WO2006006645A1 - 発熱混合物の製造方法、発熱混合物、発熱組成物及び発熱体 - Google Patents

発熱混合物の製造方法、発熱混合物、発熱組成物及び発熱体 Download PDF

Info

Publication number
WO2006006645A1
WO2006006645A1 PCT/JP2005/012998 JP2005012998W WO2006006645A1 WO 2006006645 A1 WO2006006645 A1 WO 2006006645A1 JP 2005012998 W JP2005012998 W JP 2005012998W WO 2006006645 A1 WO2006006645 A1 WO 2006006645A1
Authority
WO
WIPO (PCT)
Prior art keywords
exothermic
water
exothermic composition
shape
mixture
Prior art date
Application number
PCT/JP2005/012998
Other languages
English (en)
French (fr)
Inventor
Toshihiro Dodo
Original Assignee
Mycoal Products Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mycoal Products Corporation filed Critical Mycoal Products Corporation
Priority to CA002573272A priority Critical patent/CA2573272A1/en
Priority to US11/632,124 priority patent/US20080283036A1/en
Priority to JP2006529112A priority patent/JPWO2006006645A1/ja
Priority to EP05765809A priority patent/EP1782780A4/en
Publication of WO2006006645A1 publication Critical patent/WO2006006645A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/02Compresses or poultices for effecting heating or cooling
    • A61F7/03Compresses or poultices for effecting heating or cooling thermophore, i.e. self-heating, e.g. using a chemical reaction
    • A61F7/032Compresses or poultices for effecting heating or cooling thermophore, i.e. self-heating, e.g. using a chemical reaction using oxygen from the air, e.g. pocket-stoves
    • A61F7/034Flameless
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/16Materials undergoing chemical reactions when used
    • C09K5/18Non-reversible chemical reactions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24VCOLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24V30/00Apparatus or devices using heat produced by exothermal chemical reactions other than combustion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0098Heating or cooling appliances for medical or therapeutic treatment of the human body ways of manufacturing heating or cooling devices for therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/02Compresses or poultices for effecting heating or cooling
    • A61F2007/0268Compresses or poultices for effecting heating or cooling having a plurality of compartments being filled with a heat carrier

