EP2188499B1 - Procédé et dispositif permettant de transformer l'énergie thermique d'une source de chaleur basse température en énergie mécanique - Google Patents

Procédé et dispositif permettant de transformer l'énergie thermique d'une source de chaleur basse température en énergie mécanique Download PDF

Info

Publication number
EP2188499B1
EP2188499B1 EP07822436.7A EP07822436A EP2188499B1 EP 2188499 B1 EP2188499 B1 EP 2188499B1 EP 07822436 A EP07822436 A EP 07822436A EP 2188499 B1 EP2188499 B1 EP 2188499B1
Authority
EP
European Patent Office
Prior art keywords
agent
liquid
condenser
phase
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07822436.7A
Other languages
German (de)
English (en)
Other versions
EP2188499A2 (fr
Inventor
Jörg LENGERT
Martina Lengert
Kathrin Ruhsland
Norbert Weinberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kalina Power Ltd
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2188499A2 publication Critical patent/EP2188499A2/fr
Application granted granted Critical
Publication of EP2188499B1 publication Critical patent/EP2188499B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/04Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for the fluid being in different phases, e.g. foamed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/02Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for the fluid remaining in the liquid phase

Definitions

  • the invention relates to a method and apparatus for converting the heat energy of a low-temperature source into mechanical energy according to the preamble of patent claim 1 and claim 5.
  • a method and such a device are for example from US Pat. No. 7,093,503 B1 and from DE10361223 A1 known.
  • a liquid working fluid with a pump to an elevated pressure.
  • the pressure-increased, liquid working fluid is heated in a heat exchanger by heat transfer from a low-temperature source, without being evaporated.
  • the heated, liquid working fluid is expanded in a two-phase turbine, wherein by partial evaporation of the working fluid, a relaxed, partially vaporized working fluid with a liquid and a vapor phase generated and heat energy of the working fluid is converted into mechanical energy.
  • the two-phase turbine has for this purpose directly at its entrance nozzles in which the working fluid is expanded by an increase in volume from a higher inlet pressure to a lower outlet pressure, whereby the working fluid is partially evaporated.
  • the resulting water-steam jet is directed to turbine blades of the turbine, which converts the kinetic energy of the water-steam jet into mechanical energy of a rotor shaft.
  • the rotor shaft is in turn connected to a generator, via which the mechanical energy of the rotor shaft is converted into electrical energy.
  • Ts diagram illustrates the process running thereby cycle.
  • SL denotes the boiling line
  • TL the tau line
  • K the critical point of the working medium.
  • the working fluid is heated along the boiling line SL from point A to point B in the vicinity of the critical point K, relaxed from point B to point C with partial evaporation and condensed from point C to point A.
  • the inventive method provides that in the relaxed, partially vaporized working fluid immediately before the condenser, the liquid phase is separated from the vapor phase. Only the vapor phase is fed to the condenser for condensation.
  • the condensed vapor (ie, then liquid) phase and the separated liquid phase are after the condenser, but before the step 1, ie increasing the pressure of the liquid working fluid to Generation of the liquid working fluid brought together.
  • the liquid phase is thus conducted past the condenser, whereby erosion of the condenser can be prevented.
  • the size of droplets of the liquid phase in the vaporous phase of the working fluid after the expansion depends on the pressure of the working fluid in the condenser. The higher the pressure of the working fluid in the condenser and thus at the outlet of the expansion device, the smaller the droplets. The smaller the droplets, the less the risk of erosion from the droplets. On the other hand, however, with increasing pressure of the working fluid in the condenser and at the outlet of the expansion device, the mechanical energy that can be generated by the conversion of heat energy by the expansion device decreases.
  • the pressure of the working fluid in the condensation is set to an optimum between the smallest possible size of droplets of the liquid phase in the vaporous phase of the working fluid and the largest possible generated mechanical energy in the step 3.
  • the generated mechanical energy is deliberately reduced in order to avoid erosion of the capacitor. Due to the enormous efficiency advantage due to the heating instead of evaporation of the working fluid by the low-temperature heat source, however, significant efficiency advantages over conventional circuits with an evaporation of the working fluid by the low-temperature heat source can still be achieved.
  • the merging of the condensed vapor (i.e., then liquid) phase and the (separated) liquid phase takes place in a working fluid reservoir. Since such a memory is present in many circuits anyway, can be dispensed with an additional component for the merger of the two phases.
  • the low-temperature source has a temperature of less than 400 ° C.
  • the device according to the invention has a separator for separating the liquid phase from the vaporous phase of the expanded, partially vaporized working fluid, wherein the separator is arranged in the flow direction of the working fluid immediately in front of the condenser. Merging serves to bring together the (separated) liquid phase and the condensed vapor (i.e., then liquid) phase of the relaxed, partially vaporized working fluid, the merging being upstream of the pump in the flow direction of the working fluid.
  • the separator is connected to the condenser for supplying the vapor phase to the condenser.
  • the merging is connected to the separator for supplying the (separated) liquid phase to the merger and to the condenser for supplying the condensed vapor (i.e., then liquid) phase to the merger.
  • the pressure of the working fluid in the condenser is adjustable to an optimum between the smallest possible size of droplets of the liquid phase in the vapor phase of the working fluid and the largest possible producible mechanical energy in the expansion device.
  • the merge is designed as a working fluid store.
  • a nozzle and a turbine are arranged successively in the expansion device for relaxation of the heated working fluid in the flow direction of the working fluid.
  • the working fluid can be expanded by an increase in volume from a higher inlet pressure to a lower outlet pressure, whereby the working fluid is partially evaporated.
  • the resulting water-steam jet can then be directed to the turbine blades of the turbine, by which the kinetic energy of the water vapor jet is converted into mechanical energy of a rotor shaft.
  • a plurality of nozzles may be arranged, which can be flowed through in parallel by the working medium.
  • the nozzle and the turbine can also form a single structural unit, i. the nozzles are located directly at the entrance of the turbine.
  • a device 1 for converting the thermal energy of a low-temperature heat source into mechanical energy comprises a thermodynamic cycle in which Flow direction of a working fluid sequentially a heat exchanger 2, a relaxation device 3, a separator 7, a capacitor 8, a working fluid reservoir in the form of a condensate tank 9 and a pump 10 are arranged.
  • the low-temperature heat source is a heat source with a temperature of less than 400 ° C.
  • heat sources are geothermal sources (hot thermal water), industrial waste heat sources (e.g., waste heat from steel, glass or cement plants) and solar energy.
  • a type R134 cooling fluid for temperatures of less than 300 ° C comes as a working medium, for example, a type R134 cooling fluid and for temperatures of more than 300 ° C, for example, a type R245 coolant is used.
  • the pump 10 serves to pump the liquid working fluid to an elevated pressure.
  • the heat exchanger 2 serves to heat the pressure-increased liquid working fluid of the circuit by transferring heat from the low-temperature heat source 20 to the working fluid without evaporation of the working fluid, i. the working fluid is heated in the heat exchanger 2 only and not evaporated.
  • the heat exchanger is for this purpose on its primary side of the low-temperature heat source 20, e.g. a hot geothermal water, and flows through on its secondary side of the pressure-increased working fluid.
  • a line 11 connects the secondary side of the heat exchanger 2 with the expansion device 3. The working fluid continues to exist at the secondary-side outlet of the heat exchanger 2 when entering the line 11 as a liquid.
