WO2006007957A1 - Process for preparing monomers and polymers thereof - Google Patents
Process for preparing monomers and polymers thereof Download PDFInfo
- Publication number
- WO2006007957A1 WO2006007957A1 PCT/EP2005/007131 EP2005007131W WO2006007957A1 WO 2006007957 A1 WO2006007957 A1 WO 2006007957A1 EP 2005007131 W EP2005007131 W EP 2005007131W WO 2006007957 A1 WO2006007957 A1 WO 2006007957A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- process according
- biocatalyst
- ethylenically unsaturated
- nitrile
- acrolein
- Prior art date
Links
- 239000000178 monomer Substances 0.000 title claims description 58
- 229920000642 polymer Polymers 0.000 title claims description 26
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 claims abstract description 162
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims abstract description 55
- 238000000034 method Methods 0.000 claims abstract description 53
- 108090000790 Enzymes Proteins 0.000 claims abstract description 52
- 102000004190 Enzymes Human genes 0.000 claims abstract description 52
- 150000002825 nitriles Chemical class 0.000 claims abstract description 49
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims abstract description 44
- 239000011942 biocatalyst Substances 0.000 claims abstract description 43
- 244000005700 microbiome Species 0.000 claims abstract description 37
- 150000003839 salts Chemical class 0.000 claims abstract description 29
- 150000001408 amides Chemical class 0.000 claims abstract description 23
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims abstract description 14
- 241000316848 Rhodococcus <scale insect> Species 0.000 claims abstract description 6
- 239000012736 aqueous medium Substances 0.000 claims abstract description 6
- 230000036571 hydration Effects 0.000 claims abstract description 5
- 238000006703 hydration reaction Methods 0.000 claims abstract description 5
- 238000006460 hydrolysis reaction Methods 0.000 claims abstract description 3
- 108010024026 Nitrile hydratase Proteins 0.000 claims description 29
- 241000187693 Rhodococcus rhodochrous Species 0.000 claims description 25
- 239000000203 mixture Substances 0.000 claims description 23
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 11
- 108010033272 Nitrilase Proteins 0.000 claims description 9
- 241000187563 Rhodococcus ruber Species 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- 108700023418 Amidases Proteins 0.000 claims description 5
- 102000005922 amidase Human genes 0.000 claims description 5
- 230000001413 cellular effect Effects 0.000 claims description 5
- 241001524109 Dietzia Species 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 abstract description 10
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 abstract description 9
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 9
- 238000004132 cross linking Methods 0.000 description 8
- WPKYZIPODULRBM-UHFFFAOYSA-N azane;prop-2-enoic acid Chemical compound N.OC(=O)C=C WPKYZIPODULRBM-UHFFFAOYSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000003999 initiator Substances 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- -1 dimethyl amino ethyl Chemical group 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 150000001299 aldehydes Chemical class 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000004202 carbamide Substances 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000003431 cross linking reagent Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 4
- 239000012966 redox initiator Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 3
- 241000186146 Brevibacterium Species 0.000 description 3
- 239000006085 branching agent Substances 0.000 description 3
- 238000001784 detoxification Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000769 gas chromatography-flame ionisation detection Methods 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 239000000411 inducer Substances 0.000 description 3
- 230000000813 microbial effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229920003169 water-soluble polymer Polymers 0.000 description 3
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 2
- DOLQYFPDPKPQSS-UHFFFAOYSA-N 3,4-dimethylaniline Chemical compound CC1=CC=C(N)C=C1C DOLQYFPDPKPQSS-UHFFFAOYSA-N 0.000 description 2
- VFXXTYGQYWRHJP-UHFFFAOYSA-N 4,4'-azobis(4-cyanopentanoic acid) Chemical compound OC(=O)CCC(C)(C#N)N=NC(C)(CCC(O)=O)C#N VFXXTYGQYWRHJP-UHFFFAOYSA-N 0.000 description 2
- HRXZRAXKKNUKRF-UHFFFAOYSA-N 4-ethylaniline Chemical compound CCC1=CC=C(N)C=C1 HRXZRAXKKNUKRF-UHFFFAOYSA-N 0.000 description 2
- 241000590020 Achromobacter Species 0.000 description 2
- 241000589291 Acinetobacter Species 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- 241000607534 Aeromonas Species 0.000 description 2
- 241000589158 Agrobacterium Species 0.000 description 2
- 241000193830 Bacillus <bacterium> Species 0.000 description 2
- 241000588923 Citrobacter Species 0.000 description 2
- 241000186216 Corynebacterium Species 0.000 description 2
- 241000335030 Dietzia natronolimnaea Species 0.000 description 2
- 241000588914 Enterobacter Species 0.000 description 2
- 241000588698 Erwinia Species 0.000 description 2
- 241000588748 Klebsiella Species 0.000 description 2
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 2
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical compound NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 2
- 241000589516 Pseudomonas Species 0.000 description 2
- 241001646398 Pseudomonas chlororaphis Species 0.000 description 2
- 241000187603 Pseudonocardia Species 0.000 description 2
- 241000589180 Rhizobium Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 241000187747 Streptomyces Species 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 241000589506 Xanthobacter Species 0.000 description 2
- 229940048053 acrylate Drugs 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 229910001429 cobalt ion Inorganic materials 0.000 description 2
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 2