Definitions

  • the present invention relates to an exothermic mixture having exothermic characteristics with excellent heat build-up properties and excellent moldability and compression resistance due to contact between an oxidizing gas and at least an essential component of the exothermic composition.
  • the present invention relates to an industrially practical production method, exothermic mixture, exothermic composition, and exothermic body.
  • iron powder is the most common metal powder used in these products, and salt, water, etc. are used as reaction aids, and water retention agents that carry these substances.
  • active agents such as activated carbon, vermiculite, diatomaceous earth, wood flour, or water-absorbing polymers are used as a mixture.
  • Patent Document 1 proposes an exothermic composition in which manganese dioxide, cupric oxide, and iron tetroxide are mixed with other exothermic composition components. These are used as catalysts and cannot be used as pyrogens. In addition, when they are added to the exothermic composition, there is no effect described that the contact between iron tetroxide, etc. and the iron powder surface is insufficient.
  • the heating element is used for heating a human body or an object. In the low temperature range of about 30 to about 90 ° C used as a heat source, there is a problem that the exothermic duration decreases as the addition ratio increases. It was.
  • Patent Document 2 proposes a heating element in which a heating composition mainly composed of an oxidation accelerator such as iron, water, and salt is stored in a breathable container after reaching 40 ° C. It took 25 minutes to reach the exothermic composition up to 40 ° C, and industrial mass production was difficult.
  • an oxidation accelerator such as iron, water, and salt
  • Patent Document 3 proposes a disposable body warmer made of a heat-generating composition having a shape maintaining property by adding a powdery thickening agent such as corn starch or potato starch.
  • Patent Document 4 proposes a solid exothermic composition in which a powdery exothermic composition is mixed with a binder such as CMC and compression molded.
  • Patent Document 5 proposes an ink-like or cream-like exothermic composition and exothermic body using a thickener and imparting viscosity, and a method for producing the same.
  • ink-like or cream-like viscous exothermic compositions and adhesive cohesive exothermic compositions are thickeners such as glue, gum arabic and CMC, agglomeration aids and excipients such as pregelatinized starch,
  • a binder the exothermic composition particles are bonded by these viscosified materials, so that the prevention of misalignment and the moldability are excellent, but the heat generation performance is remarkably deteriorated.
  • a viscous exothermic composition that is made using a thickener or binder is also used to thicken the heat-generating composition particles using a thickener or binder. Although the moldability is excellent, the heat generation performance was extremely bad.
  • the exothermic composition is viscous due to a binder, a thickener, an agglomeration aid, or an excipient, so that The reaction slowed down due to the inability to drain water and adverse effects on exothermic substances such as thickeners, making it difficult to rapidly increase the temperature to the required temperature or to warm for a long time.
  • the powder or the granular exothermic composition has no excess water! Although these powdery or granular exothermic compositions have good exothermic characteristics, they are used as a heating element by filling an air-permeable storage bag, so the exothermic temperature distribution may not be constant due to deviation of the exothermic composition, etc. It was difficult to produce a heating element that had a poor feeling or was included in the shape of the body to be insulated, and it was powerful enough to exhibit its heat generation performance.
  • Patent Document 1 JP-A-53-60885
  • Patent Document 2 Japanese Patent Laid-Open No. 57-10673
  • Patent Document 3 Japanese Patent Laid-Open No. 6-343658
  • Patent Document 4 Japanese Patent Laid-Open No. 59-189183
  • Patent Document 5 JP-A-9-75388
  • An object of the present invention is to provide an inexpensive, industrially available product that undergoes an oxidation reaction immediately upon contact with air, generates heat, then starts a rapid reaction, and changes to a mild reaction at a certain temperature.
  • the present invention provides a method for producing an active exothermic mixture, an exothermic mixture, an exothermic composition, a moldable exothermic composition, and an exothermic body that can be produced in large quantities.
  • the method for producing an exothermic mixture of the present invention comprises, as described in claim 1, iron powder, a reaction accelerator and water as essential components, a water content of 0.5 to 20% by weight, and an excess water amount.
  • the reaction mixture with a mobile water value of less than 0.01 is brought into contact with an oxidizing gas in an environment of 0 ° C or higher, and the temperature rise of the reaction mixture is increased to 1 ° C or higher within 10 minutes.
  • the method for producing an exothermic mixture according to claim 2 is the method for producing an exothermic mixture according to claim 1, wherein the amount of the reaction accelerator is 2 with respect to 100 parts by weight of the total amount of the reaction accelerator and water. It is characterized by being 6 parts by weight.
  • the method for producing an exothermic mixture according to claim 3 is the method for producing an exothermic mixture according to claim 1, wherein the reaction mixture is embedded in a breathable sheet-like material such as a nonwoven fabric. It is characterized in that a contact treatment with an inert gas is performed.
  • the exothermic mixture of the present invention is manufactured by the manufacturing method described in claim 1.
  • the exothermic composition of the present invention uses the exothermic mixture according to claim 4 as a raw material, adjusts the moisture, and contains iron powder, a carbon component, a reaction accelerator, and water as essential components.
  • the mobile water value is 0.01-20.
  • the exothermic composition according to claim 6 is the exothermic composition according to claim 5, wherein the exothermic composition is a water retention agent, a water-absorbing polymer, a pH adjuster, a hydrogen generation inhibitor, an aggregate, a fiber.
  • the exothermic composition is a water retention agent, a water-absorbing polymer, a pH adjuster, a hydrogen generation inhibitor, an aggregate, a fiber.
  • the heating element of the present invention is characterized in that the heating composition according to claim 5 is stored in a breathable storage bag to form a heating section.
  • the heating element according to claim 8 is the heating element according to claim 7, characterized in that the stored heating composition is a heating composition molded body.
  • the heating element according to claim 9 is the heating element according to claim 7, wherein the breathable storage bag includes a base material and a breathable coating material, and the heating composition is divided into a plurality of parts. A plurality of segmented heat generating portions are formed by sealing the peripheral edge of the heat generating composition.
  • the heating element according to claim 10 is the heating element according to claim 8, wherein at least one shape selected from the exothermic composition molded body, the section heating part and the heating part is a planar shape.
  • the shape is selected from the group consisting of an elliptic cylinder shape, a bowl shape, a cylinder shape, and an elliptic cylinder shape.
  • the heating element according to claim 11 is the heating element according to claim 7, characterized in that a fixing means is provided on at least a part of the exposed surface of the heating element.
  • the exothermic composition does not contain a coagulant aid, a coagulant, an agglomerate aid, a dry binder, a dry binder, a dry binder, an adhesive material, a thickener and an excipient. Good.
  • the exothermic composition molded body is preferably compressed.
  • the fixing means is a pressure-sensitive adhesive layer
  • the pressure-sensitive adhesive layer includes a water retention agent, a water-absorbing polymer, a pH adjuster, a surfactant, an organic silicon compound, a hydrophobic polymer compound, Pyroelectric material, antioxidant, aggregate, carbon component, fibrous material, moisturizing agent, functional material, or a mixture thereof. It is preferable to contain at least one selected component force. .
  • a heat generating composition with good exothermic startability can be obtained by the manufacturing method of contacting the oxidizing gas according to the present invention, and more than twice as fast as the conventional product not subjected to the oxidizing gas contacting treatment. Warm up.
  • the exothermic composition of the present invention has good heat build-up, the amount of carbon components such as activated carbon can be reduced by 10-20% or more compared to conventional products that are not treated with acidic gas. Is advantageous.
  • the heating element using the exothermic composition of the present invention also has a heat generation rising property that heats up immediately after being taken out from the outer bag when used, and has an excellent feeling of use with no irritation that does not warm easily.
  • the heating element can be manufactured.
  • a heat generating element having a sectioned heat generating part that is placed and fixed at a distance of two or more can be obtained with good moldability, and it fits well to the warmed part of the body etc.
  • An exothermic body with excellent flexibility and excellent heat generation is obtained.
  • the present invention uses an iron powder, a reaction accelerator and water as essential components, and uses a reaction mixture having a water content of 0.5 to 20% by weight and an easy water value indicating excess water of less than 0.01. It has established a production method that can be mass-produced by increasing the reaction rate during contact treatment with oxidizing gas and achieving the temperature rise of the reaction mixture to 1 ° C or more within 10 minutes. Above a specified temperature By shortening the time to reach the temperature, proper activation can be achieved and unnecessary oxidation on the iron powder can be prevented.
  • exothermic compositions with easy-moving water values of 0.01 to 50 by adding carbon components, etc. to the exothermic mixture produced by contacting the reaction mixture with an oxidizing gas and adjusting the water content are appropriate. It has stickiness and excellent moldability, and through-molding method or swallowing method can be applied to produce heating elements of various shapes.
  • exothermic compositions with a mobile water value of 0.01 to 20 start an exothermic reaction as soon as they come into contact with air, have excellent exothermic rise properties, and have excellent moldability. is there.
  • the method of contact treatment of the reaction mixture with oxidizing gas is a reaction mixture containing iron powder, a reaction accelerator and water as essential components, a water content of 0.5 to 20% by weight and a mobile water value of less than 0.01.
  • a reaction mixture containing iron powder, a reaction accelerator and water as essential components, a water content of 0.5 to 20% by weight and a mobile water value of less than 0.01.
  • the temperature of the reaction mixture is increased to 1 ° C or higher by contact treatment with oxidizing gas! /, But as a specific example,
  • a method for producing an exothermic mixture wherein the method described in any one of 1 to 5 is performed in an environment heated to 10 ° C or higher from the environmental temperature,
  • a method for producing an exothermic composition in which the oxidizing gas contact treatment is performed until the maximum temperature, which is the highest temperature rise due to an exothermic reaction, is exceeded by the method described in any one of 1 to 8.
  • An example is a method for producing an exothermic mixture in which the reaction mixture or exothermic mixture described in any one of 1 to 5 is heated to 1 ° C or higher in an oxidizing gas environment.
  • exothermic mixture may be added to the exothermic mixture, and further treated with an oxidizing gas to form an exothermic mixture.
  • the reaction mixture environment during the oxidizing gas contact treatment is not limited as long as it is in contact with oxidizing gas in an environment of o ° c or higher and the temperature rise of the reaction mixture is set to c within 10 minutes.
  • it When performing in an open system, it may be present in a container without a lid, or it may be in a state in which an oxygen-containing gas such as air enters through a breathable sheet such as a nonwoven fabric.
  • the acidic gas contact treatment may be either batch type or continuous type under stirring, non-stirring, flowing or non-flowing.
  • the water content in the reaction mixture or the exothermic mixture before further oxidizing gas treatment is usually 0.5 to 20% by weight, preferably 1 to 15% by weight, more preferably 2 -10% by weight, more preferably 3-10% by weight, and even more preferably 6-10% by weight.
  • the temperature of the reaction mixture after contact with the acid gas is not limited as long as the temperature rise is 1 ° C or more, but is preferably 1 to 80 ° C, more preferably 1 to It is 70 ° C, more preferably 1 to 60 ° C, and further preferably 1 to 40 ° C.
  • the environmental temperature at the time of contact between the reaction mixture and the oxidizing gas is not limited as long as the temperature of the reaction mixture rises above a predetermined level, but is preferably 0 ° C or higher, more preferably 0 to 250 ° C. More preferably, the temperature is 10 to 200 ° C, more preferably 20 to 150 ° C, still more preferably 25 to 100 ° C, and further preferably 25 to 50 ° C.
  • the temperature rise of the reaction mixture at the time of contact between the reaction mixture and the oxidizing gas is 1 ° C or more, but the time is within 10 minutes, preferably 1 second to 10 minutes, More preferably 1 second to 7 minutes, still more preferably 1 second to 5 minutes, still more preferably 2 seconds to 5 minutes, still more preferably 2 seconds to 3 minutes, still more preferably 2 seconds to 5 minutes. 1 minute.
  • the temperature of the oxidizing gas is not limited as long as the environmental temperature is maintained.
  • the mobile water value is a value indicating the amount of excess water that can move out of the exothermic composition in the water present in the exothermic composition. This easy water value will be explained with reference to Figs. As shown in Fig. 13, N O. 2 QIS P 3801 (type 2) filter paper 18 with eight lines written at 45 ° intervals radially from the center point is made of stainless steel as shown in Figs.
  • Each of the 8 values (a, b, c, d, e, f, g, h) read is taken as the measured moisture value.
  • the arithmetic average of the eight measured moisture values is taken as the moisture value (mm) of the sample.
  • the moisture content for measuring the true moisture value is the blended moisture content of the exothermic composition corresponding to the weight of the exothermic composition having an inner diameter of 20 mm and a height of 8 mm, and the water corresponding to the moisture content. Measure only in the same manner, and calculate the same value as the true moisture value (mm). The value obtained by dividing the moisture value by the true moisture value and multiplying it by 100 is the mobile water value.
  • the moisture content for measuring the true moisture value is calculated by calculating the moisture content of the exothermic composition from the moisture content measurement using an infrared moisture meter of the exothermic composition. Based on this, the amount of water necessary for the measurement is calculated, and the true water value is measured and calculated from the water amount by the mobile water value measurement method.
  • the mobile water value (0 to: L00) in the present invention is preferably 0.01 to 20, more preferably 0.01 to 18, and more preferably 0.1 to 15. More preferably, it is 0.01 to 13, more preferably 1 to 13, and further preferably 3 to 13.
  • An exothermic composition having an easy water value of less than 0.01 has insufficient moldability.
  • An exothermic composition having an easy water value of 0.01 to 50 is a moldable exothermic composition because it has moldability.
  • the mobile water value exceeds 20, it is necessary to remove some moisture from the exothermic composition by water absorption or dehydration. That is, a practical exothermic reaction will not occur unless a part of moisture in the exothermic composition molded body is removed by water absorption or dehydration using a water-absorbing packaging material.
  • a water-absorbing polymer with a slow water absorption rate is used and shows a high water mobility value during molding.
  • the excess water is taken into the water-absorbing polymer, and the water mobility value is 0.01 to 20 If it becomes the heat generation state of Even if the exothermic composition is used, the excess water becomes a barrier layer and is treated as an exothermic composition.
  • An exothermic composition having a mobile water value of more than 50 has too much excess water, becomes a slurry, has no moldability, and the excess water becomes a barrier layer, and as it is, it contacts with air and does not cause an exothermic reaction.
  • the mobile water value is a numerical value of excess water, which is the amount of water that can be easily and freely oozed out of the water in the exothermic composition and mixture.
  • excess water is the amount of water that can be easily and freely oozed out of the water in the exothermic composition and mixture.
  • the amount of surplus water varies depending on the amount of water-retaining agent, carbon component, water-absorbing polymer, etc., and the wettability of each component. It is very difficult to predict from the amount of water added. Therefore, since the amount of surplus water such as the exothermic composition or mixture is determined from the easy water value, if the amount of water to be added and the amount of other components are determined by this, the exothermic composition having an almost constant amount of surplus water or Mixtures can be obtained with good reproducibility.
  • the exothermic composition or mixture blended according to the composition ratio has a mobile water value within a certain range, that is, a constant value. Since it has an excess amount of water within the range, it generates heat when it comes into contact with air, but it does not have formability, such as a powder-like heat generation composition, heat generation when it comes into contact with air, and has formability, water absorption, etc.
  • formability such as a powder-like heat generation composition, heat generation when it comes into contact with air, and has formability, water absorption, etc.
  • various exothermic compositions such as exothermic compositions that form heat after contact with air and generate heat after a certain amount of surplus water is discharged from the system can be easily produced.
  • the mobile water value is known, it can be seen in which state the exothermic composition or the mixture is in the above state. If the mobile water value is used, the desired state can be reproducibly realized by simple measurement.
  • the component ratio of the exothermic composition is determined based on the mobile water value and the component ratio obtained from the measurement, and actual production of the exothermic composition can be easily performed.
  • water (or a reaction accelerator aqueous solution) is added to a mixture obtained by mixing water (or a reaction accelerator aqueous solution) with a specific amount of other exothermic composition components. Mix and produce multiple exothermic compositions with different moisture contents. Next, the mobile water value of each exothermic composition is measured, and the relationship between the amount of added water (or reaction accelerator aqueous solution) and the mobile water value is determined.
  • the mobile water value of the exothermic composition that is formable and generates heat upon contact with air is 0.01 to 20. If the composition of each component is determined in this way, and a mixture is prepared with that composition, moisture does not function as a barrier layer and heat is generated by contact with air, and a heat-generating composition having moldability is produced with good reproducibility. Can build.
  • the moisture in the exothermic composition does not function as the noria layer as the air blocking layer, and the exothermic composition. Immediately after production, contact with air to cause an exothermic reaction immediately.
  • the exothermic composition molded body has a maximum width, preferably 1 to 50 mm, on a substantially planar substrate. More preferably, l-20mm, or maximum diameter, preferably l-50mm, more preferably 1-20mm (If there are two or more diameters such as ellipse, the major axis is treated as the length and the minor axis as the width) This makes it possible to manufacture ultra-thin and ultra-flexible heating elements that have multiple heat generating parts.
  • the surplus water is water or an aqueous solution that easily moves out of the exothermic composition due to excess water in the exothermic composition, the moisture value sucked out by the filter paper from the exothermic composition, or the like. It is defined as the mobile water value, which is the aqueous solution fraction value.
  • the hydrophilic groups in the components of the exothermic composition are hydrated by dipolar interactions or hydrogen bonds, and have a high structure around the hydrophobic groups. It is estimated that it exists.
  • the moldability of the present invention means that a laminate of a heat generating composition in the shape of a punched hole or a concave mold can be obtained by die-through molding using a punching die having a punched hole or by squeeze molding using a concave mold. This indicates that the molded shape of the exothermic composition molded body is maintained after molding including mold release. If there is moldability, the heat-generating composition molded body is covered with at least the covering material, and the shape is maintained until the seal portion is formed between the base material and the covering material. It is possible to seal with no breakage of the seal because there is no scattered sesame seeds in the seal part. The presence of sesame causes poor sealing.
  • a stainless steel plate with a thickness of lmm x length 200mm x width 200mm is placed on the endless belt of the measuring device, and a polyethylene plate with a thickness of 70 ⁇ m x length 200mm x width 200mm is placed on the stainless steel plate. Place the stainless steel mold.
  • the exothermic composition 50 g is placed near the scraping plate between the scraping plate and the punching hole to endlessly.
  • the shaped belt is moved at 1.8 mZmin, and the exothermic composition is scraped off and filled into the punched hole of the mold.
  • the endless belt stops running.
  • the mold is removed and the exothermic composition molded body laminated on the polyethylene film is observed.
  • the exothermic composition is moldable.
  • the moldable exothermic composition contains iron powder, a reaction accelerator, and water as essential components, and includes a coagulant aid, a coagulant, an agglomerate aid, a dry binder, a dry binder, a dry binder, and an adhesive. Does not contain binders, thickeners and excipients, has surplus water with a mobile water value of 0.01-20, has moldability with surplus water as a connected material, and is in the exothermic composition It is an exothermic composition in which moisture does not function as a barrier layer and causes an exothermic reaction upon contact with air.
  • exothermic composition molded body containing a exothermic composition in a mold was compressed in the mold.
  • the exothermic composition compact with a thickness of 70% of the mold thickness is the heat build-up property of the exothermic composition compact before compression (temperature difference between 1 minute and 3 minutes after the start of the exothermic test of the exothermic composition) ) Of 80% or more of heat generation.
  • Thickness with adhesive layer of about 80 ⁇ m thickness 25 ⁇ m X length 250 mm X width 200 mm
  • Polyethylene film attached to the support plate through the adhesive layer so that the center of the polyethylene film is at the sensor wear.
  • the exothermic temperature is measured using a data collector, measuring the temperature for 2 minutes at a measurement timing of 2 seconds, and determining the compression resistance based on the temperature difference between 1 minute and 3 minutes later.
  • the thickness after compression is preferably 50 to 99.5% of the mold thickness, more preferably 60 to 99.5%, and still more preferably 60 to 95%.
  • the particle size of the water-insoluble solid component is a particle size obtained by separating a sieve using a sieve and passing through the sieve and calculating the caliber force of the sieve. That is, the screen is arranged from the top, 8, 12, 20, 32, 42, 60, 80, 100, 115, 150, 200, 250, 280 mesh, etc.
  • the caliber force of the specific mesh is also calculated ( ⁇ m ) and its water-insoluble property It is assumed that the particle size of the solid component.
  • Each mesh sieve may be combined with other mesh sieves.
  • the 16 mesh pass has a particle size of lmm or less
  • the 20 mesh pass has a particle size of 850 m or less
  • the 48 mesh pass has a particle size of 300 ⁇ m or less
  • the 60 mesh pass has a particle size of 250 ⁇ m or less
  • the 65 mesh pass has a particle size of 200 m or less
  • 80 mesh pass particle size 180 m or less 100 mesh pass particle size 150 m or less
  • 250 mesh pass The particle size should be 63 ⁇ m or less. The same applies to the following meshes.
  • the acidic gas may be any gas as long as it is acidic and is a mixture of oxygen gas, air, or an inert gas such as nitrogen gas, argon gas, helium gas, and oxygen gas. Gas is an example.
  • the mixed gas is not limited as long as it contains oxygen, but air is particularly preferred among these, which preferably contain 10% or more of oxygen gas.
  • catalysts such as platinum, palladium, iridium and their compounds.
  • the oxidation reaction can be carried out in an oxidizing gas atmosphere with stirring, if desired, under pressure, and further under Z or ultrasonic irradiation.
  • the optimum conditions for the acid-acid reaction may be appropriately determined experimentally.
  • the amount of the oxidizing gas used may be adjusted according to the type of oxidizing gas without restriction, the type and particle size of iron powder, the amount of water, the processing temperature, the processing method, and the like.
  • open systems there is no limit as long as the required oxygen amount can be taken in.
  • open systems should be used so long as they can be surrounded by a breathable material such as nonwoven fabric or woven fabric.
  • the amount of air is preferably 0.01 to: LOOO liters Z, more preferably 0 at 1 atm. 01-: LOO liters Z minutes, more preferably 0.1-50 liters Z minutes.
  • the oxygen concentration may be converted based on the case of air.
  • peracid additives may be added. Hydrogen peroxide and ozone are examples.
  • the state of the reaction mixture or the exothermic mixture at the time of the contact treatment with the oxidizing gas may be either a stationary state, a moving state, a fluidized state by stirring, etc., as long as the iron powder is partially oxidized. It may be selected as appropriate.
  • the environment of the acidic gas atmosphere and the acidic environment where the reaction mixture, exothermic mixture, and exothermic composition are mixed there is no limitation in the environment of the acidic gas atmosphere and the acidic environment where the reaction mixture, exothermic mixture, and exothermic composition are mixed, and the environment at the time of contact treatment with the mixed oxidizing gas at the time of moisture adjustment is not limited. An example is gas blowing.
  • the heat-generating composition is allowed to stand for 1 hour in a non-breathable outer bag in an ambient temperature of 20 ⁇ 1 ° C.
  • the iron powder is not limited! Pig iron iron powder, atomized iron powder, electrolytic iron powder, reduced iron powder, sponge iron powder, and iron alloy powder thereof can be used as examples. In addition, these iron powders may contain carbon or oxygen, or iron containing 50% or more of iron and other metals!
  • the type of metal contained in the alloy is not particularly limited as long as the iron component acts as a component of the exothermic composition, but metals such as aluminum, manganese, copper, nickel, silicon, cobalt, palladium and molybdenum, semiconductors, etc. Is given as an example.
  • the metal of the present invention includes a semiconductor. These metals and alloys may be present only on the surface or on the inside, or on both the surface and the inside.
  • the iron powder contains a carbon component and iron powder coated with Z or a carbon component is also preferred. If the iron component is 50% by weight or more with respect to the carbon component, the ratio of the carbon component is Although there is no limitation, iron powder partially covered with 0.3 to 3.0% by weight of conductive carbonaceous material is useful. Examples of conductive carbonaceous materials include carbon black, activated carbon, carbon nanotubes, carbon nanohorns, fullerenes, etc. Iron powder that may be conductive by doping is reduced iron powder or atomized iron powder. Sponge iron powder is an example, and the heating element is particularly useful when the conductive carbonaceous material is activated carbon and the iron powder is reduced iron powder. [0040] In the iron powder of the present invention, the content of metals other than iron is usually 0.01 to 50% by weight, preferably 0.1 to 10% by weight, based on the whole iron powder.
  • 0. conductive carbonaceous material coated so as not to impair the flowability of the iron powder in order to perform efficiently from 01 to 0.05 weight 0/0 of oils, such as spindle oil or the like may be ⁇ Ka ⁇ .
  • the iron powder in the exothermic composition may be converted from the iron powder in the reaction mixture or the exothermic mixture.
  • the ferric oxide film is a film made of iron containing oxygen such as iron oxide, hydroxide, oxyhydroxide and the like.
  • the active iron powder forms an iron oxide film at least locally on the surface of the iron powder, and is formed by local batteries formed between the ground iron and the iron oxide film, or by pits inside and outside the iron oxide film. An oxidation reaction promoting effect is considered.
  • iron oxide film is formed on the surface of the iron powder, the iron powder particles become irregularly shaped, distortion occurs due to acid and soot, water-containing pits are formed, some kind of functional change occurs, It is presumed that iron powder is activated and heat generation is improved.
  • magnetite Fe 2 O 3
  • it has excellent conductivity.
  • hematite Fe 2 O 3
  • it becomes porous the presence of hematite (Fe 2 O 3) is also preferable because it becomes porous.
  • the carbon component is oxidized on the surface to become a carbon component with a large amount of surface oxide, the hydrophilicity is increased, and the activity is also increased.
  • the reaction accelerator is not limited as long as it can accelerate the reaction of the exothermic substance.
  • examples thereof include metal halides, nitrates, acetates, carbonates, metal sulfates and the like.
  • Metal halides include sodium chloride, potassium chloride, magnesium chloride, calcium chloride, ferrous chloride, ferric chloride, sodium bromide, potassium bromide, ferrous bromide, bromide
  • Examples include ferric iron, sodium iodide, potassium iodide and the like.
  • Examples of nitrates include sodium nitrate and potassium nitrate.
  • An example of the acetate is sodium acetate.
  • Examples of the carbonate include ferrous carbonate and the like.
  • metal sulfates examples include potassium sulfate, sodium sulfate, ferrous sulfate and the like.
  • the water may be from a suitable source. There are no restrictions on the purity and type.
  • the water content is 1 to 60% by weight of the exothermic composition, more preferably 1 to 40% by weight, still more preferably 7 to 40% by weight, still more preferably 10 to 35% by weight, Preferably it contains 20-30% by weight.
  • reaction mixture and an exothermic mixture before contact treatment with an oxidizing gas 0.5 to 20% by weight of the reaction mixture or the exothermic mixture, more preferably 1 to 20% by weight, still more preferably 5 to 20% by weight. %, More preferably 7 to 15% by weight.
  • the exothermic composition is taken out from the heating element and measured according to the method for measuring the mobile water value.
  • a heat-generating composition In a nitrogen atmosphere, a heat-generating composition, a heat-generating composition molded body, a heat-generating composition compressed body or a mixture is dispersed in ion-exchanged water substituted with nitrogen, iron powder is separated with a magnet, and dried under a nitrogen atmosphere. Use a sample for measurement.
  • the exothermic composition molded body includes the exothermic composition compressed body.
  • the reaction mixture and exothermic mixture of the present invention are not limited in the blending ratio, but iron powder (in the case of iron powder having an iron oxide film, iron powder converted in terms of the amount of iron component) 100 wt.
  • iron powder in the case of iron powder having an iron oxide film, iron powder converted in terms of the amount of iron component
  • 1.0 to 5.0 parts by weight of a reaction accelerator and 0.5 to 20 parts by weight of water are preferable, and 1.0 to 50 parts by weight of a water component and 0.01 to 10 parts by weight of a water retention agent are preferred.
  • organic key compound 01 to 5 parts by weight, organic key compound, pyroelectric material, moisturizer, fertilizer component, hydrophobic polymer compound, antifoaming agent, heat generation aid, metal other than iron, metal oxide other than iron oxide
  • organic key compound pyroelectric material
  • moisturizer pyroelectric material
  • fertilizer component pyroelectric material
  • hydrophobic polymer compound e.g., silicone dioxide
  • antifoaming agent examples include those used in this field in addition to a normal pH adjusting agent such as sodium polyphosphate.
  • the reaction mixture of the present invention contains iron powder, a reaction accelerator and water as essential components, and further includes a carbon component, a water retention agent, a water-absorbing polymer, a pH adjuster, a hydrogen generation inhibitor, an aggregate, and a fibrous form.
  • a carbon component e.g., a carbon-based polymer
  • a water retention agent e.g., a water-based polymer
  • a pH adjuster e.g., a sodium bicarbonate
  • a hydrogen generation inhibitor e.g., sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbon
  • the carbon component is not limited as long as it contains carbon as a component.
  • Examples include carbon black, black bell, activated carbon, carbon nanotube, carbon nanohorn, and fullerene. It may have conductivity by doping or the like.
  • Examples include activated carbon prepared from coconut shells, wood, charcoal, coal, bone charcoal, and other raw materials such as animal products, natural gas, fats, oils and resins. In particular, activated carbon having adsorption retention ability is preferable.
  • the carbon component if iron powder containing a carbon component that does not necessarily need to be present alone and coated with Z or carbon component is used in the exothermic composition, the carbon component does not exist alone.
  • the exothermic composition shall contain a carbon component.
  • the water retention agent is not limited as long as it can retain water.
  • Wood flour, pulp flour, activated carbon, sawdust, cotton fabric with many fluff, cotton short fibers, paper scraps, plant material and other plant porous materials with large capillary function and hydrophilicity, activated clay Examples include hydrous magnesium silicate clay minerals such as zeolite, perlite, vermiculite, silica-based porous materials, fossil fossil, volcanic ash-based materials (terra balloon, shirasu balloon, tyset balloon, etc.) It is done.
  • hydrous magnesium silicate clay minerals such as zeolite, perlite, vermiculite, silica-based porous materials, fossil fossil, volcanic ash-based materials (terra balloon, shirasu balloon, tyset balloon, etc.) It is done.
  • those that have been processed by firing and / or pulverization are also acceptable.
  • the water-absorbing polymer is not particularly limited as long as it has a cross-linked structure and has a water absorption ratio of 3 times or more with respect to its own weight. It may also be a cross-linked surface. Conventionally known water-absorbing polymers and commercially available products can also be used.
  • a crosslinked poly (meth) acrylic acid a crosslinked poly (meth) acrylate, a crosslinked poly (meth) acrylate having a sulfonic acid group, and a polyoxyalkylene group.
  • the water-absorbing polymer having biodegradability in the water-absorbing polymer is not limited as long as it is a water-absorbing polymer having biodegradability.
  • Examples include crosslinked polyethylene oxide, crosslinked polyvinyl alcohol, crosslinked carboxymethyl cellulose, crosslinked alginic acid, crosslinked starch, crosslinked polyamino acid, crosslinked polylactic acid, and the like.
  • the pH adjusting agent is not limited as long as the pH can be adjusted.
  • the hydrogen generation inhibitor is not limited as long as it suppresses the generation of hydrogen.
  • An example is a compound having at least one kind or two or more kinds selected from the group consisting of thio compounds, oxidizing agents, alkaline substances, io, antimony, selenium, phosphorus and tellurium.
  • the io compound is a compound with an alkali metal or an alkaline earth metal.
  • metal sulfates such as lucium
  • metal sulfites such as sodium sulfite
  • metal thiosulfates such as sodium thiosulfate.
  • oxidizing agent examples include nitrate, oxide, peroxide, halogenated oxyacid salt, permanganate, chromate and the like.
  • the alkaline substance is not limited as long as it is an alkaline substance. Silicate, phosphate, sulfite, thiosulfate, carbonate, bicarbonate, hydroxide, Na PO,
  • An example is Ca (OH).
  • the aggregate is not limited as long as it is useful as a filler and is useful for making Z or a porous exothermic composition.
  • Fossil coral coral fossil, weathered reef coral, etc.
  • bamboo charcoal Bincho charcoal
  • silica-alumina powder silica-magnesia powder
  • kaolin crystalline cellulose
  • colloidal silica pumice
  • silica gel silica powder
  • silica powder my power flour, clay, talc
  • Examples include synthetic resin powders and pellets, foamed synthetic resins such as foamed polyester and polyurethane, algae, alumina, and fiber powder.
  • Kaolin and crystalline cellulose are not included in the exothermic composition of the present invention, but are included only when used as an adhesive.
  • fibrous material examples include inorganic fibrous materials and Z or organic fibrous materials.
  • Examples include rock wool, glass fiber, carbon fiber, metal fiber, pulp, paper, non-woven fabric, woven fabric, natural fibers such as cotton and hemp, regenerated fibers such as rayon, semi-synthetic fibers such as acetate, synthetic fibers and pulverized products thereof. As mentioned.
  • the functional substance is not limited as long as it has a function, but examples include at least one selected from anion generating substance and far-infrared emitting substance force.
  • the negative ion generating substance is not limited as long as negative ions are generated as a result, whether directly or indirectly.
  • Examples include tourmaline, fossilized coral, granite, co-dielectrics such as calcium strontium propionate, ores containing radioactive materials such as radium and radon.
  • the far-infrared emitting substance is not limited as long as it emits far-infrared rays.
  • Examples thereof include ceramic, anolemina, zeolite, zirconium, silica and the like.
  • Examples of the surfactant include a surfactant containing a cation, a cation, a non-ion and an amphoteric ion. Includes sex agents.
  • sex agents polyoxyethylene alkyl ethers, alkylphenol 'ethylene oxide adducts, higher alcohol phosphates, and the like, which are preferred as nonionic surfactants, can be mentioned.
  • the organic silicon compound is not limited as long as it is a compound having at least Si—O—R and / or Si—N—R and / or Si—R bonds.
  • Examples thereof include organic silane compounds such as methyltriethoxysilane, dimethyl silicone oil, polyorganosiloxane, and silicone resin compositions containing them in the form of monomers, low condensates, polymers, and the like. .
  • the pyroelectric substance is not limited as long as it has pyroelectricity (pie mouth electricity or pyro electricity).
  • Examples include tourmaline and pyroelectric minerals.
  • tourmaline which is a kind of tourmaline is preferable.
  • tourmalines examples include drabite (mafic tourmaline), shawls (iron tourmaline), and elvite (lithia tourmaline).
  • the moisturizing agent is not limited as long as it can be moisturized. Examples include hyaluronic acid, collagen, dariserine, urea and the like.
  • the fertilizer component is not limited as long as it is a component containing at least one of the three elements of nitrogen, phosphoric acid, and potassium. Examples include bone meal, urea, ammonium sulfate, lime superphosphate, potassium chloride, calcium sulfate and the like.
  • the hydrophobic polymer compound has a contact angle with water of 40 ° or more, more preferably 50 ° or more, and still more preferably 60 ° or more, in order to improve drainage in the composition. If there is no limit. Examples include powders, granules, granules, tablets, etc. whose shape is not limited. Examples include polyolefins such as polyethylene and polypropylene, polyesters, polyamides, and the like.
  • heat generation aid examples include metal powders, metal salts, metal oxides, etc., such as Cu, Mn, Cu CI, FeCl, diacid-manganese, cupric oxide, iron tetroxide, etc. Or a mixture of them
  • Examples of the acidic substance include hydrochloric acid, sulfuric acid, nitric acid, acetic acid, oxalic acid, citrate, malic acid, maleic acid, chloroacetic acid, iron chloride, sulfuric acid, which may be any of inorganic acid, organic acid, and acidic salt.
  • Examples include iron, iron oxalate, iron citrate, salt-aluminum, salt-ammonium, hypochlorous acid, and the like.
  • the exothermic composition of the present invention contains iron powder, a carbon component, a reaction accelerator and water as essential components, and further includes a water retention agent, a water-absorbing polymer, a pH adjuster, a hydrogen generation inhibitor, an aggregate, and a fiber.
  • the exothermic composition of the present invention contains iron powder, a carbon component, a reaction accelerator, and water as essential components, and the production method thereof can be industrially put into practical use.
  • the iron powder, the reaction accelerator, and water are used.
  • As an essential component a reaction mixture with a water content of 1 to 20% by weight and a mobile water value indicating excess water of less than 0.01 is brought into contact with an oxidizing gas in an environment of 0 ° C or higher and within 10 minutes.
  • the temperature rise of the reaction mixture is set to c or more to produce an exothermic mixture, and the exothermic mixture is used as a raw material to obtain an exothermic composition.
  • the moisture may be further adjusted to obtain a heat generating composition, or a carbon component or the like may be added or the water content may be adjusted to obtain a heat generating composition.
  • the water content of the reaction mixture is set to a certain amount or less, particularly the excess water amount is set to a certain amount or less, and the oxidizing contact treatment can be performed in a short time.
  • the amount of excess water and treating for a short time adverse effects caused by the oxidizing gas contact treatment such as poor initial heat generation of the exothermic composition and shortened heat generation retention time can be avoided.
  • Industrial mass production method was established. Further, during the oxidizing gas contact treatment, it is not necessary to perform stirring or the like, but if the stirring is performed, the acidic gas contact treatment can be surely performed.
  • the state of the reaction mixture or the exothermic mixture in the contact treatment with the oxidizing gas may be appropriately determined as long as the iron powder is partially oxidized, whether it is a stationary state, a moving state, or a fluidized state by stirring.
  • examples include an oxidizing gas atmosphere and an oxygen-containing gas blowing, in which there are no restrictions on the environment when mixing the components of the reaction mixture, the exothermic mixture, and the exothermic composition and at the time of moisture adjustment.
  • Moisture adjustment is the treatment of water or a water solution of a reaction accelerator after the exothermic mixture is contacted with an oxidizing gas.
  • an oxidizing gas There is no limit to the amount to be added, but the weight reduced by the contact treatment
  • An example is to measure the amount, or to measure the weight at which the desired mobile water value is obtained. Whether or not moisture adjustment is performed may be appropriately determined depending on the application.
  • the exothermic composition of the present invention comprises iron powder, a carbon component, a reaction accelerator and water as essential components, and a reaction mixture containing iron powder, a reaction accelerator and water as essential components is contact-treated with an oxidizing gas.
  • This is an exothermic composition having excellent moldability, which is obtained by adjusting the moisture content of an exothermic mixture and is combined with an appropriate amount of surplus water that has a high exothermic rise. It can also be used to produce a heating element that quickly warms up during use.
  • the iron powder including the carbon component, has an oxidation history due to the contact treatment with the acidic gas, and this is deeply related to excellent heat buildup property, heat generation sustainability and excellent moldability. It seems that
  • the compression resistance is preferably 80% or more, more preferably 85% or more, and further preferably 90% or more.
  • the carbon component such as activated carbon in the exothermic composition can be reduced by, for example, 20% or more. Decreasing the amount of carbon component added reduces costs.
  • the exothermic composition of the present invention is not limited in its blending ratio, but iron powder (in the case of iron powder having an iron oxide film, iron powder in terms of the amount of iron component.
  • 100 parts by weight of carbon component is preferably 1.0-50 parts by weight, reaction accelerator 1.0-5.0 parts by weight, and water 5-60 parts by weight.
  • 0.01-10 parts by weight of water retention agent, 0.01-20 parts by weight of water-absorbing polymer, 0.01-5 parts by weight of pH adjuster, 0.01-12 parts by weight of hydrogen generation inhibitor, aggregate, Fibrous substances and functional substances are each 0.01 to 10 parts by weight, surfactant 0.01 to 5 parts by weight, organic silicon compound, pyroelectric substance, moisturizer, fertilizer component, hydrophobic polymer compound,
  • the defoaming agent, heat generation aid, metal other than iron, and metal oxide other than iron oxide are each preferably 0.01 to 10 parts by weight and acidic substance 0.001 to 1 part by weight.
  • an exothermic composition having excellent exothermic rising property, excellent hydrophilicity, and excellent moldability can be obtained.
  • an exothermic composition having remarkably excellent moldability and exothermic characteristics can be obtained.
  • the exothermic composition produced by the production method of the present invention has significantly improved exothermic rise. Therefore, the amount of carbon components such as activated carbon in the exothermic composition can be reduced by, for example, 20% or more, which can contribute to cost reduction.
  • the hydrophilicity is remarkably improved, the moldability using the mold is remarkably improved, so that the pieces of the exothermic composition are not scattered around the exothermic composition molded body after molding, so that the seal is not scattered. It is possible to produce a heating element that is accurate and has no seal breakage. Thereby, various shaped exothermic composition molded bodies can be produced, and various shaped exothermic bodies can be produced.
  • the heating element provided in the market and containing the exothermic composition in a storage bag is provided on the assumption that it can be stored in an outer bag, which is a non-breathable storage bag, for long-term storage. Preference is given to using exothermic compositions containing generation inhibitors! Since the exothermic composition that has undergone the contact treatment with the oxidizing gas is an active composition, it is important to contain a hydrogen generation inhibitor. In addition, the combined use of the pH adjuster further enhances the efficacy.
  • the exothermic composition having an easy water value of less than 0.01 has a coagulant aid, coagulant, agglomerate aid, dry binder, A binder, a dry binder, an adhesive material, a thickener, an excipient, and a water-soluble polymer may be contained within a range of 0.01 to 3 parts by weight, respectively.
  • the agglomeration aid is an agglomeration aid described in Japanese Patent No. 3161605 (Japanese Patent Publication No. 11-508314), such as gelatin, natural gum, corn syrup and the like.
  • the aggregating agent is an aggregating agent described in JP-T-2002-514104, such as corn syrup, manoletino resyrup and the like.
  • the agglomeration aid is an agglomeration aid described in JP-T-2001-507593, such as corn syrup.
  • the dry binder is a dry binder described in JP-T-2002-514104, and is microcrystalline cellulose, maltodextrin, or a mixture thereof.
  • the dry binder is a dry binder described in JP-T-2001-507593 and includes maltodextrin, sprayed lactose, and the like.
  • the dry binder is a dry binder described in JP-A-11-508314, and is microcrystalline cellulose, maltodextrin, or the like, or a mixture thereof.
  • Adhesive materials or binders such as water glass, polyvinyl alcohol (PVA), and carboxymethyl cellulose (CMC).
  • the thickener is a thickener described in JP-A-6-343658, such as corn starch or potato starch.
  • the excipient is an excipient described in Japanese Patent Application Laid-Open No. 7-194641, such as pregelatinized starch and sodium alginate.
  • water-soluble polymer a water-soluble polymer in the pressure-sensitive adhesive layer can be used.
  • the particle size of the reaction mixture, exothermic mixture, and solid components constituting the exothermic composition is not limited as long as the exothermic composition has moldability. However, when reducing any of the sizes (length, width, height) of the exothermic composition molded body, it is preferable to reduce the particle size of the solid formation.
  • the maximum particle size of the water-insoluble solid component excluding the reaction accelerator and water is preferably 2.5 mm or less, more preferably 930 / zm or less, even more preferable.
  • it is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, further preferably 250 / zm or less, further preferably 150 / zm or less, and further preferably 100 m or less. is there.
  • the exothermic composition is a powder or granular exothermic composition depending on the moisture adjustment state and the amount of excess water.
  • the water-soluble polymer compound is not limited as long as it is a water-soluble organic polymer. Denbum, gum arabic, methylcellulose (MC), carboxymethylcellulose (CMC), sodium carboxymethylcellulose, polybulualcohol, gelatin, polyacrylic acid, polyacrylic acid salt, polyacrylic acid partial neutralized product, polybulurpyrrolidone, N— An example is a vinylacetamide copolymer alone or a combination of two or more. Next, the heating element will be described.
  • the heating element of the present invention is a heating element in which an exothermic composition is stored in a storage bag that is at least partially breathable.
  • the heat generating part may be formed in one section, or the heat generating section may be formed from two or more divided heat generating sections arranged apart from each other.
  • the heating element of the present invention is sealed in an outer bag which is a non-breathable storage bag.
  • the breathable storage bag used in the present invention holds the exothermic composition inside the bag and has a strength that does not cause the bag to break while preventing the raw material from leaking during use of the heating element.
  • the material and the packaging structure are not particularly limited as long as they have air permeability necessary for heat generation.
  • the breathability of the storage bag can be provided on a part, one surface or both surfaces of the bag, and the breathable surface can be constituted by a breathable packaging material.
  • the air permeability on one side and the other side may be different.
  • the storage bag of the present invention comprises a base material and a covering material, and a covering material may be provided between the base material and the covering material.
  • the breathable storage bag of the present invention holds the mixture inside the bag and has a strength that prevents the material from leaking during use of the heating element and does not break, and is necessary for heat generation. As long as it has air permeability, it is not particularly limited to the material and packaging composition.
  • the breathability of the storage bag can be achieved by using a breathable packaging material on a part, one side or both sides of the bag.
  • the air permeability is not limited as long as heat generation can be maintained.
  • the air permeability is the moisture permeability by the Lissy method (Lyssy method)
  • LO Lissy method
  • OOOg / mV 24hr preferably 50 ⁇ 5
  • OOOgZm so 24hr more preferably 70 to 5
  • it is a 00 0g / m 2 / 24hr, further [this preferably ⁇ or 700-1, a 000g / m 2 / 24hr, further [this preferred properly is 80 ⁇ 800gZm 2 Z24hr.
  • gZm 2 Z24hr has the same meaning as gZ (m 2 Z24hr).
  • the moisture permeability is less than 50, the calorific value is reduced and a sufficient thermal effect cannot be obtained. On the other hand, if it exceeds 10,000 gZm 2 Z24hr, the exothermic temperature becomes high and there is a possibility that a safety problem may occur.
  • the breathable material constituting the breathable storage bag can be formed into a film, and exhibits breathability by methods such as stretching and extraction of Z or soluble filler, or perforation with an ultrafine needle. It is not particularly limited if possible.
  • a breathable film such as a porous film and a perforated film, paper, nonwoven fabric, or the like that has a breathability alone, paper, and a breathable film or a nonwoven fabric, etc., are laminated to provide a breathability.
  • a non-breathable packaging material with polyethylene film laminated to non-woven fabric with fine holes using needles etc. to make it breathable, fiber laminated and thermocompression bonded, breathable
  • a non-woven fabric, a porous film, or a non-woven fabric bonded to a porous film can be used.
  • the porous film examples include a porous film obtained by stretching a film made of a filler material such as polyethylene, a polyolefin resin such as linear low density polyethylene and polypropylene, a fluorine resin such as polytetrafluoroethylene, and the like.
  • a quality film can be selected as appropriate.
  • the perforated film is a non-breathable film such as a polyethylene film provided with fine holes with a needle to provide breathability.
  • the packaging material of the storage bag may have a single layer structure or a multilayer structure.
  • the structure is not limited, but as an example of a multilayer structure,
  • Base material is A layer ZB layer or A layer ZB layer ZC layer or A layer ZB layer ZC layer ZD layer or coating material is F layer ZG layer or E layer ZF layer ZG layer or F layer ZH layer ZG layer force For example.
  • Layer A consists of thermoplastic resin films such as polyethylene, polyethylene, heat seal layers such as EVA and EVA and polyethylene, water-absorbing paper, etc.
  • Layer B is a non-woven fabric of thermoplastic resin such as nylon, non-water absorbent paper, water absorbent paper, polyethylene film, polypropylene film, polyester film, polyamide (nylon etc.) film, etc.
  • Thermoplastic resin film, non-water absorbent Core materials such as paper and water-absorbent paper, etc.
  • c layer is an adhesive layer, non-water-absorbent paper, water-absorbent paper, thermoplastic resin film such as polyethylene, non-slip layer, nonwoven fabric of thermoplastic resin such as polyester and nylon, etc.
  • D layer is a separator, thermoplastic resin film such as polyethylene, non-woven fabric, etc.
  • E layer is a heat seal layer, etc.
  • F layer is made of polyethylene, thermoplastic porous film or perforated film, polyethylene thermoplastic film, non-water absorbent paper, water absorbent paper, etc.
  • G layer is a nonwoven fabric of thermoplastic resin such as polyester and nylon,
  • the H layer is non-water absorbent paper, water absorbent paper or the like.
  • a base material or a covering material For example, as an example of a base material or a covering material,
  • Nonwoven fabric Z paper porous film Z perforated (needle, laser) film,
  • Nonwoven fabric Z paper, porous film Z nonwoven fabric, etc. are mentioned as an example. There are no restrictions on the method of laminating each layer. Direct lamination of each layer is also possible. Each layer may be laminated by hot melt extrusion or the like, which may be laminated via a breathable adhesive layer or a laminating agent layer. .
  • polyethylene includes polyethylene produced using a meta-orthocene catalyst.
  • the heating element is stored in an outer bag which is a non-breathable storage bag, stored and transported. However, if the outer bag is non-breathable, it is laminated without any other restrictions.
  • Non-breathable materials include polyethylene, polypropylene, cellophane, polyester, polyamide, polybulal alcohol, polychlorinated bur, polysalt vinylidene, polyurethane, polystyrene, ethylene vinyl acetate copolymer, polycarbonate, hydrochloric acid rubber Etc.
  • polyolefin-based resin examples include homopolymers such as polyethylene, polypropylene, and polybutadiene, copolymers, and blend polymers thereof.
  • non-breathable high film a non-breathable material film in which a thin film of a metal containing a semiconductor or a compound thereof is provided in a single layer or multiple layers is provided.
  • the metal containing a semiconductor include silicon, aluminum, titanium, tin, indium, and alloys and mixtures containing these metals.
  • Examples of the metal compound including a semiconductor include oxides, nitrides, and oxynitrides of the above metals, alloys, and mixtures.
  • a silicon oxide layer for example, a silicon oxide layer, an aluminum oxide layer, a silicon oxynitride layer, or a laminate of these arbitrary layers can be given as an example.
  • a heating element in which the manufactured heating element is sealed between two non-breathable films or sheets can be cited as an example.