  • the expansion device 3 is used to relax the heated liquid working fluid, wherein in the expansion device 3 by partial evaporation of the heated liquid working fluid a relaxed, partially evaporated Working fluid having a liquid and a vapor phase can be generated and heat energy of the heated liquid working fluid into mechanical energy is convertible.
  • the expansion device 3 comprises a nozzle 4 and a turbine 5, which are arranged consecutively in the direction of flow of the working medium.
  • the nozzle and the turbine can in this case form a single constructional unit, ie the nozzle 4 is arranged directly at the inlet of the turbine 5.
  • a plurality of nozzles 4 can be arranged at the input of the turbine 5, for example in a ring configuration, which can be flowed through in parallel by the working medium.
  • the turbine 5 is connected on the output side via a line 12 to the separator 7.
  • the separator 7 is used to separate the liquid phase from the vapor phase of the working medium partially evaporated in the expansion device 3.
  • the separator 7 is arranged in the flow direction of the working fluid immediately in front of the condenser 8 and via a line 13 to the condenser 8 for supplying the vaporous phase to the condenser 8 and via a line 14 to the condensate tank 9 for supplying the liquid phase to the condensate tank 9 connected.
  • the condenser 8 is used to generate the liquid working fluid by condensation of the partially vaporized working fluid.
  • the condensate tank 9 serves to bring together the liquid phase and the condensed vapor (ie, then liquid) phase of the partially vaporized working fluid.
  • the condensate tank 9 is arranged in the flow direction of the working fluid after the condenser 8 and before the pump 10 and via a line 14 to the separator 7 for supplying the liquid phase and via a line 15 to the condenser 8 for supplying the condensed vapor phase to the condensate tank 9 connected.
  • liquid working fluid is brought from the condensate tank 9 by the pump 10 to an elevated pressure and pumped into the heat exchanger 2.
  • the pressure-increased, liquid working fluid in the heat exchanger 2 is heated by transferring heat from the heat exchanger 2 on the primary side flowing through low-temperature heat source 20 to the working fluid without it being evaporated.
  • the heated, liquid working fluid is expanded in the expansion device 3, wherein the working fluid is partially evaporated and its heat energy is converted into mechanical energy.
  • the expansion device 3 thus a relaxed, partially vaporized working fluid is generated with a liquid and a vapor phase.
  • the supplied via the line 11 of the nozzle 4 heated, liquid working fluid in the nozzle 4 is expanded and thereby partially evaporated.
  • the kinetic energy of the resulting water-steam jet is converted in the turbine 5 into mechanical energy of a rotor shaft and thus a generator 6 is driven, which in turn converts the mechanical energy into electrical energy.
  • the relaxed, partially vaporized working fluid in the form of a two-phase mixture (vapor / liquid) produced in the third step and leaving the turbine 5 is fed via a line 12 to the separator 7 by separating the vaporous phase from the liquid phase of the two-phase mixture becomes.
  • the vapor phase is condensed by cooling, for example by direct cooling, air cooling, hybrid cooling or water cooling, and the condensed vapor (ie then liquid) phase is fed via the line 15 to the condensate tank 9.
  • the separated liquid phase passes via the line 14 past the condenser 8 and is then brought together in the condensate tank 9 with the condensed vapor (i.e., then liquid) phase before, but before, the pump 10 and thus before the first step.
  • Liquid working fluid from the condensate tank 9 is brought by means of the pump 10 to increased pressure and pumped into the heat exchanger 2, whereby the circuit is closed.
  • the pressure of the working fluid in the condenser 8 is set in this case to an optimum between the smallest possible size of droplets of the liquid phase in the vaporous phase of the working fluid and the largest possible generated mechanical energy in the third step. As a result, an erosion of the capacitor can be further reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Claims (10)

