WO2009027302A2 - Procédé et dispositif visant à convertir de l'énergie thermique en énergie mécanique - Google Patents

Procédé et dispositif visant à convertir de l'énergie thermique en énergie mécanique Download PDF

Info

Publication number
WO2009027302A2
WO2009027302A2 PCT/EP2008/060921 EP2008060921W WO2009027302A2 WO 2009027302 A2 WO2009027302 A2 WO 2009027302A2 EP 2008060921 W EP2008060921 W EP 2008060921W WO 2009027302 A2 WO2009027302 A2 WO 2009027302A2
Authority
WO
WIPO (PCT)
Prior art keywords
phase
working fluid
liquid phase
vapor phase
condenser
Prior art date
Application number
PCT/EP2008/060921
Other languages
German (de)
English (en)
Other versions
WO2009027302A3 (fr
Inventor
Thomas Hauer
Jörg LENGERT
Markus Neefischer
Reinhold Striegel
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to US12/675,791 priority Critical patent/US20110000205A1/en
Priority to RU2010112413/06A priority patent/RU2479727C2/ru
Priority to AU2008291094A priority patent/AU2008291094A1/en
Priority to EP08787367A priority patent/EP2188500A2/fr
Priority to CN200880113544A priority patent/CN101842558A/zh
Publication of WO2009027302A2 publication Critical patent/WO2009027302A2/fr
Publication of WO2009027302A3 publication Critical patent/WO2009027302A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • F01K25/065Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids with an absorption fluid remaining at least partly in the liquid state, e.g. water for ammonia