  • the material constituting the base material, the covering material, and the covering material is not limited as long as it functions as a storage bag for the exothermic composition, and is conventionally used for a breathable storage bag for a heating element. Can be used.
  • non-breathable materials examples include non-breathable materials, breathable materials, water-absorbing materials (such as paper and rayon), non-water-absorbing materials, stretchable materials, non-stretchable materials, foamed materials, and heat-sealable materials.
  • breathable materials such as paper and rayon
  • water-absorbing materials such as paper and rayon
  • stretchable materials such as paper and rayon
  • non-stretchable materials stretchable materials
  • foamed materials such as foamed materials
  • heat-sealable materials examples include heat-sealable materials.
  • the film, sheet, non-woven fabric, woven fabric, and the like and their composites may be used as appropriate according to the desired application.
  • the non-water-absorbing material is not limited as long as it is non-water-absorbing.
  • Polyethylene, polyp Examples include synthetic films such as propylene, nylon, acrylic, polyester, polybutyl alcohol, polyurethane, and the like, films, sheets, and coatings having the same hydrophobic polymer.
  • the stretchable packaging material is not particularly limited as long as it has stretchability. That is, as a whole, it may be a single product as long as it has stretchability, or a composite product composed of stretchable substrates or a combination of a stretchable substrate and a non-stretchable substrate.
  • the fibers constituting the woven fabric it is possible to use regenerated fibers, semi-synthetic fibers, synthetic fibers using natural materials such as natural fibers and viscose fibers, and mixtures of two or more of these. it can. These fibers can also be used as a fibrous material.
  • the non-woven fabric is manufactured by joining fibers by entanglement or adhesion using heat, adhesive, or thermal, chemical, physical, mechanical means such as high-pressure water flow. If it is a cloth-like sheet, there are no restrictions on stretchability, non-stretchability, water absorption, non-water absorption, heat sealability, non-heat sealability, etc. It may have more than one species. Examples include rayon, nylon (polyamide), polyester, talyl, polypropylene, vinylon, polyethylene, polyurethane, cupra, cotton, cellulose, pulp and other vegetable fibers, synthetic pulp, thermoplastic polymer materials, etc.
  • a composite fiber, a mixed fiber of these, or a mixture thereof is used, and a single nonwoven fabric or a mixed paper of these fibers or a lamination of cumulative fiber layers is used.
  • a short fiber nonwoven fabric, a long fiber nonwoven fabric, and a continuous filament nonwoven fabric can also be used.
  • dry non-woven fabric, wet non-woven fabric, spunbond, spunlace, etc. can be used for manufacturing.
  • the stretchable nonwoven fabric is not limited as long as it has stretchability. However, it is not limited as long as it is made of elastomeric rubber fibers, entangled polyolefin or polyester crimped fibers, and binders are heat-melted. Examples thereof include stretchable nonwoven fabrics and polyurethane-based nonwoven fabrics by a method of wearing. It may be a non-woven fabric composed of core-sheath composite fibers.
  • the basis weight of the nonwoven fabric is not limited. Preferably it is usually 10 ⁇ 200gZm 2.
  • the paper is water-absorbing and is not limited as long as it is normally used.
  • Examples include paper and cardboard.
  • thin paper such as blotting paper, tissue paper, crepe paper, wrapping paper such as kraft paper, hybrid paper such as card paper, corrugated cardboard core such as cardboard, pulp core and special core, corrugated cardboard liner such as kraft card
  • hybrid paper such as card paper
  • corrugated cardboard core such as cardboard
  • pulp core and special core corrugated cardboard liner
  • kraft card One or more types of laminates, such as thick paper such as balls and construction paper such as gypsum board base paper, are examples.
  • the non-water-absorbing paper is not limited as long as it is non-water-absorbing.
  • non-water-absorbing treatment For example, an oil or synthetic resin impregnated or non-water-absorbing treated with a coating, or a non-water-absorbing material such as a polyethylene film is laminated.
  • the papers and the non-water-absorbing papers may be subjected to water-resistant processing, or may be provided with through-holes by using a laser, a needle, or the like to adjust or have air permeability.
  • foam material examples include foamed polyurethane, foamed polystyrene, foamed ABS resin, foamed polysalt vinyl, foamed polyethylene or foamed polypropylene, and foams such as sheets formed of at least one selected. As mentioned.
  • the heat-sealable material is not limited as long as at least a part of the material that can be heat-sealed can be joined by heating, even if it is a composite material having a heat-sealing layer.
  • Materials that can be heat-sealable and hot-melt adhesives that make up the heat-seal layer include polyethylene / polyolefin polyolefin resins such as polypropylene, ethylene methyl methacrylate copolymer, ethylene methyl methacrylate acrylic ester Copolymer, ethylene ⁇ -olefin copolymer, ethylene acetate butyl copolymer resin, ethylene isobutyl acrylate copolymer resin, ethylene acrylate ester copolymer resin, ethylene hot melt resin, polyamide hot Melt resin, Polyester hot melt resin, Butyral hot melt resin, Cellulose derivative hot melt resin, Polymethyl methacrylate hot melt resin, Polybule ether hot melt resin Examples thereof include hot melt resins such as fats, polyurethane-based hot melt resins, polycarbonate-based hot melt resins, acetic acid bulls, salt-bull acetic acid bule copolymers, and films and sheets thereof.
  • blended additives such as various anti-oxidation agents
  • low-density polyethylene, polyethylene using a meta-octane catalyst, and ethylene- ⁇ -olefin copolymer are useful.
  • a-olefins include polypropylene, 1-butene, 1-heptene, 1-hexene, 1-octene, 4-methyl 1-pentene, etc., which are not limited as long as the double bond is a terminal monomer. .
  • a biodegradable material is used in addition to the materials conventionally used. Can be used.
  • the exothermic composition including the base material, the covering material, the breathable pressure-sensitive adhesive layer, the covering material, and the exothermic composition molded body, at least the exothermic composition may be compressed!
  • the heat-generating composition molded body of the present invention when compressed by an appropriate amount by pressurization, the shape maintaining property is remarkably improved.
  • a perforated film that is difficult to adjust pressure is used instead of a porous film as a material for a ventilation portion. Even if it is used, even if the internal pressure of the storage bag exceeds the external pressure, the shape does not easily collapse and the use of perforated film is possible, so the range of choice of breathable materials can be expanded and the cost can be reduced.
  • the heated body can be heated uniformly at a moderate temperature for a long time.
  • the exothermic composition molded body obtained by compressing the exothermic composition of the present invention is an inelastic body, and the compression resistance of the exothermic composition is preferably 80% or more, more preferably 85% or more. Preferably it is 90% or more, and may exceed 100%.
  • At least a part or one section of the heat generating part may contain a magnetic substance, and a magnetic substance such as a magnet may be accommodated for the purpose of improving blood circulation or stiff shoulders by a magnetic effect.
  • a magnetic substance such as a magnet
  • the separator may be provided with a slit or the like so as to be easily separated.
  • the adhesive layer is preferably non-transferable.
  • At least one selected from the base material, the covering material, the covering material, and the pressure-sensitive adhesive layer includes a moisturizing agent and a function. It may contain or carry at least one selected from the additional ingredients consisting of sex substances, aggregates, pyroelectric substances, magnetic substances or mixtures thereof.
  • contents are not particularly limited, but are preferably 0.01 to 25 parts by weight, more preferably 0.01 to 25 parts by weight with respect to 100 parts by weight of the adhesive from the viewpoints of pharmacological effect, economy, and adhesive strength. It is preferably 0.5 to 15 parts by weight.
  • a hot melt adhesive may be provided between the hydrophilic adhesive layer and the substrate or the covering material.
  • the hydrophilic pressure-sensitive adhesive is provided on the heating element, but it is preferable that the hydrophilic pressure-sensitive adhesive is provided on the heating element after the heating element is sealed.
  • the heat generating part of the present invention may form the heat generating part in one section, or two or more sections are arranged apart from each other to form a fixed section heat generating part, and from the set of the section heat generating parts.
  • a heat generating part may be formed and used as the heat generating part.
  • the size of the exothermic composition molded body on the substrate is equal to or smaller than the size of the divided heat generating part, and the peripheral edge of the exothermic composition molded body is heat-sealed.
  • the volume of the heat generating part and the heat generating part are composed of the volume of the heat generating composition filled or the volume of the exothermic composition molded body and the space volume surrounding it.
  • the volume ratio of the volume of the molded article is usually about 0.3 to about 1.0, preferably about 0.35 to about 1.0, more preferably about 0.5 to about 1.0. Yes, more preferably from about 0.7 to about 1.0, more preferably from about 0.8 to about 1.0, and even more preferably from about 0.9 to about 1. 0.
  • the section heating part when the section heating part is formed, the smaller the size of the heating element, the more flexible the heating element as a whole.
  • at least one side of the divided heat generating part composed of two sides having different lengths should be as short as possible.
  • the longest length of the segmented heat generating portion composed of the same side such as a square or one diameter such as a circle is as short as possible.
  • the divided heat generating portion accommodates the exothermic composition or the exothermic composition molded body divided by the dividing portion which is a seal portion.
  • the segment exothermic part or the exothermic composition molded body of the present invention has a maximum width of usually 0.5 to 60 mm, preferably 0.5 to 50 mm, more preferably 1 to 50 mm, More preferred Or 3 to 50 mm, more preferably 3 to 30 mm, still more preferably 5 to 20 mm, still more preferably 5 to 15 mm, and still more preferably 5 to 10 mm.
  • the maximum height is usually 0.1 to 30 mm, preferably 0.1 to 10 mm, more preferably 0.3 to 10 mm, still more preferably 1 to 10 mm, and still more preferably. 2-10mm.
  • the longest length is usually 5 to 300 mm, preferably 5 to 200 mm, more preferably 5 to: LOOmm, still more preferably 20 to 150 mm, still more preferably 30 to L00 mm. It is.
  • the volume of the section heat generating portion or the volume of the exothermic composition molded body is usually from 0.015 to 500 cm 3 , preferably from 0.04 to 30 cm 3 , more preferably from 0.1 to 30 cm 3 . , more preferably from L ⁇ 30cm 3, more preferably from 3 ⁇ 20cm 3.
  • the volume of the heat generating composition molded body, which is the heat generating composition molded area, and the heat generating composition storage area when the divided heat generating portion, which is a heat generating composition storage area, is filled with the heat generating composition molded body, the volume of the heat generating composition molded body, which is the heat generating composition molded area, and the heat generating composition storage area.
  • the volume ratio with the volume of the divided heat generating portion is usually 0.6 to 1, preferably ⁇ or 0.7 to 1, more preferably ⁇ or 0.8 to 1, and further preferably ⁇ or 0.00. 9 to 1.0.
  • the width of the divided portion which is the interval between the divided heat generating portions, is not limited as long as it can be divided.
  • Force Usually 0.1 to 50 mm, preferably 0.3 to 50 mm, more preferably 0.3 to 50 mm. Yes, more preferably 0.3 to 40 mm, further preferably 0.5 to 30 mm, more preferably 1.0 to 20 mm, and further preferably 3 to 10 mm.
  • the shape of the exothermic composition molded body or the divided heat generating portion may be any shape, but examples thereof include a flat shape, such as a circle, an ellipse, a polygonal shape, a star shape, and a flower shape.
  • a flat shape such as a circle, an ellipse, a polygonal shape, a star shape, and a flower shape.
  • An example is the shape.
  • these shapes may be rounded at the corners, and the corners may be curved or curved, and there may be a recess in the center.
  • the volume of the exothermic composition part molded body of the present invention means the volume of the exothermic composition molded body or the compressed exothermic composition molded body.
  • volume of the segmented heat generating part is the internal volume of the segmented heat generating part containing the exothermic composition molded body. Means product.
  • the height of the central portion gradually decreases toward the peripheral portion, that is, has a height gradation.
  • it has the opposite height gradation, but you can.
  • the molding order determines the size of the exothermic composition molded body, and then determines the size of the partial heat generating portion.
  • the sorting heat generating part, the storage bag, the outer bag (heating element storage bag), etc. have a force that seals the packaging material constituting the sorting part and its peripheral part.
  • a force that seals the packaging material constituting the sorting part and its peripheral part For example, pressure-sensitive seal (adhesive seal), heated pressure-bonded seal (adhesive seal) by means of pressure, heating, heating, etc. or a combination thereof through the pressure-sensitive adhesive layer and Z or adhesive layer and Z or heat seal layer
  • a force s one of which may be a dot-like (broken-line) or full-face shape, such as an adhesive seal, a thermal adhesive seal, a heat-sealed seal (heat seal), etc. Combinations are selected as desired.
  • the divided heat generating portion, the inner bag (storage bag), the outer bag, and the like can be sealed and formed. Sewing can also be used as a means of sealing.
  • the width of the peripheral portion of the base material forming the storage bag such as the base material or the sealing portion of the partitioning portion can be appropriately determined. Usually, it is 50 mm or less, preferably 1 to 30 mm, more preferably 3 to 20 mm.
  • a cutting line such as a perforation can be provided in the section.
  • This perforation may be a degree that can be cut by hand, such as a degree that improves flexibility, or a shape that is formed into a heat generating body having a size according to the application location of the human body. There is no limit to the degree, and it is determined as desired.
  • a heating element in which a large number of the divided heat generating portions are connected at intervals and the perforated perforated line is provided in the divided portions is based on the purpose of use such as a place to be applied to a human body. It can be cut and applied to an appropriate size according to the usage.
  • the size of the heating element and the size and number of the divided heating portions may be set appropriately. There is no limit to their size or number.
  • the dividing portion can be formed in an arbitrary direction such as a vertical or horizontal direction, a vertical and horizontal direction, or an oblique direction.
  • a breathable pressure-sensitive adhesive layer such as a reticulated polymer, and a non-woven cloth or the like is provided between the breathable pressure-sensitive adhesive layer and the covering material. You may choose.
  • pressure treatment or the like may be performed on the entire surface or a part of at least one of the exothermic composition molded body, the base material, the covering material, and the covering material, or irregularities may be formed. These may prevent the laminate from moving between the base material and the coating material.
  • the perforation of the present invention is one that has been cut intermittently to increase the bendability of the section, or one that has been cut intermittently to the extent that hand cutting is possible. There are no restrictions on the degree, length, and caliber. This perforation may be provided in all sections.
  • a perforation cut intermittently to the extent that it can be cut by hand is a circular hole having a diameter of ⁇ 10 to 1200 / ⁇ ⁇ .
  • the diameter of the hole is more preferably ⁇ 20 to 500 ⁇ m.
  • the holes are in positions aligned vertically and horizontally.
  • the distance between the outer circumferences of adjacent holes in the vertical and horizontal directions is not limited as long as it satisfies the bendability and the possibility of hand cutting, but is preferably 10 to 2000 / ⁇ ⁇ , more preferably It is 10 to 1500 m, more preferably 20 to 200 m: LOOO / zm, more preferably 20 to 500 m, and more preferably 20 to 200 m.
  • the hand cutting performance is remarkably improved by the balance of the shortest distance between the hole diameters and the outer circumferences of adjacent holes.
  • the length of the hole may be longer than the length corresponding to the diameter of the hole.
  • the shortest distance between the ends of adjacent cuts in the vertical and horizontal directions corresponds to the shortest distance between the outer peripheries of the adjacent holes in the vertical and horizontal directions.
  • a hole with a diameter of 10 to 2000 ⁇ m has a length of 10 to 2000 ⁇ m, and the shortest distance between the outer circumferences of adjacent holes in the vertical and horizontal directions is 10 to 2000 m. Corresponds to the shortest distance between the ends of 10 to 2000 m.
  • a thermal packaging body for the joint peripheral part or a heat generating part is fixed to a required part.
  • a fixed capacity that can be determined There is no limitation as long as it has a fixed capacity that can be determined.
  • Adhesive layers, key hooks, hook buttons, hook-and-loop fasteners such as berg mouths, magnets, bands, strings, etc., and combinations thereof, which are generally employed as the fixing means, can be arbitrarily used.
  • the adjustment fixing means may be further constituted by a combination of a hook-and-loop fastener and an adhesive layer.
  • the hook-and-loop fastener is known by a trade name such as Velcro (registered trademark), Velcro fastener (registered trademark), Berg mouth fastener, hook-and-loop tape, and the like. It has a fastening function in combination with a hook that is a male fastener that can be fastened with a female fastener.
  • the loop function include non-woven fabrics, woven fabrics of yarn having fluff and traps, and the like. Even if the core material forming the band is coated with the loop function (female fastener function). It ’s okay, but you can make up the band by itself!
  • the hook member which is a male fastener member, is not particularly limited, but examples thereof include those formed by a polyolefin resin such as polyethylene and polypropylene, polyamide, polyester and the like.
  • the shape of the hook is not particularly limited, but hooks with a cross-sectional shape of I shape, inverted L shape, shape, so-called mushroom shape, etc. are easily caught on the loop and extremely hard on the skin. This is preferable in that it does not give a sense of irritation.
  • the hook may be adhered to the entire area of the fastening tape, or the tape substrate may be omitted and only the hook may be used as the fastening tape.
  • the pressure-sensitive adhesive layer includes a water retention agent, a water-absorbing polymer, a pH adjuster, a surfactant, an organic key compound, a hydrophobic polymer compound, a pyroelectric substance, an antioxidant, an aggregate, a fibrous material, a moisturizing agent, Functional substance or mixture of these ingredients
  • Additional component power Contains at least one selected.
  • the pressure-sensitive adhesives of the present invention are classified into non-hydrophilic pressure-sensitive adhesives, mixed pressure-sensitive adhesives, and hydrophilic pressure-sensitive adhesives (Giel etc.).
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is not limited as long as it has an adhesive force necessary to adhere to the skin or clothes. Solvent type, aqueous type, emulsion type, hot melt type, reactivity, sensitivity Various types such as pressure system, non-hydrophilic adhesive, hydrophilic adhesive, etc. are used It is done.
  • the pressure-sensitive adhesive layer includes a non-hydrophilic pressure-sensitive adhesive layer composed of the non-hydrophilic pressure-sensitive adhesive and a non-hydrophilic pressure-sensitive adhesive layer composed of the non-hydrophilic pressure-sensitive adhesive.
  • the non-hydrophilic pressure-sensitive adhesive layer containing a water-absorbing polymer or a water retention agent is treated as a non-hydrophilic pressure-sensitive adhesive layer.
  • a hot melt adhesive may be provided between the hydrophilic adhesive layer and the substrate or the covering material.
  • hydrophilic adhesive is provided on the thermal package for the joint periphery. After the sealing process of the thermal package for the joint periphery, a hydrophilic adhesive layer is provided on the thermal package for the joint periphery. Also good.
  • the pressure-sensitive adhesive layer may be air permeable or non-air permeable. What is necessary is just to select suitably according to a use. As for air permeability, it is only necessary to have air permeability as a whole.
  • a pressure-sensitive adhesive layer in which the pressure-sensitive adhesive is partially present and there is a portion in which the pressure-sensitive adhesive is not present partially and the entire region is breathable can be given as an example.
  • the method of maintaining the breathability is, for example, by printing the adhesive or transferring the adhesive layer partially.
  • the non-laminated part is used as a ventilation part, and the adhesive is moved in one direction or zigzag while drawing a circle in the shape of a thread.
  • Examples include a method in which the gap between the thread-like adhesives has air permeability or moisture permeability, a method of foaming the adhesive, or a layer formed by a melt blow method.
  • Adhesives that make up the non-hydrophilic pressure-sensitive adhesive layer are acrylic pressure-sensitive adhesives, vinyl acetate-based pressure-sensitive adhesives (bulb acetate-based resin emulsion, ethylene-bulb-based resin melt hot melt pressure-sensitive adhesives), polyvinyl alcohol-based pressure-sensitive adhesives, polyvinyl Acetal adhesive, vinyl chloride adhesive, polyamide adhesive, polyethylene adhesive, cellulose adhesive, black mouth prene (neoprene) adhesive, nitrile rubber adhesive, polysulfide adhesive, ptyl rubber
  • the adhesive include a silicone adhesive, a silicone rubber adhesive, a styrene adhesive (for example, a styrene hot melt adhesive), a rubber adhesive, and a silicone adhesive. This Among them, rubber adhesives, acrylic adhesives or hot-melt adhesives are high because of their high adhesive strength, low cost, good long-term stability, and little decrease in adhesive strength even when heated. Adhesives containing child substances are desirable.
  • the pressure-sensitive adhesive may optionally contain other components such as rosin, coumarone indene resin, hydrogenated petroleum resin, maleic anhydride-modified rosin, rosin derivatives or C5 petroleum oil.
  • Oil tackifiers such as petroleum spheroids represented by alicyclic petroleum resins such as fats, and phenol tackifiers such as terpene phenolic rosins, rosin phenolic rosins, alkylphenolic terrestrial resins (especially -Tackifiers with a phosphorus point of 50 ° C or lower), coconut oil, castor oil, olive oil, camellia oil, liquid paraffin and other softeners, softeners, anti-aging agents, fillers, aggregates, adhesion regulators, Adhesion improvers, colorants, antifoaming agents, thickeners, modifiers and the like may be added as appropriate to improve performance such as improving the adhesion to nylon clothing and blended fabric clothing.
  • hot melt pressure-sensitive adhesive examples include known hot-melt pressure-sensitive adhesives that have been given tackiness.
  • BB A-type block co-polymers such as SIS, SBS, SEBS, or SIPS can be used.
  • Styrenic adhesives based on polymers chlorinated adhesives based on salt-bulb resin, polyester adhesives based on polyester, polyamide adhesives based on polyamide , Acrylic adhesives based on acrylic resin based on acrylic resin, polyolefin adhesives based on polyolefins such as polyethylene, ultra-low density polyethylene, polypropylene, ethylene ⁇ -olefin, and ethylene acetate butyl copolymer, 1 , 2—Polybutadiene-based polymer 1, 2-polybutadiene adhesive or polyurethane Polyurethane adhesives shall be the base polymer Tan, or adhesion improvement and also stability of these modified products force for changing an adhesive, or a mixture of two or more of these adhesives and the like. Moreover, an adhesive layer composed of a foamed adhesive or an adhesive layer composed of a crosslinked adhesive can also be used.
  • the non-aromatic hot-melt pressure-sensitive adhesive is not particularly limited as long as the base polymer does not contain an aromatic ring.
  • olefin-based hot melt adhesives include acrylic hot melt adhesives. Does not contain aromatic rings
  • Non-aromatic polymers that are polymers include polymers such as olefins and gens.
  • One example is an olefin polymer.
  • the olefin-based polymer is a polymer or copolymer of ethylene or ⁇ -olefin.
  • other monomers such as butadiene and isoprene, may be added.
  • ⁇ -olefin examples include, but are not limited to, propylene, butene, heptene, hexene, otaten and the like as long as the monomer has a double bond at the terminal.
  • Aromatic hot melt adhesives are hot melt adhesives whose base polymer contains an aromatic ring, such as styrene hot melt adhesives such as ⁇ - ⁇ - ⁇ block copolymers. Is given as an example.
  • the A block is a monovinyl-substituted aromatic compound A such as styrene or methylstyrene, which is an inelastic polymer block
  • the B block is a conjugate of conjugated gen such as butane or isoprene.
  • conjugated gen such as butane or isoprene.
  • SBS styrene butadiene styrene block copolymer
  • SIS styrene isoprene styrene block copolymer
  • SEBS hydrogenated types
  • a pressure-sensitive adhesive layer in which a water-absorbing polymer is further blended with the non-hydrophilic pressure-sensitive adhesive can be used as a measure for preventing a decrease in pressure-sensitive adhesive force due to an increase in water content of the non-hydrophilic pressure-sensitive adhesive layer.
  • the hydrophilic pressure-sensitive adhesive constituting the hydrophilic pressure-sensitive adhesive is not particularly limited as long as the main component is a hydrophilic polymer or a water-soluble polymer and has adhesiveness, and the pressure-sensitive adhesive is hydrophilic.
  • Components of the agent include hydrophilic polymers such as polyacrylic acid, water-soluble polymers such as sodium polyacrylate and polyvinylpyrrolidone, cross-linking agents such as dry aluminum hydroxide metal metasilicate aluminate metal salt, glycerin And softeners such as propylene glycol, primary hydrocarbon fatty acid esters such as light liquid paraffin and polybutene, primary alcohol fatty acid esters such as isopropyl myristate, silicone oil, and fatty acid glycerin esters such as monoglyceride , Oily components such as olive oil and vegetable oils, methyl noroxybenzoate and paraoxybenzoate Preservatives such as propyl perfate, solubilizers such as N-methyl
  • the temporary sealing part is formed through an adhesive layer, but the adhesive constituting the adhesive layer is a layer formed of a polymer composition having tack at normal temperature, and it is limited if heat sealing can be performed after temporary attachment. Not sure.
  • the adhesive of the said adhesive layer can be used for the adhesive which comprises the adhesive layer used for temporary attachment.
  • a non-hydrophilic adhesive is preferred.
  • the adhesive constituting the adhesive layer preferably has a melting point of the base polymer of the adhesive that has good compatibility with the heat seal material constituting the heat seal, and is lower than the melting point of the heat seal material.
  • a hot-melt adhesive is preferable for the hot-melt adhesive.
  • the heat seal material is an olefin-based material
  • an olefin-based pressure-sensitive adhesive is preferred as an example of the pressure-sensitive adhesive.
  • the adhesive layer for fixing the air flow adjusting material is composed of a commonly used adhesive or pressure-sensitive adhesive.
  • the pressure-sensitive adhesive is useful, and the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer can be used.
  • the method of providing the adhesive layer may be provided on the entire surface as long as the air flow adjusting material can be fixed, or may be provided partially or intermittently.
  • Various shapes such as a net shape, a stripe shape, a dot shape, and a belt shape are listed as examples.
  • the adhesive layer is a hydrophilic adhesive layer
  • a packaging material such as a base material between them Moisture movement takes place via both, and inconvenience occurs for both. This happens especially during storage.
  • the packaging material interposed between them preferably has a moisture permeability of at least 2 g / m 2 / day in terms of moisture permeability according to the Lissy method (Lyssy method).
  • the moisture permeability of the moisture-proof packaging material provided between the exothermic composition molded body and the hydrophilic pressure-sensitive adhesive layer is within the range that does not affect the heat generation performance.
  • the moisture permeability by Ritsushi one method usually, it is 2gZm 2 Zday less, preferably not more than 1. 0gZm 2 Zday, more preferably 0. 5GZm 2 Zday or less, and more preferably 0.01 to 0.5 gZm 2 Zday.
  • the values are under the conditions of 40 ° C and 90% RH under atmospheric pressure.
  • the moisture-proof packaging material can be used as a base material or a coating material, or can be laminated alone on a base material or a coating material.
  • the moisture-proof packaging material is not limited as long as moisture transfer between the exothermic composition molded body and the hydrophilic pressure-sensitive adhesive layer can be prevented.
  • Non-breathable packaging material flexible plastic made by vacuum deposition or sputtering of metal such as aluminum foil on a polyester film base film, metal foil such as aluminum foil, and polyester film substrate Laminate for packaging using a transparent barrier film with a structure in which silicon oxide and aluminum oxide are provided on the base material
  • metal such as aluminum foil
  • metal foil such as aluminum foil
  • polyester film substrate Laminate for packaging using a transparent barrier film with a structure in which silicon oxide and aluminum oxide are provided on the base material
  • a non-breathable packaging material used for the outer bag or the like can also be used.
  • a packaging material such as a moisture-proof packaging material disclosed in Japanese Patent Application Laid-Open No. 2002-200108 can also be used, and the contents of this description are incorporated in the present invention.
  • a reaction accelerator such as sodium chloride in the heat generating composition is used to adjust the water balance between the heat generating composition and the pressure sensitive adhesive layer.
  • the water-absorbing polymer, etc. in the range of 10 to 40% by weight, preferably 15 to 40% by weight, more preferably 15 to 30% by weight of the exothermic composition. You can adjust the weight percentage range!
  • a pressure-sensitive adhesive having good moisture permeability and low irritation to the skin a water-containing pressure-sensitive adhesive (hydrophilic pressure-sensitive adhesive, Jewel) such as JP-A-10-265373 and JP-A-987173 can be used. 6-145050, JP-A-6-199660, hot-melt-adhesive adhesives are disclosed in JP-A-10-279466 and in JP-A-10-182408. Agents are also useful, citing each of these references, the entire text is incorporated herein.
  • the functional substance to be included in the pressure-sensitive adhesive layer is not limited as long as it is a substance having a function, but it is a fragrance compound, a plant extract, a herbal medicine, a fragrance, a slimming agent, an analgesic, a blood circulation promoter, a swelling improving agent, Antibacterial agent, bactericidal agent, fungicide, deodorant, deodorant, transdermal drug, fat decomposition component, negative ion generator, far-infrared radiator, magnetic substance, poultice, cosmetics, bamboo vinegar Alternatively, at least one selected from wood vinegar and the like can be cited as an example.
  • aromatic compounds such as menthol and benzaldehyde, plant extracts such as mugwort extract, herbal medicines such as mogusa, fragrances such as lavender and rosemary, slimming agents such as aminophylline and tea eks, indomethacin, dl—
  • Analgesics such as camphor, blood circulation promoters such as acidic mucopolysaccharides, force mitre, swelling improvement agents such as citrus tincture and flavone derivatives, poultices such as boric acid water, physiological saline, alcohol water, Lipolytic components such as caffeine and tonaline, aloe extract, vitamins, hormones, antihistamines, cosmetics such as amino acids, carboxylic acid derivatives, boric acid, iodine agents, reverse sarcolic acid, salicylic acid substances, iow Examples include antibacterial agents such as antibiotics, bactericides, and fungicides.
  • the percutaneously absorbable drug is not particularly limited as long as it is percutaneously absorbable, but corticosteroids, anti-inflammatory analgesics, hypertensives, anesthetics, hypnotic sedatives, and psycholeptics.
  • the content of the functional substance is not particularly limited as long as the medicinal effect can be expected. However, the content of the functional substance is not limited from the viewpoints of pharmacological effect, economic efficiency, adhesive strength, and the like. Preferably, 0.01 to 25 parts by weight, more preferably 100 parts by weight of the agent
  • the method for providing the adhesive layer may be provided on the entire surface as long as the thermal package for the joint periphery can be fixed, or may be provided partially or intermittently.
  • Mesh, stripe Examples include various shapes such as a dot shape and a belt shape.
  • the base material, covering material, pressure-sensitive adhesive layer, and separator constituting the heating element at least one or a part thereof is a character, a pattern, a symbol, a number, a pattern, a photograph, a picture, or a colored portion. You can have more than one kind of displacement force!
  • the covering material, the pressure-sensitive adhesive layer, and the separator constituting the heating element each may be any of transparent, opaque, colored, uncolored, and the like.
  • at least one of the layers constituting each material and each layer may have a colored portion colored in a different color from the other layers.
  • the heating element of the present invention can be obtained in various shapes, thicknesses, and temperature zones, outside of normal body warming, for warmth, for footwear and other footwear, for joints, for face, for eyes, for heat Various applications such as poultry, drug warmers, neck, waist, mask, gloves, heels, shoulders, cushions, fragrances, abdomen, transpiration insecticide, oxygen absorption, cancer treatment, and pets It can be used for heat insulation of machinery and machinery.
  • the heating element is applied to a body part having pain in a person who needs treatment, and the temperature of the skin and the maintenance time are required to be treated. Treating acute, recurrent, chronic, muscular pain, skeletal pain, or related pain caused by human choice, comfortably and substantially relieving pain An example of use is given as an example.
  • the method of manufacturing the heating element is not limited, but the following manufacturing method is an example.
  • a bag body is formed by bonding the edges and partitioning portions of the base material by an appropriate method such as an adhesive, sewing, heat sealing method, etc., and the bag body is filled with the exothermic composition, and then the bag body end is contacted. How to wear.
  • an appropriate method such as an adhesive, sewing, heat sealing method, etc.
  • thermocompression bonding using a long base material and a rotary thermocompression bonding machine capable of heat-sealing the target partition portion and the peripheral edge of the base material is used.
  • a continuous forming method for starting the formation of the chamber for example, a continuous forming method for starting the formation of the chamber.
  • a pocket is previously formed in a base material by thermoforming, mechanical embossing, vacuum embossing or other acceptable means, and the heating composition and This is a method for manufacturing a heating element by filling the compressed body and the like, covering the pocket with another base material, and bonding the periphery of the two base materials.
  • a mold-forming exothermic composition is formed into a desired shape by a mold-through molding method using a punching die or a mold-in molding method using a punching die, and a substantially flat base having no storage pocket is formed.
  • This is a method for producing a heating element by laminating the molded body on a material or the like, covering with another base material, and sealing.
  • the die-through molding method uses a punching die, and a molding machine for laminating a heat-generating composition molded body of a punching shape on a long base material and covering it with a long covering material.
  • a rotary sealer that can seal the target section and the periphery of the base material and coating material (heat seal, pressure seal, thermocompression seal, etc.)
  • This is a continuous forming method that heat seals and encloses the necessary parts of the peripheral part and the section of the molded product.
  • the squeeze molding method is a molding method in which the exothermic composition molded body is laminated on a long base material by filling a squeeze mold having a recess and transferring it to the base material.
  • a molding machine for laminating the exothermic composition molded body on a long base material by covering the recess with a drum-shaped rotating body and transferring it to the base material, and covering it with a long covering material
  • a rotary sealer that can seal the target section and the periphery of the base material and coating material (heat seal, crimp seal, thermocompression seal, etc.)
  • heat generation composition through the seal
  • a continuous forming method in which the necessary portions of the edge and the section of the molded article are heat-sealed and sealed.
  • a magnet may be used for producing a heating element using the exothermic composition of the present invention using the above method and other methods.
  • the exothermic composition can be stored in a bag or mold, and the molded body can be easily detached from the mold. The body is easier to manufacture.
  • the air flow adjusting material is composed of a divided heat generating portion and a divided portion, and covers the heat generating portion having a height difference via an adhesive layer, etc., and adjusts the air permeability to the divided heat generating portion.
  • the air flow adjusting material is a space that is partitioned into at least a part of the peripheral edge of the section heat generating section by covering the heat generating section with the air flow adjusting material using the difference in height between the section heat generating section and the section section. And adjusts the air permeability between the outside and the divided heat generating part, and also provides a heat retaining effect.
  • the air permeability of the air conditioning material is not limited as long as at least a part of the peripheral edge of the segmented heat generating part can retain air or adjust air flow. It is preferable to lower than the breathability of the surface.
  • a region having higher air permeability than the air permeability of the covering portion covering the heat generating composition molded body is provided by perforation or the like, and the other regions have air permeability of the ventilation surface of the segmented heat generating portion.
  • the air permeability may be kept lower. As a result, the air passage such as air can be controlled.
  • the material used for the air conditioning material may be a material used for a packaging material used in a non-breathable storage bag for hermetically storing a chemical warmer, a base material of a heating element, a covering material, and a heating element.
  • the adhesive used for chemical warmers and heating elements is preferred.
  • the heating element of the present invention can be obtained in various shapes, thicknesses, and temperature zones, it is not only for normal body warming, but also for joints, facial use, eyes, slimming, drip solution heating / warming ,
  • thermal compresses for drug warmers, for neck, for waist, for masks, for gloves, for heels, or for alleviating symptoms such as shoulder pain, muscle pain, or physical pain, for cushions, or during the operation
  • It can be used for various purposes such as warming and warming, heating sheet, transpiration, aroma, abdomen, transpiration insecticide, and cancer treatment.
  • machines can be used for warming and warming pets.
  • the heating element of the present invention when used for symptom relief, is applied directly to a necessary part of the body or indirectly through a cloth or the like. In addition, when using it for warming the human body during surgery,
  • a heating element Directly apply a heating element to a body that requires warming / warming 2. Fix the heating element to a cover, etc., and apply it to the body 3. Fix the heating element to a rug laid under the body 4. Preheat Examples of usage include use as a cover or rug as a product with a body. Examples of muscle and skeletal pain include acute muscle pain, acute skeletal pain, acute related pain, past muscle pain, past skeletal pain, chronic related pain, joint pain such as knee and elbow, and the like.
  • the maintenance time is not limited, but is preferably 20 seconds to 24 hours, more preferably 1 hour to 24 hours, and still more preferably 8 hours to 24 hours.
  • the maintenance temperature is preferably 30 to 50 ° C, more preferably 32 to 50 ° C, still more preferably 32 to 43 ° C, still more preferably 32 to 41 ° C, and further Preferably, it is 32 to 39 ° C.
  • FIG. 1 Plan view of an embodiment of the heating element of the present invention.
  • FIG. 5 is a sectional view of another embodiment of the heating element of the present invention.
  • FIG. 6 is a sectional view of another embodiment of the heating element of the present invention.
  • FIG. 7 is a perspective view of another embodiment of the heating element of the present invention.
  • FIG. 8 is a plan view of another embodiment of the heating element of the present invention.
  • FIG. 9 is a plan view of another embodiment of the heating element of the present invention.
  • FIG. 10 is a schematic view of through-molding using a scuff plate of the heating element of the present invention.
  • FIG. 12 is a schematic view of through-molding using an indented scraping plate of the heating element of the present invention.
  • FIG. 13 is a plan view of the filter paper for measuring the mobile water value of the present invention.
  • FIG. 14 is a perspective view for explaining easy water measurement according to the present invention.
  • Non-water absorbent film polyethylene film, etc.
  • a batch type oxidizing gas contact treatment device with stirring which is a mixer equipped with a rotating blade for stirring, was used as the acidic gas contact treatment device, and air was used as the oxidizing gas.
  • a reaction mixture consisting of 100 parts by weight of reduced iron powder (particle size of 300 m or less), activated carbon (particle size of 300 m or less), 3.5 parts by weight, and 5 parts by weight of 11% saline, with a mobile water value of less than 0.01. It was placed in a batch type oxidizing gas contact treatment apparatus with stirring.
  • the upper part of the acidic gas contact treatment device is open, and in a state of being opened in the air, it is self-heated while stirring, and reaches 30 ° C after 20 seconds.
  • the reaction mixture was sealed in a non-breathable storage bag and allowed to stand at room temperature to obtain an exothermic mixture of the present invention.
  • Example 2 The same reaction mixture as in Example 1 was not subjected to the oxidizing gas contact treatment, and 11% by weight of saline was added to the reaction mixture to obtain an exothermic composition having a mobile water value of 8. A heating element was obtained in the same manner as in Example 1 using the exothermic composition.
  • Example 1 The exothermic compositions of Example 1 and Comparative Example 1 were subjected to an exothermic composition exothermic test.
  • Example 1 The exothermic composition of Example 1 was about 35 ° C. after 1 minute and about 55 ° C. (average of 5) after 3 minutes.
  • Comparative Example 1 The exothermic composition of Comparative Example 1 was 23 ° C after 1 minute, the temperature after 3 minutes was 28 ° C (average of 5 pieces), and Comparative Example 1 had a significantly higher heating rate than Example 1. I was slow.
  • a batch type oxidizing gas contact treatment device with stirring which is a mixer equipped with a rotating blade for stirring, was used as the acidic gas contact treatment device, and air was used as the oxidizing gas.
  • Iron powder particle size 300 m or less
  • activated carbon particle size 300 m or less
  • wood powder particle size 150 m or less
  • water-absorbing polymer particle size 300 m or less
  • 0.5 parts by weight of slaked lime 0.7 parts by weight of sodium sulfite, and 10 parts by weight of 11% saline solution. It was put in the gas contact processing device.
  • the upper part of the oxidizing gas contact treatment device is open, and is self-heated while stirring in the air, and when it reaches 27 ° C in 20 seconds. Then, the contact-treated reaction mixture was sealed in a non-breathable storage bag and allowed to stand at room temperature to obtain an exothermic mixture of the present invention.
  • a non-breathable base material 3 in which an adhesive layer 3B and a separator 3C are provided on a polyethylene film 3A is used, and on the polyethylene film 3A side, Using a punching die having a thickness of 2 mm, a heat generating composition molded body 2 having a rectangular shape with a plane of 2 mm thickness, 115 mm length, and 80 mm width was molded and laminated on the substrate 3. Furthermore, a breathable packaging material in which a nonwoven fabric 4A made of nylon and a polyethylene porous film 4B are laminated thereon is used as the covering material 4 so that the polyethylene film surface 3A and the porous film 4B surface are in contact with each other.
  • the air permeability of the coating material 4 was 370 gZm 2 Z24hr in terms of moisture permeability according to the Risch method.
  • the heating element was sealed and stored in a non-breathable outer bag and left at room temperature for 24 hours. A physical fever test was conducted, but after 3 minutes it felt warm and warmed for more than 10 hours.
  • Example 2 The same reaction mixture as in Example 2 was not subjected to the oxidizing gas contact treatment, and 11% by weight of saline was added to the reaction mixture to obtain an exothermic composition having a mobile water value of 8.
  • the exothermic test of the exothermic composition was performed, the same result as in Comparative Example 1 was obtained. Further, a heating element was obtained in the same manner as in Example 2 using the exothermic composition.
  • FIG. 5 is a cross-sectional view of a heating element 1 in which the base material 3 of Example 2 is replaced with the base material 3 having the SIS pressure-sensitive adhesive layer 7 with the separator 9.
  • FIG. 6 is a cross-sectional view of a heating element 1 in which the base material of Example 2 is replaced with a base material 3 having a hydrophilic adhesive layer 8 with a separator 9.
  • the hydrophilic pressure-sensitive adhesive constituting the hydrophilic pressure-sensitive adhesive layer is 4.5% by weight of polyacrylic acid, 1.5% by weight of sodium polyacrylate, 4.0 parts by weight of sodium saccharium, glycerol 15. 0 weight 0/0, propylene glycol 5.0 wt 0/0, sorbitol 10.0 wt 0/0, aluminum hydroxide 0.1 weight 0/0, synthetic hydrotalcite 0.05 wt% of polyoxyethylene glycol 1. 0% by weight, others are hydrodynamic compositions.
  • FIG. 7 shows an example in which the display 10 is provided on the heating element 1.
  • Example 1 In the exothermic mixture obtained in Example 1, in terms of the reaction mixture, 100 parts by weight of iron powder, water-absorbing polymer (particle size 300 ⁇ m or less) 2.3 parts by weight, wood powder (particle size 300 ⁇ m or less) ) 2.3 parts by weight, 0.7 parts by weight of sodium sulfite, calcium hydroxide (particle size 300 m or less) 0.2 parts by weight of the mixture was added, and after mixing, 30 parts by weight of 11% saline was added. Add and mix further A thermal composition was obtained. The mobile water value was less than 0.01.
  • the temperature measurement result was about 50 ° C. (average of 5 pieces) after 3 minutes as in Example 1.
  • a moldability test of the exothermic composition was performed, and even when the punching die was separated from the exothermic composition molded body, the exothermic composition molded body did not lose its shape. The composition molded body also had a force that did not cause collapsed pieces.
  • a breathable packaging material in which plastic polyethylene film 4B is laminated in that order as covering material 4 a packaging material piece of length 135mm x width 100mm was made from each, and the seal width was 8mm.
  • a shaped breathable flat storage bag was created.
  • the flat storage bag was filled with 25 g of the above heat generating composition, and the sides that were not heat-sealed were heat-sealed to produce a rectangular flat heat-generating body 1 having a length of 135 mm, a width of 100 mm, and a seal width of 8 mm. did.
  • the air permeability of the coating material 4 was 370 gZm 2 Z24hr in terms of moisture permeability according to the Risch method.
  • the heating element was sealed and stored in a non-breathable outer bag and left at room temperature for 24 hours.
  • the heating element was sealed in a non-breathable outer bag and allowed to stand at room temperature for 24 hours. After 24 hours, the heating element was taken out from the outer bag and subjected to a heating test.
  • the temperature after 30 minutes was 50 ° C, and the temperature above 40 ° C lasted for more than 10 hours.
  • the temperature measurement result was about 49 ° C (average of 5) after 3 minutes.
  • Example 3 Using the same base material and coating material as in Example 3, a rectangular exothermic composition molded body having a length of 125 mm and a width of 90 mm was molded and laminated on the base material by mold-through molding. Next, a breathable coating material was applied and the periphery of the exothermic composition molded body was heat-sealed to produce a rectangular heating element having a seal width of 8 mm, a length of 135 mm, and a width of 100 mm.
  • the heating element was sealed and stored in a non-breathable outer bag and left at room temperature for 24 hours. After 24 hours, the heating element was taken out from the outer bag and subjected to a heating test. The temperature after 30 minutes was 52 ° C, and the temperature above 40 ° C lasted for more than 10 hours.
  • Example 3 25 g of the exothermic composition prepared in Example 3 was stored in an air-permeable storage bag with an adhesive layer protected by a separator, and the periphery of the heating element was sealed with a seal width of 8 mm, measuring 130 mm in length and 80 mm in width. A rectangular flat heating element was created and enclosed in a non-breathable outer bag. The breathability of the vent of the breathable storage bag was 400gZm 2 Z24hr in terms of the moisture permeability of the Rissi method.
  • Iron powder 100 parts, activated carbon (particle size 300 m or less) 6.5 parts, water-absorbing polymer (particle size 300 m or less) 3 parts, slaked lime 0.5 part, sodium sulfite 0.7
  • the reaction mixture in a 30 ° C. environment having a mobile water value of less than 0.01 and consisting of 10 parts by weight of 11% saline was placed in a batch type oxidizing gas contact treatment apparatus with stirring.
  • the temperature of the reaction mixture at the time of charging was 20 ° C.
  • Example 5 A heating element was prepared in the same manner as in Example 6 and a heat generation test was performed. The same result as in Example 5 was obtained.
  • a batch-type oxidizing gas contact treatment device with stirring and a mixer equipped with a rotating blade for stirring is used as an oxygen-containing gas contact treatment device, and air is used as the oxidizing gas.
  • Polymer particle size 300 / zm or less
  • Polymer particle size 300 / zm or less
  • 0.5 parts by weight of slaked lime, 0.7 parts by weight of sodium sulfite, 10 parts by weight of 8% saline, exothermic mixture with a mobile water value of less than 0.01 Was filled into a contact processing device container.
  • the upper part of the contact treatment device container is open, and is self-heated while stirring in an open state in the air.
  • 8% Saline was added, and the mixture was stirred for 15 seconds to obtain an exothermic composition having a mobile water value of 8.
  • a breathable packaging material in which a nonwoven fabric 4A made of nylon and a porous film 4B made of polyethylene are laminated is used as the covering material 4 so that the polyethylene film surface and the porous film surface are in contact with each other.
  • a heating element 1 consisting of 1B and having an outer dimension of 131 mm X 101 mm was prepared (Fig. 8).
  • the sealing part could be perfectly performed without mixing the collapsed pieces of the exothermic composition molded body into the seal part, and it was possible to produce a seal failure.
  • the moldability was good.
  • the air permeability of the covering material 4 was 370 gZm 2 Z24hr in terms of moisture permeability according to the Risch method.
  • the heating element 1 was sealed and stored in a non-breathable outer bag and left at room temperature for 24 hours. After 24 hours, the heating element was taken out of the outer bag and subjected to a body heating test. In 3 minutes, it felt warm and the heat retention time at 34 ° C or higher was 8.5 hours. The flexibility of the heating element was maintained before and after use.
  • the pressure-sensitive adhesive layer under the section 6 of this heating element is weaker than the pressure-sensitive adhesive layer under the section heating section 1B.
  • Fig. 9 is an example in which the seal portion 6 is a concavo-convex pattern seal and the seal portion is provided with a perforation 7 that can be cut by hand
  • Example 3 In the same manner as described in Example 3, except that the moisture adjustment was changed, an exothermic composition having a mobile water value of 25 was obtained. Further, the moldability of the exothermic composition was measured by the method for measuring moldability, but it was a exothermic composition having moldability with no collapsed pieces of the exothermic molded product.
  • a non-breathable packaging material in which a non-breathable polyethylene film of 40 ⁇ m thickness is bonded to one side of a liner paper (thickness 300 ⁇ m) is placed on the liner paper of the base material.
  • the exothermic composition was molded and laminated by mold forming using a punch having a rectangular punch hole with a thickness of 2 mm, a length of 120 mm, and a width of 84 mm to obtain a exothermic composition molded body.
  • Exothermic composition There was no broken piece of the exothermic composition molded body at the periphery of the molded body, and the moldability was good.
  • a coating material provided with a network-like pressure-sensitive adhesive layer provided on the polyethylene porous film side, on which a styrene-isoprene-styrene block copolymer-based adhesive polymer is provided in a network by a melt blow method is provided.
  • the layer surface and the exothermic composition molded body are overlapped so that they are in contact with each other, and the periphery of the exothermic composition molded body is sealed with a pressure-bonding seal, the periphery is cut, the length is 136 mm, the width is 100 mm, the seal width An 8 mm rectangular flat heating element was manufactured, sealed in an outer bag which is a non-breathable storage bag, and allowed to stand for 24 hours.
  • a kraft paper having a thickness of 30 ⁇ m, a porous film made of polyethylene having a thickness of 50 ⁇ m, and a nylon nonwoven fabric having a thickness of 150 m were laminated in this order.
  • the reticulated adhesive layer was provided on kraft paper.
  • the air permeability of the coating material was 650 gZm so 24 hr in terms of moisture permeability according to the Lissi method.
  • FIG. 10 shows an example of a die-through molding method using the scraping plate 15.
  • a roll film substrate 3 having a width of 130 mm is combined with a molding die 12 having a thickness of 1 mm and a desired shape removed at the center of the die, and a die 11 is arranged on the upper surface and a magnet 13 is arranged on the lower surface. So that they are fed horizontally at a predetermined speed.
  • the embodiment 5 The thermal composition 2 is fed into the mold hole 12a through the hole 11a of the die 11.
  • the exothermic composition 2B is scraped flush with the mold 12 by a scraping plate 15 placed in the front in the running direction, and is stored in the mold hole 12a, and a 1.5 mm thick shape is formed on the base 3 Is done. Thereafter, the mold 12 is removed, and the exothermic composition molded body laminated on the substrate 3 is obtained.
  • a styrene-isoprene-styrene block copolymer (SIS) -based adhesive polymer is provided on the surface of the exothermic composition molded body in a net shape by a melt blow method, and a covering material is covered,
  • a heating element having a desired shape can be obtained by sealing the peripheral edge of the heat-generating composition molded body by heat sealing and cutting it into a desired shape. Further, the cut heating element is subsequently sent to the packaging process and enclosed in an airtight outer bag. Further, the same molding is possible even if the above-mentioned scraping plate is replaced with a push-off scraping plate.
  • FIG. 11 shows the fraying plate 15 and FIG. 12 shows the indenting fraying plate 15A.
  • the tip portion of the indentation and scraping plate may be trimmed to be rounded, that is, rounded.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 空気と接触してすぐに酸化反応が起こり、発熱し、その後、急激な反応を開始し、ある一定温度になると穏やかな反応に変わる、安価で、工業的な大量生産が可能で、活性な発熱混合物の製造方法、発熱混合物、発熱組成物、成形性発熱組成物及び発熱体を提供する。  鉄粉、反応促進剤及び水を必須成分とし、含水量が0.5~20重量%で、余剰水量を示す易動水値が0.01未満の反応混合物を、0°C以上の環境下、酸化性ガスと接触させ、10分以内に反応混合物の温度上昇分を1°C以上にすることを特徴とする。

