WO2006010834A1 - Lentivirus non integratif et non replicatif, preparation et utilisations - Google Patents

Lentivirus non integratif et non replicatif, preparation et utilisations Download PDF

Info

Publication number
WO2006010834A1
WO2006010834A1 PCT/FR2005/001604 FR2005001604W WO2006010834A1 WO 2006010834 A1 WO2006010834 A1 WO 2006010834A1 FR 2005001604 W FR2005001604 W FR 2005001604W WO 2006010834 A1 WO2006010834 A1 WO 2006010834A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
lentivirus
cells
promoter
lentiviral
Prior art date
Application number
PCT/FR2005/001604
Other languages
English (en)
Inventor
Jacques Mallet
Che Serguera
Stéphanie PHILIPPE
Original Assignee
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique filed Critical Centre National De La Recherche Scientifique
Priority to EP05779704A priority Critical patent/EP1761635B1/fr
Priority to AU2005266221A priority patent/AU2005266221B2/en
Priority to AT05779704T priority patent/ATE524554T1/de
Priority to CA2579753A priority patent/CA2579753C/fr
Priority to JP2007517365A priority patent/JP4861314B2/ja
Priority to US11/628,534 priority patent/US8119119B2/en
Publication of WO2006010834A1 publication Critical patent/WO2006010834A1/fr
Priority to IL179740A priority patent/IL179740A0/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/21Retroviridae, e.g. equine infectious anemia virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16041Use of virus, viral particle or viral elements as a vector
    • C12N2740/16043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16041Use of virus, viral particle or viral elements as a vector
    • C12N2740/16045Special targeting system for viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16061Methods of inactivation or attenuation
    • C12N2740/16062Methods of inactivation or attenuation by genetic engineering
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16111Human Immunodeficiency Virus, HIV concerning HIV env
    • C12N2740/16122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/50Vectors comprising as targeting moiety peptide derived from defined protein
    • C12N2810/60Vectors comprising as targeting moiety peptide derived from defined protein from viruses
    • C12N2810/6072Vectors comprising as targeting moiety peptide derived from defined protein from viruses negative strand RNA viruses
    • C12N2810/6081Vectors comprising as targeting moiety peptide derived from defined protein from viruses negative strand RNA viruses rhabdoviridae, e.g. VSV

