EP2199671A1 - Procédé et dispositif destinés à la production de vapeur d'eau - Google Patents

Procédé et dispositif destinés à la production de vapeur d'eau Download PDF

Info

Publication number
EP2199671A1
EP2199671A1 EP09007578A EP09007578A EP2199671A1 EP 2199671 A1 EP2199671 A1 EP 2199671A1 EP 09007578 A EP09007578 A EP 09007578A EP 09007578 A EP09007578 A EP 09007578A EP 2199671 A1 EP2199671 A1 EP 2199671A1
Authority
EP
European Patent Office
Prior art keywords
stage
temperature
heat
compressors
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09007578A
Other languages
German (de)
English (en)
Inventor
Walter Dr. Nestler
Steffen Oberländer
Eberhard Prof. Wobst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thermeaenergiesysteme GmbH
Original Assignee
Thermeaenergiesysteme GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102008027825A external-priority patent/DE102008027825A1/de
Application filed by Thermeaenergiesysteme GmbH filed Critical Thermeaenergiesysteme GmbH
Publication of EP2199671A1 publication Critical patent/EP2199671A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B3/00Other methods of steam generation; Steam boilers not provided for in other groups of this subclass
    • F22B3/04Other methods of steam generation; Steam boilers not provided for in other groups of this subclass by drop in pressure of high-pressure hot water within pressure- reducing chambers, e.g. in accumulators
    • F22B3/045Other methods of steam generation; Steam boilers not provided for in other groups of this subclass by drop in pressure of high-pressure hot water within pressure- reducing chambers, e.g. in accumulators the drop in pressure being achieved by compressors, e.g. with steam jet pumps

Definitions

  • the invention relates to a method which makes it possible by means of heat at low or high temperature level, for. B. from warm industrial wastewater to produce water vapor at atmospheric or higher pressure.
  • the process is particularly suitable for industrial companies that require steam for process control on the one hand and on the other hand, a waste water cooling is required. With the system for the process, total power numbers ⁇ of approx. 3 can be achieved.
  • heat pumps deliver hot water at temperatures as high as 80 ° C, they are unsuitable for the direct production of atmospheric or higher pressure water vapor often required for technological processes.
  • the water When generating steam, the water is first heated to boiling temperature (sensitive heat supply) and then evaporated to a high temperature level (latent heat supply).
  • the latent heat energy which makes up the major part of the total evaporation energy, would therefore have to be supplied at temperatures of 100 ° C.
  • the invention has for its object to eliminate the disadvantages of the prior art.
  • a method is to be found which makes it possible to produce water vapor at atmospheric or higher pressure with high efficiency using heat pump technology.
  • the wastewater should be cooled according to the requirements of the steam production process.
  • water is raised in a heat recovery system in a first temperature stage using waste heat to a temperature level which makes it possible to reach a temperature level in a second temperature stage by means of a subcritically or transcritically operating heat pump in which water evaporates.
  • the water vapor thus produced is then compressed in a third stage by vapor compression.
  • waste heat is only available at a low temperature level
  • the water is heated to a temperature of 50 to 80 ° C and the pressure in the gas phase is lowered to 0.12 to 0.47 bar.
  • the pressure is chosen so low that the water boils at the set process temperature.
  • the water vapor thus produced is then compressed in the third stage by vapor compression to atmospheric or higher pressure.
  • the temperature level at which the water evaporates already at atmospheric or higher pressure can be reached by means of a sub- or transcritical heat pump. Consequently, even higher end temperatures of the water vapor are achieved with the subsequent vapor compression of the third stage.
  • the usable temperature ranges can be significantly increased both on the heat sources, as well as on the heat sink side.
  • the arrangement for carrying out the method consists of three stages, wherein the first stage as a heat pump, recuperator, combined heat and power plant, gas engine or fuel cell, the second stage as a heat pump and the third stage of at least one multi-stage vapor compressor or more in series single-stage vapor compressors, wherein the heat pump and the vapor compressor (s) are connected in cascade.
  • the heat pumps are preferably operated with refrigerants from the group of fostering hydrocarbons.
  • refrigerants from the group of hydrocarbons or ammonia are also possible.
  • the two- or multi-stage vapor compressor has a device for Kondensaieinspritzung.
  • an intercooling is effected with which the compression end temperature is limited and the coefficient of performance of the vapor compressor is increased.
  • a particularly economical energy conversion is achieved with vapor compressors in which turbo compressors of high performance, which also have high efficiencies, are used.
  • the arrangement consists of the two-stage heat pump 1 and the two-stage vapor compressor 2; both are combined in a cascade.
  • the heat pump 1 with the aid of the evaporator 3, a heat flow from the heat source, whereby the refrigerant R134a is evaporated.
  • the vaporous refrigerant is fed to the compressor 5 of the first stage of the heat pump 1 and first compressed to medium pressure level. Subsequently, it is deprived in the medium-pressure bottle 6 and compressed with the compressor 8 of the second stage to final pressure.
  • the steam generated in the steam generator 9 is fed to the vapor compressor 2 and there by the turbo compressor 10; 12 of the first and second stage to a usable pressure level of 1.5 bar compressed.
  • the turbocompressors 10; 12 condensate is supplied by means of the injection nozzle 11, whereby a desuperheating of the water vapor, a limitation of the compression end temperature and ultimately an increase in performance of the vapor compressor 2 is effected.
  • the return is expanded via the return valve 13 and fed to the steam generator 9 or injected as condensate.
  • FIG. 2 illustrated and preferably applied system diagram shows in the first temperature stage, the evaporator 16 of a natural refrigerant, here ammonia, operated heat pump.
  • the evaporator absorbs the heat flow from a process cooling water circuit and vaporizes the liquid refrigerant.
  • the now vaporous refrigerant is compressed by the compressor 17 to the condensing pressure of the first temperature stage.
  • the refrigerant is re-liquefied with release of heat and then introduced into the refrigerant collector 19.
  • the refrigerant collector 19 has the task to compensate for the operating point-dependent refrigerant charge in the evaporator 16 and in the evaporator condenser 18. Via the expansion valve 20, the refrigerant is returned to the evaporator 16.
  • the natural refrigerant ammonia of the second temperature stage is evaporated at a minimum temperature.
  • the compressor 21 compresses the vaporized refrigerant to a supercritical pressure of 120 bar. Subsequently, the compressed supercritical refrigerant is conducted in the heat exchanger 22, where it gives off heat without being liquefied. This is ensured by the fact that the control valve 23 relaxes just enough refrigerant back into the evaporator condenser 18, that the pressure in the heat exchanger 22 is maintained at the predetermined desired value.
  • the evaporator capacitor 18 Since the evaporator capacitor 18 is flooded on the side of the second temperature level by this measure, can be dispensed with a downstream on the suction side or the heat exchanger 22 downstream refrigerant collector. A portion of the cooled in the heat exchanger 22 refrigerant is supplied via the valve 26 to the oil cooler.
  • an oil separator is interposed between it and the heat exchanger 22.
  • the oil collected in the oil separator 24 is then supplied to the oil cooler 25.
  • the oil cooler it is cooled by refrigerant, which has previously been cooled down in the heat exchanger 22 and expanded by the valve 26, and fed back to the compressor 21.
  • the refrigerant expanded from the valve 26, after passing through the oil cooler, is supplied to the compressor on the suction side or, if present, to an economizer connection on the compressor 21.
  • the water is evaporated in the heat exchanger 22 at atmospheric or higher pressure, which is compressed by the compressor 27 and 28 to the required pressure level. Between the two compressors takes place by condensate injection by means of the valve 29, an intermediate cooling of water vapor.
  • the evaporation temperature of the refrigerant ammonia of the first temperature level is 40 ° C and the liquefaction temperature at 75 ° C, wherein the associated pressures are 15.6 bar and 37.1 bar.
  • a heat pump performance number of at least 5.2 is achieved.
  • the refrigerant is compressed to a pressure of 120 bar.
  • the compression end temperature can be limited by the refrigerating machine oil to the permissible oil temperature of 160 ° C.
  • the coefficient of performance of the second temperature level is 4.7. If steam is produced at atmospheric pressure, it can be compressed to about 1.4 bar saturated steam pressure by means of two series-connected steam compressors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
EP09007578A 2008-06-11 2009-06-09 Procédé et dispositif destinés à la production de vapeur d'eau Withdrawn EP2199671A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008027825A DE102008027825A1 (de) 2008-06-11 2008-06-11 Verfahren und Anordnung zur Erzeugung von Wasserdampf
DE102009016775A DE102009016775A1 (de) 2008-06-11 2009-04-07 Verfahren und Vorrichtung zur Erzeugung von Wasserdampf auf hohem Temperaturniveau