Definitions

  • the invention relates to a method and a device for converting thermal energy into mechanical energy according to the preamble of patent claim 1 and of patent claim 10 respectively; such a method and such a device are known for example from WO 2005/100755 Al.
  • Kalina cycle process To convert efficiency into mechanical or electrical energy.
  • ORC Organic Rankine Cycle
  • Kalina cycle process To convert efficiency into mechanical or electrical energy.
  • ORC Organic Rankine Cycle
  • various circuits On the basis of the Kalina cycle, various circuits have already been developed for a wide variety of applications. These circuits use as working fluid instead of water a binary mixture (eg ammonia and water), wherein the different boiling and condensation temperatures of the two materials and the consequent non-isothermal boiling and condensation process of the mixture is utilized to the efficiency of the circuit compared to to increase a Rankine cycle.
  • a binary mixture eg ammonia and water
  • such a Kalina cycle comprises at least one pump for increasing the pressure of the working fluid, a heat exchanger for generating a vaporous phase of the working fluid by heat transfer from an external heat source, such as a geothermal fluid or industrial waste heat, and a relaxation device, preferably a turbine. for relaxing the vaporous phase and converting its thermal energy into mechanical ones Energy.
  • the relaxed working fluid is then condensed in a condenser with the aid of a coolant.
  • a separator can be arranged in the circuit between the heat exchanger and the expansion device, with which a liquid phase of the working medium still present in the heat exchanger during only partial evaporation of the working medium vapor phase before their supply to the expansion device can be separated.
  • the separated liquid phase can then be combined with the relaxed vapor phase via a mixing device arranged in the circuit between the expansion device and the condenser.
  • Further heat exchangers may be provided for transferring heat from the relaxed working fluid to the working fluid prior to its delivery to the heat exchanger.
  • a Kalina cycle known from EP 0756069 B1 with an ammonia / water mixture as the working medium additionally has a distillation unit arranged between the condenser and the pump in the circuit for separating out a gaseous ammonia liquid from the working medium flow.
  • This lean ammonia liquid is supplied to the relaxed in a turbine working fluid prior to its supply to the condenser.
  • the working medium consists, for example, of an ammonia-water mixture
  • the result is an inhomogeneous, partially segregated two-phase flow consisting of ammonia-rich saturated steam and low-ammonia condensate in the line connection.
  • the condenser is partially flooded with the ammonia-lean condensate and the ammonia vapor fills only the remainder of the heat exchanger.
  • the flooded portion reduces the effectiveness of the capacitor.
  • the condensation pressure of the ammonia-rich vapor for example, consisting of 95% ammonia
  • the higher the condensation pressure in the condenser the smaller the pressure gradient to be reduced via the turbine. The circuit thus generates less mechanical or electrical power at a lower efficiency.
  • the solution of the object directed to the method is achieved by a method according to claim 1.
  • Advantageous embodiments of the method are the subject of claims 2 to 9.
  • the solution of the object directed to the device is achieved by a device according to claim 10.
  • Advantageous embodiments of the device are the subject of claims 11 to 18.
  • the inventive method for the conversion of thermal energy into mechanical energy using a working fluid which consists of a mixture of substances with at least two substances fen, which have different boiling and condensing temperatures, wherein the relaxed in a relaxation device working fluid is fed as a two-phase flow with a liquid phase and a vapor phase to a condenser and condensed therein, provides that in the two-phase flow before or during the condensation of Working fluid in the condenser, the liquid phase is mixed with the vapor phase.
  • a homogeneous two-substance mixture condenses at a constant coolant temperature in the condenser even at lower pressure. With a lower condensation pressure in the condenser, however, the pressure gradient to be reduced via the turbine increases, so that more mechanical or electrical power can be generated at a higher efficiency.
  • Phase is characterized very easily possible that in the two-phase flow, the liquid phase separated from the vapor phase and then the separated liquid phase is combined with the vapor phase again.
  • the separated liquid phase is sprayed into the vaporous phase for the purpose of combining.
  • a particularly good mixing of the liquid and the vapor phase can be achieved by increasing the pressure of the separated liquid phase to a value which is above the pressure of the vapor phase for the purpose of spraying.
  • the separated liquid phase is thus supplied under an overpressure of the vapor phase.
  • the separation of the liquid phase from the vaporous phase in this case preferably takes place immediately in front of the condenser in order to avoid renewed segregation of the binary mixture on the way to the condenser.
  • the mixing itself can also be done directly in front of the capacitor, but also directly in the capacitor.
  • the working fluid advantageously passes through the following process steps in a closed circuit after the condensation:
