WO2006009078A1 - 侵入検知装置及び侵入検知システム - Google Patents

侵入検知装置及び侵入検知システム Download PDF

Info

Publication number
WO2006009078A1
WO2006009078A1 PCT/JP2005/013064 JP2005013064W WO2006009078A1 WO 2006009078 A1 WO2006009078 A1 WO 2006009078A1 JP 2005013064 W JP2005013064 W JP 2005013064W WO 2006009078 A1 WO2006009078 A1 WO 2006009078A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
intrusion
optical cable
support
loss
Prior art date
Application number
PCT/JP2005/013064
Other languages
English (en)
French (fr)
Inventor
Shigeru Narumi
Susumu Yoshida
Ryusuke Miki
Original Assignee
Furukawa Engineering & Construction Inc.
Tekunowattsu Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Engineering & Construction Inc., Tekunowattsu Inc. filed Critical Furukawa Engineering & Construction Inc.
Publication of WO2006009078A1 publication Critical patent/WO2006009078A1/ja

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/02Mechanical actuation
    • G08B13/12Mechanical actuation by the breaking or disturbance of stretched cords or wires
    • G08B13/122Mechanical actuation by the breaking or disturbance of stretched cords or wires for a perimeter fence
    • G08B13/124Mechanical actuation by the breaking or disturbance of stretched cords or wires for a perimeter fence with the breaking or disturbance being optically detected, e.g. optical fibers in the perimeter fence
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/181Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems
    • G08B13/183Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems by interruption of a radiation beam or barrier
    • G08B13/186Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems by interruption of a radiation beam or barrier using light guides, e.g. optical fibres

Definitions

  • the present invention relates to an intruder in an area where intrusion is restricted such as a warning area or an intrusion prohibited area.
  • the present invention relates to an intrusion detection device that detects that an animal, a vehicle, or the like has invaded, and an intrusion detection system using the intrusion detection device.
  • optical fibers are used as sensors to support a plurality of poles, columns, and other supports installed in an area where intrusion is restricted, and the transmission state in the optical fiber is detected. Detection systems that detect intruders by doing so are known.
  • the detection system described above has a detection controller 8 1 equipped with a controller and an optical fiber 82 connected to the detection controller 81, and the detection controller 8 described above.
  • laser light is incident on one end 82 a of the optical fiber 82, and the other end 82 b of the optical fiber 82 receives the laser light propagating through the optical fiber 82.
  • a disturbance caused by a load applied to the optical fiber 82 is monitored by a change in the state of the laser beam.
  • FIG. 19 shows the detection principle of the state change.
  • This detection controller 81 constantly monitors the distribution of the laser light between the input and output of the optical fiber 82. In normal times, the distribution of the laser light in the cross section of the optical fiber 82 is as shown in FIG. Become. On the other hand, when vibration is applied to the optical fiber 82, the output distribution of the laser light is disturbed as shown in FIG. 2B and when pressure is applied, as shown in FIG. The distribution also changes when fiber 82 is cut. This disturbance in the output distribution is distributed by the detection controller 81, and a detection signal is generated when it exceeds a preset value (frequency, intensity, number of times, etc.).
  • a preset value frequency, intensity, number of times, etc.
  • This type of detection system uses an optical fiber 82 as a sensor. Since it is not subject to a magnetic environment and is less susceptible to weather such as strong winds, it has the advantage of fewer malfunctions. In addition, for example, when a fence is stretched between supports, it can be flexibly adapted to the installation environment such as routing along the fence, so that the workability is excellent.
  • the detection principle of the optical fiber sensor in the above-described detection system is that the speckle (spot) state change that occurs on the receiving side when vibration or pressure is applied to the optical fiber 82. Since it is to be monitored, a dedicated detection controller is required to analyze the state change.
  • This detection controller 81 converts light energy into an electrical signal, digitizes the electrical signal, further converts it into frequency information, frequency information, etc., and setting conditions given in advance based on this information Compared with, it is configured to determine that there is an intrusion when all the conditions are met. Thus, the configuration of the conventional detection system is complicated and expensive, and there is a disadvantage that it cannot be used for general purposes.
  • the present invention has been made in consideration of the problems in the detection system, and provides an intrusion detection device and an intrusion detection system that can detect an intrusion at a very simple and low cost. is there.
  • a first aspect of the intrusion detection device of the present invention includes an optical cable routed in an area where intrusion is restricted, and an optical transmission loss that is detected when an external force is applied to the optical cable. Loss detection unit,
  • the optical loss detection unit is an intrusion detection device that operates when the optical transmission loss is attenuated by a predetermined value or more and outputs a signal for starting an intrusion detection device.
  • the intrusion detection device include a security camera, a security video, a visual notification of intrusion, for example, a warning light, and a voice notification of intrusion, for example, a buzzer.
  • a second aspect of the intrusion detection device of the present invention is characterized in that an optical loss generation unit for generating an optical transmission loss in the optical cable is provided at a terminal part of the routing path of the optical cable. This is an intrusion detection device.
  • a third aspect of the intrusion detection device is characterized in that an optical loss generation unit that generates an optical transmission loss in the optical cable is provided in an intermediate portion of the routing path of the optical cable. This is an intrusion detection device.
  • the optical cable includes a support wire portion and an optical core portion
  • the optical loss generation portion is an optical core wire when the optical cable is displaced.
  • An intrusion detection apparatus comprising: a movable body that abuts on a portion and forcibly bends the portion, and a holding portion that holds the bent optical core portion.
  • the optical cable is installed on a support disposed at a predetermined interval in a region where intrusion is restricted, and the support wire portion is used as the support.
  • An intrusion detection device characterized by comprising an idler roller supported by the support shaft and allowing the other support wire portion to move the support wire portion following the displacement of the optical cable. is there.
  • the optical cable has a support wire portion and an optical core portion, and three or more standing upright at substantially equal intervals in an area where intrusion is restricted
  • the optical loss generator When the optical cable is displaced, the optical loss generator generates an optical transmission loss in the optical cable at each intermediate support portion of the optical cable routing path.
  • the intrusion detection device is provided with a movable body that abuts on the optical core portion and forcibly bends the optical core portion.
  • a first aspect of the intrusion detection system of the present invention is an intrusion in which an intrusion restricted area is divided into a plurality of monitoring areas, and each of the intrusion detection devices described above is provided for each monitoring area. It is a detection system.
  • a second aspect of the intrusion detection system of the present invention is a plurality of a plurality of arrays arranged with a predetermined interval along the boundary of an area where intrusion is restricted and with the same shooting direction.
  • Supervisor A visual acuity a recording / playback device that records or plays back an image captured by the surveillance camera in a memory for each surveillance camera, a monitor that displays an image captured by the surveillance camera, and an image captured by the surveillance camera
  • An optical cable that is routed to the boundary for each range, and an optical loss detector that detects optical transmission loss that occurs when an external force is applied to the optical cable.
  • the optical loss detection unit operates when the optical transmission loss is attenuated by a certain value or more and outputs a start signal, and the recording / playback apparatus that receives the start signal uses the optical cable in which the optical transmission loss has occurred as a shooting range.
  • the intrusion detection system is characterized in that images taken by the next-stage monitoring camera are played back for a certain period of time.
  • the optical cable core portion of the optical cable includes a plurality of optical fiber cables, and some of the optical fiber cables transmit a captured image of the surveillance camera.
  • the remaining optical fiber cores are connected to the optical loss detector as a transmission path and configured as an intrusion detection sensor.
  • the intrusion detection device of the present invention it becomes possible to detect an optical transmission loss generated in an optical cable without monitoring the light distribution and to operate an external output. It is versatile at a low cost and can easily and reliably detect intrusions.
  • the intrusion detection device of the present invention since the optical loss generation unit is provided in the middle part of the optical cable routing path, the intrusion occurs in any part of the area where the intrusion is restricted. Can detect the intrusion evenly. In addition, even if the area where intrusion is restricted is wide, it is possible to detect optical transmission loss that has occurred in the optical cable, and intrusion can be easily detected.
  • the intrusion detection device of the present invention when the optical cable is displaced, the one end li of the support arm portion la is held in a tension state, so that only the other support wire portion side is provided.
  • the optical transmission loss generated in the optical cable can be reliably and promptly detected by the optical loss generation part provided on the other support wire part side.
  • the intrusion detection device of the present invention even if an intrusion occurs at the left or right side of the intermediate support, an optical transmission loss signal having substantially the same detection level is transmitted.
  • the optical loss detection force can also be output from the outside. Therefore, even if an intrusion occurs in an area where intrusion is restricted, the intrusion detection system can be more accurately and reliably detected, and the reliability of the intrusion detection system can be further improved.
  • the intrusion detection system of the present invention it is easy to specify the intrusion location, and the detection reliability can be improved. As hardware, it is possible to cope by simply adding an optical loss detection unit that is much cheaper than the detection controller, so the system is not expensive and economical.
  • FIG. 1 is a front view showing a basic configuration of an intrusion detection system according to the present invention.
  • FIG. 2 is a cross-sectional view showing the configuration of the optical cable in FIG.
  • FIG. 3 (a) is an enlarged view showing the configuration of the optical loss generation unit
  • FIG. 3 (b) is an explanatory view showing its operating state.
  • FIG. 4 is a block diagram showing a configuration of an optical loss detection unit and peripheral devices connected thereto.
  • FIG. 5 is a front view showing a preferred embodiment of the fixing jig for the support wire portion in FIG. 1.
  • FIG. 6 is a view corresponding to FIG. 1, showing a second embodiment of the optical loss generating unit.
  • Fig. 7 is an enlarged view of the optical loss generation part of Fig. 6.
  • Fig. 7 (a) is a plan view of the normal operation state
  • Fig. 7 (b) is a diagram of when an intrusion occurs. It is a top view of an operation state.
  • FIG. 8 (a) is a plan view of FIG. 7 (a), and FIG. 8 (b) is a plan view of FIG. 7 (b).
  • FIG. 9 is a view corresponding to FIG. 1, showing a third embodiment of the optical loss generating unit.
  • FIG. 10 (a) is an enlarged view of the optical loss generation unit in FIG. 9, and FIG. 10 (b) is an explanatory view showing its operating state.
  • FIG. 11 is a view corresponding to FIG. 1, showing a fourth embodiment of the optical loss generating unit.
  • FIG. 12 (a) is an enlarged view of the optical loss generating part in FIG. 11, and FIG. 12 (b) is an explanatory view showing its operation state.
  • FIG. 13 is a view corresponding to FIG. 1, showing a fifth embodiment of the optical loss generating section.
  • FIG. 14 shows an enlarged view of the optical loss generation part of FIG. 13, and FIG. FIG. 14 (b) is a plan view of the operating state when an intrusion occurs, and FIG. 14 (c) is a cross-sectional view taken along the line P—P of (a).
  • FIG. 15 is a front view showing an optical cable routing pattern.
  • FIG. 16 is a side view showing the structure of the overturning portion of the auxiliary support, and FIG. 16 (b) is a side view showing its operating state.
  • FIG. 17 is a block diagram showing a configuration of an intrusion detection system using a camera.
  • FIG. 18 is a block diagram showing a configuration of a conventional intrusion detection system.
  • FIG. 19 is an explanatory diagram showing a detection principle of a conventional intrusion detection system.
  • FIG. 1 shows the basic configuration of the intrusion detection system according to the present invention.
  • the perimeter of the area where intrusion is restricted is divided into a plurality of monitoring areas, and the intrusion detection device of the present invention is provided for each monitoring area.
  • an optical cable 1 is provided between support bodies 2 and 3 such as left and right poles, columns, and the like that are erected at a predetermined interval on the outer periphery of a predetermined monitoring area in an area where intrusion is restricted.
  • the one end is connected to the IN terminal of the optical loss detection unit 4 and the other end is connected to the OUT terminal.
  • an optical loss generation unit 5 according to a first embodiment, which will be described later, is provided at the end portion of the routing path of the optical cable 1, and the optical loss generation unit 5 is attached using, for example, the support 2. Yes.
  • reference numeral 6 denotes a support such as an auxiliary pole or a support column, which is erected between the left and right supports 2 and 3 at substantially equal intervals, and the auxiliary support 6 includes an optical cable.
  • a ring-shaped passage fitting 7 for supporting 1 is provided.
  • the optical cable 1 includes a support wire portion la and a tape-shaped optical fiber portion lb supported by the support wire portion la.
  • the support wire portion la is composed of the support wire lc and a coating layer Id made of plastic resin covering the support wire lc
  • the optical core portion lb is a tape-shaped optical fiber core le and its optical fiber core. From the tension member If arranged on the upper and lower sides of the wire le, and the coating layer lg made of plastic resin that covers the optical fiber core wire le and the tension member If in a strip shape Become.
  • the optical cable 1 is formed by integrally covering the covering layer Id of the supporting wire portion la and the covering layer lg of the optical fiber portion lb by extrusion coating means, so that the supporting wire portion la and the optical fiber portion lb -In addition to this, for example, the support wire part la and the optical fiber part lb are formed separately, and a binding member such as a lashing wire is wound around the outer periphery of both. It may be done.
  • the optical fiber core le of the present embodiment is a four-core multi-core type, it may be a single-core or a multi-core type having two, three or five or more cores. Furthermore, any one of the above four-core type optical fiber cores le may be used for intrusion detection, or two, three, or
  • the support wire portion la of the optical cable 1 is separated from the optical core portion lb and further supported.
  • the wire part la (including only the support wire lc without the covering layer Id. The same applies hereinafter) is installed horizontally between the left and right supports 2 and 3. Accordingly, only the optical fiber portion (including the case of only the optical fiber core wire le, the same applies hereinafter) lb is arranged in the vertical direction along the support 3.
  • the right end of the support wire portion la is connected to a fixing jig 8 provided on the support 3, and the left end is lowered via a roller 9 and connected to an extension support wire portion la '. Then, it is connected to a tension coil spring 10 provided on the support 2.
  • extension support wire portion la ′ is fixed to a movable body (described later) of the optical loss generating portion 5 before being connected to the tension coil spring 10.
  • the optical loss generation unit 5 of the first embodiment forcibly bends a part of the optical core portion lb that is laid in a straight line during normal operation. Optical transmission loss is generated.
  • the optical loss generating unit 5 has a plate-like main body 5a provided with a passage S through which the optical fiber portion lb passes, and the passage S is used as a boundary.
  • a U-shaped groove 5c is formed in the side body 5b in the vertical direction, and a pre-shaped member is formed in the U-shaped groove 5c so as to be engaged with the U-shaped groove 5c.
  • a movable body 5d in the form of a gate is inserted.
  • a slit 5e is formed in the vertical direction on the back side sliding surface of the U-shaped groove 5c, and a pin 5f protruding from the movable body 5d toward the back side passes through the slit 5e.
  • the tip of the pin 5f penetrating the slit 5e is fixed to the extending support wire portion la ', and the pin 5f can be moved with the slit 5e as a guide and can be moved along with the movement of the pin 5f.
  • the moving body 5d moves up and down.
  • a pair of left and right projections 5 g are provided upright on the movable body 5d.
  • a notch 5h is formed in a wedge shape in a part of the side edge of the movable body 5d, and the lock pin 5i is engaged with and disengaged from the notch 5h.
  • the lock pin 5i is normally retracted in the direction of arrow B by contacting the side edge of the movable body 5d, and when facing the notch 5h, the lock pin 5i is retracted in the direction of arrow B due to the urging force of the compression coil spring 3 ⁇ 4. It protrudes in the opposite direction and engages with the notch 5h to prohibit the movement of the movable body 5d.
  • the cutout portion 5h, the lock pin 5i, and the compression coil spring 5j function as a holding portion that releasably holds the optical core portion lb bent by the movable body 5d.
  • rollers 51 are arranged in the horizontal direction on the upper body 5k with the passage S as a boundary.
  • the projection 5g passes between the rollers 51.
  • the optical fiber lb is bent between the three rollers 51 and the raised protrusion 5g and bent into an M shape. (See Fig. 3 (b)).
  • Reference numeral 5m denotes an attachment hole for fixing the light loss generating part 5 to the support 2. Further, in the lower main body 5b, the left and right ends of the passage S are rounded 5n.
  • FIG. 4 shows the configuration of the optical loss detection unit 4 and its peripheral devices.
  • the optical loss detection unit 4 is composed of a signal converter such as a media converter.When light is incident and propagated into the optical cable 1 from the OUT terminal 4a, the incident on the IN terminal 4b is attenuated by a certain value or more.
  • the unit is configured as means for outputting a predetermined signal to the outside.
  • This type of device is usually provided with, for example, an LED lighting circuit for notifying the operation state, and the LED may be lit when communication is not established due to the switch setting. I'll do it.
  • the output voltage 2V for turning on the LED is a voltage that also has a relay force. It is configured so that it can be converted to 12V after being given to the converter.
  • the light propagating in the optical cable 1 is slightly attenuated during the passage, but the amount is negligible. Therefore, it is necessary to set so that light attenuated by 40 dB or more enters the IN terminal 4b in an abnormal state. Therefore, by providing a resistor 11 in the line of the optical loss generation unit 5, light that has already been attenuated by 30 dB is incident on the IN terminal 4b. As a result, even if the amount of loss at the optical loss generation unit 5 is as small as about 10 dB, for example, the operation of the optical loss detection unit 4 can be reliably performed.
  • the external output from the optical loss detection unit 4 is input from the output terminal 4c to the self-holding circuit 12, for example, and then taken out as an external output.
  • the reason why the self-holding circuit 12 is provided is that, if the attenuation is in the range of 30 dB to 40 dB, the optical loss detection unit 4 repeats the operation due to the normal Z abnormality, so-called chattering occurs. This is because the external output output from the optical loss detector 4 is maintained in the operating state until it is reset.
  • the maximum length of optical fiber that can be detected by the detection controller is usually 2 km, and in order to enable intrusion detection for longer lengths, the detection controller must be placed outdoors. In addition, it is necessary to supply power. Furthermore, measures against lightning and electromagnetic waves are also required.
  • the intrusion detection device of the present invention it is possible to detect an optical transmission loss occurring in the optical cable 1 without monitoring the light distribution and to operate an external output. Naruta Therefore, an intrusion detection system can be constructed with an extremely simple configuration. However, if the area where intrusion is restricted is divided into multiple monitoring areas, the location of the intrusion can be easily identified and the detection reliability can be improved. In addition, as hardware, it is possible to respond by simply adding the optical loss detection unit 4 that is much cheaper than the detection controller, so the system is not expensive and economical. .
  • an intrusion detection system can be constructed by placing it indoors without exposing signal changes made of electronic components to the outdoors, and supplying power No means are needed.
  • it since it is not affected by lightning or electromagnetic waves, it can prevent malfunctions and eliminates the need for electromagnetic wave countermeasures.
  • the movable body 5d rises via the pin 5f, and the protrusion 5g on the upper side of the movable body 5d enters between the rollers 51 while lifting the optical cable 1. .
  • the optical fiber lb is bent into an M shape.
  • the optical cable 1 is kept in a bent state, the optical transmission loss is increased to 10 dB or more, light having an optical transmission loss force of OdB is incident on the IN terminal 4b of the optical loss detection unit 4,
  • the loss detection unit 4 determines that an abnormality has occurred, and outputs, for example, 12 V as an external output from the output terminal 4c.
  • This external output is self-held by the self-holding circuit 12, and triggers of each device for intrusion detection Specifically, it can be used to start a security camera, start recording a security video, turn on a warning light, sound a buzzer, display an intrusion location, report to the outside, or threaten by voice.
  • an external force due to intrusion is applied to optical cable 1 and the optical fiber lb
  • the movable body 5d stops in a state of being fitted in the U-shaped groove 5c. That is, it is reset to the normal position.
  • the optical cable 1 If the optical cable 1 is disconnected, the light returning to the IN terminal 4b of the optical loss detection unit 4 becomes zero, so even if the optical loss generation unit 5 does not work, the optical transmission loss In this case, it is determined that an abnormality has occurred and an external output is output. Therefore, by using the intrusion detection system and apparatus, it is possible to detect the disconnection of the optical cable 1 with the same circuit, and the structure that does not require the provision of a new disconnect detection means is simplified and economical.
  • the external output is not limited to the above 12V. For example, if it is connected to a relay or amplified via an amplifier circuit, even an external output below that can be used as an external output. wear.
  • FIG. 5 shows a fixing jig 44 as a preferred form of the fixing jig 8 of the support wire portion la in FIG.
  • the fixing jig 44 is installed on the supports 2 and 3 erected in a predetermined monitoring area in the area where the intrusion is restricted, and the back of the support shaft 44a protruding from the supports 2 and 3 is axially connected.
  • the claw wheel 44b is pivotally supported on the side, and the scraper drum (not shown) is fixed to the claw wheel 44b in the middle, and the support shafts 2a and 3 are centered around the support shaft 44a on the front side. It is provided with a gear device in which idle rollers 44d that freely rotate are arranged.
  • a tooth groove is formed on the outer peripheral surface of the claw wheel 44b, and a locking claw 44c that can be locked to each tooth groove is provided on the supports 2 and 3, and the claw wheel 44b and the hook Rotate the take-up drum around the support shaft 44a only in the direction of arrow F to prevent reverse rotation!
  • the fixing jig 44 According to the fixing jig 44, the support of the optical cable 1 routed on the left side of the support (right side) 3 is supported.
  • the one end (right side) li of the holding wire portion la is fixed to the scraping drum, wound up by the drum, and the locking claw 44c is engaged with the tooth groove of the claw wheel 44b, thereby supporting the wire portion
  • One end of la can be held in tension.
  • the other end (left side) lj of the support wire portion la is lowered through an idler roller 44d that freely rotates with respect to the support (left side) 2 around the support shaft 44a, and is pulled by a tension coil. Since the optical cable 1 is pushed down by an intruder, animal, or the like, the other end lj of the support wire portion la is moved to the arrow G because it is connected to the spring 44e (corresponding to the tension coil spring 10 of the fixing jig 8). The optical loss is generated by the optical loss generator 5.
  • this fixing jig 44 is used, the one end li of the support wire portion la is held in a tension state, so that the optical transmission loss generated in the optical cable 1 can be reliably ensured to the other end lj of the support wire portion la. It can be detected by the side, that is, the light loss generation unit 5.
  • FIGS. 6 to 8 show a second embodiment of the optical loss generating unit.
  • Figure 6 shows how the optical cable 1 is routed.
  • the left and right supports 13 and 14 and the support 15 in the middle part of the routing route of the optical cable 1 are erected at substantially equal intervals.
  • the optical cable 1 is applied with a predetermined tension (tension) between the support 13 and the support 15 and between the support 14 and the support 15 so that a slack of a predetermined depth occurs.
  • it is arranged between the supports 13, 14, and 15 in a meandering manner in the vertical direction.
  • Fixing jigs 16 are arranged vertically on the supports 13 and 14, and the support wire portion la of the optical cable 1 is fixed.
  • the optical fiber lb of the optical cable 1 passes through an optical loss generating part 17 provided on the support 15 in an S-shape.
  • FIG. 7 is an enlarged view of the optical loss generation unit 17.
  • FIG. 7 (a) shows a normal operation
  • FIG. 7 (b) shows an operation state when an intrusion occurs.
  • the support wire portion la of the optical cable 1 installed from the support 13 to the support 14 is cut at the position of the support 15 and the support wire portion la extending to the left is the movable body 17a.
  • the support wire portion la that is fixed to the leftmost pin 18a and extends to the right is fixed to the rightmost pin 18d.
  • the support wire part la is a tension coil spring, etc. It is preferable to fix in a state where a predetermined tension is applied.
  • the optical fiber portion lb separated from the support wire portion la of the optical cable 1 passes through the gap between the pins 19a, 19b, 20a, and 20b arranged in a vertically opposed state on the fixed base 18. Be routed to.
  • the optical loss generating unit 17 having the above configuration, for example, an intruder, an animal, or the like approaches between the support 13 and the support 15, and the optical cable 1 is displaced by being pulled downward, for example. Then, the movable body 17a moves in the direction of the arrow C, and as a result, the optical fiber portion lb is pushed by the pin 18c and bent into a dogleg shape.
  • the optical loss detection unit 4 operates and outputs Output external output from terminal 4c.
  • FIG. 8 is a plan view of the optical loss generator 17 shown in FIG. 8 (a), a left strobe 21 made of a leaf spring is provided on the left side of the front surface of the movable body 17a, and a right stock bar 22 is provided on the right side. Therefore, when the movable body 17a moves in the direction of the arrow C, the left stubber 21 protrudes in a V shape and is locked to the left edge of the front plate 23 as shown in FIG. 8 (b).
  • the movable body 17a is held in a state of being moved to the left side unless the left side stagger 21 is released.
  • FIG. 9 shows a third embodiment of the optical loss generating unit.
  • the support wire part la of the optical cable 1 is fixed to the left and right supports 13 and 14 with the fixing jig 16 via the optical loss generating part 30 provided on the support 15 in the middle part of the routing route of the optical cable 1.
  • the optical fiber portion lb loops through the optical loss generating portion 30 and passes therethrough.
  • FIG. 10 is an enlarged view of the optical loss generation unit 30.
  • FIG. 10 (a) shows the normal state
  • the optical loss generating unit 30 has an L-shaped base 30a and a T-shaped movable body 30c that rotates about a support shaft 30b provided on the base 30a.
  • 30a On the top, guide pins 31a to 31d for holding the optical fiber portion lb in a loop shape are provided.
  • the optical fiber portion lb is looped by spanning in the order of the support shaft 30b ⁇ the guide pin 31c ⁇ the guide pin 31b ⁇ the guide pin 31a ⁇ the support shaft 30b.
  • the movable body 30c is provided with pressing pins 32a and 32b for bending the optical fiber portion lb between the guide pin 31c and the guide pin 3 Id.
  • the optical cable 1 is displaced and the movable body 30c rotates in the direction of arrow D (or the direction of arrow E)
  • the optical core portion lb is bent by the pressing pin 32a (or the pressing pin 32b).
  • FIG. 11 shows a fourth embodiment of the optical loss generation unit.
  • the support wire part la of the optical cable 1 is fixed to the left and right supports 13 and 14 with the fixing jig 16 via the optical loss generating part 40 provided in the support 15 in the middle part of the routing route of the optical cable 1.
  • the support wire portion la of the optical cable 1 is cut at the position of the support 15 and the support wire portion la extending to the left side is located below the movable body 41 shown in FIG. It is fixed to the side fixing portion 41a, and further fixed to the base 43 via a tension coil spring 42.
  • the support wire portion la extending to the right side is fixed to the upper fixing portion 41b on the movable body 41, and is further extended to the tension coil spring 42.
  • the movable body 41 rotates about a support shaft 43a provided on the base 43, and a pair of pressing pins 41c are disposed in the vicinity of the support shaft 43a.
  • the guide pins 43b and 43c disposed on the base 43 guide the right and left sides of the optical fiber portion lb arranged in the vertical direction.
  • reference numeral 43d denotes a lock pin configured to be able to advance and retreat in the thickness direction of the paper, and the surface force of the base 43 is held in a state of slightly protruding by the compression coil spring.
  • the lock pin 43d also has a shaft force, and its right side is formed as an inclined surface. Therefore, when the movable body 41 rotates to the position shown in FIG. 12 (b), when the lock pin 43d moves backward and gets over the lock pin 43d, the lock pin 43d protrudes due to the restoring force of the compression coil spring. Then, the movable body 41 is releasably locked in the posture shown in FIG. 12 (b)! /.
  • the light loss generation unit 40 enters between the support 13 and the support 15.
  • the movable body 41 rotates in the direction of arrow H as shown in FIG. lb is pushed by the pair of push pins 41c and bent in a stepped shape.
  • the optical loss detection unit 4 operates and outputs Output external output from terminal 4c.
  • FIGS. 13 to 14 show a fifth embodiment of the optical loss generation unit.
  • FIG. 13 shows the arrangement of one optical cable 1.
  • the left and right supports 13 and 14 and the support 15 in the middle of the optical cable 1 routing path are erected at approximately equal intervals in a predetermined surveillance area in the intrusion restricted area.
  • One optical cable 1 has a predetermined tension (tension) so that a slack (slack amount) of a predetermined depth occurs between the support 13 and the support 15 and between the support 14 and the support 15.
  • Fixing jigs 16 are vertically arranged on the supports 13 and 14, and the support wire portion la of the optical cable 1 is fixed.
  • the optical fiber lb of the optical cable 1 is routed in an inverted U shape along the longitudinal direction of the intermediate support 15 and the optical loss generating portion 76 provided on the support 15 is cross-shaped. It ’s going to pass.
  • FIG. 14 is an enlarged view of the optical loss generation unit 76.
  • FIG. 14 (a) is a plan view of the normal operation state
  • FIG. 14 (b) is a plan view of the operation state when the intrusion occurs.
  • Figure (c) is a cross-sectional view taken along the line P-P in (a).
  • the optical loss generation unit 76 includes a square plate-like base 77, a parallel to the base 77 with a space therebetween, and a longitudinal direction of the support 15 ( A pair of optical fiber core guide passages 78 for guiding one optical fiber lb along the longitudinal direction of the intermediate support 15 and a base. A movable body 79 that is disposed so as to be able to reciprocate in a direction (lateral direction) intersecting the optical core guide passage 78 in 77 and a pair of optical core guide passages 78 of the base 77 as a boundary. Are provided with three rollers 80 arranged at intervals along the optical fiber guide section 78.
  • a pair of projecting portions 79a projecting in the moving direction is provided at both ends in the moving direction of the movable body 79. Furthermore, on the head of the movable body 79 (in the thickness direction of the paper), the support wire portion la of the optical cable 1 that is arranged in a meandering manner and is horizontally installed is fixed by, for example, a fixing portion 79b having a circular presser plate force. The optical fiber portion lb separated and supported by the support wire portion la force is detoured around the outer periphery of the movable body 79 and is guided while being clamped and fixed.
  • Reference numeral 77a denotes a four-part cover plate that supports the roller 80 and the movable body 79, for example, is formed by molding and calcining a transparent resin, and is separated on the base 77 by a fixing member such as a bolt or a screw. Fixed as possible
  • the housing constituting the light loss generating portion 76 may have an integrated structure (non-divided structure) that is not the divided structure of the base 77 and the cover plate 77a.
  • optical loss generator 76 draws a single stroke so that one optical cable 1 passes through the optical loss generator 76 provided on the support 15 in a cross shape.
  • optical loss occurs
  • the optical cable 1 routed vertically along the optical fiber guide passage 78 of the section 76 and the optical cable 1 routed laterally so as to intersect the optical fiber guide passage 78 are independent of each other.
  • a separate optical cable 1 may be used.
  • the optical cable 1 routed in the lateral direction may be another optical cable 1 that is different for each optical loss generation unit 76, for example. In this way, it is routed vertically and horizontally
  • the optical cable 1 that is routed in the lateral direction has only the support wire portion la held by the movable body 79 and separated from the support wire portion la.
  • the optical fiber part lb may be guided around the outer periphery of the movable body 79 !, but the support wire part la and the optical fiber part lb are not separated, and the support wire part la and the optical fiber part are separated. lb, that is, let the movable body 79 hold the entire optical cable 1.
  • the optical cable 1 routed in the lateral direction may be replaced with a tension member other than the optical cable.
  • the three supports 13, 14, 15 is erected at approximately equal intervals, and is installed in the area where the intrusion is restricted, where the optical loss 1 generation unit 17, 30, 40, 76 is provided on the support 15 in the middle of the installation route of the optical cable 1. 4 or more supports 13, 14, and 15 are set up at almost equal intervals in the area where the optical cable is routed. 17, 30, 40, 76 may be provided.
  • the three supports 13, 14, 15 or the four or more supports 13, 14, 15 do not necessarily need to be erected at substantially equal intervals. That is, the space between one or more pairs of adjacent supports may be set up differently from the space between the other pair of adjacent supports.
  • optical loss generating portions 17, 30, 40, 76 it is not necessary to provide the optical loss generating portions 17, 30, 40, 76 on all of the plurality of (two or more) supports in the intermediate portion. Alternatively, it may be provided on one support 15 or two or more supports 15. In this case, it is preferable to provide, for example, a ring-shaped passage fitting 7 for supporting the optical cable 1 on the intermediate support 15 where the optical loss generators 17, 30, 40, 76 are not provided. In addition, optical loss generation ⁇ 17, 30, 40, 76 ⁇ Koo! A fixing jig 44 configured as shown in FIG. 5 may be used as the fixing jig 16 to be fixed to.
  • an optical loss generation unit 17, 30, 40, 76 is provided in the middle part of the routing path of the optical cable 1, the intrusion occurs in any part of the area where the intrusion is restricted. Can detect intrusions evenly. Also, even if the area where intrusion is restricted is wide, it is possible to detect the optical transmission loss caused in the optical cable, and it is preferable because the intrusion can be easily detected.
  • the optical cable 1 is provided with optical loss generation parts 17, 30, 40, 76 that generate optical transmission loss, even if an intrusion occurs at the left or right side of the intermediate support, It is possible to input an optical transmission loss signal of almost the same detection level to the optical loss detection unit and to output an external output from the optical loss detection unit. Therefore, it is preferable because any intrusion in the area where intrusion is restricted can be detected more accurately and reliably, and the reliability of the intrusion detection system can be further improved! /.
  • FIG. 15 shows the wiring pattern of the optical cable 1.
  • a protective fence 50 is stretched between a main support 51 and a main support 51, for example, an auxiliary support 52 erected at intervals of 2 m.
  • 51 is a observable distance, for example, a lateral length of 50-: LOOm is set up as one monitoring area.
  • the optical cable 1 is routed in a meandering and planar manner from the top to the bottom of the fence 50. For example, if the optical cable 1 is routed at intervals of 10 to 15 cm in the vertical direction, the optical cable 1 is not cut. As long as it cannot pass through the fence 50, intruders and animals can be reliably detected. If the spacing between the optical cables 1 is made dense at the bottom of the fence as shown in the figure, it will be possible to more reliably detect intruders, animals, etc. trying to enter from the bottom of the fence. become.
  • the optical cable 1 can also be routed to the creeping portion 53 of the fence 50. This makes it possible to reliably detect intruders, animals, etc. entering the fence 50.
  • reference numeral 5 denotes an optical loss generating unit having the above-described configuration.
  • Reference numeral 7 denotes a ring-shaped passing fitting that is provided on the auxiliary support 52 and supports the optical loss generation portion while passing through it.
  • Reference numeral 54 denotes a holding bracket for fixing the optical cable 1 to the fence 50.
  • FIG. 16 is an enlarged view showing the configuration of the sneak portion 53 of the auxiliary support 52.
  • the auxiliary support 52 includes a fixed support 52a fixed vertically and a movable support 52b connected to the upper end of the fixed support 52a.
  • the fixed support 52a and the movable support 52b are connected via a spring mechanism 55.
  • the movable support 52b is moved outward ( It is easy to fall down in the direction of arrow I).
  • the optical cable 1 stretched on the movable support 52b is pulled, and as a result, the optical loss generating unit 5 operates. According to the above configuration, intruders, animals, and the like who attempt to get over the fence 50 through the auxiliary support 52 can also be detected.
  • the surveillance cameras TC # 1 to TC # 10 such as the 1st to 10th IP cameras are photographed along the fence 71 stretched around the outer periphery of the surveillance area WA. They are arranged with the same direction.
  • Each surveillance camera TC # 1 to TC # 10 is connected to an E / O converter 73 via a four-fiber optical cable 72.
  • This EZO converter 73 is a controller having a time-shift video recording delay memory mechanism ( (Recording / reproducing apparatus) 74, and a controller 75 is connected to the output side of the controller 74.
  • the controller 74 is provided with a number of memories M1 to M1 0 corresponding to the surveillance cameras TC # 1 to TC # 10, and monitors two optical cables 72 from each surveillance camera TC # 1 to TC # 10. Use it as a transmission path for transmitting camera images, store the video data to be transmitted, and repeat the process of erasing it after a certain period of time! / Speak.
  • the remaining two cores of the optical cable 72 are connected to the optical loss detection unit 4 and used as intrusion detection sensors S # 1 to S # 10.
  • the optical loss detection unit 4 For example, if the optical cable 72 of J in the figure is disconnected, the image from the surveillance camera TC # 8 will not appear on the screen of the monitor 75, and the optical loss connected to the intrusion detection sensor S # 8 An optical transmission loss is detected by a detector 4 (not shown), and a signal is output.
  • This signal is input to the controller 74, and the controller 74 monitors the surveillance camera TC # 7 next to the optical cable 72 from which the signal is output, that is, the surveillance camera on the rear stage capturing the surveillance area WA # 8. For example, the image recorded in the memory M7 is displayed on the screen of the monitor 75 for 10 seconds without erasing the image taken by the TC # 7.
  • the intrusion position can be specified and the intrusion detection sensor S # 1 to S # 10 Surveillance camera that works and shoots the intrusion position is automatically switched to TC # 1 to TC # 10. Intrusion detection can be reported reliably.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

 侵入が制限された区域に配索される、支持ワイヤ部1aと光心線部1bと を有する光ケーブル1と、この光ケーブル1に外力が加わって変位した場合に、光心線部1bに当接してこれを強制的に屈曲させる可動体を有し、光ケーブル1の配索経路の終端部に設けられ、光心線部1bに光伝送損失を発生させる光損失発生部5と、その光伝送損失を検知する光損失検知部4とを備え、この光損失検知部4は上記光伝送損失が一定値以上減衰したときに動作し、侵入検知のための装置を起動させるための信号を出力する。

Description

侵入検知装置及び侵入検知システム
技術分野
[0001] 本発明は、警戒区域或いは侵入禁止区域等の侵入が制限された区域に、侵入者
、動物、車両等が侵入したことを検知する侵入検知装置及びそれを用いた侵入検知 システムに関するものである。
背景技術
[0002] 従来、侵入が制限された区域に立設された複数のポール、支柱等の支持物に光フ アイバをセンサとして線状若しくは面状に配索し、その光ファイバにおける伝送状態 を検出することにより侵入者を検知する検知システムが知られている。
[0003] 上述した検知システムは、図 18に示すように、コントローラを搭載した検知制御機 8 1と、検知制御機 81に接続された光ファイバ 82を有しており、上述した検知制御機 8 1は、光ファイバ 82の一端 82aにレーザー光を入射させ、光ファイバ 82内を伝播して きたレーザー光を光ファイバ 82の他端 82bカも受光するようになって 、る。
[0004] この検知システムでは光ファイバ 82に荷重が加えられたことによって生じた外乱を、 レーザー光の状態変化で監視するようになっている。
[0005] 図 19はその状態変化の検出原理を示すものである。この検知制御機 81は光フアイ バ 82の入力及び出力間のレーザー光の分布を常時監視しており、平常時には光フ アイバ 82の断面におけるレーザー光の分布は同図(a)に示す通りになる。一方、光 ファイバ 82に振動が加わると、同図(b)に示すように、また、圧力が加わると、同図(c )に示すように、それぞれレーザー光の出力分布が乱れ、また、光ファイバ 82が切断 された場合も分布が変化する。この出力分布の乱れは検知制御機 81によって分布さ れ、予め設定した値 (周波数、強度、回数等)以上になった時点で検出信号を発生 する。
発明の開示
発明が解決しょうとする課題
[0006] この種の検知システムはセンサとして光ファイバ 82を使用しているため、電気的、電 磁的環境を受けることがなぐまた、強風等の天候の影響を受けることも少ないため、 誤動作が少ないという利点がある。また、例えば支持物間にフェンスが張られている 場合には、そのフェンスに沿って配索する等設置環境に対して柔軟に対応することも できるため施工性に優れて 、る。
[0007] し力しながら、上述した検知システムにおける光ファイバセンサの検出原理は、光フ アイバに 82に振動や圧力が加わった場合に、受信側で生じるスペックル (斑点)の状 態変化を監視するというものであるから、状態変化の分析に専用の検知制御機が必 要になる。
[0008] この検知制御機 81は、光エネルギを電気信号に変換し、電気信号をデジタル化し 、更に、周波数情報、回数情報等に変換し、この情報をもとに予め与えられた設定条 件と比較し、すべての条件を満たす場合に侵入ありと判断するように構成されている 。このように、従来の検知システムの構成は複雑、且つ、高価であり、汎用的に利用 することができな 、と!/、う不都合がある。
[0009] 更に、上述した検知システムで侵入位置を特定するために、侵入が制限された区 域を細分ィ匕しょうとすると、侵入が制限された区域毎に高価な上記検知制御機 81を 追加しなければならず、施工コストが高くなるという問題もある。
[0010] 本発明は上記検知システムにおける課題を考慮してなされたものであり、極めてシ ンプル、且つ、低コストで侵入を検知することができる侵入検知装置及び侵入検知シ ステムを提供するものである。
課題を解決するための手段
[0011] 本発明の侵入検知装置の第 1の態様は、侵入が制限された区域に配索される光ケ 一ブルと、前記光ケーブルに外力が加わったときに生じる光伝送損失を検知する光 損失検知部とを有し、
前記光損失検知部は前記光伝送損失が一定値以上減衰したときに動作して、侵 入検知のための装置を起動させるための信号を出力することを特徴とする侵入検知 装置である。
[0012] 上記侵入検知のための装置の具体例としては、防犯カメラ、防犯ビデオ、視覚で侵 入を報知する、例えば、警告灯、音声で侵入を報知する、例えば、ブザー等がある。 [0013] 本発明の侵入検知装置の第 2の態様は、前記光ケーブルの配索経路の終端部に 、前記光ケーブルに光伝送損失を発生させる光損失発生部が設けられて 、ることを 特徴とする侵入検知装置である。
[0014] 本発明の侵入検知装置の第 3の態様は、前記光ケーブルの配索経路の中間部に 、前記光ケーブルに光伝送損失を発生させる光損失発生部が設けられて 、ることを 特徴とする侵入検知装置である。
[0015] 本発明の侵入検知装置の第 4の態様は、前記光ケーブルが支持ワイヤ部と光心線 部とを有し、前記光損失発生部は、前記光ケーブルが変位した場合に、光心線部に 当接してこれを強制的に屈曲させる可動体と、屈曲された光心線部を保持する保持 部とからなつていることを特徴とする侵入検知装置である。
[0016] 本発明の侵入検知装置の第 5の態様は、前記光ケーブルが、侵入が制限された区 域に所定間隔で配設された支持物に架設され、前記支持ワイヤ部を前記支持物に 固定する固定治具が、前記支持物から突設された支持軸と、前記支持軸に軸支され 、一方の前記支持ワイヤ部については逆転を防止しつつ回転して巻き取る卷取ドラ ムと、前記支持軸に軸支され、他方の前記支持ワイヤ部については前記光ケーブル の変位に追随して支持ワイヤ部の移動を許容する遊動ローラとを備えていることを特 徴とする侵入検知装置である。
[0017] 本発明の侵入検知装置の第 6の態様は、前記光ケーブルが支持ワイヤ部と光心線 部とを有し、侵入が制限された区域に略等間隔で立設された 3個以上の支持物にあ つて、光ケーブルの配索経路の各中間部の支持物に前記光ケーブルに光伝送損失 を発生させる光損失発生部が設けられ、前記光損失発生部は、前記光ケーブルが 変位した場合に、光心線部に当接してこれを強制的に屈曲させる可動体を備えてい ることを特徴とする侵入検知装置である。
[0018] 本発明の侵入検知システムの第 1の態様は、侵入が制限された区域が複数の監視 区域に分割され、各監視区域毎に上述した何れかの侵入検知装置が設けられた侵 入検知システムである。
[0019] 本発明の侵入検知システムの第 2の態様は、侵入が制限された区域の境界に沿つ て所定間隔を開けた状態で、且つ、撮影方向を同じ向きにして配列される複数の監 視力メラと、前記監視カメラで撮影された画像を監視カメラ毎にメモリに録画し又は再 生する録画再生装置と、前記監視カメラで撮影された画像を表示するモニタと、前記 監視カメラによって撮影された範囲毎に前記境界に配索される光ケーブルと、前記 光ケーブルに外力が加わったときに生じる光伝送損失を検知する光損失検知部を有 し、
前記光損失検知部は前記光伝送損失が一定値以上減衰したとき動作して起動信 号を出力し、前記起動信号を受けた前記録画再生装置は、光伝送損失が発生した 光ケーブルを撮影範囲としている次段側の監視カメラによって撮影された画像を一 定時間溯って再生することを特徴とする侵入検知システムである。
[0020] 本発明の侵入検知システムの第 3の態様は、前記光ケーブルの光心線部が複数の 光ファイバ心線を備え、一部の光ファイバ心線は監視カメラの撮影画像を伝送する伝 送路として、残りの光ファイバ心線は前記光損失検知部に接続されて侵入検知用セ ンサとして構成されることを特徴とする侵入検知システムである。
発明の効果
[0021] 本発明の侵入検知装置によると、光分布を監視することなぐ光ケーブルに生じた 光伝送損失を検知して、外部出力を動作させることが可能になるため、極めてシンプ ル、且つ、低コストで汎用性に富み、侵入を容易、確実に検知することができる。
[0022] 更に、本発明の侵入検知装置によると、光ケーブルの配索経路の中間部に光損失 発生部が設けられているので、侵入が制限された区域内のどの部位で侵入が発生し ても侵入をむらなく検知することができる。また、侵入が制限される区域が広くなつて も、光ケーブルに生じた光伝送損失を検知することが可能になり、侵入を容易に検知 することができる。
[0023] 更に、本発明の侵入検知装置によると、光ケーブルに変位が生じたときは、支持ヮ ィャ部 laの一方端 liを緊張状態に保持しているため、他方の支持ワイヤ部側のみが 移動し、他方の支持ワイヤ部側に設けられた光損失発生部で、光ケーブルに発生し た光伝送損失を、確実、且つ、迅速に検知することができる。
[0024] 更に、本発明の侵入検知装置によると、中間部の支持物の左右いずれ側の個所に おいて、侵入が発生しても、略同一検知レベルの光伝送損失信号を光損失検知部 に入力して、光損失検知部力も外部出力を出すことが可能になる。従って、侵入が制 限された区域のどの区域で侵入が発生しても、より精度よく確実に検知することがで き、侵入検知システムの信頼性をより向上させることができる。
[0025] 本発明の侵入検知システムによると、侵入場所の特定が容易で、検知の信頼性を 高めることができる。また、ハードウェアとしては、検知制御機に比べてコストが格段 に安い光損失検知部を追加するだけで対応することが可能になるため、システムが 高価にならず、経済的である。
図面の簡単な説明
[0026] [図 1]図 1は、本発明に係る侵入検知システムの基本構成を示す正面図である。
[図 2]図 2は、図 1における光ケーブルの構成を示す断面図である。
[図 3]図 3 (a)は光損失発生部の構成を示す拡大図、図 3 (b)はその動作状態を示す 説明図である。
[図 4]図 4は、光損失検知部及びそれに接続される周辺機器の構成を示すブロック図 である。
[図 5]図 5は、図 1における支持ワイヤ部の固定治具の好ましい形態を示す正面図で ある。
[図 6]図 6は、光損失発生部の第 2の実施形態を示す図 1相当図である。
[図 7]図 7は、図 6の光損失発生部を拡大して示すもので、図 7 (a)はその平常時の動 作状態の平面図、図 7 (b)は侵入発生時の動作状態の平面図である。
[図 8]図 8 (a)は、図 7 (a)の平面図、図 8 (b)は、図 7 (b)の平面図である。
[図 9]図 9は、光損失発生部の第 3の実施形態を示す図 1相当図である。
[図 10]図 10 (a)は、図 9における光損失発生部の拡大図、図 10 (b)はその動作状態 を示す説明図である。
[図 11]図 11は、光損失発生部の第 4の実施形態を示す図 1相当図である。
[図 12]図 12 (a)は、図 11における光損失発生部の拡大図、図 12 (b)はその動作状 態を示す説明図である。
[図 13]図 13は、光損失発生部の第 5の実施形態を示す図 1相当図である。
[図 14]図 14は、図 13の光損失発生部を拡大して示すもので、図 14 (a)は平常時の 動作状態の平面図、図 14 (b)は侵入発生時の動作状態の平面図、図 14 (c)は (a) の P— P矢視断面図である。
[図 15]図 15は、光ケーブルの配索パターンを示す正面図である。
[図 16]図 16 (a)は補助支持物の忍び返し部分の構成を示す側面図、図 16 (b)はそ の動作状態を示す側面図である。
[図 17]図 17は、カメラを使用した侵入検知システムの構成を示すブロック図である。
[図 18]図 18は、従来の侵入検知システムの構成を示すブロック図である。
[図 19]図 19は、従来の侵入検知システムの検出原理を示す説明図である。
符号の説明
1 光ケーブル
la 支持ワイヤ部
W 支持ワイヤ部
lb 光心線部
lc 支持ワイヤ
Id 被覆層
le 光ファイバ心線
If テンションメンノ
lg 被覆層
2、 3 支持物
4 光損失検知部
5 光損失発生部
5a 本体
5b 下側本体
5d 可動体
5g 突起部
5h 切欠部
5i ロックピン
5j 圧縮コイルばね 5k 上側本体
51 ローラ
5m 取付孔
5n 丸み
7 通過金具
8 固定治具
9 ローラ
10 引張コイルばね
発明を実施するための最良の形態
[0028] 以下、図面に示す実施の形態に基づいて本発明を詳細に説明する。図 1は、本発 明に係る侵入検知システムの基本構成を示すものである。
[0029] 本システムは侵入が制限された区域の外周が複数の監視区域に分割され、各監視 区域毎に本発明の侵入検知装置が設けられている。
[0030] 図 1において、光ケーブル 1は侵入が制限された区域における所定の監視区域の 外周に所定間隔を開けて立設された左右のポール、支柱等の支持物 2、 3間に、例 えば、縦方向(支持物の長手方向)に蛇行状に配索されており、一端は光損失検知 部 4の IN端子に、他端は OUT端子に接続されている。また、光ケーブル 1の配索経 路の終端部には後述する第 1の実施形態の光損失発生部 5が設けられ、この光損失 発生部 5には例えば支持物 2を利用して取り付けられている。
[0031] なお、図中 6は左右の支持物 2、 3の間にこれらより略等間隔に立設された補助の ポール、支柱等の支持物であり、これら補助の支持物 6には光ケーブル 1を支持する ための、例えば、リング状の通過金具 7が設けられている。
[0032] 以下、各部の構成について詳細に説明する。光ケーブル 1は、例えば、図 2に示す ように、支持ワイヤ部 laとそれに支持されるテープ状の光心線部 lbとから構成されて いる。支持ワイヤ部 laは、支持ワイヤ lcと、これを被覆しているプラスチック榭脂でで きた被覆層 Idからなり、光心線部 lbはテープ状の光ファイバ心線 leと、その光フアイ バ心線 leの上下両側に配置されたテンションメンバ Ifと、これら光ファイバ心線 le及 びテンションメンバ Ifを帯状に被覆して ヽるプラスチック榭脂でできた被覆層 lgから なる。
[0033] なお、この光ケーブル 1は支持ワイヤ部 laの被覆層 Idと光心線部 lbの被覆層 lgと を押出被覆手段により一体に被覆して、支持ワイヤ部 laと光心線部 lbがー体に形 成されるものであるが、この他に、例えば、支持ワイヤ部 laと光心線部 lbとを別体に 形成し、両者の外周にラッシングワイヤ等の結束部材を巻き付けて形成されるもので もよい。また、本実施形態の光ファイバ心線 leは 4心の多心タイプのものを示してい るが単心又は 2心、 3心若しくは 5心以上の多心タイプのものでもよい。更に、上記 4 心タイプの光ファイバ心線 leのうち、いずれか 1心を侵入検知に使用してもよいし、 2 心、 3心又
は 4心全部を侵入検知に使用してもよい。 2心以上の光ファイバ心線 leを使用すると 、動作不良等のものが生じても、他のものでカバーすることが可能になり、侵入検知 不良が減少し、検知感度を向上させることができるので好ましい。
[0034] 左右の支持物 2、 3間に光ケーブル 1を縦方向に蛇行状に配索するにあたり、光ケ 一ブル 1の支持ワイヤ部 laを光心線部 lbから分離させ、更に、その支持ワイヤ部 la (被覆層 Idを有しない支持ワイヤ lcだけの場合を含む。以下同様)を左右の支持物 2、 3間に水平に架設する。従って、支持物 3に沿って縦方向に配索されるのは光心 線部(光ファイバ心線 leだけの場合を含む。以下同様) lbのみとなっている。
[0035] 支持ワイヤ部 laの右側端部は支持物 3に設けられた固定治具 8に接続され、左側 端部はローラ 9を介して立ち下げられ、延長用の支持ワイヤ部 la' と接続されて支持 物 2に設けられた引張コイルばね 10に接続されている。
[0036] なお、延長用の支持ワイヤ部 la' は引張コイルばね 10に接続される手前で光損 失発生部 5の可動体 (後述する)と固定されて 、る。
[0037] 第 1の実施形態の光損失発生部 5は、図 3に示すように、平常時には直線状に架設 されている光心線部 lbの一部を、侵入時には強制的に屈曲させて光伝送損失を発 生させるようになつている。
[0038] 図 3 (a)において、光損失発生部 5の構成は、光心線部 lbを通すための通路 Sを備 えたプレート状の本体 5aを有し、その通路 Sを境にして下側本体 5bには垂直方向に U字溝 5cが形成され、この U字溝 5c内に、 U字溝 5cと係合するように形成されたプレ ート状の可動体 5dが挿入されている。また、 U字溝 5cの奥側摺動面にはスリット 5eが 垂直方向に形成されており、このスリット 5eを、可動体 5dから奥側に向けて突出する ピン 5fが貫通している。
[0039] スリット 5eを貫通したピン 5fの先端は上記延長用の支持ワイヤ部 la' に固定されて おり、ピン 5fはスリット 5eをガイドとして移動することができ、ピン 5fの移動に伴って可 動体 5dが昇降するようになっている。その可動体 5dの上部には左右一対の突起部 5 gが立設されている。
[0040] また、可動体 5dの側縁の一部には切欠部 5hがくさび状に形成されており、この切 欠部 5hにはロックピン 5iが係脱するようになって 、る。
[0041] ロックピン 5iは平常時には可動体 5dの側縁と当接することにより矢印 B方向に退避 しており、切欠部 5hと対向した場合には圧縮コイルばね ¾の付勢力により矢印 B方 向と反対方向に突出して切欠部 5hと係合し、可動体 5dの移動を禁止するようになつ ている。上記切欠部 5h、ロックピン 5i及び圧縮コイルばね 5jは、可動体 5dによって屈 曲された光心線部 lbを解除可能に保持する保持部として機能する。
[0042] 一方、通路 Sを境にして上側本体 5kには 3個のローラ 51が水平方向に配列されて おり、可動体 5dが上昇した場合には、その突起部 5gがローラ 51の間を通過し、ロック ピン 5iが切欠部 5hに係合した状態で、光心線部 lbは、 3個のローラ 51と上昇してき た突起部 5gとの間に挟まれて M字状に屈曲されることになる(図 3 (b)参照)。
[0043] なお、 5mは光損失発生部 5を支持物 2に固定するための取付孔である。また、下 側本体 5bにおいて、通路 Sの左右両端は丸み 5nが形成されている。
[0044] 図 4は光損失検知部 4及びその周辺機器の構成を示すものである。同図において 、光損失検知部 4はメディアコンバータ等の信号変換器で構成され、 OUT端子 4aか ら光を光ケーブル 1内に入射伝播させ、 IN端子 4bへの入射が一定値以上減衰した 場合に、所定の信号を外部に出力する手段として構成されている。
[0045] この種の装置は、通常、動作状態を報知するための、例えば、 LED点灯回路が備 えられており、スィッチの設定により通信が確立されなくなったときに LEDを点灯させ ることがでさる。
[0046] 本実施形態では、この LEDを点灯させるための出力電圧 2Vをリレー力もなる電圧 変換部に与えて 12Vに変換し、出力できるように構成されている。
[0047] 次に、この信号変換器を用いた光損失検知部 4で検知動作を行うにあたり、 IN端 子 4bへの入射が 30dB以下 (正常)の場合には、非動作、 40dB (異常)の場合には 動作するようにしている。
[0048] なお、平常時においては光ケーブル 1内を伝播する光は通過中に僅かながら減衰 するが、その量は微々たるものである。従って、異常時においては、 IN端子 4bに 40d B以上減衰した光が入射するように設定する必要がある。そこで、光損失発生部 5の 線路中に抵抗器 11を介設することにより、 IN端子 4bには既に 30dB減衰した光が入 射するようにする。それにより、光損失発生部 5での損失量が例えば 10dB程度と少 なくても、光損失検知部 4の動作が確実に行われるようにして ヽる。
[0049] また、光損失検知部 4からの外部出力は出力端子 4cから、例えば、自己保持回路 12に入力した後、外部出力として取り出される。自己保持回路 12を介設する理由は 、減衰量が 30dB〜40dBの範囲では、光損失検知部 4が正常 Z異常と判断すること による動作を繰り返す、いわゆるチャタリングを起こしてしまうため、自己保持回路 12 により、一旦、光損失検知部 4から出力された外部出力をリセットされるまで動作状態 に維持するためである。
[0050] 光ファイバを利用した従来の侵入検知システムは、光ファイバにおける入力と出力 間のレーザー光の光分布を常時監視し、光ファイバに振動や圧力を加わった場合に 発生する光分布の乱れが、予め設定した値 (周波数、強度、回数等)以上になった時 点で、検出信号を出力するようになっている。従って、光分布の監視、乱れを分析す るには、マイコンを備えた検知制御機の導入が欠かせな力 た。また、侵入が制限さ れた区域の細分ィ匕を行う場合には、細分ィ匕された区域毎に検知制御機を追加しなけ ればならず、システムが複雑、且つ、高価にならざるを得なかった。
[0051] また、検知制御機で検知できる光ファイバの最大長さは通常 2kmであり、それ以上 の長さについて侵入の検知を可能にするには、検知制御機を屋外に配置しなけれ ばならず、電源の供給も必要となる。更に、雷や電磁波対策も必要となる。
[0052] これに対して、本発明の侵入検知装置によれば、光分布を監視することなぐ光ケ 一ブル 1に生じた光伝送損失を検知して、外部出力を動作させることが可能になるた め、極めてシンプルな構成で侵入検知システムを構築することができるようになる。し カゝも、侵入が制限された区域を複数の監視区域に分割して細分化する場合には、侵 入場所の特定が容易で、検知の信頼性を高めることができる。また、ハードウェアとし ては、検知制御機に比べてコストが格段に安い光損失検知部 4を追加するだけで対 応することが可能になるため、システムが高価にならず、経済的である。
[0053] また、信号変換器の光伝送能力は比較的長距離なので、電子部品からなる信号変 を屋外にさらすことなぐ屋内に配置して侵入検知システムを構築することができ 、電源を供給する手段も必要なくなる。また、雷や電磁波の影響を受けないため、誤 作動の発生を防止することができ、電磁波対策も不要となる。
[0054] 次に、上記構成を有する侵入検知システムの動作につ!、て説明する。侵入者、動 物等が光ケーブル 1に手をかける等して外力を加えることにより、配索された光ケー ブル 1が橈んで変位すると(図 1中、矢印 Y方向参照)、引張コイルばね 10の引張力 に抗して支持ワイヤ部 la' が矢印 A方向に引き上げられる。
[0055] このとき、図 3 (a)に示すように、ピン 5fを介して可動体 5dが上昇し、可動体 5d上部 の突起部 5gは光ケーブル 1を持ち上げつつ、ローラ 51の間に進入する。その結果、 光心線部 lbは M字状に屈曲される。
[0056] 可動体 5dが図 3 (b)に示す位置まで上昇すると、切欠部 5hにロックピン 5iが係合し 、可動体 5dは上昇位置で保持される。
[0057] この状態で、光ケーブル 1は屈曲状態が保持され、光伝送損失が 10dB以上に大き くなり、光損失検知部 4の IN端子 4bに光伝送損失力 OdB以上の光が入射し、光損 失検知部 4は異常発生と判定し、出力端子 4cから外部出力として、例えば、 12Vを 出力し、この外部出力は、自己保持回路 12によって自己保持され、侵入検知のため の各装置のトリガとして、具体的には、防犯カメラの起動、防犯ビデオの録画開始、 警告灯の点灯、ブザーの吹鳴、侵入場所の表示、外部への通報、音声による威嚇等 に使用することができる。光ケーブル 1に侵入による外力が加わり、光心線部 lbが、 図 3 (b)に示すよう
に、 3個のローラ 51と一対の突起部 5gにより、 M字状に屈曲されると、光心線部 lbに 3個の U形屈曲部が形成されることになる。そうすると、光伝送損失の減衰特性 (感度 )が良好になり、侵入検知の精度を向上させることができるので好ましい。
[0058] なお、警備員が侵入検知システムの監視区域に行き、光ケーブル 1に生じた光伝 送損失が侵入者、動物等の侵入によるものでないことが判明した場合、ロックピン 5i を圧縮コイルばね ¾の付勢力に抗して矢印 B方向に後退させる。
[0059] それにより、支持ワイヤ部 la' は引張コイルばね 10の復元力によって、例えば、下 方に引っ張られ、ピン 5fを介して支持ワイヤ部 la' に固定されている可動体 5dも連 動して下降する。
[0060] その結果、可動体 5dは図 3 (a)に示すように、 U字溝 5cに嵌まった状態で停止する 。即ち、平常時の位置にリセットされる。
[0061] また、仮に光ケーブル 1が切断された場合には、光損失検知部 4の IN端子 4bに戻 つてくる光がゼロになるため、光損失発生部 5が働かなくても、光伝送損失が 40dBを 超えるため、この場合も異常が発生したと判定され、外部出力が出力される。従って 、本侵入検知システム及び装置を用いることにより、同一回路で光ケーブル 1の切断 も検知することができ、切断検知手段を新たに設ける必要がなぐ構造が簡単になり 、経済的である。
[0062] なお、外部出力は上記 12Vに限らず、例えば、リレーに接続したり、増幅回路を介 して増幅すれば、それ以下の外部出力であっても、外部出力として利用することがで きる。
[0063] 図 5は図 1における支持ワイヤ部 laの固定治具 8の好ましい形態である固定治具 4 4を示すものである。この固定治具 44は、侵入が制限された区域における所定の監 視区域に立設された支持物 2、 3に架設され、支持物 2、 3から突設された支持軸 44a の軸方向奥側に爪車 44bを軸支させ、中間部にその爪車 44bに固定した状態で、卷 取ドラム(図示しない)を、手前側には支持軸 44aを中心にして支持物 2、 3に対し自 由に回転する遊動ローラ 44dをそれぞれ配置した歯車装置を備えて 、る。
[0064] また、上記爪車 44bの外周面には歯溝が形成され、各歯溝に係止し得る係止爪 44 cが支持物 2、 3に設けられており、爪車 44b及び卷取ドラムを支持軸 44aを中心にし て矢印 F方向にのみ回転させ、逆転を防止するようになって!/、る。
[0065] この固定治具 44によれば、支持物 (右側) 3の左側に配索される光ケーブル 1の支 持ワイヤ部 laの一方端 (右側) liについては、これを卷取ドラムに固定して該ドラムで 巻き取り、爪車 44bの歯溝に係止爪 44cを係合させることにより、支持ワイヤ部 laの 一方端 liを緊張状態に保持することができる。
[0066] 一方、支持ワイヤ部 laの他方端 (左側) ljについては、支持軸 44aを中心にして支 持物 (左側) 2に対し自由に回転する遊動ローラ 44dを介して立ち下げられ、引張コィ ルばね 44e (固定治具 8の引張コイルばね 10に相当)に接続されているため、光ケー ブル 1が侵入者、動物等によって押し下げられると、上記支持ワイヤ部 laの他方端 lj が矢印 G方向に引き上げられ、光損失発生部 5によって光伝送損失が発生すること になる。
[0067] この固定治具 44を使用すれば、支持ワイヤ部 laの一方端 liを緊張状態に保持し ているため、光ケーブル 1に発生した光伝送損失を確実に支持ワイヤ部 laの他方端 lj側、即ち、光損失発生部 5で検知できるようになる。
[0068] 図 6〜図 8は上記光損失発生部の第 2の実施形態を示すものである。図 6は光ケー ブル 1の配索状態を示すものである。侵入が制限された区域における所定の監視区 域には、左右の支持物 13、 14と光ケーブル 1の配索経路の中間部の支持物 15が略 等間隔をおいて立設される。光ケーブル 1は、これに支持物 13と支持物 15との間、 支持物 14と支持物 15との間に所定深さの弛度 (弛み量)が生じるように所定の張力( テンション)を付与されながら、支持物 13、 14、 15間に、縦方向に蛇行状に配索され ている。
[0069] 支持物 13、 14には固定治具 16が縦に配列されており、光ケーブル 1の支持ワイヤ 部 laを固定している。光ケーブル 1の光心線部 lbは支持物 15に設けられた光損失 発生部 17を S字状に通過するようになっている。
[0070] 図 7は上記光損失発生部 17を拡大して示すものであり、同図(a)は平常時、同図( b)は侵入発生時の動作状態を示している。これらの図において、支持物 13から支持 物 14に架設される光ケーブル 1の支持ワイヤ部 laは、ー且、支持物 15の位置で切 断され、左側に延びる支持ワイヤ部 laは、可動体 17a上に横方向に配列されたピン 18a〜18dのうち、最も左側のピン 18aに固定され、右側に延びる支持ワイヤ部 laは 、最も右側のピン 18dに固定されている。なお、支持ワイヤ部 laは引張コイルばね等 により所定の張力が付与された状態で固定することが好ましい。
[0071] 一方、光ケーブル 1の支持ワイヤ部 laから分離した光心線部 lbは、固定台座 18上 に縦方向に対向した状態で配列されたピン 19a、 19b、 20a、 20bの隙間を通るよう に配索される。
[0072] 上記構成を有する光損失発生部 17によれば、例えば、支持物 13と支持物 15の間 に侵入者、動物等が接近し、光ケーブル 1が、例えば、下向きに引っ張られて変位す ると、可動体 17aが矢印 C方向に移動し、その結果、光心線部 lbはピン 18cに押され 、くの字状に屈曲される。
[0073] この場合も、光ケーブル 1の光伝送損失が大きくなり、光損失検知部 4の IN端子 4b に入射する光の光伝送損失が 40dB以上になると、光損失検知部 4が動作し、出力 端子 4cから外部出力を出力する。
[0074] 図 8は図 7に示す光損失発生部 17を平面から見たものである。図 8 (a)において、 可動体 17aの前面左側には、板ばねで構成された左側ストツバ 21が設けられ、右側 には右側ストツバ 22が設けられている。従って、可動体 17aが矢印 C方向に移動する と、左側ストツバ 21が図 8 (b)に示すように、 V字状に突出して前板 23の左側縁部に 係止される。
[0075] それにより、可動体 17aは左側ストツバ 21を解除しない限り、左側に移動した状態 で保持される。
[0076] なお、支持物 15と支持物 14との間で、光ケーブル 1が変位すると、可動体 17aは右 側に移動し、右側ストツバ 22が前板 23の右側縁部に係止される。
[0077] 図 9は上記光損失発生部の第 3の実施形態を示すものである。光ケーブル 1の支 持ワイヤ部 laは、光ケーブル 1の配索経路の中間部の支持物 15に設けられた光損 失発生部 30を介して左右の支持物 13、 14に固定治具 16で固定されて架設されて おり、光心線部 lbは光損失発生部 30をループして通過するようになっている。
[0078] 図 10は上記光損失発生部 30を拡大して示すものであり、同図(a)は平常時、同図
(b)は侵入発生時の動作状態を示している。
[0079] これらの図において、光損失発生部 30は L形のベース 30aと、そのベース 30aに設 けられた支持軸 30bを中心として回転する T字状の可動体 30cとを有し、ベース 30a 上には、光心線部 lbをループ状に保持しておくためのガイドピン 31a〜31dが設け られている。
[0080] 光心線部 lbは、支持軸 30b→ガイドピン 31c→ガイドピン 31b→ガイドピン 31a→ 支持軸 30bの順に掛け渡されることによりループが形成されている。
[0081] 一方、可動体 30cには、ガイドピン 31cとガイドピン 3 Idとの間の光心線部 lbを屈曲 させるための押圧ピン 32a、 32bが設けられ、侵入者、動物等の侵入により光ケープ ル 1が変位して可動体 30cが矢印 D方向(又は矢印 E方向)に回転すると、押圧ピン 3 2a (又は押圧ピン 32b)で光心線部 lbを屈曲させるようになって 、る。
[0082] 図 11は上記光損失発生部の第 4の実施形態を示すものである。光ケーブル 1の支 持ワイヤ部 laは、光ケーブル 1の配索経路の中間部の支持物 15に設けられた光損 失発生部 40を介して左右の支持物 13、 14に固定治具 16で固定されて架設されて おり、光ケーブル 1の支持ワイヤ部 laは、ー且、支持物 15の位置で切断され、左側 に延びる支持ワイヤ部 laは、図 12 (a)に示す可動体 41上の下側固定部 41aに固定 され、更に、引張コイルばね 42を介してベース 43に固定されている。一方、右側に 延びる支持ワイヤ部 laは、可動体 41上の上側固定部 41bに固定され、更に、引張コ ィルばね 42
を介してベース 43に固定されて!、る。
[0083] 可動体 41は、ベース 43に設けられた支持軸 43aを中心として回動するようになって おり、支持軸 43aの近傍に一対の押圧ピン 41cが配設されている。
[0084] また、ベース 43に配設されるガイドピン 43b、 43cは、垂直方向に配索される光心 線部 lbの右側及び左側をガイドするようになって 、る。
[0085] なお、 43dは紙面厚さ方向に進退自在に構成されたロックピンであり、圧縮コイルば ねによってベース 43の表面力も若干突出した状態で保持されている。このロックピン 43dは軸体力もなり、その右側が傾斜面に形成されている。従って、可動体 41が図 1 2 (b)に示す位置まで回転する際に、ロックピン 43dが後退し、ロックピン 43dを乗り越 えると、そのロックピン 43dが圧縮コイルばねの復元力によって突出し、可動体 41を 図 12 (b)に示す姿勢に解除可能にロックするようになって!/、る。
[0086] 上記構成を有する光損失発生部 40によれば、支持物 13と支持物 15の間に侵入 者、動物等が接近し、光ケーブル 1が、例えば、下向きに引っ張られて変位すると、 可動体 41が図 12 (b)に示すように、矢印 H方向に回転し、その結果、光心線部 lbが 一対の押圧ピン 41cによって押され、階段状に屈曲される。
[0087] この場合も、光ケーブル 1の光伝送損失が大きくなり、光損失検知部 4の IN端子 4b に入射する光の光伝送損失が 40dB以上になると、光損失検知部 4が動作し、出力 端子 4cから外部出力を出力する。
[0088] 図 13〜図 14は上記光損失発生部の第 5の実施形態を示すものである。図 13は 1 本の光ケーブル 1の配索状態を示すものである。侵入が制限された区域における所 定の監視区域には、左右の支持物 13、 14と光ケーブル 1の配索経路の中間部の支 持物 15が略等間隔をおいて立設される。 1本の光ケーブル 1は、これに支持物 13と 支持物 15との間、支持物 14と支持物 15との間に所定深さの弛度(弛み量)が生じる ように所定の張力(テンション)を付与されながら、支持物 13、 14、 15間に、縦方向に 蛇行状に、且つ、支持物 15において縦横方向に交差するようにして一筆書き状に配 索されている。
[0089] 支持物 13、 14には固定治具 16が縦に配列されており、光ケーブル 1の支持ワイヤ 部 laを固定している。光ケーブル 1の光心線部 lbは、中間部の支持物 15にその長 手方向に沿って逆 U形状に配索されると共に、支持物 15に設けられた光損失発生 部 76を十文字状に通過するようになって 、る。
[0090] 図 14は上記光損失発生部 76を拡大して示すものであり、同図(a)は平常時の動作 状態の平面図、同図 (b)は侵入発生時の動作状態の平面図、同図(c)は (a)の P— P矢視断面図である。
[0091] 光損失発生部 76は、図 14 (a) (c)に示すように、角板状のベース 77と、ベース 77 に間隔をおいて平行に、且つ、支持物 15の長手方向(縦方向)に延出するように形 成され、 1本の光心線部 lbを、中間部の支持物 15の長手方向に沿って案内する一 対の光心線部案内通路 78と、ベース 77に光心線部案内通路 78と交差する方向(横 方向)に往復移動可能に配設される可動体 79と、ベース 77の一対の光心線部案内 通路 78を境にして可動体 79と対向する位置に、それぞれ光心線部案内通路 78に 沿って間隔をお 、て配設される 3個のローラ 80とを備えて 、る。 [0092] また、可動体 79の移動方向の両端部には、間隔をおいて移動方向に突出する一 対の突起部 79aが設けられている。更に、可動体 79の頭部 (紙面厚さ方向)には、蛇 行状に配索されて水平に架設状態の光ケーブル 1の支持ワイヤ部 laを、例えば、円 形押え板力もなる固定部 79bで締め付け固定して保持すると共に、支持ワイヤ部 la 力も分離させた光心線部 lbを可動体 79の外周に迂回させて案内するようになって いる。なお、 77aはローラ 80及び可動体 79を支持する、例えば、透明榭脂を成形カロ ェして形成された 4分割型の覆板で、ベース 77の上にボルト、ねじ等の固定部材で 分離可能に固定されて
いる。なお、この光損失発生部 76を構成するハウジングは、ベース 77と覆板 77aの 分割構造ではなぐ一体構造 (非分割構造)にしてもよい。
[0093] このような状態で、例えば、支持物 13と支持物 15の間に侵入者、動物等が接近し 、光ケーブル 1が引っ張られて変位すると、図 14 (b)に示すように、可動体 79が矢印 X方向に移動する。その結果、支持物 15の長手方向に配索されている光心線部 lb の内、左側に位置する光心線部 lbが 3個のローラ 80と可動体 79の突起部 79aとの 間に挟まれて M字状に屈曲される。そして、光ケーブル 1の光伝送損失が大きくなり 、光損失検知部 4の IN端子 4bに入射する光の光伝送損失が 40dB以上になると、光 損失検知部 4が動作し、出力端子 4cから外部出力を出力し、侵入が検知される。
[0094] 一方、支持物 14と支持物 15の間に侵入者、動物等が接近し、光ケーブル 1が、例 えば、下向きに引っ張られて変位すると、可動体 79が矢印 X方向と反対方向に移動 し、右側に位置する光心線部 lbが同様に M字状に屈曲され、光伝送損失が大きくな つて、同様に侵入が検知される。光ケーブル 1に侵入による引っ張り等の外力が加わ り、光心線部 lbが、図 14 (b)に示すように、 3個のローラ 80と一対の突起部 79gによ り、 M字状に屈曲されると、光心線部 lbに 3個の U形屈曲部が形成されることになる。 そうすると、光伝送損失の減衰特性 (感度)が良好になり、侵入検知の精度を向上さ せることができるので好ま U、。
[0095] なお、上記光損失発生部 76 (図 13、 14参照)では、 1本の光ケーブル 1が支持物 1 5に設けられた光損失発生部 76を十文字状に通過するように一筆書き状に配索され ているが、このような構成のものだけに限定されるものではない。例えば、光損失発生 部 76の光心線部案内通路 78に沿って縦方向に配索される光ケーブル 1と、光心線 部案内通路 78と交差するように横方向に配索される光ケーブル 1とは、それぞれ独 立した別の光ケーブル 1であってもよい。また横方向に配索される光ケーブル 1は、 例えば、光損失発生部 76毎に異なる別の光ケーブル 1であってもよい。このように、 縦横方向に配索され
る光ケーブル 1が別の光ケーブル 1の場合、横方向に配索される光ケーブル 1は、上 記したように、支持ワイヤ部 laだけを可動体 79に保持させ、支持ワイヤ部 laから分 離させた光心線部 lbを可動体 79の外周に迂回させて案内するようにしてもよ!、が、 支持ワイヤ部 laと光心線部 lbを分離させず、支持ワイヤ部 laと光心線部 lb、即ち、 光ケーブル 1全体を可動体 79に保持させるようにしてもょ 、。更に横方向に配索され る光ケーブル 1は光ケーブル以外のテンションメンバーに代替させるようにしてもよい
[0096] 上記第 2実施形態乃至第 5実施形態の光損失発生部 17、 30、 40、 76においては 、侵入が制限された区域に配索される区域に 3個の支持物 13、 14、 15が略等間隔 で立設され、光ケーブル 1の配索経路の中間部の支持物 15に光損失発生部 17、 30 、 40、 76が設けられている力 侵入が制限された区域に配索される区域に 4本以上 の支持物 13、 14、 15が略等間隔で立設され、光ケーブルの配索経路の各中間部の 複数個(2個以上)の支持物 15に光損失発生部 17、 30、 40、 76が設けられるように してちよい。
[0097] また、 3個の支持物 13、 14、 15又は 4個以上の支持物 13、 14、 15は必ずしも略等 間隔で立設されている必要がない。即ち、 1対以上の隣り合う支持物間の間隔が他 の 1対以上の隣り合う支持物間の間隔と異なるように立設されていてもよい。
[0098] 更に、中間部の複数個(2個以上)の支持物全部に光損失発生部 17、 30、 40、 76 が設けられる必要はなぐ複数本の支持物 15のうちから任意に選択された 1本の支 持物 15又は 2本以上の支持物 15に設けられるようにしてもよい。この場合、光損失 発生部 17、 30、 40、 76が設けられない中間部の支持物 15には、光ケーブル 1を支 持するための、例えば、リング状の通過金具 7を設けることが好ましい。更に、光損失 発生咅 17、 30、 40、 76【こお!ヽて、光ケープノレ 1の支持ワイヤ咅 laを支持物 13、 14 に固定する固定治具 16として、図 5に示すような構成の固定治具 44を使用するよう にしてもよい。
[0099] 上記光ケーブル 1の配索経路の中間部に光損失発生部 17、 30、 40、 76が設けら れて 、ると、侵入が制限された区域内のどの部位で侵入が発生しても侵入をむらなく 検知することができる。また、侵入が制限される区域が広くなつても、光ケーブルに生 じた光伝送損失を検知することが可能になり、侵入を容易に検知することができるの で好ましい。
[0100] 更に、侵入が制限された区域に略等間隔で立設された 3個以上の支持物 13、 14、 15にあって、光ケーブル 1の配索経路の各中間部の支持物 15に上記光ケーブル 1 に光伝送損失を発生させる光損失発生部 17、 30、 40、 76がが設けられていると、中 間部の支持物の左右いずれ側の個所において、侵入が発生しても、略同一検知レ ベルの光伝送損失信号を光損失検知部に入力して、光損失検知部から外部出力を 出すことが可能になる。従って、侵入が制限された区域のどの区域で侵入が発生し ても、より精度よく確実に検知することができ、侵入検知システムの信頼性をより向上 させることができるので好まし!/、。
[0101] 図 15は光ケーブル 1の配索パターンを示すものである。同図において、例えば、防 護用のフェンス 50は主支持物 51及び主支持物 51間に、例えば、 2m間隔で立設さ れた補助支持物 52に張設されており、各主支持物 51は見通し可能な距離、例えば 、横方向長さ 50〜: LOOmを 1監視区域として立設されている。
[0102] フェンス 50の上部から下部まで、蛇行状、且つ、面状に光ケーブル 1が配索され、 例えば、縦方向に 10〜 15cmの間隔で光ケーブル 1を配索すれば、光ケーブル 1を 切断しない限りは、フェンス 50を通り抜けることができないため、侵入者、動物等の侵 入を確実に検知することができる。なお、光ケーブル 1を配索する間隔を同図に示す ようにフェンス下部側で密になるようにすれば、フェンス下部側から侵入者、動物等が 侵入しょうとするのをより確実に検知できるようになる。
[0103] また、光ケーブル 1は、フェンス 50の忍び返し部分 53にも配索することができる。そ れにより、フェンス 50を乗り越えて侵入する侵入者、動物等を確実に検知することが できる。 [0104] なお、図中、 5は上記した構成の光損失発生部である。 7は補助支持物 52に設けら れ、光損失発生部を通過させた状態で支持するリング状の通過金具である。 54は光 ケーブル 1をフェンス 50に固定するための把持金具である。
[0105] 図 16は、上記補助支持物 52の忍び返し部分 53の構成を拡大して示すものである 。同図において、補助支持物 52は、垂直に固定された固定支持物 52aと、この固定 支持物 52aの上端部に連結された可動支持物 52bとから構成されている。
[0106] 固定支持物 52aと可動支持物 52bは、ばね機構 55を介して接続されており、可動 支持物 52bに侵入者等が手を掛けてよじ登ろうとすると、可動支持物 52bが外側 (矢 印 I方向)に容易に倒れるようになつている。そして、可動支持物 52bが外側に倒れる と、その可動支持物 52bに張設された光ケーブル 1が引っ張られ、その結果、光損失 発生部 5が動作するようになっている。上記構成によれば、補助支持物 52を伝ってフ エンス 50を乗り越えようとする侵入者、動物等も検知することができる。
[0107] 次に、監視カメラを用いた侵入検知システムについて、図 17を参照しながら説明す る。同図に示す侵入検知システム 70では、監視区域 WAの外周に張り巡らされたフ エンス 71に沿って、第 1〜第 10の IPカメラ等の監視カメラ TC # 1〜TC # 10が、撮 影方向を同じ向きにして配列されている。
[0108] 各監視カメラ TC # 1〜TC # 10は、 4心の光ケーブル 72を介して E/Oコンバータ 73と接続され、この EZOコンバータ 73は、タイムシフト録画動画遅延メモリ機構を備 えたコントローラ (録画再生装置) 74に接続され、このコントローラ 74の出力側にはモ ユタ 75が接続されている。
[0109] このモニタ 75の画面上には、監視カメラ TC # 1〜TC # 10によって撮影された画 像が 10分割表示されている。
[0110] コントローラ 74には、監視カメラ TC # 1〜TC # 10に対応した数のメモリ M1〜M1 0が備えられ、各監視カメラ TC # 1〜TC # 10から光ケーブル 72の 2心を、監視カメ ラの撮影画像を伝送する伝送路として使って、送信される動画データを記憶し、一定 時間経過すると、順次消去する処理を繰り返して!/ヽる。
[0111] 光ケーブル 72の残りの 2心は、上記光損失検知部 4に接続され、侵入検知用センサ S # 1〜S # 10として使用される。 [0112] 例えば、図中 Jの光ケーブル 72が切断されると、監視カメラ TC # 8からの画像がモ ユタ 75の画面上に映らなくなると共に、侵入検知用センサ S # 8に接続された光損失 検知部 4 (図示せず)によって光伝送損失が検知され、信号が出力される。
[0113] この信号はコントローラ 74に入力され、コントローラ 74は信号が出力された光ケー ブル 72の隣りの監視カメラ TC # 7、即ち、監視区域 WA# 8を撮影している後段側 の監視カメラ TC # 7によって撮影された画像を消去せず、例えば、 10秒溯って、メモ リ M7に録画されている画像をモニタ 75の画面上に表示する。
[0114] 従来の監視カメラを使用した侵入検知システムでは、多数の監視カメラによって映 し出される画像を常時監視し続ければならず、警備員の負担が大きカゝつた。
[0115] これに対して、本実施形態の監視カメラ TC # 1〜TC # 10を使用した侵入検知シ ステムによれば、侵入位置を特定することができると共に、侵入検知用センサ S # 1〜 S # 10働いて、侵入位置を撮影している監視カメラ TC # 1〜TC # 10に自動的に切 り替えられるため、警備員の負担が軽減又は解消されると同時に、侵入者、動物等の 侵入検知を確実に報知することができる。

Claims

請求の範囲
[1] 侵入が制限された区域に配索される光ケーブルと、前記光ケーブルに外力が加わ つたときに生じる光伝送損失を検知する光損失検知部とを有し、
前記光損失検知部は前記光伝送損失が一定値以上減衰したときに動作して、侵 入検知のための装置を起動させるための信号を出力することを特徴とする侵入検知 装置。
[2] 前記光ケーブルの配索経路の終端部に、前記光ケーブルに光伝送損失を発生さ せる光損失発生部が設けられて!/ヽることを特徴とする請求項 1に記載の侵入検知装 置。
[3] 前記光ケーブルの配索経路の中間部に、前記光ケーブルに光伝送損失を発生さ せる光損失発生部が設けられて!/ヽることを特徴とする請求項 1に記載の侵入検知装 置。
[4] 前記光ケーブルが支持ワイヤ部と光心線部とを有し、前記光損失発生部は、前記 光ケーブルが変位した場合に、光心線部に当接してこれを強制的に屈曲させる可動 体と、屈曲された光心線部を保持する保持部とからなつていることを特徴とする請求 項 2又は 3に記載の侵入検知装置。
[5] 前記光ケーブルが、侵入が制限された区域に所定間隔で配設された支持物に架 設され、前記支持ワイヤ部を前記支持物に固定する固定治具が、前記支持物から突 設された支持軸と、前記支持軸に軸支され、一方の前記支持ワイヤ部については逆 転を防止しつつ回転して巻き取る卷取ドラムと、前記支持軸に軸支され、他方の前記 支持ワイヤ部については前記光ケーブルの変位に追随して支持ワイヤ部の移動を 許容する遊動ローラとを備えていることを特徴とする請求項 1から 4の何れ力 1項に記 載の侵入検知装置。
[6] 前記光ケーブルが支持ワイヤ部と光心線部とを有し、侵入が制限された区域に略 等間隔で立設された 3個以上の支持物にあって、光ケーブルの配索経路の各中間 部の支持物に前記光ケーブルに光伝送損失を発生させる光損失発生部が設けられ 、前記光損失発生部は、前記光ケーブルが変位した場合に、光心線部に当接してこ れを強制的に屈曲させる可動体を備えていることを特徴とする請求項 3に記載の侵 入検知装置。
[7] 侵入が制限された区域が複数の監視区域に分割され、各監視区域毎に請求項 1 力 6の何れか 1項に記載の侵入検知装置が設けられていることを特徴とする侵入検 知システム。
[8] 侵入が制限された区域の境界に沿って所定間隔を開けた状態で、且つ、撮影方向 を同じ向きにして配列される複数の監視カメラと、前記監視カメラで撮影された画像 を監視カメラ毎にメモリに録画し又は再生する録画再生装置と、前記監視カメラで撮 影された画像を表示するモニタと、前記監視カメラによって撮影された範囲毎に前記 境界に配索される光ケーブルと、前記光ケーブルに外力が加わったときに生じる光 伝送損失を検知する光損失検知部を有し、
前記光損失検知部は前記光伝送損失が一定値以上減衰したとき動作して起動信 号を出力し、前記起動信号を受けた前記録画再生装置は、光伝送損失が発生した 光ケーブルを撮影範囲としている次段側の監視カメラによって撮影された画像を一 定時間溯って再生することを特徴とする侵入検知システム。
[9] 前記光ケーブルの光心線部が複数の光ファイバ心線を備え、一部の光ファイバ心 線は監視カメラの撮影画像を伝送する伝送路として、残りの光ファイバ心線は前記光 損失検知部に接続されて侵入検知用センサとして構成されることを特徴とする請求 項 8記載の侵入検知システム。
PCT/JP2005/013064 2004-07-16 2005-07-14 侵入検知装置及び侵入検知システム WO2006009078A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-210533 2004-07-16
JP2004210533 2004-07-16
JP2005091084A JP4401315B2 (ja) 2004-07-16 2005-03-28 侵入検知装置及び侵入検知システム
JP2005-091084 2005-03-28

Publications (1)

Publication Number Publication Date
WO2006009078A1 true WO2006009078A1 (ja) 2006-01-26

Family

ID=35785191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013064 WO2006009078A1 (ja) 2004-07-16 2005-07-14 侵入検知装置及び侵入検知システム

Country Status (2)

Country Link
JP (1) JP4401315B2 (ja)
WO (1) WO2006009078A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062076A1 (es) * 2006-11-24 2008-05-29 Ingeteam Energy, S.A. Dispositivo de antirrobo para paneles solares
CN106989764A (zh) * 2017-03-13 2017-07-28 无锡亚天光电科技有限公司 一种基于判断大型物体入侵的光纤环布设结构及其布设方法
EP3719767A1 (en) * 2019-03-21 2020-10-07 Be Aerospace, Inc. Fiber optic tamper switch

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101606203B1 (ko) 2015-08-10 2016-03-25 폴그린테크(주) 차단구조물용 침입 감지장치
KR101707009B1 (ko) * 2015-11-25 2017-02-16 주식회사 자이선 광섬유를 이용한 침투감지시스템의 그립장치
CN106940198A (zh) * 2017-03-13 2017-07-11 无锡亚天光电科技有限公司 一种预应力光纤环结构
KR102186064B1 (ko) * 2018-04-27 2020-12-04 삼성중공업(주) 추락 감지 장치
JP7232650B2 (ja) * 2019-01-25 2023-03-03 富士古河E&C株式会社 侵入検知システム
KR102337910B1 (ko) * 2021-02-02 2021-12-09 (주)승재 케이블 변형 유발 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142577A (en) * 1981-01-22 1982-09-03 Nat Res Dev Invader detection system
JPH05233969A (ja) * 1992-02-25 1993-09-10 Matsushita Electric Works Ltd 光ファイバセンサー
JPH0855286A (ja) * 1994-05-31 1996-02-27 Otec Denshi Kk 物体検知装置及びそれを用いた物体検知システム
JPH11148980A (ja) * 1997-11-14 1999-06-02 Secom Co Ltd 人体検知装置
JP2000182158A (ja) * 1998-10-09 2000-06-30 Furukawa Electric Co Ltd:The 侵入検知システム
JP2000258135A (ja) * 1999-03-09 2000-09-22 Fujikura Ltd 光ファイバセンサ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142577A (en) * 1981-01-22 1982-09-03 Nat Res Dev Invader detection system
JPH05233969A (ja) * 1992-02-25 1993-09-10 Matsushita Electric Works Ltd 光ファイバセンサー
JPH0855286A (ja) * 1994-05-31 1996-02-27 Otec Denshi Kk 物体検知装置及びそれを用いた物体検知システム
JPH11148980A (ja) * 1997-11-14 1999-06-02 Secom Co Ltd 人体検知装置
JP2000182158A (ja) * 1998-10-09 2000-06-30 Furukawa Electric Co Ltd:The 侵入検知システム
JP2000258135A (ja) * 1999-03-09 2000-09-22 Fujikura Ltd 光ファイバセンサ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062076A1 (es) * 2006-11-24 2008-05-29 Ingeteam Energy, S.A. Dispositivo de antirrobo para paneles solares
CN106989764A (zh) * 2017-03-13 2017-07-28 无锡亚天光电科技有限公司 一种基于判断大型物体入侵的光纤环布设结构及其布设方法
EP3719767A1 (en) * 2019-03-21 2020-10-07 Be Aerospace, Inc. Fiber optic tamper switch

Also Published As

Publication number Publication date
JP2006053888A (ja) 2006-02-23
JP4401315B2 (ja) 2010-01-20

Similar Documents

Publication Publication Date Title
WO2006009078A1 (ja) 侵入検知装置及び侵入検知システム
JP7124876B2 (ja) 状態特定システム、状態特定装置、状態特定方法、及びプログラム
KR0185155B1 (ko) 유기장에 있어서 감시장치
KR100614824B1 (ko) 광케이블을 이용한 감지시스템
US20040257218A1 (en) Break-in detection system
US20090201153A1 (en) Fiber optic security system for sensing the intrusion of secured locations
DE102004029810A1 (de) Verfahren und Vorrichtung welche für Sicherheitsanwendungen Reflexionsmessung von optischen polarisierten Wellen im Zeitbereich verwendet
JP2006209575A (ja) 侵入者検知機能付きフェンス
KR101055658B1 (ko) 공가설비 감시장치
JP4401232B2 (ja) 侵入検知システム
WO2009014304A1 (en) An external trespass sensing system
JP2000329861A (ja) 光ファイバセンサおよび蓋開閉検知センサ
JP7232650B2 (ja) 侵入検知システム
JP4004685B2 (ja) 光監視装置
EP0599267A1 (en) Sensing cable
KR20120052015A (ko) 영상과 usn을 이용한 울타리 경계장치
Kumagai et al. Fiber-optic intrusion detection sensor for physical security system
JPH0261794A (ja) 画像監視装置
JP2000258135A (ja) 光ファイバセンサ
KR101497106B1 (ko) 방범 시스템
JP2004037358A (ja) 光ファイバケーブルの浸水個所検出方法および装置
US20070108328A1 (en) Signal line, fence and method for manufacturing a fence
EP2399069A1 (en) Optical sensor for detecting changes of states
JPH0353400A (ja) 侵入監視方法
KR20240142710A (ko) 자기유도신호, 마이크로파신호, 전하신호와 광신호가 복합적으로 발생하는 복합케이블에 의한 위치분석을 이용한 침입 감지시스템

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase