EP2449228A2 - Procédé pour faire fonctionner une centrale comportant un dispositif de turbine à gaz - Google Patents

Procédé pour faire fonctionner une centrale comportant un dispositif de turbine à gaz

Info

Publication number
EP2449228A2
EP2449228A2 EP10739498A EP10739498A EP2449228A2 EP 2449228 A2 EP2449228 A2 EP 2449228A2 EP 10739498 A EP10739498 A EP 10739498A EP 10739498 A EP10739498 A EP 10739498A EP 2449228 A2 EP2449228 A2 EP 2449228A2
Authority
EP
European Patent Office
Prior art keywords
gas
combustion air
fuel gas
heat
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10739498A
Other languages
German (de)
English (en)
Inventor
Horst Meyrahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RWE Power AG
Original Assignee
RWE Power AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RWE Power AG filed Critical RWE Power AG
Publication of EP2449228A2 publication Critical patent/EP2449228A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/224Heating fuel before feeding to the burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages

Definitions

  • the invention relates to a method for operating a power plant with a gas turbine plant, comprising at least one compressor part, a combustion chamber and at least one turbine, wherein the gas supplied to the combustion chamber is taken from a gas network.
  • the intake air of the gas turbine passes through a heat transfer stage, while the intake air is either supplied heat or withdrawn heat in dependence on the power output of the gas turbine plant heat.
  • the energy required for the heating for example in the form of
  • a cooling medium for example cold water or a refrigerant which extracts heat by evaporation of its environment.
  • the method described in DE 100 33 052 A1 is based on the finding that the output of a gas turbine plant directly from
  • the invention is therefore based on the object to improve a method of the type mentioned in terms of a performance increase of the gas turbine.
  • the object is first achieved by a method for operating a
  • Power plant with a gas turbine plant comprising at least one compressor part, a combustion chamber and at least one turbine, wherein the gas supplied to the combustion chamber is taken from a gas network, wherein the method is characterized in that the withdrawn gas from the gas first relaxes to the pressure required for the gas turbine pressure level and then preheated, the preheating at least partially by means of a
  • Cold shift is accomplished by the fuel gas to the combustion air.
  • the temperature sink arising during the expansion of the fuel gas is at least partially used for conditioning the combustion air for the gas turbine.
  • the fuel gas is usually referred to with a much higher pressure and a lower temperature than is required for the operation of the gas turbine.
  • the operating pressure of a conventional gas pipeline can be up to 80 bar, whereas the pressure required for the gas turbine pressure level is about 25 bar.
  • the temperature of the fuel gas supplied to the gas turbine should be about 25 0 C, the temperature level of the natural gas provided in the natural gas pipeline is usually less than 25 ° C.
  • the extracted from the pipeline natural gas / fuel gas is therefore usually first subjected to a gas preheating and then relaxed.
  • the temperature level in the gas preheating is usually chosen so that the fuel gas after relaxation has the temperature level required for the gas turbine.
  • the energy generated during gas expansion is converted into mechanical work and used, for example, for driving a generator.
  • Gasentpressivesmaschine for example, in a turboexpander or a gas expansion engine, the compression energy of the gas is converted into mechanical work and used for example for driving a generator.
  • the cold created by the relaxation of the gas Joule-Thomson-Effect
  • the natural gas is heated by preheating the gas by heating fossil fuels
  • the invention uses the resulting in the relaxation of the gas
  • thermodynamic effect is used as such energetically, i. the generated cold is used, on the other hand, the cold is used to increase the performance of the gas turbine.
  • Combustion air is cooled directly in at least one heat exchanger by means of the expanded fuel gas.
  • the combustion air the heat by means of a heat transfer medium can be withdrawn, which in turn gives up the combustion air extracted heat the fuel gas.
  • Suitable heat transfer media are, for example, thermal oil or water or glycol or water-glycol mixtures or methanol.
  • the combustion air of the gas turbine can be sucked in, for example, by a heat exchanger through which a heat transfer medium or cold fuel gas flows.
  • a fin heat exchanger can be provided, which is connected upstream of the intake manifold of the compressor.
  • a cold shift from the fuel gas to the combustion air can take place by means of a plurality of heat exchangers connected in series, in which heat exchangers an immediate heat transfer from the cold fuel gas to the combustion air can take place.
