WO2006010665A1 - Brennstoffeinspritzventil - Google Patents

Brennstoffeinspritzventil Download PDF

Info

Publication number
WO2006010665A1
WO2006010665A1 PCT/EP2005/052553 EP2005052553W WO2006010665A1 WO 2006010665 A1 WO2006010665 A1 WO 2006010665A1 EP 2005052553 W EP2005052553 W EP 2005052553W WO 2006010665 A1 WO2006010665 A1 WO 2006010665A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
valve
magnetic
injection valve
valve sleeve
Prior art date
Application number
PCT/EP2005/052553
Other languages
English (en)
French (fr)
Inventor
Anh-Tuan Hoang
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to DE502005010490T priority Critical patent/DE502005010490D1/de
Priority to JP2007523049A priority patent/JP2008507660A/ja
Priority to EP05752577A priority patent/EP1774165B1/de
Priority to US11/658,464 priority patent/US20080308658A1/en
Publication of WO2006010665A1 publication Critical patent/WO2006010665A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0614Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0667Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature acting as a valve or having a short valve body attached thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0682Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the body being hollow and its interior communicating with the fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • H01F2007/085Yoke or polar piece between coil bobbin and armature having a gap, e.g. filled with nonmagnetic material

Definitions

  • the invention relates to a fuel injection valve according to the preamble of claim 1.
  • Fuel injection valves have, for example for stabilizing and for sealing the actuator on a valve sleeve, which is produced by deep drawing and extends substantially over the entire length of the fuel injection valve.
  • a fuel injection valve is known for example from the document DE 101 22 353 Al.
  • valve sleeve due to the requirements of their stability consists of a magnetizable material which ensures the operation of the fuel injection valve for a magnetic shunt, so that is not the maximum possible magnetic force for actuating the fuel injection valve available.
  • the fuel injection valve according to the invention with the characterizing features of claim 1 has the advantage that the valve sleeve is made of a material having low magnetic permeability, whereby losses in the magnetic flux can be avoided by the armature of the fuel injection valve and the magnetic force is unrestricted available.
  • valve sleeve consists of a powder composite material which has iron and non-magnetic admixtures.
  • valve sleeve * 1 can be produced in a simple manner by deep drawing.
  • Fig. 2 is a partial schematic detail of the fuel injection valve shown in Fig. 1 in the area II in Fig. 1, and Fig. 3 is a schematic representation of the magnetic characteristic of the original material and the material with altered magnetic properties.
  • Fig. 1 shows for better understanding of the inventive measures first in a schematic sectional view of a longitudinal section through a fuel injector 1, which is particularly suitable for injecting fuel into a suction pipe of an internal combustion engine, not shown.
  • the fuel injection valve 1 comprises a magnetic coil 2 which is wound on a bobbin 3.
  • the bobbin 3 is encapsulated in a valve housing 4, which serves as the outer pole of the magnetic coil 2, and is closed by a cover 5.
  • a contact lug 6 is formed at the bobbin 3.
  • the bobbin 3 is penetrated by a valve sleeve 7, which is designed tubular.
  • a support tube 8 serves as the inner pole of the magnetic coil 2 and at the same time supports the thin-walled valve sleeve 7.
  • an armature 9 is arranged, which is formed integrally with a valve needle 10, for example.
  • valve needle 10 through-flow openings 11 are provided, which guide the fuel injector 1 flowing through the fuel to a sealing seat.
  • the valve needle 10 is preferably by welding in operative connection with a spherical valve closure member 13 in the embodiment, which forms a sealing seat with a valve seat body 14. Downstream of the sealing seat, at least one spray-discharge opening 15 is formed in a spray-disk 12, from which the fuel is injected into the suction pipe (not shown).
  • the armature 9 is acted upon in the idle state of the fuel injection valve 1 by a return spring 16 so that the fuel injection valve 1 is kept closed by the pressure of the valve closing body 13 on the valve seat body 14.
  • the return spring 16 is arranged in a recess 17 of the armature 9 and the support tube 8 and is brought by an adjusting sleeve 18 to bias.
  • a cup-shaped filter element 19 is preferably pressed into the fuel injection valve 1.
  • the fuel injection valve 1 is sealed by a seal 20 against a fuel distributor line, not shown, and by a further seal 21 with respect to the suction pipe, also not shown.
  • the fuel which is supplied through a central fuel supply 22, flows through the fuel injection valve 1 through the recess 17 and the through-flow openings 11 to the sealing seat and to the injection opening 15.
  • the fuel injection valve 1 is closed as soon as the magnetic coil 2 exciting current is turned off and the magnetic field is degraded so far that the return spring 16, the armature 9 is depressed from the support tube 8, whereby the Valve needle 10 moves in the outflow direction and the valve closing body 13 touches on the valve seat body 14.
  • the valve sleeve 7 ensures the stability of the fuel injection valve 1 and at the same time seals the magnetic coil 2 with respect to the
  • valve sleeve 7 Due to their wall thickness, which is determined by the system pressure and the manufacturability, the valve sleeve 7 is magnetic to guide the magnetic flux between the valve housing 4 and the armature 9 and between the valve housing 4 and acting as the inner pole support tube 8.
  • the course of the magnetic flux is shown enlarged in FIG. 2 in the region around the magnetic coil 2.
  • the -'Verlauf of the magnetic flux through the valve sleeve 7 is a magnetic shunt in the area designated II, since the magnetic flux at least partially follows the lower resistance in the magnetic valve sleeve 7 and thereby avoids the working gap 23. Thereby, the magnetic flux which flows along the B marked course over the working gap 23 is reduced so that the maximum magnetic force available for attracting the armature 9 is reduced.
  • the invention in order to avoid the disadvantages outlined above, it is intended to magnetically weaken the material from which the valve sleeve 7 is made, ie to reduce the saturation induction for the entire valve sleeve 7 and not only for partial regions.
  • Example can be lowered by about 1 Tesla to about 0.7 Tesla.
  • the saturation induction of the valve sleeve 7 is thus preferably less than 1 Tesla and more preferably less than 0.8 Tesla.
  • Suitable materials which allow such a reduction in saturation induction are, for example, powder composites in which non-magnetic powdery constituents are added to the iron starting material, or materials which inherently have reduced magnetic properties.
  • valve sleeve 7 Due to the lower permeability of the material of the valve sleeve 7, the proportion of the shunt decreases along the path A in Fig. 2, so that an increase in performance over one from a higher permeable material produced valve sleeve 7 is made possible.
  • the tightening force of the solenoid 2 can be increased by 20% and more at a constant voltage.
  • Materials with lower magnetic permeability usually also have a lower electrical conductivity, so that in addition to the increase of the static magnetic force and an improvement of the dynamic behavior can be achieved, which for example improvements of the shutdown times by up to 40% can be achieved.
  • the invention is not limited to the illustrated embodiment and is suitable for any construction of fuel injection valves 1, e.g. for fuel injection valves 1 for direct injection or for fuel injection valves 1 with connection to a common rail system. In particular, any combinations of the individual features are possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Ein Brennstoffeinspritzventil (1) für Brennstoffeinspritzanlagen von Brennkraftmaschinen umfasst eine Magnetspule (2), einen mit der Magnetspule (2) zusammenwirkenden Anker (9), eine Ventilhülse (7) und ein in der Ventilhülse (7) angeordnetem Stützrohr (8), welches als Innenpol für die Magnetspule (2) dient. Die Ventilhülse (7) besteht aus einem Material mit geringer magnetisch Permeabilität.

