EP2518423A2 - Procédé de chauffage de milieux de transmission de chaleur et pompe à chaleur surcritique - Google Patents

Procédé de chauffage de milieux de transmission de chaleur et pompe à chaleur surcritique Download PDF

Info

Publication number
EP2518423A2
EP2518423A2 EP12164077A EP12164077A EP2518423A2 EP 2518423 A2 EP2518423 A2 EP 2518423A2 EP 12164077 A EP12164077 A EP 12164077A EP 12164077 A EP12164077 A EP 12164077A EP 2518423 A2 EP2518423 A2 EP 2518423A2
Authority
EP
European Patent Office
Prior art keywords
heat pump
compressor
supercritical
pump according
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12164077A
Other languages
German (de)
English (en)
Other versions
EP2518423A3 (fr
Inventor
Walter Dr. Nestler
Steffen Oberländer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thermea Energiesysteme GmbH
Original Assignee
Thermea Energiesysteme GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thermea Energiesysteme GmbH filed Critical Thermea Energiesysteme GmbH
Publication of EP2518423A2 publication Critical patent/EP2518423A2/fr
Publication of EP2518423A3 publication Critical patent/EP2518423A3/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle

Definitions

  • the invention relates to a method for heating heat transfer media, for. As of water in a heating circuit, from inlet temperatures greater than 40 ° C to outlet temperatures greater than 80 ° C by means of a Joulevones with internal recuperation.
  • the working according to the method heat pump preferably uses a natural agent such. As carbon dioxide, and makes it possible to generate heating and process heat, the temperature on a z. B. suitable for district heating networks high level, with performance figures of at least 3 can be achieved.
  • Supercritical heat pumps are known as so-called. Cold gas engines. They work according to the Joulerak with internal recuperation. They are mainly used in the low temperature range (below -70 ° C). Supercritical heat pumps for the normal temperature range (25 to 80 ° C) are considered by experts to be ineffective compared to subcritical heat pumps, which work subcritically with evaporating and condensing agents (cold vapor process) (see Heat pump application in industry, agriculture, corporate and residential construction, Ed. Heinrich et al., VEB Verlagtechnik, 1982, p. 41 to 44 ).
  • Out DE 10 2006 007 119 A1 is a trans-critical CO 2 heat pump is known, with a heat transfer medium from a low inlet temperature (10 ° C to 40 ° C) to a high outlet temperature (from 60 ° C to well above 100 ° C) is heated. Since the carbon dioxide on the high-pressure side is supercritical in this heat pump, the temperature profile of the carbon dioxide adapts to the temperature profile of the heat transfer medium (Temperaturglide), whereby high performance figures are possible. By arranging a plurality of gas coolers connected in series on the gas side, all of which operate at the same high pressure level, different useful temperature levels are realized.
  • the invention has for its object to find a method and a working heat pump according to the method, with which heat transfer media with inlet temperatures of greater than 40 ° C can be heated to outlet temperatures of greater than 80 ° C and higher. It should be achievable performance figures of at least three.
  • the inlet temperature of at least 40 ° C has heated to an outlet temperature of at least 80 ° C, wherein on the low pressure side of the pressure is controlled to a value which corresponds to at least the value of the critical pressure and at most twice the value of the critical pressure of the working substance used ,
  • the method is particularly suitable for use in heating networks, district heating networks and process heat consumers, in which water (or water vapor) is used as a heat transfer medium.
  • the principle of keeping the lower pressure level slightly above the critical pressure in order to obtain a particularly effective, supercritical process can also be used for the right-handed force process according to the Joule principle.
  • a Joulerak proved particularly efficient, which operates with carbon dioxide as working means and in which the low-pressure side is regulated to a pressure, the value of the 1,0 to 1,5 times (73,8 to 110,7 bar, rounded 74 to 110 bar) corresponds to the critical pressure of carbon dioxide.
  • the high pressure side set 140 to 160 bar.
  • supercritical heat pump (cold gas engine) includes a gas heater, a gas cooler, at least one Compressor, a relaxation device, (at least) a motor that allows the required for the operation of the heat pump energy input, a recuperator, which is used for internal heat transfer from the high pressure side to the low pressure side, and a controller.
  • the controller sets the pressure on the low-pressure side to a value that corresponds at least to the simple and at most twice the critical pressure of the working fluid used.
  • the expansion device is usually designed as a relaxation machine, by means of which the relaxation work formed during the Joule process is converted into mechanical energy and supplied to the engine or at least one compressor.
  • the expansion machine with generator is mechanically separated from the engine of the compressor.
  • the engine has two diametrically extending force transmission axes.
  • the motor used is usually an electric motor, to whose armature the two diametrically extending power transmission axles are attached.
  • the first power transmission axle acts as a drive axle and is connected to the compressor while the second power transmission axle is connected to the expansion machine so that the work done by the expansion machine is supplied to the engine.
  • the mechanical energy to be provided by the compressor is greater than the work of expansion formed in the Joule process.
  • the difference between the power consumed by the compressor and the power delivered by the decompression machine, d. H. the residual power required for the operation of the compressor is provided by the engine.
  • a first compressor which is driven exclusively by the expansion machine, is used as the first compressor stage.
  • the first compressor stage is followed by a second compressor stage (cascade), which consists of a compressor driven exclusively by the engine.
  • Single-stage turbomachines are preferably used as compressors since they are of compact construction and their paddle wheel can be mounted directly on the end of the first power transmission shaft of the engine (a compressor stage) or on the end of a shaft driven by the expansion machine (two compressor stages).
  • the relaxation work recovered in the Joule process can be transferred to the compressor virtually without mechanical losses.
  • the use of other compressors is also possible in principle.
  • the expansion machine may also be a single-stage turbomachine, e.g. drives a generator.
  • the supercritical heat pump can indeed be set up without a relaxation machine.
  • the associated disadvantages namely comparatively lower performance figures, however, outweigh the advantages achieved (simplification of the structure of the heat pump).
  • the invention can be advantageously used in a heat-cooling coupling by cooling power is taken from the Joule process not only on the gas cooler heat output but also via the gas heater on direct or indirect (via a DC link).
  • the supercritical heat pump can also be advantageous for direct or (via a DC link) indirect heating of gases as a heat transfer medium, eg. B. for heating air for drying processes or in preheaters used.
  • a heat transfer medium eg. B. for heating air for drying processes or in preheaters used.
  • the inventive method can also be used to generate mechanical work from waste heat, solar and geothermal heat, combustion heat or heat from material conversion processes.
  • the supercritical CO 2 heat pump ( Fig. 1 ), like all the heat pumps operating according to the Joule process, has the compressor 1, the gas cooler 2, the gas heater 3, the expansion machine 4 and the motor 5, via which the mechanical energy required for the Joule process (heat pump: left process) is introduced.
  • the supercritical heat pump is also equipped with a recuperator 6, which serves to heat the exiting from the gas heater carbon dioxide from the gas cooler exiting carbon dioxide.
  • heat from a heat source (industrial waste heat or geothermal water, not shown) is supplied to the carbon dioxide by means of a heat transfer medium, whereby the carbon dioxide is heated to 60 ° C. (sixth state point F).
  • the heat transfer medium cools in turn in the gas heater 3 from 65 ° C to 40.8 ° C from.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
EP12164077.5A 2011-04-27 2012-04-13 Procédé de chauffage de milieux de transmission de chaleur et pompe à chaleur surcritique Withdrawn EP2518423A3 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011002277 2011-04-27
DE102011052776.1A DE102011052776B4 (de) 2011-04-27 2011-08-17 Überkritische Wärmepumpe

