EP2188499B1 - Procédé et dispositif permettant de transformer l'énergie thermique d'une source de chaleur basse température en énergie mécanique - Google Patents
Procédé et dispositif permettant de transformer l'énergie thermique d'une source de chaleur basse température en énergie mécanique Download PDFInfo
- Publication number
- EP2188499B1 EP2188499B1 EP07822436.7A EP07822436A EP2188499B1 EP 2188499 B1 EP2188499 B1 EP 2188499B1 EP 07822436 A EP07822436 A EP 07822436A EP 2188499 B1 EP2188499 B1 EP 2188499B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- agent
- liquid
- condenser
- phase
- vapor phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 12
- 239000007788 liquid Substances 0.000 claims description 43
- 239000007791 liquid phase Substances 0.000 claims description 33
- 239000012808 vapor phase Substances 0.000 claims description 26
- 238000009833 condensation Methods 0.000 claims description 4
- 230000005494 condensation Effects 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 230000008016 vaporization Effects 0.000 claims 4
- 238000009834 vaporization Methods 0.000 claims 2
- 238000000926 separation method Methods 0.000 claims 1
- 239000012530 fluid Substances 0.000 description 71
- 239000012071 phase Substances 0.000 description 29
- 238000001704 evaporation Methods 0.000 description 9
- 230000008020 evaporation Effects 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 230000003628 erosive effect Effects 0.000 description 7
- 239000003990 capacitor Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000009835 boiling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000010808 liquid waste Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/04—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for the fluid being in different phases, e.g. foamed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/02—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for the fluid remaining in the liquid phase
Definitions
- the invention relates to a method and apparatus for converting the heat energy of a low-temperature source into mechanical energy according to the preamble of patent claim 1 and claim 5.
- a method and such a device are for example from US Pat. No. 7,093,503 B1 and from DE10361223 A1 known.
- a liquid working fluid with a pump to an elevated pressure.
- the pressure-increased, liquid working fluid is heated in a heat exchanger by heat transfer from a low-temperature source, without being evaporated.
- the heated, liquid working fluid is expanded in a two-phase turbine, wherein by partial evaporation of the working fluid, a relaxed, partially vaporized working fluid with a liquid and a vapor phase generated and heat energy of the working fluid is converted into mechanical energy.
- the two-phase turbine has for this purpose directly at its entrance nozzles in which the working fluid is expanded by an increase in volume from a higher inlet pressure to a lower outlet pressure, whereby the working fluid is partially evaporated.
- the resulting water-steam jet is directed to turbine blades of the turbine, which converts the kinetic energy of the water-steam jet into mechanical energy of a rotor shaft.
- the rotor shaft is in turn connected to a generator, via which the mechanical energy of the rotor shaft is converted into electrical energy.
- Ts diagram illustrates the process running thereby cycle.
- SL denotes the boiling line
- TL the tau line
- K the critical point of the working medium.
- the working fluid is heated along the boiling line SL from point A to point B in the vicinity of the critical point K, relaxed from point B to point C with partial evaporation and condensed from point C to point A.
- the inventive method provides that in the relaxed, partially vaporized working fluid immediately before the condenser, the liquid phase is separated from the vapor phase. Only the vapor phase is fed to the condenser for condensation.
- the condensed vapor (ie, then liquid) phase and the separated liquid phase are after the condenser, but before the step 1, ie increasing the pressure of the liquid working fluid to Generation of the liquid working fluid brought together.
- the liquid phase is thus conducted past the condenser, whereby erosion of the condenser can be prevented.
- the size of droplets of the liquid phase in the vaporous phase of the working fluid after the expansion depends on the pressure of the working fluid in the condenser. The higher the pressure of the working fluid in the condenser and thus at the outlet of the expansion device, the smaller the droplets. The smaller the droplets, the less the risk of erosion from the droplets. On the other hand, however, with increasing pressure of the working fluid in the condenser and at the outlet of the expansion device, the mechanical energy that can be generated by the conversion of heat energy by the expansion device decreases.
- the pressure of the working fluid in the condensation is set to an optimum between the smallest possible size of droplets of the liquid phase in the vaporous phase of the working fluid and the largest possible generated mechanical energy in the step 3.
