividing means 31.
  • Output ratio b / a obtained by dividing the output signal of the magnetic sensor 8b by the output signal of the magnetic sensor 8a, where the midpoint (Vc / 2) of the output of the magnetic sensors 8a and 8b is 0 (dotted line in the figure)
  • a correction table 15a showing the relationship between the output ratio b / a and the position based on the quadrant position within one cycle of the sine wave obtained from the quadrant discrimination of the magnetic sensors 8a and 8b (Fig. 4) ° You can know the position within. Based on the position values obtained in this way, the range of 360 ° in electrical angle is interpolated.
  • FIG. 4 is an example of a signal processing circuit that generates a rotation pulse signal from the signals of the two magnetic sensors 8 a and 8 b, and the signal processing circuit 12 is mounted in the magnetic detection circuit board 11.
  • the signal processing circuit 12 includes interpolation division means 31 and a pulse conversion unit 16 at the subsequent stage.
  • the interpolating / dividing means 31 includes a divider 13 for obtaining the output ratio of the magnetic sensors 8a and 8b, a quadrant determining unit 14, and a correction calculating unit 15.
  • the correction calculating unit 15 is provided with a correction table 15a. . Assuming that the output of the magnetic sensor 8a is a and the output of the magnetic detector 8b is b, the divider 13 obtains the output ratio bZa.
  • the output ratio can be obtained by analog signal processing, or digital processing can be performed by incorporating an AZD conversion circuit (not shown) in the input stage of the divider 13. Further, the quadrant determination unit 14 determines a quadrant of a range of 360 ° by the electrical angle obtained from one pole pair of the detected unit 7, and outputs the determination result to the correction calculation unit 15.
  • the correction calculation unit 15 The storage table (not shown) has a correction table 15a in which the output ratio b / a is previously associated with the electrical angle, and the input output ratio b / a is associated with the correction table 15a. Based on the result of quadrant discrimination, a rotation position detection signal is generated by dividing the range of electrical angle 360 ° by n. If a one-chip microcomputer incorporating an AZD converter and a memory is used as the processing circuit 12, the circuit is simplified and convenient.
  • the correction calculation unit 15 takes out the detection signal of the rotation position divided by n as a code output in multiple bits, and the pulse conversion unit 16 The code output is converted to pulse output.
  • the pulse converter 16 may also have a two-phase signal generation means 16a for generating the A phase and the B phase by the code output bit operation as follows. That is, as shown in FIG. 6, the two-phase signal generating means 16a performs exclusive OR of the bit 1 signal on the A phase and the bit 0 and the bit 1 in the n-divided code output obtained in FIG. 5A. Let the captured signal be phase B. This gives the same general encoder signal.
  • the interpolation division method is based on the output ratio of the magnetic sensors 8a and 8b.
  • the interpolation division means 31 is based on the sine wave output of the magnetic sensors 8a and 8b.
  • Other interpolation division methods such as the interpolation division method using the resistance division method may be used.
  • FIG. 7 to 11 show a second embodiment corresponding to the second configuration of the present invention.
  • the absolute position of the rotating side race ring 2 is not known, and it is used like an incremental encoder.
  • one rotation of the rotating side race ring 2 is high resolution. Force also enables absolute position detection.
  • the difference from the first embodiment in FIG. 1A is that the back metal 7b of the detected part 7 'is fixed and the detected part 18 for absolute position detection in which one pole pair is magnetized is fixed, and the position facing it. This is the addition of the magnetic detector 19 to the above.
  • the detected part 7 ' is for detecting the detailed position.
  • the detected portion 7 in the first embodiment has the same configuration except that the detected portion 18 for absolute position detection can be attached.
  • the detected portion 18 for absolute position detection includes an annular back metal 18b and a magnetic material 18a magnetized with a pole pair of magnetic poles N and S changing along the circumferential direction provided on the outer periphery thereof. Have.
  • the detected portion 18 is press-fitted and fixed to the back metal 7b ′ of the detected portion 7 ′ via the back metal 18b.
  • a rubber magnet is used as the magnetic body 18a, and is vulcanized and bonded to the back metal 18b.
  • the magnetic body 18a may be formed of a plastic magnet or a sintered magnet in addition to a rubber magnet, and the back metal 18b is not necessarily provided.
  • the magnetic body 18a of the detected part 18 for absolute position detection and the magnetic body 7a 'of the detected part 7' for detailed position detection maintain a constant gap 20, and mutual magnetic force is maintained. This prevents the magnetic detectors 8 and 19 from disturbing the output.
  • the magnetic detection unit 19 includes two magnetic sensors 19a and 19b that generate output signals corresponding to the magnetic flux density. These two magnetic sensors 19a and 19b are arranged with a predetermined interval (electrically 90 ° phase difference here) in the circumferential direction as shown in FIG. 7C. Both of these magnetic sensors 19a and 19b are composed of analog sensors. For example, the use of a Hall element, an analog output Hall IC, and the like can be achieved. These magnetic sensors 19a and 19b are mounted on the magnetic detection circuit board 11 ′ as shown in FIG. 7A.
  • FIG. 8 shows an example of this case where the detected part ⁇ and the detected part 18 may be integrated with each other.
  • Two magnetic bodies 21a and 21c are provided on the outer periphery of the back metal 21b, and a gap 21d is formed between them so that the mutual magnetic force is not affected.
  • FIG. 9A and 9B show the outputs of the magnetic sensors 8a 'and 8b' and the magnetic sensors 19a and 19b.
  • FIG. 9A shows the outputs of the magnetic sensors 8a ′ and 8b ′ obtained when the rotation-side race 2 rotates once, and is the same as the output shown in FIG.
  • Fig. 9B shows the output of the magnetic sensors 19a and 19b obtained when the rotating side race ring 2 makes one rotation.
  • This signal force is interpolated and divided in the same manner as described above together with Fig. 3, so that the rotating side race ring is It becomes possible to know the absolute position during one rotation of 2.
  • FIG. 10 shows an example of the processing circuit.
  • This signal processing circuit 22 and the signal processing circuit 12 in FIG. The difference is that an interpolation division means 32 for processing the signals of the magnetic sensors 19a and 19b is added, and an absolute position conversion unit 23 is provided in place of the pulse conversion unit 16.