  • the working fluid in this case can be completely vaporized by the heat transfer (i.e., there is only one vapor phase) or only partially vaporized (i.e., there is a vapor and a liquid phase).
  • the liquid phase of the working medium is advantageously separated off from the vaporous phase before the vapor phase is expanded, and fed back to the vaporous phase after its expansion. The liquid phase is thus passed past a relaxation device for the relaxation of the vaporous phase.
  • the working fluid can then be fed to the condenser directly or via one or more intermediate heat exchangers, which transfer the heat of the expanded vapor phase to the working fluid before its at least partial evaporation, after the expansion.
  • Fluid, industrial waste heat or waste heat used in an internal combustion engine Fluid, industrial waste heat or waste heat used in an internal combustion engine.
  • the device according to the invention for converting thermal energy into mechanical energy using a working medium which consists of a substance mixture with at least two substances which have different boiling and condensation temperatures comprises a condenser for condensing the working medium, the working medium being expanded in a pressure relief device before its supply to the condenser as a two-phase flow with a liquid phase and a vapor phase, and a mixing device for mixing the liquid phase of the two-phase flow with the vapor phase of the two-phase flow before or during the condensation of the working fluid in the condenser.
  • the mixing device has a separator for
  • the mixing device has a pump, by means of which the pressure of the separated liquid phase can be increased to a value which is above the pressure of the vapor phase, a particularly good mixing of the two phases can be achieved during the spraying.
  • the separator is arranged in the direction of flow of the working fluid immediately in front of the condenser, a renewed segregation of the binary mixture on the way to the condenser can be prevented.
  • the at least one nozzle itself can also be arranged directly in front of, or else in the condenser, in the flow direction of the working medium.
  • the working fluid in the device can be guided in a closed circuit which has at least the following components in the direction of flow of the working fluid downstream of the condenser: a pump for increasing the pressure of the working fluid,
  • a heat exchanger for generating a vaporous phase of the working fluid by heat transfer from an external heat source, and an expansion device, in particular a turbine, for relaxing the vaporous phase and converting its thermal energy into mechanical energy.
  • the working fluid in this case can be completely vaporized by the heat transfer (i.e., there is only one vapor phase) or only partially vaporized (i.e., there is a vapor and a liquid phase).
  • the circulation advantageously also comprises a separator arranged between the heat exchanger and the expansion device for separating the liquid phase from the vapor phase and a combination arranged between the expansion device and the mixing device for combining the separated liquid phase and the expanded one vapor phase.
  • the liquid phase can thereby be guided past the expansion device.
  • the heat source is a geothermal fluid, industrial waste heat or waste heat of a Verbrennungskraftma- machine.
  • the working fluid is a mixture of ammonia and water.
  • FIG. 2 shows an example of a demixing of a binary mixture in a line connection
  • 3 shows a mixing device with a common injection for several capacitors
  • FIG. 4 shows a mixing device with a spraying directly into the capacitors
  • FIG. 5 shows a mixing device with a separate injection for each individual capacitor.
  • a device 1 shown in FIG 1 for the conversion of thermal energy into mechanical energy comprises a circuit 2, wherein in the flow direction of a working fluid successively as essential components a pump 3 for increasing the pressure of the working fluid, a heat exchanger 4 for generating a vapor phase of the working medium Heat transfer from an external heat source 5, a turbine 6 for relaxing the vapor phase of the working fluid and converting its thermal energy into mechanical energy, a mixing device 7 for mixing a liquid and a vapor phase of the working fluid and a condenser 8 for complete condensation of the working fluid by means a coolant 9 are arranged.
  • the external heat source 5 is, for example, a geothermal fluid, industrial waste heat or waste heat of an internal combustion engine.
  • the turbine 6 drives, for example, a generator, not shown, which converts the mechanical energy into electrical energy.
  • the working fluid consists of a mixture of substances with at least two substances which have different boiling and condensation temperatures. In the following, it is assumed that a mixture of ammonia and water is used as the working medium.
  • the circuit 2 comprises a separator 15 arranged between the heat exchanger 4 and the turbine 6 for separating a liquid phase from the vaporous phase of the working medium and a junction arranged between the turbine 6 and the mixing device 7 16 for combining the separated liquid phase and the relaxed vapor phase.
  • the working fluid after the capacitor 8 is present exclusively as a liquid.
  • the liquid working fluid is pressurized by the pump 3 and then at least partially evaporated in the heat exchanger 4, i. After the heat exchanger, the working medium is present with a vaporous phase and possibly a low-ammonia liquid phase. In the separator 15, the possibly still existing liquid phase is separated from the vapor phase.
  • the vaporous phase is relaxed in the turbine 6 and its thermal energy is converted into mechanical energy.
  • the mechanical energy can then continue to be used, for example for power generation.
  • the flooded portion would reduce the effectiveness of the condenser and thus increase the condensation pressure, since the condensation pressure of the ammonia-rich saturated steam (about 95% ammonia) compared to that of a homogeneous water-ammonia mixture is significantly higher. With increasing However, the condensation pressure in the condenser decreases the pressure gradient to be reduced via the turbine and thus the producible mechanical or electrical power.
  • the mixing device 7 comprises a separator 20 for separating the low-ammonia liquid phase from the ammonia-rich vapor phase and a nozzle 21 for spraying the separated liquid phase in the vapor phase, the separator 20 and the nozzle 21 in the flow direction of the working fluid successively in the connecting line 10th between the turbine 6 and the condenser 8 after the merger 16 are arranged.
  • the separated in the separator 20 liquid phase is supplied via a bypass line 14 of the nozzle 21.
  • a pump 22 and a control valve 23 are connected.
  • the pressure of the guided in the bypass line 14 separated liquid phase can be increased to a value which is above the pressure of the vapor phase after the separator 20.
  • the control valve 23 the supply amount of liquid phase to the nozzle 21 is controllable.
  • the separator 20 is arranged in the flow direction of the working fluid immediately in front of the condenser 8, in order to avoid a renewed segregation of the working fluid in its residual path to the condenser 8.
  • the nozzle 21 may be arranged in the flow direction of the working fluid immediately before or in the condenser 8.
  • the separator 20 thus the ammonia-rich vaporous phase is separated from the low-ammonia liquid phase.
  • the ammonia-poor liquid phase is conducted via the bypass line 14 to the nozzle 21.
  • the pressure of the ammonia-lean liquid phase is increased by the pump 22 to a value which is above the pressure of the ammonia-rich vaporous phase.
  • the low-ammonia liquid phase is characterized in the nozzle 21 sprayed under pressure in the ammonia-rich vapor phase.
  • a homogeneous mixture of ammonia and water can again be generated and fed to the condenser 8, which condenses at a constant coolant temperature in the condenser even at a lower pressure than the ammonia-rich vaporous phase.
  • the pressure gradient to be reduced across the turbine increases and the circuit can thus produce more electrical power at a higher efficiency.
  • Working means parallel capacitors 8 also a mixing device 7 with a single separator 20 and one or more nozzles 21 may be provided for each of the capacitors 8.
  • the separator 20 is immediately upstream of the capacitors 8 and the nozzles 21 are arranged in the capacitors 8. The liquid phase is thus sprayed directly into the capacitors 8.
  • the supply of liquid phase to the nozzles 21 in this case by means of a common control valve 23 is controllable.
  • the nozzles 21 can also be arranged directly in front of the respective capacitors 8, i. There is a separate injection for each capacitor 8 before.
  • the supply of liquid phase to each of the nozzles 21 is in this case controllable by means of its own control valve 23 for each of the capacitors 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Lors d'une conversion d'énergie thermique en énergie mécanique s'effectuant à l'aide d'une substance active constituée d'un mélange comprenant au moins deux matières présentant des températures d'ébullition et de condensation différentes, ladite substance active étant introduite dans un condenseur (8) pour y être condensée, un problème se pose : la pression de condensation augmente dans le condenseur, ce qui entraîne une baisse d'efficacité de production de l'énergie mécanique, parce que, en amont du condenseur, le mélange est séparé en une phase liquide et en une phase vapeur. Selon l'invention, ceci peut être évité si l'on mélange la phase liquide de la substance active et la phase vapeur de la substance active avant ou pendant la condensation de cette substance dans le condenseur (8). Ainsi, un mélange homogène peut être de nouveau produit, lequel mélange se condensant à une pression inférieure à celle de la substance active séparée, ce qui permet d'éviter une perte d'efficacité. L'invention s'applique de préférence à l'exploitation de l'énergie thermique provenant de sources ayant une faible température comme les fluides géothermiques, la chaleur résiduelle industrielle ou la chaleur résiduelle issue de machines à combustion interne par exemple.
PCT/EP2008/060921 2007-08-31 2008-08-21 Procédé et dispositif visant à convertir de l'énergie thermique en énergie mécanique WO2009027302A2 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/675,791 US20110000205A1 (en) 2007-08-31 2008-08-21 Method and device for converting thermal energy into mechanical energy
RU2010112413/06A RU2479727C2 (ru) 2007-08-31 2008-08-21 Способ и устройство для преобразования тепловой энергии в механическую энергию
AU2008291094A AU2008291094A1 (en) 2007-08-31 2008-08-21 Method and device for converting thermal energy into mechanical energy
EP08787367A EP2188500A2 (fr) 2007-08-31 2008-08-21 Procédé et dispositif visant à convertir de l'énergie thermique en énergie mécanique
CN200880113544A CN101842558A (zh) 2007-08-31 2008-08-21 用于将热能转化成机械能的方法和装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007041458 2007-08-31
DE102007041458.9 2007-08-31

Publications (2)

Publication Number Publication Date
WO2009027302A2 true WO2009027302A2 (fr) 2009-03-05
WO2009027302A3 WO2009027302A3 (fr) 2010-03-25

Family

ID=40387915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/060921 WO2009027302A2 (fr) 2007-08-31 2008-08-21 Procédé et dispositif visant à convertir de l'énergie thermique en énergie mécanique

Country Status (7)

Country Link
US (1) US20110000205A1 (fr)
EP (1) EP2188500A2 (fr)
KR (1) KR20100074166A (fr)
CN (1) CN101842558A (fr)
AU (1) AU2008291094A1 (fr)
RU (1) RU2479727C2 (fr)
WO (1) WO2009027302A2 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110011089A1 (en) * 2009-07-17 2011-01-20 Lockheed Martin Corporation Working-Fluid Power System for Low-Temperature Rankine Cycles
US20130174602A1 (en) * 2011-11-23 2013-07-11 Tenoroc Llc Aerodynamic separation nozzle
WO2019224209A1 (fr) * 2018-05-23 2019-11-28 Gios Bart Système d'absorption à cycle fermé et procédé de refroidissement et de production d'énergie
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11486330B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11578706B2 (en) 2021-04-02 2023-02-14 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11644014B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11959466B2 (en) 2021-04-02 2024-04-16 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008045450B4 (de) * 2008-02-01 2010-08-26 Siemens Aktiengesellschaft Verfahren zum Betreiben eines thermodynamischen Kreislaufes sowie thermodynamischer Kreislauf
US8991181B2 (en) * 2011-05-02 2015-03-31 Harris Corporation Hybrid imbedded combined cycle
US9038389B2 (en) 2012-06-26 2015-05-26 Harris Corporation Hybrid thermal cycle with independent refrigeration loop
US9284857B2 (en) * 2012-06-26 2016-03-15 The Regents Of The University Of California Organic flash cycles for efficient power production
US20140124443A1 (en) * 2012-11-07 2014-05-08 Robert L. McGinnis Systems and Methods for Integrated Heat Recovery in Thermally Separable Draw Solute Recycling in Osmotically Driven Membrane Processes
US9297387B2 (en) 2013-04-09 2016-03-29 Harris Corporation System and method of controlling wrapping flow in a fluid working apparatus
US9574563B2 (en) 2013-04-09 2017-02-21 Harris Corporation System and method of wrapping flow in a fluid working apparatus
US9303514B2 (en) 2013-04-09 2016-04-05 Harris Corporation System and method of utilizing a housing to control wrapping flow in a fluid working apparatus
US9303533B2 (en) 2013-12-23 2016-04-05 Harris Corporation Mixing assembly and method for combining at least two working fluids
US10787936B2 (en) * 2015-08-13 2020-09-29 Gas Expansion Motors Limited Thermodynamic engine
KR101827460B1 (ko) * 2016-12-14 2018-02-08 재단법인 건설기계부품연구원 건설기계의 폐열 회수를 이용한 웜업 시스템
CN107120150B (zh) * 2017-04-29 2019-03-22 天津大学 基于非共沸工质的热力循环升维构建方法
US10662824B2 (en) 2017-08-08 2020-05-26 Saudi Arabian Oil Company Natural gas liquid fractionation plant waste heat conversion to power using organic Rankine cycle
US10480355B2 (en) 2017-08-08 2019-11-19 Saudi Arabian Oil Company Natural gas liquid fractionation plant waste heat conversion to simultaneous power, cooling and potable water using modified goswami cycle and new modified multi-effect-distillation system
US10494958B2 (en) 2017-08-08 2019-12-03 Saudi Arabian Oil Company Natural gas liquid fractionation plant waste heat conversion to simultaneous power and cooling capacities using integrated organic-based compressor-ejector-expander triple cycles system
US10684079B2 (en) * 2017-08-08 2020-06-16 Saudi Arabian Oil Company Natural gas liquid fractionation plant waste heat conversion to simultaneous power and cooling capacities using modified goswami system
US10690407B2 (en) 2017-08-08 2020-06-23 Saudi Arabian Oil Company Natural gas liquid fractionation plant waste heat conversion to simultaneous power and potable water using organic Rankine cycle and modified multi-effect-distillation systems
US10677104B2 (en) 2017-08-08 2020-06-09 Saudi Arabian Oil Company Natural gas liquid fractionation plant waste heat conversion to simultaneous power, cooling and potable water using integrated mono-refrigerant triple cycle and modified multi-effect-distillation system
US10626756B2 (en) 2017-08-08 2020-04-21 Saudi Arabian Oil Company Natural gas liquid fractionation plant waste heat conversion to power using dual turbines organic Rankine cycle
US10443453B2 (en) 2017-08-08 2019-10-15 Saudi Araabian Oil Company Natural gas liquid fractionation plant cooling capacity and potable water generation using integrated vapor compression-ejector cycle and modified multi-effect distillation system
US10480354B2 (en) 2017-08-08 2019-11-19 Saudi Arabian Oil Company Natural gas liquid fractionation plant waste heat conversion to simultaneous power and potable water using Kalina cycle and modified multi-effect-distillation system
US10487699B2 (en) 2017-08-08 2019-11-26 Saudi Arabian Oil Company Natural gas liquid fractionation plant waste heat conversion to cooling capacity using kalina cycle
US10436077B2 (en) 2017-08-08 2019-10-08 Saudi Arabian Oil Company Natural gas liquid fractionation plant waste heat conversion to potable water using modified multi-effect distillation system
US10451359B2 (en) 2017-08-08 2019-10-22 Saudi Arabian Oil Company Natural gas liquid fractionation plant waste heat conversion to power using Kalina cycle
US10663234B2 (en) 2017-08-08 2020-05-26 Saudi Arabian Oil Company Natural gas liquid fractionation plant waste heat conversion to simultaneous cooling capacity and potable water using kalina cycle and modified multi-effect distillation system
US11761355B2 (en) * 2021-09-29 2023-09-19 Linden Noble Vapor-powered liquid-driven turbine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990008882A1 (fr) * 1989-01-31 1990-08-09 Tselevoi Nauchno-Tekhnichesky Kooperativ 'stimer' Procede de conversion de l'energie thermique d'un milieu de travail en energie mecanique dans une installation a vapeur
JPH10205308A (ja) * 1997-01-21 1998-08-04 Toshiba Corp 混合媒体サイクル発電システム
US5953918A (en) * 1998-02-05 1999-09-21 Exergy, Inc. Method and apparatus of converting heat to useful energy
US20040055302A1 (en) * 2002-09-23 2004-03-25 Kalina Alexander I. Low temperature geothermal system
WO2007014942A2 (fr) * 2005-08-03 2007-02-08 Amovis Gmbh Dispositif d'entrainement

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU781373A1 (ru) * 1978-12-14 1980-11-23 Государственный Научно-Исследовательский Энергетический Институт Им.Г.М.Кржижановского Энергетическа установка
US4769593A (en) * 1986-06-10 1988-09-06 Conoco Inc. Method and apparatus for measurement of steam quality
US4732005A (en) * 1987-02-17 1988-03-22 Kalina Alexander Ifaevich Direct fired power cycle
US7654100B2 (en) * 2001-04-26 2010-02-02 Rini Technologies, Inc. Method and apparatus for high heat flux heat transfer
DE10335134A1 (de) * 2003-07-31 2005-02-17 Siemens Ag Verfahren und Vorrichtung zur Ausführung eines thermodynamischen Kreisprozesses
CN1993536B (zh) * 2004-04-16 2011-09-14 西门子公司 用于执行热力学循环的方法和装置
DE102006036122A1 (de) * 2005-08-03 2007-02-08 Amovis Gmbh Antriebseinrichtung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990008882A1 (fr) * 1989-01-31 1990-08-09 Tselevoi Nauchno-Tekhnichesky Kooperativ 'stimer' Procede de conversion de l'energie thermique d'un milieu de travail en energie mecanique dans une installation a vapeur
JPH10205308A (ja) * 1997-01-21 1998-08-04 Toshiba Corp 混合媒体サイクル発電システム
US5953918A (en) * 1998-02-05 1999-09-21 Exergy, Inc. Method and apparatus of converting heat to useful energy
US20040055302A1 (en) * 2002-09-23 2004-03-25 Kalina Alexander I. Low temperature geothermal system
WO2007014942A2 (fr) * 2005-08-03 2007-02-08 Amovis Gmbh Dispositif d'entrainement

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110011089A1 (en) * 2009-07-17 2011-01-20 Lockheed Martin Corporation Working-Fluid Power System for Low-Temperature Rankine Cycles
US8578714B2 (en) * 2009-07-17 2013-11-12 Lockheed Martin Corporation Working-fluid power system for low-temperature rankine cycles
US20130174602A1 (en) * 2011-11-23 2013-07-11 Tenoroc Llc Aerodynamic separation nozzle
WO2019224209A1 (fr) * 2018-05-23 2019-11-28 Gios Bart Système d'absorption à cycle fermé et procédé de refroidissement et de production d'énergie
BE1026296B1 (nl) * 2018-05-23 2019-12-23 B Gios Absorptiesysteem met gesloten cyclus en werkwijze voor het afkoelen en genereren van stroom
US11598320B2 (en) 2021-04-02 2023-03-07 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11668209B2 (en) 2021-04-02 2023-06-06 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486330B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11542888B2 (en) 2021-04-02 2023-01-03 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11549402B2 (en) 2021-04-02 2023-01-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11572849B1 (en) 2021-04-02 2023-02-07 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11578706B2 (en) 2021-04-02 2023-02-14 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11624355B2 (en) 2021-04-02 2023-04-11 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11644014B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11680541B2 (en) 2021-04-02 2023-06-20 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11732697B2 (en) 2021-04-02 2023-08-22 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11761353B2 (en) 2021-04-02 2023-09-19 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11761433B2 (en) 2021-04-02 2023-09-19 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11773805B2 (en) 2021-04-02 2023-10-03 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11879409B2 (en) 2021-04-02 2024-01-23 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11905934B2 (en) 2021-04-02 2024-02-20 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11933280B2 (en) 2021-04-02 2024-03-19 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11933279B2 (en) 2021-04-02 2024-03-19 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11946459B2 (en) 2021-04-02 2024-04-02 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11959466B2 (en) 2021-04-02 2024-04-16 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11971019B2 (en) 2021-04-02 2024-04-30 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature

Also Published As

Publication number Publication date
CN101842558A (zh) 2010-09-22
AU2008291094A1 (en) 2009-03-05
RU2479727C2 (ru) 2013-04-20
WO2009027302A3 (fr) 2010-03-25
US20110000205A1 (en) 2011-01-06
EP2188500A2 (fr) 2010-05-26
KR20100074166A (ko) 2010-07-01
RU2010112413A (ru) 2011-10-10

Similar Documents

Publication Publication Date Title
WO2009027302A2 (fr) Procédé et dispositif visant à convertir de l'énergie thermique en énergie mécanique
DE102007041457B4 (de) Verfahren und Vorrichtung zur Umwandlung der Wärmeenergie einer Niedertemperatur-Wärmequelle in mechanische Energie
DE69935087T2 (de) Einlassluftkühlung für Gas-Dampf Kombikraftwerk
EP2347102B1 (fr) Procédé de fonctionnement d'un circuit thermodynamique et circuit thermodynamique
EP1613841B1 (fr) Procede et dispositif de mise en oeuvre d'un processus cyclique thermodynamique
DE10335143B4 (de) Verfahren zur Erhöhung des Wirkungsgrades einer Gasturbinenanlage und dafür geeignete Gasturbinenanlage
DE69932766T2 (de) Methode zum Vorwärmen von Brennstoff für eine Gasturbine in einem Kombikraftwerk mit einer Strömung von Mehrkomponentenmischungen
EP1771641B1 (fr) Procede et dispositif pour transferer de la chaleur d'une source de chaleur a un circuit thermodynamique comportant un medium dote d'au moins deux substances a evaporation et condensation non-isothermes
EP1649147B1 (fr) Procede et dispositif pour effectuer un cycle thermodynamique
DE112011100603T5 (de) Abgaswärmerückgewinnungssystem, Energieversorgungssystem und Abgaswärmerückgewinnungsverfahren
DE19907512A1 (de) Vorrichtung zur Energieumwandlung auf der Basis von thermischen ORC-Kreisprozessen
DE102010004457A1 (de) Verfahren und Vorrichtung zur Erzeugung technischer Arbeit
DE202008018661U1 (de) Vorrichtung zur Energieerzeugung
EP1706598B1 (fr) Procede pour transformer l'energie thermique generee par des machines frigorifiques
WO1985004216A1 (fr) Procede et installation destines a un cycle thermodynamique
EP1870646B1 (fr) Procédé et dispositif destinés à la récupération de chaleur de condensation à partir d'un cycle thermodynamique
DE102012110579B4 (de) Anlage und Verfahren zur Erzeugung von Prozessdampf
DE19957874A1 (de) Kombikraftwerk
DE102011106423B4 (de) Arbeitsverfahren einer Sorptionsanlage für das Zweistoffgemisch Ammoniak und Wasser
DE102013223661B4 (de) Verfahren und Vorrichtung zur Energieumwandlung
WO2019227117A1 (fr) Procédé et dispositif servant à convertir une énergie thermique en une énergie mécanique ou électrique
EP2243934A1 (fr) Procédé multiphasé thermodynamique destiné à la production d'énergie

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880113544.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2008787367

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12010500387

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2008291094

Country of ref document: AU

Ref document number: 665/KOLNP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008291094

Country of ref document: AU

Date of ref document: 20080821

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20107006991

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010112413

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12675791

Country of ref document: US