- the generated mechanical energy is deliberately reduced in order to avoid erosion of the capacitor. Due to the enormous efficiency advantage due to the heating instead of evaporation of the working fluid by the low-temperature heat source, however, significant efficiency advantages over conventional circuits with an evaporation of the working fluid by the low-temperature heat source can still be achieved.
- the merging of the condensed vapor (i.e., then liquid) phase and the (separated) liquid phase takes place in a working fluid reservoir. Since such a memory is present in many circuits anyway, can be dispensed with an additional component for the merger of the two phases.
- the low-temperature source has a temperature of less than 400 ° C.
- the device according to the invention has a separator for separating the liquid phase from the vaporous phase of the expanded, partially vaporized working fluid, wherein the separator is arranged in the flow direction of the working fluid immediately in front of the condenser. Merging serves to bring together the (separated) liquid phase and the condensed vapor (i.e., then liquid) phase of the relaxed, partially vaporized working fluid, the merging being upstream of the pump in the flow direction of the working fluid.
- the separator is connected to the condenser for supplying the vapor phase to the condenser.
- the merging is connected to the separator for supplying the (separated) liquid phase to the merger and to the condenser for supplying the condensed vapor (i.e., then liquid) phase to the merger.
- the pressure of the working fluid in the condenser is adjustable to an optimum between the smallest possible size of droplets of the liquid phase in the vapor phase of the working fluid and the largest possible producible mechanical energy in the expansion device.
- the merge is designed as a working fluid store.
- a nozzle and a turbine are arranged successively in the expansion device for relaxation of the heated working fluid in the flow direction of the working fluid.
- the working fluid can be expanded by an increase in volume from a higher inlet pressure to a lower outlet pressure, whereby the working fluid is partially evaporated.
- the resulting water-steam jet can then be directed to the turbine blades of the turbine, by which the kinetic energy of the water vapor jet is converted into mechanical energy of a rotor shaft.
- a plurality of nozzles may be arranged, which can be flowed through in parallel by the working medium.
- the nozzle and the turbine can also form a single structural unit, i. the nozzles are located directly at the entrance of the turbine.
- a device 1 for converting the thermal energy of a low-temperature heat source into mechanical energy comprises a thermodynamic cycle in which Flow direction of a working fluid sequentially a heat exchanger 2, a relaxation device 3, a separator 7, a capacitor 8, a working fluid reservoir in the form of a condensate tank 9 and a pump 10 are arranged.
- the low-temperature heat source is a heat source with a temperature of less than 400 ° C.
- heat sources are geothermal sources (hot thermal water), industrial waste heat sources (e.g., waste heat from steel, glass or cement plants) and solar energy.
- a type R134 cooling fluid for temperatures of less than 300 ° C comes as a working medium, for example, a type R134 cooling fluid and for temperatures of more than 300 ° C, for example, a type R245 coolant is used.
- the pump 10 serves to pump the liquid working fluid to an elevated pressure.
- the heat exchanger 2 serves to heat the pressure-increased liquid working fluid of the circuit by transferring heat from the low-temperature heat source 20 to the working fluid without evaporation of the working fluid, i. the working fluid is heated in the heat exchanger 2 only and not evaporated.
- the heat exchanger is for this purpose on its primary side of the low-temperature heat source 20, e.g. a hot geothermal water, and flows through on its secondary side of the pressure-increased working fluid.
- a line 11 connects the secondary side of the heat exchanger 2 with the expansion device 3. The working fluid continues to exist at the secondary-side outlet of the heat exchanger 2 when entering the line 11 as a liquid.
- the expansion device 3 is used to relax the heated liquid working fluid, wherein in the expansion device 3 by partial evaporation of the heated liquid working fluid a relaxed, partially evaporated Working fluid having a liquid and a vapor phase can be generated and heat energy of the heated liquid working fluid into mechanical energy is convertible.
- the expansion device 3 comprises a nozzle 4 and a turbine 5, which are arranged consecutively in the direction of flow of the working medium.
- the nozzle and the turbine can in this case form a single constructional unit, ie the nozzle 4 is arranged directly at the inlet of the turbine 5.
- a plurality of nozzles 4 can be arranged at the input of the turbine 5, for example in a ring configuration, which can be flowed through in parallel by the working medium.
- the turbine 5 is connected on the output side via a line 12 to the separator 7.