  • such a heat transfer can take place by means of a heat transfer medium, for which purpose possibly twice the number of heat exchangers is required.
  • the resulting in the relaxation of the fuel gas cold can be used in an advantageous manner in addition to the removal of heat of condensation from a coupled steam turbine process.
  • the expansion of the fuel gas by means of at least one Gasentschreibsmaschine under additional use of mechanical energy.
  • Advantageous variants of the method according to the invention will be explained with reference to three embodiments with reference to the accompanying drawings.
  • Figures 1 and 2 first variants of the method according to the invention, in which a direct cooling of the already compressed and partially heated combustion air of the gas turbine takes place in several heat exchangers,
  • FIG. 3 shows an alternative embodiment of the method according to the
  • FIG. 4 shows a variant of the method according to the invention, in
  • the gas turbine 1 shown in the figures comprises in a known manner a compressor part 2, a combustion chamber 3 and a turbine 4.
  • the compressor part 2 ambient air is sucked in as combustion air 11, compressed and partially heated.
  • the compressed heated combustion air 11 is mixed in the combustion chamber 3 with natural gas from a natural gas line 5 and burned; in the downstream turbine 4, the gas mixture is expanded, releasing mechanical work, which is used to generate electricity.
  • the natural gas is provided for example from a natural gas pipeline, not shown, with a pressure of about 80 bar and a temperature of between 10 and 14 ° C.
  • the natural gas is first expanded to a pressure of 25 bar, wherein at an inlet temperature of 14 ° C and an inlet pressure of about 80 bar behind the expansion stage at a pressure of 25 bar, a temperature of about -31 C C is established ,
  • the fuel gas removed from the natural gas line 5 is first preheated by means of series-connected heat exchangers 7, for example to a temperature of approximately 200.degree.
  • the heat required for this purpose is partially or completely decoupled from the combustion air behind the compressor 2.
  • the heat load of the combustion air in countercurrent to
  • one or more gas relaxation machines for example in the form of turboexpanders, can be provided for expansion of the natural gas.
  • gasentpressivesmaschinen the relaxation of the Gas usually performing mechanical work that can be absorbed by a compressor, a generator or a liquid brake.
  • Gas expansion engine still increased. After cooling of the fuel gas in the expansion stage, the fuel gas is still significantly heated (> 25 ° C), so that one of the expansion stage downstream gas preheating can be dispensed with.
  • the expansion stage 6 is followed by three heat exchangers 7 connected in series.
  • the expansion stage 6 is followed by three heat exchangers 7 connected in series.
  • Heat exchangers 7 the fuel gas / natural gas with heat from the
  • the gas preheating can, for example, in a GUD process, if necessary, be operated with condensation heat from the feedwater circuit of the steam generator.
  • a Teii the already compressed and preheated combustion air is branched off behind the compressor 2 via a bypass line 9 and passed through the heat exchanger 7, their
  • Heat load in countercurrent give the fuel gas / natural gas.
  • the temperature of the branched off via the bypass line combustion air flow can be up to 400 0 C.
  • the heat transfer in the heat exchangers 7 takes place in the example shown in Figure 1 directly over the pipe walls.
  • the heat exchanger 7 may be formed as a tube bundle heat exchanger.
  • the illustrated in Figure 3 embodiment of the method according to the invention differs only in so far from the embodiment shown in Figure 1, as the total of six heat exchangers 7 are provided, of which three are connected in series.
  • the heat transfer via a heat transfer medium which takes place in between the
  • Heat exchangers 7 a is cooled and in three second heat exchangers 7 b, which are connected to the gas turbine 1, is loaded via the branched off from the combustion chamber 3 combustion air with heat.
  • a first heat exchanger 7a is arranged between the expansion stage 6 and the gas preheating 8, a second heat exchanger 7b coupled thereto is connected upstream of the combustion air inlet 10 of the compressor 2.
  • the first heat exchanger 7a and the second heat exchanger 7b communicate with each other via a heat exchange medium, for example via a methanol cycle.
  • the second heat exchanger 7b may be formed, for example, as air-flowed finned heat exchanger.
  • combustion air can be cooled at about 20 0 C to a temperature of 15.4 ° C, which corresponds to a ⁇ T of 4.6 K.
  • the achieved performance increase of the gas turbine is about 1, 2% of the full load to a temperature difference of 1 Kelvin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

L'invention concerne un procédé pour faire fonctionner une centrale comportant un dispositif de turbine à gaz, comprenant au moins une partie compresseur, une chambre de combustion et au moins une turbine. Le gaz fourni à la chambre de combustion provient d'un réseau de gaz. Le gaz provenant du réseau de gaz est détendu à un niveau de pression nécessaire à la turbine à gaz et préchauffé, le préchauffage étant réalisé par déplacement du froid du gaz combustible vers l'air de combustion.
EP10739498A 2009-07-03 2010-07-02 Procédé pour faire fonctionner une centrale comportant un dispositif de turbine à gaz Withdrawn EP2449228A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009031843A DE102009031843A1 (de) 2009-07-03 2009-07-03 Verfahren zum Betrieb eines Kraftwerks mit einer Gasturbinenanlage
PCT/EP2010/003941 WO2011000548A2 (fr) 2009-07-03 2010-07-02 Procédé pour faire fonctionner une centrale comportant un dispositif de turbine à gaz

Publications (1)

Publication Number Publication Date
EP2449228A2 true EP2449228A2 (fr) 2012-05-09

Family

ID=43299117

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10739498A Withdrawn EP2449228A2 (fr) 2009-07-03 2010-07-02 Procédé pour faire fonctionner une centrale comportant un dispositif de turbine à gaz

Country Status (3)

Country Link
EP (1) EP2449228A2 (fr)
DE (1) DE102009031843A1 (fr)
WO (1) WO2011000548A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195968A1 (fr) 2015-06-01 2016-12-08 Conlon William M Fonctionnement à charge partielle d'énergie à air liquide, et système de stockage
WO2016195999A1 (fr) 2015-06-03 2016-12-08 Conlon William M Énergie d'air liquide et stockage à capture de carbone
WO2016204893A1 (fr) * 2015-06-16 2016-12-22 Conlon William M Stockage d'énergie par liquide cryogénique
WO2017069922A1 (fr) 2015-10-21 2017-04-27 Conlon William M Énergie air-liquide haute-pression et stockage

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1031616A (en) * 1964-05-20 1966-06-02 Internat Res And Dev Company L Improvements in and relating to closed cycle gas turbine plants
BE857421A (fr) * 1977-08-03 1978-02-03 Acec Installation de production d'energie electrique comprenant des machines thermiques associees a la revaporisation d'un gaz liquefie
JPS55125324A (en) * 1979-03-22 1980-09-27 Osaka Gas Co Ltd Open cycle gas turbine power generating system
JPS55134716A (en) * 1979-04-04 1980-10-20 Setsuo Yamamoto Gas-turbine system
JPS57159903A (en) * 1981-03-27 1982-10-02 Toshiba Corp Generator with combined cycle
AU7873494A (en) * 1993-12-10 1995-06-27 Cabot Corporation An improved liquefied natural gas fueled combined cycle power plant
CN1112505C (zh) * 1995-06-01 2003-06-25 特雷克特贝尔Lng北美公司 液化天然气作燃料的混合循环发电装置及液化天然气作燃料的燃气轮机
JPH10288047A (ja) * 1997-04-16 1998-10-27 Osaka Gas Co Ltd 液化天然ガス気化発電装置
DE19744456A1 (de) * 1997-10-08 1999-01-28 Siemens Ag Gasturbinenanlage und Gas- und Dampfturbinenanlage mit einer derartigen Gasturbinenanlage sowie Verfahren zum Betreiben einer derartigen Gasturbinenanlage
DE10033052A1 (de) 2000-07-07 2002-01-24 Alstom Power Nv Verfahen zum Betreiben einer Gasturbinenanlage sowie Gasturbinenanlage zur Durchführung des Verfahrens
JP2003214184A (ja) * 2002-01-28 2003-07-30 Jfe Steel Kk ガスタービンおよびその運転方法
US7299619B2 (en) * 2003-12-13 2007-11-27 Siemens Power Generation, Inc. Vaporization of liquefied natural gas for increased efficiency in power cycles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011000548A2 *

Also Published As

Publication number Publication date
WO2011000548A3 (fr) 2011-08-11
WO2011000548A2 (fr) 2011-01-06
DE102009031843A1 (de) 2011-01-05

Similar Documents

Publication Publication Date Title
DE69927925T2 (de) Abhitzewiedergewinnung in einem organischen Energiewandler mittels einem Zwischenflüssigkeitskreislauf
EP1023526B1 (fr) Systeme de turbine a gaz et a vapeur et procede permettant de faire fonctionner un systeme de ce type
EP3362739B1 (fr) Production de vapeur industrielle au moyen d'une pompe à chaleur haute température
DE102009025932A1 (de) System zur Rückgewinnung der durch ein Zusatzsystem einer Turbomaschine erzeugten Abwärme
WO2006131283A2 (fr) Installation de production de vapeur et procede pour faire fonctionner une installation de production de vapeur et pour completer son equipement
CH702163A2 (de) Verfahren zur Steigerung der Leistungsabgabe eines Gas- und Dampf-Kombikraftwerks während ausgewählter Betriebszeiträume.
EP2447506A2 (fr) Système destiné à la production d'énergie mécanique et/ou électrique
EP0523467A1 (fr) Procédé pour opérer une installation à turbines à gaz et à vapeur et installation pour la mise en oeuvre du procédé
DE102011054744A1 (de) Wärmetauscher für ein Kombikraftwerk
EP2199547A1 (fr) Générateur de vapeur pour récupérer la chaleur et procédé de fonctionnement amélioré d'un générateur de vapeur pour récupérer la chaleur
DE102011056910A1 (de) System und Verfahren zur Nutzung der Wärme eines Gasturbinenzwischenkühlers in einem Bottoming-Dampfprozess
EP3163036A1 (fr) Synergies fonctionnelles de cycles thermodynamiques et de sources de chaleur
EP1099041B1 (fr) Installation a turbine a gaz et a turbine a vapeur
EP2449228A2 (fr) Procédé pour faire fonctionner une centrale comportant un dispositif de turbine à gaz
WO2005056994A1 (fr) Groupe moteur a reservoir d'air
DE102009050263A1 (de) System mit einem Rankine-Kreislauf
EP1076761B1 (fr) Installations a turbine a gaz et a turbine a vapeur
EP0981681B1 (fr) Systeme de turbines a gaz et a vapeur et procede de refroidissement de l'agent refrigerant de la turbine a gaz d'un tel systeme
DE10155508C2 (de) Verfahren und Vorrichtung zur Erzeugung von elektrischer Energie
DE102012110579B4 (de) Anlage und Verfahren zur Erzeugung von Prozessdampf
DE102020131706A1 (de) System und Verfahren zur Speicherung und Abgabe von elektrischer Energie mit deren Speicherung als Wärmeenergie
DE102011052776B4 (de) Überkritische Wärmepumpe
EP0158629B1 (fr) Cycle à vapeur pour installation énergétique à vapeur
EP3559564B1 (fr) Procédé et dispositif de production de froid de processus et de vapeur de processus
WO2018072897A1 (fr) Centrale électrique à chaleur perdue à apport de chaleur progressif

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111110

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150724

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151204