Definitions

  • the present invention describes a nonintegrative and non-replicative recombinant lentivirus as well as its uses, in particular for the preparation of a composition intended for gene transfer in vitro, ex vivo or in vivo.
  • the invention is useful for the transfer of genes in any mammalian organism, for example in the tissues or cells of the liver, muscle, pancreas and of the central nervous system (including the ocular sphere), and in particular for the treatment of disorders and pathologies such as disorders of the central nervous system, including the ocular sphere.
  • Gene transfer into the nervous system has multiple applications, particularly in the experimental (e.g., research) and therapeutic domains.
  • this transfer can enable the realization of studies of labeling, toxicity, quality, the construction of pathological models, the restoration of deficits, the expression of therapeutic products (e.g., proteins, RNAs, etc.), etc.
  • retroviral vectors derived from oncoretroviruses allow the integration of a transgene into the genome of target cells, but these vectors are only capable of transducing dividing cells. This restriction limits their use to ex vivo gene transfer or to organs whose cells are mitotically active.
  • lentiviral vectors Compared to other commonly developed viral vectors, lentiviral vectors have several practical advantages, including high-grade production facility and increased knowledge of their biology. These vectors are widely used for gene transfer as part of experimental gene therapy protocols. They can effectively transduce many cell types, including quiescent cells of the central nervous system. Lentiviruses are indeed complex retroviruses capable of integrating into the genome of non-mitotically active cells. Examples of such lentiviruses are the HIV-1, HIV-2, SIV, IVF, BIV, VISNA, CAEV and EIAV viruses.
  • retroviruses and in particular lentiviruses, resides in particular in the fact that they present a potential risk of insertional mutagenesis since they integrate into the chromatin of the transduced cells and apparently preferential, in the coding sequences. This disadvantage has so far limited the exploitation of this type of vector for gene transfer in vivo.
  • Non-integrative and non-replicative lentiviral vectors In order to reduce the risk of insertional mutagenesis, which at present constitutes the major obstacle to the use of these vectors in clinical practice, the inventors have developed a non-integrative and non-replicative lentiviral vector.
  • the non-integrative character of this new generation of lentiviral vectors therefore represents a considerable advance in terms of biosecurity, in particular for gene therapy.
  • This vector can be used, for example, for the stable expression of a transgene or other nucleic acids in non-dividing cells or for the transient expression of a gene in dividing cells refractory to other cells. methods of transfection or even transduction by other vectors.
  • Non-integrative vectors are known in the prior art, the most common of which are adenoviral vectors and herpes vectors.
  • the AAV vectors although they integrate only with a relatively low frequency (about 10%), are limited by the size of the transgene that can be cloned there as well as by the mutations they also cause at their insertion site.
  • the present invention thus provides a solution to the problems of the prior art and provides new tools and vectors for the transfer of genes into the nervous system.
  • the invention lies more particularly in the development of a non-replicative and non-integrative recombinant lentivirus.
  • the lentiviruses of the invention generally comprise a mutated integrase and a particular recombinant genome. More preferably, the lentiviruses according to the invention comprise (i) a recombinant genome comprising, between the 5 'and 3' lentiviral LTR sequences, a psi sequence of lentiviral encapsidation, a nuclear export element of RNA, a transgene and, optionally, a promoter and / or a sequence promoting the nuclear import of RNA, as well as (ii) a mutated integrase preventing the integration of said genome into the genome of a host cell.
  • the recombinant genome comprises, for example, the 5'LTR-psi-RRE-cPPT CTS-transgene-LTR3 'sequence.
  • compositions comprising a lentivirus according to the invention and a pharmaceutically acceptable excipient.
  • the invention also relates to methods and compositions for the in vitro, ex vivo and in vivo transfer of target genes into particular cell populations, and also to the treatment of disorders, for example, disorders of the central nervous system, including the system. ocular.
  • Another subject of the invention relates to the use of a non-integrative and non-replicative lentivirus as defined above for the preparation of a composition intended for gene transfer in a mammalian cell (preferably human) preferably in a central nervous system (including ocular sphere) cell of a subject in vitro, ex vivo or in vivo.
  • a mammalian cell preferably human
  • a central nervous system including ocular sphere
  • the invention also relates to any method for producing a non-replicative and non-integrative lentivirus as defined above, comprising in particular the introduction of a vector plasmid comprising, in cells, a recombinant genome as defined above , in the presence of the appropriate transcomplementation functions, and in particular of a pol lentiviral region encoding a modified integrase as defined above.
  • the method can be carried out by transient transfection of different transcomplementation and envelope plasmids, or in the presence of helper virus, and / or in cell lines expressing one or more of the complementation proteins.
  • the invention also relates to a cell line stably expressing a lentiviral integrase, preferably comprising a mutation inducing a loss of integration function of said integrase.
  • the mutation within the meaning of the invention, may correspond to point mutations and / or to microdeletions of some bases of the integrase. It preferably corresponds to one or more point mutations affecting a basic region, the C-terminal region (for example a basic region of the C-terminal region) and / or the catalytic Ntegrase site, said mutated integrase being devoid of integrative function. .
  • a particular object of the invention thus relates to a method for preparing a non-replicative and non-integrative recombinant lentivirus comprising transfection of a cell using a nonintegrative and non-replicative lentiviral vector system comprising: a) a transcomplementation plasmid, devoid of psi encapsidation signal and comprising a lentiviral gag sequence and a mutated pol lentiviral sequence encoding a non-functional integrase for integration, said plasmid being optionally deleted accessory genes such as vif, nef, vpu and / or vpr, b) an envelope plasmid having a promoter-env-sequence
  • a lentiviral vector plasmid comprising a recombinant genome comprising, between the 5 'and 3' lentiviral LTR sequences, a psi sequence of lentiviral encapsidation, a nuclear export element of RNA, a transgene and optionally a a promoter and / or a sequence promoting the nuclear import of RNA, as well as a mutated integrase preventing the integration of said genome into the genome of a host cell, said vector being devoid of any coding sequence of the lentivirus, and the recovery of lentivirus products.
  • the present invention describes non-integrative and non-replicative recombinant lentiviruses for the transfer of genes into any mammalian cell, particularly into human cells. It can be dividing cells or quiescent cells, cells belonging to central organs or to peripheral organs, such as the liver, pancreas, muscle, heart, etc.
  • a particular object of the The invention relates to the transfer of genes into the nervous system (ocular system included) and in particular into neurons, astrocytic-type glial cells and retinal cells, as well as into cancerous tumors.
  • These lentiviral vectors are useful for transfer and expression in vivo of nucleic acid sequences in particular within the nervous system.
  • lentiviruses Like other retroviruses, lentiviruses have gag, pol and env genes flanked by two LTR (Long Terminal Repeat) sequences. Each of these genes encodes many proteins that are initially expressed as a single precursor polypeptide.
  • the gag gene codes for internal structural proteins (capsids and nucleocapsid).
  • the pol gene codes for reverse transcriptase, integrase and protease.
  • the env gene encodes the viral envelope glycoprotein.
  • the genome of the lentiviruses also contains an element RRE (Rev Responsive Element) acting in cis responsible for the export out of the nucleus of the viral genomic RNA which will be encapsidated.
  • RRE Rev Responsive Element
  • the 5 'and 3' LTR sequences serve to promote the transcription and polyadenylation of viral RNAs.
  • the LTR contains all the other cis-acting sequences needed for viral replication. Sequences necessary for reverse transcription of the genome (tRNA primer binding site) and encapsidation of viral RNA in particles (site ⁇ ) are adjacent to the 5 'LTR. If the sequences necessary for encapsidation (or packaging of retroviral RNA in infectious virions) are absent from the viral genome, the genomic RNA will not be actively encapsidated.
  • the lentiviral genome further includes accessory genes such as vif, vpr, vpu, nave, TAT, REV, etc.
  • lentiviral vectors for gene transfer applications has been described, for example, in US Pat. No. 5,665,577, EP 386,882, US 5,981,276, US Pat. No. 6,013,516, and in patent applications WO99 / 58701. and WO02 / 097104.
  • These vectors comprise a defective lentiviral genome, that is to say in which at least one of the gag, pol and env genes has been inactivated or deleted.
  • the lentiviral vector according to the invention is a non-replicative and non-integrative recombinant lentivirus, that is to say that it is incapable of autonomous replication and specific integration in the transduced cells.
  • the invention relates to a non-replicative and non-integrative recombinant lentivirus comprising a recombinant genome comprising, between the 5 'and 3' lentiviral LTR sequences, a psi lentiviral encapsidation sequence, and a nuclear export element of the lentiviral RNA, a transgene and optionally a promoter and / or a sequence promoting the nuclear import of RNA, as well as a mutated integrase preventing the integration of said genome into the genome of a host cell.
  • the lentivirus according to the invention may for example comprise the 5'LTR-psi-RRE-cPPT CTS-transgene-LTR3 'sequence.
  • a particular object of the invention relates to a lentivirus whose genome is advantageously devoid of any lentiviral coding sequence.
  • lentiviruses of the invention comprise a modified integrase.
  • the present invention demonstrates, for the first time, that it is possible to produce recombinant non-replicating lentiviruses under conditions that are effective for the expression of a transgene, and whose integration properties are impaired.
  • the presence of a modified integrase results from the use, to produce the viruses of the invention, of a modified pol sequence so as to produce a non-functional integrase for integration, but without substantial effect on the previous steps of the invention. vector cycle during cell transduction (so-called class 1 mutation).
  • a class 1 mutation preferably consists of one or more point mutations, preferably affecting the nucleic acid portion encoding a basic region, the C-terminal region (preferably a basic region of the C region). -terminal) and / or the catalytic site of integrase.
  • the point mutation is preferably translated by the addition of one amino acid to another at the level of the coded sequence of the integrase.
  • the mutation is preferably non-conservative in that it renders the integrase non-functional for integration.
  • Such a mutation is preferentially chosen from mutants producing a non-functional integrase for integration, while retaining the other functions of the integrase, eg, those participating in the progression of the vector towards the nucleus.
  • Examples of mutations affecting HIV-1 and making it possible to obtain a non-functional integrase for integration are the following: H12N, H12C, H16C, H16V, S81R, D41A, K42A, H51A, Q53C, D55V, D64E, D64V, E69A, K71A, E85A, E87A, D116N, D116I, D116A, N120G, N120I, N120E, E152G, E152A, D-35-E, K156E, K156A, E157A, K159E, K159A, K160A, R166A, D167A, E170A, H171A, K173A, K186Q, K186T (C base region L), K188T, E198A, R199C, R199T, R199A, D202A, K211A, Q214L (214 and 216 belong to the Q region of the C base basic region), Q216L, Q221L, W235F, W
  • the mutations affecting the catalytic site preferably concern, with respect to HIV-1, the amino acids 64, 116 and / or 152 of the integrase.
  • the mutations affecting the C-terminal portion of this lentivirus are advantageously chosen from the substitution of the RRH motif 262 by AAH, a substitution in the Q region (Q214L and / or Q216L), in the L (K186) region and / or in the L-region.
  • a preferred mutation is the substitution of the motif RRK 262 by AAH.
  • the lentiviruses of the invention typically comprise a recombinant genome of the 5'LTR-psi-RRE-cPPT CTS- (promoter-) transgene-LTR3 'sequence.
  • the transgene is typically placed under the control of a promoter.
  • One and / or the other can also be placed upstream of the cPPT CTS element.
  • the recombinant genome thus includes cis-acting viral sequences useful for encapsidation and transduction.
  • it retains only certain lentiviral sequences, in particular those necessary for encapsidation of the genome (psi sequence of lentiviral origin); a nuclear export element of RNA.
  • REV REV sequence for "REV Responsive Element
  • REV REV sequence for "REV Responsive Element”
  • a genome of lentivirus in particular an HIV, and for example HIV-1 (the RRE sequence, present on viral RNA 1 , interacts with a regulatory element REV), the CTE ("Constitutive Transport Element") of the Mason Pfizer Monkey virus, a SIV, HIV-2 or IVF nuclear export system, or an element equivalent of any other retrovirus (eg the SIV, HIV2 or IVF nuclear export system); a sequence promoting the nuclear import of RNA, for example the flap sequence [cPPT-CTS region (central polypurine tract-central sequence termination); cf.
  • cPPT-CTS region central polypurine tract-central sequence termination
  • the recombinant genome is preferably deleted from all the lentiviral coding sequences, in particular viral genes coding for the gag, pol and env sequences and accessory genes vif, vpr, vpu and nef.
  • the transcomplementing plasmid preferably retains the tat and rev genes.
  • the vector plasmid may advantageously comprise a LTR3 'deleted from the U3 enhancer sequence (WO99 / 31251) to improve the expression of the transgene and the safety of the vector.
  • Another target may possibly be mutated in addition to the integrase mutations: the att sequences which are located at the ends of the linear genome DNA. If these sequences are mutated, the integration of the genome with integrase is no longer done correctly and there can no longer be integration.
  • the genome which is in the form of a linear DNA can be circularized.
  • the vectors and plasmids of the invention may be prepared from lentiviruses belonging to different species, in particular HIV-1, HIV-2, SIV, IVF, BIV, VISNA, CAEV and EIAV.
  • Particularly preferred serotypes are HIV, in particular HIV-1, FIV, EIAV and SIV.
  • the transgene sequence may be placed under the control of a selected promoter and / or enhancer, as well as all the transcriptional, post-transcriptional and post-translational regulatory elements necessary for the proper expression of said transgene.
  • the term "transgene” generally refers to any nucleic acid encoding or not. It may be a non-coding sequence such as, for example, an enzyme recognition sequence (specific integration site, site having a particular affinity for a protein, etc.). It is preferably a sequence encoding a given polypeptide or active RNA as such. It may be in particular a cDNA, a gDNA, a synthetic DNA, an RNA, for example an interfering RNA, a ribozyme, etc., or a combination thereof. Typically, the transgene is a DNA comprising a sequence encoding the desired expression product. The transgene may further include one or more transcription termination regions, typically a polyadenylation signal.
  • the transgene may be chosen from a catalytic nucleic acid (interfering, antisense, ribozyme), a suicide nucleic acid (eg, encoding a toxin) or a nucleic acid encoding a biologically active peptide, for example a growth factor, a trophic factor, an anti-angiogenic factor, a hormone, a cytokine, an antibody, a receptor, a differentiation factor, a colony stimulating factor, an anti-cancer agent, an enzyme, a neurotransmitter or its precursor, etc.
  • a catalytic nucleic acid interfering, antisense, ribozyme
  • a suicide nucleic acid eg, encoding a toxin
  • a nucleic acid encoding a biologically active peptide for example a growth factor, a trophic factor, an anti-angiogenic factor, a hormone, a cytokine, an antibody, a receptor, a differentiation factor,
  • the transgene codes, for example, for the following trophic factors: CNTF, NGF, NT3, NT4, FGF, PDGF, GDNF, etc., or for anti-angiogenic factors or for enzymes restores metabolic activity that is deficient or has a particular metabolic function, for example: TH, AADC, GTPC, ⁇ -glucuronidase, etc.
  • the transgene codes, for example, for interfering RNAs (RNAi) for specifically inhibiting the expression of mutated proteins involved in a dominant genetic disease or in an induced disease. by a gain in function, for example a neurodegenerative disease such as mutated SOD (amyotrophic lateral sclerosis), APP proteins, tau, presenilin, or BACE (Alzheimer's disease), ⁇ -synuclein (Parkinson's disease) or Huntingtin (Huntington's disease).
  • RNAi interfering RNAs
  • the transgene is typically placed under control of a transcriptional promoter, which may be homologous to the transgene or heterologous, for example a cellular, viral, synthetic, chimeric, etc. promoter.
  • the promoter used may be constitutive or regulated, weak or strong, tissue specific or ubiquitous, dependent on RNA polymerase 2 or 3, etc.
  • a viral promoter such as CMV, RSV LTR, TK, etc. is used. or preferably a cell promoter such as PGK, Rho, EF1 ⁇ , etc.
  • Tissue specific promoters may be employed. It may be for example promoters ENO, GFAP, NSE, a promoter of I 1 RNA polymerase III such as the promoter U6 or H1, possibly modified, etc.
  • the promoter used to direct the expression of the transgene may be, for example, a viral promoter chosen from the promoter of the CMV gene, TK or RSV LTR.
  • the promoter present in the envelope plasmid and / or the promoter present in the vector plasmid are identical or different and cellular or viral.
  • the lentiviral vectors according to the invention can be prepared in various ways, by transient transfection (s), in stable lines and / or by means of helper viruses.
  • the method according to the invention provides, according to a particularly preferred mode, the combination of a minimum of three plasmids (see FIG. 1) to produce a recombinant virion or a recombinant lentivirus: a) a transcomplementation plasmid, devoid of a signal of encapsidation psi and comprising a lentiviral gag sequence and a mutated pol lentiviral sequence encoding a non-functional integrase for integration, said plasmid being optionally deleted from the accessory genes vif, nef, vpu and / or vpr, b) an envelope plasmid comprising a Promoter-env-PoIyA sequence, and c) a lentiviral vector plasmid comprising a recombinant genome, optionally deleted from the LTR3 'or LTR3' enhancer U3 enhancer region, comprising, between the 5 'and 3 LTR sequences
  • the three plasmids used do not comprise a homologous sequence sufficient to allow recombination.
  • the nucleic acids encoding gag, pol and env may be advantageously cDNAs prepared according to conventional techniques, from sequences of the viral genes available in the prior art and on databases, as illustrated in the examples.
  • the trans-complementation plasmid provides a nucleic acid encoding the lentiviral proteins gag and pol. These proteins are derived from a lentivirus and, preferably, are derived from HIV-1.
  • the plasmid lacks an encapsidation sequence, an envelope coding sequence, accessory genes, and advantageously also lacks lentiviral LTRs.
  • the sequences coding for gag and pol proteins are advantageously placed under the control of a heterologous promoter, for example cellular, viral, etc., which may be constitutive or regulated, weak or strong. It is preferably a transcomplementing plasmid comprising a CMV- ⁇ psi-gag-pol-PolyA sequence.
  • the transcomplementation plasmid allows the expression of all the proteins necessary for the formation of empty virions, except the envelope glycoproteins.
  • the transcomplementation plasmid may advantageously comprise the TAT and REV genes.
  • the transcomplementation plasmid may also further comprise a transcriptional regulatory element selected from WPRE, APP 5'UTR, TAU 3'UTR, and a chromatin insulator sequence such as MAR (Matrix Attachment Region). , SAR (Scaffold Attachment Region), its and its' (Special Chromatin Structure), etc. It is advantageously devoid of accessory genes vif, vpr, vpu and / or nave.
  • the gag and pol genes can also be carried by different, possibly separate plasmids.
  • several transcomplementation plasmids are used, each encoding one or more of said proteins.
  • the mutation in the pol sequence of the transcomplementation plasmid consists of one or more microdeletions of a few bases, preferably one or more point mutations affecting a basic region, the C-terminal region (for example a basic region of the C-terminal region). ), and / or the catalytic region of the sequence of the encoded integrase, as defined above.
  • the envelope plasmid provides a nucleic acid that allows the production of the selected envelope glycoprotein (env). It lacks psi encapsidation signal, gag or pol coding sequences and is also devoid of lentiviral LTRs. It has a Promoter-env-PolyA sequence.
  • Pseudotyped HIV-1 vectors comprising a different envelope of the wild-type envelope, originating for example from another virus, or, of cellular origin, and thus having a modified tropism
  • VSV glycoprotein d Vesicular Stomatitis Virus
  • This envelope has advantageous characteristics such as resistance to ultracentrifugation and a very wide tropism.
  • the VSV glycoprotein is not labile after ultracentrifugation. This makes it possible to concentrate the viral supernatants and to obtain high infectious titres.
  • This envelope also confers virions a very broad tropism including in vitro, allowing the infection of many cell types.
  • the receptor of this envelope would be a phosphatidylserine motif, present on the surface of many cells of different species.
  • the envelope glycoprotein (env) of vesicular stomatitis virus (VSV-G) is advantageously used in the context of the invention, but any other pseudotype can be used in order to target certain cell populations as well as possible.
  • the envelope protein can thus be selected from any envelope glycoprotein of any enveloped virus, for example from rhabdovirus envelope protein, more preferably lyssavirus, even more preferably a rabies virus serogroup virus: Rabies (RAB), Duvenhague (DUV), European bat type 1 (EB-1), European bat type 2 (EB-2), Kotonkan (KOT), Lagos beats (LB), Obodhiang (OBD), Rochambeau (RBU), a coat protein of a Mokola virus serogroup virus (MOK) and any chimeric composition of these envelopes.
  • Rabies and Mokola viruses are particularly preferred. They have indeed a tropism in the very specific animal of the nervous system (cf WO 02/097104). This type of envelope also allows cell targeting
  • the invention uses lentiviral vectors, for example of HIV-1 type, pseudotyped with an envelope of rabies virus or Mokola.
  • a vector plasmid of the invention comprises a recombinant nucleic acid comprising between the 5 'and 3' LTRs, the elements psi, RRE (or an equivalent element of another retrovirus), the transgene and optionally a promoter and / or the sequence flap, cPPT CTS. It may comprise, for example, the 5'LTR-psi-RRE-cPPT CTS- (promoter-) transgene-LTR3 'sequence.
  • the sequence of the transgene is optionally placed, within the vector plasmid, under the control of the promoter and / or an enhancer, as well as all the transcriptional, post-transcriptional and post-translational regulatory elements necessary for the good expression of this gene.
  • This plasmid comprises the viral sequences acting in cis and necessary for the smooth running of the transduction. It retains from the original virus only certain sequences necessary for the encapsidation of the genome (psi sequence of lentiviral origin), possibly the flap sequence (cPPT-CTS region) which allows an efficient nuclear import of the reverse-transcribed vector genome and a 5 'LTR includes allowing the transcription of I-1 RNA vector to be packaged.
  • This vector may also be optionally deleted from the enhancer sequence U3 of the 3 'LTR (WO 99/31251). It is also deleted from all viral genes of origin, in particular viral genes coding for the gag, pol and env sequences and accessory genes (vivid, nef, vpr and / or vpu), to improve the safety of the vector.
  • the att sequences which are located at the ends of the linear genome are further advantageously mutated, possibly deleted to hinder the handling of the genome by the integrase.
  • the promoters used in the transcomplementation plasmid, the envelope plasmid and in the vector plasmid for respectively promoting the expression of gag and pol, the envelope protein, the genome vector mRNA and the transgene are promoters. identical or different chosen advantageously from ubiquitous or specific promoters, for example from the CMV, TK, RSV LTR viral promoters and an RNA polymerase III promoter, such as the U6 or H1 promoter.
  • the lentiviruses according to the invention are genetically modified so that certain constituent genes of the native infectious virus are deleted and replaced by a nucleic acid sequence of interest to be introduced into the target cells. After fusion of the virus with the cell membrane, it injects its nucleic acid into the cell. The genetic material thus transferred is then transcribed and possibly translated into proteins within the host cell.
  • a preferred vector system comprises: a) a transcomplementation plasmid, devoid of a psi encapsidation signal and comprising a lentiviral gag sequence and a mutated polynucleotide sequence encoding an integrase having a substitution of the RR2 motif 262 by AAH (in a basic region of the C-terminal region of the coded sequence of integrase), which is not functional for integration, said plasmid being devoid of the accessory genes such as vif, nef, vpu and / or vpr, b) an envelope plasmid as defined above, preferably comprising a viral promoter and encoding a VSV-G envelope, more preferably a CMV-VSV-G-PoIyA sequence, and c) a lentiviral vector plasmid, optionally deleted from the LTR3 'or LTR3' enhancer U3 enhancer region, comprising, between the
  • the plasmids described above can be introduced into competent cells and the viruses manufactured are harvested.
  • the cells used may be any competent cell, in particular eukaryotic cells, in particular mammalian, for example animal or human cells. They can be somatic or embryonic, stem or differentiated. For example, 293 cells, fibroblast cells, hepatocytes, muscle cells (skeletal, cardiac, smooth, blood vessel, etc.), neurons (neurons, glia, astrocytes), epithelial, renal, and ocular cells may be mentioned. etc. It can also be plant cells, yeasts or prokaryotic cells. They may also be cells transformed with SV40 T antigen.
  • the invention therefore lies in a method for preparing a recombinant nonintegrative and non-replicative lentivirus, comprising transfection of a population of competent cells with a combination of plasmids as described above, and recovery of the vectors produced.
  • the invention thus relates to a particularly advantageous method for producing non-integrative and non-replicative lentiviruses enabling expression in vivo of a transgene, comprising transfection of competent cells using a nonintegrative and non-replicative lentiviral vector system, as described above, comprising: a) at least one transcomplementation plasmid, devoid of signal encapsidation method psi and comprising a gag sequence and / or a pol sequence having a class 1 mutation, allowing, for example, the substitution of the 2 6 2RRK motif by AAH in a basic region and / or in the C-terminal region of the sequence coded integrase, said plasmid being devoid of accessory genes such as vif, nef, vpu and / or vpr, b) an envelope plasmid comprising a promoter sequence (for example CMV) -wrapped (for example VSV-G) -PoIyA,
  • the lentiviruses of the invention may also be prepared from encapsidation cell lines producing one or more integrase-modified gag, env and / or pol proteins as indicated above.
  • the method of the invention comprises the transfection of only two plasmids (the vector plasmid and the transcomplementation plasmid) in a cell line expressing the chosen env protein.
  • the cells used for the preparation of such a line are, for example, the competent cells mentioned above.
  • the line used also expresses the env protein, the gag protein and / or pol lentiviral protein, the latter comprising a class 1 mutation.
  • the method simply comprises transfection of the vector plasmid.
  • the lentivirus products are preferably derived from HIV-1, HIV-2, SIV, IVF 1 BIV, VISNA, CAEV or EIAV.
  • the DT40 line established from a hen lymphoma known to be highly recombinogenic and the Cos 7 line (monkey kidney cells immortalized with an SV40 antigen). It may also be HCT116, DLD1 (human lines established from cells derived from colorectal carcinoma), LF1 (human embryonic lung fibroblasts), LL1 (human embryonic skin fibroblasts), TK6 (human lymphoblastic line) ), HaCaT (human keratinocytes), U937 (human monocytes), HCT15, SW480, Colo320, Co115, EB, HbMOO, Rat-1, PC12 (rat photochromocytoma), etc.
  • HCT116 human lines established from cells derived from colorectal carcinoma
  • LF1 human embryonic lung fibroblasts
  • LL1 human embryonic skin fibroblasts
  • TK6 human lymphoblastic line
  • HaCaT human keratinocytes
  • U937 human monocytes
  • the plasmids can be introduced into the cells by any technique known to those skilled in the art, adapted to the cell type in question.
  • the cells and the vector system are contacted in a suitable device (plate, box, tube, bag, etc.) for a period of time sufficient to allow the transfer of the vector system or plasmid into the cells.
  • the vector system or plasmid is introduced into the cells by calcium phosphate precipitation, by electroporation or by using one or more transfection facilitating compounds, such as lipids, polymers, liposomes and peptides, etc. Calcium phosphate precipitation is preferred.
  • the cells are cultured in any suitable medium, such as RPMI, DMEM, a specific medium allowing culture in the absence of fetal calf serum, etc.
  • a particular subject of the invention also relates to a cell line stably expressing a lentiviral integrase comprising one or more point mutations affecting a basic region, its C-terminal region (for example, a basic region of the C-terminal region). and / or its catalytic site, said integrase being devoid of integrative function, as well as the use of such a cell line for the in vitro preparation of nonintegrative and non-replicative recombinant lentiviruses.
  • An object of the invention thus relates to the cells obtained by the implementation of the method and the use of a cell, line or cell population according to the invention for the preparation of a cellular composition intended for the implementation of a method of therapeutic, vaccinal or surgical treatment in humans or animals.
  • kits for implementing methods for modifying the genome of cells in vitro or ex vivo comprising a vector as described above.
  • viruses and lines according to the invention can be used for example for the expression of a transgene or other nucleic acids preferentially in cells which do not divide or for the transient expression of a gene in cells refractory division to other transfection method or even transduction by other vectors.
  • the present application shows that the lentiviral vectors thus obtained are capable of transducing different cell types such as, for example, retinal cells, astrocytes, other glial cells or neurons.
  • Other nerve cell subpopulations that may be targeted by vectors of the invention are for example microglial cells, endothelial cells or oligodendrocytes.
  • the vectors of the invention may for example be pseudotyped with the Mokola envelope to allow selective transfer to the cells of the pigment epithelium.
  • This nonintegrative and non-replicative lentiviral vector is intended to improve the safety and efficiency of gene transfer: by the mutation of integrase, the vector no longer integrates into the genome of the target cell, eliminating the risk of insertional mutagenesis. Moreover, the possible insertion of the flap sequence (cPPT-CTS) into the vector can substantially improve the nuclear import of the DNA genome, allowing a strong expression of the transgene, stable in post-mitotic cells and transient in the cells multiplying.
  • cPPT-CTS flap sequence
  • non-integrative lentiviral vectors of the invention are of several types and include:
  • gene therapy Le., gene transfer in any mammalian cell, particularly in human cells. It can be dividing cells or quiescent cells, cells belonging to central organs or peripheral organs, such as liver, pancreas, muscle, heart, etc. It is preferably a transfer of genes into quiescent cells (which do not divide), in particular in cells of the central nervous system, in particular the brain, the marrow and the ocular sphere, for example in the framework of the treatment of neurodegenerative pathologies or the attacks of the retina, and of a gene transfer in dividing cells for a transient expression (ex: anti-tumor suicide strategy, axonal regrowth strategy to treat the traumas of the spinal cord).
  • Gene therapy can allow the expression of proteins, for example neurotrophic factors, enzymes, transcription factors, receptors, etc. It also makes it possible to implement an "oligonucleotide” strategy (antisense or interfering RNA, ribozymes, etc.).
  • cell therapy ie, the expression of differentiation factors in progenitor cells to direct the cell to a chosen fate before transplantation or the ex vivo transduction of cells to express a factor of interest, followed by the transplant said cells.
  • a particular object of the invention relates to the use of a non-integrative and non-replicative lentivirus according to the invention for the preparation of a composition intended for the transfer of genes for example in the central nervous system (including the ocular sphere) of a subject in vitro, ex vivo or in vivo.
  • Another particular object of the invention relates to the use of such a lentivirus for the preparation of a composition intended for the treatment of a disease affecting a central or peripheral organ, for example a disease of the nervous system (including of the ocular sphere).
  • the non-integrative and non-replicative lentiviruses according to the invention may be used for the manufacture of a pharmaceutical composition intended to treat, for example, a neurodegenerative disease and in particular Alzheimer's disease, Parkinson's disease. , Huntington's disease, ALS or ADS, age-related macular degeneration (AMD), eye degeneration, or central nervous system trauma (stroke, epilepsy, spinal cord injury or trauma, etc.).
  • a neurodegenerative disease and in particular Alzheimer's disease, Parkinson's disease.
  • Huntington's disease ALS or ADS
  • AMD age-related macular degeneration
  • eye degeneration eye degeneration
  • central nervous system trauma stroke, epilepsy, spinal cord injury or trauma, etc.
  • diseases affecting the central nervous system diseases affecting the central nervous system (mucopolysaccharidoses, etc.), glioblastomas or astrocytomas, metabolic diseases affecting the nervous system (mucopolysaccharidoses, Charcot-Marie, etc.) or diseases affecting the ocular sphere (AMD, retinitis pigmentosa , glaucoma, etc.).
  • the non-integrative and non-replicative recombinant lentiviruses are used for the manufacture of a pharmaceutical composition for treating retinitis pigmentosa.
  • retinitis pigmentosa is a term used to denote a heterogeneous group of ocular disorders characterized by progressive degeneration of rods and cones (nerve cells of the retina) by apoptosis. With an incidence of 1 in 3,000 individuals, it is the leading cause of blindness. The transduction of the cells of the pigment epithelium and the photoreceptors is of crucial interest in this type of pathology.
  • a gene replacement strategy requires the transduction of photoreceptors or pigment epithelium, whereas a neuroprotection strategy may benefit from transduction of the pigment epithelium. Indeed, this route has the advantage of not modifying the nerve cells but only the pigment epithelium which will then synthesize a diffusible trophic factor, such as GDNF, and secrete it in the photoreceptor environment to be protected.
  • GDNF diffusible trophic factor
  • Another object of the invention resides in the combined use of several lentiviruses, for the purpose of transferring and expressing several nucleic acids in the cells of the nervous system.
  • the combined use may include sequential administrations of the different viruses, or simultaneous administration.
  • the invention can allow the transport and expression of multiple nucleic acids in nerve cells, such as for example catalytic nucleic acids (interfering, antisense, ribozymes, etc.), nucleic acids encoding factors growth factors, trophic factors, cytokines, colony stimulating factors, anti-cancer agents, toxins, enzymes, neurotransmitters or their precursors, etc.
  • the pharmaceutical composition containing the lentivirus according to the invention can be administered to a patient intracerebrally or systemically taking into account the particular tropism of pseudotyped lentiviral vectors using a suitable envelope glycoprotein.
  • it may be intracerebral administration, for example intra-striatal, in the hypocampus or the black substance, intravenously, intra-arterially, intravenously, in the subretinal space, etc.
  • Preferred modes of injection are intracerebral injection and injection into the subretinal space.
  • composition is advantageously administered in a proportion of 10 2 to 10 10 , typically from 10 3 to 10 8 particles effective for transduction (as determined by transduction of cells by serial dilutions of the vector stock) or, in genome equivalent, on the order of 10 5 to 10 13 copies [titre determined by reverse transcription-PCR (polymerase chain reaction) quantitative on the vector RNA genome or by quantitative PCR on the DNA strand associated with the vector RNA genome].
  • Lentiviruses can be packaged in any suitable solution, such as saline, isotonic, buffered, optionally combined with stabilizing agents such as isogenic albumin or any other stabilizing protein, glycerol, etc., as well as adjuvants such as polybrene or DEAE dextran, etc.
  • Figure 1 System for producing lentiviral vectors by transfection of three plasmids: a vector plasmid carrying the GFP transgene under the control of the human cytomegalovirus (hCMV) promoter as well as the central flap sequence [central polypurine tract-central sequence termination (cPPT- CTS)] involved in the nuclear import, the RRE (REV Responsive Element) sequence that interacts with a REV regulatory element and the encapsidation sequence psi ( ⁇ ), the U3 region of the 3 'LTR has been deleted from the promoter sequence ( ⁇ U3); a transcomplementation plasmid expressing the proteins necessary for the early phases of the replicative cycle of HIV-1 (GAG and POL), regulatory elements (TAT, REV) under control of the CMV promoter and deleted sequence ⁇ ; an envelope plasmid expressing the vesicular stomatitis virus envelope glycoprotein (VSV-G) under the control of the CMV promoter.
  • GFP obtained after transduction of cell lines (293T and HeLa) by a nonintegrative lentiviral vector.
  • the percentage of transduction is determined by FACS 72h after incubation of the cells in the presence of different doses (volume in microliter per well) of a integrative lentiviral vector INWT CMV GFP and non-integrative IN N CMV GFP.
  • Figure 4 Expression of GFP over time after transduction of cell lines (293T and MT4) with lentiviral vectors integrative INWT CMV GFP or nonintegrative IN N CMV GFP.
  • the percentage of GFP + cells was determined by FACS (A: 293T, B: MT4) 3 days, 6 days, 9 days and 12 or 15 days after transduction (MOI 5).
  • FACS A: 293T, B: MT4 3 days, 6 days, 9 days and 12 or 15 days after transduction (MOI 5).
  • MOI 5 For the points scored "goal”: the cells were treated with sodium butyrate 5mM 24h before the analysis.
  • A Immunocytochemical analysis of expression in control (non transduced) neurons transduced by the integrative vector (IN WT ) OR transduced by the non-integrative vector (IN N ) 3, 9 and 16 days after transduction (x20 magnification).
  • Figure 7 Expression of GFP in vivo after injection into the striatum of mice.
  • the brain was removed 10 days after stereotaxic injection of the INN CMV GFP vector into the mouse striatum, cut with cryostat in 20 ⁇ m thick section and analyzed after immunohistofluorescence. confocal microscope.
  • B GFP / NeuN Comarking: a neuron expressing GFP (x16 magnification).
  • A Expression of GFP in vivo in the rat after sub-retinal injection of 66ng p24 of nonintegrative lentiviral vector INN CMV GFP. Fluorescence microscopy (x2.5) on retinas mounted flat 2 weeks after injection.
  • B Expression of GFP in vivo in the dog after sub-retinal injection of 2.5 ⁇ g p24 non-integrative lentiviral vector INN CMV GFP. Fluorescent light angiography on dog vigil 1 month after injection.
  • the integrase (fused to haemagglutinin) mutated or non-mutated sequences in the transcomplementation plasmid used for the production of the lentiviral vectors (plasmid p8.91 INWT and p8.91 INN) were used.
  • HIV-1 derived vector stocks expressing green fluorescent protein (GFP) under control of the early human cytomegalovirus viral promoter (hCMV) and carrying normal integrase (INWT CMV GFP vector) or mutated (INN CMV GFP) were then been produced.
  • a study on the efficacy of CMG GFP INN vectors for directing the expression of the GFP transgene in nerve cells was finally performed first in vitro and then in vivo.
  • Inhibition of RT thus makes it possible to reduce the percentage of GFP + cells, either after transduction by the integrative vector INWT CMV GFP or by the INN CMV GFP vector. Most of the GFP + cells observed in the absence of the reverse transcriptase inhibitor are therefore efficiently transduced by both types of vectors and do not result from a pseudotransduction mechanism.
  • the percentage of GFP-expressing cells, 293T or MT4 is relatively stable when they are transduced with the INWT CMV GFP integrative control vector, this percentage decreasing slightly at the last evaluated points in 293T cells ( Figure 4). ).
  • the treatment of sodium butyrate cells at the end of the experiment makes it possible to reduce the percentage of 293T GFP + cells to the level initially measured, which suggests a reactivation of the promoter governing the expression of the transgene and shows the stability in the integrated vector time in the cell population analyzed.
  • the expression in cells transduced by the mutant integrase-bearing vector shows a profile close to that observed after transduction with an adenoviral vector. Indeed, the percentage of GFP + cells decreases over time ( Figure 4) and can not be reduced to the initial level by treatment of sodium butyrate cells. This result suggests that, as in the case of transduction by an adenoviral vector, the genome of the INN CMV GFP vectors is removed from the initially transduced cells by successive dilution at each cell division.
  • Transgene expression persists for up to 25 days after transduction (Figure 5C), so episomal forms are relatively stable in the nucleus of the transduced cells and allow expression of the transgene for at least 25 days in quiescent cells. supports the hypothesis of a decrease in GFP expression over time in dividing cells by diluting genomes episomal vectors at each mitosis, rather than by degradation.
  • the INN CMV GFP vector was injected into the mouse striatum. Ten days after this injection, the expression of GFP could be evidence. This expression lasts for a period of at least one month following the injection. This result demonstrates the effectiveness of non-integrative vectors in allowing and maintaining the expression of a transgene in CNS cells ( Figure 6).
  • GFP / GFAP glial fibrillary acidic protein, astrocyte marker
  • GFP / NeuN neuroon marker
  • GDNF Glial-derived neurotrophic factor
  • retinitis pigmentosa refers to a heterogeneous group of ocular disorders characterized by progressive degeneration, apoptosis, rods and cones (nerve cells of the retina). With an incidence of one in 3000, this is the leading cause of blindness.
  • the transduction of the cells of the pigment epithelium and the photoreceptors is of crucial interest in this type of pathology.
  • a gene replacement strategy requires the transduction of photoreceptors or pigment epithelium, whereas a neuroprotection strategy may benefit from transduction of the pigment epithelium.
  • this pathway has the advantage of not modifying the nerve cells but only the pigment epithelium which will then synthesize a diffusible neurotrophic factor, such as GDNF, and secrete it in the photoreceptor environment to be protected.
  • GDNF diffusible neurotrophic factor
  • results indicated above show the efficacy and the therapeutic potential of the non-integrative lentiviral vectors according to the invention capable of allowing the expression of a transgene in vitro, ex vivo and in vivo in the central nervous system (brain and retina ), in rodents as well as in large animals.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Neurology (AREA)
  • Zoology (AREA)
  • Neurosurgery (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • Mycology (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Plant Pathology (AREA)
  • Psychology (AREA)

Abstract

La présente invention décrit un lentivirus recombinant non intégratif et non réplicatif ainsi que ses utilisations, notamment pour la préparation d’une composition destinée au transfert de gènes in vitro, ex vivo ou in vivo. L’invention est utilisable pour le transfert de gènes dans tout organisme mammifère, par exemple dans les tissus ou cellules du foie, muscle, pancréas et du système nerveux central (y compris de la sphère oculaire), et notamment pour le traitement de désordres et pathologies tels que par exemple des désordres du système nerveux central, y compris de la sphère oculaire.

Description

LENTIVIRUS NON INTEGRATIF ET NON REPLICATIF, PREPARATION ET
UTILISATIONS.
La présente invention décrit un lentivirus recombinant non intégratif et non réplicatif ainsi que ses utilisations, notamment pour la préparation d'une composition destinée au transfert de gènes in vitro, ex vivo ou in vivo. L'invention est utilisable pour le transfert de gènes dans tout organisme mammifère, par exemple dans les tissus ou cellules du foie, muscle, pancréas et du système nerveux central (y compris de la sphère oculaire), et notamment pour le traitement de désordres et pathologies tels que par exemple des désordres du système nerveux central, y compris de la sphère oculaire.
Le transfert de gènes dans le système nerveux présente de multiples applications, notamment dans les domaines expérimentaux (e.g., recherche) et thérapeutiques. Ainsi, ce transfert peut permettre la réalisation d'études de marquage, de toxicité, de qualité, la construction de modèles pathologiques, la restauration de déficits, l'expression de produits (e.g., protéines, ARNs, etc.) thérapeutiques, etc.
Différentes approches ont été envisagées dans l'art antérieur pour ce transfert, telles que l'emploi de vecteurs viraux (rétrovirus, AAV, adénovirus, etc.), l'injection de plasmides, la greffe de cellules, l'implantation de cellules encapsulées, etc. Chacune de ces approches présente des avantages et des inconvénients, en terme d'efficacité, de sécurité, d'utilisation industrielle, de sélectivité, de stabilité, etc. Ainsi, l'utilisation de vecteurs viraux est avantageuse en terme d'efficacité de transfert, liée aux propriétés naturelles d'infection des virus.
Dans ce contexte, de nombreux vecteurs rétroviraux dérivés d'oncorétrovirus permettent l'intégration d'un transgène dans le génome de cellules cibles, mais ces vecteurs sont uniquement capables de transduire des cellules en division. Cette restriction limite leur utilisation au transfert de gène ex vivo ou aux organes dont les cellules sont mitotiquement actives.
Afin de contourner cet obstacle, il a été envisagé d'utiliser des vecteurs dérivés de lentivirus. Par rapport aux autres vecteurs viraux couramment développés, les vecteurs lentiviraux présentent plusieurs avantages pratiques, dont la facilité de production à haut titre et une connaissance accrue de leur biologie. Ces vecteurs sont largement utilisés pour le transfert de gènes dans le cadre de protocoles de thérapie génique expérimentale. Ils permettent de transduire efficacement de nombreux types cellulaires, notamment les cellules quiescentes du système nerveux central. Les lentivirus sont en effet des rétrovirus complexes capables de s'intégrer dans le génome de cellules non mitotiquement actives. Des exemples de tels lentivirus sont les virus HIV-1 , HIV-2, SIV, FIV, BIV, VISNA, CAEV et EIAV. Toutefois, un inconvénient lié à l'utilisation des rétrovirus, et notamment des lentivirus, réside en particulier dans le fait qu'ils présentent un risque potentiel de mutagenèse insertionnelle puisqu'ils s'intègrent dans la chromatine des cellules transduites et, de manière apparemment préférentielle, dans les séquences codantes. Cet inconvénient a jusqu'à présent limité l'exploitation de ce type de vecteur pour le transfert de gènes in vivo.
Dans le but de réduire le risque de mutagenèse insertionnelle, qui constitue à l'heure actuelle l'obstacle majeur à l'utilisation de ces vecteurs en clinique, les inventeurs ont développé un vecteur lentiviral non intégratif et non réplicatif. Le caractère non intégratif de cette nouvelle génération de vecteurs lentiviraux représente donc une avancée considérable en terme de biosécurité, en particulier pour la thérapie génique. Ce vecteur peut être utilisé par exemple pour l'expression stable d'un transgène ou d'autres acides nucléiques dans des cellules qui ne se divisent pas ou pour l'expression transitoire d'un gène dans des cellules en division réfractaires à d'autres méthodes de transfection ou même de transduction par d'autres vecteurs. Des vecteurs non intégratifs sont connus dans l'art antérieur, dont les plus communs sont les vecteurs adénoviraux et les vecteurs herpétiques. Cependant, pour ces types de vecteurs, il n'existe pas à l'heure actuelle de méthode de production permettant d'obtenir des lots exempts de tout contaminant réplicatif. Parmi les vecteurs intégratifs, les vecteurs AAV, bien qu'ils ne s'intègrent qu'avec une fréquence relativement faible (environ 10%), sont limités par la taille du transgène qui peut y être clone ainsi que par les mutations qu'ils provoquent également au niveau de leur site d'insertion.
La présente invention apporte donc une solution aux problèmes de l'art antérieur et fournit de nouveaux outils et vecteurs pour le transfert de gènes dans le système nerveux.
L'invention réside plus particulièrement dans la mise au point d'un lentivirus recombinant non réplicatif et non intégratif.
Les lentivirus de l'invention comprennent, de manière générale, une intégrase mutée et un génome recombinant particulier. Plus préférentiellement, les lentivirus selon l'invention comprennent (i) un génome recombinant comprenant, entre les séquences LTR 5' et 3' lentivirales, une séquence psi d'encapsidation lentivirale, un élément d'export nucléaire de TARN, un transgène et, éventuellement, un promoteur et/ou une séquence favorisant l'import nucléaire de l'ARN, ainsi que (ii) une intégrase mutée empêchant l'intégration dudit génome dans le génome d'une cellule hôte. Dans un mode particulier de réalisation de l'invention, le génome recombinant comprend par exemple la séquence 5'LTR-psi-RRE-cPPT CTS-transgène-LTR3'.
Un autre objet de l'invention concerne toute composition pharmaceutique (y compris vaccinale) comprenant un lentivirus selon l'invention et un excipient acceptable sur le plan pharmaceutique. L'invention concerne également des méthodes et compositions destinées au transfert in vitro, ex vivo et in vivo de gènes cibles dans des populations de cellules particulières, et également au traitement de désordres par exemple, de désordres du système nerveux central, y compris du système oculaire.
Un autre objet de l'invention se rapporte à l'utilisation d'un lentivirus non intégratif et non réplicatif tel que défini ci-dessus pour la préparation d'une composition destinée au transfert de gènes dans une cellule de mammifère (humain de préférence), de préférence dans une cellule du système nerveux central (y compris de la sphère oculaire) d'un sujet in vitro, ex vivo ou in vivo.
L'invention a aussi pour objet tout procédé de production d'un lentivirus non réplicatif et non intégratif tel que défini ci-dessus, comprenant notamment l'introduction d'un plasmide vecteur comprenant, dans des cellules, un génome recombinant tel que défini précédemment, en présence des fonctions de transcomplémentation appropriées, et notamment d'une région pol lentivirale codant une intégrase modifiée telle que définie ci-dessus. Le procédé peut être mis en œuvre par transfection transitoire de différents plasmides de transcomplémentation et d'enveloppe, ou en présence de virus auxiliaire, et/ou dans des lignées cellulaires exprimant une ou plusieurs des protéines de complémentation.
L'invention concerne également une lignée de cellules exprimant de manière stable une intégrase de préférence lentivirale comprenant une mutation induisant une perte de la fonction d'intégration de ladite intégrase. La mutation, au sens de l'invention, peut correspondre à des mutations ponctuelles et/ou à des microdélétions de quelques bases de l'intégrase. Elle correspond de préférence à une ou plusieurs mutations ponctuelles affectant une région basique, la région C-terminale (par exemple une région basique de la région C- terminale) et/ou le site catalytique de Nntégrase, ladite intégrase mutée étant dénuée de fonction intégrative. Un objet particulier de l'invention concerne ainsi un procédé de préparation d'un lentivirus recombinant non réplicatif et non intégratif comprenant la transfection d'une cellule à l'aide d'un système vectoriel lentiviral non intégratif et non réplicatif comprenant : a) un plasmide de transcomplémentation, dépourvu de signal d'encapsidation psi et comprenant une séquence gag lentivirale et une séquence pol lentivirale mutée codant une intégrase non fonctionnelle pour l'intégration, ledit plasmide étant éventuellement délété des gènes accessoires tels que vif, nef, vpu et/ou vpr, b) un plasmide d'enveloppe comportant une séquence Promoteur-env-
PoIyA, et c) un plasmide vecteur lentiviral comportant un génome recombinant comprenant, entre les séquences LTR 5' et 3' lentivirales, une séquence psi d'encapsidation lentivirale, un élément d'export nucléaire de l'ARN, un transgène et éventuellement un promoteur et/ou une séquence favorisant l'import nucléaire de l'ARN, ainsi qu'une intégrase mutée empêchant l'intégration dudit génome dans le génome d'une cellule hôte, ledit vecteur étant dépourvu de toute séquence codante du lentivirus, et la récupération des lentivirus produits.
Description détaillée de l'invention
La présente invention décrit des lentivirus recombinants non intégratifs et non réplicatifs permettant le transfert de gènes dans toute cellule de mammifères, en particulier dans les cellules humaines. Il peut s'agir de cellules en division ou de cellules quiescentes, de cellules appartenant à des organes centraux ou à des organes périphériques, tels que le foie, le pancréas, un muscle, le cœur, etc.. Un objet particulier de l'invention concerne le transfert de gènes dans le système nerveux (système oculaire compris) et notamment dans les neurones, les cellules gliales de type astrocytaire et les cellules rétiniennes, ainsi que dans les tumeurs cancéreuses. Ces vecteurs lentiviraux sont utiles pour le transfert et l'expression in vivo de séquences d'acides nucléiques en particulier au sein du système nerveux.
Structure générale des vecteurs
Comme d'autres rétrovirus, les lentivirus possèdent des gènes gag, pol et env flanqués de deux séquences LTR (Long Terminal Repeat). Chacun de ces gènes code pour de nombreuses protéines qui sont initialement exprimées sous la forme d'un unique polypeptide précurseur. Le gène gag code pour les protéines de structure internes (capsides et nucléocapside). Le gène pol code pour la transcriptase inverse, l'intégrase et la protéase. Le gène env code pour la glycoprotéine d'enveloppe virale. Le génome des lentivirus contient en outre un élément RRE (Rev Responsive Elément) agissant en cis responsable de l'export hors du noyau de l'ARN génomique viral qui sera encapsidé. Les séquences LTR 5' et 3' servent à promouvoir la transcription et la polyadénylation des ARN viraux. Le LTR contient toutes les autres séquences agissant en cis nécessaires à la réplication virale. Des séquences nécessaires à la transcription inverse du génome (site de liaison de l'amorce de l'ARNt) et à l'encapsidation de l'ARN viral dans des particules (site Ψ) sont adjacentes au LTR 5'. Si les séquences nécessaires à l'encapsidation (ou à l'empaquetage de l'ARN rétroviral dans les virions infectieux) sont absentes du génome viral, l'ARN génomique ne sera pas activement encapsidé. Le génome lentiviral comprend en outre des gènes accessoires tels que vif, vpr, vpu, nef, TAT, REV, etc.
La construction de vecteurs lentiviraux pour des applications de transfert de gènes a été décrite par exemple dans les brevets US 5,665,577, EP 386 882, L)S 5,981 ,276, US 6, 013, 516 ou encore dans les demandes de brevet WO99/58701 et WO02/097104. Ces vecteurs comportent un génome lentiviral défectif, c'est-à-dire dans lequel l'un au moins des gènes gag, pol et env a été inactivé ou délété. Le vecteur lentiviral selon l'invention est un lentivirus recombinant non réplicatif et non intégratif, c'est-à-dire qu'il est incapable de réplication autonome et d'intégration spécifique dans les cellules transduites. Plus particulièrement, l'invention concerne un lentivirus recombinant non réplicatif et non intégratif comprenant un génome recombinant comprenant, entre les séquences LTR 5' et 3' lentivirales, une séquence psi d'encapsidation lentivirale, et un élément d'export nucléaire de l'ARN, un transgène et éventuellement un promoteur et/ou une séquence favorisant l'import nucléaire de l'ARN, ainsi qu'une intégrase mutée empêchant l'intégration dudit génome dans le génome d'une cellule hôte. Le lentivirus selon l'invention peut par exemple comprendre la séquence 5'LTR-psi-RRE-cPPT CTS-transgène-LTR3'.
Un objet particulier de l'invention concerne un lentivirus dont le génome est avantageusement dépourvu de toute séquence lentivirale codante.
Une caractéristique importante des lentivirus de l'invention réside dans le fait qu'ils comprennent une intégrase modifiée. La présente invention démontre, pour la première fois, qu'il est possible de produire, dans des conditions efficaces pour l'expression d'un transgène, des lentivirus recombinants non réplicatifs, et dont les propriétés d'intégration sont altérées. La présence d'une intégrase modifiée résulte de l'utilisation, pour produire les virus de l'invention, d'une séquence pol modifiée de manière à produire une intégrase non fonctionnelle pour l'intégration, mais sans effet substantiel sur les étapes précédentes du cycle du vecteur lors de la transduction cellulaire (mutation dite de classe 1 ). Le vecteur obtenu présente alors un phénotype épisomal dans la mesure où, avantageusement, la mutation de l'intégrase n'empêche pas la progression du génome vers le noyau, ni sa rétrotranscription sous la forme d'un génome ADN linéaire qui peut alors se circulariser (formation de cercles). Au sens de l'invention, une mutation de classe 1 consiste préférentiellement en une ou plusieurs mutations ponctuelles, affectant de préférence la portion d'acide nucléique codant une région basique, la région C-terminale (de préférence une région basique de la région C-terminale) et/ou le site catalytique de l'intégrase. La mutation ponctuelle se traduit de préférence par la susbtitution d'un acide aminé par un autre au niveau de la séquence codée de l'intégrase. La mutation est de préférence non conservative dans le sens où elle rend l'intégrase non fonctionnelle pour l'intégration. Une telle mutation est préférentiellement choisie parmi les mutants produisant une intégrase non fonctionnelle pour l'intégration, tout en conservant les autres fonctions de l'intégrase, e.g., celles participant à la progression du vecteur vers le noyau. Des exemples de mutations affectant HIV-1 et permettant l'obtention d'une intégrase non fonctionnelle pour l'intégration sont les suivants : H12N, H12C, H16C, H16V, S81 R, D41A, K42A, H51A, Q53C, D55V, D64E, D64V, E69A, K71A, E85A, E87A, D116N, D116I, D116A, N120G, N120I, N120E, E152G, E152A, D-35-E, K156E, K156A, E157A, K159E, K159A, K160A, R166A, D167A, E170A, H171A, K173A, K186Q, K186T ( région L de la région basique C terminale), K188T , E198A, R199C, R199T, R199A, D202A, K211A, Q214L (214 et 216 appartiennent à la région Q de la région basique C terminale), Q216L, Q221 L, W235F, W235E, K236S, K236A, K246A, G247W, D253A, R262A, R263A (région N de la région basique C terminale) et K264H.
Les mutations affectant le site catalytique concernent de préférence, pour ce qui concerne HIV-1 , les acides aminés 64, 116 et/ou 152 de l'intégrase. Les mutations affectant la portion C-terminale de ce lentivirus sont avantageusement choisies parmi la substitution du motif 262RRK par AAH, une substitution dans la région Q (Q214L et/ou Q216L), dans la région L (K186) et/ou dans la région L. Une mutation préférée consiste en la substitution du motif 262RRK par AAH.
Les lentivirus de l'invention comportent typiquement un génome recombinant de séquence 5'LTR-psi-RRE-cPPT CTS-(promoteur-)transgène-LTR3'. Le transgène est typiquement placé sous le contrôle d'un promoteur. L'un et/ou l'autre peuvent également être placé en amont de l'élément cPPT CTS. Le génome recombinant comporte ainsi les séquences virales agissant en cis, utiles à l'encapsidation et à la transduction. Avantageusement, il ne conserve que certaines séquences lentivirales, notamment celles nécessaires à l'encapsidation du génome (séquence psi d'origine lentivirale) ; un élément d'export nucléaire de l'ARN. Celui-ci est avantageusement choisi parmi l'élément de réponse à REV (séquence RRE pour "REV Responsive Elément") d'un génome de lentivirus, notamment d'un VIH, et par exemple du VIH-1 (la séquence RRE, présente sur I1ARN viral, interagit avec un élément de régulation REV), le CTE ("Constitutive Transport Elément") du virus Mason Pfizer Monkey, un système d'export nucléaire du SIV, du HIV-2 ou du FIV, ou un élément équivalent de tout autre rétrovirus (par exemple le système d'export nucléaire du SIV, du HIV2 ou du FIV) ; une séquence favorisant l'import nucléaire de l'ARN, par exemple la séquence flap [région cPPT-CTS (central polypurine tract- central terminaison séquence) ; cf. Chameau et al., Journal of Virology, May 1992; WO 01/27304] qui permet un import nucléaire efficace du génome vecteur reverse-transcrit ; et un LTR 5' et 3', éventuellement modifié(s), intervenant dans la transcription de I1ARN vecteur encapsidé.
Le génome recombinant est préférentiellement délété de la totalité des séquences codantes lentivirales, en particulier des gènes viraux codant pour les séquences gag, pol et env et des gènes accessoires vif, vpr, vpu et nef. Le plasmide transcomplémentant conserve de préférence les gènes tat et rev. Le plasmide vecteur peut comporter avantageusement un LTR3' délété de la séquence enhancer U3 (WO99/31251 ) pour améliorer l'expression du transgène et la sécurité du vecteur.
Une autre cible peut éventuellement être mutée en complément des mutations d'intégrase : les séquences att qui se situent aux extrémités du génome linéaire ADN. Si ces séquences sont mutées, la prise en charge du génome par l'intégrase ne se fait plus correctement et il ne peut plus y avoir intégration. Le génome qui se présente sous la forme d'un ADN linéaire peut se circulariser.
Les vecteurs et plasmides de l'invention peuvent être préparés à partir de lentivirus appartenant à différentes espèces, notamment HIV-1 , HIV-2, SIV, FIV, BIV, VISNA, CAEV et EIAV. Des sérotypes particulièrement préférés sont le HIV, notamment le HIV-1 , FIV, EIAV et SIV.
La séquence du transgène peut être placée sous contrôle d'un promoteur et/ou d'un enhancer choisi, ainsi que de tous les éléments de régulation transcriptionnelle, post transcriptionnelle et post traductionnelle nécessaires à la bonne expression dudit transgène.
Au sens de l'invention, le terme « transgène » désigne, de manière générale, tout acide nucléique codant ou non. Il peut s'agir d'une séquence non codante telle que par exemple une séquence de reconnaissance d'un enzyme (site d'intégration spécifique, site présentant une affinité particulière pour une protéine, etc.). Il s'agit de préférence d'une séquence codant un polypeptide donné ou un ARN actif en tant que tel. Il peut s'agir notamment d'un ADNc, d'un ADNg, d'un ADN synthétique, d'un ARN, par exemple un ARN interfèrent, un ribozyme, etc., ou d'une combinaison de ceux-ci. Typiquement, le transgène est un ADN comprenant une séquence codant le produit d'expression désiré. Le transgène peut comporter en outre une ou des régions de terminaison de la transcription, typiquement un signal de polyadénylation.
Le transgène peut être choisi parmi un acide nucléique catalytique (interfèrent, antisens, ribozyme), un acide nucléique suicide (e.g., codant une toxine) ou un acide nucléique codant un peptide biologiquement actif, par exemple un facteur de croissance, un facteur trophique, un facteur anti-angiogénique, une hormone, une cytokine, un anticorps, un récepteur, un facteur de différentiation, un facteur de stimulation des colonies, un agent anticancéreux, un enzyme, un neurotransmetteur ou son précurseur, etc.
Selon un mode de réalisation particulier de l'invention, le transgène code par exemple pour les facteurs trophiques suivants: CNTF, NGF, NT3, NT4, FGF, PDGF, GDNF, etc., ou pour des facteurs anti-angiogéniques ou pour des enzymes restaurant une activité métabolique déficiente ou apportant une fonction métabolique particulière, par exemple: TH, AADC, GTPC, β- glucuronidase, etc.
