RU2010112413A - Способ и устройство для преобразования тепловой энергии в механическую энергию - Google Patents
Способ и устройство для преобразования тепловой энергии в механическую энергию Download PDFInfo
- Publication number
- RU2010112413A RU2010112413A RU2010112413/06A RU2010112413A RU2010112413A RU 2010112413 A RU2010112413 A RU 2010112413A RU 2010112413/06 A RU2010112413/06 A RU 2010112413/06A RU 2010112413 A RU2010112413 A RU 2010112413A RU 2010112413 A RU2010112413 A RU 2010112413A
- Authority
- RU
- Russia
- Prior art keywords
- working medium
- phase
- vapor phase
- liquid phase
- condenser
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/06—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
- F01K25/065—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids with an absorption fluid remaining at least partly in the liquid state, e.g. water for ammonia
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
1. Способ преобразования тепловой энергии в механическую энергию с использованием рабочей среды, которая состоит из смеси с, по меньшей мере, двумя веществами, которые имеют различные температуры кипения и конденсации, причем рабочая среда, разреженная в устройстве для создания разрежения, в качестве двухфазного потока с жидкой фазой и парообразной фазой подается в конденсатор (8) и в нем конденсируется, ! отличающийся тем, что в двухфазном потоке перед или при конденсации рабочей среды в конденсаторе (8) жидкая фаза перемешивается с парообразной фазой. ! 2. Способ по п.1, отличающийся тем, что для перемешивания в двухфазном потоке жидкая фаза отделяется от парообразной фазы и затем отделенная жидкая фаза вновь объединяется с парообразной фазой. ! 3. Способ по п.2, отличающийся тем, что для объединения отделенная жидкая фаза впрыскивается в парообразную фазу. ! 4. Способ по п.3, отличающийся тем, что перед впрыскиванием давление отделенной жидкой фазы повышается до значения, которое лежит выше давления парообразной фазы. ! 5. Способ по любому из пп.2-4, отличающийся тем, что отделение жидкой фазы от парообразной фазы осуществляется непосредственно перед конденсатором (8). ! 6. Способ по п.1, отличающийся тем, что перемешивание осуществляется непосредственно перед или в конденсаторе (8). ! 7. Способ по п.1, отличающийся тем, что рабочая среда проходит в замкнутом циркуляционном контуре (2) после конденсации, по меньшей мере, следующие этапы способа: ! - повышение давления рабочей среды, ! - формирование парообразной фазы рабочей среды посредством теплопередачи от внешнего источника (5) тепла и ! - создание разрежения в парообразно
Claims (19)
1. Способ преобразования тепловой энергии в механическую энергию с использованием рабочей среды, которая состоит из смеси с, по меньшей мере, двумя веществами, которые имеют различные температуры кипения и конденсации, причем рабочая среда, разреженная в устройстве для создания разрежения, в качестве двухфазного потока с жидкой фазой и парообразной фазой подается в конденсатор (8) и в нем конденсируется,
отличающийся тем, что в двухфазном потоке перед или при конденсации рабочей среды в конденсаторе (8) жидкая фаза перемешивается с парообразной фазой.
2. Способ по п.1, отличающийся тем, что для перемешивания в двухфазном потоке жидкая фаза отделяется от парообразной фазы и затем отделенная жидкая фаза вновь объединяется с парообразной фазой.
3. Способ по п.2, отличающийся тем, что для объединения отделенная жидкая фаза впрыскивается в парообразную фазу.
4. Способ по п.3, отличающийся тем, что перед впрыскиванием давление отделенной жидкой фазы повышается до значения, которое лежит выше давления парообразной фазы.
5. Способ по любому из пп.2-4, отличающийся тем, что отделение жидкой фазы от парообразной фазы осуществляется непосредственно перед конденсатором (8).
6. Способ по п.1, отличающийся тем, что перемешивание осуществляется непосредственно перед или в конденсаторе (8).