- 239000000306 component Substances 0.000 description 2
- 229920006037 cross link polymer Polymers 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 230000002939 deleterious effect Effects 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 229920006158 high molecular weight polymer Polymers 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- CHRJZRDFSQHIFI-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;styrene Chemical compound C=CC1=CC=CC=C1.C=CC1=CC=CC=C1C=C CHRJZRDFSQHIFI-UHFFFAOYSA-N 0.000 description 1
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- PQUXFUBNSYCQAL-UHFFFAOYSA-N 1-(2,3-difluorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC(F)=C1F PQUXFUBNSYCQAL-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- 229920000536 2-Acrylamido-2-methylpropane sulfonic acid Polymers 0.000 description 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 1
- GZPHSAQLYPIAIN-UHFFFAOYSA-N 3-pyridinecarbonitrile Chemical compound N#CC1=CC=CN=C1 GZPHSAQLYPIAIN-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000004160 Ammonium persulphate Substances 0.000 description 1
- 241000589519 Comamonas Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 241000588747 Klebsiella pneumoniae Species 0.000 description 1
- 241000192041 Micrococcus Species 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 101100490446 Penicillium chrysogenum PCBAB gene Proteins 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 1
- 235000019395 ammonium persulphate Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 241000385735 bacterium K Species 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012533 medium component Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000010812 mixed waste Substances 0.000 description 1
- 239000007777 multifunctional material Substances 0.000 description 1
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 1
- ZQXSMRAEXCEDJD-UHFFFAOYSA-N n-ethenylformamide Chemical compound C=CNC=O ZQXSMRAEXCEDJD-UHFFFAOYSA-N 0.000 description 1
- 229960003966 nicotinamide Drugs 0.000 description 1
- 235000005152 nicotinamide Nutrition 0.000 description 1
- 239000011570 nicotinamide Substances 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- MLGWTHRHHANFCC-UHFFFAOYSA-N prop-2-en-1-amine;hydrochloride Chemical compound Cl.NCC=C MLGWTHRHHANFCC-UHFFFAOYSA-N 0.000 description 1
- UIIIBRHUICCMAI-UHFFFAOYSA-N prop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)CC=C UIIIBRHUICCMAI-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 125000001453 quaternary ammonium group Chemical class 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 229940047670 sodium acrylate Drugs 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000004291 sulphur dioxide Substances 0.000 description 1
- 235000010269 sulphur dioxide Nutrition 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- VPYJNCGUESNPMV-UHFFFAOYSA-N triallylamine Chemical compound C=CCN(CC=C)CC=C VPYJNCGUESNPMV-UHFFFAOYSA-N 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C57/00—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
- C07C57/02—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
- C07C57/03—Monocarboxylic acids
- C07C57/04—Acrylic acid; Methacrylic acid
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/04—Acids; Metal salts or ammonium salts thereof
- C08F220/06—Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/01—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C233/02—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
- C07C233/04—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
- C07C233/05—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/52—Amides or imides
- C08F220/54—Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
- C08F220/56—Acrylamide; Methacrylamide
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/02—Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/62—Carboxylic acid esters
Definitions
- the present invention relates to processes for preparing ethylenically unsaturated amides or ethylenically unsaturated carboxylic acids and their salts from the corresponding ethylenically unsaturated nitriles.
- biocatalysts such as microorganisms that contain enzymes, for conducting chemical reactions, or to use enzymes that are free of microorganisms.
- various ethylenically unsaturated monomers can be prepared by converting a substrate starting material into the desired monomer by use of a biocatalyst.
- Nitrile hydratase enzymes are known to catalyse the hydration of nitriles to the corresponding amides.
- nitrile hydratase enzymes can be synthesized by a variety of microorganisms, for instance microorganisms of the genus Bacillus, Bacteridium, Micrococcus, Brevibacterium, Corynebacterium, Pseudomonas, Acinetobacter, Xanthobacter, Streptomyces, Rhizobium, Klebsiella, Enterobacter, Erwinia, Aeromonas, Citrobacter, Achromobacter, Agrobacterium, Pseudonocardia, Rhodococcus and Comomonas.
- EP-O 307 926 describes the culturing of Rhodococcus rhodochrous, specifically strain J1 in a culture medium that contains cobalt ions.
- the nitrile hydratase can be used to hydrate nitriles into amides, and in particular the conversion of 3-cyanopyridine to nicotinamide.
- Rhodococcus rhodochrous J1 This organism is further described in EP-0362829, which describes a method for cultivating bacteria of the species Rhodococcus rhodochrous comprising at least one of urea and cobalt ion for preparing the cells of Rhodococcus rhodochrous having nitrile hydratase activity. Specifically described is Rhodococcus rhodochrous J1.
- Rhodococcus rhodochrous J1 is used commercially to manufacture acrylamide monomer from acrylonitrile and this process has been described by Nagasawa and Yamada, Pure Appl. Chem. 67: 1241-1256 (1995).
- Acrolein generally occurs as a byproduct during the manufacture of acrylonitrile. Often the amount of acrolein present in acrylonitrile will be above 2 ppm and often significantly higher than this, for instance 20 ppm and sometimes as much as 50 or 100 ppm or higher.