Selon un autre mode de réalisation particulier de l'invention, le transgène code, par exemple, pour des ARN interférents (ARNi) permettant d'inhiber de manière spécifique l'expression de protéines mutées impliquées dans une maladie génétique dominante ou dans une maladie induite par un gain de fonction, par exemple une maladie neurodégénérative telles que la SOD mutée (Sclérose Latérale Amyotrophique), les protéines APP, tau, préséniline, ou BACE (maladie d'Alzheimer), l'α-synucléine (maladie de Parkinson) ou la Huntingtine (maladie de Huntington).
Le transgène est typiquement placé sous contrôle d'un promoteur transcriptionnel, qui peut être homologue vis-à-vis du transgène ou hétérologue, par exemple un promoteur cellulaire, viral, synthétique, chimérique, etc. Le promoteur utilisé peut être constitutif ou régulé, faible ou fort, spécifique de tissu ou ubiquitaire, dépendant de l'ARN polymérase 2 ou 3, etc. On utilise typiquement un promoteur viral tel que CMV, RSV LTR, TK, etc. ou de préférence un promoteur cellulaire tel que PGK, Rho, EF1α, etc. Des promoteurs spécifiques de tissus peuvent être employés. Il peut s'agir par exemple des promoteurs ENO, GFAP, NSE, d'un promoteur de I1ARN polymérase III tel que le promoteur U6 ou H1 , éventuellement modifié, etc. Le promoteur utilisé pour diriger l'expression du transgène peut être par exemple un promoteur viral choisi parmi le promoteur du gène CMV, TK ou RSV LTR. Le promoteur présent dans le plasmide d'enveloppe et/ou le promoteur présent dans le plasmide vecteur sont identiques ou différents et cellulaires ou viraux.
Production de vecteurs lentiviraux non intégratifs et non réplicatifs
Les vecteurs lentiviraux selon l'invention peuvent être préparés de différentes manières, par transfection(s) transitoire(s), dans des lignées stables et/ou au moyen de virus helper.
Le procédé selon l'invention prévoit, selon un mode particulièrement préféré, la combinaison d'un minimum de trois plasmides (cf. figure 1 ) pour produire un virion recombinant ou un lentivirus recombinant : a) un plasmide de transcomplémentation, dépourvu de signal d'encapsidation psi et comprenant une séquence gag lentivirale et une séquence pol lentivirale mutée codant une intégrase non fonctionnelle pour l'intégration, ledit plasmide étant éventuellement délété des gènes accessoires vif, nef, vpu et/ou vpr, b) un plasmide d'enveloppe comportant une séquence Promoteur-env- PoIyA, et c) un plasmide vecteur lentiviral comportant un génome recombinant, éventuellement délété de la région promotrice du LTR3' ou de la séquence enhancer U3 du LTR3', comportant, entre les séquences LTR 5' et 3' lentivirales, une séquence psi d'encapsidation lentivirale, un élément d'export nucléaire (de préférence le RRE du HIV ou un élément équivalent de tout autre rétrovirus) de l'ARN, un transgène et éventuellement un promoteur et/ou une séquence favorisant l'import nucléaire (séquence cPPT CTS par exemple) de l'ARN, ainsi qu'une intégrase mutée empêchant l'intégration dudit génome dans le génome d'une cellule hôte, ledit vecteur étant dépourvu de toute séquence codante du lentivirus, et
la récupération des lentivirus produits. Avantageusement, les trois plasmides utilisés ne comportent pas de séquence homologue suffisante pour permettre une recombinaison. Les acides nucléiques codant gag, pol et env peuvent être avantageusement des ADNc préparés selon les techniques conventionnelles, à partir de séquences des gènes viraux disponibles dans l'art antérieur et sur bases de données, ainsi qu'illustré dans les exemples.
Le plasmide de trans-complémentation fournit un acide nucléique codant les protéines lentivirales gag et pol. Ces protéines sont dérivées d'un lentivirus et, de manière préférée, proviennent du VIH-1. Le plasmide est dépourvu de séquence d'encapsidation, de séquence codant pour une enveloppe, des gènes accessoires et, avantageusement, est également dépourvu de LTRs lentiviraux. De ce fait, les séquences codant pour des protéines gag et pol sont avantageusement placées sous contrôle d'un promoteur hétérologue, par exemple cellulaire, viral, etc., qui peut être constitutif ou régulé, faible ou fort. Il s'agit de préférence d'un plasmide transcomplémentant comportant une séquence CMV-Δpsi-gag-pol-PolyA. Ce plasmide permet l'expression de toutes les protéines nécessaires à la formation de virions vides, exceptées les glycoprotéines d'enveloppe. Le plasmide de transcomplémentation peut avantageusement comprendre les gènes TAT et REV. Le plasmide de transcomplémentation peut également comprendre en outre un élément de régulation de la transcription choisi parmi WPRE, le 5'UTR de l'APP, le 3'UTR de TAU et une séquence insulatrice de la chromatine telle que MAR (Matrix Attachment Région), SAR (Scaffold Attachement Région), ses et ses' (Spécial Chromatine Structure), etc.. Il est avantageusement dépourvu des gènes accessoires vif, vpr, vpu et/ou nef. Il est entendu que les gènes gag et pol, ainsi que les gènes TAT et REV, peuvent aussi être portés par des plasmides différents, éventuellement séparés. Dans ce cas, plusieurs plasmides de transcomplémentation sont utilisés, codant chacun pour une ou plusieurs desdites protéines. La mutation dans la séquence pol du plasmide de transcomplémentation consiste en une ou plusieurs microdélétions de quelques bases, de préférence en une ou plusieurs mutations ponctuelles affectant une région basique, la région C-terminale (par exemple une région basique de la région C-terminale), et/ou la région catalytique de la séquence de l'intégrase codée, comme défini précédemment.
Le plasmide d'enveloppe fournit un acide nucléique qui permet la production de la glycoprotéine d'enveloppe (env) choisie. Il est dépourvu de signal d'encapsidation psi, de séquences codant gag ou pol et est également dépourvu de LTRs lentiviraux. Il comporte une séquence Promoteur-env-PolyA.
Des vecteurs VIH-1 pseudotypés (comportant une enveloppe différente de l'enveloppe sauvage, provenant par exemple d'un autre virus, ou, d'origine cellulaire, et possédant ainsi un tropisme modifié) décrits dans l'art antérieur comportent la glycoprotéine d'enveloppe du Virus de la Stomatite Vésiculaire (VSV). Cette enveloppe présente des caractéristiques avantageuses telles que la résistance à l'ultracentrifugation et un très large tropisme. Contrairement à d'autres enveloppes comme celles des rétrovirus classiques (les rétrovirus amphotrope et écotrope de MLV ou la gp120 du VIH mais aussi bien d'autres) la glycoprotéine de VSV n'est pas labile après ultracentrifugation. Ceci permet de concentrer les surnageants viraux et d'obtenir de hauts titres infectieux. Cette enveloppe confère par ailleurs aux virions un très large tropisme notamment in vitro, permettant l'infection de très nombreux types cellulaires. Le récepteur de cette enveloppe serait un motif phosphatidylsérine, présent à la surface de nombreuses cellules de différentes espèces.
La glycoprotéine d'enveloppe (env) du virus de la stomatite vésiculaire (VSV-G) est avantageusement utilisée dans le cadre de l'invention mais tout autre pseudotype peut être utilisé afin de cibler au mieux certaines populations cellulaires. La protéine d'enveloppe peut ainsi être choisie parmi toute glycoprotéine d'enveloppe de tout virus enveloppé, par exemple parmi une protéine d'enveloppe de rhabdovirus, plus préférentiellement de lyssavirus, encore plus préférentiellement d'un virus du sérogroupe du virus de la Rage: Rabies (RAB), Duvenhague (DUV), European bat type 1 (EB-1 ), European bat type 2 (EB-2), Kotonkan (KOT), Lagos bat (LB), Obodhiang (OBD), Rochambeau (RBU), une protéine d'enveloppe d'un virus du sérogroupe du virus de Mokola (MOK) et toute composition chimérique de ces enveloppes. Les virus de la rage et de Mokola sont particulièrement préférés. Ils ont en effet un tropisme chez l'animal très spécifique du système nerveux (cf. WO 02/097104). Ce type d'enveloppe permet en outre un ciblage cellulaire, notamment le ciblage des cellules gliales de type astrocytaire.
Dans un mode de réalisation préféré, l'invention utilise des vecteurs lentiviraux, par exemple de type VIH-1 , pseudotypés avec une enveloppe de virus de la rage ou de Mokola.
Un plasmide vecteur de l'invention comprend un acide nucléique recombinant comprenant entre les LTR 5' et 3', les éléments psi, RRE (ou un élément équivalent d'un autre rétrovirus), le transgène et éventuellement un promoteur et/ou la séquence flap, cPPT CTS. Il peut comporter par exemple la séquence 5'LTR-psi-RRE-cPPT CTS-(promoteur-)transgène-LTR3'. La séquence du transgène est éventuellement placée, au sein du plasmide vecteur, sous contrôle du promoteur et/ou d'un enhancer, ainsi que de tous les éléments de régulation transcriptionnelle, post transcriptionnelle et post traductionnelle nécessaires à la bonne expression de ce gène. Ce plasmide comporte les séquences virales agissant en cis et nécessaires au bon déroulement de la transduction. Il ne conserve du virus d'origine que certaines séquences nécessaires à l'encapsidation du génome (séquence psi d'origine lentivirale), éventuellement la séquence flap (région cPPT-CTS) qui permet un import nucléaire efficace du génome vecteur reverse-transcrit et un LTR 5' intègre qui permet la transcription de I1ARN vecteur devant être encapsidé. Ce vecteur peut en outre être éventuellement délété de la séquence enhancer U3 du LTR 3' (WO 99/31251 ). Il est par ailleurs délété de la totalité des gènes viraux d'origine, en particulier des gènes viraux codant pour les séquences gag, pol et env et des gènes accessoires (vif, nef, vpr et/ou vpu), pour améliorer la sécurité du vecteur.
Dans un mode de réalisation particulier de l'invention, les séquences att qui se situent aux extrémités du génome linéaire sont en outre avantageusement mutées, éventuellement délétées pour gêner la prise en charge du génome par l'intégrase.
Les promoteurs utilisés dans le plasmide de transcomplémentation, le plasmide d'enveloppe et dans le plasmide vecteur pour promouvoir respectivement l'expression de gag et pol, de la protéine d'enveloppe, de l'ARNm du génome vecteur et du transgène sont des promoteurs identiques ou différents choisis avantageusement parmi des promoteurs ubiquitaires ou spécifiques, par exemple parmi les promoteurs viraux CMV, TK, RSV LTR et un promoteur de l'ARN polymérase III, tel que le promoteur U6 ou H1.
Les lentivirus selon l'invention sont modifiés génétiquement de manière à ce que certains gènes constitutifs du virus infectieux natif soient supprimés et remplacés par une séquence d'acide nucléique d'intérêt à introduire dans les cellules cibles. Après fusion du virus à la membrane cellulaire, celui-ci injecte son acide nucléique dans la cellule. Le matériel génétique ainsi transféré est ensuite transcrit et éventuellement traduit en protéines à l'intérieur de la cellule hôte.
Un système vectoriel préféré selon l'invention comprend : a) un plasmide de transcomplémentation, dépourvu de signal d'encapsidation psi et comprenant une séquence gag lentivirale et une séquence pol lentivirale mutée codant une intégrase comportant une substitution du motif 262RRK par AAH (dans une région basique de la région C-terminale de la séquence codée de l'intégrase), non fonctionnelle pour l'intégration, ledit plasmide étant dépourvu des gènes accessoires tels que vif, nef, vpu et/ou vpr, b) un plasmide d'enveloppe tel que défini ci-dessus, comportant de préférence un promoteur viral et codant une enveloppe VSV-G, plus préférentiellement une séquence CMV-VSV-G-PoIyA, et c) un plasmide vecteur lentiviral, éventuellement délété de la région promotrice du LTR3' ou de la séquence enhancer U3 du LTR3', comportant entre les LTR 5' et 3', les éléments psi, RRE, le transgène et éventuellement un promoteur et/ou la séquence flap, cPPT CTS, ledit vecteur étant dépourvu de la totalité des gènes du lentivirus (par exemple
HIV-1).
Pour la production des virus recombinants non intégratifs et défectifs pour la réplication, les plasmides décrits ci-avant peuvent être introduits dans des cellules compétentes et les virus fabriqués sont récoltés. Les cellules utilisées peuvent être toute cellule compétente, en particulier des cellules eucaryotes, notamment de mammifère, par exemple animale ou humaine. Elles peuvent être somatiques ou embryonnaires, souches ou différenciées. On peut citer par exemple les cellules 293, des cellules de fibroblastes, des hépatocytes, des cellules musculaires (squelettiques, cardiaques, lisses, vaisseau sanguin, etc.), nerveuses (neurones, gliales, astrocytes), des cellule épithéliales, rénales, oculaires, etc. Il peut également s'agir de cellules végétales, de levures ou de cellules procaryotes. Il peut aussi s'agir de cellules transformées à l'aide de l'antigène T du SV40.
L'invention réside donc dans un procédé de préparation d'un lentivirus non intégratif et non réplicatif recombinant, comprenant la transfection d'une population de cellules compétentes avec une combinaison de plasmides tels que décrits ci-avant, et la récupération des vecteurs produits.
L'invention concerne ainsi un procédé particulièrement avantageux de production de lentivirus non intégratifs et non réplicatifs permettant l'expression in vivo d'un transgène, comprenant la transfection de cellules compétentes à l'aide d'un système vectoriel lentiviral non intégratif et non réplicatif, tel que décrit ci-dessus, comprenant : a) au moins un plasmide de transcomplémentation, dépourvu de signal d'encapsidation psi et comprenant une séquence gag et/ou une séquence pol comportant une mutation de classe 1 , permettant par exemple la substitution du motif 262RRK par AAH dans une région basique et/ou dans la région C-terminale de la séquence codée de l'intégrase, ledit plasmide étant dépourvu des gènes accessoires tels que vif, nef, vpu et/ou vpr, b) un plasmide d'enveloppe comportant une séquence promoteur (par exemple CMV)-enveloppe (par exemple VSV-G)-PoIyA, c) un plasmide vecteur, éventuellement délété de la séquence enhancer U3 du LTR3', comportant entre les LTR 5' et 3', les éléments psi, RRE, le transgène et éventuellement un promoteur et/ou la séquence flap, cPPT CTS, ledit vecteur étant délété des séquences codantes du lentivirus (par exemple HIV-1 ), et la récupération des lentivirus produits.
Les lentivirus de l'invention peuvent également être préparés à partir de lignées de cellules d'encapsidation produisant une ou plusieurs protéines gag, env et/ou pol mutée au niveau de l'intégrase comme indiqué précédemment.
De ce fait, dans un mode particulier de mise en œuvre, le procédé de l'invention comprend la transfection de deux plasmides seulement (le plasmide vecteur et le plasmide de transcomplémentation) dans une lignée de cellules exprimant la protéine env choisie. Les cellules utilisées pour la préparation d'une telle lignée sont, par exemple, les cellules compétentes mentionnées ci- avant.
Selon un autre mode de réalisation, la lignée utilisée exprime également la protéine env, la protéine gag et/ou la protéine pol lentivirale, cette dernière comprenant une mutation de classe 1. Dans ce cas, le procédé comprend simplement la transfection du plasmide vecteur.
Comme indiqué précédemment, les lentivirus produits dérivent de manière préférée du virus VIH-1 , VIH-2, SIV, FIV1BIV, VISNA, CAEV ou EIAV.
Parmi les lignées cellulaires on distingue notamment la lignée DT40 établie à partir d'un lymphome de poule connu pour être très recombinogène et la lignée Cos 7 (cellules de rein de singe immortalisée à l'aide d'un antigène SV40). Il peut également s'agir des lignées HCT116, DLD1 (lignées humaine établies à partir de cellules issues d'un carcinome colorectal), LF1 (fibroblastes de poumon embryonnaire humain), LL1 (fibroblastes de peau embryonnaire humaine), TK6 (lignée lymphoblastique humaine), HaCaT (kératinocytes humains), U937 (monocytes humains), HCT15, SW480, Colo320, Co115, EB, HbMOO, Rat-1 , PC12 (photochromocytome de rat), etc. Cette liste non exhaustive est donnée à titre d'exemple. D'autres lignées connues de l'homme du métier peuvent être choisies et utilisées dans le cadre de l'invention sans effort particulier de sa part.
Pour la mise en œuvre des procédés de l'invention, les plasmides peuvent être introduits dans les cellules par toute technique connue de l'homme du métier, adaptée au type cellulaire considéré. Généralement, les cellules et le système vectoriel sont mis en contact dans un dispositif approprié (plaque, boite, tube, poche, etc.), pendant une période de temps suffisante pour permettre le transfert du système vectoriel ou du plasmide dans les cellules. Typiquement, le système vectoriel ou le plasmide est introduit dans les cellules par précipitation au phosphate de calcium, par électroporation ou en utilisant un ou des composés facilitant la transfection, tels que des lipides, polymères, liposomes et peptides, etc. La précipitation au phosphate de calcium est préférée. Les cellules sont cultivées dans tout milieu adapté, tel que RPMI, DMEM, un milieu spécifique permettant une culture en l'absence de sérum de veau fœtal, etc. Un objet particulier de l'invention concerne également une lignée de cellules exprimant de manière stable une intégrase lentivirale comprenant une ou plusieurs mutations ponctuelles affectant une région basique, sa région C- terminale (par exemple, une région basique de la région C-terminale) et/ou son site catalytique, ladite intégrase étant dénuée de fonction intégrative, ainsi que l'utilisation d'une telle lignée de cellules pour la préparation in vitro de lentivirus recombinants non intégratifs et non réplicatifs.
Un objet de l'invention concerne ainsi les cellules obtenues par la mise en œuvre du procédé et l'utilisation d'une cellule, lignée ou population cellulaire selon l'invention pour la préparation d'une composition cellulaire destinée à la mise en œuvre d'une méthode de traitement thérapeutique, vaccinale ou chirurgicale chez l'homme ou l'animal.
Elle concerne également des kits pour la mise en œuvre de procédés de modification du génome de cellules in vitro ou ex vivo, comprenant un vecteur tel que décrit ci-avant.
APPLICATIONS
Les virus et lignées selon l'invention peuvent être utilisés par exemple pour l'expression d'un transgène ou d'autres acides nucléiques préférentiellement dans des cellules qui ne se divisent pas ou pour l'expression transitoire d'un gène dans des cellules en division réfractaires à d'autre méthode de transfection ou même de transduction par d'autres vecteurs.
De manière surprenante, la présente demande montre que les vecteurs lentiviraux ainsi obtenus sont capables de transduire différents types cellulaires tels que, par exemple, des cellules rétiniennes, des astrocytes, d'autres cellules gliales ou des neurones. D'autres sous-populations de cellules nerveuses qui peuvent être ciblées par des vecteurs de l'invention sont par exemple des cellules microgliales, des cellules endothéliales ou des oligodendrocytes. Dans une application particulière concernant le transfert de gènes dans l'œil, les vecteurs de l'invention peuvent être par exemple pseudotypés avec l'enveloppe Mokola afin de permettre un transfert sélectif vers les cellules de l'épithélium pigmentaire. Ce vecteur lentiviral non intégratif et non réplicatif est destiné à améliorer la sécurité et l'efficacité du transfert de gènes : par la mutation de l'intégrase, le vecteur ne s'intègre plus dans le génome de la cellule cible, éliminant ainsi le risque de mutagenèse insertionnelle. Par ailleurs, l'insertion éventuelle de la séquence flap (cPPT-CTS) dans le vecteur, peut améliorer de façon substantielle l'import nucléaire du génome ADN, permettant une expression forte du transgène, stable dans les cellules post-mitotiques et transitoire dans les cellules se multipliant.
Les applications possibles des vecteurs lentiviraux non intégratifs de l'invention sont de plusieurs types et incluent :
- la thérapie génique, Le., le transfert de gène dans toute cellule de mammifères, en particulier dans les cellules humaines. Il peut s'agir de cellules en division ou de cellules quiescentes, de cellules appartenant à des organes centraux ou à des organes périphériques, tels que le foie, le pancréas, un muscle, le cœur, etc. Il s'agit de préférence d'un transfert de gènes dans des cellules quiescentes (qui ne se divisent pas), notamment dans des cellules du système nerveux central, en particulier du cerveau, de la moelle et de la sphère oculaire, par exemple dans le cadre du traitement de pathologies neurodégénératives ou des atteintes de la rétine, et, d'un transfert de gène dans des cellules en division pour une expression transitoire (ex : stratégie suicide anti-tumorale, stratégie de repousse axonale pour traiter les traumas de la moelle épinière). La thérapie génique peut permettre l'expression de protéines, par exemple de facteurs neurotrophiques, d'enzymes, de facteurs de transcription, de récepteurs, etc. Elle permet par ailleurs de mettre en œuvre une stratégie « oligonucléotide » (ARN antisens ou interférents, ribozymes, etc.), - la thérapie cellulaire, i.e., l'expression de facteurs de différenciation dans des cellules progénitrices pour orienter la cellule vers un destin choisi avant greffe ou la transduction ex vivo de cellules pour qu'elles expriment un facteur d'intérêt, suivie de la greffe desdites cellules.