Description

明 細 書
発熱混合物の製造方法、発熱混合物、発熱組成物及び発熱体 技術分野
[0001] 本発明は、酸化性ガスと、発熱組成物の少なくとも必須成分との接触により、発熱 立ち上がり性に優れた発熱特性を有し、且つ、成形性、耐圧縮性に優れた発熱混合 物の工業的に実用化可能な製造方法、発熱混合物、発熱組成物並びに発熱体に 関する。
背景技術
[0002] 鉄粉と反応助剤等の混合物に空気 (酸素)を作用させて使用する製品としては、一 般には使 、捨てカイロがよく知られて 、る。
[0003] これらの製品に使用される金属粉としては、鉄粉が最も一般的であることは公知で あり、反応助剤としては、食塩、水等が用いられ、これらの物質を担持する保水剤とし て活性炭、バーミキユライト、珪藻土、木粉、或いは、吸水性高分子等を混合して使 用されることちよく知られている。
[0004] 使い捨てカイロにあっては、開封後すみやかに昇温することが望まれている(例え ば、特許文献 1及び 2)。
[0005] 特許文献 1には、二酸ィ匕マンガン、酸化第二銅、四三酸化鉄をその他の発熱組成 物成分と混合した発熱組成物が提案されている。これらは触媒とされ、発熱物質とし ては、使用できない。また、それらを発熱組成物に添加した場合、四三酸化鉄等と鉄 粉表面との接触が十分でなぐ記載されているほどの効果はなぐ通常、発熱体が人 体や物体の加温用として使用される約 30〜約 90°Cの低温領域では、発熱の立ち上 力 Sり性にはほとんど有効ではなぐその添加割合が増えるにしたがって、発熱持続時 間が短くなるという問題点があった。
[0006] 特許文献 2には、鉄と水と食塩等の酸化促進剤を主成分とした発熱組成物を 40°C に達した後に通気性容器に収納した発熱体が提案されて ヽるが発熱組成物を 40°C まで到達させるまでに 25分もの時間がかかり、工業的大量生産は難しかった。
[0007] また、より快適な使用感を得るため、発熱組成物の片寄り防止や多種の形状による フィット性を求めて、増粘剤、結合剤等を用い、成形性の維持を図った発熱組成物が いろいろ提案されている。例えば、特許文献 3にはコーンスターチ、馬鈴薯デンプン 等の粉末状増粘剤を添加して形状維持性を持たせた発熱組成物からなる使い捨て カイロが提案されている。
また、特許文献 4には粉末状発熱組成物に CMC等の結合剤を混合し、圧縮成型 した固形発熱組成物が提案されて ヽる。
また、特許文献 5には増粘剤を使用し、粘性を持たせたインキ状乃至クリーム状の 発熱組成物及び発熱体及びその製造方法が提案されている。
[0008] これら、インキ状乃至クリーム状の粘稠性発熱組成物や粘着凝集性発熱組成物は 膠やアラビアゴムや CMC等の増粘剤やアルファ化デンプン等の凝集助剤や賦形剤 や結合剤を使用したものはそれら加粘性物により発熱組成物粒子を結合しているた め、片寄り防止、成形性は優れているが、発熱性能が著しく悪カゝつた。同様に増粘剤 や結合剤を使用して作られて!/、る粘性発熱組成物も増粘剤や結合剤を使用して発 熱組成物粒子を結合しているため、片寄り防止、成形性は優れているが、発熱性能 が著しく悪力つた。
即ち、遊離水を支持体、被覆材、或いは、吸水材等に吸収させても、結合剤、増粘 剤、凝集助剤又は賦形剤等により発熱組成物が粘稠性であるため、遊離水が抜けき れなかったり、増粘剤等の発熱物質への悪影響等により、反応が緩慢になり、所用温 度までの急速な温度上昇や長時間の加温が困難であった。
[0009] また、従来使用されて!ヽる粉体又は粒状発熱組成物は余剰水がな!ヽか不足して!/、 るため、成形性がない。これら粉体状又は粒状発熱組成物は発熱特性はよいが、通 気性収納袋に充填して、発熱体としているので、発熱組成物の片寄り等により発熱温 度分布が一定しなかったり、使用感の悪いものであったり、被保温体の形状に含わ せた形状を持つ発熱体を製造することは困難であったり、その発熱性能を十分に発 揮できな力つた。
[0010] 特許文献 1 :特開昭 53— 60885号公報
特許文献 2:特開昭 57— 10673号公報
特許文献 3:特開平 6 - 343658号公報 特許文献 4:特開昭 59— 189183号公報
特許文献 5:特開平 9 - 75388号公報
発明の開示
発明が解決しょうとする課題
[0011] 本発明の課題は、空気と接触してすぐに酸化反応が起こり、発熱し、その後、急激 な反応を開始し、ある一定温度になると穏やかな反応に変わる、安価で、工業的な大 量生産が可能で、活性な発熱混合物の製造方法、発熱混合物、発熱組成物、成形 性発熱組成物及び発熱体を提供することである。
課題を解決するための手段
[0012] 本発明の発熱混合物の製造方法は、請求項 1に記載の通り、鉄粉、反応促進剤及 び水を必須成分とし、含水量が 0. 5〜20重量%で、余剰水量を示す易動水値が 0. 01未満の反応混合物を、 0°C以上の環境下、酸化性ガスと接触させ、 10分以内に 反応混合物の温度上昇分を 1°C以上にすることを特徴とする。
また、請求項 2に記載の発熱混合物の製造方法は、請求項 1に記載の発熱混合物 の製造方法において、前記反応促進剤と水の合計量 100重量部に対し、前記反応 促進剤量が 2〜6重量部であることを特徴とする。
また、請求項 3に記載の発熱混合物の製造方法は、請求項 1に記載の発熱混合物 の製造方法において、前記反応混合物を、不織布等の通気性シート状物の中に埋 設し、前記酸ィ匕性ガスとの接触処理を行うことを特徴とする。
本発明の発熱混合物は、請求項 4に記載の通り、請求項 1に記載の製造方法によ り製造されたことを特徴とする。
本発明の発熱組成物は、請求項 5に記載の通り、請求項 4に記載の発熱混合物を 原料とし、水分調整をし、鉄粉、炭素成分、反応促進剤、水を必須成分として含有し 、易動水値が 0. 01〜20であることを特徴とする。
また、請求項 6に記載の発熱組成物は、請求項 5に記載の発熱組成物において、 前記発熱組成物が、保水剤、吸水性ポリマー、 pH調整剤、水素発生抑制剤、骨材、 繊維状物、機能性物質、界面活性剤、有機ケィ素化合物、焦電物質、保湿剤、肥料 成分、疎水性高分子化合物、発熱助剤、鉄以外の金属、酸化鉄以外の金属酸化物 、酸性物質又はこれらの混合物カゝらなる付加的な成分カゝら選ばれた少なくとも 1種を 含有することを特徴とする。
本発明の発熱体は、請求項 7に記載の通り、請求項 5に記載の前記発熱組成物を 通気性収納袋に収納し発熱部を形成したことを特徴とする。
また、請求項 8に記載の発熱体は、請求項 7に記載の発熱体において、前記収納 した発熱組成物が発熱組成物成形体であることを特徴とする。
また、請求項 9に記載の発熱体は、請求項 7に記載の発熱体において、前記通気 性収納袋が基材と通気性の被覆材とから構成され、前記発熱組成物が複数に区分 され、前記発熱組成物の周縁部をシールすることにより、複数の区分発熱部を形成し ていることを特徴とする。
また、請求項 10に記載の発熱体は、請求項 8に記載の発熱体において、前記発熱 組成物成形体、前記区分発熱部及び前記発熱部から選ばれた少なくとも 1種の形状 が、平面形状で、円形状、楕円形状、多角形状、星形状、花形状、立体形状では、 多角錐形状、円錐形状、錐台形状、球形状、平行六面体形状、円筒体形状、半円 柱体形状、半楕円柱体形状、蒲鋅形状体、円柱体形状、楕円柱体形状の群から選 ばれた形状であることを特徴とする。
また、請求項 11に記載の発熱体は、請求項 7に記載の発熱体において、前記発熱 体の露出面の少なくとの一部に、固定手段を設けたことを特徴とする。
また、前記発熱組成物が、凝集助剤、凝集化剤、集塊補助剤、乾燥バインダー、乾 燥結合剤、乾燥結合材、粘着性素材、増粘剤及び賦形剤を含有しないことが好まし い。
また、前記発熱体において、前記発熱組成物成形体が圧縮処理されていることが 好ましい。
また、前記発熱体において、前記固定手段は、粘着剤層であり、前記粘着剤層が 保水剤、吸水性ポリマー、 pH調整剤、界面活性剤、有機ケィ素化合物、疎水性高分 子化合物、焦電物質、酸化防止剤、骨材、炭素成分、繊維状物、保湿剤、機能性物 質又はこれらの混合物力 なる付加的な成分力 選ばれた少なくとも 1種を含有して なることが好ましい。 発明の効果
[0014] 本発明によれば、
1)鉄粉と反応促進剤と水を必須成分とし、含水量が 0. 5〜20重量%で、余剰水量 を示す易動水値が 0. 01未満の反応混合物を酸化性ガスとの接触処理の原料とす ることにより、反応性混合物の酸素との反応活性が高まり、活性な発熱組成物の量産 方法が達成できる。
2)本発明の酸化性ガスの接触処理を行う製造方法により発熱立ち上がり性がよい発 熱組成物ができ、酸ィ匕性ガスの接触処理を行っていない従来品に比べ、 2倍以上早 く温まる。
3)本発明の発熱組成物は発熱立ち上がり性がよいので、活性炭等炭素成分の使用 量を酸ィ匕性ガス処理をしていない従来品に比べて、 10〜20%以上削減できるので 、コスト的に有利である。
4)発熱組成物の余剰水量を易動水値により調製することにより(例えば 0. 01未満、 0. 01〜20、 20超〜 50等)、発熱立ち上がり性のよい多種の発熱組成物が得られる ので、各種成形法が選択でき、製造方法や用途が拡がる。
5)本発明の発熱組成物を使用した発熱体も発熱立ち上がり性がよぐ使用時に、外 袋から取り出して直ちに温まる発熱立ち上がり性を有し、なかなか温まらないイライラ 感のな 、、使用感に優れた発熱体の製造が可能である。
6)また、成形性を生カゝして、 2個以上複数個離れて配置、固定された区分発熱部を 有する発熱体ができ、身体等の被加温部によくフィットし、使用感に優れて、柔軟性 に富んだ、発熱立ち上がり性に優れた発熱体が得られる。
発明を実施するための最良の形態
[0015] 以下、反応混合物の酸化性ガス接触処理による発熱混合物の製造方法、発熱混 合物、発熱組成物並びに発熱体の実施形態につき詳述する。
本発明は鉄粉と反応促進剤と水を必須成分とし、含水量が 0. 5〜20重量%で、余 剰水量を示す易動水値が 0. 01未満の反応混合物を用いることにより、酸化性ガスと の接触処理時の反応速度を上げ、反応混合物の温度上昇分を 1°C以上にする時間 を 10分以内で達成でき、量産可能な製造方法を確立したものである。所定温度以上 に達する時間を短くすることにより、適正な活性ィ匕をすることができ、鉄粉上の不必要 な酸ィ匕を防止できる。
また、反応混合物を酸化性ガス接触処理することにより製造された発熱混合物に炭 素成分等の添加や水分調整を行い、易動水値を 0. 01〜50にした発熱組成物は適 度にベたつき、優れた成形性を有し、型通し成形法ゃ铸込み成形法の成形法が適 用でき各種形状の発熱体が生産できる。特に易動水値が 0. 01〜20の発熱組成物 は空気と接触してすぐに発熱反応を始め、優れた発熱立ち上がり性を有し、且つ、優 れた成形性を有する優れたものである。
反応混合物の酸化ガスの接触処理方法は、鉄粉と反応促進剤と水を必須成分とし 、含水量が 0. 5〜20重量%で、易動水値が 0. 01未満の反応混合物を、酸化性ガ スと接触処理し、反応混合物の温度上昇分を 1°C以上にさせるものであれば特に制 限はな!/、が、具体例として更に一例を挙げれば、
1.鉄粉、反応促進剤及び水の反応混合物を酸化性ガス雰囲気中、自己発熱反応さ せ、鉄粉を部分酸化し、表面に鉄酸化物皮膜を有する鉄粉を含有する発熱混合物 の製造方法、
2.鉄粉、反応促進剤、酸性物質及び水の反応混合物を酸化性ガス雰囲気中、自己 発熱反応させる発熱混合物の製造方法、
3.鉄粉、反応促進剤、炭素成分及び水の反応混合物を酸化性ガス雰囲気中、自己 発熱反応させる発熱混合物の製造方法、
4.鉄粉、反応促進剤、酸性物質、炭素成分及び水の反応混合物を酸化性ガス雰囲 気中、自己発熱反応させる発熱混合物の製造方法、
5. 1乃至 4の何れかに記載の反応混合物又は発熱混合物が上記成分以外の成分 を含有し、 1乃至 4の何れかに記載の方法を行う部分酸化鉄粉を含有する発熱混合 物の製造方法、
6. 1乃至 5の何れかに記載の方法を、環境温度より 10°C以上に加温した環境で行う 発熱混合物の製造方法、
7. 1乃至 6の何れかに記載の方法を酸ィ匕性ガスを吹き込んで行う発熱混合物の製 造方法、 8. 7に記載の方法で、環境温度より 10°C以上に加温した酸ィ匕性ガスを吹き込んで 行う発熱混合物の製造方法、
9. 1乃至 8の何れかに記載の方法で、発熱反応による温度上昇の最高点である最 高温度を超えるまで、酸化性ガス接触処理を行う発熱組成物の製造方法、
10. 1乃至 8の何れかに記載の方法で、発熱反応による最高温度を超え、更に、前 記最高温度から少なくとも 10〜20°C下がるまで、酸化性ガス接触処理を行う発熱混 合物の製造方法、
11. 1乃至 8の何れかに記載の方法で、発熱反応による温度上昇の最高点である最 高温度を超えるまで、酸化性ガス接触処理を行い、その後酸化性ガスを遮断し、少 なくとも反応混合物の温度が前記最高温度力も少なくとも 10〜20°C下がるまで、保 持する発熱組成物の製造方法、
12. 1乃至 5の何れかに記載された反応混合物又は発熱混合物を酸化性ガス環境 下で、温度上昇分を 1°C以上にする発熱混合物の製造方法等が一例として挙げられ る。
更に、発熱混合物に他の成分を加え、更に、酸化性ガス処理を行い、発熱混合物 としてちよい。
尚、酸化性ガス接触処理時の反応混合物の環境は o°c以上の環境下で、酸化性 ガスと接触させ、 10分以内に、反応混合物の温度上昇分を cにさせれば制限はな ぐ開放系で行う場合フタのない容器の中に存在する状態でも、不織布等の通気性 シート状物を通じて空気等の酸ィ匕性ガスが入る状態でもよい。
また、酸ィ匕性ガス接触処理は撹拌下、非撹拌下、流動下又は非流動下の何れでも よぐバッチ式でも連続式でもよい。
最終的な発熱糸且成物としては、
1)上記 1乃至 12の何れかに記載の方法で製造された発熱混合物を発熱組成物原 料とする発熱組成物、
2) 1)の発熱組成物に他の成分を加えた発熱組成物、
3) 1)又は 2)の何れかに記載の発熱組成物を水分調整した発熱組成物、の何れ力ゝ が挙げられる。また、前記必須成分以外の成分を添加する時期と水分調整の時期の 順序の制限はない。
[0017] ここで、反応混合物又は更に酸化性ガス処理を行う前の発熱混合物中の含水量は 通常 0. 5〜20重量%であり、好ましくは 1〜15重量%であり、より好ましくは 2〜10 重量%であり、更に好ましくは 3〜10重量%であり、更に好ましくは 6〜10重量%で ある。
[0018] 酸ィヒ性ガスとの接触後の反応混合物の温度は温度上昇分が 1°C以上であれば制 限はないが、好ましくは 1〜80°Cであり、より好ましくは 1〜70°Cであり、更に好ましく は 1〜60°Cであり、更に好ましくは 1〜40°Cである。
[0019] 反応混合物と酸化性ガスとの接触時の環境温度は反応混合物の温度が所定以上 に上がれば、制限はないが、好ましくは 0°C以上であり、より好ましくは 0〜250°Cであ り、更に好ましくは 10〜200°Cであり、更に好ましくは 20〜150°Cであり、更に好まし くは 25〜100°Cであり、更に好ましくは 25〜50°Cである。
[0020] 反応混合物と酸化性ガスとの接触時の反応混合物の温度上昇分が 1°C以上になる 時間が 10分以内であれば制限はないが、好ましくは 1秒〜 10分であり、より好ましく は 1秒〜 7分であり、更に好ましくは 1秒〜 5分であり、更に好ましくは 2秒〜 5分であり 、更に好ましくは 2秒〜 3分であり、更に好ましくは 2秒〜 1分である。
[0021] 酸化性ガスの温度は前記環境温度が保たれれば、制限はない。
[0022] 易動水値とは、発熱組成物中に存在する水分の中で発熱組成物外へ移動できる 余剰水分の量を示す値である。この易動水値について、図 13乃至図 17を使って説 明する。図 13に示すように、中心点から放射状に 45度間隔で 8本の線が書かれた N O. 2 QIS P 3801 2種)の濾紙 18を、図 14及び図 15に示すように、ステンレス板 22上に置き、前記濾紙 18の中心に、内径 20mm X高さ 8mmの中空円筒状の穴 20 を持つ長さ 150mm X幅 100mmの型板 19を置き、その中空円筒状の穴 20付近に 試料 21を置き、押し込み板 14を型板 19上に沿って動かし、試料 21を押し込みなが ら中空円筒状の穴 20へ入れ、型板 19面に沿って、試料を擦り切る (型押し込み成形 ) o次に、図 16に示すように、前記穴 20を覆うように非吸水性の 70 mポリエチレン フィルム 17を置き、更にその上に、厚さ 5mm X長さ 150mm X幅 150mmのステンレ ス製平板 16を置き、発熱反応が起こらないようにして、 5分間保持する。その後、図 1 7に示すように、濾紙 18を取り出し、放射状に書かれた線に沿って、水又は水溶液の 浸みだし軌跡を中空円筒の穴の縁である円周部 24から浸みだし先端までの距離 23 として、 mm単位で読み取る。同様にして、各線上からその距離 23を読み取り、合計 8個の値を得る。
読み取った 8個の各値 (a, b, c, d, e, f, g, h)を測定水分値とする。
その 8個の測定水分値を算術平均したものをその試料の水分値 (mm)とする。 また、真の水分値を測定するための水分量は内径 20mm X高さ 8mmの前記発熱 組成物等の重量に相当する前記発熱組成物等の配合水分量とし、その水分量に相 当する水のみで同様に測定し、同様に算出したものを真の水分値 (mm)とする。水 分値を真の水分値で除したものに 100をかけた値が易動水値である。
即ち、
易動水値 = [水分値 (mm) Z真の水分値 (mm) ] X 100
同一試料に対して、 5点測定し、その 5個の易動水値を平均し、その平均値をその 試料の易動水値とする。
また、発熱体中の発熱組成物の易動水値を測定する場合、真の水分値を測定する 水分量は発熱組成物の赤外線水分計による水分量測定から発熱組成物の含水率を 算出し、それを基に、測定に必要な水分量を算出し、前記水分量により、前記易動 水値測定法により真の水分値を測定算出する。
本発明での易動水値(0〜: L00)は、好ましくは 0. 01〜20であり、より好ましくは 0. 01〜18であり、更【こ好ましく ίま 0. 01〜15であり、更【こ好ましく ίま 0. 01〜13であり、 更に好ましくは 1〜 13であり、更に好ましくは 3〜 13である。
易動水値が 0. 01未満の発熱組成物は成形性が不足する。易動水値が 0. 01〜5 0の発熱組成物は成形性を有するので成形性発熱組成物である。易動水値が 20を 超えると発熱組成物の一部水分を吸水や脱水等により除去する必要がある。即ち、 吸水性包材等を使用して発熱組成物成形体中の一部水分を吸水や脱水等により除 去しないと、実用的な発熱反応を起こさない。尚、吸水速度の遅い吸水性ポリマーを 使用し、成形時には高い易動水値を示すが、一定時間後、余剰水の一部が吸水性 ポリマーに取り込まれ、易動水値 0. 01〜20の発熱状態になる場合は、易動水値が 高 、発熱組成物でも余剰水がバリア層になって 、な 、発熱組成物として扱う。易動 水値が 50を超える発熱組成物は、余剰水が多すぎ、スラリー状になり、成形性がなく 、余剰水がバリア層になり、そのままでは空気と接触して発熱反応は起こさない。
[0024] また、易動水値とは、発熱組成物や混合物等に含まれる水分のうち、容易に、自由 に系外へしみ出せる水分量である余剰水を数値ィ匕したものである。発熱組成物や混 合物等のいくつ力の成分を混合した混合物では、保水剤、炭素成分、吸水性ポリマ 一等の保水能力を持つ成分量、各成分の濡れ性により、その余剰水量は種々変化 し、加えた水分量からは予想が非常に難しい。従って、易動水値からその発熱組成 物や混合物等の余剰水量が決まるので、これによつて、加える水分量、他の成分量 を決めれば、ほぼ一定量の余剰水量を持つ発熱組成物や混合物等が再現性よく得 られる。即ち、予め、易動水値と発熱組成物や混合物等の組成比を調べておけば、 その組成比に従って配合した発熱組成物や混合物等は一定範囲内の易動水値、即 ち、一定範囲内の余剰水量を持つので、空気と接触して発熱するが、成形性のない 粉体状の発熱組成物、空気と接触して発熱し、しかも成形性のある発熱組成物、吸 水等により一定の余剰水量を系外に出した後に、空気と接触して発熱し、しかも成形 性のある発熱組成物等の種々の発熱組成物が容易に製造できる。従って、易動水 値がわかればその発熱組成物や混合物等が上記の何れの状態にあるのかがわかる 易動水値を使えば、簡単な測定により、所望の状態を再現よく具現化できるので、 その測定より得た易動水値と成分比を基に、発熱組成物の成分比を決定し、発熱組 成物の実生産が簡単に可能になる。
[0025] 易動水値の使用例としては、水分 (又は反応促進剤水溶液)を除 、た他の発熱組 成物成分を特定量で混合した混合物に水分 (又は反応促進剤水溶液)を加え、混合 し、水分量の異なる発熱組成物を複数個製造する。次に、その各発熱組成物の易動 水値を測定し、添加水分量 (又は反応促進剤水溶液)と易動水値の関係を求める。 成形性があり、空気と接触して発熱する発熱組成物の易動水値は 0. 01〜20であ る。これにより各成分の配合を決め、その配合で混合物を作製すれば、水分がバリア 層として機能せず、空気と接触して発熱し、成形性を有する発熱組成物が再現よく製 造できる。
これにより、余剰水を連結物質とし、凝集助剤や乾燥結合材を使用していないので 、鉄粉の反応効率も落ちないので、凝集助剤や乾燥結合材を使用した場合に比べ、 少量で高 、発熱性能が得られる。
[0026] 尚、本発明において、ノリア層として機能せず、空気と接触して発熱反応を起こす とは、発熱組成物中の水分が空気遮断層としてのノリア層として機能せず、発熱組 成物製造直後に、空気と接触して直ちに発熱反応を起こすことを 、う。
[0027] この余剰水を連結物質とした成形性発熱組成物を使用することにより、一例として、 実質的に平面状の基材上に発熱組成物成形体を最大幅で、好ましくは 1〜 50mm、 より好ましくは l〜20mm、又は最大直径で、好ましくは l〜50mm、より好ましくは 1 〜20mm (楕円等の径が 2つ以上ある場合は、長径を長さ、短径を幅として扱う)の区 分発熱部を複数持つ、超薄形、超柔軟性の発熱体が製造可能になる。
前記余剰水とは、発熱組成物中に余剰に存在する水分で容易に発熱組成物外へ 移動する水分又は水溶液分を 、 、、前記発熱組成物等の中から濾紙により吸い出さ れる水分値又は水溶液分値である易動水値として定義される。発熱組成物が適量の 余剰水を有すると、発熱組成物の成分中の親水基に対しては双極子相互作用又は 水素結合によって水和し、また、疎水基の周辺において高い構造性を有して存在す ると推定される。
これは何らかの意味で連結物質である連結水である。これ以外に自由水と呼べる 状態の水分もある。余剰水が増加すれば構造が軟化し、自由水も認められる。
[0028] 本発明の成形性とは抜き穴を有する抜き型を用いた型通し成形や、凹状の型を用 いた铸込み成形により、抜き穴や凹状型の形状で発熱組成物の積層体ができ、型離 れを含め成形後、発熱組成物成形体の成形形状を維持することを示すものである。 成形性があると発熱組成物成形体が少なくとも被覆材に覆われ、基材と被覆材の 間にシール部が形成されるまで、形状が維持されるので、所望の形状でその形状周 縁部でシールができ、シール部に発熱組成物の崩れ片である 、わゆるゴマが散在し ないので、シール切れがなくシールできる。ゴマの存在はシール不良の原因となる。 1)測定装置としては、 走行可能な無端状ベルトの上側にステンレス製成形型(中央部に縦 60mm X横 40 mmの四隅が R5に処理された抜き穴を有する厚さ 2mm X縦 200mm X横 200mm の板)と固定可能な擦り切り板を配置し、それと反対側である無端状ベルトの下側に 磁石(厚さ 12. 5mm X縦 24mm X横 24mmの磁石が並列に 2個)を配置する。 前記磁石は、擦り切り板及びその近傍の領域、且つ、成形型の抜き穴の進行方向 に対する最大断面の領域 (40mm)より大き ヽ領域を覆う。
2)測定法としては、
前記測定装置の無端状ベルトの上に厚さ lmm X縦 200mm X横 200mmのステ ンレス板を置き、その上に厚み 70 ^ m X縦 200mm X横 200mmのポリエチレンフィ ノレムを置き、更にその上にステンレス製成形型を置く。
その後、前記成形型の抜き穴の無端状ベルトの進行側端部から 50mmの位置に 擦り切り板を固定後、前記擦り切り板と前記抜き穴の間で擦り切り板付近に発熱組成 物 50gを置き、無端状ベルトを 1. 8mZminで動かし、発熱組成物を擦り切りながら 成形型の抜き穴へ充填する。成形型が擦り切り板を完全に通過後、無端状ベルトの 走行を停止する。次に成形型を外し、ポリエチレンフィルム上に積層された発熱組成 物成形体を観察する。
3)判定法としては、
前記発熱組成物成形体の周縁部において、最大長さが 800 mを超える発熱組 成物成形体の崩れ片がなぐ最大長さ 300から 800 mの発熱組成物成形体の崩 れ片が 5個以内である場合に、前記発熱組成物は成形性があるとする。
成形方式に使用する発熱組成物には必須の性質である。これがな!、と成形方式に よる発熱体の製造は不可能である。
[0029] 成形性発熱組成物とは鉄粉、反応促進剤、水を必須成分として含有し、凝集助剤 、凝集化剤、集塊補助剤、乾燥バインダ、乾燥結合剤、乾燥結合材、粘着バインダ、 増粘剤及び賦形剤を含有せず、易動水値 0. 01〜20とする余剰水を有し、連結物 質である余剰水による成形性を持ち、且つ発熱組成物中の水分がバリア層として機 能せず、空気と接触して発熱反応を起こす発熱組成物である。
[0030] 耐圧縮性とは成形型に発熱組成物を収容した発熱組成物成形体を型内圧縮した ものである。型厚みの 70%の厚みを有する発熱組成物圧縮体が、圧縮前の発熱組 成物成形体の発熱立ち上がり性 (発熱組成物の発熱試験での試験開始後 1分と 3分 での温度差)の 80%以上の発熱立ち上がり性を保持することである。
ここで、耐圧縮性のための発熱立ち上がり性の測定法について説明する。
1.発熱組成物成形体、
1)脚付き支持台の塩化ビニル製支持板(厚さ 3mm X長さ 600mm X幅 600mm)の 裏面の中央部付近に成形型の抜き穴形状を覆うように磁石を設ける。
2)温度センサーを支持板の表面中央部上に置く。
3)厚さ約 80 μ mの粘着剤層付き厚さ 25 ^ m X長さ 250mm X幅 200mmのポリエ チレンフィルムの中央がセンサーのところにくるようにして、粘着層を介して支持板に 貼り付ける。
4)長さ 280mm X幅 150mm X厚さ 50 μ m〜 2mmの敷板上に長さ 230mm X幅 15 5mm X厚さ 25 μ m〜100 μ mのポリエチレンフィルムの一端が敷板の外側に約 20 mm出るようにし、且つ、その長さ方向は一端が敷板の一端とほぼ一致するようにポリ エチレンを設置する。
5)前記敷板上のポリエチレンフィルム上に長さ 80mm X幅 50mm X高さ 3mmの抜 き穴を持つ長さ 230mm X幅 120mm X厚さ 3mmの型板を置く。その場合、型板の 長さ方向の一端を敷板とポリエチレンフィルムが一致して置かれている一端に合わせ 、更に、幅方向において、ポリエチレンフィルムが敷板より外側にはみ出している側と 反対の端部より約 20mm中央部の位置に型板の幅の一端部がくるようにして、型板 をポリエチレンフィルム上に設置する。次に、支持板上に敷板とともに置く。
6)その抜き穴付近に試料を置き、押し込み板を型板上に沿って動かし、試料を押し 込みながら抜き穴へ入れ、型板面に沿って、試料を押し込みながら擦り切り(型押し 込み成形)、型内に試料を充填する。
7)支持板下の磁石を除き、更に、はみ出したポリエチレンフィルムの端部を押さえ、 敷板を除き、温度測定を開始する。
2.発熱組成物圧縮体
1)〜6)は、発熱組成物成形体の場合と同じである。 8)抜き穴と凹凸の関係で、ほぼぴったりと抜き穴に入る、厚さ 0. 9mmの凸部を有す る押し型を抜き穴に合わせておき、ロールプレスや板プレスにて圧縮して、厚さ 2. 1 mmの発熱組成物圧縮体を型内に作成する (型厚みの 70%に圧縮)。
9)支持板上に敷板とともに置き、支持板下の磁石を除き、更に、はみ出したポリェチ レンフィルムの端部を押さえ、敷板を除き、温度測定を開始する。
発熱温度の測定は、データコレクタを用い、測定タイミング 2秒で、 5分間温度測定 をし、 1分後と 3分後の温度差をもって耐圧縮性を判定する。
[0031] 圧縮後の厚みは、好ましくは型厚みの 50〜99. 5%であり、より好ましくは 60〜99 . 5%であり、更に好ましくは 60〜95%である。
[0032] 非水溶性固形成分の粒径とは、篩を使って分離し、前記篩を通過したものをその 篩の口径力も算出した粒径である。即ち、篩を、上から 8、 12、 20、 32、 42、 60、 80 、 100、 115、 150、 200、 250及び 280メッシュ等の箭並び【こ受 Mの jl匿【こ糸且み合せ る。最上段の 8メッシュ篩に非水溶性固形成分粒子を約 50g入れ、自動振盈機で 1分 間振盈させる。各篩及び受皿上の非水溶性固形成分粒子の重量を秤量し、その合 計を 100%として重量分率により粒径分布を求める。特定メッシュの篩の下のすべて の受け皿の合計が前記粒径分布の合計値である 100%になった場合、前記特定メッ シュの口径力も算出した大きさ( μ m)をもって、その非水溶性固形成分の粒径とする 尚、各メッシュ篩は他のメッシュ篩を組み合せてもよ 、。
ここで、 16メッシュパスは粒径 lmm以下、 20メッシュパスは粒径 850 m以下、 48 メッシュパスは粒径 300 μ m以下、 60メッシュパスは粒径 250 μ m以下、 65メッシュ パスは粒径 200 m以下、 80メッシュパスは粒径 180 m以下、 100メッシュパスは 粒径 150 m以下、 115メッシュパスは粒径 120 m以下、 150メッシュパスは粒径 1 00 μ m以下、 250メッシュパスは粒径 63 μ m以下とする。以下のメッシュも同様とす る。
[0033] 酸ィ匕性ガスとは気体で酸ィ匕性があれば如何なるものでもよいが、酸素ガス、空気、 又は窒素ガス、アルゴンガス、ヘリウムガスなどの不活性ガスと酸素ガスとの混合気体 がー例として挙げられる。 前記混合気体としては、酸素が含まれていれば制限はないが、 10%以上の酸素ガ スを含むことが好ましぐこれらの中で特に、空気が好ましい。
所望ならば、白金、パラジュゥム、イリジユウム及びそれらの化合物などの触媒を用 いることちでさる。
酸化反応は、撹拌下に酸化性ガス雰囲気中で、所望により加圧下で、更に Z若しく は超音波照射下で行うことができる。
酸ィ匕反応の最適条件は実験的に適宜決めればよい。
[0034] 酸化性ガスの使用量は、制限はなぐ酸化性ガスの種類、鉄粉の種類や粒度、水 分量、処理温度、処理方法などによって調整をすればよい。
開放系の場合は、必要酸素量が取り込めれば制限はない。反応混合物の飛散や ゴミ等の混入を防ぐため、不織布や織布等の通気性素材で回りを囲んでもよぐ通気 性がある状態であれば開放系とする。
酸化性ガスを吹き込む方式で、空気を使用した場合、一例として、鉄粉 200gに対 して、 1気圧下、空気の量は、好ましくは 0. 01〜: LOOOリットル Z分、より好ましくは 0. 01〜: LOOリットル Z分、更に好ましくは 0. 1〜50リットル Z分である。他の酸化性ガス の場合、空気の場合を基準として、酸素の濃度により換算すればよい。
所望により、過酸ィ匕物を添加してもよい。過酸化水素、オゾンが一例として挙げられ る。
[0035] ここで、酸化性ガスとの接触処理時の反応混合物又は発熱混合物の状態は鉄粉が 部分酸化されれば、静置状態でも、移動状態でも、撹拌等による流動状態でも何れ でもよぐ適宜選択すればよい。また、反応混合物、発熱混合物及び発熱組成物の 各成分の混合時並びに水分調整時の混合酸化性ガスとの接触処理時の環境に制 限はなぐ酸ィ匕性ガス雰囲気中や酸ィ匕性ガスの吹き込み等が一例として挙げられる。
[0036] 発熱糸且成物の温度上昇を測定する方法としては、周囲温度 20 ± 1°Cの条件下、発 熱組成物を非通気性の外袋封入状態で 1時間放置する。
1)脚付き支持台の塩化ビニル製支持板 (厚さ 5mm X長さ縦 600mm X幅横 600m m)の裏面の中央部付近に成形型の抜き穴形状を覆うように磁石を設ける。
2)温度センサーを支持板中央部上に置く。 3)厚さ約 80 μ mの粘着剤層付き厚さ 25 ^ m X長さ 250mm X幅 200mmのポリエ チレンフィルムの中央がセンサーのところにくるようにして、粘着層を介して支持板に 貼り付ける。
4)外袋から発熱組成物を取り出す。
5)前記ポリエチレンフィルムの中央部上に、長さ 80mm X幅 50mm X高さ 3mmの 抜き穴を持つ長さ 250mm X幅 200mmの型板を置き、その抜き穴付近に試料を置 き、押し込み板を型板上に沿って動かし、試料を押し込みながら抜き穴へ入れ、型板 面に沿って、試料を押し込みながら擦り切り(型押し込み成形)、型内に試料を充填 する。次に、支持板下の磁石を除き、温度測定を開始する。
発熱温度の測定はデータコレクタを用い、測定タイミング 2秒で、 10分間温度測定 をし、 3分後の温度をもって、発熱立ち上がり性を判定する。
[0037] 発熱体の発熱試験としては、 JIS温度特性試験に従った。
[0038] 前記鉄粉は、限定はされな!、が、铸鉄鉄粉、アトマイズ鉄粉、電解鉄粉、還元鉄粉 、スポンジ鉄粉及びそれらの鉄合金粉等が一例として使用できる。更に、これら鉄粉 が炭素や酸素を含有していてもよぐまた、鉄を 50%以上含む鉄で、他の金属を含 んで!、てもよ!/ヽ。合金等として含まれる金属の種類は鉄成分が発熱組成物の成分と して働けば特に制限はないが、アルミニウム、マンガン、銅、ニッケル、ケィ素、コバル ト、パラジウム及びモリブデン等の金属、半導体が一例として挙げられる。本発明の 金属には半導体も含める。これらの金属及び合金は表面のみ又は内部のみに有し て ヽても表面と内部との両方に有して 、てもよ 、。
[0039] 前記鉄粉が炭素成分を含有及び Z又は炭素成分で被覆された鉄粉も好ましぐ前 記炭素成分に対して、鉄成分が 50重量%以上であれば前記炭素成分の割合は制 限はないが、鉄粉表面が 0. 3〜3. 0重量%の導電性炭素質物質で部分的に被覆さ れた鉄粉は有用である。導電性炭素質物質は、カーボンブラック、活性炭、カーボン ナノチューブ、カーボンナノホーン、フラーレン等が一例として挙げられ、ドーピング によって導電性を有するものであってもよぐ鉄粉は、還元鉄粉、アトマイズ鉄粉、ス ポンジ鉄粉が一例として挙げられ、特に、導電性炭素質物質が活性炭で、鉄粉が還 元鉄粉である場合が発熱体には有用である。 [0040] 本発明の鉄粉において、前記鉄以外の金属の含有量は、鉄粉全体に対して通常 0 . 01〜50重量%であり、好ましくは 0. 1〜10重量%である。
また、導電性炭素質物質被覆を効率よく行うために鉄粉の流動性を害さない程度 に 0. 01〜0. 05重量0 /0の油分、例えばスピンドル油等を添カ卩してもよい。
[0041] 発熱組成物中の鉄粉は反応混合物や発熱混合物中の鉄粉から換算してもよい。
[0042] 鉄酸ィ匕物皮膜とは、鉄の酸化物、水酸化物、ォキシ水酸化物等の酸素を含む鉄か らなる皮膜である。また、本発明において、活性鉄粉は、鉄粉表面に鉄酸化物皮膜 を少なくとも局部的に形成し、地鉄と鉄酸化物皮膜間に形成される局部電池や鉄酸 化物皮膜内外のピットによる酸化反応促進効果が考えられる。
[0043] 機構としては、詳しくはわ力もないが、酸ィ匕性ガスと成分の接触により、成分の酸ィ匕 、特に鉄粉の酸化により、鉄粉の表面に鉄酸化物皮膜、即ち、酸素含有皮膜が形成 されるとともに、活性炭の表面も酸化され、及び Z又は酸化された鉄成分が付着し、 ともに親水性が付与され、又、向上し、水の仲立ちによる成分間の結合や構造化が 起きていると推定される。
即ち、鉄粉の表面に鉄酸化物皮膜が形成されたり、鉄粉粒子が不規則形状になつ たり、酸ィ匕により歪みが発生したり、含水ピットが形成されたり、何らかの機能変化が 起こり、鉄粉が活性化され、発熱立ち上がり性が向上すると推定される。
また、鉄酸化物皮膜中にマグネタイト (Fe O )が存在する場合、導電性に優れるの
3 4
で好ましぐまた、へマタイト (Fe O )が存在する場合もポーラスとなるので好ましい。
2 3
また、炭素成分も表面が酸化され、表面酸化物の多い炭素成分になり、親水性も増 加し、活性も増加すると推定している。
[0044] 前記反応促進剤としては、発熱物質の反応促進ができるものであれば制限はない 金属ハロゲン化物、硝酸塩、酢酸塩、炭酸塩、金属硫酸塩類等が一例として挙げら れる。
金属ハロゲン化物としては、塩ィ匕ナトリウム、塩ィ匕カリウム、塩化マグネシウム、塩ィ匕 カルシウム、塩化第一鉄、塩化第二鉄、臭化ナトリウム、臭化カリウム、臭化第一鉄、 臭化第二鉄、沃化ナトリウム、沃化カリウム等が一例として挙げられる。 硝酸塩としては硝酸ナトリウム、硝酸カリウム等が一例として挙げられる。
酢酸塩としては、酢酸ナトリウム等が一例として挙げられる。
炭酸塩としては、炭酸第一鉄等が一例として挙げられる。
金属硫酸塩類としては、硫酸カリウム、硫酸ナトリウム、硫酸第一鉄等が一例として 挙げられる。
[0045] 前記水としては、適当なソースからのものでよい。その純度及び種類等には制限は ない。
水の含有量は、発熱組成物の場合、発熱組成物の 1〜60重量%、より好ましくは 1 〜40重量%、更に好ましくは 7〜40重量%、更に好ましくは 10〜35重量%、更に好 ましくは 20〜30重量%を含有する。
また、酸化性ガスによる接触処理をする前の反応混合物及び発熱混合物の場合、 反応混合物又は発熱混合物の 0. 5〜20重量%、より好ましくは 1〜20重量%、更に 好ましくは 5〜20重量%、更に好ましくは 7〜15重量%を含有する。
[0046] 発熱体中の発熱組成物の易動水値及び混合物や発熱体中の発熱組成物中の鉄 粉の鉄酸化物皮膜の厚さ、ウスタイト量を測定する場合は、発熱組成物や混合物を 各項目に従って測定すればよい。即ち、
1)易動水値
発熱体から発熱組成物を取り出し、前記易動水値の測定法に従って測定する。
2)鉄粉の鉄酸化物皮膜の厚さ、ウスタイト量
窒素雰囲気下、窒素置換されたイオン交換水に発熱組成物、発熱組成物成形体、 発熱組成物圧縮体又は混合物を分散させ、磁石で鉄粉を分離し、窒素雰囲気下で 乾燥させたものを測定用試料とする。
[0047] 発熱組成物成形体と発熱組成物圧縮体とを区別して使用する場合以外は、発熱 組成物成形体は、発熱組成物圧縮体を含むものとする。
[0048] また、本発明の反応混合物、発熱混合物は、その配合割合には制限はないが、鉄 粉 (鉄酸化物皮膜を有する鉄粉の場合は鉄成分量で換算した鉄粉) 100重量部に 対して、反応促進剤 1. 0〜5. 0重量部、水 0. 5〜20重量部が好ましぐ更に、炭素 成分 1. 0〜50重量部、保水剤 0. 01〜10重量部、吸水性ポリマー 0. 01〜20重量 部、 pH調整剤 0. 01〜5重量部、水素発生抑制剤 0. 01〜12重量部、骨材、繊維 状物、機能性物質はそれぞれ 0. 01〜10重量部、界面活性剤 0. 01〜5重量部、有 機ケィ素化合物、焦電物質、保湿剤、肥料成分、疎水性高分子化合物、消泡剤、発 熱助剤、鉄以外の金属、酸化鉄以外の金属酸化物はそれぞれ 0. 01〜10重量部、 酸性物質 0. 001〜1重量部が好ましい。
[0049] 前記消泡剤としては、ポリリン酸ナトリウム等の通常の pH調整剤の他、この分野で 用いられるものが挙げられる。
[0050] 本発明の反応混合物は、鉄粉、反応促進剤及び水を必須成分とし、更に、炭素成 分、保水剤、吸水性ポリマー、 pH調整剤、水素発生抑制剤、骨材、繊維状物、機能 性物質、界面活性剤、有機ケィ素化合物、焦電物質、保湿剤、肥料成分、疎水性高 分子化合物、発熱助剤、鉄以外の金属、酸化鉄以外の金属酸化物、酸性物質又は これらの混合物カゝらなる付加的な成分カゝら選ばれた少なくとも 1種を含有してもよい。
[0051] 前記炭素成分としては、炭素を成分としたものであれば制限はな 、。カーボンブラ ック、黒鈴、活性炭、カーボンナノチューブ、カーボンナノホーン、フラーレンなどが一 例として挙げられる。ドーピング等により導電性を有するものであってもよい。ココナツ の殻、木材、木炭、石炭、骨炭などから調製された活性炭や、動物産物、天然ガス、 脂肪、油及び樹脂のような他の原料力 調製されたものも一例として挙げられる。特 に、吸着保持能を有する活性炭が好ましい。
また、炭素成分としては、必ずしも単独で存在する必要はなぐ炭素成分を含有及 び Z又は炭素成分で被覆された鉄粉を発熱組成物に使用した場合、炭素成分が単 独に存在しなくても、前記発熱組成物は炭素成分を含むものとする。
[0052] 前記保水剤としては、保水できれば制限はない。木粉、パルプ粉、活性炭、おが くず、多くの綿毛を有する綿布、綿の短繊維、紙屑、植物質材料及び他の大きい毛 細管機能と親水性とを有する植物性多孔質材料、活性白土、ゼォライト等の含水ケ ィ酸マグネシウム質粘土鉱物、パーライト、バーミキユライト、シリカ系多孔質物質、珊 瑚化石、火山灰系物質 (テラバルーン、シラスバルーン、タイセッバルーン等)等が一 例として挙げられる。尚、これら保水剤の保水力の増加、形状維持力の強化等のた め、焼成及び/又は粉砕等の加工処理をしたものもよ 、。 [0053] 前記吸水性ポリマーは、架橋構造を有し、かつ自重に対するイオン交換水の吸水 倍率が 3倍以上の榭脂であれば特に限定されるものではない。また、表面を架橋した ものでもよ 、。従来公知の吸水性ポリマーや市販のものも用いることもできる。
[0054] 吸水性ポリマーとしては、ポリ (メタ)アクリル酸架橋体、ポリ (メタ)アクリル酸塩架橋 体、スルホン酸基を有するポリ(メタ)アクリル酸エステル架橋体、ポリオキシアルキレ ン基を有するポリ(メタ)アクリル酸エステル架橋体、ポリ(メタ)アクリルアミド架橋体、( メタ)アクリル酸塩と (メタ)アクリルアミドとの共重合架橋体、(メタ)アクリル酸ヒドロキシ アルキルと (メタ)アクリル酸塩との共重合架橋体、ポリジォキソラン架橋体、架橋ポリ エチレンォキシド、架橋ポリビニルピロリドン、スルホンィ匕ポリスチレン架橋体、架橋ポ リビュルピリジン、デンプン—ポリ(メタ)アクリロニトリルグラフト共重合体のケンィ匕物、 デンプンーポリ(メタ)アクリル酸 (塩)グラフト架橋共重合体、ポリビュルアルコールと 無水マレイン酸 (塩)との反応生成物、架橋ポリビュルアルコールスルホン酸塩、ポリ ビュルアルコール アクリル酸グラフト共重合体、ポリイソブチレンマレイン酸 (塩)架 橋重合体等が一例として挙げられる。これらは単独で用いてもよぐ 2種以上を併用し てもよい。
[0055] 前記吸水性ポリマー中の生分解性を有する吸水性ポリマーとしては、生分解性を 有する吸水性ポリマーであれば制限はない。ポリエチレンォキシド架橋体、ポリビ- ルアルコール架橋体、カルボキシメチルセルロース架橋体、アルギン酸架橋体、澱粉 架橋体、ポリアミノ酸架橋体、ポリ乳酸架橋体などが一例として挙げられる。
[0056] 前記 pH調整剤としては、 pHが調整できれば制限はない。アルカリ金属の弱酸塩、 水酸化物など、或いは、アルカリ土類金属の弱酸塩、水酸ィ匕物などがあり、 Na CO
2 3
、 NaHCO、 Na PO、 Na HPO、 Na P O 、 NaOHゝ KOH、 Ca (OH) 、 Mg (0
3 3 4 2 4 5 3 10 2
H) 、 Ca (PO ) などが一例として挙げられる。
2 3 4 2
[0057] 前記水素発生抑制剤としては、水素の発生を抑制するものであれば制限はない。
ィォゥ化合物、酸化剤、アルカリ性物質、ィォゥ、アンチモン、セレン、リン及びテルル 力もなる群より選ばれた少なくとも 1種又は 2種以上力もなるものが一例として挙げら れる。
尚、ィォゥ化合物としては、アルカリ金属やアルカリ土類金属との化合物で、硫ィ匕力 ルシゥム等の金属硫ィ匕物、亜硫酸ナトリウム等の金属亜硫酸塩ゃチォ硫酸ナトリウム 等金属チォ硫酸塩等が一例として挙げられる。
前記酸化剤としては、硝酸塩、酸化物、過酸化物、ハロゲン化酸素酸塩、過マンガ ン酸塩、クロム酸塩等が一例として挙げられる。
[0058] 前記アルカリ性物質としては、アルカリ性を示す物質であれば制限はない。ケィ酸 塩、リン酸塩、亜硫酸塩、チォ硫酸塩、炭酸塩、炭酸水素塩、水酸化物、 Na PO、
3 4
Ca (OH) 等が一例として挙げられる。
2
[0059] 前記骨材としては、充填剤として有用であり、及び Z又は、発熱組成物の多孔質化 に有用であれば制限はない。化石サンゴ (サンゴ化石、風化造礁サンゴ等)、竹炭、 備長炭、シリカ—アルミナ粉シリカ—マグネシア粉、カオリン、結晶セルロース、コロイ ダルシリカ、軽石、シリカゲル、シリカ粉、マイ力粉、クレー、タルク、合成樹脂の粉末 やペレット、発泡ポリエステル及びポリウレタンのような発泡合成樹脂、藻土、アルミナ 、繊維素粉末等が一例として挙げられる。尚、カオリン及び結晶セルロースは、本発 明の発熱組成物には含まれず、粘着剤に用 、る場合のみに含まれるものとする。
[0060] 前記繊維状物としては、無機系の繊維状物及び Z又は有機系の繊維状物である。
ロックウール、ガラス繊維、カーボン繊維、金属繊維、パルプ、紙、不織布、織物、綿 や麻等の天然繊維、レーヨン等再生繊維、アセテート等の半合成繊維、合成繊維及 びそれらの粉砕品が一例として挙げられる。
[0061] 前記機能性物質としては、機能を有する物質であれば制限はないが、マイナスィォ ン発生物質、遠赤外線放射物質力 選ばれた少なくとも 1種が一例として挙げられる
[0062] 前記マイナスイオン発生物質としては、直接、間接を問わず、結果としてマイナスィ オンは発生すれば制限はない。トルマリン、化石サンゴ、花崗岩、プロピオン酸カル シゥムストロンチウムなどの共誘電体、ラジウム、ラドン等の放射性物質を含む鉱石等 がー例として挙げられる。
[0063] 前記遠赤外線放射物質としては、遠赤外線を放射するものであれば制限はない。
セラミック、ァノレミナ、ゼォライト、ジルコニウム、シリカ等が一例として挙げられる。
[0064] 前記界面活性剤としては、ァ-オン、カチオン、ノ-オン、両性イオンを含む界面活 性剤を包含する。特に、ノ-オン界面活性剤が好ましぐポリオキシエチレンアルキル エーテル、アルキルフエノール'エチレンオキサイド付加物、高級アルコール燐酸ェ ステル等が一例として挙げられる。
[0065] 前記有機ケィ素化合物としては、少なくとも Si— O— R及び又は Si— N— R及び又 は Si— Rの結合を持つ化合物であれば制限はない。モノマー、低縮合物、ポリマー 等の形態で、メチルトリエトキシシラン等の有機シランィ匕合物、ジメチルシリコーンオイ ル、ポリオルガノシロキサン又はそれらを含有するシリコーン榭脂組成物等が一例と して挙げられる。
[0066] 前記焦電物質としては、焦電性 (パイ口電気又はピロ電気)を有する物であれば制 限はない。電気石、ィキヨタ鉱物焦電性鉱物が一例として挙げられる。特に、電気石 の一種であるトルマリンが好ましい。
トルマリンとしては、ドラバイト(苦土電気石)、ショール (鉄電気石)、エルバイト(リチ ァ電気石)等が挙げられる。
[0067] 前記保湿剤としては、保湿ができれば制限はな ヽ。ヒアルロン酸、コラーゲン、ダリ セリン、尿素等が一例として挙げられる。
[0068] 前記肥料成分としては、窒素、燐酸、カリウムの 3要素のうち少なくとも 1種を含む成 分であれば制限はない。骨粉、尿素、硫安、過燐酸石灰、塩化カリウム、硫酸カルシ ゥム等が一例として挙げられる。
[0069] 前記疎水性高分子化合物としては、組成物中の水抜けをよくするため、水との接触 角が 40° 以上、より好ましくは 50° 以上、更に好ましくは 60° 以上の高分子化合物 であれば制限はない。形状も制限はなぐ粉体、顆粒、粒、錠等が一例として挙げら れる。ポリエチレンやポリプロピレン等のポリオレフイン、ポリエステル、ポリアミド等が 一例として挙げられる。
[0070] 前記発熱助成剤としては、金属粉、金属塩、金属酸化物などがあり、 Cu、 Mn、 Cu CI、 FeCl、二酸ィ匕マンガン、酸化第二銅、四三酸ィ匕鉄等やそれらの混合物等が
2 2 一 例として挙げられる。
[0071] 前記酸性物質としては、無機酸、有機酸、及び酸性塩の何れでもよぐ塩酸、硫酸 、硝酸、酢酸、シユウ酸、クェン酸、リンゴ酸、マレイン酸、クロル酢酸、塩化鉄、硫酸 鉄、シユウ酸鉄、クェン酸鉄、塩ィ匕アルミニウム、塩ィ匕アンモ-ゥム、次亜塩素酸等が 一例として挙げられる。
[0072] 本発明の発熱組成物は、鉄粉、炭素成分、反応促進剤及び水を必須成分とし、更 に、保水剤、吸水性ポリマー、 pH調整剤、水素発生抑制剤、骨材、繊維状物、機能 性物質、界面活性剤、有機ケィ素化合物、焦電物質、保湿剤、肥料成分、疎水性高 分子化合物、発熱助剤、鉄以外の金属、酸化鉄以外の金属酸化物、酸性物質又は これらの混合物カゝらなる付加的な成分カゝら選ばれた少なくとも 1種を含有してもよい。
[0073] 本発明の発熱組成物は、鉄粉、炭素成分、反応促進剤、水を必須成分とし、その 製造方法は、工業的に実用化が可能で、鉄粉と反応促進剤と水を必須成分とし、含 水量が 1〜20重量%で、余剰水量を示す易動水値が 0. 01未満の反応混合物を、 0 °C以上の環境下、酸化性ガスと接触させ、 10分以内に反応混合物の温度上昇分を c以上にし、発熱混合物を製造し、該発熱混合物を原料とし、発熱組成物とするか
、又は、その後、更に水分調整をし発熱組成物とするか、炭素成分等の添加や水分 調整をし、発熱組成物としてもよい。
本発明は反応混合物の含水量を一定量以下、特に余剰水量を一定量以下にし、 酸化性接触処理をすることで、短時間に酸ィ匕性ガス接触処理が行えるようにした。余 剰水量の特定化と短時間処理により、発熱組成物の初期の発熱立ち上がりがよくな かったり、発熱保持時間が短くなつたりする等の酸化性ガス接触処理に起因する悪 影響が回避でき、工業的大量生産方法が確立できた。また、酸化性ガス接触処理中 は、攪拌等をしなくてもよいが、攪拌等をした方が酸ィ匕性ガス接触処理が確実に行え る。
ここで、酸化性ガスとの接触処理の反応混合物又は発熱混合物の状態は鉄粉が部 分酸化されれば、静置状態でも、移動状態でも、撹拌等による流動状態でも何れで もよぐ適宜選択すればよい。また、反応混合物、発熱混合物及び発熱組成物の各 成分の混合時並びに水分調整時の混合時の環境に制限はなぐ酸化性ガス雰囲気 中や酸ィ匕性ガスの吹き込み等が一例として挙げられる。
[0074] 水分調整とは発熱混合物を酸化性ガスと接触処理した後に水又反応促進剤の水 溶液をカ卩えることである。加える量には制限はないが、接触処理により、減量した重 量をカ卩えることや、所望の易動水値となる重量をカ卩えることが一例として挙げられる。 水分調整を行うかどうかは用途により適宜決めればよい。
[0075] 本発明の発熱組成物は、鉄粉、炭素成分、反応促進剤、水を必須成分とし、鉄粉、 反応促進剤及び水を必須成分とした反応混合物を酸化性ガスで接触処理したもの を原料にしたもので、通常は発熱混合物を水分調整したもので、発熱立ち上がりがよ ぐ適量の余剰水と相まって、優れた成形性を有する発熱組成物である。また、これ を使用して、使用時にすぐに温まる発熱体が製造できる。
[0076] したがって、少なくとも鉄粉は、更に炭素成分も含め、酸ィ匕性ガスの接触処理による 酸化の履歴を有し、これが優れた発熱立ち上がり性、発熱持続性及び優れた成形性 に深くかかわっていると思われる。
[0077] また、耐圧縮性は、好ましくは 80%以上であり、より好ましくは 85%以上であり、更 に好ましくは 90%以上である。
[0078] 本発明の酸化性ガスの接触処理をした鉄粉を使用すると、発熱組成物中の活性炭 等の炭素成分を、例えば、 20%以上減らすことができる。炭素成分添加量を減少す ることにより、コストが下がる。
[0079] また、本発明の発熱組成物は、その配合割合には制限はないが、鉄粉 (鉄酸化物 皮膜を有する鉄粉の場合は、鉄成分量で換算した鉄粉。反応混合物中の鉄粉から 換算してもよい。 ) 100重量部に対して、炭素成分 1. 0〜50重量部、反応促進剤 1. 0〜5. 0重量部、水 5〜60重量部が好ましぐ更に、保水剤 0. 01〜10重量部、吸水 性ポリマー 0. 01〜20重量部、 pH調整剤 0. 01〜5重量部、水素発生抑制剤 0. 01 〜12重量部、骨材、繊維状物、機能性物質は、それぞれ 0. 01〜10重量部、界面 活性剤 0. 01〜5重量部、有機ケィ素化合物、焦電物質、保湿剤、肥料成分、疎水 性高分子化合物、消泡剤、発熱助剤、鉄以外の金属、酸化鉄以外の金属酸化物は それぞれ 0. 01〜10重量部、酸性物質 0. 001〜1重量部が好ましい。
[0080] 本発明の発熱混合物の製造方法によれば、優れた発熱立ち上がり性、優れた親水 性、優れた成形性を有する発熱組成物を得ることができる。特に易動水値 0. 01〜5 0との併用により著しく優れた成形性と発熱特性を併せ持つ発熱組成物が得られる。 本発明の製造方法により製造された発熱組成物は発熱立ち上がり性が著しく向上 されているので、発熱組成物中の活性炭等の炭素成分の添加量を、例えば、 20% 以上減少でき、コストダウンに貢献できる。
また、親水性が著しく向上されているので、型を使った成形性が著しく向上するの で、成形後に発熱組成物成形体の周辺に発熱組成物の崩れ片をまき散らさないの で、シールが的確にでき、シール切れのない発熱体が製造できる。これにより、種々 の形状の発熱組成物成形体が製造でき、種々の形状の発熱体ができる。
[0081] また、市場に提供される、発熱組成物を収納袋に収納した発熱体は非通気性の収 納袋である外袋に収納して長期保存可能を前提として提供されるので、水素発生抑 制剤を含有した発熱組成物を使用することが好まし!/ヽ。酸化性ガスの接触処理を経 た発熱組成物は活性な組成物であるので、水素発生抑制剤を含有する事が肝要で ある。また、 pH調整剤を併用するとその効力はより強化される。
[0082] また、易動水値 0. 01未満の発熱組成物は、その反応特性や発熱特性に影響しな い範囲において、凝集助剤、凝集化剤、集塊補助剤、乾燥バインダー、乾燥結合剤 、乾燥結合材、粘着性素材、増粘剤、賦形剤、水溶性高分子をそれぞれ 0. 01〜3 重量部の範囲内で含有してもよ 、。
前記凝集助剤とは、特許第 3161605号公報 (特表平 11— 508314号公報)に記 載されている凝集助剤で、ゼラチン、天然ガム、コーンシロップ等である。
前記凝集化剤とは、特表平 2002— 514104号公報に記載されている凝集化剤で 、コーンシロップ、マノレチトーノレシロップ等である。
前記集塊補助剤とは、特表平 2001— 507593号公報に記載されている集塊補助 剤で、コーンシロップ等である。
前記乾燥バインダーとは、特表平 2002— 514104号公報に記載されている乾燥 バインダーで、微結晶セルロース、マルトデクストリン等又はこれらの混合物である。 前記乾燥結合剤とは、特表平 2001— 507593号公報に記載されている乾燥結合 剤で、マルトデクストリン、噴霧された乳糖等である。
前記乾燥結合材とは、特表平 11― 508314号公報に記載されて ヽる乾燥結合材 で、微晶質セルロース、マルトデクストリン等又はこれらの混合物である。
前記粘着性素材又はバインダーとは、特開平 4— 293989号公報に記載されてい る粘着性素材又はバインダーで、水ガラス、ポリビニールアルコール(PVA)、カルボ キシメチルセルロース(CMC)等である。
前記増粘剤とは、特開平 6— 343658号公報に記載されている増粘剤で、コーンス ターチ、馬鈴薯デンプン等である。
前記賦形剤とは、特開平 7— 194641号公報に記載されている賦形剤で、 α化で んぷん、アルギン酸ナトリウム等である。
前記水溶性高分子とは、粘着剤層での水溶性高分子が使用できる。
[0083] また、発熱組成物成形体で発熱部を構成する場合、発熱組成物が成形性を有す れば反応混合物、発熱混合物、発熱組成物を構成する固形成分の粒径に制限はな いが、発熱組成物成形体のサイズ (縦、横、高さ)の何れかを小さする場合は固形成 分の粒径を小さくすることが好ましい。
発熱組成物等を構成する成分中、反応促進剤と水を除く非水溶性固形成分の最 大粒径は好ましくは 2. 5mm以下であり、より好ましくは 930 /z m以下であり、更に好 ましくは 500 m以下であり、更に好ましくは 300 /z m以下であり、更に好ましくは 25 O /z m以下であり、更に好ましくは 200 m以下であり、且つ、前記固形成分の粒径 の 80%以上が、好ましくは 500 μ m以下で有り、より好ましくは 300 μ m以下であり、 更に好ましくは 250 /z m以下であり、更に好ましくは 150 /z m以下であり、更に好まし くは 100 m以下である。
[0084] また、発熱組成物は、水分調整状態や余剰水量により、粉体又は粒状発熱組成物
(易動水値が 0. 01未満)、成形性発熱組成物(易動水値が 0. 01〜20)、シヤーべッ ト状発熱組成物 (易動水値が 20を超え 50以下)に分類することができる。易動水値 により分類された発熱組成物は前記通りである。
[0085] 前記水溶性高分子化合物としては、水溶性の有機高分子であれば制限はない。デ ンブン、アラビアゴム、メチルセルロース(MC)、カルボキシメチルセルロース(CMC) 、カルボキシメチルセルロースナトリウム、ポリビュルアルコール、ゼラチン、ポリアタリ ル酸、ポリアクリル酸塩、ポリアクリル酸部分中和物、ポリビュルピロリドン、 N—ビニル ァセトアミド共重合体などの単独、或いは、 2種以上の組み合わせ等が一例として挙 げられる。 [0086] 次に、発熱体について説明する。
本発明の発熱体は少なくとも一部が通気性を有する収納袋に発熱立ち上がり性の ょ ヽ発熱組成物が収納された発熱体である。
更に、好ましい本発明の発熱体は、 1区分で発熱部を形成してもよいし、 2個以上 複数個離れて配置された区分からなる区分発熱部から発熱部を形成してもよい。
[0087] また、保存や輸送のために、本発明の発熱体は非通気性の収納袋である外袋に封 入される。
[0088] 本発明に使用される通気性収納袋は、発熱組成物を袋の内部に保持するとともに 、発熱体の使用中に原料の漏れ出ることがなぐ破袋するおそれのない強度を有し、 発熱に必要な通気性を有するものであれば材質、包材構成に特に限定されるもので はない。
また、収納袋の通気性は、前記袋の一部又は片面又は両面に設けることができ、 前記通気性面を通気性包材で構成できる。両面通気の場合は片面と他面の通気性 が異なっていてもよい。
通常、本発明の収納袋は基材と被覆材からなり、更に、基材と被覆材の間に敷材を 設けてもよい。
[0089] 本発明の通気性収納袋は、混合物を袋の内部に保持するとともに、発熱体の使用 中に原料の漏れ出ることがなぐ破袋するおそれのない強度を有し、発熱に必要な通 気性を有するものであれば材質、包材構成に特に限定されるものではな 、。
また、収納袋の通気性は、通気性包材を前記袋の一部又は片面又は両面に用い ることがでさる。
[0090] 通気性としては、発熱が維持できれば制限はな 、。通常の発熱体として使用される 場合、通気性はリツシ一法 (Lyssy法)による透湿度力 通常 50〜: LO, OOOg/mV 24hrであり、好ましくは 50〜5, OOOgZmソ 24hrであり、より好ましくは 70〜5, 00 0g/m2/24hrであり、更【こ好ましく ίま 700〜1, 000g/m2/24hrであり、更【こ好ま しくは 80〜800gZm2Z24hrである。ここで、 gZm2Z24hrは gZ (m2Z24hr)と同 じ意味である。
[0091] この透湿度が、 50未満であると発熱量が少なくなり、十分な温熱効果が得られない ので好ましくなぐ一方、 10, 000gZm2Z24hrを超えると発熱温度が高くなつて安 全性に問題が生じる虞れが生じるので好ましくない。
ただし、用途によっては 10, 000g/m2/24hrを超えたり、場合によっては開放系 に近 ヽ透湿度で使用することも制限されな ヽ。
[0092] 前記通気性収納袋を構成する通気性素材としては、フィルム化できるものであって 、延伸及び Z又は可溶性充填剤の抽出、或いは、極細針による穿孔等の方法により 、通気性を発現できるものであれば特に限定されるものではな 、。
例えば、多孔質フィルム及び穿孔フィルム等の通気性フィルムや、紙類、不織布等 の単独で通気性を有するもの、紙類及びそれに通気性フィルムゃ不織布等を少なく とも 1種以上積層し通気性を持たせたもの、不織布にポリエチレンフィルムがラミネー トされた非通気性の包材に針などを用いて微細な孔を設けて通気性を持たせたもの 、繊維が積層され熱圧着されて通気性を制御された不織布、多孔質フィルム、或い は、多孔質フィルムに不織布を貼り合わせたもの等が一例として挙げられる。
前記多孔質フィルムとしては、ポリエチレン、直鎖状低密度ポリエチレンやポリプロ ピレン等のポリオレフイン系榭脂、ポリテトラフノレォロエチレン等のフッ素系榭脂等と 充填材カゝらなるフィルムを延伸した多孔質フィルムで、適宜選択することができる。 ここで、穿孔フィルムとはポリエチレンフィルムなどの非通気性フィルムに針で微細 な孔を設けて通気性を持たせたものである。
[0093] 前記収納袋の包材は単層構造でもよぐ多層構造でもよい。
その構造には制限はないが、多層構造の例としては、
基材が A層 ZB層又は A層 ZB層 ZC層又は A層 ZB層 ZC層 ZD層からなるもの や被覆材が F層 ZG層又は E層 ZF層 ZG層又は F層 ZH層 ZG層力 なるものが 一例として挙げられる。
A層は、ポリエチレン等熱可塑性榭脂フィルム、ポリエチレン、 EVAや EVAとポリエ チレンの混合物等のヒートシール層、吸水性紙類等、
B層はナイロン等の熱可塑性榭脂の不織布、非吸水性紙類、吸水性紙類、ポリエ チレンフィルム、ポリプロピレンフィルム、ポリエステルフィルム、ポリアミド(ナイロン等) フィルム等熱可塑性榭脂フィルム、非吸水性紙類や吸水性紙類等の芯材等、 c層は粘着剤層、非吸水性紙類、吸水性紙類、ポリエチレン等熱可塑性榭脂フィ ルム、滑り止め層、ポリエステルやナイロン等の熱可塑性榭脂の不織布等、
D層はセパレータ、ポリエチレン等熱可塑性榭脂フィルム、不織布等、
E層はヒートシール層等、
F層はポリエチレン等、熱可塑性榭脂製多孔質フィルムや穿孔フィルム等、ポリェチ レン等熱可塑性榭脂製フィルム、非吸水性紙類、吸水性紙類等、
G層はポリエステルやナイロン等の熱可塑性榭脂の不織布等、
H層は非吸水性紙類、吸水性紙類等である。
例えば、基材又は被覆材の例としては、
ポリエチレン製ヒートシール層/ポリプロピレンフィルム、
EVA製ヒートシール層 Zポリプロピレンフィルム、
EVA製ヒートシール層 Zポリプロピレンフィルム Z粘着剤層 Zセパレータ、
EVA製ヒートシール層 Zポリエチレンフィルム Zナイロン不織布、
ポリエチレン製ヒートシール層/ポリプロピレンフィルム/ポリプロピレン不織布、 不織布 Z多孔質フィルム、
不織布 Z紙、穿孔 (針、レーザー)フィルム Z多孔質フィルム、
不織布 Z紙、多孔質フィルム Z穿孔 (針、レーザー)フィルム、
不織布 Z紙、多孔質フィルム Z不織布等が一例として挙げられる。各層の積層方 法については制限はなぐ各層の直接積層でもよぐ各層は通気性粘着剤層ゃラミネ 一ト剤層を介して積層してもよぐ熱溶融押出し等でラミネートをしてもよい。本発明で は、ポリエチレンはメタ口セン触媒を使用して製造したポリエチレンも含む。
前記発熱体は非通気性収納袋である外袋に収納され、保管、輸送されるが、前記 外袋は非通気性のものであればそのほかの制限はなぐラミネートされているもので ちょい。
たとえば OPP、 CPP、ポリ塩化ビ-リデン、酸化アルミニウムや酸化ケィ素等の酸化 金属(半導体を含む)などにより防湿処理されたナイロン、ポリエステル、ポリプロピレ ンフィルム、更にはアルミ箔又はアルミ蒸着されたプラスチックフィルムなどの非通気 性素材が挙げられる。 [0095] 非通気性素材として、ポリエチレン、ポリプロピレン、セロファン、ポリエステル、ポリ アミド、ポリビュルアルコール、ポリ塩化ビュル、ポリ塩ィ匕ビユリデン、ポリウレタン、ポリ スチレン、エチレン酢酸ビニル共重合体、ポリカーボネート、塩酸ゴム等が挙げられる
1S これらのうちポリオレフイン系榭脂製のものが延伸等により、均質な通気性フィル ムが得られるので好ましい。このポリオレフイン系榭脂としては、ポリエチレン、ポリプロ ピレン、ポリブタジエンなどのホモポリマー、或いは、コポリマー、又はこれらのプレン ドポリマーが一例として挙げられる。
[0096] また、前記非通気性素材の中で、非通気性の高 、フィルムとしては、非通気性素材 フィルム上に半導体を含む金属やその化合物の薄膜を単層又は多層に設けたもの がー例として挙げられる。例えば、半導体を含む金属としては、ケィ素、アルミニウム 、チタン、スズ、インジウム等、及びこれら金属を含む合金や混合物等が一例として挙 げられる。
半導体を含む金属化合物としては、上記金属又は合金や混合物の酸化物、窒化 物及び酸窒化物が一例として挙げられる。
例えば、酸化ケィ素層、酸ィ匕アルミニウム層、酸窒化ケィ素層やそれらの任意層を 積層したもの等が一例として挙げられる。
また、これらに延伸ポリオレフインフィルム(例えば 2軸延伸ポリプロピレンフィルム) を積層したものが一例として挙げられる。
外袋に収納された例としては、製造された発熱体を 2枚の非通気性フィルム又はシ ートの間に封着した発熱体が一例として挙げられる。
[0097] 前記基材、被覆材、敷材を構成する素材としては、発熱組成物の収納袋として機 能すれば制限はなぐ従来力 発熱体の通気性収納袋に使用されているものであれ ば使用できる。
非通気性素材、通気性素材、吸水性素材 (紙類及びレーヨン等)、非吸水性素材、 伸縮性素材、非伸縮性素材、発泡素材、ヒートシール可能素材等が一例として挙げ られる。フィルム、シート、不織布、織布等及びそれらの複合体の所望の形態で、所 望の用途により適宜使用すればよい。
[0098] 前記非吸水性素材としては、非吸水性であれば制限はな 、。ポリエチレン、ポリプ ロピレン、ナイロン、アクリル、ポリエステル、ポリビュルアルコール、ポリウレタン等合 成榭脂ゃ前記疎水性高分子等力 なるフィルム、シート、塗布物が一例として挙げら れる。
[0099] 前記伸縮性包材としては、伸縮性があれば、特に限定されるものではな 、。即ち、 全体として、伸縮性があればよぐ単品でも、伸縮性基材同士又は伸縮性基材と非 伸縮性基材との組み合わせによる複合品でもよ 、。
[0100] 例えば、天然ゴム、合成ゴム、エラストマ一、伸縮性形状記憶ポリマー等の単品やこ れらと非伸縮性素材との混合品、混抄品ゃこれらの組み合わせ品から構成される織 物、フィルム、スパンデッタス糸、糸、紐、平板、リボン、スリットフィルム、発泡体、不織 布、又はこれら同士又はこれらと非伸縮性のものとの積層等による複合ィ匕伸縮材等 がー例として挙げられる。
[0101] 前記織布を構成する繊維としては、天然繊維、ビスコース繊維などの天然素材を用 いた再生繊維、半合成繊維、合成繊維及びこれらのうちの 2種以上の混合物などを 用いることができる。これらの繊維は繊維状物としても使用できる。
[0102] 前記不織布としては、繊維を熱や接着剤、或いは、高圧水流の様な熱的、化学的 、物理的、機械的手段等を用いて絡ませたり、接着したりして接合して製造する布状 シートであれば制限はなぐ伸縮性、非伸縮性、吸水性、非吸水性、ヒートシール性、 非ヒートシール性等の何れかの 1種を有するものでもよぐこれらの性質を 2種以上併 せ持つものでもよい。一例として、レーヨン、ナイロン (ポリアミド)、ポリエステル、アタリ ル、ポリプロピレン、ビニロン、ポリエチレン、ポリウレタン、キュプラ、綿、セルロース、 パルプ等の植物繊維、合成パルプ、熱可塑性高分子物質等力 なる単織維又は複 合繊維又はこれらの混合繊維又はこれらの混合したものが用いられ、単一不織布又 はそれら繊維の混抄又は累積繊維層の積層が用いられる。また、短繊維不織布、長 繊維不織布、連続フィラメント不織布も使用できる。また、製法的には乾式不織布、 湿式不織布、スパンボンド、スパンレース等を使用することができる。尚、伸縮性不織 布としては、伸縮性があれば制限はないが、エラストマ一系ゴム系繊維の不織布や、 ポリオレフイン系やポリエステル系の捲縮繊維を交絡させたものや、バインダゃ熱融 着の手法による伸縮性不織布やポリウレタン系不織布等が一例として挙げられる。 芯鞘構造の複合繊維からなる不織布でもよ ヽ。
[0103] 不織布の坪量は、制限はない。好ましくは通常 10〜200gZm2である。
[0104] 前記紙類としては、吸水性があり、通常使用されているものであれば制限はない。
紙や厚紙が一例として挙げられる。例えば、吸取紙、ティッシュペーパー、クレープ紙 等の薄紙、クラフト紙等の包装用紙、カード用紙等の雑種紙、段ボール、パルプ芯や 特芯等の段ボール中芯、クラフトゃジユート等の段ボールライナー、コートボール等 の厚紙、石膏ボード原紙等の建築紙等の 1種又は 2種以上の積層体が一例として挙 げられる。
[0105] 前記非吸水性紙類としては、非吸水性であれば制限はない。
前記紙や厚紙を非吸水性処理ものが一例として挙げられる。例えば、油や合成榭 脂の含侵やコートによる非吸水性処理したのものやポリエチレンフィルムのような非吸 水性素材を積層したものが一例として挙げられる。
[0106] 前記紙類及び前記非吸水性紙類は所望により、耐水加工をしたり、レーザーや針 等により、貫通孔を設け、通気性を調整又は持たせてもよい。
[0107] 前記発泡素材としては、発泡ポリウレタン、発泡ポリスチレン、発泡 ABS榭脂、発泡 ポリ塩ィ匕ビニル、発泡ポリエチレン又は発泡ポリプロピレン力 選ばれた少なくとも 1 種で形成されたシート等の発泡体が一例として挙げられる。
[0108] 前記ヒートシール可能な素材としては、単独素材でもよぐヒートシール層を有する 複合素材でもよぐ加熱によって少なくともその一部が接合し得るものであれば制限 はない。
ヒートシール可能な素材やヒートシール層を構成するホットメルト系接着剤としては、 ポリエチレン、ポリプロピレン等のポリオレフインゃォレフイン共重合榭脂、エチレン メチルメタアタリレート共重合体、エチレン メチルメタアクリル酸 アクリル酸エステ ル共重合体、エチレン αォレフィン共重合体、エチレン 酢酸ビュル共重合榭脂 、エチレン イソブチルアタリレート共重合榭脂などのエチレン アクリル酸エステル 共重合榭脂等のエチレン系ホットメルト榭脂、ポリアミド系ホットメルト榭脂、ポリエステ ル系ホットメルト榭脂、ブチラール系ホットメルト榭脂、セルロース誘導体系ホットメルト 榭脂、ポリメチルメタタリレート系ホットメルト榭脂、ポリビュルエーテル系ホットメルト榭 脂、ポリウレタン系ホットメルト榭脂、ポリカーボネート系ホットメルト榭脂、酢酸ビュル、 塩ィ匕ビュル 酢酸ビュル共重合体等のホットメルト系榭脂及びそのフィルムやシート がー例として挙げられる。また、ホットメルト系榭脂及びそのフィルムやシートには、種 々の酸ィ匕防止剤等添加剤を配合したものも使用できる。特に、低密度ポリエチレン、 メタ口セン触媒使用のポリエチレン、エチレン— αォレフイン共重合体が有用である。 aーォレフインは、二重結合が末端にあるモノマーであれば制限はなぐポリプロピレ ン、 1—ブテン、 1—ヘプテン、 1—へキセン、 1—オタテン、 4—メチル 1—ペンテン 等が一例として挙げられる。
[0109] また、本発明の発熱組成物及び発熱体に使用される成分及び基材、被覆材、敷材 等の包材において、従来力 使用されてきた素材の他に生分解性の素材が使用で きる。
[0110] 前記基材、被覆材、通気性粘着剤層、敷材、発熱組成物成形体を含む発熱組成 物の中で、少なくとも前記発熱組成物が圧縮処理されて!、てもよ 、。
特に、本発明の発熱組成物成形体を加圧により適量圧縮したものは形状維持性が 格段に向上し、例えば、通気部の素材に多孔質フィルムの代わりに、圧力調整が難 しい穿孔フィルムを使用しても、収納袋の内圧が外圧以上になっても、形崩れが起こ りにくく、穿孔フィルムの使用が可能であるので、通気性素材の選択の幅が拡がり、コ ストダウンができるとともに、被加温体を長時間、適度の温度で、均一に加温できる。 本発明の発熱組成物が圧縮処理された発熱組成物成形体は、非弾性体であり、 発熱組成物の耐圧縮性は好ましくは 80%以上であり、より好ましくは 85%以上であり 、更に好ましくは 90%以上であり、 100%を超えてもよい。
[0111] 前記発熱部において、少なくとも、一部又は 1区分発熱部に磁気物質を含有させ、 磁気効果による血行向上や肩こりの改善などを目的に磁石等の磁気物質を収容す ることもできる。複数区画型の発熱体の場合、磁気物質は、区画領域の少なくとも 1 区画領域に収容することが好ま 、。
[0112] 前記セパレータには背割り等の切り込みなどを設けてその剥離が容易となるように してもょ 、。粘着剤層は非転着性の物が好ま 、。
[0113] 前記基材、敷材、被覆材、粘着剤層から選ばれた少なくとも一種に、保湿剤、機能 性物質、骨材、焦電物質、磁気体又はこれらの混合物からなる付加的な成分から選 ばれた少なくとも 1種を含有又は担持してもょ ヽ。
これらの含有量としては、特に限定されるものではないが、薬理効果、経済性、更 に、粘着力等の観点より、粘着剤 100重量部に対し好ましくは 0. 01〜25重量部、更 に好ましくは 0. 5〜 15重量部である。
前記親水性粘着剤層と基材又は被覆材との間にホットメルト系の粘着剤を設けても よい。また、前記親水性粘着剤を発熱体に設ける場合制限はないが、発熱体のシー ル処理後に親水性粘着剤を発熱体に設けることが好ましい。
[0114] 本発明の発熱部は、 1区分で発熱部を形成してもよいし、 2個以上複数区分を離れ て配置、固定された区分発熱部を形成し、前記区分発熱部の集合から発熱部を形 成し、それを発熱部としてもよい。
また、区分発熱部を有する発熱部の場合、基材上の発熱組成物成形体の大きさが 区分発熱部の大きさ以下で前記発熱組成物成形体の周縁部をヒートシールすること により区分発熱部及び発熱部を構成して!/ヽる。区分発熱部及び発熱部の容積は充 填発熱組成物の容積又は発熱組成物成形体の容積とそれを取り巻く空間容積から なり、区分発熱部容積又は発熱部の容積に対する充填発熱組成物又は発熱組成物 成形体の容積の容積比率は、通常約 0. 3〜約 1. 0であり、好ましくは約 0. 35〜約 1 . 0であり、より好ましくは約 0. 5〜約 1. 0であり、更に好ましくは約 0. 7〜約 1. 0であ り、更【こ好ましく ίま約 0. 8〜約 1. 0であり、更【こ好ましく ίま約 0. 9〜約 1. 0である。
[0115] 発熱体の柔軟性の観点からは前記区分発熱部を形成する場合はそのサイズはで きるだけ小さい方が発熱体全体として柔軟性がでる。平面図において、少なくとも長 さの異なる 2辺で構成される区分発熱部の 1辺はできるだけ短い方がよい。また、正 方形等の同一辺や円等の一つの径で構成される区分発熱部はその最長の長さはで きるだけ短い方がよい。
[0116] 前記区分発熱部はシール部である区分け部で区分される発熱組成物又は発熱組 成物成形体を収容して!/、る。
[0117] 本発明の区分発熱部又は発熱組成物成形体は、最大幅は、通常、 0. 5〜60mm であり、好ましくは 0. 5〜50mmであり、更に好ましくは l〜50mmであり、更に好まし くは 3〜50mmであり、更に好ましくは 3〜30mmであり、更に好ましくは 5〜20mm であり、更に好ましくは 5〜 15mmであり、更に好ましくは 5〜 10mmである。また、最 高高さは、通常 0. l〜30mmであり、好ましくは 0. l〜10mmであり、更に好ましくは 0. 3〜10mmであり、更に好ましくは l〜10mmであり、更に好ましくは 2〜10mmで ある。また、最長長さは、通常 5〜300mmであり、好ましくは 5〜200mmであり、より 好ましくは 5〜: LOOmmであり、更に好ましくは 20〜150mmであり、更に好ましくは 3 0〜: L 00mmである。
前記区分発熱部の容積又は発熱組成物成形体の体積は、通常、 0. 015〜500c m3であり、好ましくは 0. 04〜30cm3であり、より好ましくは 0. l〜30cm3であり、更に 好ましくは l〜30cm3であり、更に好ましくは 3〜20cm3である。
前記区分発熱部において、発熱組成物収納領域である区分発熱部が発熱組成物 成形体で満たされた時に、発熱組成物成形体占有領域である発熱組成物成形体の 体積と発熱組成物収納領域である区分発熱部の容積との容積比は通常 0. 6〜1で あり、好ましく ίま 0. 7〜1であり、より好ましく ίま 0. 8〜1であり、更に好ましく ίま 0. 9〜 1. 0である。
また、前記区分発熱部の間隔である区分け部の幅は区分けができれば制限はない 力 通常 0. l〜50mmであり、好ましくは 0. 3〜50mmであり、より好ましくは 0. 3〜 50mmであり、更【こ好ましく ίま 0. 3〜40mmであり、更【こ好ましく ίま 0. 5〜30mmで あり、更に好ましくは 1. 0〜20mmであり、更に好ましくは 3〜10mmである。
尚、前記発熱組成物成形体又は区分発熱部の形状は如何なるものでもよいが、平 面形状で、円、楕円、多角形状、星形状、花形状等が一例として挙げられる。立体形 状では、多角錐形状、円錐形状、錐台形状、球形状、平行六面体形状、円筒体形状 、半円柱体形状、半楕円柱体形状、蒲鋅形状体、円柱体形状、楕円柱体形状等が 一例として挙げられる。また、これらの形状は角部にアールを設け、角部を曲線状や 曲面状にしてもよ!、し、中央部等に凹部があってもょ 、。
また、本発明の発熱組成部成形体の体積とは、発熱組成物成形体又は圧縮された 発熱組成物成形体の体積を意味する。
また、区分発熱部の容積とは、発熱組成物成形体を収納した区分発熱部の内部容 積を意味する。
[0118] また、前記発熱組成物成形体、区分発熱部及び発熱部の形状において、中心部 の高さが周辺部に向力つて、少しずつ低くなる、即ち、高さグラデーションを有してい てもよく、その逆の高さグラデーションを有して 、てもよ 、。
[0119] 成形方式の場合は成形順序は発熱組成物成形体の大きさが決まり、次に前記区 分発熱部の大きさが決まる。
[0120] 前記区分発熱部、収納袋、外袋 (発熱体の収納袋)等は区分け部やその周辺部等 において、それらを構成する包材等がシールされる力 そのシールに制限はなぐ所 望により適宜選択する。例えば、粘着剤層及び Z又は接着剤層及び Z又はヒートシ 一ル層を介して加圧、加温、加熱等又はそれらの組み合わせ手段により圧着シール (粘着シール)、加温圧着シール (粘着シール)、接着シール、熱接着シール、熱融 着シール (ヒートシール)等で、点状 (欠線状)、或いは、全面状等にすることが一例と して挙げられる力 s、その何れか又はその組み合わせは所望により選択する。
これらにより、区分発熱部、内袋 (収納袋)及び外袋等を封着形成できる。縫製加工 もシールの一手段として使用できる。
[0121] 前記において、基材ゃ被覆材等の収納袋を形成する基材における周縁部や区分 け部のシール部の幅は適宜に決定し得る。通常は 50mm以下であり、好ましくは 1〜 30mmであり、より好ましくは 3〜20mmである。
[0122] 前記区分け部に必要に応じミシン目などの切断線を設けることができる。このミシン 目は屈曲性を向上させる程度であってもよぐ人体の適用箇所等に応じたサイズの発 熱体に成形する程度の、手切れ可能な程度であってもよい。その程度には制限はな ぐ所望により決める。
[0123] 前記区分発熱部を多数、間隔を空けて、連設し、前記区分け部に前記手切れ可能 なミシン目を設けた発熱体は、人体への適用箇所等の使用目的などに基づいて使 用時にそれに応じた適宜なサイズにカットでき、適用できる。
その場合には発熱体のサイズと区分発熱部のサイズと数を適宜に設定すればよい 。それらサイズや数に制限はない。また、区分け部は縦又は横方向や縦及び横方向 、斜め方向などの任意な方向に形成することができる。 [0124] また、少なくとも前記発熱組成物の表面の一部を網状ポリマー等の通気性粘着剤 層により覆ったり、また、前記通気性粘着剤層と被覆材の間に不織布等の敷材を設 けてもよい。
[0125] また、発熱組成物成形体、基材、被覆材及び敷材の少なくとも 1種の全面又はその 一部に加圧処理等をしたり、また、凹凸を形成してもよい。これらにより、基材と被覆 材間での積層体の移動を防止してもよ 、。
[0126] 本発明のミシン目とは、区分け部の曲げ性を上げるために断続的に切断されたもの や手切れが可能なほどに断続的に切断されたものである。その程度、長さ、口径に は制限はなぐ所望により決める。このミシン目はすべての区分け部に設けてもよいし
、部分的に設けてもよい。形状は制限はなぐ円形、楕円形、矩形、正方形、切れ目( 線状)等が一例として挙げられる。例えば、手切れ可能なほどに断続的に切断された ミシン目は口径 φ 10〜1200 /ζ πιの円形の穴が一例として挙げられる。穴の口径は、 より好ましくは φ 20〜500 μ mである。
上記穴は縦横それぞれ整列した位置にあることが好ましい。また、縦横それぞれ隣 り合う穴の外周の最短間の間隔は、曲げ性や手切れ可能性を満足するものであれば 制限はないが、好ましくは 10〜2000 /ζ πιであり、より好ましくは 10〜 1500 mであ り、更【こ好ましく ίま 20〜: LOOO /z mであり、更【こ好ましく ίま 20〜500 mであり、更【こ 好ましくは 20〜200 mである。孔の口径と縦横それぞれ隣り合う穴の外周の最短 間の間隔のバランスにより、手切れ性が著しく向上されるものである。
前記穴が切れ目でもよぐその長さは孔の口径に相当する長さでもよぐそれよりも 大きいものでもよい。縦横それぞれ隣り合う切れ目の端部の最短間の間隔は縦横そ れぞれ隣り合う穴の外周の最短間の間隔に相当する。
例えば、口径 φ 10〜2000 μ mの穴は 10〜2000 μ mの長さであり、縦横それぞ れ隣り合う穴の外周の最短間の間隔 10〜2000 mは、縦横それぞれ隣り合う切れ 目の端部の最短間の間隔 10〜2000 mに相当する。
切れ目の場合、一方向に長くなるので、その長さは長くでき、 io〜5o, 000 μ m-e もよぐ縦横それぞれ隣り合う切れ目の最短間の間隔は、 1〜5, 000 /z mでもよい。
[0127] 固定手段としては、関節周囲部用温熱包装体や発熱部を有するものを所要部に固 定できる固定能力を有するものであれば制限はない。
前記固定手段として一般的に採用されている、粘着剤層、鍵ホック、ホックボタン、 ベルク口等の面ファスナー、マグネット、バンド、ひも等及びそれらを組み合わせたも のを任意に使用できる。
尚、バンドの場合、面ファスナーと粘着剤層との組み合わせで調整用固定手段を 更に構成しても構わない。
ここで、面ファスナーとは、マジックテープ (登録商標)、マジックファスナー(登録商 標)、ベルク口ファスナー、フックアンドループテープ等の商品名で知られているもの で、雌ファスナーであるループと前記雌ファスナー締結し得る雄ファスナーであるフッ クとの組み合わせで締結機能を有するものである。前記ループ機能を有するものとし て、不織布や、毛羽立ち、わなを有する糸の織布等あるが、バンドを形成する芯材の 表面にこれらループ機能 (雌ファスナー機能)を有するものを被覆してもよいが、これ 自体でバンドを構成してもよ!/、。雄ファスナー部材であるフック部材は特に制限はな いが、ポリエチレン、ポリプロピレン等のポリオレフイン系榭脂ゃポリアミド、ポリエステ ル等力 形成されたものがー例として挙げられる。フックの形状は特に限定されるも のではないが、断面が I字型、逆 L字型、 字型、いわゆるきのこ型等の形状のフッ クがループに引つかかり易ぐかつ肌に極度の刺激感を与えない点で好ましい。尚、 フックがファスユングテープの全面積に粘着されていてもよぐ更にテープ基体を省 略してフックのみで、ファスユングテープとして使用してもよい。
前記粘着剤層は、保水剤、吸水性ポリマー、 pH調整剤、界面活性剤、有機ケィ素 化合物、疎水性高分子化合物、焦電物質、酸化防止剤、骨材、繊維状物、保湿剤、 機能性物質又はこれらの混合物力 なる付加的な成分力 選ばれた少なくとも 1種を 含有してちょい。
本発明の粘着剤は、非親水性粘着剤、混合粘着剤、親水性粘着剤 (ジエル等)に 分類される。
前記粘着剤層を構成する粘着剤としては、皮膚や衣服に付着するに必要な粘着力 を有するものであれば、制限はなぐ溶剤系、水性系、ェマルジヨン型、ホットメルト型 、反応性、感圧系、或いは、非親水性粘着剤、親水性粘着剤などの各種形態が用い られる。
前記粘着剤層は、前記非親水性粘着剤から構成される非親水性粘着剤 1層と前記 非親水性粘着剤から構成される非親水性粘着剤層とがある。
前記非親水性粘着剤層が吸水性ポリマーや保水剤を含有して吸水性を改良したも のは非親水性粘着剤層として扱う。
前記親水性粘着剤層と基材又は被覆材との間にホットメルト系の粘着剤を設けても よい。
また、前記親水性粘着剤を関節周囲部用温熱包装体に設ける場合制限はなぐ関 節周囲部用温熱包装体のシール処理後に親水性粘着剤層を関節周囲部用温熱包 装体に設けてもよい。
また、粘着剤層としては、通気性を有するものであっても、通気性を有しないもので あってもよい。用途に応じて適宜選択をすればよい。通気性としては、全体として通 気性があればよい。例えば、部分的に粘着剤が存在し、部分的に粘着剤の存在しな い部分があり、領域全体として通気性がある粘着剤層が一例として挙げられる。 通気性の基材及び Z又は被覆材に粘着剤をそのまま層状に積層するにあたり、そ の通気性を維持する方法としては、例えば、粘着剤を印刷、或いは、転写により、粘 着剤層を部分的に積層し、その非積層部を通気部とする方法と、粘着剤を糸状に円 を描きながら、一方向に移動させたり、ジグザグに移動させたりするなど適宜二次元 方向に運行させ、その糸状の粘着剤の隙間が通気性ないし透湿性を推持させたり、 粘着剤を発泡させる方法やメルトブロー方式で形成された層とがー例として挙げられ る。
非親水性粘着剤層を構成する粘着剤はアクリル系粘着剤、酢酸ビニル系粘着剤 ( 酢酸ビュル榭脂系ェマルジヨン、エチレン—酢酸ビュル榭脂系ホットメルト粘着剤)、 ポリビニルアルコール系粘着剤、ポリビニルァセタール系粘着剤、塩化ビニル系粘着 剤、ポリアミド系粘着剤、ポリエチレン系粘着剤、セルロース系粘着剤、クロ口プレン( ネオプレン)系粘着剤、二トリルゴム系粘着剤、ポリサルファイド系粘着剤、プチルゴ ム系粘着剤、シリコーンゴム系粘着剤、スチレン系粘着剤(例えば、スチレン系ホット メルト粘着剤)、ゴム系粘着剤、シリコーン系粘着剤等が一例として挙げられる。これ らのうち、粘着力が高ぐ安価で、長期安定性が良ぐしかも温熱を与えても粘着力の 低下が少ない等の理由より、ゴム系粘着剤、アクリル系粘着剤又はホットメルト系高分 子物質を含有する粘着剤が望まし ヽ。
前記粘着剤に前記ベースポリマーの他に、所望により、他の成分、例えば、ロジン 類、クマロンインデン榭脂、水添石油榭脂、無水マレイン酸変性ロジン、ロジン誘導 体類又は C5系石油榭脂等の脂環族系石油樹脂に代表される石油榭脂類等の粘着 付与剤やテルペンフエノール系榭脂、ロジンフエノール系榭脂、アルキルフエノール 系榭脂等のフエノール系粘着付与剤 (特にァ-リン点が 50°C以下の粘着付与剤)、 ヤシ油、ヒマシ油、ォリーブ油、ツバキ油、流動パラフィン等の軟化剤、軟化剤、老化 防止剤、充填剤、骨材、粘着調整剤、粘着改良剤、着色剤、消泡剤、増粘剤、改質 剤等が適宜配合し、ナイロン製衣類や混紡布製衣類への粘着性向上等の性能向上 をしてもよい。
前記ホットメルト系の粘着剤としては、粘着性を付与した公知のホットメルト系粘着 剤が挙げられ、具体的には、例えば、 SIS, SBS、 SEBS又は SIPS等の A— B— A 型ブロック共重合体をベースポリマーとするスチレン系粘着剤、塩ィ匕ビュル榭脂をべ ースポリマーとする塩化ビュル系粘着剤、ポリエステルをベースポリマーとするポリェ ステル系粘着剤、ポリアミドをベースポリマーとするポリアミド系粘着剤、アクリル榭脂 をベースポリマーとするアクリル系粘着剤、ポリエチレン、超低密度ポリエチレン、ポリ プロピレン、エチレン αォレフィン、エチレン 酢酸ビュル共重合体等のポリオレフ インをベースポリマーとするポリオレフイン系粘着剤、 1, 2—ポリブタジエンをベース ポリマーとする 1, 2—ポリブタジエン系粘着剤又はポリウレタンをベースポリマーとす るポリウレタン系粘着剤、或いは、接着性の改善や安定性等を変えたこれらの変性体 力もなる粘着剤、若しくはこれらの粘着剤の 2種以上の混合物が挙げられる。また、発 泡させた粘着剤から構成される粘着剤層や粘着剤が架橋されたものから構成される 粘着剤層も使用できる。
前記非芳香族系ホットメルト系粘着剤とは、ベースポリマーが芳香族環を含有しな いホットメルト系粘着剤であれば、制限はない。ォレフィン系ホットメルト系粘着剤ゃァ クリル系ホットメルト系粘着剤等が一例として挙げられる。芳香族環を含有しな 、ベー スポリマーである非芳香族系ポリマーとは、ォレフィンやジェン等のポリマーゃコポリ マーが挙げられる。一例としてォレフィン系ポリマーが挙げられる。ォレフィン系ポリマ 一は、エチレン、 αォレフィンの重合体又は共重合体である。また、他のモノマーとし てブタジエン、イソプレン等のジェンも加えたものもよ 、。
αォレフインとしては、二重結合が末端にあるモノマーであれば制限はなぐプロピ レン、ブテン、ヘプテン、へキセン、オタテン等が一例として挙げられる。
芳香族系ホットメルト系粘着剤とは、ベースポリマーが芳香族環を含有するホットメ ルト系粘着剤で、 Α—Β— Α型ブロック共重合体に代表されるスチレン系のホットメル ト系粘着剤等が一例として挙げられる。
前記 A—B— A型ブロック共重合体において、 Aブロックはスチレン、メチルスチレン 等のモノビニル置換芳香族化合物 Aで、非弾性重合体ブロックであり、 Bブロックはブ タジェン、イソプレン等の共役ジェンの弾性重合体ブロックであり、具体的には、例え ば、スチレン ブタジエン スチレンブロック共重合体(SBS)、スチレン イソプレン スチレンブロック共重合体(SIS)、又はこれらの水添タイプ(SEBS、 SIPS)等が挙 げられ、また、これらを混合して用いてもよい。
上記非親水性粘着剤層の水分増加による粘着力低下防止対策として上記非親水 性粘着剤に更に吸水性ポリマーが配合された粘着剤層も使用できる。
前記親水性粘着剤を構成する親水性粘着剤としては、親水性ポリマーや水溶性ポ リマーを主成分として、粘着性を有し、粘着剤として親水性であれば特に制限はない 前記親水性粘着剤の構成成分としては、ポリアクリル酸等の親水性ポリマーやポリ アクリル酸ナトリウムやポリビニルピロリドン等の水溶性ポリマー、乾燥水酸化アルミ- ゥムゃメタケイ酸アルミン酸金属塩等の架橋剤類、グリセリンやプロピレングリコール 等の軟化剤類、また、軽質流動パラフィンゃポリブテン等の高級炭化水素やミリスチ ン酸イソプロピル等の一級アルコール脂肪酸エステル、シリコーン油等の含ケィ素化 合物、モノグリセリド等の脂肪酸グリセリンエステル、ォリーブ油等の植物油等の油性 成分、また、ノ ラオキシ安息香酸メチルやパラォキシ安息香酸プロピル等の防腐剤、 N—メチル—2—ピロリドン等の溶解剤、カルボキシメチルセルロース等の増粘剤、ポ リオキシエチレン硬化ヒマシ油ゃソルビタン脂肪酸エステル等の界面活性剤、酒石酸 等のォキシカルボン酸、軽質無水ケィ酸、吸水性ポリマー、カオリン等の賦形剤、 D -ソルビトール等の保湿剤、ェデト酸ナトリウムやパラォキシ安息香酸エステルや酒 石酸等の安定化剤、架橋型吸水性ポリマー、ホウ酸等のホウ素化合物、水等が一例 として挙げられる。また、これらの任意の組み合わせ力 構成される。
仮着シール部は、粘着層を介して形成されるが、粘着層を構成する粘着剤は、常 温でタックがある高分子組成物で形成された層で、仮着後ヒートシールができれば限 定はない。
また、仮着に使用される粘着層を構成する粘着剤は前記粘着剤層の粘着剤が使 用できる。非親水性の粘着剤が好ましい。粘着層を構成する粘着剤はヒートシールを 構成するヒートシール材と相溶性が良ぐ粘着剤のベースポリマーの融点はヒートシ 一ル材の融点以下が好ましい。特に、ホットメルト系接着剤にはホットメルト系粘着剤 が好ましい。また、ヒートシール材がォレフイン系の素材である場合は粘着剤としては 、ォレフィン系の粘着剤が好ま 、一例として挙げられる。
通気調整材を固定する接着層は通常使用されている接着剤や粘着剤から構成さ れる。特に粘着剤は有用であり、前記粘着剤層を構成する粘着剤が使用できる。 また、接着層の設ける方法については通気調整材が固定できれば制限はなぐ全 面に設けても、部分的や間欠的に設けてもよい。網状、ストライプ状、ドット状、帯状 等、各種形状が一例として挙げられる。
また、粘着剤層を親水性粘着剤層にした場合、前記親水性粘着剤層と発熱組成物 成形体との間に水分保持力の差がある場合にはその間にある基材等の包材を介し て、水分の移動が起こり、双方に取って、不都合が起こる。特に保存中に多く起こる。 これを防止するために、これらの間に介在する包材は、透湿度が、少なくとも、リツシ 一法 (Lyssy法)による透湿度で、 2g/m2/day以下であることが好ましい。これを使 用することにより、発熱体を非通気性収納袋である外袋に収納し保存する場合、水分 移動が防げる。
粘着剤層に親水性粘着剤層を使用した場合、発熱組成物成形体と親水性粘着剤 層との間に設けられた防湿性包装材の透湿度は、発熱性能に影響しない範囲で、水 分の移動が防止できれば制限はないが、リツシ一法 (Lyssy法)による透湿度で、通 常、 2gZm2Zday以下であり、好ましくは 1. 0gZm2Zday以下であり、より好ましく は 0. 5gZm2Zday以下であり、更に好ましくは 0. 01〜0. 5gZm2Zdayである。こ こで、大気圧下、 40°C、 90%RHという条件下の値である。尚、前記防湿性包装材は 基材ゃ被覆材としても使用できるし、単独で基材ゃ被覆材等に積層してもょ 、。 前記防湿性包材は、発熱組成物成形体と親水性粘着剤層の間の水分移動が防止 できれば、制限はないが、金属蒸着フィルム、金属酸化物の蒸着フィルム、金属箔ラ ミネートフィルム、 EVOH (エチレン 'ビュルアルコール共重合物、エチレン '酢酸ビ- ル共重合体鹼化物)系フィルム、二軸延伸ポリビュルアルコールフィルム、ポリ塩化ビ ユリデンコートフィルム、ポリ塩ィ匕ビユリデンをポリプロピレン等の基材フィルムに塗布 してなるポリ塩ィ匕ビユリデンコートフィルム、アルミニウム箔等の金属箔、ポリエステル フィルム基材にアルミニウム等の金属を真空蒸着やスパッタリングしてなる非通気性 包材、可撓性プラスチック基材の上に、酸化ケィ素、酸ィ匕アルミニウムを設けた構造 の透明バリア性フィルムを使用した包装用積層体が一例として挙げられる。前記外袋 等に使用されて 、る非通気性包材も使用できる。
また、特開平 2002— 200108号公報の防湿性包材等の包材も使用でき、この記 載内容を本発明に組み入れる。
水含有の親水性粘着剤 (ジエル等)を粘着剤層に使用する場合、発熱組成物と前 記粘着剤層の水分平衡を調整するために、発熱組成物中の塩化ナトリウム等の反応 促進剤や吸水性ポリマー等の水分確保力のある物質の含有量を発熱組成物に対し て、 10〜40重量%の範囲で、好ましくは 15〜40重量%の範囲で、更に好ましくは 1 5〜30重量%の範囲で調整してもよ!/、。
また、透湿性がよぐ皮膚への刺激性が低い粘着剤としては、特開平 10— 265373 号公報、特開平 9 87173号公報等の含水粘着剤 (親水性粘着剤、ジエル)ゃ特開 平 6— 145050号公報、特開平 6— 199660号公報に記載されているホットメルト塗 ェできる粘着剤ゃ特開平 10— 279466号公報ゃ特開平 10— 182408号公報に記 載されているゴム系粘着剤も有用であり、本各文献を引用し、全文を本明細書に組 み入れる。 前記粘着剤層に含ませる機能性物質としては、機能を有する物質であれば制限は ないが、芳香化合物、植物エキス、生薬、香料、スリム化剤、鎮痛剤、血行促進剤、 むくみ改善剤、抗菌剤、殺菌剤、防かび剤、消臭剤、脱臭剤、経皮吸収性薬剤、脂 肪分解成分、マイナスイオン発生体、遠赤外線放射体、磁気体、湿布剤、化粧料、 竹酢液又は木酢液等カゝら選ばれた少なくとも一種を一例として挙げられる。
具体的には、メントール、ベンツアルデヒド等の芳香族化合物、ョモギエキス等の植 物エキス、モグサ等の生薬、ラベンダー、ローズマリー等の香料、アミノフィリン、茶ェ キス等のスリム化剤、インドメタシン、 dl—カンフル等の鎮痛剤、酸性ムコポリサッカラ イド、力ミツレ等の血行促進剤、セィヨウトチンキ、フラボン誘導体等のむくみ改善剤、 ホウ酸水、生理的食塩水、アルコール水等の湿布剤、タイソゥ抽出液、カフェイン、ト ナリン等の脂肪分解成分、アロエエキス、ビタミン剤、ホルモン剤、抗ヒスタミン剤、ァ ミノ酸類等の化粧料、石炭酸誘導体、ホウ酸、ョード剤、逆性石鹼、サリチル酸系の 物質、ィォゥ、抗生物質等の抗菌剤や殺菌剤、或いは、防かび剤が一例として挙げ られる。
経皮吸収性薬剤としては、経皮吸収性のものであれば特に限定されるものではな いが、コルチコステロイド類、消炎鎮痛剤、高血圧剤、麻酔剤、催眠鎮静剤、精神安 定剤、抗菌性物質、抗真菌物質、皮膚刺激剤、炎症抑制剤、抗てんかん剤、鎮痛剤 、解熱剤、麻酔剤、殺菌剤、抗微生物抗生物質、ビタミン類、抗ウィルス剤、むくみ改 善剤、利尿剤、血圧降下剤、冠血管拡張剤、鎮咳去痰剤、スリム化剤、抗ヒスタミン 剤、不整脈用剤、強心剤、副腎皮質ホルモン剤、血行促進剤、局所麻酔剤、脂肪分 解成分等及びそれらの混合物が一例として挙げられるが、これらに限定されない。こ れら薬物は、 1種又は必要に応じて 2種以上配合されて用いられる。
この機能性物質の含有量としては、薬効を期待できる範囲であれば特に限定され るものではないが、薬理効果や経済性、更に、粘着力等の観点より、機能性物質の 含有量が粘着剤 100重量部に対して、好ましくは 0. 01〜25重量部、更に好ましくは
0. 5〜 15重量部である。
また、粘着剤層の設ける方法については関節周囲部用温熱包装体が固定できれ ば制限はなぐ全面に設けても、部分的や間欠的に設けてもよい。網状、ストライプ状 、ドット状、帯状等、各種形状が一例として挙げられる。
[0128] 前記発熱体を構成する基材、被覆材、粘着剤層、セパレータにおいて、少なくとも それらの 1種又はその一部に文字、図柄、記号、数字、模様、写真、絵、着色部のい ずれ力 1種以上を設けてもよ!、。
[0129] 前記発熱体を構成する前記基材、被覆材、粘着剤層、セパレータにおいて、それ ぞれは透明、不透明、着色、無着色等如何なるものでもよい。また、各材及び層のそ れぞれを構成する層のうち少なくとも 1層を構成する層が他の層と異なる色に着色さ れた着色部を有して 、てもよ 、。
[0130] 本発明の発熱体は、各種形状、厚み、温度帯が得られるため、通常の身体採暖用 の外、温灸用、足等の履物内用、関節用、美顔用、目用、温熱湿布用、薬剤カイロ 用、頸部用、腰用、マスク、手袋、痔瘻用、肩用、座布団用、芳香用、腹部用、蒸散 殺虫用、酸素吸収用、癌治療用等の各種用途やペットや機械類等の保温に用いる ことができる。
[0131] また、前記発熱体の使用法としては、例えば、治療を必要とする人の痛みのある身 体の部位に発熱体を適用し、皮膚の温度や、維持時間を治療を必要とする人によつ て適切に選択して、快適に、実質的に苦痛を緩和するようにして、急性、再発性、慢 性の、筋肉の痛み、骨格の痛み、又は関連した痛みによる苦痛を治療する使用例が 一例として挙げられる。
[0132] 発熱体の製造方法は制限はないが、次の様な製造方法が一例として挙げられる。
1)充填方式
接着剤や縫製加工やヒートシール方式等の適宜な方式で基材の端部や間仕切り 箇所を結合して袋体を形成し、発熱組成物をその袋体に充填し、その後袋体端を接 着する方法である。一例として、
充填方式による分室化された発熱体の製造方法としては、例えば長尺の基材と、 目的とする間仕切り部分及び基材の周縁をヒートシールできる回転式の加熱圧着器 を用いて、その加熱圧着器を介し対向配置した長尺基材の縁部及び間仕切り部分 の必要箇所をヒートシールしつつ、形成された基材間の空隙力 なる分室に通気発 熱性の発熱体を供給して封入処理し、その封入処理でカイロ端を接着しつつ次の分 室の形成を開始する連続形成方法などである。
2)ポケット方式
特表平 11 508786号公報に開示されているように、予め基材に熱成形、機械的 エンボス、真空エンボス又は他の許容し得る手段によりポケットを造っておき、前記ポ ケットに発熱組成物及びその圧縮体等を充填し、更に別の基材で、そのポケットを覆 い、 2つの基材の周囲を結合し、発熱体を製造する方法である。
3)成形方式
抜き型を使った型通し成形法ゃ铸込み型を使った铸込み成形法により、所望の形 状に成形性発熱組成物を成形し、収納用ポケットを有しない、実質的に平面状の基 材等に、その成形体を積層し、更に別の基材を被せ、シールして発熱体を製造する 方法である。
ここで、型通し成形法とは、抜き型を使用し、長尺の基材の上に型の抜き形状の発 熱組成物成形体を積層する成形機とそれを長尺の被覆材で覆い、目的とする区分 け部分及び基材と被覆材の周辺部をシール (ヒートシールや圧着シールや熱圧着シ ール等)できる回転式のシール器を用いて、そのシール器を介し、発熱組成物成形 体の周辺部及び区分け部分の必要箇所をヒートシールし、封入処理する連続形成 方法である。
また、铸込み成形法とは凹部を有する铸込み型への充填と基材への移設により、 発熱組成物成形体を長尺基材上へ積層する成形法である。
連続式の場合は、ドラム状回転体による凹部への充填と基材への移設により、発熱 組成物成形体を長尺基材上へ積層する成形機と、それを長尺の被覆材で覆い、目 的とする区分け部分及び基材と被覆材の周辺部をシール (ヒートシールや圧着シー ルゃ熱圧着シール等)できる回転式のシール器を用いて、そのシール器を介し、発 熱組成物成形体の縁部及び区分け部分の必要箇所をヒートシールし、封入処理す る連続形成方法などである。
また、上記方法及びその他方法を使った本発明の発熱組成物使用の発熱体製造 には、磁石を使用してもよい。磁石を利用すると、発熱組成物の袋体や型内への収 容ゃ、その成形体の型からの離脱が容易にでき、発熱組成物成形体の成形や発熱 体の製造がより容易になる。
[0133] 本発明において、通気調整材とは、区分発熱部と区分け部とからなり、高低差のあ る発熱部を粘着層等を介して覆 ヽ、区分発熱部への通気性を調整するものである。 即ち、通気調整材は、前記区分発熱部と区分け部との高低差を利用して、発熱部を 通気調整材で覆うことにより、少なくとも区分発熱部の周縁部の一部に仕切られた空 間を形成し、外部と区分発熱部との間の通気性を調整し、合わせて保温効果も付与 する。
通気調整材の通気性は、少なくとも、区分発熱部の周縁部の一部に空気溜まりや 通気調整ができれば制限はないが、発熱組成物成形体を被覆する被覆部である区 分発熱部の通気面の通気性より低くすることが好まし 、。
また、穿孔等で、通気調整材の局部領域に発熱組成物成形体を被覆する被覆部 の通気性よりも通気性の高い領域を設け、他の領域は前記区分発熱部の通気面の 通気性より通気性を低く保つようにしてもよい。これにより、空気等の通気路を制御で きる。
通気調整材を構成する素材は、化学カイロや発熱体の基材、被覆材及び発熱体を 密封収納するための非通気性収納袋に使用される包材に使用される素材が使用で きるが、化学カイロや発熱体に使用される粘着剤が好ましい。
[0134] 本発明の発熱体は、各種形状、厚み、温度帯のものが得られるため、通常の身体 採暖用の外、関節用、美顔用、目用、痩身用、点滴液加温 ·保温用、温熱湿布用、 薬剤カイロ用、頸部用、腰用、マスク用、手袋用、痔瘻用、或いは、肩痛、筋肉痛、生 理痛等の症状緩和用、座布団用、手術中の人体加温'保温用、温熱シート用、蒸散 芳香用、腹部用、蒸散殺虫用、癌治療用等の各用途に用いることができる。更に、機 械類ゃペット等への加温 ·保温用等へ利用できる。
[0135] 例えば、症状緩和用として使用する場合は、本発明の発熱体を身体の必要部位に 直接あてがうか、布等を介して間接的にあてがう。また、手術中の人体加温'保温用 として使用する場合は、
1.加温 ·保温を必要とする身体に発熱体を直接あてがう 2.カバー等に発熱体を固 定して身体にかける 3.身体の下側に敷く敷物等に発熱体を固定する 4.予め、発熱 体を備える製品としてのカバーや敷物として使用する等の使用方法が一例として挙 げられる。尚、筋肉や骨格等の痛みとは、急性筋肉痛、急性骨格痛、急性関連痛、 既往筋肉痛、既往骨格痛、慢性関連痛、膝や肘等の関節痛等が一例として挙げら れる。
前記維持時間は制限はないが、好ましくは 20秒〜 24時間であり、より好ましくは 1 時間〜 24時間であり、更に好ましくは 8時間〜 24時間である。
維持温度は、好ましくは 30〜50°Cであり、より好ましくは 32〜50°Cであり、更に好 ましくは 32〜43°Cであり、更に好ましくは 32〜41°Cであり、更に好ましくは 32〜39 °Cである。
[0136] 次に本発明を実施例により具体的に説明するが、本発明はこれらにより限定される ものではない。
図面の簡単な説明
[0137] [図 1]本発明の発熱体の一実施例の平面図
[図 2]同 Z— Zの断面図
[図 3]本発明の発熱組成物の発熱特性図
[図 4]本発明の発熱体の発熱特性図
[図 5]本発明の発熱体の他実施例の断面図
[図 6]本発明の発熱体の他実施例の断面図
[図 7]本発明の発熱体の他実施例の斜視図
[図 8]本発明の発熱体の他実施例の平面図
[図 9]本発明の発熱体の他実施例の平面図
[図 10]本発明発熱体の擦り切り板を用いた型通し成形の模式図
[図 11]同擦り切り板近傍の説明図
[図 12]本発明発熱体の押し込み擦り切り板を用いた型通し成形の模式図
[図 13]本発明の易動水値測定用濾紙の平面図
[図 14]本発明の易動水値測定を説明するための斜視図
[図 15]同断面図
[図 16]同断面図 圆 17]本発明の易動水値測定実施後の濾紙の平面図 符号の説明
1 発熱体
1B 区分発熱部
2 発熱組成物成形体
3 基材
3A ポリエチレンフィルム
3B 不織布
4 被覆材
4A 多孔質フィルム
4B 不織布
6 区分け部
7 ミシン目
8 粘着剤層
8A 親水性粘着剤層
9 セノ レータ
10 図柄
11 ダイス
11a ダイスの穴
12 型
12a 型穴
13 磁石
14 押し込み板
15 擦り切り板
15A 押し込み擦り切り板
16 平板
17 非吸水性フィルム(ポリエチレンフィルム等)
18 中心点から放射状に 45度間隔で 8本の線がかかれた濾紙 19 型板
20 穴
21 試料
22 ステンレス板
23 水又は溶液の浸みだし先端までの距離
24 濾紙上の中空円筒状の穴相当位置
実施例
[0139] (実施例 1)
酸ィ匕性ガス接触処理装置として撹拌用の回転翼を備えたミキサーカゝらなる撹拌付 きバッチ式酸化性ガス接触処理装置を使用し、酸化性ガスとして空気を用いた。 まず、還元鉄粉 (粒度 300 m以下) 100重量部、活性炭 (粒度 300 m以下) 3. 5重量部、 11%食塩水 5重量部からなる、易動水値 0. 01未満の反応混合物を撹拌 付きバッチ式酸化性ガス接触処理装置に入れた。次に、 25°Cの環境下、前記酸ィ匕 性ガス接触処理装置の上部は開放形で、空気中に開放した状態で、攪拌しながら、 自己発熱させ、 20秒後に 30°Cになった時点で、前記反応混合物を非通気性収納袋 に密封し、室温になるまで放置し、本発明の発熱混合物を得た。
次に、前記発熱混合物に 11%食塩水を加え、混合し、易動水値が 8の発熱組成物 を得た。
[0140] (比較例 1)
実施例 1と同様の反応混合物に対し酸化性ガス接触処理を行なわず、前記反応混 合物に 11重量%の食塩水を加え、易動水値 8の発熱組成物を得た。前記発熱組成 物を使用し、実施例 1と同ようにして発熱体を得た。
[0141] 実施例 1及び比較例 1の発熱組成物について、発熱組成物発熱試験を行った。
結果は図 3の曲線に見られるごとぐ実施例 1の発熱組成物は 1分後で約 35°Cで、 3分後で約 55°C (5個の平均)であった。
比較例 1の発熱組成物は、 1分後、 23°Cで、 3分後の温度は 28°C (5個の平均)で あり、比較例 1は実施例 1に比べ著しく昇温速度は遅力つた。
[0142] 実施例 比較例 1の試験結果から、実施例 1で作成した発熱組成物は発熱立ち 上がり性に優れて 、ることが確認できた。
[0143] (実施例 2)
酸ィ匕性ガス接触処理装置として撹拌用の回転翼を備えたミキサーカゝらなる撹拌付 きバッチ式酸化性ガス接触処理装置を使用し、酸化性ガスとして空気を用いた。 鉄粉 (粒度 300 m以下) 100重量部、活性炭 (粒度 300 m以下) 5. 5重量部、 木粉 (粒径 150 m以下) 2. 3重量部、吸水性ポリマー (粒度 300 m以下) 2. 3重 量部、消石灰 0. 5重量部、亜硫酸ナトリウム 0. 7重量部、 11%食塩水 10重量部から なる、易動水値 0. 01未満の反応混合物を前記攪拌付きバッチ式酸化性ガス接触処 理装置に入れた。
次に、 20°Cの環境下、前記酸化性ガス接触処理装置の上部は開放形で、空気中 に開放した状態で、攪拌しながら、自己発熱させ、 20秒で 27°Cになった時点で、非 通気性収納袋に前記接触処理済み反応混合物を密封し、室温になるまで放置し、 本発明の発熱混合物を得た。
次に、前記発熱混合物に 11%食塩水を加え、混合し、易動水値が 8の発熱組成物 を得た。
[0144] この発熱組成物の発熱組成物発熱試験を行ったところ、実施例 1と同様な結果が 得られた。
[0145] また、発熱組成物の成形性試験を行ったところ、発熱組成物成形体から抜き型を 分離しても、前記発熱組成物成形体の形崩れもなぐ前記発熱組成物成形体の周辺 部に前記発熱糸且成物成形体の崩れ片も生じな力つた。
[0146] 次に、図 1及び図 2に示すように、ポリエチレンフィルム 3Aに粘着材層 3B及びセパ レータ 3Cが設けられた非通気性の基材 3を用い、そのポリエチレンフィルム 3A側上 に、厚さ 2mmの抜き型を使用して、厚さ 2mm、縦 115mm、横 80mmの平面が直方 形状の発熱組成物成形体 2を成形し、基材 3上に積層した。更に、その上に、ナイ口 ン製不織布 4Aとポリエチレン製多孔質フィルム 4Bが積層された通気性包装材を被 覆材 4に用い、ポリエチレンフィルム面 3Aと多孔質フィルム 4B面が互いに接するよう にして重ね合わせて、シール幅 8mmで発熱組成物成形体の周縁部をヒートシール 6 Aし、長さ 135mm、幅 100mm、シール幅 8mmの矩形状の凹凸状発熱体 1を作成し た。
尚、被覆材 4の通気性はリツシ一法の透湿度で、 370gZm2Z24hrであった。 その発熱体を非通気性外袋に密封収納し、 24時間、室温で放置した。身体による 発熱試験を行ったが、 3分後に、温力べ感じ、その後 10時間以上、温かかった。
[0147] (比較例 2)
実施例 2と同様の反応混合物に対し酸化性ガス接触処理を行なわず、前記反応混 合物に 11重量%の食塩水を加え、易動水値 8の発熱組成物を得た。発熱組成物の 発熱試験を行ったところ、比較例 1と同様の結果が得られた。また、前記発熱組成物 を使用し、実施例 2と同様にして発熱体を得た。
[0148] 実施例 2と比較例 2について発熱体の発熱試験を行ったところ、図 4に示す様に、 実施例 2の場合は、 10分後、 40°C、 30分後、 50°Cで、 3時間後、 58°Cであったが、 比較例 2の場合は、 10分後、 35°C、 30分後、 45°Cで、 3時間後、 55°Cであった。明 らかに本発明の発熱組成物を使用した発熱体の発熱立ち上がり性は優れていた。
[0149] 図 5は、実施例 2の基材 3をセパレータ 9付き SIS系粘着剤層 7を有する基材 3に代 えた発熱体 1の断面図である。
図 6は、実施例 2の基材をセパレータ 9付き親水性粘着剤層 8を有する基材 3に代 えた発熱体 1の断面図である。前記親水性粘着剤層を構成する親水性粘着剤はポリ アクリル酸 4. 5重量%、ポリアクリル酸ナトリウム 1. 5重量%、カルボキシメチルセル口 一スナ卜リウム 4. 0重量部、グリセリン 15. 0重量0 /0、プロピレングリコール 5. 0重量0 /0 、ソルビトール 10. 0重量0 /0、水酸化アルミニウム 0. 1重量0 /0、合成ヒドロタルサイト 0 . 05重量%、ポリオキシエチレングリコール 1. 0重量%、その他は水力もなる組成物 である。
図 7は発熱体 1に表示 10を設けた例である。
[0150] (実施例 3)
実施例 1で得た発熱混合物に、反応混合物換算で、鉄粉 100重量部に対して、吸 水性ポリマー (粒径 300 μ m以下) 2. 3重量部、木粉 (粒径 300 μ m以下) 2. 3重量 部、亜硫酸ナトリウム 0. 7重量部、水酸ィ匕カルシウム (粒径 300 m以下) 0. 2重量 部からなるの混合物を加え、混合後、 11%食塩水 30重量部を加え、更に混合し、発 熱組成物を得た。易動水値は 0. 01未満であった。
[0151] この発熱組成物の発熱組成物発熱試験を行!、、合計 5個のデータを得た。
測温結果は実施例 1と同様に、 3分後で約 50°C (5個の平均)であった。 また、発熱組成物の成形性試験を行い、発熱組成物成形体から抜き型を分離して も、前記発熱組成物成形体の形崩れもなぐ前記発熱組成物成形体の周辺部に前 記発熱組成物成形体の崩れ片も生じな力つた。
[0152] 次に、上記図 6を用いて説明したように、ポリエチレンフィルム 3Aに粘着材層 8及び にセパレータ 9が設けられた非通気性包材を基材 3とし、ナイロン製不織布 4Aと多孔 質ポリエチレンフィルム 4Bがその順に積層された通気性包装材を被覆材 4として用 い、長さ 135mm X幅 100mmの包材片を各々から作成し、シール幅 8mmで 3方をヒ 一トシールした矩形状の通気性扁平状収納袋を作成した。前記扁平状収納袋に前 記発熱組成物を 25g充填し、ヒートシールしていない辺をヒートシールして、長さ 135 mm、幅 100mm、シール幅 8mmの矩形状の扁平状発熱体 1を作成した。尚、被覆 材 4の通気性はリツシ一法の透湿度で、 370gZm2Z24hrであった。その発熱体を 非通気性外袋に密封収納し、 24時間、室温で放置した。
[0153] その発熱体を非通気性外袋に密封収納し、 24時間、室温で放置した。 24時間後 に外袋から発熱体を取り出し、発熱試験を行った。
30分後の温度が 50°Cであり、 40°C以上の温度が 10時間以上続いた。
[0154] (実施例 4)
易動水値を 5とした以外は実施例 3と同様の発熱組成物を得た。
この発熱組成物の発熱組成物発熱試験を行った。
測温結果は、 3分後で約 49°C (5個の平均)であった。
実施例 3と同様の基材、被覆材を用いて、型通し成形にて、基材上に長さ 125mm X幅 90mmの矩形状の発熱組成物成形体を成形積層した。次に、通気性の被覆材 を被せ、発熱組成物成形体の周辺部をヒートシールして、シール幅 8mmで、長さ 13 5mm X幅 100mmの長方形状の発熱体を作成した。
その発熱体を非通気性外袋に密封収納し、 24時間、室温で放置した。 24時間後 に外袋から発熱体を取り出し、発熱試験を行った。 30分後の温度が 52°Cであり、 40°C以上の温度が 10時間以上続いた。
[0155] (実施例 5)
実施例 3で作成した発熱組成物 25gをセパレータで保護された粘着剤層付きの通 気性収納袋に収納し、 8mmのシール幅で、発熱体の周辺部をシールし、縦 130mm X横 80mmの長方形状の扁平の発熱体を作成し、非通気性の外袋に封入した。通 気性収納袋の通気部の通気性はリツシ一法の透湿度で、 400gZm2Z24hrであつ た。
24時間後、前記外袋力 発熱体を取り出し、身体による発熱試験を行ったが、 3分 で、温かく感じ、その後 10時間以上、温かかった。
[0156] (実施例 6)
鉄粉 (粒度 300 m以下) 100重量部、活性炭 (粒度 300 m以下) 6. 5重量部、 吸水性ポリマー (粒度 300 m以下) 3重量部、消石灰 0. 5重量部、亜硫酸ナトリウム 0. 7重量部、 11%食塩水 10重量部からなる、易動水値 0. 01未満の 30°C環境下の 反応混合物を攪拌付きバッチ式酸化性ガス接触処理装置に入れた。投入時の反応 混合物の温度は 20°Cであった。
次に、前記酸化性ガス接触処理装置容器の上部は開放形で、空気中に開放した 状態で、撹拌しながら、 1分後、 40°Cになった時点で、 11%食塩水を加え、攪拌混 合を 10秒間行い、易動水値 10の発熱組成物とした。実施例 6と同様にして発熱体を 作成し、発熱試験を行ったが実施例 5と同様の結果が得られた。
[0157] また、発熱組成物の成形性試験を行ったところ、発熱組成物成形体から抜き型を 分離しても、前記発熱組成物成形体の形崩れもなぐ前記発熱組成物成形体成形 体の周縁部に前記発熱組成物成形体の崩れ片も生じな力つた。
[0158] (実施例 7)
酸ィ匕性ガス接触処理装置として撹拌用の回転翼を備えたミキサー力もなるバッチ式 攪拌付きバッチ式酸化性ガス接触処理装置を使用し、酸化性ガスとして空気を用い ポリマー (粒度 300 /z m以下) 2. 3重量部、消石灰 0. 5重量部、亜硫酸ナトリウム 0. 7重量部、 8%食塩水 10重量部力もなる、易動水値 0. 01未満の発熱混合物を接触 処理装置容器内に充填した。
次に、 20°C環境下、接触処理装置容器の上部は開放形で、空気中に開放した状 態で、攪拌しながら、 自己発熱させ、 3分で 50°Cになった時点で 8%食塩水を加え、 15秒攪拌し、易動水値 8の発熱組成物を得た。
前記酸化性ガス接触処理発熱混合物に 11%食塩水を加え、水分調整した後に混 合し、易動水値 8の発熱組成物を得た。次に、上記図 6を用いて説明したように、ポリ エチレンフィルム 3Aに粘着材層 8及びにセパレータ 9が設けられた非通気性包材を 基材 3として用い、そのポリエチレンフィルム側上に、一辺 15mmの正方形状抜き穴 1 2個カゝらなる、厚さ 2mmの抜き型を使用して型通し成形により、厚さ 2mm、一辺 25m mの正方形状発熱組成物成形体 12個を基材上に積層した。更にその上に、ナイ口 ン製不織布 4Aとポリエチレン製多孔質フィルム 4Bが積層された通気性包装材を被 覆材 4に用い、前記ポリエチレンフィルム面と多孔質フィルム面が互いに接するように して重ね合わせて、各正方形状発熱組成物成形体の周辺部をシール幅 5mmでヒー トシールし、区分け部 6を作成し、発熱体周辺部をシール幅 8mmでヒートシールし、 12個の区分発熱部 1Bからなる、外寸 131mm X 101mmの発熱体 1を作成した(図 8)。
また、発熱組成物成形体から抜き型を分離しても、前記発熱組成物成形体のかたく ずれもなく、前記発熱組成物成形体の周縁部に前記発熱組成物成形体の崩れ片も 生じず、シール部へ前記発熱組成物成形体の崩れ片の混入もなくシールも完璧行う ことができ、シール不良も起こらな力つた。成形性は良好であった。
尚、被覆材 4の通気性はリツシ一法の透湿度で 370gZm2Z24hrであった。
その発熱体 1を非通気性外袋に密封収納し、 24時間、室温で放置した。 24時間後 に外袋から発熱体を取り出し、身体発熱試験を行ったが、 3分で、温カゝく感じ、 34°C 以上の発熱維持時間は 8. 5時間であった。使用前中後にわたり、発熱体の柔軟性 が保たれた。本発熱体の区分け部 6の下の粘着剤層は区分発熱部 1 Bの下の粘着 剤層より粘着力は弱い。 [0159] 図 9は、シール部 6を凹凸模様シールにし、シール部に、手切れ可能なミシン目 7を 設けた例である
[0160] (実施例 8)
実施例 3の水分調整のみ変えて、同様にして、易動水値 25の発熱組成物を得た。 また、前記成形性の測定法により、前記発熱組成物の成形性を測定したが発熱組成 物成形体の崩れ片が見られず成形性を有する発熱組成物であった。
次に、ライナー紙 (厚さ 300 μ m)の片面に、厚さ 40 μ mの非通気性ポリエチレンフ イルムを貼り合わせた非通気性包材を基材して、前記基材のライナー紙上に、厚さ 2 mm、長さ 120mm、幅 84mmの長方形の抜き穴を有する抜き型を用いた型通し成 形にて前記発熱組成物を成形し、積層し、発熱組成物成形体を得た。発熱組成物 成形体の周縁部に発熱組成物成形体の崩れ片はなく成形性は良好であった。 更にその上に、スチレン イソプレン スチレンブロック共重合体系の粘着性ポリマ 一をメルトブロー法にて網状に設けた網状粘着剤層をポリエチレン製多孔質フィルム 側に設けた被覆材を前記被覆材の網状粘着剤層面と発熱組成物成形体が互いに 接するようにして重ね合わせて、前記発熱組成物成形体周縁部を圧着シールによつ て封着し、周囲を切断し、長さ 136mm、幅 100mm、シール幅 8mmの矩形状の扁 平状発熱体を製造し、非通気性収納袋である外袋に密封し、 24時間静置した。 ここで、前記被覆材は厚さ 30 μ mのクラフト紙、厚さ 50 μ mのポリエチレン製多孔 質フィルム、厚さ 150 mのナイロン不織布をこの順で積層したものを用いた。前記 網状粘着剤層はクラフト紙上に設けた。尚、被覆材の通気性はリツシ一法の透湿度 で、 650gZmソ 24hrであった。
[0161] また、 24時間後、前記外袋力 発熱体を取り出し、身体試験を行ったが、 3分で温 力べ感じ、温力べ感じる時間は 8時間と長力つた。
[0162] (実施例 9)
図 10は、擦り切り板 15を用いた型通し成形法の一例を示す。
即ち、幅 130mmのロールフィルム状の基材 3を、厚さ lmmで、型の中央に所望の 形状が抜かれた成形用の型 12と合わせて、上面にダイス 11、下面に磁石 13を配す ようにそれらの間を所定の速度で水平に送る。前記型 12の上面より、実施例 5の発 熱組成物 2をダイス 11の穴 11aを通して、型穴 12aに送り込む。発熱組成物 2Bは進 行方向前方に置かれた擦り切り板 15により、型 12と面一に擦り切られると共に、型穴 12aに収納され、厚さ 1. 5mmの形状が基材 3上に成形される。その後、その型 12を 外し、基材 3上に積層された発熱組成物成形体が得られる。
図示されていないが、その後、前記発熱組成物成形体の表面に、スチレン イソプ レン スチレンブロック共重合体 (SIS)系の粘着性高分子をメルトブロー法にて網状 に設け、被覆材を被せ、前記発熱組成物成形体の周縁部をヒートシールによって封 着し、所望形状に裁断することにより、所望の形状を持つ発熱体が得られる。更に、 裁断された発熱体は、引き続いて包装工程に送り込まれ、気密性を有する外袋内に 封入される。また、上記擦り切り板を押し込み擦り切り板に代えても同様の成形が可 能である。
図 11は、擦り切り板 15を示し、図 12は押し込み擦り切り板 15Aを示す。
尚、押し込み擦り切り機能を維持すれば、押し込み擦り切り板の先端部をトリムして 丸み、即ち、アールをつける等の如何なる変形をしてもよい。

Claims

請求の範囲
[1] 鉄粉、反応促進剤及び水を必須成分とし、含水量が 0. 5〜20重量%で、余剰水 量を示す易動水値が 0. 01未満の反応混合物を、 0°C以上の環境下、酸化性ガスと 接触させ、 10分以内に反応混合物の温度上昇分を 1°C以上にすることを特徴とする 発熱混合物の製造方法。
[2] 前記反応促進剤と水の合計量 100重量部に対し、前記反応促進剤量が 2〜6重量 部であることを特徴とする請求項 1に記載の発熱混合物の製造方法。
[3] 前記反応混合物を、不織布等の通気性シート状物の中に埋設し、前記酸化性ガス との接触処理を行うことを特徴とする請求項 1に記載の発熱混合物の製造方法。
[4] 請求項 1に記載の製造方法により製造されたことを特徴とする発熱混合物。
[5] 請求項 4に記載の発熱混合物を原料とし、水分調整をし、鉄粉、炭素成分、反応促 進剤、水を必須成分として含有し、易動水値が 0. 01〜20であることを特徴とする発 熱組成物。
[6] 前記発熱組成物が、保水剤、吸水性ポリマー、 pH調整剤、水素発生抑制剤、骨材 、繊維状物、機能性物質、界面活性剤、有機ケィ素化合物、焦電物質、保湿剤、肥 料成分、疎水性高分子化合物、発熱助剤、鉄以外の金属、酸化鉄以外の金属酸ィ匕 物、酸性物質又はこれらの混合物カゝらなる付加的な成分カゝら選ばれた少なくとも 1種 を含有することを特徴とする請求項 5に記載の発熱組成物。
[7] 請求項 5に記載の前記発熱組成物を通気性収納袋に収納し発熱部を形成したこと を特徴とする発熱体。
[8] 前記収納した発熱組成物が発熱組成物成形体であることを特徴とする請求項 7〖こ 記載の発熱体。
[9] 前記通気性収納袋が基材と通気性の被覆材とから構成され、前記発熱組成物が 複数に区分され、前記発熱組成物の周縁部をシールすることにより、複数の区分発 熱部を形成していることを特徴とする請求項 7に記載の発熱体。
[10] 前記発熱組成物成形体、前記区分発熱部及び前記発熱部から選ばれた少なくとも 1種の形状が、平面形状で、円形状、楕円形状、多角形状、星形状、花形状、立体 形状では、多角錐形状、円錐形状、錐台形状、球形状、平行六面体形状、円筒体形 状、半円柱体形状、半楕円柱体形状、蒲鋅形状体、円柱体形状、楕円柱体形状の 群から選ばれた形状であることを特徴とする請求項 8に記載の発熱体。
前記発熱体の露出面の少なくとの一部に、固定手段を設けたことを特徴とする請求 項 7に記載の発熱体。
PCT/JP2005/012998 2004-07-14 2005-07-14 発熱混合物の製造方法、発熱混合物、発熱組成物及び発熱体 WO2006006645A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002573272A CA2573272A1 (en) 2004-07-14 2005-07-14 Process for producing heat generating mixture, heat generating mixture, heat generating composition, and heat generating body
US11/632,124 US20080283036A1 (en) 2004-07-14 2005-07-14 Process for Producing Heat Generating Mixture, Heat Generating Mixture, Heat Generating Composition, and Heat Generating Body
JP2006529112A JPWO2006006645A1 (ja) 2004-07-14 2005-07-14 発熱混合物の製造方法、発熱混合物、発熱組成物及び発熱体
EP05765809A EP1782780A4 (en) 2004-07-14 2005-07-14 PROCESS FOR PREPARING AN EXOTHERMIC MIXTURE, EXOTHERMIC MIXTURE, EXOTHERMIC COMPOSITION AND EXOTHERMIC ARTICLES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004207826 2004-07-14
JP2004-207826 2004-07-14

Publications (1)

Publication Number Publication Date
WO2006006645A1 true WO2006006645A1 (ja) 2006-01-19

Family

ID=35783981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012998 WO2006006645A1 (ja) 2004-07-14 2005-07-14 発熱混合物の製造方法、発熱混合物、発熱組成物及び発熱体

Country Status (5)

Country Link
US (1) US20080283036A1 (ja)
EP (1) EP1782780A4 (ja)
JP (1) JPWO2006006645A1 (ja)
CA (1) CA2573272A1 (ja)
WO (1) WO2006006645A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0268578A2 (en) 1983-06-30 1988-05-25 E.B. Eddy Forest Products Limited Improvements in air conveyor components
CN105662845A (zh) * 2016-03-30 2016-06-15 青岛明药堂医疗股份有限公司 一种艾灸热磁理疗贴
CN110101502A (zh) * 2019-05-30 2019-08-09 湖北普爱药业有限公司 一种透气均匀的发热包
JP2020514431A (ja) * 2016-12-13 2020-05-21 フォエバー ヤング インターナショナル、 インク. 発熱性の膨張性組成物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9193588B2 (en) * 2006-02-01 2015-11-24 Tilak Bommaraju Hydrogen elimination and thermal energy generation in water-activated chemical heaters
CA2751675A1 (en) * 2009-01-07 2010-07-15 University Of South Florida Sustained modulation of temperature of self heating chemical system
EP3639918B1 (en) * 2009-07-26 2024-09-04 Forever Young International, Inc. Expandable exothermic gel-forming composition
CN102946832B (zh) * 2010-06-18 2015-08-19 花王株式会社 发热器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628266A (en) * 1979-08-15 1981-03-19 Matsushita Electric Ind Co Ltd Pyrogenic composition
JPS57166156A (en) * 1981-04-04 1982-10-13 Dainippon Jochugiku Kk Exothermic composition
JPS57200317A (en) * 1981-06-02 1982-12-08 Teijin Ltd Heat-generating composition
JPH01201253A (ja) * 1988-02-05 1989-08-14 Japan Pionics Co Ltd シート状発熱体
JPH07265347A (ja) * 1994-03-30 1995-10-17 Yukio Komatsu 発熱体の製造方法
JP2002155273A (ja) * 2000-11-21 2002-05-28 Kaoru Usui 発熱組成物及びこれを用いた発熱体並びにこの発熱体の製造方法
JP2003102761A (ja) * 2001-09-28 2003-04-08 Kao Corp 発熱成形体の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE22660E (en) * 1945-08-07 Method of and means for waving haie
US3976049A (en) * 1973-07-04 1976-08-24 Asahi Kasei Kogyo Kabushiki Kaisha Structure of warmer
US4080953A (en) * 1976-12-08 1978-03-28 Minnesota Mining And Manufacturing Company Electrochemical heating device
JPS5835706B2 (ja) * 1979-04-19 1983-08-04 株式会社 ケミツク 使用時に水を添加して発熱させる化学かいろ
US5084986A (en) * 1987-12-22 1992-02-04 Mycoal Warmers Company Limited Disposable warmer holder
JPH02149272A (ja) * 1988-11-30 1990-06-07 Maikoole Kairo Kk 使いすてカイロ
US5117809A (en) * 1991-03-04 1992-06-02 Mainstream Engineering Corporation Flameless heater product for ready-to-eat meals and process for making same
DE69619111T2 (de) * 1995-06-29 2002-10-31 The Procter & Gamble Company, Cincinnati Wärmezellen
US7235187B2 (en) * 2000-07-13 2007-06-26 The Procter & Gamble Company Methods and apparatuses for delivering a volatile component via a controlled exothermic reaction
JP2003129041A (ja) * 2001-10-25 2003-05-08 Maikooru Kk 発熱組成物及びこれを用いた発熱体並びにこの発熱体の製造方法
JP2004208978A (ja) * 2002-12-27 2004-07-29 Mycoal Products Corp 発熱組成物及び発熱体
US20040178384A1 (en) * 2003-03-13 2004-09-16 Kaoru Usui Heat-generating composition, heater made using heat-generating composition, and process for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628266A (en) * 1979-08-15 1981-03-19 Matsushita Electric Ind Co Ltd Pyrogenic composition
JPS57166156A (en) * 1981-04-04 1982-10-13 Dainippon Jochugiku Kk Exothermic composition
JPS57200317A (en) * 1981-06-02 1982-12-08 Teijin Ltd Heat-generating composition
JPH01201253A (ja) * 1988-02-05 1989-08-14 Japan Pionics Co Ltd シート状発熱体
JPH07265347A (ja) * 1994-03-30 1995-10-17 Yukio Komatsu 発熱体の製造方法
JP2002155273A (ja) * 2000-11-21 2002-05-28 Kaoru Usui 発熱組成物及びこれを用いた発熱体並びにこの発熱体の製造方法
JP2003102761A (ja) * 2001-09-28 2003-04-08 Kao Corp 発熱成形体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1782780A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0268578A2 (en) 1983-06-30 1988-05-25 E.B. Eddy Forest Products Limited Improvements in air conveyor components
CN105662845A (zh) * 2016-03-30 2016-06-15 青岛明药堂医疗股份有限公司 一种艾灸热磁理疗贴
JP2020514431A (ja) * 2016-12-13 2020-05-21 フォエバー ヤング インターナショナル、 インク. 発熱性の膨張性組成物
JP7291625B2 (ja) 2016-12-13 2023-06-15 フォエバー ヤング インターナショナル、 インク. 発熱性の膨張性組成物
CN110101502A (zh) * 2019-05-30 2019-08-09 湖北普爱药业有限公司 一种透气均匀的发热包

Also Published As

Publication number Publication date
CA2573272A1 (en) 2006-01-19
US20080283036A1 (en) 2008-11-20
JPWO2006006645A1 (ja) 2008-05-01
EP1782780A4 (en) 2009-01-14
EP1782780A1 (en) 2007-05-09

Similar Documents

Publication Publication Date Title
JP4527724B2 (ja) 発熱体及び型成形発熱体用包材
WO2006006653A1 (ja) マイクロヒーター及びその製造方法
WO2006006654A1 (ja) ヒートクロス及びその製造方法
WO2006006652A1 (ja) 発熱体
WO2006006648A1 (ja) 発熱組成物、発熱体及び発熱体の製造方法
JP4490971B2 (ja) 発熱体
JPWO2006006655A1 (ja) 発熱パッド及びその使用方法
WO2004061045A1 (ja) 発熱組成物及び発熱体
JPWO2006006650A1 (ja) 発熱体及び発熱体の製造方法
WO2006006658A1 (ja) 足温用発熱体及び足温用発熱体の製造方法
WO2006006662A1 (ja) 発熱体
US20070267583A1 (en) Heat Generating Body and Process for Producing the Same
JPWO2006006647A1 (ja) 活性鉄粉及び発熱体
WO2006006645A1 (ja) 発熱混合物の製造方法、発熱混合物、発熱組成物及び発熱体
WO2006006657A1 (ja) 関節周囲部用温熱包装体
WO2006006665A1 (ja) 発熱組成物及び発熱体
WO2006006663A1 (ja) 温灸器
JPWO2006006646A1 (ja) 活性鉄粉、発熱組成物及び発熱体
WO2006006649A1 (ja) 湿潤性発熱組成物圧縮体、発熱体及び湿潤性発熱組成物圧縮体の製造方法
WO2006006660A1 (ja) 発熱ラップ
WO2006006659A1 (ja) 発熱パック及びその使用方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2573272

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005765809

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2006529112

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2005765809

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11632124

Country of ref document: US