- the separator 7 is used to separate the liquid phase from the vapor phase of the working medium partially evaporated in the expansion device 3.
- the separator 7 is arranged in the flow direction of the working fluid immediately in front of the condenser 8 and via a line 13 to the condenser 8 for supplying the vaporous phase to the condenser 8 and via a line 14 to the condensate tank 9 for supplying the liquid phase to the condensate tank 9 connected.
- the condenser 8 is used to generate the liquid working fluid by condensation of the partially vaporized working fluid.
- the condensate tank 9 serves to bring together the liquid phase and the condensed vapor (ie, then liquid) phase of the partially vaporized working fluid.
- the condensate tank 9 is arranged in the flow direction of the working fluid after the condenser 8 and before the pump 10 and via a line 14 to the separator 7 for supplying the liquid phase and via a line 15 to the condenser 8 for supplying the condensed vapor phase to the condensate tank 9 connected.
- liquid working fluid is brought from the condensate tank 9 by the pump 10 to an elevated pressure and pumped into the heat exchanger 2.
- the pressure-increased, liquid working fluid in the heat exchanger 2 is heated by transferring heat from the heat exchanger 2 on the primary side flowing through low-temperature heat source 20 to the working fluid without it being evaporated.
- the heated, liquid working fluid is expanded in the expansion device 3, wherein the working fluid is partially evaporated and its heat energy is converted into mechanical energy.
- the expansion device 3 thus a relaxed, partially vaporized working fluid is generated with a liquid and a vapor phase.
- the supplied via the line 11 of the nozzle 4 heated, liquid working fluid in the nozzle 4 is expanded and thereby partially evaporated.
- the kinetic energy of the resulting water-steam jet is converted in the turbine 5 into mechanical energy of a rotor shaft and thus a generator 6 is driven, which in turn converts the mechanical energy into electrical energy.
- the relaxed, partially vaporized working fluid in the form of a two-phase mixture (vapor / liquid) produced in the third step and leaving the turbine 5 is fed via a line 12 to the separator 7 by separating the vaporous phase from the liquid phase of the two-phase mixture becomes.
- the vapor phase is condensed by cooling, for example by direct cooling, air cooling, hybrid cooling or water cooling, and the condensed vapor (ie then liquid) phase is fed via the line 15 to the condensate tank 9.
- the separated liquid phase passes via the line 14 past the condenser 8 and is then brought together in the condensate tank 9 with the condensed vapor (i.e., then liquid) phase before, but before, the pump 10 and thus before the first step.
- Liquid working fluid from the condensate tank 9 is brought by means of the pump 10 to increased pressure and pumped into the heat exchanger 2, whereby the circuit is closed.
- the pressure of the working fluid in the condenser 8 is set in this case to an optimum between the smallest possible size of droplets of the liquid phase in the vaporous phase of the working fluid and the largest possible generated mechanical energy in the third step. As a result, an erosion of the capacitor can be further reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Claims (10)
- Procédé de transformation de l'énergie thermique d'une source ( 20 ) de chaleur à basse température en énergie mécanique en un cycle fermé, comprenant les stades suivants :- stade 1 : élévation de la pression d'un fluide de travail liquide,- stade 2 : échauffement du fluide de travail liquide, dont la pression a été augmentée, par transfert de chaleur de la source ( 20 ) de chaleur à basse température au fluide de travail sans évaporation du fluide de travail,- stade 3 : détente du fluide de travail liquide échauffé, dans lequel, par évaporation partielle du fluide de travail, on produit un fluide de travail détendu et évaporé partiellement ayant une phase vapeur et une phase liquide et on transforme de l'énergie thermique du fluide de travail en de l'énergie mécanique,- stade 4 : condensation de la phase vapeur produite au stade 3 dans un condenseur ( 8 ) pour produire le fluide de travail liquide du stade 1,caractérisé en ce que- pour le fluide de travail produit au stade 3 détendu et évaporé partiellement, on sépare, juste avant le condenseur ( 8 ), la phase liquide de la phase vapeur,- on n'envoie au condenseur ( 8 ) que la phase vapeur,- on rassemble la phase vapeur condensée et la phase liquide, après le condenseur ( 8 ), mais avant le stade 1, pour produire le fluide de travail liquide.
- Procédé suivant la revendication 1,
caractérisé en ce que l'on règle la pression du fluide de travail dans le condenseur ( 8 ) à un optimum entre une dimension aussi petite que possible des gouttelettes de la phase liquide dans la phase vapeur du fluide de travail et une énergie mécanique produite aussi grande que possible dans le stade 3. - Procédé suivant la revendication 1 ou 2,
caractérisé en ce que l'on effectue la réunion de la phase vapeur condensée de la phase liquide dans un accumulateur ( 9 ) de fluide de travail. - Procédé suivant l'une des revendications précédentes,
caractérisé en ce que la source à basse température a une température de moins de 400°C. - Installation ( 1 ) de transformation de l'énergie thermique d'une source ( 20 ) de chaleur à basse température en énergie mécanique en un cycle fermé, comprenant- une pompe ( 10 ) pour élever la pression d'un fluide de travail liquide,- un échangeur de chaleur ( 2 ) pour échauffer le fluide de travail liquide, dont la pression a été élevée, par transfert de chaleur de la source ( 20 ) de chaleur à basse température au fluide de travail, sans évaporation du fluide de travail,- un dispositif ( 3 ) de détente pour détendre le fluide de travail liquide échauffé, dans laquelle, dans le dispositif ( 3 ) de détente, par évaporation partielle du fluide de travail, un fluide de travail détendu, évaporé partiellement et ayant une phase liquide et une phase vapeur peut être obtenu et de l'énergie thermique du fluide de travail peut être transformée en énergie mécanique,- un condenseur ( 8 ) de condensation de la phase vapeur du fluide de travail évaporé en partie pour produire le fluide de travail liquide,caractérisée par- un séparateur ( 7 ) pour séparer la phase liquide de la phase vapeur du fluide de travail détendu et évaporé partiellement, le séparateur ( 7 ) étant monté, dans le sens du courant du fluide de travail, juste avant le condenseur ( 8 ), et communiquant avec le condenseur ( 8 ) pour envoyer la phase vapeur au condenseur ( 8 ),- un dispositif ( 9 ) de réunion pour réunir la phase liquide et la phase vapeur condensée du fluide de travail évaporé partiellement, le dispositif ( 9 ) de réunion étant monté, dans le sens du courant du fluide de travail, en amont de la pompe ( 10 ) et communiquant avec le séparateur ( 7 ) pour l'apport de la phase liquide et avec le condenseur ( 8 ) pour l'apport de la phase vapeur condensée au dispositif ( 9 ) de réunion.
- Installation ( 1 ) suivant la revendication 5,
caractérisée en ce que la pression du fluide de travail dans le condenseur ( 8 ) peut être réglée à un optimum entre une dimension aussi petite que possible de gouttelettes de la phase liquide dans la phase vapeur du fluide de travail et une énergie mécanique pouvant être obtenue aussi grande que possible dans le dispositif ( 3 ) de détente. - Installation ( 1 ) suivant l'une des revendications 5 ou 6,
caractérisée en ce que le dispositif ( 9 ) de réunion est constitué sous la forme d'un accumulateur de fluide de travail. - Installation ( 1 ) suivant l'une des revendications 5 à 7,
caractérisée en ce que, dans le dispositif ( 9 ) de détente, sont disposées, en se succédant l'une à l'autre dans le sens du courant du fluide de travail, une buse ( 4 ) et une turbine ( 5 ). - Installation ( 1 ) suivant l'une des revendications 5 à 8,
caractérisée en ce que la buse ( 4 ) et la turbine ( 5 ) forment une unité unique de construction. - Installation ( 1 ) suivant l'une des revendications 5 à 9,
caractérisée en ce que la source à basse température a une température de moins de 400°C.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007041457A DE102007041457B4 (de) | 2007-08-31 | 2007-08-31 | Verfahren und Vorrichtung zur Umwandlung der Wärmeenergie einer Niedertemperatur-Wärmequelle in mechanische Energie |
PCT/EP2007/062147 WO2009030283A2 (fr) | 2007-08-31 | 2007-11-09 | Procédé et dispositif permettant de transformer l'énergie thermique d'une source de chaleur basse température en énergie mécanique |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2188499A2 EP2188499A2 (fr) | 2010-05-26 |
EP2188499B1 true EP2188499B1 (fr) | 2016-09-28 |
Family
ID=40299049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07822436.7A Active EP2188499B1 (fr) | 2007-08-31 | 2007-11-09 | Procédé et dispositif permettant de transformer l'énergie thermique d'une source de chaleur basse température en énergie mécanique |
Country Status (9)
Country | Link |
---|---|
US (1) | US20100269503A1 (fr) |
EP (1) | EP2188499B1 (fr) |
KR (1) | KR101398312B1 (fr) |
CN (1) | CN101842557B (fr) |
AU (1) | AU2007358567B2 (fr) |
DE (1) | DE102007041457B4 (fr) |
ES (1) | ES2608955T3 (fr) |
RU (1) | RU2485331C2 (fr) |
WO (1) | WO2009030283A2 (fr) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5502153B2 (ja) * | 2012-07-09 | 2014-05-28 | 本田技研工業株式会社 | 燃料供給装置 |
BE1023904B1 (nl) * | 2015-09-08 | 2017-09-08 | Atlas Copco Airpower Naamloze Vennootschap | ORC voor het omvormen van afvalwarmte van een warmtebron in mechanische energie en compressorinstallatie die gebruik maakt van een dergelijke ORC. |
US20170241297A1 (en) * | 2016-02-23 | 2017-08-24 | Double Arrow Engineering | Waste thermal energy recovery device |
US10982568B2 (en) * | 2016-04-29 | 2021-04-20 | Spirax-Sarco Limited | Pumping apparatus |
CN107060927A (zh) * | 2017-06-09 | 2017-08-18 | 翁志远 | 余热回收利用系统及其方法和发电站 |
GB2567858B (en) * | 2017-10-27 | 2022-08-03 | Spirax Sarco Ltd | Heat engine |
NO20180312A1 (no) * | 2018-02-28 | 2019-08-29 | Entromission As | Metode for å utvinne mekanisk energi fra termisk energi |
US20210222592A1 (en) * | 2018-07-03 | 2021-07-22 | 21Tdmc Group Oy | Method and apparatus for converting heat energy to mechanical energy |
DE102021102803B4 (de) | 2021-02-07 | 2024-06-13 | Kristian Roßberg | Vorrichtung und Verfahren zur Umwandlung von Niedertemperaturwärme in technisch nutzbare Energie |
US11486370B2 (en) | 2021-04-02 | 2022-11-01 | Ice Thermal Harvesting, Llc | Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations |
US11644015B2 (en) | 2021-04-02 | 2023-05-09 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11592009B2 (en) | 2021-04-02 | 2023-02-28 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11187212B1 (en) | 2021-04-02 | 2021-11-30 | Ice Thermal Harvesting, Llc | Methods for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on working fluid temperature |
US11493029B2 (en) | 2021-04-02 | 2022-11-08 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11326550B1 (en) | 2021-04-02 | 2022-05-10 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11421663B1 (en) | 2021-04-02 | 2022-08-23 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic Rankine cycle operation |
US11480074B1 (en) | 2021-04-02 | 2022-10-25 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11293414B1 (en) | 2021-04-02 | 2022-04-05 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic rankine cycle operation |
DE102021108558B4 (de) | 2021-04-06 | 2023-04-27 | Kristian Roßberg | Verfahren und Vorrichtung zur Umwandlung von Niedertemperaturwärme in technisch nutzbare Energie |
WO2023092433A1 (fr) * | 2021-11-25 | 2023-06-01 | 任湘军 | Dispositif de conversion d'énergie interne dans un milieu à basse température (constante) en énergie mécanique |
EP4303407A1 (fr) | 2022-07-09 | 2024-01-10 | Kristian Roßberg | Dispositif et procédé de conversion de chaleur à basse température en énergie mécanique techniquement utilisable |
EP4306775B1 (fr) | 2022-07-11 | 2024-08-14 | Kristian Roßberg | Procédé et dispositif de conversion de chaleur à basse température en énergie mécanique techniquement utilisable |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3401277A (en) * | 1962-12-31 | 1968-09-10 | United Aircraft Corp | Two-phase fluid power generator with no moving parts |
US3908381A (en) * | 1974-11-20 | 1975-09-30 | Sperry Rand Corp | Geothermal energy conversion system for maximum energy extraction |
GB1532850A (en) * | 1976-11-30 | 1978-11-22 | Romanov V | Axial-flow reversible turbine |
US4272961A (en) * | 1977-12-19 | 1981-06-16 | Occidental Research Corporation | Recovery of energy from geothermal brine and other aqueous sources |
SU781373A1 (ru) * | 1978-12-14 | 1980-11-23 | Государственный Научно-Исследовательский Энергетический Институт Им.Г.М.Кржижановского | Энергетическа установка |
US4732005A (en) * | 1987-02-17 | 1988-03-22 | Kalina Alexander Ifaevich | Direct fired power cycle |
AU4650689A (en) | 1989-01-31 | 1990-08-24 | Tselevoi Nauchno-Tekhnichesky Kooperativ `Stimer' | Method for converting thermal energy of a working medium into mechanical energy in a steam plant |
US5925291A (en) * | 1997-03-25 | 1999-07-20 | Midwest Research Institute | Method and apparatus for high-efficiency direct contact condensation |
US6775993B2 (en) * | 2002-07-08 | 2004-08-17 | Dube Serge | High-speed defrost refrigeration system |
GB0322507D0 (en) | 2003-09-25 | 2003-10-29 | Univ City | Deriving power from low temperature heat source |
EP1624269A3 (fr) * | 2003-10-02 | 2006-03-08 | HONDA MOTOR CO., Ltd. | Dispositif de régulation du refroidissement d'un condenseur |
DE10361203A1 (de) * | 2003-12-24 | 2005-07-21 | Erwin Dr. Oser | Niederdruck-Entspannungsmotor mit Energierückführung |
DE10361223A1 (de) | 2003-12-24 | 2005-07-21 | Erwin Dr. Oser | Niederdruck-Entspannungsmotor mit Treibdampftrennung mittels extraktiver Rektifikation |
US7726128B2 (en) * | 2003-12-22 | 2010-06-01 | Ecoenergy Patent Gmbh | Apparatus and method for converting heat energy to mechanical energy |
PL1613841T3 (pl) * | 2004-04-16 | 2007-05-31 | Siemens Ag | Sposób i urządzenie do realizacji obiegu termodynamicznego |
US7093503B1 (en) | 2004-11-16 | 2006-08-22 | Energent Corporation | Variable phase turbine |
GB0511864D0 (en) * | 2005-06-10 | 2005-07-20 | Univ City | Expander lubrication in vapour power systems |
GB2436129A (en) * | 2006-03-13 | 2007-09-19 | Univ City | Vapour power system |
-
2007
- 2007-08-31 DE DE102007041457A patent/DE102007041457B4/de not_active Expired - Fee Related
- 2007-11-09 CN CN2007801012911A patent/CN101842557B/zh active Active
- 2007-11-09 AU AU2007358567A patent/AU2007358567B2/en active Active
- 2007-11-09 KR KR1020107006997A patent/KR101398312B1/ko not_active IP Right Cessation
- 2007-11-09 EP EP07822436.7A patent/EP2188499B1/fr active Active
- 2007-11-09 ES ES07822436.7T patent/ES2608955T3/es active Active
- 2007-11-09 RU RU2010112391/06A patent/RU2485331C2/ru active
- 2007-11-09 WO PCT/EP2007/062147 patent/WO2009030283A2/fr active Application Filing
- 2007-11-09 US US12/675,808 patent/US20100269503A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20100269503A1 (en) | 2010-10-28 |
ES2608955T3 (es) | 2017-04-17 |
AU2007358567A1 (en) | 2009-03-12 |
CN101842557B (zh) | 2013-09-04 |
AU2007358567B2 (en) | 2013-07-11 |
RU2485331C2 (ru) | 2013-06-20 |
WO2009030283A2 (fr) | 2009-03-12 |
CN101842557A (zh) | 2010-09-22 |
DE102007041457A1 (de) | 2009-03-05 |
WO2009030283A3 (fr) | 2010-03-18 |
KR20100074167A (ko) | 2010-07-01 |
DE102007041457B4 (de) | 2009-09-10 |
RU2010112391A (ru) | 2011-10-10 |
KR101398312B1 (ko) | 2014-05-27 |
EP2188499A2 (fr) | 2010-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2188499B1 (fr) | Procédé et dispositif permettant de transformer l'énergie thermique d'une source de chaleur basse température en énergie mécanique | |
EP1613841B1 (fr) | Procede et dispositif de mise en oeuvre d'un processus cyclique thermodynamique | |
DE10335143B4 (de) | Verfahren zur Erhöhung des Wirkungsgrades einer Gasturbinenanlage und dafür geeignete Gasturbinenanlage | |
EP2347102B1 (fr) | Procédé de fonctionnement d'un circuit thermodynamique et circuit thermodynamique | |
DE69932766T2 (de) | Methode zum Vorwärmen von Brennstoff für eine Gasturbine in einem Kombikraftwerk mit einer Strömung von Mehrkomponentenmischungen | |
EP2021634B1 (fr) | Installation et procédé associé pour la conversion de la chaleur en énergie mécanique, électrique et/ou énergie thermique | |
WO2009027302A2 (fr) | Procédé et dispositif visant à convertir de l'énergie thermique en énergie mécanique | |
WO2005014981A1 (fr) | Procede et dispositif pour effectuer un cycle thermodynamique | |
DE102004037417B3 (de) | Verfahren und Vorrichtung zur Übertragung von Wärme von einer Wärmequelle an einen thermodynamischen Kreislauf mit einem Arbeitsmittel mit zumindest zwei Stoffen mit nicht-isothermer Verdampfung und Kondensation | |
DE2611890A1 (de) | Verfahren und vorrichtung zur umwandlung von waerme niedriger temperatur in antriebskraft oder in energie | |
DE102017125355B3 (de) | Verfahren und Anordnung zur Umwandlung von Wärme in kinetische Energie | |
DE112016000565B4 (de) | Einheit zum Umwandeln von Wärme in mechanische Energie | |
WO2005056994A1 (fr) | Groupe moteur a reservoir d'air | |
WO2017054895A1 (fr) | Dispositif de récupération de chaleur perdue | |
DE102010004079A1 (de) | Brennkraftmaschine, kombiniert mit Rankineprozess zur effizienten Nutzung der Kühlmittel- und Abgaswärme | |
EP0158629B1 (fr) | Cycle à vapeur pour installation énergétique à vapeur | |
DE102009043720A1 (de) | Carnotisierter Rankineprozess für Solarthermische Kraftwerke | |
DE102010011737A1 (de) | Verfahren und Vorrichtung zur Energieumwandlung | |
DE102016220634A1 (de) | Abwärme-Kraftanlage mit stufenweiser Wärmezufuhr | |
WO2017081248A1 (fr) | Agencement et procédé de récupération d'énergie provenant de la chaleur perdue d'au moins un moteur à combustion interne | |
DE102014203121B4 (de) | Vorrichtung und Verfahren für einen ORC-Kreisprozess mit mehrstufiger Expansion | |
EP2559867A1 (fr) | Procédé de production d'énergie électrique à l'aide d'une centrale électrique combinée et centrale électrique combinée destinée à l'exécution du procédé | |
EP1921279B1 (fr) | Procédé destiné à l'utilisation de la chaleur d'échappement durant le fonctionnement d'une turbine dotée d'un milieu à l'état de vapeur | |
DE102023105351A1 (de) | Vorrichtung zur Energieerzeugung und Arbeitsmittelkreislauf-Betriebsverfahren | |
DE102019217998A1 (de) | Vorrichtung und Verfahren zur Ausspeicherung eines thermischen Energiespeichers, insbesondere eines Flüssigsalzspeichers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100212 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160502 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 832960 Country of ref document: AT Kind code of ref document: T Effective date: 20161015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502007015151 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161229 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2608955 Country of ref document: ES Kind code of ref document: T3 Effective date: 20170417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502007015151 Country of ref document: DE Owner name: KALINA POWER LIMITED, AU Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170128 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170130 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502007015151 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20170622 AND 20170628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: KALINA POWER LIMITED |
|
26N | No opposition filed |
Effective date: 20170629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161109 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: KALINA POWER LIMITED, AU Effective date: 20171114 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 832960 Country of ref document: AT Kind code of ref document: T Effective date: 20161109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161109 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20161130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20071109 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20221207 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20230921 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230911 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20231108 Year of fee payment: 17 Ref country code: IT Payment date: 20231010 Year of fee payment: 17 Ref country code: DE Payment date: 20230912 Year of fee payment: 17 |