7. Способ по п.1, отличающийся тем, что рабочая среда проходит в замкнутом циркуляционном контуре (2) после конденсации, по меньшей мере, следующие этапы способа:
- повышение давления рабочей среды,
- формирование парообразной фазы рабочей среды посредством теплопередачи от внешнего источника (5) тепла и
- создание разрежения в парообразной фазе и преобразование ее тепловой энергии в механическую энергию.
8. Способ по п.7, отличающийся тем, что перед разрежением парообразной фазы рабочей среды жидкая фаза рабочей среды отделяется от парообразной фазы и вновь вводится в парообразную фазу после ее разрежения.
9. Способ по п.7 или 8, отличающийся тем, что в качестве внешнего источника (5) тепла применяется геотермический флюид, промышленное отходящее тепло или отработанное тепло двигателя внутреннего сгорания.
10. Способ по п.1, отличающийся тем, что в качестве рабочей среды применяется смесь аммиака и воды.
11. Устройство (1) для преобразования тепловой энергии в механическую энергию с использованием рабочей среды, которая состоит из смеси веществ с, по меньшей мере, двумя веществами, которые имеют различные температуры кипения и конденсации, с конденсатором (8) для конденсации рабочей среды, причем рабочая среда, разреженная в устройстве для создания разрежения, перед ее подачей в конденсатор (8) представляет собой двухфазный поток с жидкой фазой и парообразной фазой, отличающееся перемешивающим устройством (7) для перемешивания жидкой фазы двухфазного потока с парообразной фазой двухфазного потока перед или при конденсации рабочей среды в конденсаторе (8).
12. Устройство (1) по п.11, отличающееся тем, что перемешивающее устройство (7) содержит сепаратор (20) для отделения жидкой фазы от парообразной фазы и, по меньшей мере, одну форсунку (21) для впрыскивания отделенной жидкой фазы в парообразную фазу.
13. Устройство (1) по п.12, отличающееся тем, что перемешивающее устройство (7) содержит насос (22), посредством которого давление отделенной жидкой фазы может повышаться до значения, которое лежит выше давления парообразной фазы.
14. Устройство (1) по п.12 или 13, отличающееся тем, что сепаратор (20) размещен в направлении потока рабочей среды непосредственно перед конденсатором (8).
15. Устройство (1) по п.12, отличающееся тем, что, по меньшей мере, одна форсунка (21) размещена в направлении потока рабочей среды непосредственно перед или в конденсаторе (8).
16. Устройство (1) по п.11, отличающееся тем, что рабочая среда может направляться в устройстве (1) в замкнутом циркуляционном контуре (2), который в направлении потока рабочей среды после конденсатора (8) содержит, по меньшей мере, следующие компоненты:
- насос (3) для повышения давления рабочей среды,
- теплообменник (4) для выработки парообразной фазы рабочей среды путем теплопередачи от внешнего источника (5) тепла и
- устройство (6) для создания разрежения, в частности, турбину, для разрежения парообразной фазы и преобразования ее тепловой энергии в механическую энергию.
17. Устройство (1) по п.16, отличающееся тем, что циркуляционный контур (2) дополнительно содержит размещенный между теплообменником (4) и устройством (6) для создания разрежения сепаратор (15) для отделения жидкой фазы рабочей среды от парообразной фазы и светвитель (16), размещенный между устройством (6) для создания разрежения и перемешивающим устройством (7), для объединения отделенной жидкой фазы и разреженной парообразной фазы.
18. Устройство (1) по п.16 или 17, отличающееся тем, что в качестве внешнего источника тепла применяется геотермический флюид, промышленное отходящее тепло или отработанное тепло двигателя внутреннего сгорания.
19. Устройство (1) по п.11, отличающееся тем, что в качестве рабочей среды применяется смесь аммиака и воды.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007041458.9 | 2007-08-31 | ||
DE102007041458 | 2007-08-31 | ||
PCT/EP2008/060921 WO2009027302A2 (de) | 2007-08-31 | 2008-08-21 | Verfahren und vorrichtung zur umwandlung thermischer energie in mechanische energie |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2010112413A true RU2010112413A (ru) | 2011-10-10 |
RU2479727C2 RU2479727C2 (ru) | 2013-04-20 |
Family
ID=40387915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2010112413/06A RU2479727C2 (ru) | 2007-08-31 | 2008-08-21 | Способ и устройство для преобразования тепловой энергии в механическую энергию |
Country Status (7)
Country | Link |
---|---|
US (1) | US20110000205A1 (ru) |
EP (1) | EP2188500A2 (ru) |
KR (1) | KR20100074166A (ru) |
CN (1) | CN101842558A (ru) |
AU (1) | AU2008291094A1 (ru) |
RU (1) | RU2479727C2 (ru) |
WO (1) | WO2009027302A2 (ru) |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008045450B4 (de) * | 2008-02-01 | 2010-08-26 | Siemens Aktiengesellschaft | Verfahren zum Betreiben eines thermodynamischen Kreislaufes sowie thermodynamischer Kreislauf |
US8578714B2 (en) * | 2009-07-17 | 2013-11-12 | Lockheed Martin Corporation | Working-fluid power system for low-temperature rankine cycles |
US8991181B2 (en) * | 2011-05-02 | 2015-03-31 | Harris Corporation | Hybrid imbedded combined cycle |
US20130174602A1 (en) * | 2011-11-23 | 2013-07-11 | Tenoroc Llc | Aerodynamic separation nozzle |
US9284857B2 (en) * | 2012-06-26 | 2016-03-15 | The Regents Of The University Of California | Organic flash cycles for efficient power production |
US9038389B2 (en) | 2012-06-26 | 2015-05-26 | Harris Corporation | Hybrid thermal cycle with independent refrigeration loop |
US20140124443A1 (en) * | 2012-11-07 | 2014-05-08 | Robert L. McGinnis | Systems and Methods for Integrated Heat Recovery in Thermally Separable Draw Solute Recycling in Osmotically Driven Membrane Processes |
US9297387B2 (en) | 2013-04-09 | 2016-03-29 | Harris Corporation | System and method of controlling wrapping flow in a fluid working apparatus |
US9303514B2 (en) | 2013-04-09 | 2016-04-05 | Harris Corporation | System and method of utilizing a housing to control wrapping flow in a fluid working apparatus |
US9574563B2 (en) | 2013-04-09 | 2017-02-21 | Harris Corporation | System and method of wrapping flow in a fluid working apparatus |
US9303533B2 (en) | 2013-12-23 | 2016-04-05 | Harris Corporation | Mixing assembly and method for combining at least two working fluids |
JP6690822B2 (ja) * | 2015-08-13 | 2020-04-28 | ガス エクスパンション モーターズ リミテッド | 熱力学エンジン |
KR101827460B1 (ko) * | 2016-12-14 | 2018-02-08 | 재단법인 건설기계부품연구원 | 건설기계의 폐열 회수를 이용한 웜업 시스템 |
CN107120150B (zh) * | 2017-04-29 | 2019-03-22 | 天津大学 | 基于非共沸工质的热力循环升维构建方法 |
US10480355B2 (en) | 2017-08-08 | 2019-11-19 | Saudi Arabian Oil Company | Natural gas liquid fractionation plant waste heat conversion to simultaneous power, cooling and potable water using modified goswami cycle and new modified multi-effect-distillation system |
US10436077B2 (en) | 2017-08-08 | 2019-10-08 | Saudi Arabian Oil Company | Natural gas liquid fractionation plant waste heat conversion to potable water using modified multi-effect distillation system |
US10663234B2 (en) | 2017-08-08 | 2020-05-26 | Saudi Arabian Oil Company | Natural gas liquid fractionation plant waste heat conversion to simultaneous cooling capacity and potable water using kalina cycle and modified multi-effect distillation system |
US10684079B2 (en) | 2017-08-08 | 2020-06-16 | Saudi Arabian Oil Company | Natural gas liquid fractionation plant waste heat conversion to simultaneous power and cooling capacities using modified goswami system |