Publications (2)

Publication Number Publication Date
EP2518423A2 true EP2518423A2 (fr) 2012-10-31
EP2518423A3 EP2518423A3 (fr) 2015-01-21

Family

ID=46045786

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12164077.5A Withdrawn EP2518423A3 (fr) 2011-04-27 2012-04-13 Procédé de chauffage de milieux de transmission de chaleur et pompe à chaleur surcritique

Country Status (2)

Country Link
EP (1) EP2518423A3 (fr)
DE (1) DE102011052776B4 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014206474A1 (de) 2013-04-05 2014-10-09 Dürr Systems GmbH Anlage zum Bereitstellen von Wärmeenergie für Wärmeverbraucher
WO2017005643A1 (fr) * 2015-07-08 2017-01-12 Pfütze Uwe Procédé et dispositif de régulation de la température d'un milieu

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013013734A1 (de) * 2013-05-17 2014-11-20 Richard Bethmann Wärmepumpenanlage
DE102017101304A1 (de) 2017-01-24 2018-07-26 Ibw Engineering Gmbh Wärmeübertragungsanlage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006007119A1 (de) 2006-02-16 2007-08-23 Wolf, Bodo M., Dr. Verfahren zur Speicherung und Rückgewinnung von Energie
DE102010004187A1 (de) 2009-12-02 2011-06-09 Thermea. Energiesysteme Gmbh Wärmepumpe für hohe Vor- und Rücklauftemperaturen

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4498289A (en) * 1982-12-27 1985-02-12 Ian Osgerby Carbon dioxide power cycle
NO890076D0 (no) * 1989-01-09 1989-01-09 Sinvent As Luftkondisjonering.
DE10137907A1 (de) * 2001-08-02 2003-02-20 Modine Mfg Co Luftgekühlte Wärmeübertragungsanordnung
US6591618B1 (en) * 2002-08-12 2003-07-15 Praxair Technology, Inc. Supercritical refrigeration system
JP4410980B2 (ja) * 2002-09-19 2010-02-10 三菱電機株式会社 冷凍空調装置
JP4375171B2 (ja) * 2004-08-31 2009-12-02 ダイキン工業株式会社 冷凍装置
US20060059945A1 (en) * 2004-09-13 2006-03-23 Lalit Chordia Method for single-phase supercritical carbon dioxide cooling
JP5040256B2 (ja) * 2006-10-19 2012-10-03 パナソニック株式会社 冷凍サイクル装置およびその制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006007119A1 (de) 2006-02-16 2007-08-23 Wolf, Bodo M., Dr. Verfahren zur Speicherung und Rückgewinnung von Energie
DE102010004187A1 (de) 2009-12-02 2011-06-09 Thermea. Energiesysteme Gmbh Wärmepumpe für hohe Vor- und Rücklauftemperaturen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Industrie, Landwirtschaft, Gesellschafts- und Wohnungsbau", 1982, VEB VERLAG TECHNIK, pages: 41 - 44