Un objet particulier de l'invention concerne l'utilisation d'un lentivirus non intégratif et non réplicatif selon l'invention pour la préparation d'une composition destinée au transfert de gènes par exemple dans le système nerveux central (y compris la sphère oculaire) d'un sujet in vitro, ex vivo ou in vivo.
Un autre objet particulier de l'invention concerne l'utilisation d'un tel lentivirus pour la préparation d'une composition destinée au traitement d'une maladie affectant un organe central ou périphérique, par exemple d'une maladie du système nerveux (y compris de la sphère oculaire).
Selon le transgène qu'ils contiennent, les lentivirus non intégratifs et non réplicatifs selon l'invention peuvent être utilisés pour la fabrication d'une composition pharmaceutique destinée à traiter par exemple une maladie neurodégénérative et notamment la maladie d'Alzheimer, la maladie de Parkinson, la maladie de Huntington, les SLA ou SMA, les Dégénérescences maculaires liées à l'âge (DMLA), des dégénérescences oculaires ou encore les traumas du système nerveux central (attaque cérébrale, épilepsie, lésions ou trauma de la moelle épinière, etc.), les maladies affectant le système nerveux central (mucopolysaccharidoses, etc.), les glioblastomes ou astrocytomes, les maladies métaboliques affectant le système nerveux (mucopolysaccharidoses, Charcot-Marie, etc.) ou des maladies affectant la sphère oculaire (DMLA, rétinites pigmentaires, glaucome, etc.).
Selon un mode de réalisation particulier de l'invention, les lentivirus recombinants non intégratifs et non réplicatifs sont utilisés pour la fabrication d'une composition pharmaceutique destinée à traiter la rétinite pigmentaire. Le terme de « rétinite pigmentaire » est un terme utilisé pour désigner un groupe hétérogène de désordres oculaires caractérisés par une dégénérescence progressive des bâtonnets et des cônes (cellules nerveuses de la rétine) par apoptose. Avec une incidence de 1 individu sur 3000, il s'agit de la cause majeure de cécité. La transduction des cellules de l'épithélium pigmentaire et des photorécepteurs présente un intérêt crucial dans ce type de pathologies. Une stratégie de remplacement génique nécessite la transduction des photorécepteurs ou de l'épithélium pigmentaire, alors qu'une stratégie de neuroprotection pourrait bénéficier de la transduction de l'épithélium pigmentaire. En effet, cette voie présente l'intérêt de ne pas modifier les cellules nerveuses mais uniquement l'épithélium pigmentaire qui synthétisera alors un facteur trophique diffusible, tel que le GDNF, et le sécrétera dans l'environnement des photorécepteurs à protéger.
Un autre objet de l'invention réside dans l'utilisation combinée de plusieurs lentivirus, en vue de transférer et d'exprimer plusieurs acides nucléiques dans les cellules du système nerveux. L'utilisation combinée peut comprendre des administrations séquentielles des différents virus, ou une administration simultanée. Comme indiqué ci-avant, l'invention peut permettre le transport et l'expression de multiples acides nucléiques dans les cellules nerveuses, comme par exemple des acides nucléiques catalytiques (interférents, antisens, ribozymes, etc.), des acides nucléiques codant des facteurs de croissance, des facteurs trophiques, des cytokines, des facteurs de stimulation des colonies, des agents anticancéreux, des toxines, des enzymes, des neurotransmetteurs ou leurs précurseurs, etc.
La composition pharmaceutique contenant le lentivirus selon l'invention peut être administrée à un patient par voie intracérébrale ou systémique compte- tenu du tropisme particulier des vecteurs lentiviraux pseudotypés à l'aide d'une glycoprotéine d'enveloppe appropriée. Ainsi, il peut s'agir d'une administration par voie intracérébrale par exemple intra-striatale, dans l'hypocampe ou la substance noire, par voie intra-veineuse, intra-artérielle, intra-vitrée, dans l'espace sous-rétinien, etc. Des modes d'injection préférés sont l'injection intra- cérébrale et l'injection dans l'espace sous-rétinien.
La composition est administrée avantageusement à raison de 102 à 1010, typiquement de 103 à 108, particules efficaces pour la transduction (titre déterminé par transduction de cellules par des dilutions en série du stock de vecteur) ou, en équivalent génome, de l'ordre de 105 à 1013 copies [titre déterminé par reverse transcription-PCR (polymerase chain reaction) quantitative sur le génome ARN du vecteur ou par PCR quantitative sur le brin d'ADN associé au génome ARN du vecteur]. Les lentivirus peuvent être conditionnés dans toute solution adaptée, telle qu'une solution saline, isotonique, tamponnée, éventuellement associée à des agents stabilisants tels que de l'albumine isogénique ou tout autre protéine stabilisante, du glycérol, etc., ainsi que des facteurs adjuvants comme le polybrène ou le DEAE dextran, etc.
D'autres avantages de l'invention sont illustrés plus en détails dans les exemples qui suivent, qui doivent être considérés comme illustratifs et non limitatifs.
LEGENDES DES FIGURES
Figure 1 : Système de production de vecteurs lentiviraux par transfection de trois plasmides : un plasmide vecteur portant le transgène GFP sous contrôle du promoteur du cytomégalovirus humain (hCMV) ainsi que la séquence du flap central [central polypurine tract- central terminaison séquence (cPPT-CTS)] qui intervient dans l'import nucléaire, la séquence RRE (REV Responsive Elément) qui interagit avec un élément de régulation REV et la séquence d'encapsidation psi (ψ), la région U3 du LTR 3' a été délétée de la séquence promotrice (ΔU3) ; un plasmide de transcomplémentation exprimant les protéines nécessaires aux phases précoces du cycle réplicatif du VIH-1 (GAG et POL), des éléments de régulation (TAT, REV) sous contrôle du promoteur CMV et délété de la séquence ψ ; un plasmide d'enveloppe exprimant la glycoprotéine d'enveloppe du virus de la stomatite vésiculaire (VSV-G) sous contrôle du promoteur CMV.
Figure 2 :
Expression de la GFP obtenue après transduction de lignées cellulaires (293T et HeLa) par un vecteur lentiviral non intégratif. Le pourcentage de transduction est déterminé par FACS 72h après incubation des cellules en présence de différentes doses (volume en microlitre par puit) d'un vecteur lentiviral intégratif INWT CMV GFP et non intégratif INN CMV GFP.
Figure 3 :
Inhibition de la transduction par un vecteur lentiviral intégratif INWT CMV GFP et non intégratif INN CMV GFP après traitement des cellules à I1AZT. Le pourcentage de transduction a été déterminé par FACS après 72h d'incubation des cellules 293T en présence de vecteur seul ou de vecteur et d'AZT 10μM.
Figure 4 : Expression de la GFP au cours du temps après transduction de lignées cellulaires (293T et MT4) avec des vecteurs lentiviraux intégratif INWT CMV GFP ou non intégratif INN CMV GFP. Le pourcentage de cellules GFP+ a été déterminé par FACS (A : 293T, B : MT4) 3 jours, 6 jours, 9 jours et 12 ou 15 jours après transduction (MOI 5). Pour les points notés "but" : les cellules ont subit un traitement au butyrate de sodium 5mM 24h avant l'analyse.
Figure 5 :
Expression de la GFP dans des neurones embryonnaires primaires issus de cortex de rats après transduction par un vecteur lentiviral intégratif INWT CMV GFP ou non intégratif IN CMV GFP
A : Analyse immunocytochimique de l'expression dans des neurones contrôles (non transduits), transduits par le vecteur intégratif (INWT) OU transduits par le vecteur non intégratif (INN) 3, 9 et 16 jours après transduction (grossissement x20).
B : pourcentage de transduction des neurones corticaux dans les groupes INWT et INN- Les mesures ont été réalisées en triplicate et exprimées en moyennes ± l'erreur standard (SEM).
C : Analyse immunocytofluorescente de l'expression dans des neurones contrôles (non transduits), transduits par le vecteur intégratif (INWT) OU transduits par le vecteur non intégratif (INN) 3, 15 et 25 jours après transduction (grossissement x10).
Figure 6 :
Expression de la GFP in vivo après injection dans le striatum de souris. Le cerveau a été prélevé 10 jours après injection stéréotaxique du vecteur INN CMV GFP (A) ou INWT CMV GFP (B) dans le striatum de souris, coupé au cryostat en coupe de 20μm d'épaisseur et analysé après immunohistochimie pour révéler la présence de GFP. ce : corps calleux, str : striatum. Le grossissement (x2.5, x5 ou x20) est indiqué sur chaque photographie.
Figure 7 : Expression de la GFP in vivo après injection dans le striatum de souris. Le cerveau a été prélevé 10 jours après injection stéréotaxique du vecteur INN CMV GFP dans le striatum de souris, coupé au cryostat en coupe de 20μm d'épaisseur et analysé après immunohistofluorescence. au microscope confocal. A : Comarquage GFP/GFAP : astrocyte exprimant la GFP (grossissement x40). B : Comarquage GFP/NeuN : neurone exprimant la GFP (grossissement x16).
Figure 8 :
A : Expression de la GFP in vivo chez le rat après injection sous rétinienne de 66ng de p24 de vecteur lentiviral non intégratif INN CMV GFP. Photographie en microscopie fluorescence (x2.5) sur rétine montée à plat 2 semaines après injection. B : Expression de la GFP in vivo chez le chien après injection sous rétinienne de 2.5μg de p24 de vecteur lentiviral non intégratif INN CMV GFP. Angiographie en lumière fluorescente sur chien vigil 1 mois après injection.
PARTIE EXPERIMENTALE
Dans un premier temps, les séquences d'intégrase (fusionnée à l'hémagglutinine), mutée ou non mutée dans le plasmide de transcomplémentation utilisé pour la production des vecteurs (plasmide p8.91 INWT et p8.91 INN) lentiviraux, ont été utilisées. Des stocks de vecteurs dérivés de VIH-1 exprimant la green fluorescent protein (GFP) sous contrôle du promoteur viral précoce du cytomegalovirus humain (hCMV) et portant l'intégrase normale (vecteur INWT CMV GFP) ou mutée (INN CMV GFP) ont ensuite été produits. Une étude portant sur l'efficacité des vecteurs INN CMV GFP pour diriger l'expression du transgène GFP au sein des cellules nerveuses a enfin été réalisée d'abord in vitro puis in vivo.
Caractérisation du vecteur in vitro
" Expression du transgène GFP in vitro
Afin d'évaluer la capacité d'un vecteur lentiviral non intégratif à transduire des lignées cellulaires et y exprimer un transgène, des cellules 293T, HeLa et MT4 ont été incubées en présence de différents volumes de vecteurs INWT CMV GFP et INN CMV GFP. Soixante douze heures après transduction par le vecteur intégratif INWT CMV GFP, un certain pourcentage de cellules expriment la GFP (analyse par FACS). De la même manière, des cellules GFP+ ont été mises en évidence par FACS 72 heures après transduction par le vecteur INN CMV GFP (figure 2). Ce premier résultat suggère une bonne efficacité de transduction des vecteurs dont l'intégrase a été inactivée. a Analyse de la pseudotransduction
Au cours de leur production, les stocks de vecteurs lentiviraux sont contaminés par de I1ADN plasmidique, notamment par le plasmide vecteur pTrip CMV GFP, ainsi que par la protéine GFP produite à partir de ce même plasmide dans les cellules transfectées. Ces deux éléments peuvent générer des cellules faussement positives, dans lesquelles la GFP n'est pas issue de l'expression du génome vecteur rétrotranscrit. Ces cellules GFP+ ne sont donc pas transduites mais "pseudotransduites". Afin de démontrer que les cellules GFP+ ne résultent pas d'un mécanisme de pseudotransduction, des cellules 293T ont été transduites, en présence ou en absence d'azido-deoxythymidine (AZT), à l'aide d'un inhibiteur de la reverse- transcriptase (RT). En effet, le traitement par l'AZT inhibe l'expression de la GFP uniquement si celle-ci résulte de la transduction des cellules. Le pourcentage de cellules GFP+ observées en présence d'AZT correspond donc au pourcentage de pseudotransduction. Après transduction de cellules 293T à une multiplicité d'infection (MOI) de 20, on observe 40,7% (± 1 ,5) de cellules GFP+ avec le vecteur intégratif INWT CMV GFP et 28,0% (± 1 ,9) avec le vecteur non intégratif INN CMV GFP. En présence de 10μM d'AZT, le pourcentage de cellules transduites tombe respectivement à 5,8% (± 0,1) et 4,9% (± 0,4) (figure 3). L'inhibition de la RT permet donc de réduire le pourcentage de cellules GFP+, que ce soit après transduction par le vecteur intégratif INWT CMV GFP ou par le vecteur INN CMV GFP. La plupart des cellules GFP+ observées en absence de l'inhibiteur de la reverse-transcriptase sont donc transduites efficacement par les deux types de vecteurs et ne résultent pas d'un mécanisme de pseudotransduction.
" Stabilité de l'expression dans des cellules en division Pour vérifier le caractère épisomal des particules portant l'intégrase mutée IN- HAN, l'expression de la GFP a été analysée jusqu'à 15 jours après transduction dans les différentes lignées cellulaires HeLa, 293T et MT4. Les cellules ont été transduites à une MOI de 5 par le vecteur mutant INN CMV GFP, par le témoin intégratif INWT CMV GFP ou par un adénovirus CMV GFP, témoin non intégratif. Chaque lot de cellules transduites a été amplifié pendant 12 à 15 jours et analysé par FACS toutes les 72 heures. Vingt quatre heures avant de récolter les dernières cellules, une partie de celles-ci a été traitée au butyrate de sodium 5 mM afin d'évaluer l'influence éventuelle d'une hypoacétylation sur l'expression de la GFP. Les résultats obtenus sont présentés à la figure 4.
Au cours du temps, le pourcentage de cellules, 293T ou MT4, exprimant la GFP est relativement stable lorsque celles-ci sont transduites avec le vecteur témoin intégratif INWT CMV GFP, ce pourcentage diminuant légèrement aux derniers points évalués dans les cellules 293T (figure 4). Cependant, le traitement des cellules au butyrate de sodium à la fin de l'expérience permet de ramener le pourcentage de cellules 293T GFP+ au niveau initialement mesuré, ce qui suggère une réactivation du promoteur gouvernant l'expression du transgène et montre la stabilité dans le temps du vecteur intégré dans la population de cellules analysée.
Dans des cellules transduites avec un vecteur adénoviral, témoin non intégratif, le pourcentage de cellules positives chute significativement au cours des divisions successives pour s'annuler 15 jours après transduction. Dans ce cas, le traitement au butyrate de sodium à 15 jours après transduction ne permet pas de rétablir le pourcentage initial de cellules GFP+ (figure 4B). Ce résultat s'explique par la dilution progressive des génomes adénoviraux au cours des divisions cellulaires. En tant qu'éléments extrachromosomiques, les génomes vecteurs ne sont pas répliqués comme l'ADN génomique de la cellule pendant les cycles cellulaires. A chaque mitose, une copie du génome vecteur n'est donc transmise qu'à une seule des deux cellules filles, ce qui divise théoriquement le pourcentage de cellules exprimant le transgène par 2 à chaque cycle cellulaire.
L'expression dans les cellules transduites par le vecteur portant une intégrase mutante montre un profil proche de celui observé après transduction avec un vecteur adénoviral. En effet, le pourcentage de cellules GFP+ diminue au cours du temps (figure 4) et ne peut être ramené au niveau initial par un traitement des cellules au butyrate de sodium. Ce résultat suggère que, comme dans le cas d'une transduction par un vecteur adénoviral, le génome des vecteurs INN CMV GFP est éliminé des cellules initialement transduites par dilution successive à chaque division cellulaire.
• Stabilité de l'expression du transgène GFP dans des cellules quiescentes La réduction du pourcentage de cellules GFP+ au cours du temps pourrait également refléter l'instabilité des génomes vecteurs et leur dégradation dans le noyau des cellules transduites. Pour vérifier cette hypothèse, l'expression du transgène GFP a été étudiée après transduction de cellules neuronales par les deux types de vecteurs. En effet, les neurones primaires (cortex de rats embryonnaires) ne se divisent pas en culture. L'expression de la GFP persiste au moins 16 jours après transduction de ces cellules avec le vecteur INN CMV GFP (figure 5A et 5B). Aucune différence significative n'a pu être observée entre le pourcentage de cellules immunoréactives transduites par le vecteur WT aux différents temps considérés et celui obtenu avec le vecteur N (ANOVA 2 facteurs en mesures répétées, p = 0.9321. Une expérience supplémentaire a permis de montrer que l'expression du transgène persiste jusqu'à 25 jours après transduction (figure 5C). Les formes épisomales sont donc relativement stables dans le noyau des cellules transduites et permettent une expression du transgène au moins pendant 25 jours dans des cellules quiescentes. Ce résultat conforte l'hypothèse d'une baisse de l'expression de la GFP au cours du temps dans des cellules en division par dilution des génomes vecteurs épisomaux à chaque mitose, plutôt que par dégradation.
Expression du transgène GFP in vivo
a Expression dans le striatum de souris
Afin de déterminer l'efficacité des vecteurs lentiviraux déficients pour l'intégrase à transduire des cellules in vivo et permettre l'expression d'un transgène GFP, le vecteur INN CMV GFP a été injecté dans le striatum de souris. Dix jours après cette injection, l'expression de la GFP a pu être mise en évidence. Cette expression perdure pendant un délai d'au moins un mois suivant l'injection. Ce résultat atteste de l'efficacité des vecteurs non intégratifs à permettre et à maintenir l'expression d'un transgène dans des cellules du SNC (figure 6). Afin d'identifier le phénotype des cellules transduites, un co-marquage en immunohistofluorescence GFP/GFAP (glial fibrillary acidic protein, marqueur des astrocytes) d'une part et GFP/NeuN (marqueur des neurones) d'autre part a été réalisé sur des coupes adjacentes. Après analyse des lames au microscope confocal, une colocalisation majoritaire de la GFP avec le marqueur GFAP (figure 7A) et très peu de colocalisation de la GFP avec le marqueur NeuN (figure 7B) ont pu être obervées. Ces résultats suggèrent que, in vivo, le vecteur INN CMV GFP pseudotypé avec l'enveloppe VSV, transduit préférentiellement des cellules astrocytaires.
• Expression dans la rétine
La capacité du vecteur lentiviral non intégratif à transduire les cellules de l'épithélium pigmentaire de la rétine a été évaluée. Pour cela, des injections sous rétiniennes du vecteur ont été réalisées chez des rats ainsi que chez des chiens. Les résultats préliminaires montrent une expression de la GFP pendant au moins 9 semaines chez le rat et 3 mois chez le chien (figure 8). L'évaluation de la stabilité de l'expression dans ces deux systèmes se poursuit. Des résultats obtenus précédemment par les inventeurs montrent que les vecteurs lentiviraux transduisent essentiellement, après injection sous rétinienne chez le rat, les cellules de l'épithélium pigmentaire. Une faible toxicité a été observée chez quelques chiens par examen du fond d'œil. Cette toxicité est indépendante de la dose injectée, donc du vecteur lui- même et semble induite par le geste chirurgical lors de l'injection. Une analyse histologique plus poussée permettra de rendre compte plus précisément de cette irritation.
Expression d'un transgène thérapeutique dans un modèle animal Dans le but de valider l'utilisation d'un vecteur lentiviral non intégratif pour une application clinique, l'efficacité dudit vecteur à exprimer un transgène thérapeutique, le Glial-derived neurotrophic factor (GDNF), a été testée après injection sous rétinienne chez le rat RD10, modèle caractérisé de rétinite pigmentaire.
L'expression « rétinite pigmentaire (RP) » désigne un groupe hétérogène de désordres oculaires caractérisés par une dégénérescence progressive, par apoptose, des bâtonnets et des cônes (cellules nerveuses de la rétine). Avec une incidence de un individu sur 3000, il s'agit de la cause principale de cécité. La transduction des cellules de l'épithélium pigmentaire et des photorécepteurs présente un intérêt crucial dans ce type de pathologies. Une stratégie de remplacement génique nécessite la transduction des photorécepteurs ou de l'épithélium pigmentaire, alors qu'une stratégie de neuroprotection pourrait bénéficier de la transduction de l'épithélium pigmentaire. En effet, cette voie présente l'intérêt de ne pas modifier les cellules nerveuses mais uniquement l'épithélium pigmentaire qui synthétisera alors un facteur neurotrophique diffusible, tel que le GDNF, et le sécrétera dans l'environnement des photorécepteurs à protéger. Les expériences menées au laboratoire montrent que les vecteurs lentiviraux intégratifs sont efficaces pour la transduction des cellules de l'épithélium pigmentaire par injection sous rétinienne chez la souris normale.
Les résultats indiqués ci-dessus montrent l'efficacité et le potentiel thérapeutique des vecteurs lentiviraux non intégratifs selon l'invention capables de permettre l'expression d'un transgène in vitro, ex vivo et in vivo dans le système nerveux central (cerveau et rétine), chez le rongeur ainsi que chez le gros animal.