Description

Brennstoffeinspritzventil
Stand der Technik
Die Erfindung geht aus von einem Brennstoffeinspritzventil nach der Gattung des Anspruchs 1.
Brennstoffeinspritzventile weisen beispielsweise zur Stabilisierung sowie zur Abdichtung des Aktuators eine Ventilhülse auf, welche durch Tiefziehen hergestellt ist und sich im Wesentlichen über die gesamte Baulänge des Brennstoffeinspritzventils erstreckt. Ein solches Brennstoffeinspritzventil ist beispielsweise aus der Druckschrift DE 101 22 353 Al bekannt.
Nachteilig an den bekannten Brennstoffeinspritzventilen ist insbesondere, daß die Ventilhülse bedingt durch die Anforderungen an deren Stabilität aus einem magnetisierbaren Werkstoff besteht, welcher beim Betrieb des Brennstoffeinspritzventils für einen magnetischen Nebenschluß sorgt, so daß nicht die maximal mögliche Magnetkraft zur Betätigung des Brennstoffeinspritzventils zur Verfügung steht. Vorteile der Erfindung
Das erfindungsgemäße Brennstoffeinspritzventil mit den kennzeichnenden Merkmalen des Anspruchs 1 hat demgegenüber den Vorteil, daß die Ventilhülse aus einem Material mit geringer magnetischer Permeabilität hergestellt ist, wodurch Verluste im magnetischen Fluß durch den Anker des Brennstoffeinspritzventils vermieden werden können und die Magnetkraft uneingeschränkt zur Verfügung steht.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterentwicklungen und Verbesserungen des im Anspruch 1 angegebenen Brennstoffeinspritzventils möglich.
Vorteilhafterweise besteht die Ventilhülse aus einem Pulververbundwerkstoff, welcher Eisen und nichtmagnetische Beimischungen aufweist.
Weiterhin ist von Vorteil, daß ein magnetischer Fluß durch die Ventilhülse zugunsten des magnetischen Flusses durch den Anker und den Innenpol des Magnetkreises reduziert wird.
Ebenso ist von Vorteil, daß die Ventilhülse*1 in einfacher Weise durch Tiefziehen herstellbar ist.
Zeichnung
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
Fig. 1 einen schematischen Schnitt durch ein Ausführungsbeispiel eines Brennstoffeinspritz¬ ventils,
Fig. 2 einen auszugsweisen schematischen Ausschnitt aus dem in Fig. 1 dargestellten Brennstoffeinspritzventil im Bereich II in Fig. 1, und Fig. 3 eine schematische Darstellung der magnetischen Kennlinie des ursprünglichen Materials und des Materials mit veränderten magnetischen Eigenschaften.
Beschreibung des Ausführungsbeispiels
Fig. 1 zeigt zur besseren Verständlichkeit der erfindungsgemäßen Maßnahmen zunächst in einer schematisierten Schnittdarstellung einen Längsschnitt durch ein Brennstoffeinspritzventil 1, welches insbesondere zum Einspritzen von Brennstoff in ein nicht näher dargestelltes Saugrohr einer Brennkraftmaschine geeignet ist.
Das Brennstoffeinspritzventil 1 umfaßt eine Magnetspule 2, die auf einen Spulenträger 3 gewickelt ist. Der Spulenträger 3 ist in einem Ventilgehäuse 4 gekapselt, welches als Außenpol der Magnetspule 2 dient, und ist durch einen Deckel 5 abgeschlossen. Am Spulenträger 3 ist eine Kontaktfahne 6 ausgebildet.
Der Spulenträger 3 wird von einer Ventilhülse 7 durchgriffen, welche rohrförmig ausgestaltet ist. Ein Stützrohr 8 dient als Innenpol der Magnetspule 2 und stützt gleichzeitig die dünnwandige Ventilhülse 7. Abströmseitig des Stützrohres 8 ist ein Anker 9 angeordnet, der mit einer Ventilnadel 10 beispielsweise einstückig ausgebildet ist. In der Ventilnadel 10 sind Durchströmöffnungen 11 vorgesehen, die den das Brennstoffeinspritzventil 1 durchströmenden Brennstoff zu einem Dichtsitz leiten.
Die Ventilnadel 10 steht vorzugsweise durch Schweißen in Wirkverbindung mit einem im Ausführungsbeispiel kugelförmigen Ventilschließkörper 13, der mit einem Ventilsitzkörper 14 einen Dichtsitz bildet. Stromabwärts des Dichtsitzes ist in einer Spritzlochscheibe 12 wenigstens eine Abspritzöffnung 15 ausgebildet, aus der der Brennstoff in das nicht weiter dargestellte Saugrohr eingespritzt wird. Der Anker 9 ist im Ruhezustand des Brennstoffeinspritzventils 1 von einer Rückstellfeder 16 so beaufschlagt, daß das Brennstoffeinspritzventil 1 durch den Andruck des Ventilschließkörpers 13 auf den Ventilsitzkörper 14 geschlossen gehalten wird. Die Rückstellfeder 16 ist in einer Ausnehmung 17 des Ankers 9 bzw. des Stützrohres 8 angeordnet und wird durch eine Einstellhülse 18 auf Vorspannung gebracht.
Zulaufseitig der Einstellhülse 18 ist ein topfförmiges Filterelement 19 in das Brennstoffeinspritzventil 1 vorzugsweise eingepreßt. Das Brennstoffeinspritzventil 1 ist durch eine Dichtung 20 gegen eine nicht weiter dargestellte Brennstoffverteilerleitung und durch eine weitere Dichtung 21 gegenüber dem ebenfalls nicht weiter dargestellten Saugrohr abgedichtet. Der Brennstoff, der durch eine zentrale Brennstoffzufuhr 22 zugeleitet wird, durchströmt das Brennstoffeinspritzventil 1 durch die Ausnehmung 17 und die Durchströmöffnungen 11 zum Dichtsitz und zur Abspritzöffnung 15.
Wird der Magnetspule 2 über eine nicht weiteir dargestellte elektrische Leitung und die Kontaktfahne 6 ein elektrischer Strom zugeführt, baut sich ein magnetisches Feld auf, das bei ausreichender Stärke den Anker 9 entgegen der Kraft der Rückstellfeder 16 entgegen der Strömungsrichtung des Brennstoffs in die Magnetspule 2 hineinzieht. Dadurch wird ein zwischen dem Anker 9 und dem Stützrohr 7 ausgebildeter Arbeitsspalt 23 geschlossen. Durch die Bewegung des Ankers 9 wird auch die mit dem Anker 9 in kraftschlüssiger Verbindung stehende Ventilnadel 10 in Hubrichtung mitgenommen, so daß der Ventilschließkörper 13 vom Ventilsitzkörper 14 abhebt und Brennstoff zur Abspritzöffnung 15 geleitet wird.
Das Brennstoffeinspritzventil 1 wird geschlossen, sobald der die Magnetspule 2 erregende Strom abgeschaltet und das Magnetfeld soweit abgebaut ist, daß die Rückstellfeder 16 den Anker 9 vom Stützrohr 8 abdrückt, wodurch sich die Ventilnadel 10 in Abströmrichtung bewegt und der Ventilschließkörper 13 auf dem Ventilsitzkörper 14 aufsetzt.
Wie aus Fig. 1 hervorgeht, weist das Brennstoffeinspritzventil 1 eine Ventilhülse 7 auf, welche durchgehend tiefgezogen hergestellt ist, um die
Herstellungskosten durch Vermeidung von Bauteilen zu senken, die spanend hergestellt werden müssen. Die Ventilhülse 7 gewährleistet die Stabilität des Brennstoffeinspritzventils 1 und dichtet gleichzeitig die Magnetspule 2 gegenüber dem
Brennstoff ab.
Bedingt durch ihre Wandstärke, die durch den Systemdruck und die Fertigbarkeit bestimmt ist, ist die Ventilhülse 7 magnetisch, um den magnetischen Fluß zwischen dem Ventilgehäuse 4 und dem Anker 9 sowie zwischen dem Ventilgehäuse 4 und dem als Innenpol fungierenden Stützrohr 8 zu führen.
Der Verlauf des magnetischen Flusses ist in Fig. 2 im Bereich um die Magnetspule 2 vergrößert dargestellt.
Der mit A bezeichnete -'Verlauf des magnetischen Flusses über die Ventilhülse 7 stellt dabei jedoch einen magnetischen Nebenschluß in dem mit II bezeichneten Bereich dar, da der magnetische Fluß zumindest teilweise dem geringeren Widerstand in der magnetischen Ventilhülse 7 folgt und dabei den Arbeitsspalt 23 vermeidet. Dadurch wird der magnetische Fluß, welcher entlang dem mit B gekennzeichneten Verlauf über den Arbeitsspalt 23 fließt, verringert, so daß die maximal zum Anziehen des Ankers 9 verfügbare Magnetkraft reduziert ist.
Folglich muß, um diesen Verlust auszugleichen, die Feldstärke der Magnetspule 2 bzw. die die Magnetspule 2 erregende Spannung erhöht werden, was höhere Betriebsspannungen, höhere Belastungen der Bauteile und höhere Herstellungskosten zur Folge hat. Um den Teilfluß gemäß Verlauf A zu reduzieren bzw. zu eliminieren, ist es üblich, mit Hilfe einer sog. magnetischen Trennung den Fluß in der Ventilhülse 7 zu unterbrechen. Der Gesamtfluß verläuft dann im Wesentlichen über den Arbeitsspalt 23 zwischen dem Anker 9 und dem als Innenpol wirkenden Stützrohr 8. Dies erfordert entweder eine mechanische Verbindung zweier magnetischer und einer nichtmagnetischen Teilhülse beispielsweise durch Schweißen oder eine thermische Behandlung der Ventilhülse 7 im Bereich der Magnetspule 2, was kostenintensiv ist und zu einer Beeinträchtigung der mechanischen Festigkeit führen kann.
Erfindungsgemäß ist zur Vermeidung der oben ausgeführten Nachteile vorgesehen, das Material, aus dem die Ventilhülse 7 hergestellt ist, insgesamt magnetisch zu schwächen, also die Sättigungsinduktion für die ganze Ventilhülse 7 und nicht nur für Teilbereiche zu reduzieren.
Betrachtet man Fig. 3, in welchem der magnetische Fluß H gegen die magnetische Feldstärke B aufgetragen ist, ist erkennbar, daß die Sättigungsinduktion der Ventilhülse 7 von ursprünglich ca. 1,7 Tesla durch eine geeignete Wahl des •'* Materials für die Ventilhülse 7 um mehr ->als 50% bzw. im
Beispiel um ca. 1 Tesla auf ca. 0,7 Tesla gesenkt werden kann. Die Sättigungsinduktion der Ventilhülse 7 beträgt somit vorzugsweise weniger als 1 Tesla und besonders bevorzugt weniger als 0,8 Tesla.
Geeignete Materialien, die eine solche Reduktion der Sättigungsinduktion erlauben, sind beispielsweise Pulververbundstoffe, bei welchen dem eisernen Ausgangsmaterial nichtmagnetische pulverförπiige Bestandteile beigemischt werden, oder Materialien, welche von Haus aus reduzierte magnetische Eigenschaften aufweisen.
Bedingt durch die geringere Permeabilität des Materials der Ventilhülse 7 verringert sich der Anteil des Nebenschlusses entlang des Wegs A in Fig. 2, so daß eine Leistungssteigerung gegenüber einer aus einem höherpermeablen Material hergestellten Ventilhülse 7 ermöglicht wird. Die Anzugskraft der Magnetspule 2 läßt sich bei konstanter Spannung so um 20% und mehr steigern.
Werkstoffe mit geringerer magnetischer Permeabilität weisen in der Regel auch eine geringere elektrische Leitfähigkeit auf, so daß außer der Steigerung der statischen magnetischen Kraft auch eine Verbesserung des dynamischen Verhaltens erzielbar ist, woraus beispielsweise Verbesserungen der Abschaltzeiten um bis zu 40% erzielbar sind.
Die Erfindung ist nicht auf das dargestellte Ausführungsbeispiel beschränkt und für beliebige Bauweisen von Brennstoffeinspritzventilen 1 geeignet, z.B. für Brennstoffeinspritzventile 1 für Direkteinspritzung oder für Brennstoffeinspritzventile 1 mit Anbindung an ein Common- Rail-System. Insbesondere sind beliebige Kombinationen der einzelnen Merkmale möglich.

Claims

Ansprüche
1. Brennstoffeinspritzventil (1) für Brennstoffeinspritzanlagen von Brennkraftmaschinen mit einer Magnetspule (2) , einem mit der Magnetspule (2) zusammenwirkenden Anker (9) , einer Ventilhülse (7) und einem in der Ventilhülse (7) angeordnetem Stützrohr (8) , welches als Innenpol für die Magnetspule (2) dient, dadurch gekennzeichnet:, daß die Ventilhülse (7) aus einem Material mit geringer magnetischer Permeabilität besteht.
2. Brennstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet:, daß das Material ein Pulververbundwerkstoff ist.
3. Brennstoffeinspritzventil nach Anspruch 2, dadurch gekennzeichnet, daß der Pulververbundwerkstoff Eisen und nichtmagnetische Bestandteile enthält.
4. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß ein magnetischer Fluß durch die Ventilhülse (7) sehr viel kleiner ist als ein magnetischer Fluß durch das Stützrohr (8) und den Anker (9) .
5. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Ventilhülse (7) durch Tiefziehen herstellbar ist.
6. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Ventilhülse (7) topfförmig ausgebildet ist.
7. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis
6, dadurch gekennzeichnet, daß die Sättigungsinduktion der Ventilhülse (7) weniger als 1 Tesla, bevorzugt weniger als 0,8 Tesla, beträgt.
PCT/EP2005/052553 2004-07-26 2005-06-03 Brennstoffeinspritzventil WO2006010665A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE502005010490T DE502005010490D1 (de) 2004-07-26 2005-06-03 Brennstoffeinspritzventil
JP2007523049A JP2008507660A (ja) 2004-07-26 2005-06-03 燃料噴射弁
EP05752577A EP1774165B1 (de) 2004-07-26 2005-06-03 Brennstoffeinspritzventil
US11/658,464 US20080308658A1 (en) 2004-07-26 2005-06-03 Fuel Injector

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102004036218 2004-07-26
DE102004036218.1 2004-07-26
DE102004042592A DE102004042592A1 (de) 2004-07-26 2004-09-02 Brennstoffeinspritzventil
DE102004042592.2 2004-09-02

Publications (1)

Publication Number Publication Date
WO2006010665A1 true WO2006010665A1 (de) 2006-02-02

Family

ID=34970025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/052553 WO2006010665A1 (de) 2004-07-26 2005-06-03 Brennstoffeinspritzventil

Country Status (5)

Country Link
US (1) US20080308658A1 (de)
EP (1) EP1774165B1 (de)
JP (1) JP2008507660A (de)
DE (2) DE102004042592A1 (de)
WO (1) WO2006010665A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1967729A1 (de) * 2007-03-05 2008-09-10 MAGNETI MARELLI POWERTRAIN S.p.A. Elektromagnetventil zur Kraftstoffdosierung bei einem Verbrennungsmotor
EP2221468A1 (de) * 2009-02-20 2010-08-25 Continental Automotive GmbH Fluidinjektor
WO2014170049A1 (de) * 2013-04-17 2014-10-23 Robert Bosch Gmbh MAGNETVENTIL MIT VERBESSERTEM ÖFFNUNGS- UND SCHLIEßVERHALTEN
EP1887214B1 (de) * 2006-08-07 2016-03-16 Robert Bosch Gmbh Injektor und zugehöriges Betriebsverfahren

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5088467A (en) * 1984-03-05 1992-02-18 Coltec Industries Inc Electromagnetic injection valve
GB2262659A (en) * 1991-12-17 1993-06-23 Mitsubishi Electric Corp A core for an electromagnetic fuel injection device
DE4237405A1 (de) * 1991-12-17 1993-06-24 Mitsubishi Electric Corp
DE10122353A1 (de) 2001-05-09 2002-11-28 Bosch Gmbh Robert Brennstoffeinspritzventil
EP1429019A1 (de) 2002-12-12 2004-06-16 Magneti Marelli Powertrain S.p.A. Elekromagnetisches Kraftstoffeinspritzventil mit einem monolithischen rohrförmigen Element für eine Brennkraftmaschine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261178U (de) * 1988-10-28 1990-05-07
IT1261156B (it) * 1993-12-30 1996-05-09 Elasis Sistema Ricerca Fiat Elettromagnete di comando di una valvola di dosaggio per un iniettore di combustibile
DE19503821A1 (de) * 1995-02-06 1996-08-08 Bosch Gmbh Robert Elektromagnetisch betätigbares Ventil
FR2737043B1 (fr) * 1995-07-18 1997-08-14 Imphy Sa Alliage fer-nickel pour masque d'ombre tendu
DE19547406B4 (de) * 1995-12-19 2007-10-31 Robert Bosch Gmbh Brennstoffeinspritzventil
DE19900406A1 (de) * 1999-01-08 2000-07-13 Bosch Gmbh Robert Brennstoffeinspritzventil
JP4123323B2 (ja) * 1999-06-22 2008-07-23 株式会社デンソー 燃料噴射弁
JP2001012636A (ja) * 1999-06-29 2001-01-16 Aisan Ind Co Ltd 複数のソレノイドと共通筒を有する燃料噴射装置
US6464153B1 (en) * 2000-10-12 2002-10-15 Delphi Technologies, Inc. Fuel injector having a molded shroud formed of a structural adhesive polymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5088467A (en) * 1984-03-05 1992-02-18 Coltec Industries Inc Electromagnetic injection valve
GB2262659A (en) * 1991-12-17 1993-06-23 Mitsubishi Electric Corp A core for an electromagnetic fuel injection device
DE4237405A1 (de) * 1991-12-17 1993-06-24 Mitsubishi Electric Corp
DE10122353A1 (de) 2001-05-09 2002-11-28 Bosch Gmbh Robert Brennstoffeinspritzventil
EP1429019A1 (de) 2002-12-12 2004-06-16 Magneti Marelli Powertrain S.p.A. Elekromagnetisches Kraftstoffeinspritzventil mit einem monolithischen rohrförmigen Element für eine Brennkraftmaschine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1887214B1 (de) * 2006-08-07 2016-03-16 Robert Bosch Gmbh Injektor und zugehöriges Betriebsverfahren
EP1967729A1 (de) * 2007-03-05 2008-09-10 MAGNETI MARELLI POWERTRAIN S.p.A. Elektromagnetventil zur Kraftstoffdosierung bei einem Verbrennungsmotor
US7845617B2 (en) 2007-03-05 2010-12-07 Magneti Marelli Powertrain S.P.A. Electromagnetic valve for the dosage of fuel in an internal combustion engine
CN101275528B (zh) * 2007-03-05 2011-08-10 玛涅蒂玛瑞利动力系公开有限公司 用于内燃机的燃料配量的电磁阀
EP2221468A1 (de) * 2009-02-20 2010-08-25 Continental Automotive GmbH Fluidinjektor
WO2014170049A1 (de) * 2013-04-17 2014-10-23 Robert Bosch Gmbh MAGNETVENTIL MIT VERBESSERTEM ÖFFNUNGS- UND SCHLIEßVERHALTEN
US9903328B2 (en) 2013-04-17 2018-02-27 Robert Bosch Gmbh Solenoid valve with improved opening and closing behavior

Also Published As

Publication number Publication date
DE502005010490D1 (de) 2010-12-16
EP1774165B1 (de) 2010-11-03
EP1774165A1 (de) 2007-04-18
US20080308658A1 (en) 2008-12-18
DE102004042592A1 (de) 2006-03-23
JP2008507660A (ja) 2008-03-13

Similar Documents

Publication Publication Date Title
EP1364116B1 (de) Brennstoffeinspritzventil
EP1751420B1 (de) Brennstoffeinspritzventil
WO1999043948A2 (de) Elektromagnetisch betätigbares ventil
DE3544575C2 (de)
EP1387942B1 (de) Brennstoffeinspritzventil mit dämpfungselement
EP1364117B1 (de) Brennstoffeinspritzventil
EP1589545A2 (de) Magnetantrieb für ein Ventil
DE102009012688B3 (de) Ventil zum Einblasen von Gas
DE19540021A1 (de) Ventil zum dosierten Einleiten von aus einem Brennstofftank einer Brennkraftmaschine verflüchtigtem Brennstoffdampf
EP1774165B1 (de) Brennstoffeinspritzventil
EP0676542B1 (de) Elektromagnetisch betätigbares Brennstoffeinspritzventil
DE10108464A1 (de) Brennstoffeinspritzventil
EP1797313B1 (de) Brennstoffeinspritzventil
DE102006052629B4 (de) Magnetventil
EP1309794B1 (de) Brennstoffeinspritzventil
EP2884091B1 (de) Brennstoffeinspritzventil
DE102006049253A1 (de) Brennstoffeinspritzventil
WO2020178155A1 (de) Elektromagnetische antriebseinrichtung und damit ausgestattetes proportional-magnetventil
DE10394090T5 (de) Magnet-Statoranordnung mit einer Verstärkungsstruktur
DE102008018066A1 (de) Treibstoffeinspritzventil und Verfahren zum Herstellen von diesem
DE10005182A1 (de) Elektromagnetisches Einspritzventil zur Steuerung einer in eine Verbrennungskraftmaschine einzuspeisenden Kraftstoffmenge
EP1649159B1 (de) Brennstoffeinspritzventil
EP0654627A1 (de) Magnetventil
DE102006046833A1 (de) Brennstoffeinspritzventil
EP1520982B1 (de) Brennstoffeinspritzventil

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005752577

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 11658464

Country of ref document: US

Ref document number: 2007523049

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580025396.4

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005752577

Country of ref document: EP