  1. Procédé de transformation de l'énergie thermique d'une source ( 20 ) de chaleur à basse température en énergie mécanique en un cycle fermé, comprenant les stades suivants :
    - stade 1 : élévation de la pression d'un fluide de travail liquide,
    - stade 2 : échauffement du fluide de travail liquide, dont la pression a été augmentée, par transfert de chaleur de la source ( 20 ) de chaleur à basse température au fluide de travail sans évaporation du fluide de travail,
    - stade 3 : détente du fluide de travail liquide échauffé, dans lequel, par évaporation partielle du fluide de travail, on produit un fluide de travail détendu et évaporé partiellement ayant une phase vapeur et une phase liquide et on transforme de l'énergie thermique du fluide de travail en de l'énergie mécanique,
    - stade 4 : condensation de la phase vapeur produite au stade 3 dans un condenseur ( 8 ) pour produire le fluide de travail liquide du stade 1,
    caractérisé en ce que
    - pour le fluide de travail produit au stade 3 détendu et évaporé partiellement, on sépare, juste avant le condenseur ( 8 ), la phase liquide de la phase vapeur,
    - on n'envoie au condenseur ( 8 ) que la phase vapeur,
    - on rassemble la phase vapeur condensée et la phase liquide, après le condenseur ( 8 ), mais avant le stade 1, pour produire le fluide de travail liquide.
  2. Procédé suivant la revendication 1,
    caractérisé en ce que l'on règle la pression du fluide de travail dans le condenseur ( 8 ) à un optimum entre une dimension aussi petite que possible des gouttelettes de la phase liquide dans la phase vapeur du fluide de travail et une énergie mécanique produite aussi grande que possible dans le stade 3.
  3. Procédé suivant la revendication 1 ou 2,
    caractérisé en ce que l'on effectue la réunion de la phase vapeur condensée de la phase liquide dans un accumulateur ( 9 ) de fluide de travail.
  4. Procédé suivant l'une des revendications précédentes,
    caractérisé en ce que la source à basse température a une température de moins de 400°C.
  5. Installation ( 1 ) de transformation de l'énergie thermique d'une source ( 20 ) de chaleur à basse température en énergie mécanique en un cycle fermé, comprenant
    - une pompe ( 10 ) pour élever la pression d'un fluide de travail liquide,
    - un échangeur de chaleur ( 2 ) pour échauffer le fluide de travail liquide, dont la pression a été élevée, par transfert de chaleur de la source ( 20 ) de chaleur à basse température au fluide de travail, sans évaporation du fluide de travail,
    - un dispositif ( 3 ) de détente pour détendre le fluide de travail liquide échauffé, dans laquelle, dans le dispositif ( 3 ) de détente, par évaporation partielle du fluide de travail, un fluide de travail détendu, évaporé partiellement et ayant une phase liquide et une phase vapeur peut être obtenu et de l'énergie thermique du fluide de travail peut être transformée en énergie mécanique,
    - un condenseur ( 8 ) de condensation de la phase vapeur du fluide de travail évaporé en partie pour produire le fluide de travail liquide,
    caractérisée par
    - un séparateur ( 7 ) pour séparer la phase liquide de la phase vapeur du fluide de travail détendu et évaporé partiellement, le séparateur ( 7 ) étant monté, dans le sens du courant du fluide de travail, juste avant le condenseur ( 8 ), et communiquant avec le condenseur ( 8 ) pour envoyer la phase vapeur au condenseur ( 8 ),
    - un dispositif ( 9 ) de réunion pour réunir la phase liquide et la phase vapeur condensée du fluide de travail évaporé partiellement, le dispositif ( 9 ) de réunion étant monté, dans le sens du courant du fluide de travail, en amont de la pompe ( 10 ) et communiquant avec le séparateur ( 7 ) pour l'apport de la phase liquide et avec le condenseur ( 8 ) pour l'apport de la phase vapeur condensée au dispositif ( 9 ) de réunion.
  6. Installation ( 1 ) suivant la revendication 5,
    caractérisée en ce que la pression du fluide de travail dans le condenseur ( 8 ) peut être réglée à un optimum entre une dimension aussi petite que possible de gouttelettes de la phase liquide dans la phase vapeur du fluide de travail et une énergie mécanique pouvant être obtenue aussi grande que possible dans le dispositif ( 3 ) de détente.
  7. Installation ( 1 ) suivant l'une des revendications 5 ou 6,
    caractérisée en ce que le dispositif ( 9 ) de réunion est constitué sous la forme d'un accumulateur de fluide de travail.
  8. Installation ( 1 ) suivant l'une des revendications 5 à 7,
    caractérisée en ce que, dans le dispositif ( 9 ) de détente, sont disposées, en se succédant l'une à l'autre dans le sens du courant du fluide de travail, une buse ( 4 ) et une turbine ( 5 ).
  9. Installation ( 1 ) suivant l'une des revendications 5 à 8,
    caractérisée en ce que la buse ( 4 ) et la turbine ( 5 ) forment une unité unique de construction.
  10. Installation ( 1 ) suivant l'une des revendications 5 à 9,
    caractérisée en ce que la source à basse température a une température de moins de 400°C.
EP07822436.7A 2007-08-31 2007-11-09 Procédé et dispositif permettant de transformer l'énergie thermique d'une source de chaleur basse température en énergie mécanique Active EP2188499B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007041457A DE102007041457B4 (de) 2007-08-31 2007-08-31 Verfahren und Vorrichtung zur Umwandlung der Wärmeenergie einer Niedertemperatur-Wärmequelle in mechanische Energie
PCT/EP2007/062147 WO2009030283A2 (fr) 2007-08-31 2007-11-09 Procédé et dispositif permettant de transformer l'énergie thermique d'une source de chaleur basse température en énergie mécanique

Publications (2)

Publication Number Publication Date
EP2188499A2 EP2188499A2 (fr) 2010-05-26
EP2188499B1 true EP2188499B1 (fr) 2016-09-28

Family

ID=40299049

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07822436.7A Active EP2188499B1 (fr) 2007-08-31 2007-11-09 Procédé et dispositif permettant de transformer l'énergie thermique d'une source de chaleur basse température en énergie mécanique

Country Status (9)

Country Link
US (1) US20100269503A1 (fr)
EP (1) EP2188499B1 (fr)
KR (1) KR101398312B1 (fr)
CN (1) CN101842557B (fr)
AU (1) AU2007358567B2 (fr)
DE (1) DE102007041457B4 (fr)
ES (1) ES2608955T3 (fr)
RU (1) RU2485331C2 (fr)
WO (1) WO2009030283A2 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5502153B2 (ja) * 2012-07-09 2014-05-28 本田技研工業株式会社 燃料供給装置
BE1023904B1 (nl) * 2015-09-08 2017-09-08 Atlas Copco Airpower Naamloze Vennootschap ORC voor het omvormen van afvalwarmte van een warmtebron in mechanische energie en compressorinstallatie die gebruik maakt van een dergelijke ORC.
US20170241297A1 (en) * 2016-02-23 2017-08-24 Double Arrow Engineering Waste thermal energy recovery device
US10982568B2 (en) * 2016-04-29 2021-04-20 Spirax-Sarco Limited Pumping apparatus
CN107060927A (zh) * 2017-06-09 2017-08-18 翁志远 余热回收利用系统及其方法和发电站
GB2567858B (en) * 2017-10-27 2022-08-03 Spirax Sarco Ltd Heat engine
NO20180312A1 (no) * 2018-02-28 2019-08-29 Entromission As Metode for å utvinne mekanisk energi fra termisk energi
US20210222592A1 (en) * 2018-07-03 2021-07-22 21Tdmc Group Oy Method and apparatus for converting heat energy to mechanical energy
DE102021102803B4 (de) 2021-02-07 2024-06-13 Kristian Roßberg Vorrichtung und Verfahren zur Umwandlung von Niedertemperaturwärme in technisch nutzbare Energie
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11187212B1 (en) 2021-04-02 2021-11-30 Ice Thermal Harvesting, Llc Methods for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on working fluid temperature
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11326550B1 (en) 2021-04-02 2022-05-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11421663B1 (en) 2021-04-02 2022-08-23 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11293414B1 (en) 2021-04-02 2022-04-05 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic rankine cycle operation
DE102021108558B4 (de) 2021-04-06 2023-04-27 Kristian Roßberg Verfahren und Vorrichtung zur Umwandlung von Niedertemperaturwärme in technisch nutzbare Energie
WO2023092433A1 (fr) * 2021-11-25 2023-06-01 任湘军 Dispositif de conversion d'énergie interne dans un milieu à basse température (constante) en énergie mécanique
EP4303407A1 (fr) 2022-07-09 2024-01-10 Kristian Roßberg Dispositif et procédé de conversion de chaleur à basse température en énergie mécanique techniquement utilisable
EP4306775B1 (fr) 2022-07-11 2024-08-14 Kristian Roßberg Procédé et dispositif de conversion de chaleur à basse température en énergie mécanique techniquement utilisable

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3401277A (en) * 1962-12-31 1968-09-10 United Aircraft Corp Two-phase fluid power generator with no moving parts
US3908381A (en) * 1974-11-20 1975-09-30 Sperry Rand Corp Geothermal energy conversion system for maximum energy extraction
GB1532850A (en) * 1976-11-30 1978-11-22 Romanov V Axial-flow reversible turbine
US4272961A (en) * 1977-12-19 1981-06-16 Occidental Research Corporation Recovery of energy from geothermal brine and other aqueous sources
SU781373A1 (ru) * 1978-12-14 1980-11-23 Государственный Научно-Исследовательский Энергетический Институт Им.Г.М.Кржижановского Энергетическа установка
US4732005A (en) * 1987-02-17 1988-03-22 Kalina Alexander Ifaevich Direct fired power cycle
AU4650689A (en) 1989-01-31 1990-08-24 Tselevoi Nauchno-Tekhnichesky Kooperativ `Stimer' Method for converting thermal energy of a working medium into mechanical energy in a steam plant
US5925291A (en) * 1997-03-25 1999-07-20 Midwest Research Institute Method and apparatus for high-efficiency direct contact condensation
US6775993B2 (en) * 2002-07-08 2004-08-17 Dube Serge High-speed defrost refrigeration system
GB0322507D0 (en) 2003-09-25 2003-10-29 Univ City Deriving power from low temperature heat source
EP1624269A3 (fr) * 2003-10-02 2006-03-08 HONDA MOTOR CO., Ltd. Dispositif de régulation du refroidissement d'un condenseur
DE10361203A1 (de) * 2003-12-24 2005-07-21 Erwin Dr. Oser Niederdruck-Entspannungsmotor mit Energierückführung
DE10361223A1 (de) 2003-12-24 2005-07-21 Erwin Dr. Oser Niederdruck-Entspannungsmotor mit Treibdampftrennung mittels extraktiver Rektifikation
US7726128B2 (en) * 2003-12-22 2010-06-01 Ecoenergy Patent Gmbh Apparatus and method for converting heat energy to mechanical energy
PL1613841T3 (pl) * 2004-04-16 2007-05-31 Siemens Ag Sposób i urządzenie do realizacji obiegu termodynamicznego
US7093503B1 (en) 2004-11-16 2006-08-22 Energent Corporation Variable phase turbine
GB0511864D0 (en) * 2005-06-10 2005-07-20 Univ City Expander lubrication in vapour power systems
GB2436129A (en) * 2006-03-13 2007-09-19 Univ City Vapour power system

Also Published As

Publication number Publication date
US20100269503A1 (en) 2010-10-28
ES2608955T3 (es) 2017-04-17
AU2007358567A1 (en) 2009-03-12
CN101842557B (zh) 2013-09-04
AU2007358567B2 (en) 2013-07-11
RU2485331C2 (ru) 2013-06-20
WO2009030283A2 (fr) 2009-03-12
CN101842557A (zh) 2010-09-22
DE102007041457A1 (de) 2009-03-05
WO2009030283A3 (fr) 2010-03-18
KR20100074167A (ko) 2010-07-01
DE102007041457B4 (de) 2009-09-10
RU2010112391A (ru) 2011-10-10
KR101398312B1 (ko) 2014-05-27
EP2188499A2 (fr) 2010-05-26

Similar Documents

Publication Publication Date Title
EP2188499B1 (fr) Procédé et dispositif permettant de transformer l'énergie thermique d'une source de chaleur basse température en énergie mécanique
EP1613841B1 (fr) Procede et dispositif de mise en oeuvre d'un processus cyclique thermodynamique
DE10335143B4 (de) Verfahren zur Erhöhung des Wirkungsgrades einer Gasturbinenanlage und dafür geeignete Gasturbinenanlage
EP2347102B1 (fr) Procédé de fonctionnement d'un circuit thermodynamique et circuit thermodynamique
DE69932766T2 (de) Methode zum Vorwärmen von Brennstoff für eine Gasturbine in einem Kombikraftwerk mit einer Strömung von Mehrkomponentenmischungen
EP2021634B1 (fr) Installation et procédé associé pour la conversion de la chaleur en énergie mécanique, électrique et/ou énergie thermique
WO2009027302A2 (fr) Procédé et dispositif visant à convertir de l'énergie thermique en énergie mécanique
WO2005014981A1 (fr) Procede et dispositif pour effectuer un cycle thermodynamique
DE102004037417B3 (de) Verfahren und Vorrichtung zur Übertragung von Wärme von einer Wärmequelle an einen thermodynamischen Kreislauf mit einem Arbeitsmittel mit zumindest zwei Stoffen mit nicht-isothermer Verdampfung und Kondensation
DE2611890A1 (de) Verfahren und vorrichtung zur umwandlung von waerme niedriger temperatur in antriebskraft oder in energie
DE102017125355B3 (de) Verfahren und Anordnung zur Umwandlung von Wärme in kinetische Energie
DE112016000565B4 (de) Einheit zum Umwandeln von Wärme in mechanische Energie
WO2005056994A1 (fr) Groupe moteur a reservoir d'air
WO2017054895A1 (fr) Dispositif de récupération de chaleur perdue
DE102010004079A1 (de) Brennkraftmaschine, kombiniert mit Rankineprozess zur effizienten Nutzung der Kühlmittel- und Abgaswärme
EP0158629B1 (fr) Cycle à vapeur pour installation énergétique à vapeur
DE102009043720A1 (de) Carnotisierter Rankineprozess für Solarthermische Kraftwerke
DE102010011737A1 (de) Verfahren und Vorrichtung zur Energieumwandlung
DE102016220634A1 (de) Abwärme-Kraftanlage mit stufenweiser Wärmezufuhr
WO2017081248A1 (fr) Agencement et procédé de récupération d'énergie provenant de la chaleur perdue d'au moins un moteur à combustion interne
DE102014203121B4 (de) Vorrichtung und Verfahren für einen ORC-Kreisprozess mit mehrstufiger Expansion
EP2559867A1 (fr) Procédé de production d'énergie électrique à l'aide d'une centrale électrique combinée et centrale électrique combinée destinée à l'exécution du procédé
EP1921279B1 (fr) Procédé destiné à l'utilisation de la chaleur d'échappement durant le fonctionnement d'une turbine dotée d'un milieu à l'état de vapeur
DE102023105351A1 (de) Vorrichtung zur Energieerzeugung und Arbeitsmittelkreislauf-Betriebsverfahren
DE102019217998A1 (de) Vorrichtung und Verfahren zur Ausspeicherung eines thermischen Energiespeichers, insbesondere eines Flüssigsalzspeichers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100212

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160502

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 832960

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007015151

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161229

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2608955

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007015151

Country of ref document: DE

Owner name: KALINA POWER LIMITED, AU

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170128

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170130

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007015151

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170622 AND 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KALINA POWER LIMITED

26N No opposition filed

Effective date: 20170629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161109

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: KALINA POWER LIMITED, AU

Effective date: 20171114

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 832960

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161109

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20071109

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20221207

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230921

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230911

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231108

Year of fee payment: 17

Ref country code: IT

Payment date: 20231010

Year of fee payment: 17

Ref country code: DE

Payment date: 20230912

Year of fee payment: 17