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014206474A1 (de) 2013-04-05 2014-10-09 Dürr Systems GmbH Anlage zum Bereitstellen von Wärmeenergie für Wärmeverbraucher
WO2017005643A1 (fr) * 2015-07-08 2017-01-12 Pfütze Uwe Procédé et dispositif de régulation de la température d'un milieu
DE102015110994A1 (de) * 2015-07-08 2017-01-12 Uwe Pfütze Vorrichtung und Verfahren zum Temperieren eines Mediums
DE102015110994B4 (de) * 2015-07-08 2017-07-20 Uwe Pfütze Vorrichtung und Verfahren zum Temperieren eines Mediums
CN107850350A (zh) * 2015-07-08 2018-03-27 乌维·帕福特兹 用于调节介质温度的装置和方法
US10690384B2 (en) 2015-07-08 2020-06-23 Uwe Pfütze Device and method for controlling the temperature of a medium
CN107850350B (zh) * 2015-07-08 2021-03-09 乌维·帕福特兹 用于调节介质温度的装置和方法

Also Published As

Publication number Publication date
DE102011052776A1 (de) 2012-10-31
DE102011052776B4 (de) 2016-12-29
EP2518423A3 (fr) 2015-01-21

Similar Documents

Publication Publication Date Title
EP1591644B1 (fr) Dispositif pour l'utilisation de la chaleur perdue par les compresseurs
EP3362739B1 (fr) Production de vapeur industrielle au moyen d'une pompe à chaleur haute température
DE2611890C3 (de) Anordnung zum Umformen von in einem gasförmigen Primärfluid enthaltener Wärme in eine andere Energieart
EP2785985B1 (fr) Dispositif et procédé permettant de récupérer la chaleur dégagée par un moteur à combustion interne, en particulier de récupérer la chaleur dégagée par le moteur d'un véhicule
EP2823156B1 (fr) Installation pour le stockage et le dépôt d'énergie thermique
EP2574739A1 (fr) Installation de stockage d'énergie thermique et son procédé de fonctionnement
DE102010003906A1 (de) Verbrennungsmotor
DE102012220188B4 (de) Integrierter ORC-Prozess an zwischengekühlten Kompressoren zur Erhöhung des Wirkungsgrades und Verringerung der erforderlichen Antriebsleistung durch Nutzung der Abwärme
DE102018114762B4 (de) Verfahren zum Betreiben einer Klimaanlage eines Kraftfahrzeuges
EP2518423A2 (fr) Procédé de chauffage de milieux de transmission de chaleur et pompe à chaleur surcritique
EP1925475A2 (fr) Combinaison d'un circuit frigorifique destinée à la climatisation de l'espace intérieur d'un véhicule et d'un circuit Rankine
DE10055202A1 (de) Dampfkraft-/Arbeitsprozeß mit erhöhtem mechanischen Wirkungsgrad für die Elektroenergiegewinnung im Kreisprozeß sowie Anordnung zu seiner Durchführung
EP2653670A1 (fr) Installation de stockage et de répartition d'énergie thermique avec un accumulateur thermique et un accumulateur de froid et leur procédé de fonctionnement
DE102010004187A1 (de) Wärmepumpe für hohe Vor- und Rücklauftemperaturen
DE843770C (de) Gasturbinenanlage
EP0592059A1 (fr) Procédé et dispositif pour comprimer un gaz
DE102014206474A1 (de) Anlage zum Bereitstellen von Wärmeenergie für Wärmeverbraucher
EP3559564B1 (fr) Procédé et dispositif de production de froid de processus et de vapeur de processus
DE102009016775A1 (de) Verfahren und Vorrichtung zur Erzeugung von Wasserdampf auf hohem Temperaturniveau
EP2449228A2 (fr) Procédé pour faire fonctionner une centrale comportant un dispositif de turbine à gaz
DE102012017314B4 (de) System zur Wirkungsgradsteigerung von zwei- oder mehrstufigen Verdichteranordnungen
EP3293475A1 (fr) Procédé et appareil de stockage et de récupération d'énergie
DE2920661A1 (de) Verfahren zur erzeugung von dampf
WO2018029371A1 (fr) Échangeur de chaleur destiné à être utilisé dans une partie chaude d'une centrale de stockage d'énergie par air liquide, partie chaude et procédé permettant de faire fonctionner ledit échangeur de chaleur dans ladite partie chaude
AT507700B1 (de) Vorrichtung zur gewinnung von elektrischem strom

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 9/00 20060101AFI20141217BHEP

Ipc: F25B 9/06 20060101ALI20141217BHEP

Ipc: F25B 30/02 20060101ALI20141217BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150722