US10494958B2 (en) | 2017-08-08 | 2019-12-03 | Saudi Arabian Oil Company | Natural gas liquid fractionation plant waste heat conversion to simultaneous power and cooling capacities using integrated organic-based compressor-ejector-expander triple cycles system |
US10487699B2 (en) | 2017-08-08 | 2019-11-26 | Saudi Arabian Oil Company | Natural gas liquid fractionation plant waste heat conversion to cooling capacity using kalina cycle |
US10626756B2 (en) | 2017-08-08 | 2020-04-21 | Saudi Arabian Oil Company | Natural gas liquid fractionation plant waste heat conversion to power using dual turbines organic Rankine cycle |
US10451359B2 (en) | 2017-08-08 | 2019-10-22 | Saudi Arabian Oil Company | Natural gas liquid fractionation plant waste heat conversion to power using Kalina cycle |
US10443453B2 (en) | 2017-08-08 | 2019-10-15 | Saudi Araabian Oil Company | Natural gas liquid fractionation plant cooling capacity and potable water generation using integrated vapor compression-ejector cycle and modified multi-effect distillation system |
US10662824B2 (en) | 2017-08-08 | 2020-05-26 | Saudi Arabian Oil Company | Natural gas liquid fractionation plant waste heat conversion to power using organic Rankine cycle |
US10677104B2 (en) | 2017-08-08 | 2020-06-09 | Saudi Arabian Oil Company | Natural gas liquid fractionation plant waste heat conversion to simultaneous power, cooling and potable water using integrated mono-refrigerant triple cycle and modified multi-effect-distillation system |
US10690407B2 (en) | 2017-08-08 | 2020-06-23 | Saudi Arabian Oil Company | Natural gas liquid fractionation plant waste heat conversion to simultaneous power and potable water using organic Rankine cycle and modified multi-effect-distillation systems |
US10480354B2 (en) | 2017-08-08 | 2019-11-19 | Saudi Arabian Oil Company | Natural gas liquid fractionation plant waste heat conversion to simultaneous power and potable water using Kalina cycle and modified multi-effect-distillation system |
BE1026296B9 (nl) * | 2018-05-23 | 2020-02-24 | Bart Gios | Absorptiesysteem met gesloten cyclus en werkwijze voor het afkoelen en genereren van stroom |
US12060867B2 (en) | 2021-04-02 | 2024-08-13 | Ice Thermal Harvesting, Llc | Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on working fluid temperature |
US11486370B2 (en) | 2021-04-02 | 2022-11-01 | Ice Thermal Harvesting, Llc | Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations |
US11480074B1 (en) | 2021-04-02 | 2022-10-25 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11326550B1 (en) | 2021-04-02 | 2022-05-10 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11493029B2 (en) | 2021-04-02 | 2022-11-08 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11644015B2 (en) | 2021-04-02 | 2023-05-09 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11293414B1 (en) | 2021-04-02 | 2022-04-05 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic rankine cycle operation |
US11421663B1 (en) | 2021-04-02 | 2022-08-23 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic Rankine cycle operation |
US11592009B2 (en) | 2021-04-02 | 2023-02-28 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11761355B2 (en) * | 2021-09-29 | 2023-09-19 | Linden Noble | Vapor-powered liquid-driven turbine |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU781373A1 (ru) * | 1978-12-14 | 1980-11-23 | Государственный Научно-Исследовательский Энергетический Институт Им.Г.М.Кржижановского | Энергетическа установка |
US4769593A (en) * | 1986-06-10 | 1988-09-06 | Conoco Inc. | Method and apparatus for measurement of steam quality |
US4732005A (en) * | 1987-02-17 | 1988-03-22 | Kalina Alexander Ifaevich | Direct fired power cycle |
AU4650689A (en) * | 1989-01-31 | 1990-08-24 | Tselevoi Nauchno-Tekhnichesky Kooperativ `Stimer' | Method for converting thermal energy of a working medium into mechanical energy in a steam plant |
JP3011669B2 (ja) * | 1997-01-21 | 2000-02-21 | 株式会社東芝 | 混合媒体サイクル発電システム |
US5953918A (en) * | 1998-02-05 | 1999-09-21 | Exergy, Inc. | Method and apparatus of converting heat to useful energy |
US7654100B2 (en) * | 2001-04-26 | 2010-02-02 | Rini Technologies, Inc. | Method and apparatus for high heat flux heat transfer |
US6820421B2 (en) * | 2002-09-23 | 2004-11-23 | Kalex, Llc | Low temperature geothermal system |
DE10335134A1 (de) * | 2003-07-31 | 2005-02-17 | Siemens Ag | Verfahren und Vorrichtung zur Ausführung eines thermodynamischen Kreisprozesses |
CN1993536B (zh) * | 2004-04-16 | 2011-09-14 | 西门子公司 | 用于执行热力学循环的方法和装置 |
US8091360B2 (en) * | 2005-08-03 | 2012-01-10 | Amovis Gmbh | Driving device |
DE102006036122A1 (de) * | 2005-08-03 | 2007-02-08 | Amovis Gmbh | Antriebseinrichtung |
-
2008
- 2008-08-21 US US12/675,791 patent/US20110000205A1/en not_active Abandoned
- 2008-08-21 AU AU2008291094A patent/AU2008291094A1/en not_active Abandoned
- 2008-08-21 KR KR1020107006991A patent/KR20100074166A/ko not_active Application Discontinuation
- 2008-08-21 WO PCT/EP2008/060921 patent/WO2009027302A2/de active Application Filing
- 2008-08-21 CN CN200880113544A patent/CN101842558A/zh active Pending
- 2008-08-21 EP EP08787367A patent/EP2188500A2/de not_active Withdrawn
- 2008-08-21 RU RU2010112413/06A patent/RU2479727C2/ru not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
CN101842558A (zh) | 2010-09-22 |
WO2009027302A3 (de) | 2010-03-25 |
KR20100074166A (ko) | 2010-07-01 |
RU2479727C2 (ru) | 2013-04-20 |
EP2188500A2 (de) | 2010-05-26 |
US20110000205A1 (en) | 2011-01-06 |
AU2008291094A1 (en) | 2009-03-05 |
WO2009027302A2 (de) | 2009-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2010112413A (ru) | Способ и устройство для преобразования тепловой энергии в механическую энергию | |
CA2562836C (en) | Method and device for executing a thermodynamic cycle process | |
JP5145326B2 (ja) | 作業媒体を内部フラッシュ蒸発させるピストン蒸気機関 | |
KR101114017B1 (ko) | 열역학 사이클을 수행하기 위한 방법 및 장치 | |
NZ587103A (en) | Thermodynamic cycle and method of operation where vapor of the working fluid bypasses the expansion device in order to start the circuit. | |
US8667797B2 (en) | Organic rankine cycle with flooded expansion and internal regeneration | |
US20160024974A1 (en) | Passive low temperature heat sources organic working fluid power generation method | |
US9841214B2 (en) | Passive organic working fluid ejector refrigeration method | |
CN102337934A (zh) | 一种提高热源使用效率的联合循环发电系统 | |
CN107503814A (zh) | 带有喷射式气液混合回热装置的有机朗肯循环发电系统 | |
WO2009107383A1 (ja) | 中温熱機関 | |
CN202220628U (zh) | 提高热源使用效率的联合循环发电系统 | |
US20130019596A1 (en) | Process and power system utilizing potential of ocean thermal energy conversion | |
KR102353428B1 (ko) | 열역학적 엔진 | |
TWI579520B (zh) | 熱交換器、熱機循環系統及其控制方法 | |
CN106940100A (zh) | 低温热源的高效复合利用系统 | |
RU2008119300A (ru) | Способ передачи тепловой энергии и устройство для осуществления такого способа | |
CN111420516A (zh) | 一种用于碳捕获吸收剂再生系统的蒸汽余热梯级利用系统 | |
CN206468383U (zh) | 提高朗肯循环热效率的装置 | |
CN102350087A (zh) | 超声负压循环提取设备 | |
Morrone et al. | Biomass exploitation in efficient ORC systems | |
CN110017183A (zh) | 发动机用双循环余热回收发电系统 | |
US9920749B2 (en) | Method and apparatus for producing power from two geothermal heat sources | |
RU2523087C1 (ru) | Парогазотурбинная установка | |
CN205117426U (zh) | 一种采用注氢燃烧混合式加热的超高温蒸汽动力循环结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20130822 |