- microorganisms to remove impurities including acrolein from waste streams has been described by Wyatt and Knowles in International Biodeterioration and Biodegradation (1995) p227-248. They described the use of a mixed culture of microbes in the form of an actively growing culture to detoxify a mixed waste stream. It is expected that a live mixed culture to degrade low levels of acrylic species including acrolein would occur readily. .
- nitriles include acrylonitrile, acetonitrile and acrolein cyanohydrin as they suggest that acrolein is present in the form of acrolein cyanohydrin, thus they describe the capability of their microorganism to convert acrolein cyanohydrin to acid.
- the detoxification of nitriles particularly those present in waste streams, including acrolein cyanohydrin to their amide and acid counterparts is described.
- acrylonitrile which is used to produce acrylamide or acrylic acid is essentially pure and free from impurities such as acrolein.
- the presence of acrolein in acrylamide monomer or blends of monomers containing acrylamide and/or acrylic acid generally results in unwanted cross-linking of the polymer.
- Such cross-linking is undesirable, since in the preparation of water soluble polymers, undesirable cross-linking would result in forming at least partially insoluble polymers.
- acrolein brings about uncontrolled cross- linking, its presence in monomer mixtures containing additives used to form intentionally cross-linked polymer products can also be undesirable, because such products may be rendered too cross-linked for the particular application.
- GB-A-2114118 describes a method for removing aldehyde impurities in acrylonitrile and acrylamide.
- the method states that aldehyde impurities, such as acrolein, in acrylonitrile and acrylamide can be removed by contacting with a weakly basic gel type polystyrene-polyamine type anion exchange resin having a styrene-divinylbenzene matrix and primary and/or secondary functional groups.
- the quality of acrylamide is improved which enables the production of polymers of satisfactory molecular weight for use as flocculants in water treatment and other applications.
- EP-A-0110861 concerns a process for the removal of acrolein from acrylonitrile product streams.
- Acrolein is removed from a crude acrylonitrile product stream in a recovery column by maintaining the pH in the zone of maximum acrolein concentration of the recovery column at 5.25 to 7. Most of the acrolein exits the column through the bottom stream. High purity acrylonitrile is recovered from the top stream.
- EP-A-0999207 reveals a method for removal of aldehydes from chemical manufacturing production streams using a distillative purification technique.
- the method describes improving purification efficiency when distilling off aldehydes such as acrolein during chemical manufacturing processes by adding a substituted aromatic amine (2-amino aniline, 3,4-dimethyl aniline and 4-ethyl aniline) prior to the distillation column.
- US 5606094 describes a method for removing acrolein from a gaseous or liquid mixture by reaction with a chemical scavenger such as sodium hypochlorite, hydroxylamine, urea, thiourea and sodium bisulphate. This method particularly concerns removing acrolein from gaseous or liquid mixtures also containing acrylonitrile where the acrolein is selectively removed.
- a chemical scavenger such as sodium hypochlorite, hydroxylamine, urea, thiourea and sodium bisulphate.
- the biocatalyst may be a microorganism in the form of whole microbial cells or fractured microbial cells that contains an enzyme or enzymes capable of converting an ethylenically unsaturated nitrile to the corresponding amide or carboxylic acid or its salts.
- the enzymes could be nitrile hydratase, nitrile hydratase and amidase or nitrilase for example.
- the biocatalyst may be used as a fermentation broth containing the cellular material; cells or disrupted cellular material recovered by centrifuging; an aqueous suspension prepared using any suitable suspending medium such as water or physiologically compatible buffer solution.
- the biocatalyst can be a purified enzyme or mixture of enzymes extracted from the microorganism.
- the process concerns the manufacture of an ethylenically unsaturated amide from the corresponding nitrile, and especially the manufacture of (meth) acrylamide from (meth) acrylonitrile.
- the biocatalyst is a microorganism that is capable of producing a nitrile hydratase.
- the process relates to the manufacture of an ethylenically unsaturated carboxylic acid from the corresponding nitrile, and especially the manufacture of (meth) acrylic acid (or salts thereof) from (meth) acrylonitrile.
- the biocatalyst is a microorganism that is capable of producing a both a nitrile hydratase and an amidase.
- the process relates to the manufacture of an ethylenically unsaturated carboxylic acid from the corresponding nitrile, and especially the manufacture of (meth) acrylic acid (or salts thereof) from (meth) acrylonitrile.
- the biocatalyst is a microorganism that is capable of producing a nitrilase.
- the biocatalyst could for instance be a microorganism selected from the genus Bacillus, Bacteridium, Micrococuss, Brevibacterium, Corynebacterium, Pseudomonas, Acinetobacter, Xanthobacter, Streptomyces, Rhizobium, Klebsiella, Enterobacter, Erwinia, Aeromonas, Citrobacter, Achromobacter, Agrobacterium, Pseudonocardia, Dietzia and Rhodococcus.
- the biocatalyst is especially a microorganism of the Rhodococcus genus, and could be of the Rhodococcus rhodochrous species.
- Rhodococcus rhodochrous J1 is Rhodococcus rhodochrous J1 as described in EP-A-0307926.
- a particularly suitable biocatalyst is Rhodococcus rhodochrous strain 2368 (NCIMB 41164) which is described and claimed in our pending International application PCT/EP04/013252 (which has been allocated case reference number BT/3- 22351).
- the biocatalyst may be a mutant of Rhodococcus rhodochrous strain 2368 or a nitrile hydratase. obtainable from Rhodococcus rhodochrous strain 2368 or a mutant thereof.
- a further microorganism suitable for the preparation of ethylenically unsaturated amides or acids and their salts thereof is Dietzia natronolimnaios NCIMB 41165, or a further example is Rhodococcus ruber NCIMB 40833 and further Rhodococcus ruber NCIMB 40757.
- the biocatalyst may comprise cellular material in the form of whole cells or fractured cells and optionally comprises fermentation broth.
- the cellular material may include any of the constituents of a microbial cell, for instance including cell wall material, cell nucleic acid material (for instance DNA or RNA), cytoplasm or proteins.
- the biocatalyst comprising of a microorganism is introduced into an aqueous medium suitable for carrying out the culturing of the microorganism.
- a suspension of the biocatalyst for instance whole cells of the microorganism, may be formed.
- a nitrile for instance acrylonitrile or methacrylonitrile, is fed into the aqueous medium comprising the biocatalyst in such a way that the concentration of (meth) acrylonitrile in the aqueous medium is maintained at up to 6% by weight.
- Nitriles such as acrylonitrile or methacrylonitrile is more preferably fed into the reaction medium and the reaction allowed to continue until the concentration of an ethylenically unsaturated monomer, either amide, for instance acrylamide or methacrylamide, or carboxylic acid, for instance acrylic acid (or salts) or methacrylic acid (or salts), reaches the desired level, in particular between 30 and 55% by weight. Most preferably the concentration is around 35-50% by weight.
- nitrile used in the process of the invention will contain above 2 ppm acrolein (calculated by weight based on total weight of nitrile) and often significantly higher than this, for instance 20 ppm and as much as 50 or 100 ppm or higher.
- the invention also includes the use of a biocatalyst for the purpose of reducing acrolein in an ethylenically unsaturated monomer.
- a biocatalyst for the purpose of reducing acrolein in an ethylenically unsaturated monomer.
- the biocatalyst can be used to reduce the level of acrolein in ethylenically unsaturated monomers selected from the group consisting of (meth) acrylamide, (meth) acrylic acid (or salts) and (meth) acrylonitrile.
- the biocatalyst may include any of the preferred features described above.
- a particular advantage of the present invention is that monomers obtained from (meth) acrylonitrile can be prepared conveniently without the need for removal of acrolein.
- acrylamide and acrylic acid monomers can be streamlined.
- the monomers produced by this process are of high-quality, and containing less than 2 ppm acrolein, and usually undetectable levels or no acrolein.
- polymers free from the deleterious effects of acrolein can be conveniently prepared from a monomer or monomer blend containing (meth) acrylamide and (meth) acrylic acid (or salts) that have been obtained directly from acrylonitrile that contains high levels of acrolein.
- the ethylenically unsaturated monomer is selected from the group consisting of (meth) acrylamide and (meth) acrylic acid (or salts).
- the biocatalyst may include any of the preferred features described above. Generally the amount of acrolein present in the nitrile is as described previously.
- the ethylenically unsaturated monomer can be used in the process alone to form the homopolymer or it can be mixed with other polymerisable compounds including ethylenically unsaturated monomers to form a monomer mixture that is polymerised to form a copolymer of the ethylenically unsaturated monomer.
- Any suitable co-monomer may be used for this purpose, preferably where the ethylenically unsaturated monomer is water-soluble.
- the co-monomer should desirably be water-soluble or potentially water-soluble, such as anhydrides.
- Typical co-monomers include (meth) acrylamide, (meth) acrylic acid (or salts), itaconic acid (or salts), maleic acid (or salts), maleic anhydride, vinyl sulfonic acid (or salts), allyl sulfonic acid (or salts), 2-acrylamido-2-methyl propane sulfonic acid (or salts), dimethyl amino ethyl (meth) acrylate (or quaternary ammonium salts), dimethyl amino propyl (meth) acrylamide (or quaternary ammonium salts), N-vinyl pyrrolidone, N-vinyl formamide, vinyl acetate, acrylonitrile, (meth) acrylic esters of Ci -3 o alcohols.
- the salts of the above stated acid monomers may be of any suitable cation but preferably alkali metal or ammonium salts.
- the process of the present invention is particular suitable for preparing high molecular weight water-soluble or water swellable polymers.
- the polymers may for instance be linear, branched or cross-linked.
- the polymers are high molecular weight substantially water-soluble that exhibit an intrinsic viscosity (IV) of at least 3 dl/g (measured using a suspended level viscometer in 1M sodium chloride at 25 0 C).
- IV intrinsic viscosity
- the polymers will have intrinsic viscosities of at least 4 dl/g and generally significantly higher, for instance at least 7 or 8 dl/g.
- the polymers will have IVs of at least 10 or 12 dl/g and could be as high as 20 or 30 dl/g.
- the water-soluble or water-swellable polymer prepared according to the process of the present invention may be cationic, anionic, non-ionic or amphoteric. It may be substantially linear or alternatively branched or cross- linked.
- Cross-linked or branched polymers are prepared by incorporating a branching or cross-linking agent into the monomer blend.
- the cross-linking or branching agent may be for instance a di- or multifunctional material that reacts with functional groups pendant on the polymer chain, for instance multivalent metal ions or amine compounds which can react with pendant carboxylic groups.
- the cross-linking or branching agent will be a poly- ethylenically unsaturated compound, which becomes polymerised into two or more polymer chains.
- cross-linking agents include methylene- bis-acrylamide, tetra allyl ammonium chloride, triallyl amine and ethylene glycol diacrylate.
- the polymers may be highly crosslinked and therefore water insoluble but water swellable.
- the polymer may be water soluble and either substantially linear or slightly branched, for instance prepared using less than 10 ppm cross-linking/branching monomer.
- cross-linked polymers branched water-soluble polymers or linear water-soluble polymers, it is important that the monomers are free from acrolein, since this could lead to unpredictable levels of cross-linking or branching which would have deleterious effect on properties of the polymer.
- Particularly preferred polymers made by the process of the invention include homopolymers or copolymers of acrylamide or methacrylamide.
- the copolymers include any of the above stated co-monomers but preferably it is a copolymer of acrylamide with sodium acrylate or a copolymer of acrylamide with quaternary ammonium and acid salts of dimethylaminoethyl (meth)acrylate .
- Especially preferred acrylamide homo or copolymers are of high molecular weight and exhibit high intrinsic viscosity as defined above.
- the polymer is generally formed by subjecting the ethylenically unsaturated monomer or a monomer mixture comprising the ethylenically unsaturated monomer to polymerisation conditions. This may be achieved by heating or irradiation, for instance using ultraviolet light.
- polymerisation initiators are introduced into the monomer or mixture of monomers to initiate polymerisation. Desirably this may be achieved by the use of redox initiators and/or thermal initiators.
- redox initiators include a reducing agent such as sodium sulphite, sulphur dioxide and an oxidising compound such as ammonium persulphate or a suitable peroxy compound, such as tertiary butyl hydroperoxide etc.
- Redox initiation may employ up to 10,000 ppm (based on weight of monomer) of each component of the redox couple.
- each component of the redox couple is often less than 1000 ppm, typically in the range 1 to 100 ppm, normally in the range 4 to 50 ppm.
- the ratio of reducing agent to oxidizing agent may be from 10:1 to 1 :10, preferably in the range 5:1 to 1:5, more preferably 2:1 to 1:2, for instance around 1:1.
- Thermal initiators would include any suitable initiator compound that releases radicals at an elevated temperature, for instance azo compounds, such as azobisisobutyronitrile (AZDN), 4,4'-azobis-(4-cyanovaleric acid) (ACVA).
- AZDN azobisisobutyronitrile
- ACVA 4,4'-azobis-(4-cyanovaleric acid)
- thermal initiators are used in an amount of up 10,000 ppm, based on weight of monomer. In most cases, however, thermal initiators are used in the range 100 to 5,000 ppm preferably 200 to 2,000 ppm, usually around 1 ,000 ppm.
- an aqueous solution of water soluble monomer may be polymerised by solution or bulk polymerisation to provide an aqueous solution or gel or by reverse phase polymerisation in which an aqueous solution of monomer is suspended in a water immiscible liquid and polymerised to form polymeric beads or alternatively by emulsifying aqueous monomer into an organic liquid and then effecting polymerisation.
- reverse phase polymerisation examples are given in EP-A-150933, EP-A-102760 or EP-A-126528. The following examples are intended to illustrate the invention, without being in any way limiting.
- Rhodococcus rhodochrous strain 2368 (0.11 gram dry cells) and containing nitrile hydratase, is added to water (625g). The reaction mixture is heated up to 25°C with stiring.
- Acrylonitrile containing 50 ppm acrolein is fed into the reactor at a rate to maintain the concentration of acrylonitrile at a maximum of 3%. After 300mins the acrylonitrile is fully converted to acrylamide at a final concentration of approximately 50%w/w. Analysis of the acrylamide shows it to be free of acrolein to below detectable limits.
- the method of analysis used for low levels (below 5 ppm) of acrolein is GC-MS and for levels of acrolein above this GC-FID can be used.
- Acrolein reduction was studied using an acrylonitrile solution containing an acrolein level of 500 ppm.
- Rhodococcus rhodochrous 2368 (0.01 gram dry cells) is added to a mixture of acrylonitrile (1 gram) and water (19.0 grams) and acrolein in a 25 ml bottle. The bottle was incubated at 15 0 C with continuous stirring. Samples were withdrawn periodically and centrifuged prior to analysis by GC-FID for acrolein content.
- Acrolein reduction was studied using an acrylonitrile solution containing an acrolein level of 500 ppm.
- Rhodococcus rhodochrous J1 (0.01 gram dry cells) is added to a mixture of acrylonitrile (1 gram) and water (19.0 grams) and acrolein in a 25 ml bottle. The bottle was incubated at 15°C with continuous stirring. Samples were withdrawn periodically and centrifuged prior to analysis by GC-FID for acrolein content. After 10 minutes the acrolein level in the mixture reduced from 500 ppm to below detectable limits.
- Example 4 Example 1 is repeated using acrylonitrile containing acrolein levels less than 2 ppm. Analysis of the acrylamide shows it to be free of acrolein.
- High molecular weight polymer prepared using acrylamide made from acrylonitrile containing 50 ppm acrolein from Example 1 is of similar quality to high molecular weight polymers using acrylamide prepared from acrylonitrile that contained ⁇ 2 ppm acrolein.
- the performance of the polymer as flocculant in waste water treatment applications shows no differences by varying the levels of acrolein in the acrylonitrile.
- the solubility and molecular weight of polymer manufactured is also suitable for use in paper making applications.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007521827A JP4999686B2 (ja) | 2004-07-19 | 2005-07-01 | モノマー及びそのポリマーを調製する方法 |
US11/631,993 US20080038788A1 (en) | 2004-07-19 | 2005-07-01 | Process for Preparing Monomers and Polymers Thereof |
EP05787262.4A EP1774011B1 (en) | 2004-07-19 | 2005-07-01 | Process for preparing monomers and polymers thereof |
KR1020077003722A KR101301025B1 (ko) | 2004-07-19 | 2005-07-01 | 단량체 및 이의 중합체의 제조방법 |
CN200580024156.2A CN1989251B (zh) | 2004-07-19 | 2005-07-01 | 单体及其聚合物的制备方法 |
AU2005263416A AU2005263416C1 (en) | 2004-07-19 | 2005-07-01 | Process for preparing monomers and polymers thereof |
KR1020137010623A KR20130048279A (ko) | 2004-07-19 | 2005-07-01 | 단량체 및 이의 중합체의 제조방법 |
ES05787262.4T ES2544233T3 (es) | 2004-07-19 | 2005-07-01 | Procedimientos de preparación de monómeros y polímeros de los mismos |
MX2007000693A MX275062B (es) | 2004-07-19 | 2005-07-01 | Proceso para preparar monomeros y sus polimeros. |
CA2573627A CA2573627C (en) | 2004-07-19 | 2005-07-01 | Process for preparing monomers and polymers using rhodococcus genus |
BRPI0513485-4A BRPI0513485B1 (pt) | 2004-07-19 | 2005-07-01 | Processos para preparar uma amida etilenicamente insaturada a partir da nitrila etilenicamente insaturada correspondente e para preparar um polímero a partir de um monômero, e uso de um biocatalisador |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB0416101.4A GB0416101D0 (en) | 2004-07-19 | 2004-07-19 | Process for preparing monomers and polymers thereof |
GB0416101.4 | 2004-07-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006007957A1 true WO2006007957A1 (en) | 2006-01-26 |
Family
ID=32893807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2005/007131 WO2006007957A1 (en) | 2004-07-19 | 2005-07-01 | Process for preparing monomers and polymers thereof |
Country Status (18)
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110021819A1 (en) * | 2008-03-14 | 2011-01-27 | Dia-Nitrix Co., Ltd. | Process for production of amide compounds |
EP2749637A1 (en) * | 2012-12-27 | 2014-07-02 | Kemira Oyj | Bacterial strain Rhodococcus aetherivorans VKM Ac-2610D producing nitrile hydratase, method of its cultivation and method for producing acrylamide |
CN111269848A (zh) * | 2019-12-30 | 2020-06-12 | 浙江工业大学 | 赤红球菌jj-3及其在降解丙烯酸中的应用 |
EP4279600A4 (en) * | 2021-02-10 | 2025-06-11 | Mitsubishi Chemical Corporation | Improved nitrile hydratase reactivity using aldehyde |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0416101D0 (en) * | 2004-07-19 | 2004-08-18 | Ciba Spec Chem Water Treat Ltd | Process for preparing monomers and polymers thereof |
WO2012157775A1 (ja) | 2011-05-19 | 2012-11-22 | ダイヤニトリックス株式会社 | アクリルアミド水溶液の製造方法 |
JP6098510B2 (ja) * | 2011-05-19 | 2017-03-22 | 三菱レイヨン株式会社 | アクリルアミド水溶液の製造方法 |
ITUA20163572A1 (it) * | 2016-05-18 | 2017-11-18 | Columbia S R L | Metodo biotecnologico per la produzione di acrilammide e relativo nuovo ceppo batterico |
JP2019176835A (ja) * | 2018-03-30 | 2019-10-17 | 三井化学株式会社 | アミド化合物の製造方法 |
WO2024004661A1 (ja) * | 2022-06-30 | 2024-01-04 | 三井化学株式会社 | 変異型ニトリルヒドラターゼ、該変異型ニトリルヒドラターゼをコードする核酸、該核酸を含むベクター及び形質転換体、該変異型ニトリルヒドラターゼの製造方法、並びにアミド化合物の製造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2114118A (en) * | 1982-01-29 | 1983-08-17 | American Cyanamid Co | Method for removing aldehyde impurities in acrylonitrile and acrylamide |
WO1998027016A1 (en) * | 1996-12-18 | 1998-06-25 | Cytec Technology Corporation | Methods for the detoxification of nitrile and/or amide compounds |
WO2005054455A1 (en) * | 2003-12-02 | 2005-06-16 | Ciba Specialty Chemicals Water Treatments Limited | Process for preparing unsaturated amides and carboxylic acids |
WO2005054456A1 (en) * | 2003-12-02 | 2005-06-16 | Ciba Specialty Chemicals Water Treatments Limited | Strain of rhodococcus rhodochrous ncimb 41164 and its use as producer of nitrile hydratase |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4820872A (en) * | 1984-07-17 | 1989-04-11 | Allied Colloids Ltd. | Process for hydrolyzing nitriles |
US5606094A (en) * | 1995-01-10 | 1997-02-25 | Baker Hughes Incorporated | Acrolein scavengers |
GB9525372D0 (en) * | 1995-12-12 | 1996-02-14 | Allied Colloids Ltd | Enzymes, their preparation and their use in the production of ammonium acrylate |
JP3235966B2 (ja) * | 1996-06-20 | 2001-12-04 | 三菱レイヨン株式会社 | ニトリルの精製方法 |
JP2001131135A (ja) * | 1999-11-09 | 2001-05-15 | Mitsubishi Chemicals Corp | アクリロニトリルの製造方法 |
RU2288270C2 (ru) * | 2000-12-20 | 2006-11-27 | Диа-Нитрикс Ко., Лтд. | Способ производства амидного соединения с применением микробного катализатора |
WO2003033716A1 (fr) * | 2001-10-12 | 2003-04-24 | Dia-Nitrix Co., Ltd. | Procede de production d'acrylamide et/ou de methacrylamide au moyen d'un catalyseur de micro-organismes |
GB0416101D0 (en) * | 2004-07-19 | 2004-08-18 | Ciba Spec Chem Water Treat Ltd | Process for preparing monomers and polymers thereof |
-
2004
- 2004-07-19 GB GBGB0416101.4A patent/GB0416101D0/en not_active Ceased
-
2005
- 2005-07-01 CA CA2573627A patent/CA2573627C/en not_active Expired - Lifetime
- 2005-07-01 AU AU2005263416A patent/AU2005263416C1/en not_active Ceased
- 2005-07-01 ES ES05787262.4T patent/ES2544233T3/es not_active Expired - Lifetime
- 2005-07-01 JP JP2007521827A patent/JP4999686B2/ja not_active Expired - Fee Related
- 2005-07-01 MX MX2007000693A patent/MX275062B/es active IP Right Grant
- 2005-07-01 SG SG200904831A patent/SG154486A1/en unknown
- 2005-07-01 US US11/631,993 patent/US20080038788A1/en not_active Abandoned
- 2005-07-01 RU RU2007105993/13A patent/RU2390565C2/ru active
- 2005-07-01 CN CN200580024156.2A patent/CN1989251B/zh not_active Expired - Fee Related
- 2005-07-01 KR KR1020077003722A patent/KR101301025B1/ko not_active Expired - Fee Related
- 2005-07-01 EP EP05787262.4A patent/EP1774011B1/en not_active Expired - Lifetime
- 2005-07-01 BR BRPI0513485-4A patent/BRPI0513485B1/pt not_active IP Right Cessation
- 2005-07-01 WO PCT/EP2005/007131 patent/WO2006007957A1/en active Application Filing
- 2005-07-01 KR KR1020137010623A patent/KR20130048279A/ko not_active Ceased
- 2005-07-06 MY MYPI20053097A patent/MY144285A/en unknown
- 2005-07-19 TW TW94124386A patent/TW200609202A/zh unknown
-
2007
- 2007-01-04 ZA ZA200700123A patent/ZA200700123B/en unknown
-
2008
- 2008-07-31 IN IN221CH2007 patent/IN2007CH00221A/en unknown
-
2012
- 2012-03-15 JP JP2012059147A patent/JP2012139233A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2114118A (en) * | 1982-01-29 | 1983-08-17 | American Cyanamid Co | Method for removing aldehyde impurities in acrylonitrile and acrylamide |
WO1998027016A1 (en) * | 1996-12-18 | 1998-06-25 | Cytec Technology Corporation | Methods for the detoxification of nitrile and/or amide compounds |
WO2005054455A1 (en) * | 2003-12-02 | 2005-06-16 | Ciba Specialty Chemicals Water Treatments Limited | Process for preparing unsaturated amides and carboxylic acids |
WO2005054456A1 (en) * | 2003-12-02 | 2005-06-16 | Ciba Specialty Chemicals Water Treatments Limited | Strain of rhodococcus rhodochrous ncimb 41164 and its use as producer of nitrile hydratase |
Non-Patent Citations (3)
Title |
---|
HUGHES J ET AL: "APPLICATION OF WHOLE CELL RHODOCOCCAL BIOCATALYSTS IN ACRYLIC POLYMER MANUFACTURE", ANTONIE VAN LEEUWENHOEK, DORDRECHT, NL, vol. 74, 1998, pages 107 - 118, XP002936324 * |
NAGASAWA ET AL.: "Microbial production of commodity chemicals", PURE & APPL. CHEM., vol. 67, no. 7, 1995, pages 1241 - 1256, XP008057259 * |
YAMADA ET AL.: "Nitrile hydratase and its application to industrial production of acrylamide", BIOSCI. BIOTECH. BIOCHEM., vol. 60, no. 9, 1996, pages 1391 - 1400, XP008057288 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110021819A1 (en) * | 2008-03-14 | 2011-01-27 | Dia-Nitrix Co., Ltd. | Process for production of amide compounds |
US8889907B2 (en) * | 2008-03-14 | 2014-11-18 | Mitsubishi Rayon Co., Ltd. | Process for production of amide compounds |
EP2749637A1 (en) * | 2012-12-27 | 2014-07-02 | Kemira Oyj | Bacterial strain Rhodococcus aetherivorans VKM Ac-2610D producing nitrile hydratase, method of its cultivation and method for producing acrylamide |
WO2014102703A1 (en) * | 2012-12-27 | 2014-07-03 | Kemira Oyj | BACTERIAL STRAIN RHODOCOCCUS AETHERIVORANS VKM Ac-2610D PRODUCING NITRILE HYDRATASE, METHOD OF ITS CULTIVATION AND METHOD FOR PRODUCING ACRYLAMIDE |
CN105121626A (zh) * | 2012-12-27 | 2015-12-02 | 凯米罗总公司 | 产腈水合酶的细菌菌株食醚红球菌VKM Ac-2610D、其培养方法以及生产丙烯酰胺的方法 |
US9518279B2 (en) | 2012-12-27 | 2016-12-13 | Kemira Oyj | Bacterial strain Rhodococcus aetherivorans VKM Ac-2610D producing nitrile hydratase, method of its cultivation and method for producing acrylamide |
US10138459B2 (en) | 2012-12-27 | 2018-11-27 | Kemira Oyj | Bacterial strain Rhodococcus aetherivorans VKM Ac-2610D producing nitrile hydratase, method of its cultivation and method for producing acrylamide |
CN111269848A (zh) * | 2019-12-30 | 2020-06-12 | 浙江工业大学 | 赤红球菌jj-3及其在降解丙烯酸中的应用 |
CN111269848B (zh) * | 2019-12-30 | 2022-03-18 | 浙江工业大学 | 赤红球菌jj-3及其在降解丙烯酸中的应用 |
EP4279600A4 (en) * | 2021-02-10 | 2025-06-11 | Mitsubishi Chemical Corporation | Improved nitrile hydratase reactivity using aldehyde |
Also Published As
Publication number | Publication date |
---|---|
BRPI0513485B1 (pt) | 2021-07-27 |
AU2005263416C1 (en) | 2011-12-01 |
RU2007105993A (ru) | 2008-08-27 |
CA2573627A1 (en) | 2006-01-26 |
RU2390565C2 (ru) | 2010-05-27 |
CA2573627C (en) | 2015-11-24 |
MX2007000693A (es) | 2007-03-12 |
MX275062B (es) | 2010-04-12 |
SG154486A1 (en) | 2009-08-28 |
GB0416101D0 (en) | 2004-08-18 |
BRPI0513485A (pt) | 2008-05-06 |
EP1774011A1 (en) | 2007-04-18 |
KR20070035084A (ko) | 2007-03-29 |
CN1989251B (zh) | 2014-02-19 |
ES2544233T3 (es) | 2015-08-28 |
JP2008506397A (ja) | 2008-03-06 |
TW200609202A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 2006-03-16 |
MY144285A (en) | 2011-08-29 |
EP1774011B1 (en) | 2015-06-17 |
JP2012139233A (ja) | 2012-07-26 |
US20080038788A1 (en) | 2008-02-14 |
KR101301025B1 (ko) | 2013-08-29 |
KR20130048279A (ko) | 2013-05-09 |
CN1989251A (zh) | 2007-06-27 |
JP4999686B2 (ja) | 2012-08-15 |
IN2007CH00221A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 2007-08-24 |
ZA200700123B (en) | 2008-04-30 |
AU2005263416B2 (en) | 2010-09-02 |
AU2005263416A1 (en) | 2006-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ZA200700123B (en) | Process for preparing monomers and polymers thereof | |
AU2006300431B2 (en) | Method for producing amide compound | |
JP2012050445A (ja) | 重合体を製造する方法 | |
JPWO2002050297A1 (ja) | 微生物触媒を用いたアミド化合物の製造方法 | |
WO2004090148A1 (ja) | 酵素を用いた高品質アクリルアミド系ポリマーの製造方法 | |
AU2011239258B2 (en) | Method for producing amide compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005787262 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007/00123 Country of ref document: ZA Ref document number: 200700123 Country of ref document: ZA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11631993 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2573627 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580024156.2 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/a/2007/000693 Country of ref document: MX Ref document number: 2005263416 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007521827 Country of ref document: JP Ref document number: 221/CHENP/2007 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2005263416 Country of ref document: AU Date of ref document: 20050701 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020077003722 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2005263416 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007105993 Country of ref document: RU |
|
WWP | Wipo information: published in national office |
Ref document number: 1020077003722 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2005787262 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 11631993 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: PI0513485 Country of ref document: BR |