WO2006015629A1 - Vidange de vapeur instantanée du réservoir d’un circuit refrigérant - Google Patents

Vidange de vapeur instantanée du réservoir d’un circuit refrigérant Download PDF

Info

Publication number
WO2006015629A1
WO2006015629A1 PCT/EP2005/001724 EP2005001724W WO2006015629A1 WO 2006015629 A1 WO2006015629 A1 WO 2006015629A1 EP 2005001724 W EP2005001724 W EP 2005001724W WO 2006015629 A1 WO2006015629 A1 WO 2006015629A1
Authority
WO
WIPO (PCT)
Prior art keywords
flash gas
compressor
refrigeration circuit
receiver
line
Prior art date
Application number
PCT/EP2005/001724
Other languages
English (en)
Inventor
Andreas Gernemann
Original Assignee
Carrier Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004038640A external-priority patent/DE102004038640A1/de
Application filed by Carrier Corporation filed Critical Carrier Corporation
Priority to EP05715407.2A priority Critical patent/EP1782001B1/fr
Priority to PCT/EP2005/001724 priority patent/WO2006015629A1/fr
Priority to DK05715407.2T priority patent/DK1782001T3/en
Priority to US11/659,923 priority patent/US20080196420A1/en
Publication of WO2006015629A1 publication Critical patent/WO2006015629A1/fr
Priority to NO20071229A priority patent/NO343330B1/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/04Desuperheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • the present invention relates to a refrigeration circuit for circulating a refriger ⁇ ant in a predetermined flow direction, comprising a heat- rejecting heat ex ⁇ changer, an intermediate expansion device or throttle valve, a receiver, an evaporator expansion device or throttle valve, an evaporator, a compressor, and a flash gas tapping line connected to the receiver, as well as a method for tapping flash gas from a receiver in such a refrigeration circuit.
  • Refrigeration circuits are known and particularly useful for supercritical refrig- erants like carbon dioxide, CO 2 .
  • the intermediate throttle valve allows for re ⁇ ducing the pressure from the level at which the heat— rejecting is performed to a level suitable for distributing the coolant to the evaporator throttle valve and particularly allows moving the supercritical condition of the refrigerant to a normal condition thereof.
  • the intermediate throttle valve causes a generation of flash gas in the receiver which should be removed.
  • a flash gas tapping line is connected to the receiver and comprises a pressure controlled discharge valve for tapping the flash gas for example to the suction line and finally to the compressor. The losses associated with this technique for removing flash gas from the receiver are relatively high.
  • this object is solved by having the flash gas tapping line connected to the compressor so that the flash gas as tapped from the receiver is supplied to the compressor. While with the conventional technique of supplying the flash gas of the receiver to the suction gas results in a substantial pressure reduction of the flash gas from the relatively high pressure level in the receiver to the relatively low pres ⁇ sure level in the suction line and the resulting losses, the present invention teaches to supply the flash gas directly to the compressor essentially at the same pressure level at which the flash gas is tapped from the receiver.
  • the compressor is either a separate compressor which only compresses the flash gas from its respective intermediate pressure to the high pressure of the refrig ⁇ erant flowing to the heat- rejecting heat exchanger, or a compressor which al ⁇ lows for supplying the flash gas at an intermediate pressure level between the suction gas low pressure level and the high pressure level so that the com- pressor may be switched between intermediate and low pressure level at its input.
  • the compressor may be of the type allowing for input at the intermediate and low pressure level at the same time.
  • the compressor may be of the type allowing for an output adjustment, i.e. an adjustment of the performance level of the compressor, for example by way of adjusting the ro ⁇ tational speed thereof, etc.
  • the refrigeration circuit may further comprise a control for adjusting the capacity of the compressor in accordance with the amount of flash gas in the receiver and/or as produced at the intermediate throttle valve.
  • the compressor can be operated very efficiently if its output or performance level is controlled so as to keep its power consumption as low as possible.
  • the refrigeration circuit may further comprise a receiver pressure sensor which can be located in the receiver.
  • a receiver pressure sensor can be connected to the control and the respective receiver pressure data can be used for determining the amount of flash gas and the output of the compressor, respectively.
  • the output adjustment can also be made on the basis of any other information like other measurement parameters or on the basis of a calculation of the amount of flash gas taking into account the characteristics of the refrigeration circuit, the refrig ⁇ erant, the throttles, the compressor, etc., and/or the environment. It is also possible to provide a means like a flash gas valve, etc. for blocking flow of flash gas from the receiver to the compressor or for example in case of low receiver pressure, low generation of flash gas, etc.
  • the flash gas tap ⁇ ping line can be in heat exchange relationship with the pressure line connecting the compressor to the heat- rejecting heat exchanger.
  • Such construction allows for superheating the flash gas before delivery to the compressor.
  • the presence of any liquid refrigerant in the flash gas can be omitted or at least substantially reduced.
  • the heat- rejecting heat exchanger is a gascooler. This is particularly true if a supercritical refriger ⁇ ant like CO 2 is used. In other embodiments the heat-rejecting heat exchanger may also be a condenser.
  • the compressor may be one compressor out of a plurality of compressors which can be ar ⁇ ranged in a compressor unit. Depending on the output requirement of the compressor unit all or only a number of individual compressors can operate between low and/or intermediate pressure level and high pressure level at a certain time.
  • the flash gas tap ⁇ ping line may comprise a flash gas valve for blocking the flow of flash gas to the compressor.
  • the refrigeration circuit may further comprise a suction line con ⁇ nected to the compressor and a suction gas valve within the suction line.
  • a conventional compressor operating between two pressure levels can be used alternatively for compressing flash gas and for compressing suction gas, respectively.
  • the compressor can be used as a conventional compressor for compressing the suction gas in the refrigeration circuit.
  • the compressor can be switched to the flash gas compression mode only if too much flash gas is pres ⁇ ent in the receiver.
  • the refrigeration circuit is operating in the supercritical condition, i.e. at a pressure above the critical pressure of the refrigerant, or in "normal" condition, i.e. at a pressure below the critical pressure of the refriger- 105 ant.
  • the generation of flash gas in the receiver is high in typical summer op ⁇ erational conditions with ambient temperatures of about 2O 0 C and low in winter operational conditions with temperatures of about O 0 C.
  • the flash gas valve and the suction gas valve allow for switching over between summer and winter mode. Such switching over can be performed manually or by means of a con- no trol, for example based on ambient temperature, etc.
  • the refrigeration circuit further comprises a flash gas branch line branching off from the flash gas tapping line, comprising a flash gas discharge valve and connecting to the suc-
  • the flash gas discharge valve can be pressure-regulated so as to al ⁇ low flowing of the flash gas directly to the suction line if the receiver pressure exceeds a predetermined threshold value.
  • a compressor and/or flash gas valve will be controlled so as to supply flash gas to the compressor at a threshold value which is below the threshold value of the flash gas discharge
  • the present invention further relates to a refrigeration apparatus comprising a refrigeration circuit in accordance with an embodiment of the present invention.
  • the refrigeration apparatus can be a refrigeration system for a supermarket, etc. for providing refrigeration to display cabinets, etc.
  • a refrigeration circuit 2 for circulating a refrigerant which consists of one or a plurality of components, and particularly CO2, in a prede ⁇ termined flow direction.
  • the refrigeration circuit can be used, for example, for supermarket or industrial refrigeration. In flow direction the refrigeration circuit
  • a heat- rejecting heat exchanger 4 which in the case of a super ⁇ critical fluid like CO 2 is a gascooler 4.
  • an in ⁇ termediate throttle valve 6 serves for reducing the high pressure as present in the gascooler 4 in use to a lower intermediate pressure.
  • a receiver 8 collects and stores the refrigerant for uo subsequent delivery to one or a plurality of evaporator throttle valves 10 of one or a plurality of refrigeration consumer(s).
  • any other expansion device known to the skilled person can be used.
  • flash gas gaseous refrigerant which is called "flash gas"
  • receiver 8 gaseous refrigerant which is called "flash gas"
  • flash gas gaseous refrigerant
  • the evaporator throttle valve 10 with the refrigeration consumer(s) 12 connects to an evaporator 14.
  • the liquid refrigerant is expanded and changes into a gaseous condition while it provides cooling.
  • the gaseous refrigerant then circulates through the suction line 16 to a compressor unit 18 comprising a plurality of compressors 20 and 22.
  • the compressor unit 160 18 is connected via high pressure line 24 to the gascooler 4, thus closing the main circuit.
  • the compressed refrigerant in high pressure line 24 is of relatively high pressure and high temperature.
  • 165 refrigeration circuit can be up to 120 bar and is typically approximately between 40 and 100 bar and preferably above 85 bar in the summer mode and between 40 and 70 bar and preferably approximately 45 bar in winter mode.
  • the inter ⁇ mediate pressure level is typically independent from summer and winter mode and between approximately 30 and 40 bar and preferably 36 bar. Also the
  • 170 pressure in the suction line is typically independent from the summer and the winter mode and typically between 25 and 30 bar and preferably 28 bar.
  • a flash gas tapping line 26 is connected to the receiver 8 and the input of com ⁇ pressor 20. Flash gas tapped from the receiver 8 is compressed by compressor
  • a control 28 can be provided for controlling compressor 20 based on the amount of flash gas as present in the receiver 8 or as generated at the intermediate throttle valve 6.
  • a pressure sensor 30 can be present in the receiver 8 with a sensor line 32 connecting the pressure sensor 30 with the control 28.
  • a signal line 34 is
  • a flash gas valve or stop valve 36 is provided in the flash gas tapping line 26 185 and a suction gas valve or stop valve 38 is provided in the suction line section 40 leading to the compressor 20.
  • the stop valve 36, 38 can be of any type of for example magnetic stop valves.
  • the stop valves 36, 38 are connected to control 28 and control 28 can cause closing of the flash gas valve 36 if there is only a relatively small amount of flash gas in receiver 8 or for winter mode operation.
  • 190 By alternatively switching the stop valves 36 and 38 it is possible to connect ei ⁇ ther the flash gas tapping line 26 or the suction line section 40 to the compres ⁇ sor 20, thus allowing for switching over between winter mode and summer mode.
  • the flash gas tapping line 26 is in heat exchange relationship with the pressure line 24 by means of an heat ex ⁇ changer 42.
  • the heat exchanger 42 superheats the flash gas in line 26 before delivery to compressor 20 in order to avoid delivery of liquified flash gas to compressor 20.
  • a flash gas branch line 44 branches off from the flash gas tap-
  • the flash gas branch line 44 com ⁇ prises a flash gas discharge valve 46, for example a pressure-regulated valve allowing for discharge of the flash gas to the suction line 16 if too much flash gas is generated for the compressor 20 to handle, or if the compressor 20 is not available for compressing flash gas.
  • a flash gas discharge valve 46 for example a pressure-regulated valve allowing for discharge of the flash gas to the suction line 16 if too much flash gas is generated for the compressor 20 to handle, or if the compressor 20 is not available for compressing flash gas.
  • a backup cooling circuit 48 comprising a backup heat— rejecting heat exchanger 50, a throttle valve 52, an evaporator/heat exchanger 54 and a compressor 56 is provided for cooling refrigerant in the receiver 8 in a backup mode, for example if the compressor unit 18 is shut down for maintenance reasons, etc. It is pre- 210 ferred to use the same refrigerant in the backup circuit 48 and in the refrigera ⁇ tion circuit 2. It is particularly preferred to use CO 2 as refrigerant in the backup circuit 48.
  • a self-cooling for the refrigerant is provided by means of the self- refrigeration circuit 58 comprising a self- refrigeration heat ex ⁇ changer 60, for example a plate heat exchanger, and a self- refrigeration branch line 62 leading to a throttle valve 64, through the self- refrigeration heat exchanger 60 and then through line 66 to suction line 16.
  • a self- refrigeration heat ex ⁇ changer 60 for example a plate heat exchanger
  • a self- refrigeration branch line 62 leading to a throttle valve 64

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

Cette invention a pour objet un circuit réfrigérant (2) permettant la circulation d’un fluide frigorigène dans une direction de flux prédéterminée, comprenant, pour la direction de flux, un échangeur de chaleur rejetant la chaleur (4), une soupape d’admission intermédiaire (6), un réservoir (8), une soupape d’évaporation (10), un évaporateur (14), un compresseur (20), et une ligne de drainage de vapeur instantanée (26) reliée au réservoir (8), au sein duquel la ligne de drainage de vapeur instantanée (26) est également reliée au compresseur (20).
PCT/EP2005/001724 2004-08-09 2005-02-18 Vidange de vapeur instantanée du réservoir d’un circuit refrigérant WO2006015629A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP05715407.2A EP1782001B1 (fr) 2004-08-09 2005-02-18 Vidange de vapeur instantanée du réservoir d'un circuit refrigérant
PCT/EP2005/001724 WO2006015629A1 (fr) 2004-08-09 2005-02-18 Vidange de vapeur instantanée du réservoir d’un circuit refrigérant
DK05715407.2T DK1782001T3 (en) 2004-08-09 2005-02-18 FLASH GAS REMOVAL FROM A RECEIVER IN A COOLING CIRCUIT
US11/659,923 US20080196420A1 (en) 2004-08-09 2005-02-18 Flashgas Removal From a Receiver in a Refrigeration Circuit
NO20071229A NO343330B1 (no) 2004-08-09 2007-03-06 Avdampingsgassfjerning fra en mottaker i en kjølekrets

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004038640.4 2004-08-09
DE102004038640A DE102004038640A1 (de) 2004-08-09 2004-08-09 Kältekreislauf und Verfahen zum Betreiben eines Kältekreislaufes
PCT/EP2005/001724 WO2006015629A1 (fr) 2004-08-09 2005-02-18 Vidange de vapeur instantanée du réservoir d’un circuit refrigérant

Publications (1)

Publication Number Publication Date
WO2006015629A1 true WO2006015629A1 (fr) 2006-02-16

Family

ID=37174737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/001724 WO2006015629A1 (fr) 2004-08-09 2005-02-18 Vidange de vapeur instantanée du réservoir d’un circuit refrigérant

Country Status (3)

Country Link
US (1) US20080196420A1 (fr)
DK (1) DK1782001T3 (fr)
WO (1) WO2006015629A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010003590A3 (fr) * 2008-07-07 2010-07-29 Carrier Corporation Circuit de réfrigération
EP1914491A3 (fr) * 2006-10-17 2011-01-05 Bitzer Kühlmaschinenbau GmbH Installation de refroidissement
EP3023712A1 (fr) * 2014-11-19 2016-05-25 Danfoss A/S Procédé pour commander un système de compression de vapeur avec un récepteur
US11149971B2 (en) 2018-02-23 2021-10-19 Emerson Climate Technologies, Inc. Climate-control system with thermal storage device
EP2992275B1 (fr) * 2013-05-02 2021-12-01 Emerson Climate Technologies, Inc. Système avec un premier compresseur et avec un deuxieme compresseur
US11346583B2 (en) 2018-06-27 2022-05-31 Emerson Climate Technologies, Inc. Climate-control system having vapor-injection compressors
US11585608B2 (en) 2018-02-05 2023-02-21 Emerson Climate Technologies, Inc. Climate-control system having thermal storage tank
US11920842B2 (en) 2018-09-25 2024-03-05 Danfoss A/S Method for controlling a vapour compression system based on estimated flow
US11959676B2 (en) 2018-09-25 2024-04-16 Danfoss A/S Method for controlling a vapour compression system at a reduced suction pressure

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5595025B2 (ja) * 2009-12-10 2014-09-24 三菱重工業株式会社 空気調和機および空気調和機の冷媒量検出方法
CA2872619C (fr) * 2012-05-11 2019-03-19 Hill Phoenix, Inc. Systeme de refrigeration au co2 pourvu d'un module de conditionnement d'air integre
BR112015027590B1 (pt) * 2013-05-03 2022-05-31 Hill Phoenix, Inc Sistema e método para o controle da pressão de um sistema de refrigeração de co2
US11125483B2 (en) 2016-06-21 2021-09-21 Hill Phoenix, Inc. Refrigeration system with condenser temperature differential setpoint control
US10767909B2 (en) * 2017-08-02 2020-09-08 Heatcraft Refrigeration Products Llc Thermal storage of carbon dioxide system for power outage
US11118817B2 (en) * 2018-04-03 2021-09-14 Heatcraft Refrigeration Products Llc Cooling system
US11796227B2 (en) 2018-05-24 2023-10-24 Hill Phoenix, Inc. Refrigeration system with oil control system
US11397032B2 (en) 2018-06-05 2022-07-26 Hill Phoenix, Inc. CO2 refrigeration system with magnetic refrigeration system cooling
US10663201B2 (en) 2018-10-23 2020-05-26 Hill Phoenix, Inc. CO2 refrigeration system with supercritical subcooling control

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US933682A (en) 1908-07-03 1909-09-07 Gardner Tufts Voorhees Multiple-effect receiver.
US1860447A (en) * 1928-07-21 1932-05-31 York Ice Machinery Corp Refrigeration
US4014182A (en) * 1974-10-11 1977-03-29 Granryd Eric G U Method of improving refrigerating capacity and coefficient of performance in a refrigerating system, and a refrigerating system for carrying out said method
US4748831A (en) * 1985-05-09 1988-06-07 Svenska Rotor Maskiner Ab Refrigeration plant and rotary positive displacement machine
EP0306405A1 (fr) * 1987-09-04 1989-03-08 Bernard Zimmern Procédé et appareil de refroidissement d'un moteur d'une machine frigorifique par du liquide et du gaz d'économiseur
US5079929A (en) * 1979-07-31 1992-01-14 Alsenz Richard H Multi-stage refrigeration apparatus and method
EP0541343A1 (fr) * 1991-11-04 1993-05-12 General Electric Company Systèmes de réfrigération
EP0564123A1 (fr) * 1992-04-02 1993-10-06 Carrier Corporation Système de réfrigération
JPH06109334A (ja) * 1992-09-22 1994-04-19 Hoshizaki Electric Co Ltd 冷凍サイクル
WO1995021359A1 (fr) * 1994-02-03 1995-08-10 Svenska Rotor Maskiner Ab Systeme de refrigeration et procede de regulation de la capacite de refrigeration de ce dernier
US5497635A (en) * 1990-04-06 1996-03-12 Alsenz; Richard H. Refrigeration system utilizing an enthalpy expansion jet compressor
FR2738331A1 (fr) * 1995-09-01 1997-03-07 Profroid Ind Sa Dispositif d'optimisation energetique d'un ensemble de refrigeration a compression et a detente directe
JPH10132401A (ja) * 1996-11-01 1998-05-22 Matsushita Electric Ind Co Ltd 多段冷媒圧縮機の制御装置
JPH11223396A (ja) * 1998-02-09 1999-08-17 Sanyo Electric Co Ltd 多段圧縮冷凍装置
EP0976991A2 (fr) * 1998-07-31 2000-02-02 Zexel Corporation Cycle frigorifique
EP1207359A2 (fr) * 2000-11-15 2002-05-22 Carrier Corporation Régulation de la haute pression d'un cycle de compression à vapeur surcritique
JP2004053133A (ja) * 2002-07-19 2004-02-19 Hoshizaki Electric Co Ltd 冷凍装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2977773A (en) * 1960-02-12 1961-04-04 Gen Electric Heat pump including charge modulating means
US3396550A (en) * 1966-11-01 1968-08-13 Lennox Ind Inc Arrangement for reducing compressor discharge gas temperature
US4947655A (en) * 1984-01-11 1990-08-14 Copeland Corporation Refrigeration system
SE461346B (sv) * 1988-06-17 1990-02-05 Svenska Rotor Maskiner Ab Roterande kompressor av foertraengningstyp samt en kylanlaeggning daer en kompressor av ovannaemnda typ ingaar
US5056329A (en) * 1990-06-25 1991-10-15 Battelle Memorial Institute Heat pump systems
US5692389A (en) * 1996-06-28 1997-12-02 Carrier Corporation Flash tank economizer
US5752390A (en) * 1996-10-25 1998-05-19 Hyde; Robert Improvements in vapor-compression refrigeration
IT1311828B1 (it) * 1999-04-19 2002-03-19 Luciano Zanon Impianto frigorifero avente ciclo frigorifero a consumo ottimizzato
TWI301188B (en) * 2002-08-30 2008-09-21 Sanyo Electric Co Refrigeant cycling device and compressor using the same
US7096679B2 (en) * 2003-12-23 2006-08-29 Tecumseh Products Company Transcritical vapor compression system and method of operating including refrigerant storage tank and non-variable expansion device
US7644593B2 (en) * 2004-08-09 2010-01-12 Carrier Corporation CO2 refrigeration circuit with sub-cooling of the liquid refrigerant against the receiver flash gas and method for operating the same
US7228708B2 (en) * 2004-10-28 2007-06-12 Carrier Corporation Multi-temp system with tandem compressors and reheat function

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US933682A (en) 1908-07-03 1909-09-07 Gardner Tufts Voorhees Multiple-effect receiver.
US1860447A (en) * 1928-07-21 1932-05-31 York Ice Machinery Corp Refrigeration
US4014182A (en) * 1974-10-11 1977-03-29 Granryd Eric G U Method of improving refrigerating capacity and coefficient of performance in a refrigerating system, and a refrigerating system for carrying out said method
US5079929A (en) * 1979-07-31 1992-01-14 Alsenz Richard H Multi-stage refrigeration apparatus and method
US4748831A (en) * 1985-05-09 1988-06-07 Svenska Rotor Maskiner Ab Refrigeration plant and rotary positive displacement machine
EP0306405A1 (fr) * 1987-09-04 1989-03-08 Bernard Zimmern Procédé et appareil de refroidissement d'un moteur d'une machine frigorifique par du liquide et du gaz d'économiseur
US5497635A (en) * 1990-04-06 1996-03-12 Alsenz; Richard H. Refrigeration system utilizing an enthalpy expansion jet compressor
EP0541343A1 (fr) * 1991-11-04 1993-05-12 General Electric Company Systèmes de réfrigération
EP0564123A1 (fr) * 1992-04-02 1993-10-06 Carrier Corporation Système de réfrigération
JPH06109334A (ja) * 1992-09-22 1994-04-19 Hoshizaki Electric Co Ltd 冷凍サイクル
WO1995021359A1 (fr) * 1994-02-03 1995-08-10 Svenska Rotor Maskiner Ab Systeme de refrigeration et procede de regulation de la capacite de refrigeration de ce dernier
FR2738331A1 (fr) * 1995-09-01 1997-03-07 Profroid Ind Sa Dispositif d'optimisation energetique d'un ensemble de refrigeration a compression et a detente directe
JPH10132401A (ja) * 1996-11-01 1998-05-22 Matsushita Electric Ind Co Ltd 多段冷媒圧縮機の制御装置
JPH11223396A (ja) * 1998-02-09 1999-08-17 Sanyo Electric Co Ltd 多段圧縮冷凍装置
EP0976991A2 (fr) * 1998-07-31 2000-02-02 Zexel Corporation Cycle frigorifique
EP1207359A2 (fr) * 2000-11-15 2002-05-22 Carrier Corporation Régulation de la haute pression d'un cycle de compression à vapeur surcritique
JP2004053133A (ja) * 2002-07-19 2004-02-19 Hoshizaki Electric Co Ltd 冷凍装置

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"Zweistufige Drosselung", 1933, JULIUS SPRINGER VERLAG, article "Kälteprozesse dargestellt mit Hilfe der Entropietafel", pages: 39
GOOSMANN J C ET AL: "RECENT IMPROVEMENTS IN CO2 EQUIPMENT", REFRIGERATING ENGINEERING, AMERICAN SOCIETY OF REFRIGERATING ENGINEERS, NEW YORK, NY, US, vol. 16, no. 1, July 1928 (1928-07-01), pages 1 - 10, XP008022716, ISSN: 0096-0470 *
HUFF H-J ET AL: "OPTIONS FOR A TWO-STAGE TRANSCRIPTIONAL CARBON DIOXIDE CYCLE", IIR GUSTAV LORENTZEN CONFERENCE ON NATURAL WORKING FLUIDS. JOINT CONFERENCE OF THE INTERNATIONAL INSTITUTE OF REFRIGERATION SECTION B AND E, 17 September 2002 (2002-09-17), pages 158 - 164, XP001176579 *
OSTERTAG P: "KAELTEPROZESSE DARGESTELLT MIT HILFE DER ENTROPIETAFEL, PASSAGE", KAELTEPROZESSE. DARGESTELLT MIT HILFE DER ENTROPIETAFEL, 1933, pages I - IV,1, XP001169097 *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 393 (M - 1643) 22 July 1994 (1994-07-22) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 10 31 August 1998 (1998-08-31) *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 13 30 November 1999 (1999-11-30) *
PATENT ABSTRACTS OF JAPAN vol. 2003, no. 12 5 December 2003 (2003-12-05) *
SCHNEIDER E: "SCHIFFSKAELTEMASCHINEN UND SCHIFFSKAELTETRANSPORTE", ZEITSCHRIFT FUER DIE GESAMTE KAELTE-INDUSTRIE, VDI VERLAG, BERLIN, DE, vol. 46, no. 1, 1939, pages 2 - 7, XP001169146, ISSN: 0372-879X *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1914491A3 (fr) * 2006-10-17 2011-01-05 Bitzer Kühlmaschinenbau GmbH Installation de refroidissement
US8056356B2 (en) 2006-10-17 2011-11-15 Bitzer Kuehlmaschinenbau Gmbh Refrigerating plant
WO2010003590A3 (fr) * 2008-07-07 2010-07-29 Carrier Corporation Circuit de réfrigération
EP2992275B1 (fr) * 2013-05-02 2021-12-01 Emerson Climate Technologies, Inc. Système avec un premier compresseur et avec un deuxieme compresseur
EP3023712A1 (fr) * 2014-11-19 2016-05-25 Danfoss A/S Procédé pour commander un système de compression de vapeur avec un récepteur
WO2016078824A1 (fr) * 2014-11-19 2016-05-26 Danfoss A/S Procédé d'exploitation d'un système de compression de vapeur avec un récepteur
US10941964B2 (en) 2014-11-19 2021-03-09 Danfoss A/S Method for operating a vapour compression system with a receiver
US11585608B2 (en) 2018-02-05 2023-02-21 Emerson Climate Technologies, Inc. Climate-control system having thermal storage tank
US11149971B2 (en) 2018-02-23 2021-10-19 Emerson Climate Technologies, Inc. Climate-control system with thermal storage device
US11346583B2 (en) 2018-06-27 2022-05-31 Emerson Climate Technologies, Inc. Climate-control system having vapor-injection compressors
US11920842B2 (en) 2018-09-25 2024-03-05 Danfoss A/S Method for controlling a vapour compression system based on estimated flow
US11959676B2 (en) 2018-09-25 2024-04-16 Danfoss A/S Method for controlling a vapour compression system at a reduced suction pressure

Also Published As

Publication number Publication date
US20080196420A1 (en) 2008-08-21
DK1782001T3 (en) 2017-03-13

Similar Documents

Publication Publication Date Title
EP1782001A1 (fr) Vidange de vapeur instantanée du réservoir d'un circuit refrigérant
WO2006015629A1 (fr) Vidange de vapeur instantanée du réservoir d’un circuit refrigérant
US8186171B2 (en) Method for controlling high-pressure in an intermittently supercritically operating refrigeration circuit
US6829903B2 (en) Air conditioner and method for operating air conditioner in cooling mode
JP4167196B2 (ja) 自然循環併用式空気調和機及び自然循環併用式空気調和機の制御方法
JP2007139225A (ja) 冷凍装置
AU2005327828A1 (en) Control of a refrigeration circuit with an internal heat exchanger
US8171747B2 (en) Refrigeration device
JP5523296B2 (ja) 空気調和装置
JP5764734B2 (ja) 冷凍装置
JP4476946B2 (ja) 冷凍装置
US20040103676A1 (en) Method for controlling cooling/heating of heat pump system
US20180328639A1 (en) Refrigeration cycle apparatus
JP2019035579A (ja) 冷凍装置
US20220128275A1 (en) Refrigeration apparatus
JP5764735B2 (ja) 冷凍装置
JP2017172923A (ja) 冷凍装置
JP5764736B2 (ja) 冷凍装置
JP2021081114A (ja) 冷凍装置用の中間ユニットおよび冷凍装置
JPWO2016135904A1 (ja) 冷凍装置
EP3978828B1 (fr) Dispositif à cycle frigorifique
JP2001280729A (ja) 冷凍装置
JP6835185B1 (ja) 熱源ユニット及び冷凍装置
KR101513305B1 (ko) 냉난방 겸용 인젝션 타입 공기조화기 및 그 공기조화기의 인젝션 모드 절환방법
JP2001336852A (ja) 空気調和機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2005715407

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005715407

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007107807

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005715407

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11659923

Country of ref document: US