WO2006015768A1 - Procede d'amelioration de rendement par etalement de temperature - Google Patents
Procede d'amelioration de rendement par etalement de temperature Download PDFInfo
- Publication number
- WO2006015768A1 WO2006015768A1 PCT/EP2005/008353 EP2005008353W WO2006015768A1 WO 2006015768 A1 WO2006015768 A1 WO 2006015768A1 EP 2005008353 W EP2005008353 W EP 2005008353W WO 2006015768 A1 WO2006015768 A1 WO 2006015768A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat exchanger
- heat
- jet pump
- vortex tube
- gas
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/06—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K3/00—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
- F01K3/18—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
Definitions
- the invention relates to a method for generating mechanical and / or electrical energy in which, with the aid of a gas / steam jet pump and a vortex tube, the gas / steam mass flow increases in a Carnot cycle and a temperature spread between the condenser and the Evaporator of the separate turbine circuit causes herbeige ⁇ .
- the object of the invention is to find a simpler, less expensive and less environmentally hazardous method of achieving the same objective of temperature spread in order to increase the efficiency. Since, as a further boundary condition, a substantial lowering of the condensation temperature due to the steeper characteristic curve of the Carnot efficiency is aimed at increasingly smaller condensation temperatures, according to the invention a significant reduction of the lower process temperature in the turbine circulation to below ambient temperatures could be achieved.
- a working fluid in a heat exchanger absorbs heat and entrains a propellant gas or motive steam in a jet pump, a suction gas or a suction steam in a downstream vortex tube and the mixed gas or mixed steam is decomposed in the vortex tube into two heat fractions, the higher Tempe ⁇ raturfr neglect the evaporator / heater Turbinen Vietnamese ⁇ run applied and again the heat exchanger zuge ⁇ leads and the low-temperature fraction the condenser / cooler of the separate turbine circuit and / or the heat exchanger to a refrigeration circuit applied and from there the jet pump as a suction again Ver ⁇ addition is made.
- the heat provided by a heat source is used in a heat exchanger for heating and / or evaporating a working medium as motive steam.
- This gaseous or vaporous working medium is decomposed in one or more vortex tubes into two heat fractions.
- the hot fraction is applied to the evaporator of the turbine circuit separated from the heating circuit and to the cold fraction of the condenser of the turbine circuit.
- the Carnot efficiency is calculated to be 0.31. This value is better than the above.
- the mass permeated by the motive steam is doubled or multiplied with a multistage steam jet vortex tube with a corresponding temperature spread.
- This additional mass is taken from the respective downstream cold cycle such that in the last stage the cold gas flowing out of the vortex tube flows through the condenser of the turbine circulation, where the still vaporous working medium condenses under heat absorption and either directly is sucked in again by the jet pump or the vortex tube is aspirated subcooled condensate leaves, is pressed via a feed pump into the condenser of Turbinennik ⁇ run, evaporated there and is again indicated by the steam jet pump.
- a three-stage Häproz ⁇ ss is constructed such that in a first partial cycle, the working fluid is heated or evaporated in a heat exchanger 1 and enters via the gas / steam jet pump 2 with entrainment of the suction gas in the vortex tube 3 and the working fluid is divided there into two temperature fractions.
- the higher-temperature temperature fraction flows through the superheater 4 of the turbine circuit 6, the lower-order temperature fraction is fed to a further gas / steam jet pump 7.
- the working fluid in a second partial circuit in the gas / steam jet pump 7 again entrains the suction gas and is split in the vortex tube 8 into two temperature fractions whose higher-temperature fraction is fed to the evaporator 9 of the turbine circuit and from there via a heat exchanger 10 Suction gas is sucked from the Dampf ⁇ jet pump 2, the lower tempera ture Turfr press the gas / steam jet pump 11 is supplied.
- the heat exchanger 10 serves to absorb heat from the environment.
- the lower-order temperature fraction after the vortex tube 8 of the gas / steam jet pump 11 is supplied.
- the higher-order temperature fraction heats the working medium of the turbine circuit in a preheater 12 and flows via a heat exchanger 13 to the gas / steam jet pump 7 as suction gas.
- the heat exchanger 13 is optionally used to deliver cold to a refrigeration cycle or to absorb heat from the environment.
- the lower-order temperature fraction after the vortex tube 14 is used to act on the condenser 15 of the turbine circuit.
- the condenser 15 can be formed as a countercurrent condenser evaporator in which, on the one hand, the working medium of the partial circuits evaporates again under heat absorption after condensation in the vortex tube 14 and transport by a feed pump 16 and, on the other hand, the working fluid of the turin circuit after leaving the Turbine condensed heat release.
- the working medium of the turbine circuit is heated in the Vor ⁇ warmer, evaporated in the evaporator and superheated in the superheater, then acts on the turbine 18 and is relaxed in this before it is liquefied in the condenser again.
- a feed pump 17 conveys the working medium of the turbine circuit into the preheater.
- the heat exchanger 1 is provided for absorbing the heat of the propellant gas / vapor from a solar collector or other heat source, the heat exchanger 10 for absorbing heat from a further heat source, such as a heat exchanger. Air or water.
- the working medium of the thermal work cycle is condensed in a heat exchanger 19 and exposed via a feed pump 20 to the driving heat source in the heat exchanger 1.
- the arithmetic design of the working method according to the invention leads to the result that a single-stage working process can be carried out at a temperature difference between heat exchanger 1 and heat exchanger 2 of about 20 K and then a further stage for every further 20 K Further partial circuit can be used, wherein the respective pressure gradation between the Stu ⁇ fen of the subcircuits a question of the desired mass Relationships between Treihgas / steam and suction gas / steam is.
- a further advantageous embodiment of the method according to the invention results from the fact that the generated cold gas / cold vapor fraction can also be used to provide cold for a refrigeration cycle via a heat exchanger.
- the thermal cycling may be carried out with a gas or an evaporable liquid, preferably a refrigerant, e.g. R 124 or R 365mfc.
- a gas or an evaporable liquid preferably a refrigerant, e.g. R 124 or R 365mfc.
- the special process control with jet pumps and vortex tubes as well as corresponding subcircuits in the thermal work cycle makes it advisable to use azeotropic mixtures in order to obtain optimal evaporation and condensation heat depending on the stage.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004037934.3 | 2004-08-04 | ||
DE200410037934 DE102004037934B4 (de) | 2004-08-04 | 2004-08-04 | Arbeitsverfahren |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006015768A1 true WO2006015768A1 (fr) | 2006-02-16 |
Family
ID=34973194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2005/008353 WO2006015768A1 (fr) | 2004-08-04 | 2005-08-02 | Procede d'amelioration de rendement par etalement de temperature |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102004037934B4 (fr) |
WO (1) | WO2006015768A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007329461A (ja) * | 2006-05-01 | 2007-12-20 | Bridgestone Corp | 光透過性電磁波シールド性窓材の製造方法、及び光透過性電磁波シールド性窓材、 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105333637A (zh) * | 2015-11-24 | 2016-02-17 | 北京运特科技有限公司 | 多效多级涡流管冷热双能机系统的制造工艺 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3788064A (en) * | 1972-01-26 | 1974-01-29 | R Hawkins | System for driving heat motor |
US4037414A (en) * | 1976-07-23 | 1977-07-26 | Nicodemus Carl D | Liquid/vapor energy cycle |
US4121425A (en) * | 1976-06-14 | 1978-10-24 | Nicodemus Carl D | Thermodynamic system |
US4333017A (en) * | 1980-10-20 | 1982-06-01 | Connell John J O | Method and apparatus for closed loop vortex operation |
JPS6022005A (ja) * | 1983-07-15 | 1985-02-04 | Hitachi Ltd | 蒸気タ−ビン漏洩蒸気回収法 |
SU1318702A1 (ru) * | 1986-01-02 | 1987-06-23 | Московский энергетический институт | Теплоэнергетическа установка |
DE4343088A1 (de) * | 1993-12-18 | 1995-06-22 | Keller Juergen U Univ Prof Dr | Kondensationswirbelrohr |
DE10131072C1 (de) * | 2001-06-27 | 2002-12-12 | Joachim Schwieger | Wärmetrafo mit Rückverdichtung |
DE10228865A1 (de) * | 2002-06-27 | 2004-01-15 | Uehlin, Jürgen, Dipl.-Ing. | Kollektor mit integrierter Expansionsmaschine und Generator zur Wandlung thermischer Solarstrahlung in Elektrizität |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19916684C2 (de) * | 1999-04-14 | 2001-05-17 | Joachim Schwieger | Verfahren zur Wärmetransformation mittels eines Wirbelaggregats |
-
2004
- 2004-08-04 DE DE200410037934 patent/DE102004037934B4/de not_active Expired - Fee Related
-
2005
- 2005-08-02 WO PCT/EP2005/008353 patent/WO2006015768A1/fr active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3788064A (en) * | 1972-01-26 | 1974-01-29 | R Hawkins | System for driving heat motor |
US4121425A (en) * | 1976-06-14 | 1978-10-24 | Nicodemus Carl D | Thermodynamic system |
US4037414A (en) * | 1976-07-23 | 1977-07-26 | Nicodemus Carl D | Liquid/vapor energy cycle |
US4333017A (en) * | 1980-10-20 | 1982-06-01 | Connell John J O | Method and apparatus for closed loop vortex operation |
JPS6022005A (ja) * | 1983-07-15 | 1985-02-04 | Hitachi Ltd | 蒸気タ−ビン漏洩蒸気回収法 |
SU1318702A1 (ru) * | 1986-01-02 | 1987-06-23 | Московский энергетический институт | Теплоэнергетическа установка |
DE4343088A1 (de) * | 1993-12-18 | 1995-06-22 | Keller Juergen U Univ Prof Dr | Kondensationswirbelrohr |
DE10131072C1 (de) * | 2001-06-27 | 2002-12-12 | Joachim Schwieger | Wärmetrafo mit Rückverdichtung |
DE10228865A1 (de) * | 2002-06-27 | 2004-01-15 | Uehlin, Jürgen, Dipl.-Ing. | Kollektor mit integrierter Expansionsmaschine und Generator zur Wandlung thermischer Solarstrahlung in Elektrizität |
Non-Patent Citations (2)
Title |
---|
DATABASE WPI Section PQ Week 198805, Derwent World Patents Index; Class Q51, AN 1988-035092, XP002346269 * |
PATENT ABSTRACTS OF JAPAN vol. 009, no. 142 (M - 388) 18 June 1985 (1985-06-18) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007329461A (ja) * | 2006-05-01 | 2007-12-20 | Bridgestone Corp | 光透過性電磁波シールド性窓材の製造方法、及び光透過性電磁波シールド性窓材、 |
Also Published As
Publication number | Publication date |
---|---|
DE102004037934B4 (de) | 2009-08-27 |
DE102004037934A1 (de) | 2006-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2188499B1 (fr) | Procédé et dispositif permettant de transformer l'énergie thermique d'une source de chaleur basse température en énergie mécanique | |
US7065969B2 (en) | Power cycle and system for utilizing moderate and low temperature heat sources | |
US7021060B1 (en) | Power cycle and system for utilizing moderate temperature heat sources | |
EP2021634B1 (fr) | Installation et procédé associé pour la conversion de la chaleur en énergie mécanique, électrique et/ou énergie thermique | |
DE10138255A1 (de) | Anordnung für Kaskadenkälteanlage | |
US20160108763A1 (en) | Rankine cycle power generation system with sc-co2 working fluid and integrated absorption refrigeratino chiller | |
Park et al. | A preliminary study of the Kalina power cycle in connection with a combined cycle system | |
EP2059104A2 (fr) | Dispositif de refroidissement pour un système informatique | |
EP1706599B1 (fr) | Procédé et installation de conversion d'une énergie thermique résultante en énergie mécanique | |
DE102009043720A1 (de) | Carnotisierter Rankineprozess für Solarthermische Kraftwerke | |
WO2006015768A1 (fr) | Procede d'amelioration de rendement par etalement de temperature | |
EP2584287B1 (fr) | Cycle destiné au fonctionnement d'une machine de refroidissement par absorption et machine de refroidissement par absorption | |
DE69921871T2 (de) | Absorptionskälteanlage mit Kupplung von Kondensat und Lösung | |
DE4415199A1 (de) | Kälteanlage | |
EP2199671A1 (fr) | Procédé et dispositif destinés à la production de vapeur d'eau | |
EP0134431B1 (fr) | Procédé thermodynamique approchant le cycle d'Ericsson | |
AT506353B1 (de) | Strahlverdichterwärmekraftmaschine | |
DE102020006763A1 (de) | Umgebungswärmemaschine zur Gewinnung von Arbeit und elektrischer Energie aus der Umgebungswärme | |
Roy | Analysis of Rankine cycle and its utility in thermal power plant a theoretical approach | |
WO2014117924A2 (fr) | Procédé permettant de faire fonctionner une centrale basse température et centrale basse température | |
DE102023122824B4 (de) | Verfahren und Anordnung zur Nutzung von Kältepotentialen zur Erzeugung elektrischer Energie mittels eines ORC-Kreisprozesses | |
EP3623725B1 (fr) | Machine à absorption et processus de circuit à absorption | |
EP3540334A1 (fr) | Transformateur à chaleur et processus de transformation de chaleur | |
EP1921279B1 (fr) | Procédé destiné à l'utilisation de la chaleur d'échappement durant le fonctionnement d'une turbine dotée d'un milieu à l'état de vapeur | |
DE3622743A1 (de) | Waermepumpe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |