WO2006018053A1 - Gusseisenwerkstoff für kolbenringe - Google Patents

Gusseisenwerkstoff für kolbenringe Download PDF

Info

Publication number
WO2006018053A1
WO2006018053A1 PCT/EP2005/004883 EP2005004883W WO2006018053A1 WO 2006018053 A1 WO2006018053 A1 WO 2006018053A1 EP 2005004883 W EP2005004883 W EP 2005004883W WO 2006018053 A1 WO2006018053 A1 WO 2006018053A1
Authority
WO
WIPO (PCT)
Prior art keywords
cast iron
iron material
max
material according
ferrite
Prior art date
Application number
PCT/EP2005/004883
Other languages
English (en)
French (fr)
Inventor
Steffen Hoppe
Hans-Jürgen Veutgen
Eric Fritsche
Laszlo Pelsoeczy
Original Assignee
Federal-Mogul Burscheid Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Federal-Mogul Burscheid Gmbh filed Critical Federal-Mogul Burscheid Gmbh
Priority to DE502005008922T priority Critical patent/DE502005008922D1/de
Priority to EP05743258A priority patent/EP1794336B1/de
Priority to JP2007526220A priority patent/JP2008510071A/ja
Publication of WO2006018053A1 publication Critical patent/WO2006018053A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite

Definitions

  • the present invention relates to a cast iron material, in particular piston rings, which have as base body such a cast iron material.
  • the present invention relates to a new cast iron material comprising needle-like ferrite with certain proportions of austenite and / or martensite.
  • Cast iron materials can be in various microstructures that can be adjusted by using specific composition and / or process parameters.
  • the basic structure contains lamellar to nodular graphite precipitates to provide runflat properties.
  • a process for producing a pearlitic and / or ferritic cast iron is described in US 3,565,698.
  • the starting material is mixed with molten metal in the melt and poured into a blank.
  • the blank after annealing is annealed at a temperature in the range of 900 ° C. to 1050 ° C. to dissolve the cementite to produce the black malleable cast iron.
  • the annealing time can be reduced by adding sulfur in a significant amount to the starting material.
  • Cast iron materials or cast iron alloys are used to produce highly stressed parts of internal combustion engines, such as piston rings.
  • Piston rings are subject to an increasing load in highly stressed engines, such as compression pressure, combustion temperature, reduction of lubricating film, which significantly influence their functional properties such as wear, fire resistance, microwelding, and corrosion resistance.
  • Piston rings seal the gap between the piston head and the cylinder wall with respect to the combustion chamber.
  • the piston ring slides on the one hand with its outer peripheral surface in constant resilient engagement against the cylinder wall, on the other hand slides the piston ring, due to the tilting movements of the piston, oscillating in its piston ring groove, wherein its flanks alternately bear against the upper or lower Nutenilanke the Kolbenringnut.
  • sliding against each other occurs depending on the material, a more or less severe wear that can lead to so-called munching, scoring and finally to a destruction of the engine in a dry run.
  • Compression rings in highly stressed engines such as diesel engines or 2-stroke diesel engines, for example, preferably as cast piston rings with a tread coating, such as chrome-ceramic coating, PVD layer, thermal spray coating or inlet layer, designed.
  • a tread coating such as chrome-ceramic coating, PVD layer, thermal spray coating or inlet layer, designed.
  • EP 1 384 794 A1 discloses a cast iron material for piston rings which has a specific chemical composition and is subjected to a heat treatment comprising an austenizing treatment followed by an isothermal hardening process in order to obtain mechanical properties similar to those of steels are comparable.
  • a spherulitic material is obtained.
  • this cast iron material must have a matrix of pearlite with small amounts of ferrite in order to experience optimum heat treatment which improves the mechanical properties of the cast iron material.
  • the heat treatment produces a bainitic-austenitic matrix structure, but here there is the disadvantage of softening at higher use temperatures, where the bainitic-austenitic structure transforms into bainitic-fine-pearlitic structures. This effect prevents the use of this material in internal combustion engines, as this essential properties such as the tangential force are adversely affected.
  • Object of the present invention is to provide a cast iron material having an increased wear resistance, without the production costs are increased and to provide a piston ring, which has a reduced risk of breakage and increased mechanical-dynamic load, the further functional behavior over long lifetimes guaranteed.
  • the object is achieved by a cast iron material according to claim 1 and a piston ring according to claim 12.
  • a cast iron material which has a matrix with phase fractions which are adjusted in the matrix structure such that a phase mixture comprises needle-like ferrite with portions of austenite and / or martensite and is subjected to a heat treatment.
  • the proportions of the phases include> 50% of needlelike ferrite with ⁇ 30% austenite and ⁇ 50% martensite.
  • a phase mixture of> 70% needle-like ferrite with ⁇ 30% austenite and ⁇ 30% martensite is present.
  • the phase mixture consists of> 80% needle-like ferrite with ⁇ 5% austenite and ⁇ 15% martensite.
  • the ferrite may be cementite-free ferrite or cemented ferrite and mixtures thereof.
  • the ferrite is needle-free cementite-free ferrite and / or needle-like cementite-free ferrite.
  • the ferrite preferably comprises a mixture of 50% needleless cementite-free ferrite and 50% needle-like cementite-rich ferrite, more preferably a mixture of> 70% needleless cementite-free ferrite and ⁇ 30% needle-like cementite-rich ferrite, more preferably> 85% needleless cementite-free ferrite and ⁇ 15% needlelike ferrite cementite-rich ferrite.
  • the matrix structure of the cast iron material is set such that the phase mixture comprises> 70% needle-like cementitious ferrite, ⁇ 30% needle-free cementite-free ferrite, ⁇ 15% austenite and ⁇ 30% martensite.
  • the cast iron material according to the invention is characterized in particular by the fact that the tangential force loss is not more than 10%, preferably not more than 5%, particularly preferably max. 3%.
  • the tangential force loss is determined according to DIN ISO 6621, Part 5.
  • the cast iron material according to the invention preferably has the following chemical
  • composition in% by weight carbon 3.0 to 4.2; Silicon 2.0 to 3.5; Manganese max. 1.0; Phosphorus max. 0.4; Sulfur max. 0.05; Chrome max. 0.5; Copper max. 3.0; Magnesium max. 0.1; Tin max. 0.3; Vanadium max. 1.0; Molybdenum max. 1.0; Nickel max. 3.0; Remaining iron and manufacturing impurities.