Publications (1)

Publication Number Publication Date
EP2199671A1 true EP2199671A1 (fr) 2010-06-23

Family

ID=42125891

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09007578A Withdrawn EP2199671A1 (fr) 2008-06-11 2009-06-09 Procédé et dispositif destinés à la production de vapeur d'eau

Country Status (2)

Country Link
EP (1) EP2199671A1 (fr)
DE (1) DE102009016775A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104654442A (zh) * 2015-02-06 2015-05-27 苏州工业园区设计研究院股份有限公司 蒸汽冷凝水回收利用系统
CN105571203A (zh) * 2016-02-01 2016-05-11 南京航空航天大学 多级热交换系统
CN109442363A (zh) * 2018-10-22 2019-03-08 中国科学院广州能源研究所 一种蓄热式热泵蒸汽机及产生蒸汽的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202023103656U1 (de) 2023-06-30 2023-08-22 Technische Universität Chemnitz, Körperschaft des öffentlichen Rechts Anlage zur Energie- und/oder Stoffversorgung mindestens eines Verbrauchers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3110463A1 (de) 1981-03-18 1982-12-09 Christian 7432 Urach Greiner Einrichtung zur gewinnung von waermeenergie aus abwaermequellen
FR2516205A3 (fr) * 1981-11-06 1983-05-13 Saint Laumer Daniel De Dispositif de production de vapeur d'eau avec economie d'energie
US4565161A (en) 1985-04-08 1986-01-21 Uraken Canada Limited Steam generation
US6058727A (en) * 1997-12-19 2000-05-09 Carrier Corporation Refrigeration system with integrated oil cooling heat exchanger
WO2004010003A2 (fr) * 2002-07-14 2004-01-29 Rerum Cognitio Gesellschaft Für Marktintegration Deutscher Innovation Und Forschungsprodukte Mbh Procede de compression du fluide actif au cours d'un processus combine eau-vapeur
WO2006027330A1 (fr) * 2004-09-06 2006-03-16 Iarp S.R.L. Appareil de refrigeration par compression du co2 destine a des applications a basse temperature

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008027825A1 (de) 2008-06-11 2009-12-17 Thermea. Energiesysteme Gmbh Verfahren und Anordnung zur Erzeugung von Wasserdampf

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3110463A1 (de) 1981-03-18 1982-12-09 Christian 7432 Urach Greiner Einrichtung zur gewinnung von waermeenergie aus abwaermequellen
FR2516205A3 (fr) * 1981-11-06 1983-05-13 Saint Laumer Daniel De Dispositif de production de vapeur d'eau avec economie d'energie
US4565161A (en) 1985-04-08 1986-01-21 Uraken Canada Limited Steam generation
US6058727A (en) * 1997-12-19 2000-05-09 Carrier Corporation Refrigeration system with integrated oil cooling heat exchanger
WO2004010003A2 (fr) * 2002-07-14 2004-01-29 Rerum Cognitio Gesellschaft Für Marktintegration Deutscher Innovation Und Forschungsprodukte Mbh Procede de compression du fluide actif au cours d'un processus combine eau-vapeur
WO2006027330A1 (fr) * 2004-09-06 2006-03-16 Iarp S.R.L. Appareil de refrigeration par compression du co2 destine a des applications a basse temperature

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104654442A (zh) * 2015-02-06 2015-05-27 苏州工业园区设计研究院股份有限公司 蒸汽冷凝水回收利用系统
CN104654442B (zh) * 2015-02-06 2017-08-15 苏州工业园区设计研究院股份有限公司 蒸汽冷凝水回收利用系统
CN105571203A (zh) * 2016-02-01 2016-05-11 南京航空航天大学 多级热交换系统
CN109442363A (zh) * 2018-10-22 2019-03-08 中国科学院广州能源研究所 一种蓄热式热泵蒸汽机及产生蒸汽的方法

Also Published As

Publication number Publication date
DE102009016775A1 (de) 2010-09-23

Similar Documents

Publication Publication Date Title
EP2634383A1 (fr) Procédé et agencement pour l'accumulation d'énergie
EP2021634B1 (fr) Installation et procédé associé pour la conversion de la chaleur en énergie mécanique, électrique et/ou énergie thermique
WO2014019698A2 (fr) Procédé et dispositif pour produire de l'énergie électrique
EP2610470A2 (fr) Procédé de fonctionnement d'une centrale stationnaire avec au moins un moteur à combustion interne
EP2867599A2 (fr) Procédé et dispositif de production d'une énergie électrique
EP1706599B1 (fr) Procédé et installation de conversion d'une énergie thermique résultante en énergie mécanique
WO2014026738A2 (fr) Procédé et dispositif servant à produire de l'énergie électrique
EP2199671A1 (fr) Procédé et dispositif destinés à la production de vapeur d'eau
EP1870646B1 (fr) Procédé et dispositif destinés à la récupération de chaleur de condensation à partir d'un cycle thermodynamique
DE102008027825A1 (de) Verfahren und Anordnung zur Erzeugung von Wasserdampf
DE10055202A1 (de) Dampfkraft-/Arbeitsprozeß mit erhöhtem mechanischen Wirkungsgrad für die Elektroenergiegewinnung im Kreisprozeß sowie Anordnung zu seiner Durchführung
AT510809A1 (de) Vorrichtung zur abwärmenutzung
DE102008024427A1 (de) Verfahren und Anlage zur Rückgewinnung von Arbeitsfluid
WO2007042215A1 (fr) Procede et dispositif pour produire de l'energie mecanique ou electrique a partir de chaleur
DE102011012644A1 (de) Kälteanlage
EP3559564B1 (fr) Procédé et dispositif de production de froid de processus et de vapeur de processus
EP2518423A2 (fr) Procédé de chauffage de milieux de transmission de chaleur et pompe à chaleur surcritique
EP3293475A1 (fr) Procédé et appareil de stockage et de récupération d'énergie
EP2559867A1 (fr) Procédé de production d'énergie électrique à l'aide d'une centrale électrique combinée et centrale électrique combinée destinée à l'exécution du procédé
EP3948122A1 (fr) Procédé et système de liquéfaction d'un gaz
EP2951407A2 (fr) Procédé permettant de faire fonctionner une centrale basse température et centrale basse température
WO2018145884A1 (fr) Procédé permettant de faire fonctionner une installation de pompes à chaleur, installation de pompes à chaleur et centrale électrique comprenant une installation de pompes à chaleur
WO2024078669A1 (fr) Dispositif de pompe à chaleur pour la génération économe en énergie d'une chaleur de traitement, dispositif de séchage permettant de sécher un matériau devant être séché, et procédé de fonctionnement d'un dispositif de pompe à chaleur
EP4192604A1 (fr) <sup2/>? <sub2/>?2?dépôt de coà basse température à partir de gaz d'échappement
DE4243569A1 (en) Efficient steam-raising process for thermally operated power station - has additional water circulation for reclamation of latent heat of condensation to assist steam generation and eliminate cooling towers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101224