Claims

REVENDICATIONS
1. Lentivirus recombinant non réplicatif et non intégratif comprenant un génome recombinant comprenant, entre les séquences LTR 5' et 3' lentivirales, une séquence psi d'encapsidation lentivirale, un élément d'export nucléaire de I1ARN, un transgène et, éventuellement, un promoteur et/ou une séquence favorisant l'import nucléaire de l'ARN, ainsi qu'une intégrase mutée empêchant l'intégration dudit génome dans le génome d'une cellule hôte.
2. Lentivirus selon la revendication 1 , caractérisé en ce que ledit lentivirus est choisi parmi VIH-1 , VIH-2, SIV, FIV, EIAV, BIV, VISNA et CAEV.
3. Lentivirus selon la revendication 1 ou 2, caractérisé en ce que la mutation de l'intégrase consiste en une ou plusieurs mutations ponctuelles.
4. Lentivirus selon la revendication 3, caractérisé en ce que les mutations ponctuelles affectent une région basique, la région C-terminale et/ou le site catalytique de l'intégrase.
5. Lentivirus VIH-1 selon la revendication 2, caractérisé en ce que la mutation ponctuelle affectant la région basique et/ou C-Terminale est une substitution du motif 262RRK par le motif AAH.
6. Lentivirus VIH-1 selon la revendication 2, caractérisé en ce que les mutations ponctuelles affectant le site catalytique sont choisies parmi la mutation de l'acide aminé 64, 116 et/ou 152.
7. Lentivirus selon l'une quelconque des revendications précédentes, caractérisé en ce que le génome est dépourvu de toute séquence lentivirale codante.
8. Lentivirus selon l'une quelconque des revendications précédentes, caractérisé en ce que l'élément d'export nucléaire de I1ARN comprend l'élément de réponse à REV (séquence RRE) du VIH-1.
9. Lentivirus selon l'une quelconque des revendications précédentes, caractérisé en ce que la séquence favorisant l'import nucléaire de l'ARN est le cPPT CTS.
10. Lentivirus selon l'une quelconque des revendications précédentes, caractérisé en ce que le transgène est un acide nucléique catalytique (interférant, antisens, ribozyme) un acide nucléique suicide ou un acide nucléique codant un polypeptide biologiquement actif, par exemple un facteur de croissance, un facteur trophique, une hormone, une cytokine, un anticorps, un récepteur, un facteur de différentiation, un facteur de stimulation des colonies, un agent anticancéreux, une toxine, un enzyme, un neurotransmetteur ou son précurseur.
11. Lignée de cellules exprimant stablement une intégrase lentivirale comprenant une ou plusieurs mutations ponctuelles affectant sa région C-terminale et/ou son site catalytique, ladite intégrase étant dénuée de fonction intégrative.
12. Utilisation d'une lignée de cellules selon la revendication 11 pour la préparation in vitro de lentivirus recombinants non intégratifs et non réplicatifs.
13. Procédé de préparation d'un lentivirus selon l'une quelconque des revendications 1 à 10, caractérisé en ce qu'il comprend la transfection d'une cellule à l'aide d'un système vectoriel permettant l'obtention d'un lentivirus non intégratif et non réplicatif comprenant : a. un plasmide de transcomplémentation, dépourvu de signal d'encapsidation psi et comprenant une séquence gag lentivirale et une séquence pol lentivirale mutée codant une intégrase non fonctionnelle pour l'intégration, ledit plasmide étant éventuellement délété des gènes accessoires vif, nef, vpu et/ou vpr, b. un plasmide d'enveloppe comportant une séquence Promoteur- env-PolyA, et c. un plasmide vecteur lentiviral comportant un génome recombinant comprenant, entre les séquences LTR 5' et 3' lentivirales, une séquence psi d'encapsidation lentivirale, un élément d'export nucléaire de l'ARN, un transgène et éventuellement un promoteur et/ou une séquence favorisant l'import nucléaire de l'ARN, ainsi qu'une intégrase mutée empêchant l'intégration dudit génome dans le génome d'une cellule hôte, ledit vecteur étant dépourvu de toute séquence codante du lentivirus, et la récupération des lentivirus produits.
14. Procédé selon la revendication 13, caractérisé en ce que la mutation dans la séquence pol du plasmide de transcomplémentation consiste en une ou plusieurs mutations ponctuelles affectant une région basique, la région C-terminale et/ou le site catalytique de la séquence de l'intégrase codée.
15. Procédé selon la revendication 13 ou 14, caractérisé en ce que le plasmide de transcomplémentation comprend en outre un élément de régulation de la transcription choisi parmi WPRE, le 5'UTR de l'APP, le 3'UTR de TAU, une séquence insulatrice.
16. Procédé selon l'une quelconque des revendications 13 à 15, caractérisé en ce que la protéine d'enveloppe du plasmide d'enveloppe est choisie parmi VSV-G, une protéine d'enveloppe d'un virus du sérogroupe du virus de la Rage: Rabies (RAB), Duvenhague (DUV), European bat type 1 (EB-1 ), European bat type 2 (EB-2), Kotonkan (KOT), Lagos bat (LB)1 Obodhiang (OBD), Rochambeau (RBU), une protéine d'enveloppe d'un virus du sérogroupe du virus de Mokola (MOK) et toute composition chimérique de ces enveloppes.
17. Procédé selon l'une quelconque des revendications 13 à 16, caractérisé en ce que le promoteur présent dans le plasmide d'enveloppe et/ou le promoteur présent dans le plasmide vecteur sont identiques ou différents et cellulaires ou viraux.
18. Procédé selon la revendication 17, caractérisé en ce que le ou les promoteurs) utilisé(s) est un promoteur cellulaire choisi parmi le promoteur PGK, Rho et EF1α.
19. Procédé selon la revendication 17, caractérisé en ce que le ou les promoteurs) utilisé(s) est un promoteur viral choisi parmi le promoteur du gène CMV, TK1 RSV LTR, et le promoteur U6 ou H1 de l'ARN polymérase III.
20. Procédé selon l'une quelconque des revendications 13 à 16, caractérisé en ce que le plasmide vecteur lentiviral est dépourvu de la région promotrice ou de la séquence enhancer U3 du LTR3'.
21. Utilisation d'un lentivirus non intégratif et non réplicatif selon l'une quelconque des revendications 1 à 10 pour la préparation d'une composition destinée au transfert de gènes dans le système nerveux central d'un sujet in vitro, ex vivo ou in vivo.
22. Utilisation selon la revendication 21 pour la préparation d'une composition destinée au traitement d'une maladie du système nerveux (y compris de la sphère oculaire).
23. Utilisation selon la revendication 22, pour le traitement des maladies neurodégénératives (Maladie de Parkinson, Maladie de Huntington, Maladie d'Alzheimer, SLA, SMA, DMLA, etc.), des traumas du système nerveux central (trauma de la moelle épinière, attaque cérébrale, etc.), des maladies métaboliques affectant le système nerveux (mucopolysaccharidoses, Charcot-Marie, etc.) ou des maladies affectant la sphère oculaire (rétinite pigmentaire, glaucome, etc.).
24. Composition pharmaceutique comprenant un lentivirus selon l'une des revendications 1 à 10 et un excipient acceptable sur le plan pharmaceutique.
PCT/FR2005/001604 2004-06-25 2005-06-24 Lentivirus non integratif et non replicatif, preparation et utilisations WO2006010834A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP05779704A EP1761635B1 (fr) 2004-06-25 2005-06-24 Lentivirus non integratif et non replicatif, preparation et utilisations
AU2005266221A AU2005266221B2 (en) 2004-06-25 2005-06-24 Non-integrative and non-replicative lentivirus, preparation and uses thereof
AT05779704T ATE524554T1 (de) 2004-06-25 2005-06-24 Nicht integrativer und nicht replikativer lentivirus, herstellung und verwendungen
CA2579753A CA2579753C (fr) 2004-06-25 2005-06-24 Lentivirus non integratif et non replicatif, preparation et utilisations
JP2007517365A JP4861314B2 (ja) 2004-06-25 2005-06-24 非組み込み型且つ非複製型組換えレンチウイルス、その調製および使用
US11/628,534 US8119119B2 (en) 2004-06-25 2005-06-24 Non-integrative and non-replicative lentivirus, preparation and uses thereof
IL179740A IL179740A0 (en) 2004-06-25 2006-11-30 Non-integrative and non-replicative lentivirus, preparation and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0407017A FR2872170B1 (fr) 2004-06-25 2004-06-25 Lentivirus non interactif et non replicatif, preparation et utilisations
FR0407017 2004-06-25

Publications (1)

Publication Number Publication Date
WO2006010834A1 true WO2006010834A1 (fr) 2006-02-02

Family

ID=34948183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/001604 WO2006010834A1 (fr) 2004-06-25 2005-06-24 Lentivirus non integratif et non replicatif, preparation et utilisations

Country Status (10)

Country Link
US (1) US8119119B2 (fr)
EP (1) EP1761635B1 (fr)
JP (1) JP4861314B2 (fr)
CN (1) CN101023177A (fr)
AT (1) ATE524554T1 (fr)
AU (1) AU2005266221B2 (fr)
CA (1) CA2579753C (fr)
FR (1) FR2872170B1 (fr)
IL (1) IL179740A0 (fr)
WO (1) WO2006010834A1 (fr)

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091066A1 (fr) * 2006-02-07 2007-08-16 Ucl Business Plc Applications de vecteurs lentiviraux non intégrants
EP2020444A1 (fr) * 2007-08-03 2009-02-04 Institut Pasteur Vecteurs lentivirus de transfert, déficient dans la function d'intégration, utilisés comme vaccins
WO2010117464A1 (fr) 2009-04-09 2010-10-14 Sangamo Biosciences, Inc. Intégration ciblée dans des cellules souches
WO2011100058A1 (fr) 2010-02-09 2011-08-18 Sangamo Biosciences, Inc. Modification génomique ciblée avec des molécules donneuses partiellement monocaténaires
EP2385107A1 (fr) 2010-05-03 2011-11-09 Institut Pasteur Composés immunologiques basés sur un vecteur de lentivirus contre le paludisme
WO2012152912A1 (fr) 2011-05-12 2012-11-15 Newvectys Cochon génétiquement modifié en tant que modèle de prédisposition au cancer
US8420104B2 (en) 2007-08-03 2013-04-16 Institut Pasteur Lentiviral gene transfer vectors and their medicinal applications
EP2597155A1 (fr) 2007-10-25 2013-05-29 Sangamo BioSciences, Inc. Procédés et compositions pour une intégration ciblée
US8956828B2 (en) 2009-11-10 2015-02-17 Sangamo Biosciences, Inc. Targeted disruption of T cell receptor genes using engineered zinc finger protein nucleases
WO2015040063A1 (fr) * 2013-09-17 2015-03-26 Inserm (Institut National De La Sante Et De La Recherche Medicale) Vecteurs lentiviraux comprenant une protéine intégrase mutante et utilisations associées
EP2878667A1 (fr) 2013-11-29 2015-06-03 Institut Pasteur Moyens pour effecteur TAL utiles à la délition partielle ou complète de séquences répétitives d'ADN
EP3031923A1 (fr) * 2014-12-11 2016-06-15 Institut Pasteur Composition immunogène contre l'encéphalite japonaise à base de vecteurs lentiviraux
AU2013203404B2 (en) * 2007-08-03 2016-10-13 Centre National De La Recherche Scientifique (Cnrs) Lentiviral gene transfer vectors and their medicinal applications
US9475851B2 (en) 2011-11-08 2016-10-25 Institut Pasteur High MAST2-affinity polypeptides and uses thereof
WO2018035141A1 (fr) 2016-08-16 2018-02-22 Bluebird Bio, Inc. Variants d'endonucléase de homing du récepteur alpha de l'il-10, compositions et méthodes d'utilisation associées
WO2018039333A1 (fr) 2016-08-23 2018-03-01 Bluebird Bio, Inc. Variants de l'endonucléase homing tim3, compositions et procédés d'utilisation
WO2018049226A1 (fr) 2016-09-08 2018-03-15 Bluebird Bio, Inc. Variants de l'endonucléase homing pd1, compositions et procédés d'utilisation
WO2018094244A1 (fr) 2016-11-17 2018-05-24 Bluebird Bio, Inc. CONVERTISSEUR DE SIGNAUX TGFβ
EP3357506A1 (fr) 2017-02-02 2018-08-08 Institut Pasteur Plusieurs antigènes pré-érythrocytiques du paludisme et leur utilisation dans le déclenchement d'une réponse immunitaire protectrice chez un hôte
EP3357504A1 (fr) 2017-02-02 2018-08-08 Institut Pasteur Criblage fonctionnel de polypeptides antigéniques - utilisation pour l'identification d'antigènes élicitant une réponse immunitaire protectrice et pour la sélection d'antigènes présentant une activité de protection optimale
WO2018152325A1 (fr) 2017-02-15 2018-08-23 Bluebird Bio, Inc. Modèles de réparation de donneur pour l'édition de génome multiplex
EP3502260A1 (fr) 2017-12-22 2019-06-26 Oxford BioMedica (UK) Limited Vecteur rétroviral
DE102018010282A1 (de) 2018-01-17 2019-07-18 Immatics US, Inc. Verfahren zur Feststellung der Wirksamkeit von viralen Vektoren
WO2019143772A1 (fr) 2018-01-17 2019-07-25 Immatics Us Inc. Méthodes d'évaluation de la capacité de transduction de vecteurs viraux
US10383929B2 (en) 2014-12-12 2019-08-20 Bluebird Bio, Inc. BCMA chimeric antigen receptors
US10479975B2 (en) 2014-06-06 2019-11-19 Bluebird Bio, Inc. Methods of making T cell compositions
WO2019241685A1 (fr) 2018-06-14 2019-12-19 Bluebird Bio, Inc. Récepteurs antigéniques chimériques anti-cd79a
WO2020014333A1 (fr) 2018-07-11 2020-01-16 Celgene Corporation Utilisations de récepteurs d'antigènes chimériques anti-bcma
EP3650548A1 (fr) 2013-12-20 2020-05-13 Oxford BioMedica (UK) Limited Système de production de vecteurs viraux
US10774343B2 (en) 2014-04-25 2020-09-15 Bluebird Bio, Inc. MND promoter chimeric antigen receptors
US10793843B2 (en) 2018-10-04 2020-10-06 Bluebird Bio, Inc. CBLB endonuclease variants, compositions, and methods of use
EP3770264A1 (fr) 2019-07-22 2021-01-27 Genethon Intégration précise à l'aide d'un idlv ciblé par nucléase
US10927367B2 (en) 2017-05-25 2021-02-23 Bluebird Bio, Inc. CBLB endonuclease variants, compositions, and methods of use
WO2021051390A1 (fr) 2019-09-20 2021-03-25 上海吉倍生物技术有限公司 Anticorps et récepteur antigénique chimérique ciblant bcma
US10967005B2 (en) 2013-03-15 2021-04-06 Celgene Corporation Modified T lymphocytes comprising a BAFF antibody-inducible caspase and methods of apoptosis
WO2021091978A1 (fr) 2019-11-05 2021-05-14 Celgene Corporation Utilisations de récepteurs d'antigènes chimériques anti-bcma
WO2021094752A1 (fr) 2019-11-12 2021-05-20 Oxford Biomedica (Uk) Limited Système de production
WO2021160993A1 (fr) 2020-02-13 2021-08-19 Oxford Biomedica (Uk) Limited Production de vecteurs lentiviraux
WO2021181108A1 (fr) 2020-03-13 2021-09-16 Oxford Biomedica (Uk) Limited Vecteurs lentiviraux
US11130820B2 (en) 2012-12-20 2021-09-28 Celgene Corporation Chimeric antigen receptors
WO2021229242A1 (fr) 2020-05-15 2021-11-18 Oxford Biomedica (Uk) Limited Production de vecteur viral
GB202114529D0 (en) 2021-10-12 2021-11-24 Oxford Biomedica Ltd Lentiviral vectors
GB202114530D0 (en) 2021-10-12 2021-11-24 Oxford Biomedica Ltd Retroviral vectors
GB202114532D0 (en) 2021-10-12 2021-11-24 Oxford Biomedica Ltd Lentiviral Vectors
EP3984548A1 (fr) 2020-10-16 2022-04-20 Institut Pasteur Génération de vecteurs lentiviraux permettant d'acheminer des antigènes vers la voie mhc-ii et d'induire une réponse immunitaire des cellules t cd4+ et cd8+ chez un hôte
WO2022098685A2 (fr) 2020-11-04 2022-05-12 Celgene Corporation Traitement par les lymphocytes car-t chez des patients ayant reçu un traitement anticancéreux antérieur par un agent alkylant
WO2022101617A1 (fr) 2020-11-10 2022-05-19 Oxford Biomedica (Uk) Limited Préparation d'une solution de complexes polymère/acide nucléique
WO2022120160A1 (fr) 2020-12-04 2022-06-09 Celgene Corporation Utilisations de thérapies par lymphocytes t de récepteurs antigéniques chimériques (car) en association avec des inhibiteurs de facteurs solubles associés à une inflammation
WO2022189656A1 (fr) 2021-03-12 2022-09-15 Institut Pasteur Vecteurs lentiviraux ciblant des antigènes sur la voie mhc-ii et induisant une immunité protectrice des lymphocytes t cd8+ et cd4+ chez un hôte
WO2022221737A1 (fr) 2021-04-16 2022-10-20 Juno Therapeutics, Inc. Thérapie par lymphocytes t chez des patients ayant antérieurement subi une transplantation de cellules souches
US11479755B2 (en) 2015-12-07 2022-10-25 2Seventy Bio, Inc. T cell compositions
US11530395B2 (en) 2016-10-17 2022-12-20 2Seventy Bio, Inc. TGFBetaR2 endonuclease variants, compositions, and methods of use
WO2023288267A1 (fr) 2021-07-14 2023-01-19 2Seventy Bio, Inc. Récepteurs de lymphocytes t modifiés fusionnés à des domaines de liaison d'anticorps
WO2023062363A1 (fr) 2021-10-12 2023-04-20 Oxford Biomedica (Uk) Limited Vecteurs lentiviraux
WO2023062359A2 (fr) 2021-10-12 2023-04-20 Oxford Biomedica (Uk) Limited Nouveaux éléments régulateurs viraux
WO2023105235A1 (fr) 2021-12-09 2023-06-15 Oxford Biomedica (Uk) Limited Procédé de purification de vecteurs viraux
US11779654B2 (en) 2017-10-04 2023-10-10 2Seventy Bio, Inc. PCSK9 endonuclease variants, compositions, and methods of use
WO2023196997A2 (fr) 2022-04-08 2023-10-12 2Seventy Bio, Inc. Récepteur multipartite et complexes de signalisation
WO2023220641A2 (fr) 2022-05-11 2023-11-16 Juno Therapeutics, Inc. Méthodes et utilisations associées à une thérapie par lymphocytes t et leur production
WO2023230512A1 (fr) 2022-05-26 2023-11-30 2Seventy Bio, Inc. Compositions pour conserver des vecteurs lentiviraux et leurs utilisations
WO2024038266A1 (fr) 2022-08-16 2024-02-22 Oxford Biomedica (Uk) Limited Proteines d'enveloppe
WO2024084041A2 (fr) 2022-10-21 2024-04-25 Institut Pasteur Polynucléotides et vecteurs lentiviraux exprimant des antigènes non structuraux d'un flavivirus choisi parmi le groupe de denv, zikv et yfv, induisant une immunité de lymphocytes t cd8 + protecteurs chez un hôte
US11976116B2 (en) 2016-04-14 2024-05-07 2Seventy Bio, Inc. Salvage chimeric antigen receptor systems
US12006369B2 (en) 2014-07-24 2024-06-11 2Seventy Bio, Inc. BCMA chimeric antigen receptors
WO2024200573A1 (fr) 2023-03-27 2024-10-03 LAVA Therapeutics N.V. Agents de liaison à la nectine-4 et méthodes d'utilisation
US12109234B2 (en) 2016-11-04 2024-10-08 2Seventy Bio, Inc. Anti-BCMA CAR T cell compositions

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0526211D0 (en) * 2005-12-22 2006-02-01 Oxford Biomedica Ltd Viral vectors
US20110142880A1 (en) * 2008-03-28 2011-06-16 Franck Yann Lemiale Lentivirus-based immunogenic vectors
WO2009131706A1 (fr) * 2008-04-26 2009-10-29 Yung-Nien Chang Vecteurs lentiviraux à intégration dirigée
CA2754603A1 (fr) * 2009-03-13 2010-09-16 Lentigen Corporation Vaccins a vecteurs retroviraux non integrants
GB201202516D0 (en) 2012-02-13 2012-03-28 Ucl Business Plc Materials and methods relating to packaging cell lines
US9713635B2 (en) 2012-03-30 2017-07-25 Immune Design Corp. Materials and methods for producing improved lentiviral vector particles
AU2013237900B2 (en) 2012-03-30 2017-07-27 Immune Design Corp. Lentiviral vector particles having improved transduction efficiency for cells expressing DC- SIGN
BR112015013784A2 (pt) 2012-12-12 2017-07-11 Massachusetts Inst Technology aplicação, manipulação e otimização de sistemas, métodos e composições para manipulação de sequência e aplicações terapêuticas
EP2931892B1 (fr) 2012-12-12 2018-09-12 The Broad Institute, Inc. Procédés, modèles, systèmes et appareil pour identifier des séquences cibles pour les enzymes cas ou des systèmes crispr-cas pour des séquences cibles et transmettre les résultats associés
KR20160034901A (ko) 2013-06-17 2016-03-30 더 브로드 인스티튜트, 인코퍼레이티드 서열 조작에 최적화된 crispr-cas 이중 닉카아제 시스템, 방법 및 조성물
EP3011029B1 (fr) 2013-06-17 2019-12-11 The Broad Institute, Inc. Délivrance, fabrication et optimisation de systèmes, de procédés et de compositions pour la manipulation de séquences et applications thérapeutiques
ES2767318T3 (es) * 2013-06-17 2020-06-17 Broad Inst Inc Suministro, modificación y optimización de sistemas, métodos y composiciones para generar modelos y actuar sobre enfermedades y trastornos de células posmitóticas
WO2014204727A1 (fr) 2013-06-17 2014-12-24 The Broad Institute Inc. Génomique fonctionnelle utilisant des systèmes crispr-cas, procédés de composition, cribles et applications de ces derniers
CN105793425B (zh) 2013-06-17 2021-10-26 布罗德研究所有限公司 使用病毒组分靶向障碍和疾病的crispr-cas系统和组合物的递送、用途和治疗应用
CN107995927B (zh) 2013-06-17 2021-07-30 布罗德研究所有限公司 用于肝靶向和治疗的crispr-cas系统、载体和组合物的递送与用途
WO2015089486A2 (fr) 2013-12-12 2015-06-18 The Broad Institute Inc. Systèmes, procédés et compositions pour manipulation de séquences avec systèmes crispr-cas fonctionnels optimisés
KR20160089527A (ko) 2013-12-12 2016-07-27 더 브로드 인스티튜트, 인코퍼레이티드 게놈 편집을 위한 crispr-cas 시스템 및 조성물의 전달, 용도 및 치료적 응용
CA2932472A1 (fr) 2013-12-12 2015-06-18 Massachusetts Institute Of Technology Compositions et procedes d'utilisation de systemes crispr-cas dans les maladies dues a une repetition de nucleotides
WO2015089364A1 (fr) 2013-12-12 2015-06-18 The Broad Institute Inc. Structure cristalline d'un système crispr-cas, et ses utilisations
EP3985115A1 (fr) 2014-12-12 2022-04-20 The Broad Institute, Inc. Arn guides protégés (pgrnas)
MX2017016289A (es) 2015-06-18 2018-08-15 Broad Inst Inc Mutaciones de la enzima crispr que reducen los efectos fuera del blanco.
WO2016205759A1 (fr) 2015-06-18 2016-12-22 The Broad Institute Inc. Modification et optimisation de systèmes, de méthodes, d'enzymes et d'échafaudages guides d'orthologues de cas9 et variant pour la manipulation de séquences
EP3353669A4 (fr) 2015-09-23 2019-04-24 Sensoriant, Inc. Procédé et système pour utiliser des états de dispositif et des préférences d'utilisateur pour créer des environnements conviviaux
WO2017060662A1 (fr) * 2015-10-07 2017-04-13 The Secretary Of State For Health Procédé de préparation d'un témoin à utiliser dans un dépistage de virus pathogène
WO2017214938A1 (fr) * 2016-06-16 2017-12-21 毛侃琅 Vecteur d'expression lentiviral pour favoriser spécifiquement l'expression élevée du gène bace1, et ses applications
AU2017370662A1 (en) * 2016-12-06 2019-06-27 Bluebird Bio, Inc. Gene therapy for mucopolysaccharidosis, type I
RU2019120663A (ru) * 2016-12-06 2021-01-11 Блубёрд Био, Инк. Генная терапия для лечения мукополисахаридоза ii типа
KR20210102870A (ko) 2018-08-30 2021-08-20 테나야 테라퓨틱스, 인코포레이티드 미오카르딘 및 ascl1을 사용한 심장 세포 재프로그래밍
SG11202110607WA (en) 2019-04-01 2021-10-28 Tenaya Therapeutics Inc Adeno-associated virus with engineered capsid
EP3997226A1 (fr) 2019-07-11 2022-05-18 Tenaya Therapeutics, Inc. Reprogrammation de cellules cardiaques avec des microarn et d'autres facteurs
WO2021212279A1 (fr) * 2020-04-20 2021-10-28 广东东阳光药业有限公司 Plasmide de transfert amélioré par titre pour lentivirus
CN114807228B (zh) * 2020-04-27 2023-12-15 北京化工大学 一种t7rna聚合酶和t7启动子的表达系统及使用其在真核生物中表达蛋白质的方法
US11781156B2 (en) 2020-10-09 2023-10-10 Tenaya Therapeutics, Inc. Plakophillin-2 gene therapy methods and compositions
CN114181972A (zh) * 2021-11-23 2022-03-15 上海本导基因技术有限公司 适用于难治性血管新生性眼疾病基因治疗的慢病毒载体
AU2023252508A1 (en) 2022-04-13 2024-10-10 Consorcio Centro De Investigación Biomédica En Red Treatment of neuromuscular diseases via gene therapy that expresses klotho protein
WO2024102954A1 (fr) 2022-11-10 2024-05-16 Massachusetts Institute Of Technology Système d'écrêtage induit par activation (aics)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0386882A1 (fr) 1989-02-06 1990-09-12 Dana Farber Cancer Institute Provirus d'HIV défectif pour l'empaquetage, lignées cellulaires et leur utilisation
WO1997031119A1 (fr) 1996-02-21 1997-08-28 Res Inst For Genetic And Human Procedes et compositions pour l'immunisation genetique protectrice et therapeutique
US5665577A (en) 1989-02-06 1997-09-09 Dana-Farber Cancer Institute Vectors containing HIV packaging sequences, packaging defective HIV vectors, and uses thereof
WO1999031251A1 (fr) 1997-12-12 1999-06-24 Cell Genesys, Inc. Procedes et moyens de production de vecteurs de lentivirus de recombinaison surs et a titre eleve
US5981276A (en) 1990-06-20 1999-11-09 Dana-Farber Cancer Institute Vectors containing HIV packaging sequences, packaging defective HIV vectors, and uses thereof
WO1999058701A1 (fr) 1998-05-13 1999-11-18 Genetix Pharmaceuticals, Inc. Nouvelles cellules lentivirales d'encapsidation
US6013516A (en) 1995-10-06 2000-01-11 The Salk Institute For Biological Studies Vector and method of use for nucleic acid delivery to non-dividing cells
WO2000072886A1 (fr) * 1999-05-26 2000-12-07 Dana-Farber Cancer Institute, Inc. Vecteurs lentiviraux a replication episomique
WO2001027304A2 (fr) 1999-10-12 2001-04-19 Institut Pasteur Adn lentiviral triplex, vecteurs et cellules de recombinaison contenant ledit adn lentiviral triplex
WO2002097104A1 (fr) 2001-06-01 2002-12-05 Centre National De La Recherche Scientifique Pseudotypage des vecteurs vih-1 par des enveloppes de rhabdovirus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2487300A (en) * 1998-12-31 2000-07-31 Chiron Corporation Polynucleotides encoding antigenic hiv type c polypeptides, polypeptides and uses thereof
RU2301260C2 (ru) * 2000-09-22 2007-06-20 Вирэкссис Корпорейшн Вирусные векторы с зависимой от условий репликацией и их применение
US20070042494A1 (en) * 2005-05-31 2007-02-22 Tal Kafri Heterologous retroviral packaging system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0386882A1 (fr) 1989-02-06 1990-09-12 Dana Farber Cancer Institute Provirus d'HIV défectif pour l'empaquetage, lignées cellulaires et leur utilisation
US5665577A (en) 1989-02-06 1997-09-09 Dana-Farber Cancer Institute Vectors containing HIV packaging sequences, packaging defective HIV vectors, and uses thereof
US5981276A (en) 1990-06-20 1999-11-09 Dana-Farber Cancer Institute Vectors containing HIV packaging sequences, packaging defective HIV vectors, and uses thereof
US6013516A (en) 1995-10-06 2000-01-11 The Salk Institute For Biological Studies Vector and method of use for nucleic acid delivery to non-dividing cells
WO1997031119A1 (fr) 1996-02-21 1997-08-28 Res Inst For Genetic And Human Procedes et compositions pour l'immunisation genetique protectrice et therapeutique
WO1999031251A1 (fr) 1997-12-12 1999-06-24 Cell Genesys, Inc. Procedes et moyens de production de vecteurs de lentivirus de recombinaison surs et a titre eleve
WO1999058701A1 (fr) 1998-05-13 1999-11-18 Genetix Pharmaceuticals, Inc. Nouvelles cellules lentivirales d'encapsidation
WO2000072886A1 (fr) * 1999-05-26 2000-12-07 Dana-Farber Cancer Institute, Inc. Vecteurs lentiviraux a replication episomique
WO2001027304A2 (fr) 1999-10-12 2001-04-19 Institut Pasteur Adn lentiviral triplex, vecteurs et cellules de recombinaison contenant ledit adn lentiviral triplex
WO2002097104A1 (fr) 2001-06-01 2002-12-05 Centre National De La Recherche Scientifique Pseudotypage des vecteurs vih-1 par des enveloppes de rhabdovirus

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHARNEAU ET AL., JOURNAL OF VIROLOGY, May 1992 (1992-05-01)
FOLLENZI A ET AL: "Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences", NATURE GENETICS, NATURE AMERICA, NEW YORK, US, vol. 25, no. 2, June 2000 (2000-06-01), pages 217 - 222, XP002980776, ISSN: 1061-4036 *
FOLLENZI ET AL., NATURE GENETICS, vol. 5, June 2000 (2000-06-01)
LEAVITT A D ET AL: "Human immunodeficiency virus type 1 integrase mutants retain in vitro integrase activity yet fail to integrate viral DNA efficiently during infection", JOURNAL OF VIROLOGY, THE AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 70, no. 2, February 1996 (1996-02-01), pages 721 - 728, XP002207365, ISSN: 0022-538X *
LEAVITT ET AL., JOURNAL OF VIROLOGY, February 1996 (1996-02-01), pages 721 - 728
WISKERCHEN ET AL., JOURNAL OF VIROLOGY, January 1995 (1995-01-01), pages 376 - 386
WISKERCHEN M ET AL: "HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 INTEGRASE: EFFECTS OF MUTATIONSON VIRAL ABILITY TO INTEGRATE, DIRECT VIRAL GENE EXPRESSION FROM UNINTEGRATED VIRAL DNA TEMPLATES, AND SUSTAIN VIRAL PROPAGATION IN PRIMARY CELLS", JOURNAL OF VIROLOGY, THE AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 69, no. 1, January 1995 (1995-01-01), pages 376 - 386, XP000560257, ISSN: 0022-538X *

Cited By (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091066A1 (fr) * 2006-02-07 2007-08-16 Ucl Business Plc Applications de vecteurs lentiviraux non intégrants
US8420104B2 (en) 2007-08-03 2013-04-16 Institut Pasteur Lentiviral gene transfer vectors and their medicinal applications
EP2020444A1 (fr) * 2007-08-03 2009-02-04 Institut Pasteur Vecteurs lentivirus de transfert, déficient dans la function d'intégration, utilisés comme vaccins
AU2013203404B2 (en) * 2007-08-03 2016-10-13 Centre National De La Recherche Scientifique (Cnrs) Lentiviral gene transfer vectors and their medicinal applications
US9328146B2 (en) 2007-08-03 2016-05-03 Institut Pasteur Lentiviral gene transfer vectors and their medicinal applications
US8709799B2 (en) 2007-08-03 2014-04-29 Institut Pasteur Lentiviral gene transfer vectors and their medicinal applications
EP2597155A1 (fr) 2007-10-25 2013-05-29 Sangamo BioSciences, Inc. Procédés et compositions pour une intégration ciblée
US8936936B2 (en) 2007-10-25 2015-01-20 Sangamo Biosciences, Inc. Methods and compositions for targeted integration
WO2010117464A1 (fr) 2009-04-09 2010-10-14 Sangamo Biosciences, Inc. Intégration ciblée dans des cellules souches
US10155011B2 (en) 2009-11-10 2018-12-18 Sangamo Therapeutics, Inc. Targeted disruption of T cell receptor genes using engineered zinc finger protein nucleases
US11439666B2 (en) 2009-11-10 2022-09-13 Sangamo Therapeutics, Inc. Targeted disruption of T cell receptor genes using engineered zinc finger protein nucleases
US8956828B2 (en) 2009-11-10 2015-02-17 Sangamo Biosciences, Inc. Targeted disruption of T cell receptor genes using engineered zinc finger protein nucleases
EP2660318A1 (fr) 2010-02-09 2013-11-06 Sangamo BioSciences, Inc. Modification génomique ciblée de molécules partiellement donneuses à simple brin
WO2011100058A1 (fr) 2010-02-09 2011-08-18 Sangamo Biosciences, Inc. Modification génomique ciblée avec des molécules donneuses partiellement monocaténaires
EP2385107A1 (fr) 2010-05-03 2011-11-09 Institut Pasteur Composés immunologiques basés sur un vecteur de lentivirus contre le paludisme
WO2011138251A1 (fr) 2010-05-03 2011-11-10 Institut Pasteur Vecteur lentiviral à base de composés immunologique contre la malaria
WO2012152912A1 (fr) 2011-05-12 2012-11-15 Newvectys Cochon génétiquement modifié en tant que modèle de prédisposition au cancer
US9475851B2 (en) 2011-11-08 2016-10-25 Institut Pasteur High MAST2-affinity polypeptides and uses thereof
US10227653B2 (en) 2011-11-08 2019-03-12 Institut Pasteur High MAST2-affinity polypeptides and uses thereof
US11130820B2 (en) 2012-12-20 2021-09-28 Celgene Corporation Chimeric antigen receptors
US11806365B2 (en) 2013-03-15 2023-11-07 Celgene Corporation Modified T lymphocytes comprising a CD52 antibody-inducible caspase and methods of apoptosis
US10967005B2 (en) 2013-03-15 2021-04-06 Celgene Corporation Modified T lymphocytes comprising a BAFF antibody-inducible caspase and methods of apoptosis
WO2015040063A1 (fr) * 2013-09-17 2015-03-26 Inserm (Institut National De La Sante Et De La Recherche Medicale) Vecteurs lentiviraux comprenant une protéine intégrase mutante et utilisations associées
WO2015078935A1 (fr) 2013-11-29 2015-06-04 Institut Pasteur Moyens de type effecteurs tal pour la délétion partielle ou complète des répétitions adn en tandem
EP2878667A1 (fr) 2013-11-29 2015-06-03 Institut Pasteur Moyens pour effecteur TAL utiles à la délition partielle ou complète de séquences répétitives d'ADN
EP3650548A1 (fr) 2013-12-20 2020-05-13 Oxford BioMedica (UK) Limited Système de production de vecteurs viraux
US10774343B2 (en) 2014-04-25 2020-09-15 Bluebird Bio, Inc. MND promoter chimeric antigen receptors
US10479975B2 (en) 2014-06-06 2019-11-19 Bluebird Bio, Inc. Methods of making T cell compositions
US11560547B2 (en) 2014-06-06 2023-01-24 2Seventy Bio, Inc. Methods of making T cell compositions
US12006369B2 (en) 2014-07-24 2024-06-11 2Seventy Bio, Inc. BCMA chimeric antigen receptors
US11779640B2 (en) 2014-12-11 2023-10-10 Institut Pasteur Lentiviral vector-based Japanese encephalitis immunogenic composition
WO2016091836A1 (fr) * 2014-12-11 2016-06-16 Institut Pasteur Composition immunogène contre l'encéphalite japonaise à base d'un vecteur lentiviral
EP3031923A1 (fr) * 2014-12-11 2016-06-15 Institut Pasteur Composition immunogène contre l'encéphalite japonaise à base de vecteurs lentiviraux
US10603374B2 (en) 2014-12-11 2020-03-31 Institut Pasteur Lentiviral vector-based Japanese encephalitis immunogenic composition
EP3628687A1 (fr) 2014-12-12 2020-04-01 Bluebird Bio, Inc. Récepteurs de l'antigène chimérique bcma
US11020466B2 (en) 2014-12-12 2021-06-01 Bluebird Bio, Inc. BCMA chimeric antigen receptors
US10383929B2 (en) 2014-12-12 2019-08-20 Bluebird Bio, Inc. BCMA chimeric antigen receptors
US11633463B2 (en) 2014-12-12 2023-04-25 2Seventy Bio, Inc. BCMA chimeric antigen receptors
US11382965B2 (en) 2014-12-12 2022-07-12 2Seventy Bio, Inc. BCMA chimeric antigen receptors
US11351236B2 (en) 2014-12-12 2022-06-07 2Seventy Bio, Inc. BCMA chimeric antigen receptors
EP3971210A1 (fr) 2014-12-12 2022-03-23 2seventy bio, Inc. Composition utilisée dans le traitement d'affections liées aux cellules b chez un sujet en besoin, comprenant une cellule effective comportant des récepteurs d'antigènes chimériques bcma
US12029784B2 (en) 2014-12-12 2024-07-09 2Seventy Bio, Inc. BCMA chimeric antigen receptors
US10646558B2 (en) 2014-12-12 2020-05-12 Bluebird Bio, Inc. BCMA chimeric antigen receptors
US10624960B2 (en) 2014-12-12 2020-04-21 Bluebird Bio, Inc. BCMA chimeric antigen receptors
EP3640262A1 (fr) 2014-12-12 2020-04-22 Bluebird Bio, Inc. Récepteurs de l'antigène chimérique bcma destinés à être utilisés dans le traitement d'une malignité hématologique
US10639358B2 (en) 2014-12-12 2020-05-05 Bluebird Bio, Inc. BCMA chimeric antigen receptors
US10639359B2 (en) 2014-12-12 2020-05-05 Bluebird Bio, Inc. BCMA chimeric antigen receptors
US11479755B2 (en) 2015-12-07 2022-10-25 2Seventy Bio, Inc. T cell compositions
US11976116B2 (en) 2016-04-14 2024-05-07 2Seventy Bio, Inc. Salvage chimeric antigen receptor systems
WO2018035141A1 (fr) 2016-08-16 2018-02-22 Bluebird Bio, Inc. Variants d'endonucléase de homing du récepteur alpha de l'il-10, compositions et méthodes d'utilisation associées
WO2018039333A1 (fr) 2016-08-23 2018-03-01 Bluebird Bio, Inc. Variants de l'endonucléase homing tim3, compositions et procédés d'utilisation
US11365226B2 (en) 2016-09-08 2022-06-21 2Seventy Bio, Inc. PD-1 homing endonuclease variants, compositions, and methods of use
EP4248979A2 (fr) 2016-09-08 2023-09-27 2seventy bio, Inc. Variants de l'endonucléase homing pd1, compositions et procédés d'utilisation
WO2018049226A1 (fr) 2016-09-08 2018-03-15 Bluebird Bio, Inc. Variants de l'endonucléase homing pd1, compositions et procédés d'utilisation
US11912746B2 (en) 2016-09-08 2024-02-27 2Seventy Bio, Inc. PD-1 homing endonuclease variants, compositions, and methods of use
US11530395B2 (en) 2016-10-17 2022-12-20 2Seventy Bio, Inc. TGFBetaR2 endonuclease variants, compositions, and methods of use
US12109234B2 (en) 2016-11-04 2024-10-08 2Seventy Bio, Inc. Anti-BCMA CAR T cell compositions
EP4353822A2 (fr) 2016-11-17 2024-04-17 2seventy bio, Inc. Convertisseur de signaux tgf béta
WO2018094244A1 (fr) 2016-11-17 2018-05-24 Bluebird Bio, Inc. CONVERTISSEUR DE SIGNAUX TGFβ
WO2018141874A2 (fr) 2017-02-02 2018-08-09 Institut Pasteur Antigènes pré-érythrocytaires à paludisme multiple et leur utilisation dans l'élicitation d'une réponse immunitaire protectrice chez un hôte
EP3357506A1 (fr) 2017-02-02 2018-08-08 Institut Pasteur Plusieurs antigènes pré-érythrocytiques du paludisme et leur utilisation dans le déclenchement d'une réponse immunitaire protectrice chez un hôte
EP3357504A1 (fr) 2017-02-02 2018-08-08 Institut Pasteur Criblage fonctionnel de polypeptides antigéniques - utilisation pour l'identification d'antigènes élicitant une réponse immunitaire protectrice et pour la sélection d'antigènes présentant une activité de protection optimale
WO2018141864A1 (fr) 2017-02-02 2018-08-09 Institut Pasteur Criblage fonctionnel de polypeptides antigéniques et utilisation pour identifier des antigènes provoquant une réponse immunitaire protectrice et pour sélectionner des antigènes ayant une activité protectrice optimale
US11499149B2 (en) 2017-02-15 2022-11-15 2Seventy Bio, Inc. Donor repair templates multiplex genome editing
WO2018152325A1 (fr) 2017-02-15 2018-08-23 Bluebird Bio, Inc. Modèles de réparation de donneur pour l'édition de génome multiplex
EP4317447A2 (fr) 2017-02-15 2024-02-07 2seventy bio, Inc. Modèles de réparation de donneur pour l'édition du génome multiplex
US10927367B2 (en) 2017-05-25 2021-02-23 Bluebird Bio, Inc. CBLB endonuclease variants, compositions, and methods of use
US11732255B2 (en) 2017-05-25 2023-08-22 2Seventy Bio, Inc. CBLB endonuclease variants, compositions, and methods of use
US11779654B2 (en) 2017-10-04 2023-10-10 2Seventy Bio, Inc. PCSK9 endonuclease variants, compositions, and methods of use
EP3633040A1 (fr) 2017-12-22 2020-04-08 Oxford BioMedica (UK) Limited Vecteur rétroviral
EP3502260A1 (fr) 2017-12-22 2019-06-26 Oxford BioMedica (UK) Limited Vecteur rétroviral
EP3696272A1 (fr) 2017-12-22 2020-08-19 Oxford BioMedica (UK) Limited Vecteur rétroviral
WO2019143772A1 (fr) 2018-01-17 2019-07-25 Immatics Us Inc. Méthodes d'évaluation de la capacité de transduction de vecteurs viraux
DE102018100967B4 (de) 2018-01-17 2019-08-14 Immatics US, Inc. Verfahren zur feststellung der wirksamkeit von viralen vektoren
DE102018010282A1 (de) 2018-01-17 2019-07-18 Immatics US, Inc. Verfahren zur Feststellung der Wirksamkeit von viralen Vektoren
US12060419B2 (en) 2018-06-14 2024-08-13 Regeneron Pharmaceuticals, Inc. CD79A chimeric antigen receptors
WO2019241685A1 (fr) 2018-06-14 2019-12-19 Bluebird Bio, Inc. Récepteurs antigéniques chimériques anti-cd79a
EP4365194A2 (fr) 2018-06-14 2024-05-08 2seventy bio, Inc. Récepteurs antigéniques chimériques anti-cd79a
EP4223269A2 (fr) 2018-07-11 2023-08-09 Celgene Corporation Utilisations de récepteurs antigéniques chimériques anti-bcma
WO2020014333A1 (fr) 2018-07-11 2020-01-16 Celgene Corporation Utilisations de récepteurs d'antigènes chimériques anti-bcma
US10793843B2 (en) 2018-10-04 2020-10-06 Bluebird Bio, Inc. CBLB endonuclease variants, compositions, and methods of use
WO2021013867A1 (fr) 2019-07-22 2021-01-28 Genethon Intégration précise à l'aide d'un idlv ciblant une nucléase
EP3770264A1 (fr) 2019-07-22 2021-01-27 Genethon Intégration précise à l'aide d'un idlv ciblé par nucléase
WO2021051390A1 (fr) 2019-09-20 2021-03-25 上海吉倍生物技术有限公司 Anticorps et récepteur antigénique chimérique ciblant bcma
WO2021091978A1 (fr) 2019-11-05 2021-05-14 Celgene Corporation Utilisations de récepteurs d'antigènes chimériques anti-bcma
WO2021094752A1 (fr) 2019-11-12 2021-05-20 Oxford Biomedica (Uk) Limited Système de production
WO2021160993A1 (fr) 2020-02-13 2021-08-19 Oxford Biomedica (Uk) Limited Production de vecteurs lentiviraux
WO2021181108A1 (fr) 2020-03-13 2021-09-16 Oxford Biomedica (Uk) Limited Vecteurs lentiviraux
WO2021229242A1 (fr) 2020-05-15 2021-11-18 Oxford Biomedica (Uk) Limited Production de vecteur viral
EP3984548A1 (fr) 2020-10-16 2022-04-20 Institut Pasteur Génération de vecteurs lentiviraux permettant d'acheminer des antigènes vers la voie mhc-ii et d'induire une réponse immunitaire des cellules t cd4+ et cd8+ chez un hôte
WO2022079303A1 (fr) 2020-10-16 2022-04-21 Institut Pasteur Vecteurs lentiviraux permettant l'acheminement des antigènes vers la voie mhc-ii et l'induction de réponses cellulaires t cd4+ et cd8+ chez un hôte
WO2022098685A2 (fr) 2020-11-04 2022-05-12 Celgene Corporation Traitement par les lymphocytes car-t chez des patients ayant reçu un traitement anticancéreux antérieur par un agent alkylant
EP4335457A2 (fr) 2020-11-10 2024-03-13 Oxford BioMedica (UK) Limited Préparation d'une solution de complexes polymère/acide nucléique
WO2022101617A1 (fr) 2020-11-10 2022-05-19 Oxford Biomedica (Uk) Limited Préparation d'une solution de complexes polymère/acide nucléique
EP4335458A2 (fr) 2020-11-10 2024-03-13 Oxford BioMedica (UK) Limited Préparation d'une solution de complexes polymère/acide nucléique
WO2022120160A1 (fr) 2020-12-04 2022-06-09 Celgene Corporation Utilisations de thérapies par lymphocytes t de récepteurs antigéniques chimériques (car) en association avec des inhibiteurs de facteurs solubles associés à une inflammation
WO2022189656A1 (fr) 2021-03-12 2022-09-15 Institut Pasteur Vecteurs lentiviraux ciblant des antigènes sur la voie mhc-ii et induisant une immunité protectrice des lymphocytes t cd8+ et cd4+ chez un hôte
WO2022221737A1 (fr) 2021-04-16 2022-10-20 Juno Therapeutics, Inc. Thérapie par lymphocytes t chez des patients ayant antérieurement subi une transplantation de cellules souches
WO2023288267A1 (fr) 2021-07-14 2023-01-19 2Seventy Bio, Inc. Récepteurs de lymphocytes t modifiés fusionnés à des domaines de liaison d'anticorps
GB202114532D0 (en) 2021-10-12 2021-11-24 Oxford Biomedica Ltd Lentiviral Vectors
GB202114529D0 (en) 2021-10-12 2021-11-24 Oxford Biomedica Ltd Lentiviral vectors
WO2023062359A2 (fr) 2021-10-12 2023-04-20 Oxford Biomedica (Uk) Limited Nouveaux éléments régulateurs viraux
WO2023062366A1 (fr) 2021-10-12 2023-04-20 Oxford Biomedica (Uk) Limited Vecteurs rétroviraux
WO2023062367A1 (fr) 2021-10-12 2023-04-20 Oxford Biomedica (Uk) Limited Vecteurs lentiviraux
WO2023062363A1 (fr) 2021-10-12 2023-04-20 Oxford Biomedica (Uk) Limited Vecteurs lentiviraux
GB202114530D0 (en) 2021-10-12 2021-11-24 Oxford Biomedica Ltd Retroviral vectors
WO2023062365A2 (fr) 2021-10-12 2023-04-20 Oxford Biomedica (Uk) Limited Vecteurs lentiviraux
WO2023105235A1 (fr) 2021-12-09 2023-06-15 Oxford Biomedica (Uk) Limited Procédé de purification de vecteurs viraux
WO2023196997A2 (fr) 2022-04-08 2023-10-12 2Seventy Bio, Inc. Récepteur multipartite et complexes de signalisation
WO2023196996A2 (fr) 2022-04-08 2023-10-12 2Seventy Bio, Inc. Récepteur multipartite et complexes de signalisation
WO2023220641A2 (fr) 2022-05-11 2023-11-16 Juno Therapeutics, Inc. Méthodes et utilisations associées à une thérapie par lymphocytes t et leur production
WO2023230512A1 (fr) 2022-05-26 2023-11-30 2Seventy Bio, Inc. Compositions pour conserver des vecteurs lentiviraux et leurs utilisations
WO2024038266A1 (fr) 2022-08-16 2024-02-22 Oxford Biomedica (Uk) Limited Proteines d'enveloppe
WO2024084041A2 (fr) 2022-10-21 2024-04-25 Institut Pasteur Polynucléotides et vecteurs lentiviraux exprimant des antigènes non structuraux d'un flavivirus choisi parmi le groupe de denv, zikv et yfv, induisant une immunité de lymphocytes t cd8 + protecteurs chez un hôte
WO2024200573A1 (fr) 2023-03-27 2024-10-03 LAVA Therapeutics N.V. Agents de liaison à la nectine-4 et méthodes d'utilisation

Also Published As

Publication number Publication date
EP1761635B1 (fr) 2011-09-14
US20080089863A1 (en) 2008-04-17
AU2005266221B2 (en) 2010-06-10
US8119119B2 (en) 2012-02-21
IL179740A0 (en) 2007-05-15
ATE524554T1 (de) 2011-09-15
CA2579753C (fr) 2015-04-14
FR2872170B1 (fr) 2006-11-10
EP1761635A1 (fr) 2007-03-14
CN101023177A (zh) 2007-08-22
JP2008503230A (ja) 2008-02-07
CA2579753A1 (fr) 2006-02-02
AU2005266221A1 (en) 2006-02-02
JP4861314B2 (ja) 2012-01-25
FR2872170A1 (fr) 2005-12-30

Similar Documents

Publication Publication Date Title
EP1761635B1 (fr) Lentivirus non integratif et non replicatif, preparation et utilisations
EP1071804B1 (fr) Utilisation de sequences d'adn de structure triplex pour le transfert de sequences nucleotidiques
JP4190579B2 (ja) 非分裂細胞への核酸運搬のためのベクターおよび使用方法
US20080131400A1 (en) Vector system
CA2251027C (fr) Particules virales defectives vaccinales obtenues in vivo ou ex vivo
JP2008303215A (ja) ベクターシステム
US20040202642A1 (en) Lentiviral-mediated growth factor gene therapy for nerodegenerative diseases
FR2741358A1 (fr) Production de vecteurs retroviraux par l'intermediaire de vecteurs viraux a base de virus a adn
US8278284B2 (en) Therapeutic agents for diseases associated with apoptotic degeneration in ocular tissue cells that use SIV-PEDF vectors
EP1392838B1 (fr) Pseudotypage de vecteurs hiv par des enveloppes de virus mokola
DE60313743T2 (de) Mit influenzavirus-hämagglutinin und influenza m2 pseudotypisierte retrovirusvektoren zur zuführung von genen
CA2258490A1 (fr) Nouveau site interne d'entree des ribosomes et vecteur le contenant
DE602004013165T2 (de) Chimärisches vektorsystem
JP2006502240A (ja) ベクター系
CA2257916A1 (fr) Generation de molecules replicatives in vivo
EP1006123A2 (fr) Protéines d'enveloppe, methodes et utilisations
EP1398041A1 (fr) Vecteur lentiviral recombinant pseudotypé avec l'hemagglutinine pour le transfert de genes dans la rétine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2579753

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005266221

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005779704

Country of ref document: EP

Ref document number: 179740

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2005266221

Country of ref document: AU

Date of ref document: 20050624

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005266221

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007517365

Country of ref document: JP

Ref document number: 200580020938.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 11628534

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005779704

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11628534

Country of ref document: US