  • This cast iron material is characterized in particular by a high wear resistance and bending strength. At the same time, the cast iron material according to the invention has excellent toughness, which has a particularly positive effect on the tendency to breakage.
  • the cast iron material has the following composition in% by weight: carbon 3.0 to 3.5; Silicon 2.5 to 3.0; Manganese max. 1.0; Phosphorus max. 0.3; Sulfur max. 0.05; Chrome max. 0.5; Copper 0.5 to 3.0; Magnesium max. 0.08; Tin max. 0.25; Vanadium max. 1.0; Molybdenum max. 0.08; Nickel 1.0 to 2.5; Remaining iron and manufacturing impurities.
  • the cast iron material preferably has a spherulitic or "spherical” graphite formation, and such cast iron materials are also referred to as GJS.
  • GJS spherulitic or "spherical” graphite formation
  • a spherulitic cast iron material has the advantage of a significantly reduced notch effect and significantly higher tensile strength and ductility compared to a vermiculargraphitician or lamellargraphitician cast iron material.
  • a spherulitic cast iron material can be specifically produced, for example, by adding spheroidal graphite forming additives to the cast iron material or its melt.
  • One way of producing a spherulitic cast iron material is graphite transfer, for example, by a Mg treatment, as known in the art. Examples of modification methods are GF (Georg Fischer) converters, sandwich, flow, cored wire injection treatment.
  • the cast iron material may further contain elements selected from the group consisting of titanium, niobium, tantalum, tungsten, boron, tellurium or bismuth or combinations thereof, in particular in an amount of up to 0.1 wt .-%. Such elements easily form carbides and thus improve wear resistance.
  • the cast iron material may contain an additive which is selected from the group consisting of cobalt, antimony, calcium, strontium, aluminum, lanthanum, cerium, rare earth metals or combinations thereof, preferably in an amount of up to 0, 1 wt .-% , Rare earth metals which act as spheroidal graphite nucleating additives, as well as NiMg, NiSiMg, FeMg or FeSiMg, are preferred. Rare earth metals include mixtures of lanthanides with oxides of other metals. These elements and additives can be impurities due to production or can be added to the melt during the process for producing the cast iron material according to the invention.
  • the cast iron material lead, zinc, nitrogen and others not explicitly mentioned Containing ingredients in an amount of up to 0.1 wt .-%.
  • the ingredients are included such that the sum of all said or not explicitly mentioned starting materials, ingredients, ingredients, elements, additives in each case give 100 wt .-%.
  • the proportion of starting materials, constituents, ingredients, elements, additives can be adjusted by various methods known to the person skilled in the art.
  • Inadequate elements for example present in elemental or oxidic form, may be added, for example, in appropriate amounts to the starting materials prior to recovery of the melt.
  • an enrichment with the (or the respective) present in the depletion element (s) also take place after recovery of the melt, wherein the respective elements or iron alloys of the respective elements of the melt are added in solid or liquid form.
  • the cast iron material according to the invention has a hardness in the range of 100 to 150 HRB, preferably 110 to 125 HRB.
  • the bending strength of piston rings of cast iron material according to the invention is greater than 2000 MPa, preferably greater than 3000 MPa.
  • the cast iron material according to the present invention is particularly suitable as a piston ring material.
  • the cast iron material according to the invention is particularly suitable for the production of piston rings, in particular compression rings.
  • the piston rings may also be partially or fully coated on their running surfaces and / or their flank surfaces.
  • the cast iron material of the present invention may be used for similarly loaded parts as the above.
  • the cast iron material continues to be used for the production of loaded machine parts of above all internal combustion engines such as gears, gear rings, sealing rings in general and packing rings.
  • the material according to the invention can be used above all in the automotive and marine diesel sectors.
  • a melt is first prepared.
  • the melt preferably has the following composition in weight percent: carbon 3.0 to 4.2; Silicon 2.0 to 3.5; Manganese max. 1.0; Phosphorus max. 0.4;
  • the blank can be cast using methods known in the art, such as centrifugal casting, continuous casting, stamping, croning or green sand molding as a single or multiple blank.
  • the expert is due to the
  • the method for producing the cast iron material further comprises a heat treatment consisting of austenitization with subsequent isothermal or continuous cooling and tempering treatment at max. . 550 0 C.
  • Figure 1 shows the cast structure of a cast iron material according to the invention at a magnification of 1000: 1, the mitNital 2% has been etched.
  • a melt was prepared. Upon solidification of the melt, a blank was prepared, which was subjected to a heat treatment.
  • the basic structure or matrix of the resulting blank consists of approx. 80% needle-like cement-rich ferrite, approx. 7% needle-like cementite-free ferrite, approx. 10% martensite and ⁇ 3% austenite.
  • the mechanical properties of the piston ring are as follows: The hardness is 113.1 HRB, the flexural strength is> 1600 MPa and the tangential force loss is about 3%.
  • the tangential force loss was determined according to DIN ISO 6621, part 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

Die vorliegende Erfindung betrifft einen Gusseisenwerkstoff. Die Erfindung betrifft insbesondere einen neuen Gusseisenwerkstoff, mit ausgezeichneter Korrosionsbeständigkeit, Verschleißbeständigkeit und Biegebruchfestigkeit, der eine Matrixstruktur aus Ferrit mit Anteilen aus Martensit und/oder Austenit aufweist und für die Herstellung von Kolbenringen geeignet ist.

Description

Gusseisenwerkstoff für Kolbenringe
Die vorliegende Erfindung betrifft einen Gusseisenwerkstoff, insbesondere Kolbenringe, die als Grundkörper einen derartigen Gusseisenwerkstoff aufweisen. Die vorliegende Erfindung betrifft insbesondere einen neuen Gusseisenwerkstoff, der nadeligen Ferrit mit bestimmten Anteilen aus Austenit und/oder Martensit umfasst.
Gusseisenwerkstoffe können in verschiedenen Mikrostrukturen vorliegen, die durch Verwendung spezieller Zusammensetzung- und/oder Verfahrensparameter eingestellt werden können.
Ein Güsseisenwerkstoff, der ein bainitisches bis martensitisches Grundgefüge aufweist, das durch eine Wärmebehandlung erzeugt ist, wird beispielsweise in der DE 24 28 821 A beschrieben. In dem Grundgefüge sind lamellare bis knötchenförmige Graphitausscheidungen enthalten, um Notlaufeigenschaften zu gewährleisten.
Ein Verfahren zur Herstellung eines perlitischen und/oder ferritischen Gusseisens wird in der US 3,565,698 beschrieben. Hier wird das Ausgangsmaterial in der Schmelze mit Mischmetall versetzt und zu einem Rohling gegossen. Der Rohling wird nach dem Gießen bei einer Temperatur in einem Bereich von 900 0C und 1050 0C geglüht, um den Zementit in Lösung zu setzen, um den schwarzen Temperguss zu erzeugen. Wie in der US 3,000,770 beschrieben wird, kann die Glühzeit durch das Zugeben von Schwefel in einer bedeutenden Menge zu dem Ausgangsmaterial reduziert werden.
Gusseisenwerkstoffe bzw. Gusseisenlegierungen werden zur Herstellung hoch beanspruchter Teile von Verbrennungskraftmotoren, wie beispielsweise Kolbenringe, verwendet. Kolbenringe unterliegen in hochbeanspruchten Motoren einer zunehmenden Belastung, wie beispielsweise Kompressionsdruck, Verbrennungstemperatur, Schmierfilmreduzierung, die deren Funktionseigenschaften wie Verschleiß, Brandspurbeständigkeit, Microwelding, Korrosionsbeständigkeit maßgeblich beeinflussen.
Kolbenringe dichten den zwischen Kolbenkopf und Zylinderwand vorhandenen Spalt gegenüber dem Brennraum ab. Bei der Auf- und Abbewegung des Kolbens gleitet der Kolbenring einerseits mit seiner äußeren Umfangsfläche in ständiger federnder Anlage gegen die Zylinderwand, andererseits gleitet der Kolbenring, bedingt durch die Kippbewegungen des Kolbens, oszillierend in seiner Kolbenringnut, wobei seine Flanken wechselnd an der oberen oder unteren Nutenilanke der Kolbenringnut anliegen. Bei den jeweils gegeneinander laufenden Gleitpartnern tritt in Abhängigkeit des Materials ein mehr oder weniger starker Verschleiß auf, der bei einem Trockenlauf zu sogenannten Fressern, Riefenbildung und schließlich zu einer Zerstörung des Motors führen kann. Um das Gleit- und Verschleißverhalten von Kolbenringen gegenüber der Zylinderwand zu verbessern, wurden diese an deren Umfangsfiäche mit Beschichtungen aus unterschiedlichen Materialien versehen.
Kompressionsringe in hoch beanspruchten Motoren, wie beispielsweise Dieselmotoren oder 2- Takt Dieselmotoren, werden beispielsweise bevorzugt als Gusskolbenringe mit einer Laufflächenbeschichtung, beispielsweise Chrom-Keramik-Beschichtung, PVD-Schicht, thermische Spritzschicht oder Einlaufschicht, ausgelegt.
Bei höheren mechanischen und dynamischen Beanspruchungen an Kolbenringen werden jedoch meist hochchromlegierte martensitische Stähle eingesetzt. Der Einsatz dieser Stähle weist aber den Nachteil auf, dass die Herstellungskosten im Vergleich zu Gusseisenbauteilen signifikant höher sind.
In der EP 1 384 794 Al ist ein Gusseisenwerkstoff für Kolbenringe beschrieben, der eine spezifische chemische Zusammensetzung aufweist und einer Wärmebehandlung unterworfen wird, die eine Austenisierungsbehandlung, gefolgt von einem isothermalen Härtungsverfahren, umfasst, um eine mechanische Eigenschaften zu erreichen, die zu denen von Stählen vergleichbar sind. Durch den Einsatz von Kugelgraphit-bildenden Zusätzen wird ein sphärolitischer Werkstoff erhalten. Bei Kolbenringen muss dieser Gusseisenwerkstoff eine Matrix aus Perlit mit geringen Anteilen von Ferrit aufweisen, um eine optimale Wärmebehandlung zu erfahren, durch die die mechanischen Eigenschaften des Gusseisenwerkstoffs verbessert werden. Durch die Wärmebehandlung wird ein bainitisch- austenistisches Matrixgefüge erzeugt, jedoch ergibt sich hier der Nachteil einer Entfestigung bei höheren Einsatztemperaturen, bei denen sich die bainitisch-austenitische Struktur in bainitisch- feinperlitisch Strukturen umwandelt. Dieser Effekt verhindert den Einsatz dieses Materials in Verbrennungsmotoren, da somit wesentliche Funktionseigenschaften wie die Tangentialkraft negativ beeinflusst werden.
Aufgabe der vorliegenden Erfindung ist es, einen Gusseisenwerkstoff bereitzustellen, der eine erhöhte Verschleißbeständigkeit aufweist, ohne dass die Herstellungskosten erhöht sind sowie einen Kolbenring bereitzustellen, der ein vermindertes Bruchrisiko aufweist und bei gestiegener mechanisch-dynamischer Belastung das weitere Funktionsverhalten über lange Lebensdauern garantiert.
Erfindungsgemäß wird die Aufgabe durch einen Gusseisenwerkstoff gemäß Anspruch 1 und einen Kolbenring gemäß Anspruch 12 gelöst.
In den Unteransprüchen sind vorteilhafte Ausführungsformen der Erfindung enthalten.
Erfindungsgemäß wird ein Gusseisenwerkstoff bereitgestellt, der eine Matrix mit Phasenanteilen aufweist, die im Matrixgefüge derart eingestellt sind, dass ein Phasengemisch nadeligen Ferrits mit Anteilen von Austenit und/oder Martensit umfasst und einer Wärmebehandlung unterzogen ist. Die Anteile der Phasen umfassen > 50 % nadeligen Ferrit mit < 30 % Austenit und < 50 % Martensit. Bei bevorzugten Ausfuhrungsformen ist ein Phasengemisch aus > 70 % nadeligen Ferrit mit < 30 % Austenit und < 30 % Martensit vorhanden. Bei besonders bevorzugten Ausführungsformen besteht das Phasengemisch aus > 80 % nadeligen Ferrit mit < 5 % Austenit und < 15 % Martensit. Bei dem Ferrit kann es sich dabei um zementitfreies Ferrit oder zementithaltiges Ferrit und deren Mischungen handeln. Insbesondere ist der Ferrit nadeliger zementitfreier Ferrit und/oder nadeliger zementitfreier Ferrit . Der Ferrit umfasst bevorzugt eine Mischung aus 50 % nadeligem zementitfreiem Ferrit und 50 % nadeligem zementitreichem Ferrit, bevorzugter eine Mischung aus > 70 % nadeligem zementitfreiem Ferrit und < 30 % nadeligem zementitreichem Ferrit, besonders bevorzugt > 85 % nadeligem zementitfreiem Ferrit und < 15 % nadeligem zementitreichem Ferrit.
In einer besonders bevorzugten Ausführungsform ist das Matrixgefüge des Gusseisenwerkstoffs derart eingestellt, dass das Phasengemisch > 70% nadeligen zementitreichen Ferrit, < 30 % nadeligen zementitfreien Ferrit, < 15 % Austenit und < 30 % Martensit umfasst. Der erfindungsgemäße Gusseisenwerkstoff zeichnet sich insbesondere dadurch aus, dass der Tangentialkraftverlust maximal 10 %, bevorzugt maximal 5 %, besonders bevorzugt max. 3 %, beträgt. Der Tangentialkraftverlust wird nach DIN ISO 6621, Teil 5 ermittelt.
Der erfindungsgemäße Gusseisenwerkstoff weist bevorzugt die folgende chemische
Zusammensetzung in Gew.-% auf: Kohlenstoff 3,0 bis 4,2; Silizium 2,0 bis 3,5; Mangan max. 1,0; Phosphor max. 0,4; Schwefel max. 0,05; Chrom max. 0,5; Kupfer max. 3,0; Magnesium max. 0,1; Zinn max. 0,3; Vanadium max. 1,0; Molybdän max. 1,0; Nickel max. 3,0; Rest Eisen und herstellungsbedingte Verunreinigungen. Dieser Gusseisenwerkstoff zeichnet sich insbesondere durch eine hohe Verschleißbeständigkeit und Biegebruchfestigkeit aus. Gleichzeitig verfügt der erfindungsgemäße Gusseisenwerkstoff über eine hervorragende Zähigkeit, was sich insbesondere positiv auf die Bruchneigung auswirkt. In einer bevorzugten Ausfuhrungsform weist der Gusseisenwerkstoff die folgende Zusammensetzung in Gew.-% auf: Kohlenstoff 3,0 bis 3,5; Silizium 2,5 bis 3,0; Mangan max. 1,0; Phosphor max. 0,3; Schwefel max. 0,05; Chrom max. 0,5; Kupfer 0,5 bis 3,0; Magnesium max. 0,08; Zinn max. 0,25; Vanadium max. 1,0; Molybdän max. 0,08; Nickel 1,0 bis 2,5; Rest Eisen und herstellungsbedingte Verunreinigungen.
Der Gusseisenwerkstoff weist bevorzugt eine sphärolitische bzw. „kugelförmige" Graphitausbildung aus. Derartige Gusseisenwerkstoffe werden auch als GJS bezeichnet. Bei diesem Werkstoff ist der Hauptanteil des Kohlenstoffs im Gusszustand in Form von Kugelgraphit ausgeschieden.
Ein sphärolitischer Gusseisenwerkstoff weist den Vorteil einer deutlich geminderten Kerbwirkung und deutlich höheren Zugfestigkeit und Duktilität im Vergleich zu einem vermiculargraphitischen oder lamellargraphitischen Gusseisenwerkstoff auf. Ein sphärolitischer Gusseisenwerkstoff kann beispielsweise durch Zusatz von Kugelgraphit-bildenden Zusätzen zu dem Gusseisenwerkstoff oder dessen Schmelze spezifisch erzeugt werden. Eine Möglichkeit zur Herstellung eines spärolitischen Gusseisenwerkstoffs ist eine Graphitüberführung ist beispielsweise durch eine Mg-Behandlung, wie aus dem Stand der Technik bekannt ist. Beispiele für Modifikationsverfahren sind GF(Georg-Fischer)-Konverter, Sandwich, Durchfluss, Fülldraht- Inj ektionsbehandlung.
Der Gusseisenwerkstoff kann weiterhin Elemente enthalten, die ausgewählt sind aus der Gruppe, bestehend aus Titan, Niob, Tantal, Wolfram, Bor, Tellur oder Bismut oder deren Kombinationen, insbesondere in einer Menge von bis zu 0,1 Gew.-%. Derartige Elemente bilden leicht Karbide und verbessern so die Verschleißbeständigkeit.
Weiterhin kann der Gusseisenwerkstoff einen Zusatzstoff enthalten, der ausgewählt ist aus der Gruppe, bestehend aus Kobalt, Antimon, Calcium, Strontium, Aluminium, Lanthan, Cer, Seltenerdmetallen oder deren Kombinationen, bevorzugt in einer Menge von bis zu 0, 1 Gew.-%. Seltenerdmetalle, die als Kugelgraphit-keimbildende Zusätze, wie auch NiMg, NiSiMg, FeMg oder FeSiMg, wirken, werden bevorzugt. Seltenerdmetalle umfassen Gemische aus Lanthanoiden mit Oxiden anderer Metalle. Diese Elemente und Zusatzstoffe können herstellungsbedingte Verunreinigungen sein oder während des Verfahrens zur Herstellung des erfindungsgemäßen Gusseisenwerkstoffs zu der Schmelze zugegeben werden.
Weiterhin kann der Gusseisenwerkstoff Blei, Zink, Stickstoff und weitere nicht explizit genannte Inhaltsstoffe in einer Menge von bis zu 0,1 Gew.-% enthalten. Die Inhaltsstoffe sind derart enthalten, dass die Summe aller genannten oder nicht explizit genannten Ausgangsmaterialien, Bestandteile, Inhaltstoffe, Elemente, Zusatzstoffe in jedem Fall 100 Gew.-% ergeben. Der Anteil an Ausgangsmaterialien, Bestandteilen, Inhaltstoffen, Elementen, Zusatzstoffen kann durch verschiedene, dem Fachmann bekannte Verfahren eingestellt werden.
Im Unterschuss vorhandene Elemente (Spurenelemente), die beispielsweise in elementarer oder oxidischer Form vorliegen, können beispielsweise in geeigneten Mengen den Ausgangsmaterialien vor Gewinnung der Schmelze zugesetzt werden. Alternativ kann eine Anreicherung mit dem (oder den jeweiligen) im Unterschuss vorhandenen Element(en) auch nach Gewinnung der Schmelze erfolgen, wobei die jeweiligen Elemente oder Eisenlegierungen der jeweiligen Elemente der Schmelze in fester oder flüssiger Form zugesetzt werden.
Der erfindungsgemäße Gusseisenwerkstoff weist eine Härte im Bereich von 100 bis 150 HRB, bevorzugt 110 bis 125 HRB, auf. Die Biegebruchfestigkeit von Kolbenringen aus erfindungsgemäßen Gusseisenwerkstoff ist größer als 2000 MPa, bevorzugt größer als 3000 MPa.
Aufgrund des Tangentialkraftverlustes von maximal 10 % ist der Gusseisenwerkstoff gemäß der vorliegenden Erfindung insbesondere als Kolbenringwerkstoff geeignet. Der erfindungsgemäße Gusseisenwerkstoff ist insbesondere zur Herstellung von Kolbenringen, insbesondere Kompressionsringen geeignet. Zur Verbesserung der Verschleißfestigkeit können die Kolbenringe ebenfalls teil- oder ganzflächig, an ihren Laufflächen und/oder ihren Flankenflächen beschichtet sein.
Wie dem Fachmann klar sein wird, kann der erfindungsgemäße Gusseisenwerkstoff für ähnlich belastete Teile wie die Vorstehenden verwendet werden. Insbesondere wird der Gusseisenwerkstoff weiterhin zur Herstellung von belasteten Maschinenteilen von vor allem Verbrennungskraftmaschinen wie Zahnräder, Getrieberinge, Dichtungsringe generell und Packungsringe eingesetzt. Der erfindungsgemäße Werkstoff kann vor allem im Automotiven- und Schiffsdieselbereich eingesetzt werden.
Bei dem Verfahren zur Herstellung des erfindungsgemäßen Gusseisenwerkstoffs wird zuerst eine Schmelze hergestellt. Die Schmelze weist bevorzugt die folgende Zusammensetzung in Gew.-% auf: Kohlenstoff 3,0 bis 4,2; Silizium 2,0 bis 3,5; Mangan max. 1,0; Phosphor max. 0,4;
Schwefel max. 0,05; Chrom max. 0,5; Kupfer max. 3,0; Magnesium max. 0,1; Zinn max. 0,3; Molybdän max. 1,0; Nickel max. 3,0; Rest Eisen und herstellungsbedingte Verunreinigungen. Anschließend wird ein Rohling unter Erstarrung der Schmelze hergestellt.
Der Rohling kann dabei mit im Stand der Technik bekannte Methoden gegossen werden, wie beispielsweise Schleuderguss, Strangguss, Stempelpressverfahren, Croning oder Grünsandformen als Einzel- oder Mehrfachrohling. Der Fachmann wird aufgrund der
Zweckbestimmung des Rohlings und unter Zuhilfenahme seines allgemeinen Fachwissens die geeignete Methode wählen.
Das Verfahren zur Herstellung des Gusseisenwerkstoffs umfasst weiterhin eine Wärmebehandlung, bestehend aus einer Austenitisierung mit nachfolgender isothermer oder kontinuierlicher Abkühlung und Anlassbehandlung bei max. 550 0C. Fig. 1 zeigt die Gussstruktur eines erfindungsgemäßen Gusseisenwerkstoffs in einer Vergrößerung von 1000:1 zeigt, der mitNital 2% geätzt worden ist.
Das folgende Beispiel erläutert die Erfindung ohne sie zu beschränken.
Beispiel
Aus emem Ausgangsmaterial mit der vorstehend angegeben chemischen Zusammensetzung wurde eine Schmelze hergestellt. Unter Erstarrung der Schmelze wurde ein Rohling hergestellt, das einer Wärmebehandlung unterzogen wurde.
Das Grundgefuge bzw. die Matrix des erhaltenen Rohlings besteht aus ca. 80 % nadeligem zementreichem Ferrit, ca. 7 % nadeligem zementitfreiem Ferrit, ca. 10 % Martensit und <3 % Austenit. Die mechanischen Eigenschaften des Kolbenrings sind wie folgt: Die Härte ist 113,1 HRB, die Biegebruchfestigkeit ist >1600 MPa und die Tangentialkraftverlust ist ca. 3%.
Der Tangentialkraftverlust wurde nach DIN ISO 6621, Teil 5 ermittelt.
Die Gussstruktur des in dem Beispiel aufgezeigten Gusswerkstoffs, der mit Nital 2% geätzt worden ist, ist in Fig. 1 in einer Vergrößerung von 1000:1 gezeigt.

Claims

Patentansprüche
1. Gusseisenwerkstoff, gekennzeichnet durch eine Matrix, die > 50 % nadeligen Ferrit, < 30% Austenit und < 50 % Martensit umfasst und einer Wärmebehandlung unterzogen ist.
5
2. Gusseisenwerkstoff gemäß Anspruch 1, gekennzeichnet durch eine Matrix, die > 70 % nadeligen zementitreichen Ferrit, < 30 % nadeligen zementitfreien Ferrit, < 15 % Austenit und < 30 % Martensit umfasst.
10 3. Gusseisenwerkstoff nach Anspruch 1 oder 2, gekennzeichnet, dass durch eine Matrix, die > 80 % nadeligen Ferrit, < 5 Austenit und < 15 % Martensit umfasst.
4. Gusseisenwerkstoff gemäß Anspruch 1 , bei dem der Ferrit nadeligen zementitreichen Ferrit, nadeligen zementitfreien Ferrit und deren Mischungen umfasst.
15
5. Gusseisenwerkstoff gemäß irgendeinem der vorangehenden Ansprüche 1 bis 4, gekennzeichnet durch die folgende Zusammensetzung in Gew.-%:
C: 3,0 bis 4,2
Si:' 2,0 bis 3,5
20 Mn: max. 1,0
P: max. 0,4
S: max. 0,05
Cr: max. 0,5
Cu: max. 3,0
25 Mg: max. 0,1
Sn: max. 0,3
Mo: max. 1,0
V: max. 1,0
Ni: max. 3,0
30 Rest: Fe und herstellungsbedingte Verunreinigungen.
6. Gusseisenwerkstoff gemäß irgendeinem der vorangehenden Ansprüche 1 bis 5, dadurch gekennzeichnet, dass er sphärolitisch bzw. vermicular ist.
35 7. Gusseisenwerkstoff gemäß irgendeinem der vorangehenden Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Tangentialkraftverlust bei offenen Rundkörper maximal 10 %, bevorzugt maximal 5 %, besonders bevorzugt max. 3 %, ist.
8. Gusseisenwerkstoff gemäß einem der vorangehenden Ansprüche 1 bis 7, der weiterhin ein Element enthält, das ausgewählt ist aus der Gruppe, bestehend aus Ti, Nb, Ta, W5 Mo, B oder deren Kombinationen.
9. Gusseisenwerkstoff gemäß Anspruch 8, dadurch gekennzeichnet, dass das Element in einer Menge von bis zu 0,1 Gew.-% enthalten ist.
10. Gusseisenwerkstoff gemäß irgendeinem der vorangehenden Ansprüche 1 bis 9, der weiterhin einen Zusatzstoff enthält, der ausgewählt ist aus der Gruppe, bestehend aus Ni, Co, Sb, Ca,
Ce, Ta, Sr, Al, La, Ce, Seltenerdmetallen oder deren Kombinationen.
11. Gusseisenwerkstoff gemäß Anspruch 10, dadurch gekennzeichnet, dass der Zusatzstoff in einer Menge von bis zu 0,1 Gew.-% enthalten ist.
12. Kolbenring, der als Grundkörper einen Gusseisenwerkstoff gemäß irgendeinem der vorangehenden Ansprüche 1 bis 11 umfasst.
13. Kolbenring gemäß Anspruch 12, dadurch gekennzeichnet, dass er weiterhin an den Flanken- und/oder Laufflächen beschichtet ist.
PCT/EP2005/004883 2004-08-18 2005-05-04 Gusseisenwerkstoff für kolbenringe WO2006018053A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE502005008922T DE502005008922D1 (de) 2004-08-18 2005-05-04 Kolbenringe aus einem gusseisenwerkstoff
EP05743258A EP1794336B1 (de) 2004-08-18 2005-05-04 Kolbenringe aus einem gusseisenwerkstoff
JP2007526220A JP2008510071A (ja) 2004-08-18 2005-05-04 ピストンリング用の鋳鉄材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004040055.5 2004-08-18
DE200410040055 DE102004040055A1 (de) 2004-08-18 2004-08-18 Gusseisenwerkstoff für Kolbenringe

Publications (1)

Publication Number Publication Date
WO2006018053A1 true WO2006018053A1 (de) 2006-02-23

Family

ID=34968065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/004883 WO2006018053A1 (de) 2004-08-18 2005-05-04 Gusseisenwerkstoff für kolbenringe

Country Status (4)

Country Link
EP (1) EP1794336B1 (de)
JP (1) JP2008510071A (de)
DE (2) DE102004040055A1 (de)
WO (1) WO2006018053A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140030133A1 (en) * 2011-04-15 2014-01-30 Lutz Dekker Cast iron containing niobium and component

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4825886B2 (ja) 2009-02-27 2011-11-30 トヨタ自動車株式会社 フェライト系球状黒鉛鋳鉄
CN102206784A (zh) * 2011-04-29 2011-10-05 吉林大学 一种摩擦盘材料
CN102268588B (zh) * 2011-06-22 2013-02-20 山东省四方技术开发有限公司 钢管减径机或定径机球墨铸铁轧辊及其制备方法
CN102268586B (zh) * 2011-07-31 2012-10-03 安徽省鸿申压缩机有限公司 耐腐蚀合金铸铁及其制备方法
DE102012217892A1 (de) * 2012-10-01 2014-05-15 Siemens Aktiengesellschaft Gusseisen mit Niob und Bauteil
RU2527572C1 (ru) * 2013-05-14 2014-09-10 Виктор Анатольевич Кузнецов Антифрикционный чугун
RU2525980C1 (ru) * 2013-10-21 2014-08-20 Юлия Алексеевна Щепочкина Чугун
RU2525979C1 (ru) * 2013-10-21 2014-08-20 Юлия Алексеевна Щепочкина Чугун
KR101663771B1 (ko) * 2014-04-11 2016-10-11 유성기업 주식회사 덕타일 주철 피스톤 링
CN104152790B (zh) * 2014-08-13 2016-01-06 乐山豪森锅具有限公司 一种不粘锅具材料及其制备方法
CN104195421A (zh) * 2014-08-14 2014-12-10 芜湖国鼎机械制造有限公司 大断面球墨铸铁、铸件及其制备方法
CN104195422A (zh) * 2014-08-14 2014-12-10 芜湖国鼎机械制造有限公司 大断面球墨铸铁、铸件及其制备方法
CN106048402B (zh) * 2016-08-17 2018-03-09 河南理工大学 耐热疲劳蠕墨铸铁、铸铁模及其制备方法
KR102542938B1 (ko) * 2017-12-08 2023-06-14 현대자동차주식회사 고강도 회주철
KR102463833B1 (ko) * 2017-12-13 2022-11-07 현대자동차주식회사 내마모 코팅된 마찰부품 및 그 코팅방법
US20200131606A1 (en) * 2018-10-30 2020-04-30 GM Global Technology Operations LLC High-strength nodular iron with good weldability and machinability

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4838956A (en) * 1987-04-16 1989-06-13 Mazda Motor Corporation Method of producing a spheroidal graphite cast iron
US6209881B1 (en) * 1997-05-17 2001-04-03 Federal-Mogul Burscheid Gmbh Cast-iron piston ring
EP1384794A1 (de) * 2002-07-26 2004-01-28 Erre-Vis S.p.A. Kugelgraphitgusseisen für Kolbenringe und Verfahren zu seiner Herstellung
EP1460138A1 (de) * 1996-09-02 2004-09-22 Honda Giken Kogyo Kabushiki Kaisha Verfahren zur Herstellung eines halbfesten Thixogiessmaterials

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3000770A (en) * 1953-11-16 1961-09-19 Eisenwerke Gelsenkirchen Ag Fa Malleable white cast iron alloys
FR1526120A (fr) * 1967-04-05 1968-05-24 Renault Fonte malléable à recuit rapide
DE2428821C3 (de) * 1974-06-14 1985-11-14 Goetze Ag, 5093 Burscheid Verschleißfeste Gußeisenlegierung mit lamellarer bis knötchenförmiger Graphitausscheidung
JPH08232040A (ja) * 1995-02-24 1996-09-10 Aisin Takaoka Ltd 高靱性球状黒鉛鋳鉄およびその製造方法
DE19629970C1 (de) * 1996-07-25 1998-03-12 Ae Goetze Gmbh Gußeisenlegierung für die Herstellung von Kolbenringen von Verbrennungskraftmaschinen
JP2000119794A (ja) * 1998-10-14 2000-04-25 Hitachi Metals Ltd 耐水濡れ性に優れるオーステンパ球状黒鉛鋳鉄

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4838956A (en) * 1987-04-16 1989-06-13 Mazda Motor Corporation Method of producing a spheroidal graphite cast iron
EP1460138A1 (de) * 1996-09-02 2004-09-22 Honda Giken Kogyo Kabushiki Kaisha Verfahren zur Herstellung eines halbfesten Thixogiessmaterials
US6209881B1 (en) * 1997-05-17 2001-04-03 Federal-Mogul Burscheid Gmbh Cast-iron piston ring
EP1384794A1 (de) * 2002-07-26 2004-01-28 Erre-Vis S.p.A. Kugelgraphitgusseisen für Kolbenringe und Verfahren zu seiner Herstellung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140030133A1 (en) * 2011-04-15 2014-01-30 Lutz Dekker Cast iron containing niobium and component

Also Published As

Publication number Publication date
DE102004040055A1 (de) 2006-03-02
EP1794336A1 (de) 2007-06-13
JP2008510071A (ja) 2008-04-03
EP1794336B1 (de) 2010-01-20
DE502005008922D1 (de) 2010-03-11

Similar Documents

Publication Publication Date Title
EP1794336B1 (de) Kolbenringe aus einem gusseisenwerkstoff
EP1776487B1 (de) Hoch- und verschleissfester, korrosionsbeständiger gusseisenwerkstoff
DE102006038670B4 (de) Hochsiliziumhaltiger Stahlwerkstoff zur Herstellung von Kolbenringen und Zylinderlaufbuchsen
DE102009015008B3 (de) Kolbenringe und Zylinderlaufbuchsen
DE60305389T2 (de) Kugelgraphitgusseisen für Kolbenringe und Verfahren zu seiner Herstellung
DE2853870C2 (de)
EP0821073A1 (de) Gusseisenlegierung für die Herstellung von Kolbenringen von Verbrennungskraftmaschinen
EP2401530B1 (de) Stahlwerkstoffzusammensetzung zur herstellung von kolbenringen und zylinderlaufbuchsen
WO2006094591A1 (de) Gusseisen aus ledeburit mit hohem karbidantξil und gleich verteilter graphitausbildung
DE102009015009B3 (de) Kolbenring
DE102009010728B4 (de) Kolbenringe und Zylinderlaufbuchsen
DE102009010726B3 (de) Kolbenringe und Zylinderlaufbuchsen
DE19911962B4 (de) Kolbenring und eine Kombination von Verdichtungsringen
DE10309386B4 (de) Verfahren zur Herstellung eines Gusseisenwerkstoffes mit gezieltem Restkarbidanteil
DE10049598A1 (de) Verfahren zur Herstellung eines Gußeisenwerkstoffes
DE102006024414B4 (de) Kolbenringe und Zylinderlaufbuchsen
DE2456700B2 (de) Dichtleiste für Rotationskolbenmotoren
DE4305027A1 (de)
DE19629970C1 (de) Gußeisenlegierung für die Herstellung von Kolbenringen von Verbrennungskraftmaschinen
DE1908856C3 (de) Zylinderlaufbüchse
WO2008019716A1 (de) Stahlwerkstoff, insbesondere zur herstellung von kolbenringen
DE2915217C2 (de) Verfahren zur Herstellung einer Hochtemperatur-Gußeisenlegierung und deren Verwendung
DE2944128C2 (de)
DE1752672C3 (de) Verbundgußstück
DD267514A1 (de) Verschleissfester stahlbasis-gusswerkstoff fuer warmwalzen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005743258

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007526220

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2005743258

Country of ref document: EP