  • the interpolation division means 32 is a circuit that knows the absolute position of the rotating side raceway ring 2 during one rotation from the 90 ° phase difference signal of one rotation per rotation of the rotation side raceway ring 2 obtained from the magnetic sensors 19a and 19b. It is.
  • the order of the sine waves generated by the P period of the magnetic sensors 8a 'and 8b' obtained with the rotation of the rotating side race 2 shown in Fig. 7A is specified. it can. For this reason, the rotation angle of the rotating side race 2 can be identified as an absolute position.
  • the inner shell dividing means 32 in the lower part of FIG. 10 serves as a divider 13 3 ′ for obtaining the output ratio of the magnetic sensors 19 a and 19 b, a quadrant determining unit 1, and a correction calculating means 15 ′.
  • the divider 13 3 ' finds the output ratio b 1' / ⁇ ⁇ '.
  • the method for obtaining the output ratio may be obtained by analog signal processing, or digital processing may be performed by incorporating an A / D conversion circuit (not shown) in the input stage of the divider 13 '.
  • the quadrant discriminating unit 1 discriminates the range of 360 ° (in this case, the mechanical angle is also 360 °) from the electrical angle obtained from the detected portion 18 and inputs the discrimination result to the correction calculation unit 15 5 ′.
  • the correction calculation means 15 ′ has a correction table 15a ′ in which the correspondence between the output ratio and the electrical angle is stored in the storage means, and the input output ratio bl ′ / al ′ is corrected to the correction table 1
  • the absolute position ⁇ 'of the rotating side race ring 2 is obtained from the result corresponding to 5 and the quadrant discrimination result. Note that the absolute position ⁇ 'is used for knowing what number of the plurality of sine waves obtained from the magnetic sensor 8a 8 corresponds to, so accurate absolute position detection is unnecessary.
  • the interpolation / splitting means 31 shown in the upper part of FIG. 10 is the same as FIG.
  • this inner splitting means 31 information on the electrical angle ⁇ obtained from the magnetic sensor output processing on the magnetization side of the multipole pair and the absolute position ⁇ 'obtained from the magnetic sensor output processing on the magnetization side of the single pole pair
  • the absolute position conversion unit 23 can obtain the absolute position output with high resolution.
  • FIG. 11 shows internal processing of the absolute position conversion unit 23.
  • the code output ⁇ represented by multiple bits that repeatedly outputs 0 to n-1 during one rotation of the rotating side ring 2 is the lower bit side of the output of the absolute position conversion unit 23, and Based on the rough absolute position ⁇ ' Then, what cycle corresponds to ⁇ . This is expressed in binary code and added to the upper bits of the absolute position converter. The final absolute position is output. By doing so, it is possible to display the absolute position detection of the rotating raceway ring 2 with high resolution. In addition, the accuracy is better than the absolute position resolution obtained by dividing the sine wave of one cycle by one rotation of the rotating side race 2 into the inner ring.
  • FIG. 12 shows a third embodiment in which an origin signal generating means 33 is added to the first embodiment.
  • an origin signal generating means 33 is added to the first embodiment.
  • the origin signal is output at least once after the power is turned on. If it can be detected, it is possible to identify the number of sine wave outputs generated in multiple cycles.
  • the detected part 24 has substantially the same configuration as the detected part 7 shown in FIG. 1, but in order to detect the origin signal, the detected part 24 alternates between 13 and S as shown in FIG. Convex portions 24c (or 24) are formed so that the magnetized portion of the continuous magnetized portion 24a magnetized in the length direction of the first to third magnetized widths is elongated in the axial direction. This convex part 24c (or 24) becomes the detected part for the origin signal.
  • a detection unit 25 for detecting the origin is arranged opposite to the convex portions 24c and 24cH. Magnetization of the detected part 24 can be performed simultaneously with the continuous magnetized part 24a and the convex part 24c (or 24), so that no special magnetized yoke is required.
  • the portions other than the convex portions 24c, 24 that are magnetized for the origin signal are concave portions 24b that are one step lower. Therefore, the gap with the origin detection unit 25 becomes large, and even if the recess 24b is slightly magnetized, the origin detection unit 25 does not detect the magnetic force at the recess 24b, and there is no risk of malfunction. .
  • a one-side magnetic field type Hall IC that outputs a digital signal can be used. Turns on when the S pole approaches the surface of the Hall IC, and turns off when the N pole or the recess 24b approaches.
  • FIG. 14 shows an output example of the third embodiment.
  • the signal processing of the magnetic detector 8 that detects the magnetism of the continuous magnetized portion 24a is the same as in Fig. 4, and during the one rotation of the rotating side race 2 (mechanical angle 360 °), the continuous magnetized portion 24a
  • the code output can be repeated as many times as the number of magnetized pole pairs.
  • the origin detection unit 25 can obtain one pulse for one rotation of the rotation side raceway ring 2. If the origin signal can be detected at least once, then the code output will be Since it is possible to determine whether it is a period, absolute position detection is possible thereafter.
  • the origin signal generation unit 33 is not limited to the one that detects magnetically, but may be one that detects optically, for example. Other structural effects in the third embodiment are the same as those in the first embodiment.
  • the two magnetic sensor signals are divided, there is not much influence on the accuracy even if there is an amplitude difference between the two output signals.
  • the accuracy is improved by keeping the amplitude constant.
  • an isotropic ferrite magnet is preferred to an anisotropic ferrite magnet as the magnetic body of the detected parts 7, ⁇ ′, 24.
  • the isotropic ferrite magnet has a constant sine wave amplitude.
  • the values of the correction tables 15a and 15a 'when calculating the angle can be increased in accuracy division accuracy by including eigenvalues corrected based on actual measurement data.
  • the detected portion 7, T, 24 of the radial method is used, but it may be an axial type.
  • the processing circuit 12 and the like have been described as being mounted on the magnetic detection circuit board 11, all or a part of the circuit may be placed in the middle of an output cable (not shown), and processing may be performed on the external circuit side. A circuit function may be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

 着磁幅を狭めることなく、高分解能化した回転センサ付軸受を提供する。回転側軌道輪2に、磁気特性を円周方向に周期的に変化させた被検出部7を取付ける。被検出部7の磁気特性は、回転側軌道輪2の1回転に対して2周期以上に変化させる。被検出部7に対向してアナログ出力の磁気センサ8a,8bからなる磁気検出部8を設ける。磁気検出部8により検出される信号を周期毎に内挿して分割する内挿分割手段31を設ける。

Description

明 細 書
回転センサ付軸受
技術分野
[0001] この発明は、各種の機器に用いられて機器制御のための回転検出、たとえば、小 型モータの回転制御や、事務機器の位置検出のための回転検出等に使用すること ができ、小型で高分解能の要求される用途等に用レ、られる回転センサ付軸受に関す る。
背景技術
[0002] 回転センサ付軸受の一般的な形状を図 15に示す。図 15において、回転センサ付 軸受 51は、回転側軌道輪である内輪 52、固定側軌道輪である外輪 53、転動体 54、 保持器 55からなる転がり軸受で構成されており、回転側(たとえば内輪 52側)に環状 の磁気エンコーダ 56が固定され、非回転側(たとえば外輪 53側)に磁気センサ 57a, 57bが上記磁気エンコーダ 56に対向して固定されている。磁気センサ 57a, 57bとし ては、ホール素子、ホール ICなどが使われる。磁気エンコーダ 56は、例えばゴム磁 石からなり、図 16に示すように円周方向に N極と S極を交互に着磁したものである。 磁気センサ 57a, 57bは、樹脂ケース 58内に挿入された状態で樹脂モールドされ、こ の樹脂ケース 58は金属ケース 59を介して外輪 53に嵌着させることで、外輪 53に固 定されている。図 16に磁気センサの配置を示す。 2つの磁気センサ 57a, 57bは出 力位相差 (電気角)が 90° になるように配置されてレ、る。
このように構成することにより、内輪 52の回転に伴い、磁気センサ 57a, 57bが磁気 エンコーダ 56の磁気変化を検出し、その検出信号は図 17のように位相が 90° ずれ たインクリメンタルな回転パルス信号となる。この信号から内輪 52の回転数や回転方 向を知ること力 Sできる。
この種の回転センサ付軸受は、小型でかつ組立調整が不要であり、さらに堅牢など の特徴を有しており、モータ支持軸受などに利用されている。
発明の開示
[0003] 上記従来例のような構成で 1回転当りの出力パルス数を増やして高分解能化する ためには、図 16に示す磁気エンコーダ 56の極数を増やして 1極当りの着磁幅を小さ くする必要がある。しかし、着磁幅が小さくなるほど磁気エンコーダ 56の着磁強度が 弱くなるため、磁気センサ 57a, 57bでの検出が難しくなる。たとえば、磁気ェンコ一 ダ 56の外径を 15mm、 N, S合わせた着磁極数を 100とした場合、一極当りの着磁 幅は約 0. 47mm (15 X π + 100)となる力 着磁幅が小さくなればなるほど着磁も難 しくなる。特に、一発着磁法の場合には、着磁極幅が小さくなるに従いコイル線径が 細くなるため、大電流を流すことが難しくなる。インデックス着磁法であれば着磁幅が 小さくなつても着磁は可能である力 S、インデックス着磁法では生産性が悪い。
[0004] さらに、着磁強度が小さい場合、磁気エンコーダ 56と磁気センサ 57a, 57bの隙間 を狭くする必要がある。しかし、回転中における両者の接触を避けるためには、ある 程度の隙間管理が必要であるため、隙間範囲は制限される。カロえて、 A相、 B相の 2 相出力方式の場合、それらの信号を検出する磁気センサ 57a, 57bを電気角で 90° の位相差出力が得られるように配置する必要がある力 着磁幅が狭くなればなるほど 磁気センサ 57a, 57bの取付け誤差が出力位相に与える影響は大きくなる。そのため 、磁気センサ 57a, 57bの位置合わせにおける機械的ガタがあれば、 90° 位相差は 大きくずれることになる。この例の場合、 0. 1mmのずれが約 38度の電気角のずれに なるため、磁気センサ 57a, 57bを固定するための樹脂ケース 58のピッチ公差を厳し くする必要がある。
上述のように、従来の構成で出力パルスを高分解能化することは難しぐ小径軸受 を用いた回転センサ付軸受の出力ノ^レス数は概ね 100パルス以下が一般的であり、 高分解能が必要となる分野への適用はあまりなかった。
[0005] この発明の目的は、着磁幅を狭めることなぐ高分解能化した回転センサ付軸受を 提供することにある。
[0006] この発明の第 1構成に係る回転センサ付軸受は、回転側軌道輪、固定軌道輪、お よび転動体からなる転がり軸受部と、回転側軌道輪に取付けられ磁気特性を円周方 向に周期的に変化させた被検出部と、この被検出部に対向したアナログ出力の磁気 センサからなる磁気検出部とを備え、上記被検出部の上記磁気検出部に対する磁気 特性を、回転側軌道輪の 1回転に対して 2周期以上に変化させ、上記磁気検出部に より検出される上記被検出部の信号を周期毎に内挿して分割する内挿分割手段を 設けたことを特徴とする。
この構成によると、磁気検出部により検出される被検出部の検出信号を、内挿分割 手段により周期毎に内挿して分割するようにしたため、 1回転における被検出部の周 期の数に分割数を乗じた数の分解能が得られる。このため、被検出部の周期の数を 増やすことなく高分解能化でき、したがって着磁幅を狭めることなく高分解能化できる
[0007] 上記第 1構成において、上記内揷分割手段により分割された出力信号をパルス変 換するパルス変換部を設けても良い。
このパルス変換部を設けた場合、回転検出信号力 Sパルス信号で得られるため、一 般的な回転センサと同様に出力を扱うことができる。
[0008] また、上記第 1構成において、回転側軌道輪に取付けられた被検出部と、この被検 出部に対向して配置された検出部とでなる原点信号の生成手段を追加しても良い。 このように原点信号生成手段を設けた場合、回転検出の開始後に原点信号が 1回 でも検出できれば、その後は、上記のように 1回転に対して 2周期以上に変化させた 被検出部の信号を内挿分割した信号について、絶対位置を認識することができ、高 分解能での絶対位置検出が可能になる。
[0009] この発明の第 2構成に係る回転センサ付軸受は、回転側軌道輪、固定軌道輪、お よび転動体からなる転がり軸受部と、回転側軌道輪に取付けられ磁気特性をそれぞ れ円周方向に周期的に変化させた 2つの被検出部と、これら被検出部にそれぞれ対 向して配置されたアナログ出力の磁気センサからなる 2つの磁気検出部とを備える。 上記 2つの被検出部の内の一つが上記磁気検出部に対する磁気特性を回転側軌 道輪の 1回転に対して 2周期以上に変化させた詳細位置検出用のものであり、他の 一つが磁気検出部に対する磁気特性を回転側軌道輪の 1回転に対して 1周期の変 化とした絶対位置検出用のものであり、上記各磁気検出部の信号をそれぞれ周期毎 に内挿して分割する 2つの内揷分割手段を設ける。
この構成の場合、詳細位置検出用の被検出部と、これに対向する磁気検出部およ び内挿分割手段により、第 1構成の場合と同じぐ 1回転における被検出部の周期の 数に分割数を乗じた数の分解能が得られ、着磁幅を狭めることなく高分解能化できる 。また、絶対位置検出用の被検出部と、これに対向する磁気検出部および内挿分割 手段により、絶対位置を検出することができる。この場合に、絶対位置検出用の被検 出部に対しても内挿分割手段を設けたため、回転検出の開始時から絶対位置の検 出が可能になる。
[0010] 上記第 2構成において、絶対位置検出用の被検出部に対応する内挿分割手段より 得られる絶対位置の信号を元にして、詳細位置検出用の被検出部に対応する内揷 分割手段より得られる信号の絶対位置を算出する絶対位置変換部とを設けても良い 。このように、絶対位置変換部を設けた場合、高分解能での絶対位置の検出が行え る。
[0011] 上記第 1および第 2構成の回転センサ付軸受において、被検出部の磁性材として 等方性磁石を用いても良い。
被検出部に等方性磁石を用いると、異方性磁石を用いた場合よりも検出信号の振 幅が安定する。そのため、より高精度化が可能である。
図面の簡単な説明
[0012] この発明は、添付の図面を参考にした以下の好適な実施例の説明から、より明瞭 に理解されるであろう。し力、しながら、実施例および図面は単なる図示および説明の ためのものであり、この発明の範囲を定めるために利用されるべきものではなレ、。この 発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面に おける同一の部品番号は、同一部分を示す。
[図 1A]この発明の第 1の実施形態に力、かる回転センサ付軸受の部分破断側面図で ある。
[図 1B]同回転センサ付軸受の被検出部,磁気検出部の正面図である。
[図 1C]同回転センサ付軸受の処理回路の概略ブロック図である。
[図 2]磁気センサ出力の説明図である。
[図 3]磁気センサ出力から内挿分割を行う処理の説明図である。
[図 4]処理回路のブロック図である。
[図 5A]磁気検出部の出力の処理例の説明図である。 [図 5B]磁気検出部の出力の処理例の説明図である。
[図 5C]磁気検出部の出力の処理例の説明図である。
[図 6]A相, B相を作る 2位相信号生成手段の回路図である。
[図 7A]第 2の実施形態に力、かる回転センサ付軸受の部分破断側面図である。
[図 7B]図 7Aの Z— Z断面図である。
[図 7C]図 7Aの Y— Y断面図である。
[図 8]第 2の実施形態に力、かる回転センサ付軸受の変形例の部分断面図である。
[図 9A]第 2の実施形態における磁気センサ出力の説明図である。
[図 9B]第 2の実施形態における磁気センサ出力の説明図である。
[図 10]同実施形態における処理回路のブロック図である。
[図 11]絶対位置変換部の変換処理の説明図である。
[図 12]この発明の第 3の実施形態に力かる回転センサ付軸受の部分断面図である。
[図 13A]その被検出部の各例の斜視図である。
[図 13B]その被検出部の各例の斜視図である。
[図 14]各磁気センサの出力例の波形図である。
[図 15]従来例の断面図である。
[図 16]同従来例の被検出部と磁気検出部の関係を示す正面図である。
[図 17]同従来例のセンサ出力の波形図である。
発明を実施するための最良の形態
この発明の第 1の実施形態を図 1ないし図 6と共に説明する。図 1Aにおいて、回転 センサ付軸受は、転動体 4を介して互いに回転自在な回転側軌道輪 2および固定側 軌道輪 3を有する軸受部 1と、回転側軌道輪 2の一端部に設けた被検出部 7と、この 被検出部 7に対抗して固定側軌道輪 3の一端部に取付けられた磁気検出部 8と、磁 気検出回路基板 11とを備える。軸受部 1は深溝玉軸受からなり、たとえば、その内輪 が回転軌道輪 2となり、外輪が固定側軌道輪 3となる。回転側軌道輪 2の外径面およ び固定側軌道輪 3の内径面には転動体 4の軌道面 2a、 3aが形成されており、転動体 4は保持器 5で保持されている。回転側軌道輪 2と固定側軌道輪 3の間の環状空間 は、被検出部 7および磁気検出部 8の設置側とは反対側の端部がシール部材 6で密 封されている。
[0014] 被検出部 7はラジアル型のものであって、磁気検出部 8に対する磁気特性を円周方 向に周期的にかつ連続的に変化させた環状の部品とされている。この磁気特性は、 回転側軌道輪 2の 1回転で 2周期以上変化するものであって、ここでは P周期(Pは 2 以上の整数)とする。具体的には、被検出部 7は、環状のバックメタル 7bと、その外周 側に設けられ円周方向に沿って交互に変化する磁極 N, Sの極対 (N, S合わせて 1 極対)が P個着磁された磁性体 7aとを有する。この被検出部 7はバックメタル 7bを介し て回転側軌道輪 2に固着されている。磁性体 7aはたとえばゴム磁石が用いられ、バッ クメタル 7bに加硫接着される。磁性体 7aはプラスチック磁石や焼結磁石で形成され たものであっても良ぐこの場合は、バックメタルは必ずしも設けなくても良レ、。
[0015] 磁気検出部 8は、磁束密度に対応した出力信号を発生する 2つの磁気センサ 8a, 8 bからなる。これら 2つの磁気センサ 8a, 8bは図 IBのように円周方向に所定の間隔を 持たせて配置されている。ここでは、上記所定の間隔として、電気的に 90° 位相差 を持たせて、つまり被検出部 7の 1極対の周期(360° )における 90° の位相差を持 たせて配置されている。これら両磁気センサ 8a, 8bは共にアナログ出力のセンサか らなり、たとえば、ホール素子、アナログ出力のホール ICなどを使用することができる 。これら磁気検出部 8a, 8bは、図 1Aのように磁気検出回路基板 11に実装され、この 磁気検出回路基板 11と共に樹脂ケース 9内に挿入した後に樹脂モールドされる。こ の樹脂ケース 9を、金属ケース 10を介して固定側軌道輪 3に固定することにより、磁 気検出部 8a, 8bおよび磁気検出回路基板 11が固定軌道輪 3に取付けられている。 磁気検出回路基板 11は、磁気検出部 8への電力供給を行う回路、および磁気検出 部 8の出力信号を処理して外部に出力するための信号処理回路 12を実装した基板 である。
[0016] この信号処理回路 12に、磁気センサ 8a, 8bにより検出される被検出部 7の信号を 周期毎に内挿して分割する内挿分割手段 31 (図 1C)が設けられている。また内揷分 割手段 31の後段に、内挿分割手段 31で分割された出力をパルス変換するパルス変 換部 16が設けられている。内揷分割手段 31は例えば次のように内揷による n分割(n は 2以上の整数)を行う。 [0017] 図 2は、回転側軌道輪 2の回転に伴う磁気センサ 8a, 8bの検出信号の波形を示す 。この例は、被検出部 7の磁性体 7aに着磁した極対の個数 Pが 8の場合であり、回転 側軌道輪 2が 1回転する間に、位相差が 90° の P周期(この例の場合には 8周期)の 正弦波状の信号が得られる。磁気検出部 8としてアナログ出力のホール ICを用いた 場合、その電源電圧 Vcの半分の値 VcZ2を基準として、磁性体 7aに着磁した 1極対 の磁極 N, Sごとに 1周期の正弦波出力(1Χ、 2Χ· · ·、 8Χ Ρ = 8の場合)が得られる。 これらの出力信号を電気的に処理することで、 1極対で得られる正弦波信号を内挿し て η分割すれば (ηは 2以上の整数)、回転側軌道輪 2の 1回転を η Χ Ρ分割すること になる。たとえば、分割数 ηが 32、対極数 Ρが 8であれば、回転側軌道輪 2の 1回転を 32 X 8 = 256分割するようになり、着磁ピッチを小さくすることなく高分解能化が図ら れる。すなわち、着磁幅を小さくすることなく高分解能化が図られる。
[0018] 図 3は、上記内揷分割手段 31によって、 90° 位相差の正弦波 1周期を内挿分割 する処理の一例を示す。磁気センサ 8a, 8bの出力の中点(Vc /2)を 0として、磁気 センサ 8bの出力信号を磁気センサ 8aの出力信号で割ることで得られる出力比 b/a ( 図中 1点鎖線)と、磁気センサ 8a, 8bの象限判別から得られる正弦波 1周期内の象 限位置を元にして、出力比 b/aと位置の関係を示す補正テーブル 15a (図 4)カ 電 気角 360° 内の位置を知ることができる。このようにして得た位置の値を元にして電 気角で 360° の範囲を内挿分割する。
[0019] 図 4は 2つの磁気センサ 8a, 8bの信号から回転パルス信号を作る信号処理回路の 例であり、信号処理回路 12は磁気検出回路基板 11内に実装されている。この信号 処理回路 12は、内挿分割手段 31とその後段のパルス変換部 16とからなる。内挿分 割手段 31は、磁気センサ 8a, 8bの出力比を求める除算器 13、象限判別部 14、およ び補正演算部 15からなり、補正演算部 15に補正テーブル 15aが設けられている。磁 気センサ 8aの出力を a、磁気検出部 8bの出力を bとすると、除算器 13はその出力比 bZaを求める。出力比の求め方は、アナログ信号処理で求めても良いし、除算器 13 の入力段に図示しない AZD変換回路を内蔵させてデジタル的な処理をしても構わ なレ、。また、象限判別部 14は、被検出部 7の 1極対から得られる電気角で 360° の 範囲を象限判別し、その判別結果を補正演算部 15に出力する。補正演算部 15は、 予め出力比 b/aと電気角との対応を付けた補正テーブル 15aを記憶手段(図示せ ず)に有しており、入力された出力比 b/aを補正テーブル 15aと対応させた結果と、 象限判別結果とで、電気角 360° の範囲を n分割した回転位置の検出信号を生成 する。この処理回路 12として、 AZD変換器とメモリを内蔵したワンチップマイコンを 用いれば、回路が簡略化されて好都合である。
[0020] 補正演算部 15は、図 4に点線部で示すように、 n分割した回転位置の検出信号をコ ード出力として多ビット(bit)で取り出すものとされ、パルス変換部 16はそのコード出 力をパルス出力に変換するものとされる。この場合、回転側軌道輪 2の 1回転で、図 5 A, Bに示すような 0から n-1を繰り返すコード出力が P回得られる。出力コードの最下 位ビットのみの信号を取り出せば、図 5Cに示すように回転側軌道輪 2の 1回転で n X Pパルスが得られる。たとえば、分割数 nを 256、対極数 Pを 8とすれば、 256 X 8 = 2 048パルスと高分解能が得られる。
パルス変換部 16は、次のようにコード出力のビット操作で A相, B相を作る 2位相信 号生成手段 16aを有するものとしても良レ、。すなわち、 2位相信号生成手段 16aは、 図 6に示すように、図 5Aで得られた n分割したコード出力の内、ビット 1の信号を A相 、ビット 0とビット 1の排他的論理和を取った信号を B相とする。これにより一般的なェ ンコーダ信号と同じものが得られる。
[0021] なお、上記実施形態では、内挿分割の手法として磁気センサ 8a, 8bの出力比を元 に求めたが、内挿分割手段 31は、磁気センサ 8a, 8bの正弦波出力を元にした抵抗 分割方式による内挿分割方法など、他の内挿分割方法を用レ、るものであっても構わ ない。
[0022] 図 7ないし図 11はこの発明の第 2構成に対応する第 2の実施形態を示す。第 1の実 施形態では、回転側軌道輪 2の絶対位置は分からず、インクリメンタルエンコーダの ような使い方となるが、第 2の実施形態は、回転側軌道輪 2の 1回転を高分解能でし 力、も絶対位置検出を可能にしたものである。
図 1Aの第 1の実施形態との違いは、被検出部 7'のバックメタル 7b こ 1つの極対 の着磁を施した絶対位置検出用の被検出部 18を固着し、それに対向する位置に磁 気検出部 19を追加したことである。被検出部 7'は、詳細位置の検出用のものであり 、第 1の実施形態における被検出部 7とは、絶対位置検出用の被検出部 18を取付可 能としたことを除いて同じ構成である。絶対位置検出用の被検出部 18は、環状のバ ックメタル 18bと、その外周に設けられた周方向に沿って変化する磁極 N, Sの極対 力^つ着磁された磁性体 18aとを有する。この被検出部 18は、バックメタル 18bを介し て被検出部 7'のバックメタル 7b'に圧入固着されている。磁性体 18aは、たとえばゴ ム磁石が用いられ、バックメタル 18bに加硫接着される。磁性体 18aはゴム磁石の他 にプラスチック磁石や焼結磁石で形成されたものであっても良ぐバックメタル 18bは 必ずしも設けなくても良い。なお、絶対位置検出用の被検出部 18の磁性体 18aと詳 細位置検出用の被検出部 7'の磁性体 7a'とは、一定の隙間 20を保っており、お互 いの磁力が影響して磁気検出部 8, 19の出力が乱れるのを防止している。
[0023] 図 7Aの断面 Z_Zを図 7Bに、断面 Y— Yを図 7Cにそれぞれ示す。なお、断面 Z— Z を示す図 7Bは、図 1Bと同じ構成であるため説明を省略する。磁気検出部 19は、磁 束密度に対応した出力信号を発生する 2つの磁気センサ 19a, 19bからなる。これら 2つの磁気センサ 19a, 19bは、図 7Cのように円周方向に所定の間隔(ここでは電気 的に 90° 位相差)を持たせて配置されている。これら両磁気センサ 19a, 19bは共に アナログセンサからなり、たとえば、ホール素子、アナログ出力のホール ICなどを使用 すること力 Sできる。これら磁気センサ 19a, 19bは、図 7Aのように磁気検出回路基板 1 1' に実装される。
[0024] なお、被検出部^と被検出部 18とは互いに一体化した構成でも良ぐこの場合の 一例を図 8に示す。バックメタル 21bの外周上には 2つの磁性体 21a、 21cが設けら れ、その間にはお互いの磁力が影響しないように隙間 21dが形成されている。
[0025] ここでは図 7Aを参照して説明を行う。磁気センサ 8a', 8b'と磁気センサ 19a, 19b の出力を図 9Aおよび図 9Bに示す。図 9Aは、回転側軌道輪 2が 1回転した時に得ら れる磁気センサ 8a', 8b'の出力であり、図 2に示した出力と同じである。図 9Bは回転 側軌道輪 2が 1回転した時に得られる磁気センサ 19a, 19bの出力を表しており、この 信号力 図 3と共に前述したと同様に内挿して分割することで、回転側軌道輪 2の 1 回転中の絶対位置を知ることが可能となる。
[0026] 図 10はその処理回路例である。この信号処理回路 22の図 4の信号処理回路 12と の相違は、磁気センサ 1 9a, 1 9bの信号を処理する内挿分割手段 32が追加され、か つ絶対位置変換部 23がパルス変換部 16に代えて設けられていることである。内挿 分割手段 32は、磁気センサ 1 9a, 19bから得られる回転側軌道輪 2の 1回転で 1周期 の 90° 位相差信号から、回転側軌道輪 2の 1回転中の絶対位置を知る回路である。 これら内揷分割手段 32および絶対位置変換部 23の追加により、図 7Aに示す回転 側軌道輪 2の回転に伴って得られる磁気センサ 8a', 8b'の P周期発生する正弦波の 順番が特定できる。このため、回転側軌道輪 2の回転角を絶対位置として識別可能と なる。
[0027] 図 10の下部の内揷分割手段 32は、磁気センサ 1 9a, 1 9bの出力比を求める除算 器 1 3' 、象限判別部 1 、および補正演算手段 15' 力 なる。磁気センサ 19aの 出力を a l ' 、磁気検出部 19bの出力を b l ' とすると、除算器 1 3' はその出力比 b l ' /Ά Ι ' を求める。出力比の求め方は、アナログ信号処理で求めても良いし、除算 器 1 3' の入力段に図示しない A/D変換回路を内蔵させてデジタル的な処理をし ても構わない。象限判別部 1 は、被検出部 18から得られる電気角で 360° (この 場合は機械角も 360° )の範囲を象限判別して、その判別結果を補正演算手段 1 5 ' に入力する。補正演算手段 1 5' は、予め出力比と電気角との対応を付けた補正 テーブル 1 5a' を記憶手段に有しており、入力された出力比 b l ' /a l ' を補正テ 一ブル 1 5 と対応させた結果と象限判別結果とで、回転側軌道輪 2の絶対位置 Θ ' を求める。なお、この絶対位置 Θ ' は、磁気センサ 8a 8 から得られる複数の 正弦波が何番目に相当するかを知るためのものであるので、正確な絶対位置検出は 不要である。図 10の上部に示した内挿分割手段 31は、図 4と同じであるため説明は 省略する。この内揷分割手段 31により、多極対の着磁側の磁気センサ出力処理から 得られる電気角 Θの情報と、 1極対の着磁側の磁気センサ出力処理から得られる絶 対位置 Θ ' を元に、絶対位置変換部 23からは高分解能化した絶対位置出力を得る こと力 Sできる。
[0028] 図 1 1は、絶対位置変換部 23の内部処理を示す。回転側軌道輪 2が 1回転する間 に 0から n— 1を繰返し出力する複数ビットで表されるコード出力 Θを、絶対位置変換 部 23の出力の下位ビット側とし、回転側軌道輪 2の大まかな絶対位置 Θ ' を元にし て、 Θが何周期目に相当するかを求める。それを 2進コードで表したものを絶対位置 変換部の上位ビットに付け合せたもの力 最終的な絶対位置出力となる。こうすること で、回転側軌道輪 2の絶対位置検出を高分解能で表示することが可能となる。また、 回転側軌道輪 2の 1回転で 1周期の正弦波を内揷分割して得られる絶対位置分解能 に比べて精度が良くなる。
[0029] 図 12は第 3の実施形態を示すもので、第 1の実施形態に原点信号の生成手段 33 を追加したものである。第 1の実施形態では、出力コードあるいは出力パルスから回 転軌道輪 2の絶対位置検出は不可能であったが、原点信号を付加することにより、電 源投入後、最低 1回でも原点信号を検出できれば、複数周期発生する正弦波出力が 何番目のものか識別することが可能となる。
被検出部 24は、図 1に示した被検出部 7とほぼ同じ構成であるが、原点信号を検出 するため、被検出部 24は図 13Aまたは同図 Βのように、 Ν, Sを交互に着磁した連続 着磁部 24aの内、 1ないし 3着磁幅の部分だけ着磁部が軸方向に長くなるように凸部 24c (または 24 )が形成されてレ、る。この凸部 24c (または 24 )が原点信号用の 被検出部となる。この凸部 24c, 24cHこ対向して原点検出用の検出部 25が配置さ れる。被検出部 24の着磁は、連続着磁部 24aと凸部 24c (または 24 )を同時に行 えるため、特殊な着磁ヨークは不要である。なお、原点信号用として着磁される凸部 2 4c, 24 以外の部分は 1段低い凹部 24bとなっている。そのため、原点用の検出部 25との隙間が大きくなり、例え凹部 24bが僅かに着磁されていたとしても、凹部 24b では原点検出部 25は磁力を検出しないようになり、誤動作の心配はない。
[0030] 原点検出部 25としては、デジタル信号として出力する片側磁界型ホール ICが使用 できる。ホール ICの表面に S極が近づいた時にオン、 N極あるいは凹部 24bが近づ いた時にオフとなる。
[0031] 図 14は、第 3の実施形態の出力例を示す。連続着磁部 24aの磁気を検出する磁気 検出部 8の信号処理は図 4と同じであり、回転側軌道輪 2の 1回転 (機械角で 360° ) の間に、連続着磁部 24aに着磁した極対数と同じ回数だけコード出力の繰返しが得 られる。また、原点検出部 25からは、回転側軌道輪 2の 1回転で 1回のパルスが得ら れる。原点信号を少なくとも 1回検出できれば、その後は、コード出力が何番目の周 期のものであるかが判断できるため、その後は絶対位置検出が可能となる。なお、原 点信号生成部 33は、磁気的に検出するものに限らず、例えば光学的に検出するも のであっても良い。第 3の実施形態におけるその他の構成効果は第 1の実施形態と 同じである。
なお、上記各実施形態では、いずれも 2つの磁気センサ信号を除算しているため、 2つの出力信号の振幅差があってもあまり精度には影響を与えないが、磁気センサ 力 得られる正弦波振幅を一定にしたほうが精度は向上する。そのため、被検出部 7 , Ί' , 24の磁性体としては、異方性フェライト磁石よりも等方性フェライト磁石の方が 好ましレ、。等方性フェライト磁石の方が、正弦波振幅が一定になる。また角度算出す る時の上記各補正テーブル 15a, 15a' の値は、実測データを元に補正した固有値 を入れることで精度分割精度を上げることも可能である。
また上記各実施形態では、ラジアル方式の被検出部 7, T , 24としたが、アキシァ ノレタイプであっても構わない。また、処理回路 12等を磁気検出回路基板 11に実装 する形で説明してきたが、回路のすべて、あるいはその一部を図示しない出力ケー ブルの途中に入れても構わないし、外部回路側に処理回路機能を持たせても良い。

Claims

請求の範囲
[1] 回転側軌道輪、固定軌道輪、および転動体からなる転がり軸受部と、
回転側軌道輪に取付けられ磁気特性を円周方向に周期的に変化させた被検出部 と、
この被検出部に対向したアナログ出力の磁気センサからなる磁気検出部と、 上記磁気検出部により検出される上記被検出部の信号を周期毎に内挿して分割 する内挿分割手段とを備え、
上記被検出部の上記磁気検出部に対する磁気特性が、回転側軌道輪の 1回転に 対して 2周期以上に変化している回転センサ付軸受。
[2] 請求項 1に記載の回転センサ付軸受において、さらに、上記内挿分割手段により分 割された出力信号をパルス変換するパルス変換部を設けた回転センサ付軸受。
[3] 請求項 1に記載の回転センサ付軸受において、さらに、回転側軌道輪に取付けら れた被検出部と、この被検出部に対向して配置された検出部とでなる原点信号の生 成手段を設けた回転センサ付軸受。
[4] 請求項 1に記載の回転センサ付軸受において、被検出部の磁性材として等方性磁 石を用いた回転センサ付軸受。
[5] 回転側軌道輪、固定軌道輪、および転動体からなる転がり軸受部と、
回転側軌道輪に取付けられ磁気特性をそれぞれ円周方向に周期的に変化させた
2つの被検出部と、
これら被検出部にそれぞれ対向して配置されたアナログ出力の磁気センサからなる 2つの磁気検出部と、
上記各磁気検出部の信号をそれぞれ周期毎に内挿して分割する 2つの内挿分割 手段とを備え、
上記 2つの被検出部の内の一つが上記磁気検出部に対する磁気特性を回転側軌 道輪の 1回転に対して 2周期以上に変化させた詳細位置検出用のものであり、他の 一つが磁気検出部に対する磁気特性を回転側軌道輪の 1回転に対して 1周期の変 ィ匕とした絶対位置検出用のものである回転センサ付軸受。
[6] 請求項 5に記載の回転センサ付軸受において、さらに、絶対位置検出用の被検出 部に対応する内挿分割手段より得られる絶対位置の信号を元にして、詳細位置検出 用の被検出部に対応する上記内挿分割手段より得られる信号の絶対位置を算出す る絶対位置変換部を設けた回転センサ付軸受。
[7] 請求項 5に記載の回転センサ付軸受において、上記詳細位置検出用の被検出部 と上記絶対位置検出用の被検出部との間に隙間を持たせた回転センサ付軸受。
[8] 請求項 5に記載の回転センサ付軸受において、被検出部の磁性材として等方性磁 石を用いた回転センサ付軸受。
PCT/JP2004/011768 2004-08-17 2004-08-17 回転センサ付軸受 WO2006018863A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/011768 WO2006018863A1 (ja) 2004-08-17 2004-08-17 回転センサ付軸受

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/011768 WO2006018863A1 (ja) 2004-08-17 2004-08-17 回転センサ付軸受

Publications (1)

Publication Number Publication Date
WO2006018863A1 true WO2006018863A1 (ja) 2006-02-23

Family

ID=35907260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011768 WO2006018863A1 (ja) 2004-08-17 2004-08-17 回転センサ付軸受

Country Status (1)

Country Link
WO (1) WO2006018863A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306113A (ja) * 1989-05-19 1990-12-19 Matsushita Electric Ind Co Ltd 磁気センサ及びその製造方法
JPH07270182A (ja) * 1994-03-29 1995-10-20 Nikon Corp アブソリュートエンコーダ
JPH10332427A (ja) * 1997-05-28 1998-12-18 Nippon Seiko Kk エンコーダ付転がり軸受ユニット
WO1999013296A1 (fr) * 1997-09-08 1999-03-18 Kabushiki Kaisha Yaskawa Denki Codeur magnetique
JP2003130686A (ja) * 2001-10-22 2003-05-08 Sankyo Seiki Mfg Co Ltd 位置検出装置
JP2004150843A (ja) * 2002-10-29 2004-05-27 Sanyo Special Steel Co Ltd エンコーダー用磁石

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306113A (ja) * 1989-05-19 1990-12-19 Matsushita Electric Ind Co Ltd 磁気センサ及びその製造方法
JPH07270182A (ja) * 1994-03-29 1995-10-20 Nikon Corp アブソリュートエンコーダ
JPH10332427A (ja) * 1997-05-28 1998-12-18 Nippon Seiko Kk エンコーダ付転がり軸受ユニット
WO1999013296A1 (fr) * 1997-09-08 1999-03-18 Kabushiki Kaisha Yaskawa Denki Codeur magnetique
JP2003130686A (ja) * 2001-10-22 2003-05-08 Sankyo Seiki Mfg Co Ltd 位置検出装置
JP2004150843A (ja) * 2002-10-29 2004-05-27 Sanyo Special Steel Co Ltd エンコーダー用磁石

Similar Documents

Publication Publication Date Title
JP5583317B2 (ja) 回転検出装置および回転検出装置付き軸受
US6522130B1 (en) Accurate rotor position sensor and method using magnet and sensors mounted adjacent to the magnet and motor
JP5081553B2 (ja) 回転検出装置および回転検出装置付き軸受
US10775200B2 (en) Rotary encoder and absolute angular position detection method thereof
US6433536B1 (en) Apparatus for measuring the position of a movable member
JP2009522567A (ja) 差分比較によって絶対角度位置を検出するためのシステム、ころがり軸受および回転機械
TW201303266A (zh) 絕對編碼器裝置及馬達
WO2010029742A1 (ja) 回転検出装置および回転検出装置付き軸受
JP2007509336A (ja) 高分解能の多回転測定システム及びこのシステムを有する軸受
JP2008267868A (ja) 回転検出装置および回転検出装置付き軸受
JP4275444B2 (ja) アブソリュートエンコーダ付軸受
JP2008045881A (ja) 回転角度位置検出装置
JP2004294145A (ja) 回転センサ付軸受
JP2010008367A (ja) 回転検出装置
JP4591682B2 (ja) 磁気式エンコーダ付き永久磁石同期モータ
JP2001255335A (ja) 回転検出機能付軸受
JP2009069092A (ja) 回転検出装置および回転検出装置付き軸受
WO2006018863A1 (ja) 回転センサ付軸受
JP4393783B2 (ja) 回転センサ付軸受
JP5161010B2 (ja) 回転検出装置および回転検出装置付き軸受
JP2008267867A (ja) 回転検出装置および回転検出装置付き軸受
EP1016852A1 (en) Apparatus for measuring the position of a movable member
US11512980B2 (en) Absolute position detection device and detection method of rotating body
JP4343585B2 (ja) 絶対角度センサ付軸受装置およびその使用方法
JP2010066141A (ja) 回転検出装置および回転検出装置付き軸受

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP