WO2006015768A1 - Procede d'amelioration de rendement par etalement de temperature - Google Patents

Procede d'amelioration de rendement par etalement de temperature Download PDF

Info

Publication number
WO2006015768A1
WO2006015768A1 PCT/EP2005/008353 EP2005008353W WO2006015768A1 WO 2006015768 A1 WO2006015768 A1 WO 2006015768A1 EP 2005008353 W EP2005008353 W EP 2005008353W WO 2006015768 A1 WO2006015768 A1 WO 2006015768A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
heat
jet pump
vortex tube
gas
Prior art date
Application number
PCT/EP2005/008353
Other languages
German (de)
English (en)
Inventor
Klaus-Peter Priebe
Original Assignee
Klaus-Peter Priebe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Klaus-Peter Priebe filed Critical Klaus-Peter Priebe
Publication of WO2006015768A1 publication Critical patent/WO2006015768A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters

Definitions

  • the invention relates to a method for generating mechanical and / or electrical energy in which, with the aid of a gas / steam jet pump and a vortex tube, the gas / steam mass flow increases in a Carnot cycle and a temperature spread between the condenser and the Evaporator of the separate turbine circuit causes herbeige ⁇ .
  • the object of the invention is to find a simpler, less expensive and less environmentally hazardous method of achieving the same objective of temperature spread in order to increase the efficiency. Since, as a further boundary condition, a substantial lowering of the condensation temperature due to the steeper characteristic curve of the Carnot efficiency is aimed at increasingly smaller condensation temperatures, according to the invention a significant reduction of the lower process temperature in the turbine circulation to below ambient temperatures could be achieved.
  • a working fluid in a heat exchanger absorbs heat and entrains a propellant gas or motive steam in a jet pump, a suction gas or a suction steam in a downstream vortex tube and the mixed gas or mixed steam is decomposed in the vortex tube into two heat fractions, the higher Tempe ⁇ raturfr neglect the evaporator / heater Turbinen Vietnamese ⁇ run applied and again the heat exchanger zuge ⁇ leads and the low-temperature fraction the condenser / cooler of the separate turbine circuit and / or the heat exchanger to a refrigeration circuit applied and from there the jet pump as a suction again Ver ⁇ addition is made.
  • the heat provided by a heat source is used in a heat exchanger for heating and / or evaporating a working medium as motive steam.
  • This gaseous or vaporous working medium is decomposed in one or more vortex tubes into two heat fractions.
  • the hot fraction is applied to the evaporator of the turbine circuit separated from the heating circuit and to the cold fraction of the condenser of the turbine circuit.
  • the Carnot efficiency is calculated to be 0.31. This value is better than the above.
  • the mass permeated by the motive steam is doubled or multiplied with a multistage steam jet vortex tube with a corresponding temperature spread.
  • This additional mass is taken from the respective downstream cold cycle such that in the last stage the cold gas flowing out of the vortex tube flows through the condenser of the turbine circulation, where the still vaporous working medium condenses under heat absorption and either directly is sucked in again by the jet pump or the vortex tube is aspirated subcooled condensate leaves, is pressed via a feed pump into the condenser of Turbinennik ⁇ run, evaporated there and is again indicated by the steam jet pump.
  • a three-stage Häproz ⁇ ss is constructed such that in a first partial cycle, the working fluid is heated or evaporated in a heat exchanger 1 and enters via the gas / steam jet pump 2 with entrainment of the suction gas in the vortex tube 3 and the working fluid is divided there into two temperature fractions.
  • the higher-temperature temperature fraction flows through the superheater 4 of the turbine circuit 6, the lower-order temperature fraction is fed to a further gas / steam jet pump 7.
  • the working fluid in a second partial circuit in the gas / steam jet pump 7 again entrains the suction gas and is split in the vortex tube 8 into two temperature fractions whose higher-temperature fraction is fed to the evaporator 9 of the turbine circuit and from there via a heat exchanger 10 Suction gas is sucked from the Dampf ⁇ jet pump 2, the lower tempera ture Turfr press the gas / steam jet pump 11 is supplied.
  • the heat exchanger 10 serves to absorb heat from the environment.
  • the lower-order temperature fraction after the vortex tube 8 of the gas / steam jet pump 11 is supplied.
  • the higher-order temperature fraction heats the working medium of the turbine circuit in a preheater 12 and flows via a heat exchanger 13 to the gas / steam jet pump 7 as suction gas.
  • the heat exchanger 13 is optionally used to deliver cold to a refrigeration cycle or to absorb heat from the environment.
  • the lower-order temperature fraction after the vortex tube 14 is used to act on the condenser 15 of the turbine circuit.
  • the condenser 15 can be formed as a countercurrent condenser evaporator in which, on the one hand, the working medium of the partial circuits evaporates again under heat absorption after condensation in the vortex tube 14 and transport by a feed pump 16 and, on the other hand, the working fluid of the turin circuit after leaving the Turbine condensed heat release.
  • the working medium of the turbine circuit is heated in the Vor ⁇ warmer, evaporated in the evaporator and superheated in the superheater, then acts on the turbine 18 and is relaxed in this before it is liquefied in the condenser again.
  • a feed pump 17 conveys the working medium of the turbine circuit into the preheater.
  • the heat exchanger 1 is provided for absorbing the heat of the propellant gas / vapor from a solar collector or other heat source, the heat exchanger 10 for absorbing heat from a further heat source, such as a heat exchanger. Air or water.
  • the working medium of the thermal work cycle is condensed in a heat exchanger 19 and exposed via a feed pump 20 to the driving heat source in the heat exchanger 1.
  • the arithmetic design of the working method according to the invention leads to the result that a single-stage working process can be carried out at a temperature difference between heat exchanger 1 and heat exchanger 2 of about 20 K and then a further stage for every further 20 K Further partial circuit can be used, wherein the respective pressure gradation between the Stu ⁇ fen of the subcircuits a question of the desired mass Relationships between Treihgas / steam and suction gas / steam is.
  • a further advantageous embodiment of the method according to the invention results from the fact that the generated cold gas / cold vapor fraction can also be used to provide cold for a refrigeration cycle via a heat exchanger.
  • the thermal cycling may be carried out with a gas or an evaporable liquid, preferably a refrigerant, e.g. R 124 or R 365mfc.
  • a gas or an evaporable liquid preferably a refrigerant, e.g. R 124 or R 365mfc.
  • the special process control with jet pumps and vortex tubes as well as corresponding subcircuits in the thermal work cycle makes it advisable to use azeotropic mixtures in order to obtain optimal evaporation and condensation heat depending on the stage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

L'invention concerne un procédé d'amélioration de rendement par étalement de température, ledit procédé étant caractérisé en ce qu'un fluide de travail absorbe de la chaleur dans un échangeur de chaleur (1) et entraîne, en tant que gaz propulsif ou vapeur propulsive dans une pompe à jet (2), un gaz ou une vapeur d'aspiration dans un tube à tourbillonnement (3) monté en aval, le gaz ou la vapeur mixte dans le tube à tourbillonnement (3) étant décomposé en deux fractions de chaleur. La fraction de chaleur présentant la température la plus élevée est acheminée à l'évaporateur/au réchauffeur (4) d'un circuit de turbine (6) puis est réacheminée à l'échangeur de chaleur (1). La fraction de chaleur présentant la température la plus basse est acheminée au condenseur/dispositif de refroidissement (15) du circuit de turbine séparé et/ou à l'échangeur de chaleur (10) pour former un circuit de refroidissement, d'où elle est remise à disposition de la pompe à jet (2) en tant que gaz d'aspiration.
PCT/EP2005/008353 2004-08-04 2005-08-02 Procede d'amelioration de rendement par etalement de temperature WO2006015768A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004037934.3 2004-08-04
DE200410037934 DE102004037934B4 (de) 2004-08-04 2004-08-04 Arbeitsverfahren

Publications (1)

Publication Number Publication Date
WO2006015768A1 true WO2006015768A1 (fr) 2006-02-16

Family

ID=34973194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/008353 WO2006015768A1 (fr) 2004-08-04 2005-08-02 Procede d'amelioration de rendement par etalement de temperature

Country Status (2)

Country Link
DE (1) DE102004037934B4 (fr)
WO (1) WO2006015768A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329461A (ja) * 2006-05-01 2007-12-20 Bridgestone Corp 光透過性電磁波シールド性窓材の製造方法、及び光透過性電磁波シールド性窓材、

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105333637A (zh) * 2015-11-24 2016-02-17 北京运特科技有限公司 多效多级涡流管冷热双能机系统的制造工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788064A (en) * 1972-01-26 1974-01-29 R Hawkins System for driving heat motor
US4037414A (en) * 1976-07-23 1977-07-26 Nicodemus Carl D Liquid/vapor energy cycle
US4121425A (en) * 1976-06-14 1978-10-24 Nicodemus Carl D Thermodynamic system
US4333017A (en) * 1980-10-20 1982-06-01 Connell John J O Method and apparatus for closed loop vortex operation
JPS6022005A (ja) * 1983-07-15 1985-02-04 Hitachi Ltd 蒸気タ−ビン漏洩蒸気回収法
SU1318702A1 (ru) * 1986-01-02 1987-06-23 Московский энергетический институт Теплоэнергетическа установка
DE4343088A1 (de) * 1993-12-18 1995-06-22 Keller Juergen U Univ Prof Dr Kondensationswirbelrohr
DE10131072C1 (de) * 2001-06-27 2002-12-12 Joachim Schwieger Wärmetrafo mit Rückverdichtung
DE10228865A1 (de) * 2002-06-27 2004-01-15 Uehlin, Jürgen, Dipl.-Ing. Kollektor mit integrierter Expansionsmaschine und Generator zur Wandlung thermischer Solarstrahlung in Elektrizität

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19916684C2 (de) * 1999-04-14 2001-05-17 Joachim Schwieger Verfahren zur Wärmetransformation mittels eines Wirbelaggregats

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788064A (en) * 1972-01-26 1974-01-29 R Hawkins System for driving heat motor
US4121425A (en) * 1976-06-14 1978-10-24 Nicodemus Carl D Thermodynamic system
US4037414A (en) * 1976-07-23 1977-07-26 Nicodemus Carl D Liquid/vapor energy cycle
US4333017A (en) * 1980-10-20 1982-06-01 Connell John J O Method and apparatus for closed loop vortex operation
JPS6022005A (ja) * 1983-07-15 1985-02-04 Hitachi Ltd 蒸気タ−ビン漏洩蒸気回収法
SU1318702A1 (ru) * 1986-01-02 1987-06-23 Московский энергетический институт Теплоэнергетическа установка
DE4343088A1 (de) * 1993-12-18 1995-06-22 Keller Juergen U Univ Prof Dr Kondensationswirbelrohr
DE10131072C1 (de) * 2001-06-27 2002-12-12 Joachim Schwieger Wärmetrafo mit Rückverdichtung
DE10228865A1 (de) * 2002-06-27 2004-01-15 Uehlin, Jürgen, Dipl.-Ing. Kollektor mit integrierter Expansionsmaschine und Generator zur Wandlung thermischer Solarstrahlung in Elektrizität

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section PQ Week 198805, Derwent World Patents Index; Class Q51, AN 1988-035092, XP002346269 *
PATENT ABSTRACTS OF JAPAN vol. 009, no. 142 (M - 388) 18 June 1985 (1985-06-18) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329461A (ja) * 2006-05-01 2007-12-20 Bridgestone Corp 光透過性電磁波シールド性窓材の製造方法、及び光透過性電磁波シールド性窓材、

Also Published As

Publication number Publication date
DE102004037934B4 (de) 2009-08-27
DE102004037934A1 (de) 2006-02-23

Similar Documents

Publication Publication Date Title
EP2188499B1 (fr) Procédé et dispositif permettant de transformer l'énergie thermique d'une source de chaleur basse température en énergie mécanique
US7065969B2 (en) Power cycle and system for utilizing moderate and low temperature heat sources
US7021060B1 (en) Power cycle and system for utilizing moderate temperature heat sources
EP2021634B1 (fr) Installation et procédé associé pour la conversion de la chaleur en énergie mécanique, électrique et/ou énergie thermique
DE10138255A1 (de) Anordnung für Kaskadenkälteanlage
US20160108763A1 (en) Rankine cycle power generation system with sc-co2 working fluid and integrated absorption refrigeratino chiller
Park et al. A preliminary study of the Kalina power cycle in connection with a combined cycle system
EP2059104A2 (fr) Dispositif de refroidissement pour un système informatique
EP1706599B1 (fr) Procédé et installation de conversion d'une énergie thermique résultante en énergie mécanique
DE102009043720A1 (de) Carnotisierter Rankineprozess für Solarthermische Kraftwerke
WO2006015768A1 (fr) Procede d'amelioration de rendement par etalement de temperature
EP2584287B1 (fr) Cycle destiné au fonctionnement d'une machine de refroidissement par absorption et machine de refroidissement par absorption
DE69921871T2 (de) Absorptionskälteanlage mit Kupplung von Kondensat und Lösung
DE4415199A1 (de) Kälteanlage
EP2199671A1 (fr) Procédé et dispositif destinés à la production de vapeur d'eau
EP0134431B1 (fr) Procédé thermodynamique approchant le cycle d'Ericsson
AT506353B1 (de) Strahlverdichterwärmekraftmaschine
DE102020006763A1 (de) Umgebungswärmemaschine zur Gewinnung von Arbeit und elektrischer Energie aus der Umgebungswärme
Roy Analysis of Rankine cycle and its utility in thermal power plant a theoretical approach
WO2014117924A2 (fr) Procédé permettant de faire fonctionner une centrale basse température et centrale basse température
DE102023122824B4 (de) Verfahren und Anordnung zur Nutzung von Kältepotentialen zur Erzeugung elektrischer Energie mittels eines ORC-Kreisprozesses
EP3623725B1 (fr) Machine à absorption et processus de circuit à absorption
EP3540334A1 (fr) Transformateur à chaleur et processus de transformation de chaleur
EP1921279B1 (fr) Procédé destiné à l'utilisation de la chaleur d'échappement durant le fonctionnement d'une turbine dotée d'un milieu à l'état de vapeur
DE3622743A1 (de) Waermepumpe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase