WO2006004096A2 - 固体撮像装置 - Google Patents

固体撮像装置 Download PDF

Info

Publication number
WO2006004096A2
WO2006004096A2 PCT/JP2005/012352 JP2005012352W WO2006004096A2 WO 2006004096 A2 WO2006004096 A2 WO 2006004096A2 JP 2005012352 W JP2005012352 W JP 2005012352W WO 2006004096 A2 WO2006004096 A2 WO 2006004096A2
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
pixel
imaging device
state imaging
solid
Prior art date
Application number
PCT/JP2005/012352
Other languages
English (en)
French (fr)
Other versions
WO2006004096A3 (ja
WO2006004096A1 (ja
Inventor
Shigetaka Kasuga
Takumi Yamaguchi
Takahiko Murata
Original Assignee
Matsushita Electric Ind Co Ltd
Shigetaka Kasuga
Takumi Yamaguchi
Takahiko Murata
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Ind Co Ltd, Shigetaka Kasuga, Takumi Yamaguchi, Takahiko Murata filed Critical Matsushita Electric Ind Co Ltd
Priority to CN200580022718XA priority Critical patent/CN1981517B/zh
Priority to US11/571,461 priority patent/US7667171B2/en
Priority to JP2006528891A priority patent/JP4279880B2/ja
Publication of WO2006004096A2 publication Critical patent/WO2006004096A2/ja
Publication of WO2006004096A1 publication Critical patent/WO2006004096A1/ja
Publication of WO2006004096A3 publication Critical patent/WO2006004096A3/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/76Circuitry for compensating brightness variation in the scene by influencing the image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/616Noise processing, e.g. detecting, correcting, reducing or removing noise involving a correlated sampling function, e.g. correlated double sampling [CDS] or triple sampling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • H04N25/627Detection or reduction of inverted contrast or eclipsing effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements

Definitions

  • the present invention relates to a solid-state imaging device mounted on a PDA such as a video camera, a digital camera, or a mobile phone, and does not detect a saturation signal level when shooting a high-luminance subject.
  • the present invention relates to a technique for avoiding a phenomenon that a black image is detected where a signal level or a negative level is detected and a white image should be obtained.
  • a circuit configuration for detecting the accumulated charge of the photoelectric conversion element PD in the pixel portion and its timing are roughly classified as a type AMI-type solid-state imaging device and a floating diffusion amplifier.
  • FIG. 1 is a diagram showing a configuration of an AMI type solid-state imaging device.
  • the solid-state imaging device 900 includes a plurality (two in the figure) of pixel portions lOanl, 10an2 arranged two-dimensionally, and a plurality (in the figure, one) common column provided for each column.
  • Each pixel unit lOanl, 10an2 includes a photoelectric conversion element PD that converts incident light into electric charges, a reset transistor Q12a that initializes the power sword of the photoelectric conversion element PD to the power supply voltage VDD by a RES ET pulse, and photoelectric conversion From the voltage conversion amplification transistor Q 13a that detects the charge of the element PD, and the row selection transistor Q14 that transfers the voltage output from the voltage conversion amplification transistor Q 13a by the VSEL pulse to the common column signal line Ln for each row.
  • a photoelectric conversion element PD that converts incident light into electric charges
  • a reset transistor Q12a that initializes the power sword of the photoelectric conversion element PD to the power supply voltage VDD by a RES ET pulse
  • photoelectric conversion From the voltage conversion amplification transistor Q 13a that detects the charge of the element PD
  • the row selection transistor Q14 that transfers the voltage output from the voltage conversion amplification transistor Q 13a by the VSEL pulse to the common column signal line Ln for
  • the sample and hold transistor Q31 samples and holds the voltage output to the common column signal line Ln by the SH pulse.
  • the noise signal elimination circuit 40 is also operated by the clamp transistor Q42, the clamp capacitor C41, and the sample hold capacitor C42.
  • the photoelectric conversion element detected by each pixel unit lOanl, 10an2 By taking the difference between the PD initialization voltage and the voltage detected by the charge according to the amount of light
  • the signal component from which the noise component is eliminated is detected.
  • FIG. 2 is a diagram showing the drive timing of the solid-state imaging device 900 of FIG.
  • the row selection transistor Q14 of the pixel portion lOanl is turned on by the VSEL pulse, and then the sample hold transistor Q31 is turned on by the SH pulse at time t2, and during the period from time t3 to time t4, The clamp transistor Q42 of the noise signal elimination circuit 40 is turned ON by the CP pulse.
  • the RESET pulse of the pixel unit lOanl is turned on.
  • the accumulated charge of the photoelectric conversion element PD of the pixel unit lOanl is converted into the voltage conversion amplification transistor Q of the pixel unit lOanl.
  • the signal is held in the sample hold capacitance C42 of the noise signal elimination circuit 40 via 13a.
  • the holding signal at this time is assumed to be voltage A.
  • the reset transistor Q12a is turned on by the RESET pulse, the photoelectric conversion element PD is initialized to the power supply voltage VDD level, and then the sample hold transistor Q31 is turned off by the SH pulse t7 Within the period up to, the initialization level of the photoelectric conversion element PD is held again in the sample hold capacitor C42 of the noise signal removal circuit 40 via the voltage conversion amplification transistor Q13a.
  • the holding signal at this time is assumed to be voltage B.
  • the noise signal removal circuit 40 the accumulated signal component installed in the two-dimensional imaging region from which the noise signal component is removed is detected by subtracting the voltage A held earlier and the voltage B held later.
  • the row selection transistor Q14 is turned off by the VSEL pulse, so that the charge detection operation for one row of the photoelectric conversion elements PD installed in the two-dimensional imaging region is completed.
  • FIG. 3 is a diagram showing a configuration of an FDA type solid-state imaging device.
  • the solid-state imaging device 950 is configured using pixel units lObnl and 10bn2 instead of the pixel units lOanl and 10an2.
  • Each pixel unit lObnl, 10bn2 includes a transfer transistor Q11 that reads out charges from the photoelectric conversion element PD, and a floating diffusion FD that temporarily stores charges, in addition to the components of the pixel units lOanl, 10an2.
  • the reset transistor Q12a initializes the floating diffusion FD to the power supply voltage VDD, and the voltage conversion amplification transistor Q13a detects the voltage of the accumulated charge in the floating diffusion FD.
  • FIG. 4 is a diagram showing the drive timing of the solid-state imaging device 950.
  • the initialization level of the floating diffusion FD is held in the sample hold capacitor C42 of the noise signal elimination circuit 40 via the voltage conversion amplification transistor Q13a.
  • the holding signal at this time is assumed to be voltage C.
  • the transfer transistor Q11 is turned ON by the TRANS pulse, the accumulated charge of the photoelectric conversion element PD is transferred to the floating diffusion FD, and then the sample hold transistor Q31 is turned OFF by the SH pulse t7
  • the charge accumulated in the floating diffusion FD of the pixel portion lObnl is held in the sample hold capacitor C42 of the noise signal removal circuit 40 via the voltage conversion amplification transistor Q13a within the period up to.
  • the holding signal at this time is assumed to be voltage D.
  • the noise signal elimination circuit 40 detects the accumulated signal component installed in the two-dimensional imaging area from which the noise signal component has been removed by subtracting the voltage C held earlier and the voltage D held later. .
  • the row selection transistor Q14 is turned off by the VSEL pulse, whereby the charge detection operation for one row of the photoelectric conversion elements PD installed in the two-dimensional imaging region is completed.
  • the MOS type solid-state imaging device as described above cannot detect a high-luminance portion as a saturation signal level when shooting with a high-luminance illuminant such as sunlight as a background. There is a phenomenon of detecting as no signal level.
  • FIGS. Fig. 5 and Fig. 6 show the pixel unit lOanl called (AMI type).
  • Fig. 5 shows the case where normal charge detection is performed with the incident light as the standard light amount.
  • Fig. 6 shows the incident light as the standard light amount. This is the case where abnormal charge detection is performed with a light intensity that is 200,000 times higher than the above.
  • FIG. 5 (a) shows a potential diagram of the pixel portion lOanl in the period from time t3 to time t5 in FIG.
  • FIG. 5B shows a potential diagram of the pixel portion lOanl in the period from time t5 to time t6 in FIG.
  • the photoelectric conversion element PD is initialized to the power supply voltage VDD level.
  • FIG. 5 (c) shows a potential diagram of the pixel portion lOanl in the period from time t6 to time t7 in FIG.
  • the photoelectric conversion element PD is kept initialized to the power supply voltage VDD level, and this level is held in the noise signal removal circuit 40 via the voltage conversion amplification amplifier of the pixel section lOanl.
  • the holding signal at this time is assumed to be voltage B.
  • the noise signal elimination circuit 40 the difference between the previously held voltage A and the later held voltage B can be obtained to detect the accumulated signal component installed in the two-dimensional imaging area from which the noise signal component has been removed. It will be.
  • FIG. 6 (a) shows a potential diagram of the pixel portion lOanl in the period from time t3 to time t5 in FIG.
  • the accumulated charge of the photoelectric conversion element PD is held in the noise signal removal circuit 40 via the voltage conversion amplifier of the pixel portion lOanl.
  • the holding signal at this time is assumed to be voltage A.
  • FIG. 6B shows a potential diagram of the pixel portion lOanl in the period from time t5 to time t6 in FIG.
  • the photoelectric conversion element PD is initialized to the power supply voltage VDD level.
  • FIG. 6 (c) shows a potential diagram of the pixel portion lOanl in the period from time t6 to time t7 in FIG.
  • the photoelectric conversion element PD is initialized to the power supply voltage VDD level. I can keep it!
  • the incident light is a bright light that is 200,000 times or more the standard light amount
  • immediately after the photoelectric conversion element PD is initialized to the power supply voltage VDD level, that is, immediately after the time t6 when the RESET pulse of the pixel 1 Oanl is turned off.
  • the noise signal elimination circuit 40 via the voltage conversion amplification amplifier of the pixel unit 10an 1.
  • the holding signal at this time is assumed to be voltage B
  • the difference between the voltage A held earlier and the voltage B held later in the noise signal elimination circuit 40 is 0 or minus, and the noise signal component is removed 2 It becomes impossible to detect the accumulated signal component installed in the dimensional imaging area.
  • FIG. 7A shows a potential diagram of the pixel portion lObnl in the period from time t3 to time t4 in FIG.
  • the reset transistor Q12a is turned on by the RESET pulse of the pixel part lObnl to initialize the charge detection part (floating diffusion) of the pixel part lObnl to the power supply voltage VDD level.
  • FIG. 7B shows a potential diagram of the pixel portion lObnl in the period from time t4 to time t5 in FIG.
  • the charge detection unit (floating diffusion) of the pixel unit lObnl is kept initialized to the power supply voltage VDD level, and is held in the noise signal elimination circuit 40 via the voltage conversion amplifier transistor Q13a of the pixel unit lObnl. ing.
  • the holding signal at this time is assumed to be voltage C.
  • FIG. 7C shows a potential diagram of the pixel portion lOanl in the period from time t5 to time t7 in FIG.
  • the noise signal removal circuit 40 the accumulated signal component installed in the two-dimensional imaging region from which the noise signal component is removed is obtained by differentiating the voltage C held earlier and the voltage D held later. It can be detected.
  • FIG. 8 (a) shows a potential diagram of the pixel portion lObnl in the period from time t3 to time t4 in FIG.
  • the reset transistor Q12a is turned on by the RESET pulse to initialize the charge detection part (floating diffusion) of the pixel part lObnl to the power supply voltage VDD level.
  • FIG. 8B shows a potential diagram of the pixel portion lObnl in the period from time t4 to time t5 in FIG.
  • the charge detection part (floating diffusion) of the pixel part lObnl can be kept initialized to the power supply voltage VDD level.
  • the incident light is a high-intensity light quantity 200,000 times or more of the standard light quantity
  • the potential of the photoelectric conversion element PD region is greatly lowered, and the charge detection section (flowtain) (Giffusion) Region force also creates a path for current flow.
  • FIG. 8C shows a potential diagram of the pixel portion lObnl in the period from time t5 to time t7 in FIG.
  • the transfer transistor Q11 is turned ON by the TRANS pulse of the pixel unit lObnl
  • the charge detection of the pixel unit lObnl is already performed because the accumulated charge equal to or higher than that at the time of the photoelectric conversion element PD force saturation accumulation flows.
  • the voltage level of the part drops, and this voltage level is held in the noise signal elimination circuit 40 via the voltage conversion amplifier transistor Q13a of the pixel part lObnl.
  • this held signal is assumed to be voltage D, the difference between the previously held voltage C and the later held voltage D will be 0 or minus, and it will not be installed in the two-dimensional imaging area where the noise signal component has been removed. The accumulated signal component cannot be detected (see Patent Document 1).
  • the pixel output signal is detected by a signal processing circuit and corrected.
  • a method of adding such information has been proposed (see Patent Document 2).
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-46865 (Pages 1-8, Fig. 1)
  • the present invention has been made in view of the above-described problems, and follows variations in the threshold value of the transistor that always occur in the manufacturing process, and can be corrected in real time even during multi-pixel high-speed continuous shooting. Since a solid-state image sensor can be incorporated with a relatively simple circuit, a high-intensity part is normally detected as a saturated signal level by using a signal processing element or a correction circuit that does not need to be transferred to the circuit. Therefore, an object of the present invention is to provide an S-type solid-state imaging device that generates a natural captured image.
  • a pixel unit arranged one-dimensionally or two-dimensionally, and a pixel output output from the pixel unit to a common column signal line
  • a voltage level detecting means for detecting a voltage
  • a column for outputting a predetermined voltage to the horizontal output means based on the logic output voltage of the voltage level detecting means and the pixel output voltage.
  • Signal processing means, and the column signal processing means outputs either a voltage corresponding to the pixel output voltage or a fixed voltage according to the logic output voltage.
  • the output signal level of the pixel unit can be immediately determined inside the solid-state imaging device, and the signal at the time of high-luminance incidence can be corrected, and a high-speed correction process by a separate signal processing circuit can be performed. It becomes unnecessary.
  • the column signal processing means includes noise signal removal means for receiving the pixel output voltage and outputting a voltage to the horizontal output means, and the noise signal The removing unit may output a difference between the pixel output voltage when the pixel unit is initialized and the pixel output voltage when the pixel unit is accumulated.
  • the noise of each pixel unit included in the pixel output signal output to the pixel unit force common column signal line is deleted by performing correlated double sampling by the noise signal removing unit. be able to.
  • the column signal processing unit further includes a voltage control unit, and when the column signal processing unit outputs the fixed voltage, the pixel unit is initialized. Instead of the pixel output voltage at the time, a predetermined initialization voltage is input to the voltage control means power to the noise signal removal means.
  • the voltage control unit includes an initialization voltage generation unit that generates the same voltage as the pixel output voltage at the time of initialization of the pixel unit, and the initial stage. It is characterized by comprising replacement means for reproducing the initialization state of the pixel portion by inputting the initialization voltage generated by the activation voltage generation means to the common column signal line.
  • the initialization voltage generating means is configured by the same transistor in the same element, the same potential as the initialization voltage in the pixel portion causes transistor threshold variation due to the manufacturing process. Since it can be generated accurately without being affected, the correction accuracy can be increased.
  • the voltage control means uses the charge detection period to the pixel signal force noise signal removing means performed within a horizontal blanking period as an operation period, and performs the operation It is characterized by being set to the non-operational state except for the period.
  • the current consumed by the correction circuit can be significantly reduced.
  • the voltage level detection unit includes a saturation voltage generation unit that generates the same voltage as the pixel output voltage at the time of saturation accumulation of the pixel unit; And determining means for comparing the saturation voltage generated by the saturation voltage generating means with the pixel output voltage.
  • the saturation voltage generating means is configured by the same transistor in the same element, the same voltage as the saturation voltage in the pixel portion is caused by the manufacturing process. Since it can be generated accurately without being influenced by variations in the transistor threshold, it is possible to immediately and accurately determine whether or not the pixel portion has high luminance incidence.
  • the saturation voltage generating unit is formed outside the region of the pixel unit, and the determining unit is provided for each common column signal line. It is a feature that characterizes this.
  • a high-intensity portion that occurs when a high-luminance illuminant such as sunlight is photographed in the background is detected as a no-signal level rather than being detected as a saturation signal level.
  • the phenomenon is not affected by transistor threshold variations that always occur during the manufacturing process, and can be corrected in real time even during high-speed continuous shooting with multiple pixels, and can be incorporated into a solid-state image sensor with a relatively simple circuit.
  • the high-intensity part is normally output as a saturated signal level, and a solid-state image that generates natural images without failure is generated.
  • FIG. 2 is a diagram showing drive timing of the solid-state imaging device 900 of FIG.
  • FIG. 5 is a potential diagram of the solid-state imaging device 900 during normal operation.
  • FIG. 8 is a potential diagram of the solid-state imaging device 950 at the time of high-luminance incidence.
  • FIG. 12 is a diagram showing the drive timing of the MOS type solid-state imaging device 1.
  • FIG. 15 is a diagram showing a circuit configuration of a MOS type solid-state imaging device 3 in which the voltage control circuit 60 is embodied.
  • FIG. 17 is a diagram showing a circuit configuration of the MOS type solid-state imaging device 4 in which the power consumption of the voltage control circuit 60 is reduced.
  • FIG. 19 is a diagram showing a circuit configuration of an FDA-type MOS solid-state imaging device 5.
  • FIG. 10 is a circuit schematic diagram of the solid-state imaging device according to Embodiment 1 of the present invention.
  • the MOS type solid-state imaging device 1 has a plurality (two in the figure) of pixel units lOanl arranged in a two-dimensional manner, similar to the solid-state imaging device 900. , 10a n2, a plurality (one in the figure) of common column signal lines Ln provided for each column, a load transistor Q21a connected to each common column signal line Ln, and a common column signal line Ln.
  • a voltage level detection circuit 50, a voltage control circuit 60, and a horizontal output circuit 90 are further provided. Composed.
  • the voltage level detection circuit 50 detects the voltage output from the voltage conversion amplification transistor Q 13a to the common column signal line Ln.
  • the voltage control circuit 60 directly controls the voltage of the common column signal line Ln based on a signal from the voltage level detection circuit 50. More specifically, the voltage control circuit 60 has the power to set the voltage of the common column signal line Ln to the voltage output from the voltage conversion amplification transistor Q13a according to the logic level output as the comparison result of the voltage level detection circuit 50. Control whether to replace with a predetermined voltage.
  • the column signal processing circuit 80 is configured by the sample-and-hold transistor Q31, the noise signal removal circuit 40, and the voltage control circuit 60.
  • the voltage force determined in advance is the same as the voltage at the time of initialization of the photoelectric conversion element, at the time of initialization of the photoelectric conversion element that does not appear on the common column signal line at the time of high luminance incidence Thus, the voltage change of the photoelectric conversion element can be normally detected.
  • a predetermined voltage corresponds to the output voltage of the noise signal removal circuit at the time of saturation accumulation of the photoelectric conversion element, that is, the input to the horizontal output circuit 90.
  • the saturation level correction is forcibly applied to the output part of the noise signal removal circuit even if the voltage at the time of initialization of the photoelectric conversion element does not appear on the common column signal line at the time of high luminance incidence.
  • FIG. 12 is a diagram showing the drive timing of the MOS type solid-state imaging devices 1 and 7.
  • This timing represents an example of the timing at which the voltage level detection circuit 50 and the voltage control circuit 60 become active for the charge detection of the AMI type photoelectric conversion element PD by the pixel unit lOanl.
  • the voltage control circuit 60 that determines direct control of the voltage output from the voltage conversion amplification transistor Q13a for each column based on the signal from the voltage level detection circuit 50 is a photoelectric conversion element PD that is performed within the horizontal blanking period. Only the charge detection period up to the force noise signal elimination circuit 40 is set as a necessary operation period, and it is set to a non-operation state except the necessary operation period.
  • the output signal of the photoelectric conversion element can be immediately determined while reducing power consumption, and the voltage of the common column signal line corresponds to the voltage output from the amplifier circuit and the initialization voltage of the photoelectric conversion element.
  • the voltage can be corrected to any one of the voltages.
  • FIG. 13 is a diagram showing a circuit configuration of the MOS type solid-state imaging device 2 in which the voltage level detection circuit 50 is specifically implemented. In the figure, the horizontal output circuit 90 and the like are not shown.
  • the voltage level detection circuit 50 includes an individual unit 501 provided for each column and a common unit 502 provided in common for the MOS type solid-state imaging device.
  • the common unit 502 includes a saturation voltage generation initialization transistor Q51a, a reset transistor Q12b configured in the same size and in the same manner as the reset transistor Q12a of the pixel unit lOanl, and a voltage control circuit input unit initialization. It has a transistor Q52 and functions as a saturation voltage generation circuit that generates the same potential as the saturation voltage in the photoelectric conversion element PD.
  • the individual unit 501 includes a voltage level detection transistor Q13b having the same manufacturing method and the same size as the voltage conversion amplification transistor Q13a of the pixel unit lOanl, and is connected to the common column signal line from the voltage conversion amplification transistor Q13a. Based on the output voltage and a voltage corresponding to the same potential as the saturation voltage generated by the common unit 502, it functions as a determination circuit that determines high-luminance incidence in the photoelectric conversion element PD. [0095] The drain of the voltage level detection transistor Q13b is generated by the common column signal line Ln, its source is generated by the input of the voltage control circuit 60, and its gate is generated by the saturation voltage generating initialization transistor Q51a and the reset transistor Q12b. The correct voltage level is input.
  • FIG. 14 is a diagram showing drive timing of the MOS type solid-state imaging device 2 of FIG.
  • the saturation voltage generation initialization transistor Q51a is turned ON by the RSVSS pulse, and the voltage is controlled by the RSVDD noise. Turn on the initialization transistor Q52 for circuit input.
  • the saturation voltage of the photoelectric conversion element PD is input to the gate of the voltage level detection transistor Q13b, and the power supply voltage VDD is input to the source.
  • the voltage level input to the gate of the voltage level detection transistor Q13b is the same as the level determined when the gate of the reset transistor Q12a that initializes the photoelectric conversion element PD is OFF. This is because the voltage level stored in the photoelectric conversion element PD when an incident light is input is determined by the threshold value when the gate of the reset transistor Q 12a is turned off, and does not become a lower voltage level. When the drain is the power supply voltage VDD and the source is the floating node, this corresponds to the source potential determined when the gate of the reset transistor Q12a is turned off. As a result, the photoelectric conversion element Since level detection can be performed without unnecessarily sweeping away the saturated charge accumulated in the child PD, the dynamic range can be utilized to the maximum.
  • FIG. 15 is a diagram showing a circuit configuration of the MOS type solid-state imaging device 3 in which the voltage control circuit 60 is specifically implemented. In the figure, the horizontal output circuit 90 and the like are not shown.
  • the voltage control circuit 60 includes an individual unit 601a provided for each column and a common unit 602 provided in common to the MOS type solid-state imaging device.
  • the common unit 602 includes a reset transistor Q12c formed in the same size and the same manufacturing method as the reset transistor Q12a of the pixel unit lOanl for generating an initialization voltage, and a GND for resetting to a GND level for generating a saturation voltage. It consists of a level setting transistor Q5 lb, a detection transistor Q13c whose gate is the generated initialization voltage or saturation voltage, and a load transistor Q21b that forms a source follower circuit.
  • the initialization voltage of the photoelectric conversion element PD is Functions as an initialization voltage generation circuit that generates the same voltage level as the output common column signal line Ln.
  • the individual unit 601a includes a common column signal line connection transistor Q61 whose gate changes to a low level due to high luminance incidence, an inverter circuit INV that receives the source of the voltage level detection transistor Q13b, and an output of the inverter circuit INV.
  • the correction signal line connection transistor Q62 connecting the common column signal line Ln and the detection signal output Ls correction signal line Ls, and the transistor connecting the gate of the correction signal line connection transistor Q62 and the output of the inverter circuit INV Q63, and the same voltage generated by the common unit 602 is input to the common column signal line Ln.
  • it functions as a replacement circuit that replaces the initialization voltage of the photoelectric conversion element PD.
  • the output voltage of the voltage control circuit (the gate of the correction signal line connection transistor Q62) becomes a logical high level, and connects the correction signal line Ls and the common column signal line Ln. .
  • the common column signal line connection transistor Q61 simultaneously changes to the gate force SLow level due to high-intensity incidence, so that the output of the common column signal line Ln with the two-dimensional imaging region force is cut off.
  • the voltage of the correction signal line Ls that is, the same voltage as the common column signal line Ln from which the saturation voltage of the photoelectric conversion element PD is output is replaced with the original output of the common column signal line Ln to remove the noise signal. Input to circuit 40.
  • the saturation voltage and initialization voltage of the photoelectric conversion element PD are connected to the correction signal line Ls.
  • the force that generates the same voltage as the common column signal line Ln from which the voltage is output is because the voltage level accumulated in the photoelectric conversion element PD immediately after saturation is the same as when the gate of the reset transistor is turned off.
  • the voltage level stored in the photoelectric conversion element PD immediately after initialization is determined by the threshold value, and is a force determined by the threshold value when the gate of the reset transistor is turned on.
  • a photoelectric conversion element PD group is separately provided in addition to the two-dimensional imaging region.
  • the same voltage level as that of the photoelectric conversion element PD in the two-dimensional imaging region can be input because the same voltage as that of the common column signal line Ln from which the conversion voltage is output is generated. Therefore, it is possible to input an accurate voltage level regardless of the threshold value variation of the transistor that always occurs in the manufacturing process.
  • the voltage control circuit 60 is activated only during the charge detection period up to the noise signal elimination circuit 40 during the horizontal blanking period, and is deactivated during other horizontal scanning periods. By setting, power consumption can be reduced. A specific example is shown in FIG.
  • FIG. 17 is a diagram showing a circuit configuration of the MOS type solid-state imaging device 4 in which the power consumption of the voltage control circuit 60 is reduced. Also in this figure, the illustration of the horizontal output circuit 90 and the like is omitted.
  • the individual unit 601b of the voltage control circuit 60 includes a current reduction transistor Q64 disposed between the input of the inverter circuit INV and the ground, and a correction signal line connection transistor Q62. And a current reduction transistor Q 65 disposed between the gate and the ground.
  • FIG. 18 is a diagram showing the drive timing of the MOS type solid-state imaging device 4 of FIG.
  • the current reduction transistor Q64 is turned ON by the voltage control circuit current reduction pulse A at the time tOO, and the input terminal of the voltage control circuit 60 is logically set. Set to low potential. As a result, the current path of the subsequent inverter circuit INV is interrupted. Next, from time tO to time t8, the photoelectric conversion element in Embodiment 1 is used. After the charge detection operation of the child PD is completed, the current reduction transistor Q65 is turned on by the voltage control circuit current reduction pulse B, and the voltage control circuit output voltage (gate of the correction signal line connection transistor Q62) is logically leveled.
  • Charge detection in the floating diffusion amplifier type with the function of transferring the accumulated charge from the photoelectric conversion element PD to the charge detection unit (floating diffusion) as the potential at the photoelectric conversion element PD that converts the incident light into charges.
  • the potential of the part (floating diffusion) can also be applied.
  • FIG. 19 shows a circuit diagram
  • FIG. 19 is a diagram showing a circuit configuration of the FDA-type MOS solid-state imaging device 5. In the figure, the horizontal output circuit 90 and the like are not shown.
  • the accumulated charge of the photoelectric conversion element PD is transferred to the floating diffusion FD once by the transfer transistor Q11, and the potential of the floating diffusion is output as a voltage by the voltage conversion amplification transistor Q13a.
  • Fig. 20 shows the timing when there is high-intensity incidence.
  • the RSVSS pulse and RSVDD pulse are turned ON.
  • the saturation voltage of the photoelectric conversion element PD is input to the gate of the voltage level detection transistor Q13b, and the power supply voltage VDD is input to the source.
  • the row selection transistor Q14 is turned on by the VSEL pulse of the pixel unit lOanl at time tl, a signal appears on the common column signal line Ln via the voltage conversion amplification transistor Q13a of the pixel unit 10a nl.
  • the input of the voltage control circuit 60 is the power supply voltage VDD voltage (logically high), which is equivalent to the voltage level output to the common column signal line Ln, and is logically low.
  • VDD voltage logically high
  • the voltage control circuit output voltage becomes logically high, and the voltage of the correction signal line Ls is connected to the common column signal line Ln.
  • the common column signal line connection transistor Q61 has its gate changed to a low level due to high luminance incidence, so that the output of the common column signal line Ln from the two-dimensional imaging region force is cut off.
  • the reset transistors Q12a and Q12c are turned on by the RESET pulse at time t3
  • the voltage of the correction signal line Ls that is, the same voltage as the common column signal line Ln from which the initialization voltage of the photoelectric conversion element PD is output is originally
  • the common column signal line Ln is replaced with the output from the common column signal line Ln and input to the noise signal elimination circuit 40.
  • the RSVSS pulse At time t3, after being clamped as an initialization signal by the CP pulse inside the noise signal elimination circuit 40, at time t5, at the timing when the accumulated signal level of the photoelectric conversion element PD is detected, the RSVSS pulse generates saturation voltage.
  • the correction signal line Ls has the same voltage as the voltage level of the common column signal line Ln from which the saturation voltage of the photoelectric conversion element PD is output. As a result, it is replaced with the original common column signal line Ln output and input to the noise signal elimination circuit 40.
  • time t6 correlated double sampling is performed in the noise signal removal circuit 40, and charge detection of the normal photoelectric conversion element PD from which noise is removed can be performed.
  • Charge detection in the floating diffusion amplifier type with the function of transferring the accumulated charge from the photoelectric conversion element PD to the charge detection unit (floating diffusion) as the potential at the photoelectric conversion element PD that converts the incident light into charges.
  • the initialization voltage of the part (floating diffusion) can also be applied.
  • FIG. 21 shows a circuit diagram
  • FIG. 21 is a diagram showing a circuit configuration of the FDA-type MOS solid-state imaging device 6. In the figure, the horizontal output circuit 90 and the like are not shown. [0132] The difference from the MOS type solid-state imaging device 4 is that the AMI type force of the pixel portion is also the FDI type. That is, in the pixel unit lObnl, the accumulated charge of the photoelectric conversion element PD is transferred to the floating diffusion FD by the transfer transistor Q11, and the potential of the floating diffusion FD is converted to a voltage by the voltage conversion amplification transistor Q13a and output. Is.
  • Figure 22 shows the timing in the case of high-intensity incidence.
  • the current reduction transistor Q64 is turned ON by the current reduction pulse A for the voltage control circuit, and the input terminal of the voltage control circuit 60 is set to the logically low potential. As a result, the current path of the subsequent inverter circuit INV is interrupted.
  • the RSVSS pulse and RSVDD pulse are turned ON. As a result, the saturation voltage of the photoelectric conversion element PD is input to the gate of the voltage level detection transistor Q13b, and the power supply voltage VDD is input to the source.
  • the row selection transistor Q14 of the pixel unit lObnl When the row selection transistor Q14 of the pixel unit lObnl is turned on by the VSEL pulse at time tl, a signal appears on the common column signal line Ln via the voltage conversion amplification transistor Q13a of the pixel unit lObnl, but high-intensity incident light is input. In this case, the voltage level output to the common column signal line Ln is drastically reduced, and the charge passes through the gate of the voltage level detection transistor Q13b, which is the source potential of the voltage level detection transistor Q13b.
  • the input of the voltage control circuit 60 is the power supply voltage VDD voltage (logically high), which is equivalent to the voltage level output to the common column signal line Ln, and logically goes to the low potential. And change.
  • the output signal level of the pixel unit is instantly set inside the solid-state image sensor by the MOS-type image sensor 403 realized by the solid-state image sensor. It is possible to realize a high-quality camera that can determine the position of the object and correct the signal at the time of high-intensity incidence.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

 太陽光などの高輝度発光体を背景にした撮影した場合に無信号レベルとして検出してしまう現象を防止する。  入射光を電荷に変換する光電変換素子PDと、光電変換素子PDに蓄積された電荷を電圧に変換して出力する電圧変換増幅トランジスタQ13aとを有する画素部10an1,10an2が1次元または2次元に配置され、前記画素部から共通列信号線Lnに出力される画素出力電圧を検知する電圧レベル検知回路50と、電圧レベル検知回路50の論理出力電圧および前記画素出力電圧を入力とし、水平出力回路90に電圧を出力する列信号処理回路80を備え、前記列信号処理回路80は、前記論理出力電圧によって、前記画素出力電圧に対応する電圧を出力するか、もしくは固定電圧を出力することを特徴とする。

Description

明 細 書
固体撮像装置
技術分野
[0001] 本発明は、ビデオカメラやデジタルカメラ、携帯電話等 PDAに搭載される固体撮像 装置に関するものであり、高輝度な被写体を撮影した場合に、飽和信号レベルを検 出するのではなぐ無信号レベルあるいはマイナスレベルとして検出してしまい、白い 画像になるべきところ力 黒い画像になるという現象を回避する技術に関する。
背景技術
[0002] MOS型固体撮像装置において、画素部における光電変換素子 PDの蓄積電荷を 検出する回路構成およびそのタイミングとして、大きく分けて、 AMI型とよばれるタイ プの固体撮像装置と、フローティングディフュージョンアンプリファー型(以下「FDA 型」とも記す。 )とよばれるタイプの固体撮像装置との 2つのタイプがある。
[0003] 図 1は、 AMI型の固体撮像装置の構成を示す図である。
[0004] 図 1に示されるように、固体撮像装置 900は、 2次元配列される複数(図示 2つ)の 画素部 lOanl, 10an2と、列毎に設けられる複数(図示 1つ)の共通列信号線 Lnと、 各共通列信号線 Lnに接続されるロードトランジスタ Q2 laと、各共通列信号線 Lnに 配設されるサンプルホールドトランジスタ Q31と、列毎に設けられる複数(図示 1つ) の雑音信号除去回路 40等とから構成される。
[0005] 各画素部 lOanl, 10an2は、入射光を電荷に変換する光電変換素子 PDと、 RES ETパルスにより光電変換素子 PDの力ソードを電源電圧 VDDに初期化するリセットト ランジスタ Q12aと、光電変換素子 PDの電荷を電圧検出する電圧変換増幅トランジ スタ Q 13aと、 VSELパルスにより電圧変換増幅トランジスタ Q 13aから出力された電 圧を行毎に共通列信号線 Lnに転送する行選択トランジスタ Q14とからなる。
[0006] サンプルホールドトランジスタ Q31は、共通列信号線 Lnに出力された電圧を SHパ ルスによりサンプルホールドする。
[0007] 雑音信号除去回路 40は、クランプトランジスタ Q42と、クランプ容量 C41と、サンプ ルホールド容量 C42と力もなり、各画素部 lOanl, 10an2で検出した光電変換素子 PDの初期化電圧と、光量に応じた電荷によって検出される電圧との差分をとることで
、ノイズ成分をなくした信号成分を検出する。
[0008] 次いで、固体撮像装置 900の電荷検出動作について説明する。なお、ここでは、画 素部 lOanlにおける電荷検出動作につ!、て説明する。
[0009] 図 2は、図 1の固体撮像装置 900の駆動タイミングを示す図である。
[0010] 時刻 tOにおいて、すべてのパルスは OFF状態である。
[0011] 次に時刻 tlにおいて、 VSELパルスにより画素部 lOanlの行選択トランジスタ Q14 を ONにし、次に時刻 t2にて SHパルスによりサンプルホールドトランジスタ Q 31を O Nし、時刻 t3から時刻 t4の期間、 CPパルスにより雑音信号除去回路 40のクランプト ランジスタ Q42を ONにする。
[0012] CPパルスが OFFになる時刻 t4から画素部 lOanlの RESETパルスが ONになる 時刻 t5の期間内で、画素部 lOanlの光電変換素子 PDの蓄積電荷を画素部 lOanl の電圧変換増幅トランジスタ Q 13aを介して、雑音信号除去回路 40のサンプルホー ルド容量 C42に保持する。
[0013] このときの保持信号を仮に電圧 Aとする。
[0014] 時刻 t5から時刻 t6の期間、 RESETパルスによりリセットトランジスタ Q12aを ONし て、光電変換素子 PDを電源電圧 VDDレベルに初期化した後、 SHパルスによりサン プルホールドトランジスタ Q31が OFFする時刻 t7までの期間内で、光電変換素子 P Dの初期化レベルを電圧変換増幅トランジスタ Q 13aを介して、再び雑音信号除去回 路 40のサンプルホールド容量 C42に保持する。このときの保持信号を仮に電圧 Bと する。雑音信号除去回路 40において、先に保持した電圧 Aと後に保持した電圧 Bと を差分することで、雑音信号成分を除去した 2次元状の撮像領域に設置されの蓄積 信号成分を検出する。次に時刻 t8にて VSELパルスにより行選択トランジスタ Q 14を OFFすることで、 2次元状の撮像領域に設置されて ヽる光電変換素子 PDの一行分 の電荷検出動作が終了する。
[0015] 図 3は、 FDA型の固体撮像装置の構成を示す図である。
[0016] この場合、固体撮像装置 950は、画素部 lOanl, 10an2に代えて、画素部 lObnl , 10bn2を用いて構成される。 [0017] 各画素部 lObnl, 10bn2は、画素部 lOanl, 10an2の構成要素の他、さらに光電 変換素子 PDから電荷を読み出す転送トランジスタ Q11と、電荷を一旦蓄積するフロ 一ティングディフュージョン FDとを備える。この場合、リセットトランジスタ Q 12aは、フ ローテイングディフュージョン FDを電源電圧 VDDに初期化し、電圧変換増幅トラン ジスタ Q13aはフローティングディフュージョン FDの蓄積電荷を電圧検出する。
[0018] 次いで、固体撮像装置 950の電荷検出動作について説明する。なお、ここでは、画 素部 lObnlにおける電荷検出動作につ!、て説明する。
[0019] 図 4は、固体撮像装置 950の駆動タイミングを示す図である。
[0020] 時刻 tOにおいて、すべてのパルスは OFF状態である。次に時刻 tlにおいて、 VSE Lパルスにより画素部 lOanlの行選択トランジスタ Q14を ONにし、次に時刻 t2にて SHパルスによりサンプルホールドトランジスタ Q31を ONする。時刻 t3から時刻 t4の 期間、 RESETパルスによりリセットトランジスタ Q12aを ONすることで、フローティング ディフュージョン FDを電源電圧 VDDレベルに初期化した後、 RESETパルスが OF Fになる時刻 t4力 TRANSパルスにより転送トランジスタ Q 11が ONになる時刻 t5ま での期間内で、フローティングディフュージョン FDの初期化レベルを電圧変換増幅ト ランジスタ Q 13aを介して、雑音信号除去回路 40のサンプルホールド容量 C42に保 持する。このときの保持信号を仮に電圧 Cとする。
[0021] 次に時刻 t5から時刻 t6まで TRANSパルスにより転送トランジスタ Q 11を ONにし、 光電変換素子 PDの蓄積電荷をフローティングディフュージョン FDに転送した後、 S Hパルスによりサンプルホールドトランジスタ Q31が OFFする時刻 t7までの期間内で 、画素部 lObnlのフローティングディフュージョン FDに蓄積された電荷について、電 圧変換増幅トランジスタ Q13aを介して、雑音信号除去回路 40のサンプルホールド 容量 C42に保持する。このときの保持信号を仮に電圧 Dとする。雑音信号除去回路 4 0において、先に保持した電圧 Cと後に保持した電圧 Dとを差分することで、雑音信 号成分を除去した 2次元状の撮像領域に設置されの蓄積信号成分を検出する。次 に時刻 t8にて VSELパルスにより行選択トランジスタ Q14を OFFすることで、 2次元 状の撮像領域に設置されている光電変換素子 PDの一行分の電荷検出動作が終了 する。 [0022] し力しながら、上述のような MOS型固体撮像装置には、太陽光などの高輝度発光 体を背景にした撮影した場合、高輝度の部分を飽和信号レベルとして検出するので はなぐ無信号レベルとして検出する現象がある。
[0023] この現象の発生メカニズムについて、図 5〜図 9を参照して説明する。図 5と図 6は 画素部 lOanlが (AMI型)とよばれるタイプで、図 5は入射光が標準光量で正常な電 荷検出を行っている場合のもの、図 6は入射光が標準光量の 20万倍以上の高輝度 な光量で異常な電荷検出を行っている場合のものである。
[0024] 図 5 (a)は、図 3の時刻 t3から時刻 t5の期間での画素部 lOanlのポテンシャル図を 示している。
[0025] 光電変換素子 PDの蓄積電荷を画素部 lOanlの電圧変換増幅アンプを介して、雑 音信号除去回路 40に保持している。このときの保持信号を仮に電圧 Aとする。
[0026] 図 5 (b)は、図 3の時刻 t5から時刻 t6の期間での画素部 lOanlのポテンシャル図を 示している。ここでは、光電変換素子 PDを電源電圧 VDDレベルに初期化している。
[0027] 図 5 (c)は、図 3の時刻 t6から時刻 t7の期間での画素部 lOanlのポテンシャル図を 示している。ここでは、光電変換素子 PDは電源電圧 VDDレベルに初期化されたま ま保たれ、このレベルが画素部 lOanlの電圧変換増幅アンプを介して、雑音信号除 去回路 40に保持される。このときの保持信号を仮に電圧 Bとする。雑音信号除去回 路 40において、先に保持した電圧 Aと後に保持した電圧 Bとの差分を求めることで、 雑音信号成分を除去した 2次元状の撮像領域に設置された蓄積信号成分を検出で さることになる。
[0028] 図 6 (a)は、図 3の時刻 t3から時刻 t5の期間での画素部 lOanlのポテンシャル図を 示している。ここでは、光電変換素子 PDの蓄積電荷を画素部 lOanlの電圧変換増 幅アンプを介して、雑音信号除去回路 40に保持している。このときの保持信号を仮 に電圧 Aとする。
[0029] 図 6 (b)は、図 3の時刻 t5から時刻 t6の期間での画素部 lOanlのポテンシャル図を 示している。ここでは、光電変換素子 PDを電源電圧 VDDレベルに初期化している。
[0030] 図 6 (c)は、図 3の時刻 t6から時刻 t7の期間での画素部 lOanlのポテンシャル図を 示している。ここでは、光電変換素子 PDは電源電圧 VDDレベルに初期化されたま ま保つことができて!/ゝな ゝ。入射光が標準光量の 20万倍以上の高輝度な光量の場 合、光電変換素子 PDを電源電圧 VDDレベルに初期化した直後、すなわち画素部 1 Oanlの RESETパルスが OFFになる時刻 t6の直後から、光電変換素子 PDには大 量の電荷が蓄積されてしまうためで、飽和蓄積時と同等の電圧レベルを画素部 10an 1の電圧変換増幅アンプを介して、雑音信号除去回路 40に保持してしまう。このとき の保持信号を仮に電圧 Bとすると、雑音信号除去回路 40において、先に保持した電 圧 Aと後に保持した電圧 Bとを差分しても 0あるいはマイナスとなり、雑音信号成分を 除去した 2次元状の撮像領域に設置されの蓄積信号成分を検出することができなく なる。
[0031] 図 7と図 8とは画素部 lObnlが(FDA型)とよばれるタイプで、図 7は入射光が標準 光量で正常な電荷検出を行っている場合のものであり、図 8は入射光が標準光量の 20万倍以上の高輝度な光量で異常な電荷検出を行っている場合のものである。
[0032] 図 7 (a)は、図 4の時刻 t3から時刻 t4の期間での画素部 lObnlのポテンシャル図を 示している。ここでは、画素部 lObnlの RESETパルスによりリセットトランジスタ Q12 aを ONすることで、画素部 lObnlの電荷検出部(フローティングディフュージョン)を 電源電圧 VDDレベルに初期化して!/ヽる。
[0033] 図 7 (b)は、図 4の時刻 t4から時刻 t5の期間での画素部 lObnlのポテンシャル図を 示している。ここでは、画素部 lObnlの電荷検出部(フローティングディフュージョン) は電源電圧 VDDレベルに初期化されたまま保たれ、画素部 lObnlの電圧変換増 幅トランジスタ Q13aを介して、雑音信号除去回路 40に保持している。このときの保持 信号を仮に電圧 Cとする。
[0034] 図 7 (c)は、図 4の時刻 t5から時刻 t7の期間での画素部 lOanlのポテンシャル図を 示している。
[0035] 光電変換素子 PDの蓄積電荷を画素部 lObnlの電荷検出部(フローティングディフ ユージョン)に転送した後、そのレベルが保たれ、 SHパルスによりサンプルホールドト ランジスタ Q31が OFFする時刻 t7までの期間内で、画素部 lObnlの電荷検出部(フ ローテイングディフュージョン)に蓄積された電荷にっ 、て電圧変換増幅トランジスタ Q13aを介して、雑音信号除去回路 40に保持される。このときの保持信号を仮に電 圧 Dとする。
[0036] 雑音信号除去回路 40において、先に保持した電圧 Cと後に保持した電圧 Dとを差 分することで、雑音信号成分を除去した 2次元状の撮像領域に設置された蓄積信号 成分を検出できることになる。
[0037] 図 8 (a)は、図 4の時刻 t3から時刻 t4の期間での画素部 lObnlのポテンシャル図を 示している。ここでは、 RESETパルスによりリセットトランジスタ Q12aを ONすることで 、画素部 lObnlの電荷検出部(フローティングディフュージョン)を電源電圧 VDDレ ベルに初期化している。
[0038] 図 8 (b)は、図 4の時刻 t4から時刻 t5の期間での画素部 lObnlのポテンシャル図を 示している。ここでは、画素部 lObnlの電荷検出部(フローティングディフュージョン) は電源電圧 VDDレベルに初期化されたまま保つことができて 、な 、。入射光が標準 光量の 20万倍以上の高輝度な光量の場合、図 9に示すような寄生 NPN構造におい て、光電変換素子 PD領域の電位が非常に下がって行き、電荷検出部 (フローテイン グディフュージョン)領域力も電流が流れる経路が生じる。これにより、画素部 lObnl の電荷検出部(フローティングディフュージョン)には、 TRANSパルスが OFFになつ ていても電位が下がってしまい、飽和蓄積時と同等以上の電圧レベルを画素部 10b nlの電圧変換増幅トランジスタ Q13aを介して、雑音信号除去回路 40に保持してし まう。この保持信号を仮に電圧 Cとする。
[0039] 図 8 (c)は、図 4の時刻 t5から時刻 t7の期間での画素部 lObnlのポテンシャル図を 示している。ここでは、画素部 lObnlの TRANSパルスにより転送トランジスタ Q11が ONになっても、先に光電変換素子 PD力 飽和蓄積時と同等以上の蓄積電荷が流 れ込んでいるため、画素部 lObnlの電荷検出部(フローティングディフュージョン)の 電圧レベルは、降下することになり、この電圧レベルを画素部 lObnlの電圧変換増 幅トランジスタ Q13aを介して、雑音信号除去回路 40に保持してしまう。この保持信 号を仮に電圧 Dとすると、先に保持した電圧 Cと後に保持した電圧 Dとを差分しても 0 あるいはマイナスとなり、雑音信号成分を除去した 2次元状の撮像領域に設置されの 蓄積信号成分を検出することができなくなる (特許文献 1参照)。
[0040] この現象を解決する方法として、画素出力信号を信号処理回路で検波し、補正を 加える手法などが提案されて 、る (特許文献 2参照)。
[0041] 太陽光などの高輝度発光体を背景に撮影した場合に、従来提案されている補正方 法は、光電変換素子 PDあるいは電荷検出部を初期化した直後の出力信号を信号 処理回路の比較器にー且転送し、その電圧によって高輝度な光が入射して 、るかど うかを判断している。
特許文献 1 :特開 2003— 46865号公報 (第 1—8頁、第 1図)
特許文献 2 :特開 2000— 287131号公報 (第 1— 16頁、第 1図)
発明の開示
発明が解決しょうとする課題
[0042] し力しながら、この方法では、製造工程上必ず発生するトランジスタの閾値ばらつき が原因で起こる光電変換素子 PDあるいは電荷検出部の初期化電圧ばらつきの影 響を受けやすぐ例えばロット毎に初期化電圧をスクリーニングしてから、信号処理回 路の比較器における判定基準を設定してやらなければならない。
[0043] また、水平ブランキング期間という限られた時間に行われる光電変換素子 PDある いは電荷検出部を初期化した直後の出力信号レベルを検出するには、非常に高速 な処理が求められ、特に多画素の高速連写撮影では時間的余裕がなくなり、正常な ネ ΐ正ができなくなる。
[0044] 本発明は、上記の問題点に鑑みてなされたものであり、製造工程上必ず発生するト ランジスタの閾値ばらつきに追従し、多画素の高速連写撮影時でもリアルタイムに補 正でき、比較的簡単な回路で固体撮像素子単体に組み込むことができるので、別途 信号処理用素子あるいは回路に転送する必要がない補正回路を使用することで、高 輝度の部分は飽和信号レベルとして正常に検出し、自然な撮影画像を生成する ΜΟ S型固体撮像装置を提供することを目的とする。
課題を解決するための手段
[0045] 上記の目的を達成するため、本発明に係る固体撮像装置においては、 1次元また は 2次元に配置された画素部と、前記画素部から共通列信号線に出力される画素出 力電圧を検知する電圧レベル検知手段と、前記電圧レベル検知手段の論理出力電 圧および前記画素出力電圧に基づいて、水平出力手段に所定の電圧を出力する列 信号処理手段とを備え、前記列信号処理手段は、前記論理出力電圧によって、前記 画素出力電圧に対応する電圧および固定電圧のいずれかを出力することを特徴と する。
[0046] これによれば、前記画素部の出力信号レベルを固体撮像素子内部で即座に判定 し、高輝度入射時の信号に補正をかけることができ、別途信号処理回路による高速 な補正処理が不要になる。
[0047] また、本発明に係る固体撮像装置においては、前記画素部は、入射光を電荷に変 換する光電変換素子と、前記光電変換素子に蓄積された電荷を電圧出力する増幅 手段とを有することを特徴とすることができる。
[0048] これによれば、前記画素部から共通列信号線に出力される画素出力電圧が、寄生 容量などの負荷により減衰することを防止することができる。
[0049] また、本発明に係る固体撮像装置においては、前記列信号処理手段は、前記画素 出力電圧を入力とし、前記水平出力手段に電圧を出力する雑音信号除去手段を有 し、前記雑音信号除去手段は、前記画素部の初期化時における前記画素出力電圧 と、前記画素部の蓄積時における前記画素出力電圧との差分を出力することを特徴 とすることができる。
[0050] これによれば、前記画素部力 共通列信号線に出力される画素出力信号に含まれ る各画素部ごとのノイズを、前記雑音信号除去手段で相関二重サンプリングすること により削除することができる。
[0051] また、本発明に係る固体撮像装置においては、前記列信号処理手段は、電圧制御 手段をさらに備え、前記列信号処理手段が前記固定電圧を出力する場合は、前記 画素部の初期化時における前記画素出力電圧の代わりに、予め定められた初期化 電圧を前記電圧制御手段力 前記雑音信号除去手段に入力することを特徴とするこ とちでさる。
[0052] これによれば、高輝度入射時に前記共通列信号線上に出現しない前記画素部の 初期化時の前記画素出力電圧を強制的に再現させることができ、前記画素部の初 期化時と蓄積時との差分を前記雑音信号除去手段で正常に検出することが可能に なる。 [0053] また、本発明に係る固体撮像装置においては、前記電圧制御手段は、前記画素部 の初期化時における前記画素出力電圧と同一の電圧を生成する初期化電圧生成手 段と、前記初期化電圧生成手段が生成した初期化電圧を前記共通列信号線に入力 することによって、前記画素部の初期化状態を再現する置換手段とを備えることを特 徴とすることちでさる。
[0054] これによれば、初期化電圧生成手段が同一素子内の同一トランジスタで回路構成 されているため、前記画素部における初期化電圧と同一電位が、製造工程に起因す るトランジスタ閾値ばらつきに左右されずに、正確に生成できるため、補正精度を高 めることができる。
[0055] また、本発明に係る固体撮像装置においては、前記初期化電圧生成手段は、前記 画素部の領域外に形成され、前記置換手段は共通列信号線ごとに設けられることを 特徴とすることちでさる。
[0056] これによれば、各々の列信号線ごとに光電変換素子の出力電圧を判断することが でき、高輝度入力されている列信号にのみ、即座かつ正確な補正を行うことができる
[0057] また、本発明に係る固体撮像装置においては、前記電圧制御手段は、水平ブラン キング期間内に行なわれる前記画素部力 前記雑音信号除去手段までの電荷検出 期間を動作期間とし、前記動作期間以外は非動作状態に設定されることを特徴とす ることちでさる。
[0058] これによれば、補正回路で消費される電流を大幅に削減することができる。
[0059] また、本発明に係る固体撮像装置にぉ 、ては、前記画素部がフローティングディフ ユージョンを備え、前記初期化電圧を前記フローティングディフュージョンの初期時の 電圧とすることを特徴とすることもできる。
[0060] これによれば、画質の良いフローティングディフュージョンアンプリファー型におい て、高輝度入射時に共通列信号線上に出現しない前記画素部の初期化時の電圧を 強制的に再現させることができ、前記画素部の電位変化を正常に検出することが可 會 になる。
[0061] また、本発明に係る固体撮像装置においては、前記列信号処理手段は、電圧制御 手段をさらに備え、前記列信号処理手段が前記固定電圧を出力する場合は、予め 定められた飽和電圧を前記電圧制御手段から前記水平出力手段に出力することを 特徴とすることちでさる。
[0062] これによれば、高輝度入射時に前記共通列信号線上に前記画素部の初期化時の 電圧が出現しない場合でも、強制的に前記雑音信号除去手段の出力部すなわち前 記水平出力手段の入力部に、前記飽和電圧を強制的に再現させることができる。
[0063] なお、ここで前記予め定められた飽和電圧力 前記画素部の飽和蓄積時における 前記水平出力手段の入力電圧に相当する電圧に設定すれば、高輝度入射時に前 記雑音信号除去手段の出力部すなわち前記水平出力手段の入力部に出現する電 圧近傍に設定して、補正することができる。
[0064] また、本発明に係る固体撮像装置においては、前記電圧制御手段は、水平ブラン キング期間内に行なわれる前記画素部力 前記雑音信号除去手段までの電荷検出 期間を動作期間とし、前記動作期間以外は非動作状態に設定されることを特徴とす ることちでさる。
[0065] これによれば、補正回路で消費される電流を大幅に削減することができる。
[0066] また、本発明に係る固体撮像装置にぉ 、ては、前記画素部がフローティングディフ ユージョンを備え、前記飽和電圧を前記フローティングディフュージョンの飽和時の電 圧とすることを特徴とすることもできる。
[0067] これによれば、画質の良いフローティングディフュージョンアンプリファー型におい て、前記電圧レベル検知手段は、前記画素出力電圧と、前記フローティングディフユ 一ジョンの飽和蓄積時における前記画素出力電圧と同一の電圧を生成する飽和電 圧生成手段からの電圧とを比較して、高輝度入射の有無を判定することができる。
[0068] また、本発明に係る固体撮像装置にお!ヽては、前記電圧レベル検知手段は、前記 画素部の飽和蓄積時における前記画素出力電圧と同一の電圧を生成する飽和電圧 生成手段と、前記飽和電圧生成手段が生成した飽和電圧と前記画素出力電圧とを 比較する判定手段とを備えることを特徴とすることもできる。
[0069] これによれば、飽和電圧生成手段が同一素子内の同一トランジスタで回路構成さ れているため、前記画素部における飽和電圧と同一の電圧が、製造工程に起因する トランジスタ閾値ばらつきに左右されずに、正確に生成できるため、前記画素部での 高輝度入射の有無を即座かつ高精度に判定することができる。
[0070] また、本発明に係る固体撮像装置にお!、ては、前記飽和電圧生成手段は、前記画 素部の領域外に形成され、前記判定手段は前記共通列信号線ごとに設けられること を特徴とすることちでさる。
[0071] これによれば、各々の列信号線ごとに光電変換素子の出力電圧を判定することが でき、高輝度入力されている列信号にのみ、即座かつ正確な補正を行うことができる
[0072] なお、本発明は、このような固体撮像装置として実現することができるだけでなぐこ のような固体撮像装置を含むカメラとして実現したりすることもできる。
[0073] これにより、光電変換素子の出力信号が即座に判断でき、高輝度入射時の信号補 正が可能なカメラを実現することができる。
発明の効果
[0074] 本発明によれば、太陽光などの高輝度発光体を背景に撮影した場合に発生してい た高輝度の部分を飽和信号レベルとして検出するのではなぐ無信号レベルとして検 出してしまう現象を、製造工程上必ず発生するトランジスタの閾値ばらつきの影響を 受けず、多画素の高速連写撮影時でもリアルタイムに補正でき、比較的簡単な回路 で固体撮像素子単体に組み込むことができるので、別途信号処理用素子あるいは 回路に転送する必要がない補正回路を使用することで、高輝度の部分は飽和信号 レベルとして正常に出力し、破綻のない自然な撮影画像を生成する MOS型固体撮 像装置を提供することができる。
[0075] よって、本発明により、動画撮影時カゝら静止画撮影時まで広範囲に白黒反転防止 に対応でき、高画質のデジタルカメラを備えた携帯端末が普及してきた今日における 本願発明の実用的価値は極めて高い。
図面の簡単な説明
[0076] [図 1]図 1は、 AMI型の固体撮像装置の構成を示す図である。
[図 2]図 2は、図 1の固体撮像装置 900の駆動タイミングを示す図である。
[図 3]図 3は、 FDA型の固体撮像装置の構成を示す図である。 [図 4]図 4は、図 3の固体撮像装置 950の駆動タイミングを示す図である。
[図 5]図 5は、固体撮像装置 900の正常動作時のポテンシャル図である。
[図 6]図 6は、固体撮像装置 900の高輝度入射時のポテンシャル図である。
[図 7]図 7は、固体撮像装置 950の正常動作時のポテンシャル図である。
[図 8]図 8は、固体撮像装置 950の高輝度入射時のポテンシャル図である。
[図 9]図 9は、固体撮像装置 950の寄生 NPN構造を示す図である。
[図 10]図 10は、本発明の実施の形態 1に係る MOS型固体撮像装置 1である。
[図 11]図 11は、本発明の実施の形態 1に係る MOS型固体撮像装置 7である。
[図 12]図 12は、 MOS型固体撮像装置 1の駆動タイミングを示す図である。
[図 13]図 13は、電圧レベル検知回路 50を具体化した MOS型固体撮像装置 2の回 路構成を示す図である。
[図 14]図 14は、図 13の MOS型固体撮像装置 2の駆動タイミングを示す図である。
[図 15]図 15は、電圧制御回路 60を具体化した MOS型固体撮像装置 3の回路構成 を示す図である。
[図 16]図 16は、図 15の MOS型固体撮像装置 3の駆動タイミングを示す図である。
[図 17]図 17は、電圧制御回路 60の消費電力の低減を図った MOS型固体撮像装置 4の回路構成を示す図である。
[図 18]図 18は、図 17の MOS型固体撮像装置 4の駆動タイミングを示す図である。
[図 19]図 19は、 FDA型の MOS型固体撮像装置 5の回路構成を示す図である。
[図 20]図 20は、図 19の MOS型固体撮像装置 5の駆動タイミングを示す図である。
[図 21]図 21は、 FDA型の MOS型固体撮像装置 6の回路構成を示す図である。
[図 22]図 22は、図 21の MOS型固体撮像装置 5の駆動タイミングを示す図である。
[図 23]図 23は、上述の実施の形態 1〜6の固体撮像装置を用いたカメラの構成を示 す図である。
符号の説明
1〜6 MOS型固体撮像装置
lOanl, 10an2, lObnl, 10bn2 画素部画素部
40 雑音信号除去回路 50 電圧レベル検知回路
60 電圧制御回路
70 飽和レベル補正信号
80 列信号処理回路
90 水平出力回路
C41 クランプ容量
C42 サンプリング容量
FD フローティングディフュージョン
Ln 共通列信号線
Ls 補正 1§
PD 光電変換素子
Q11 転送トランジスタ
Q12aリセットトランジスタ
Q13a 電圧変換増幅トランジスタ
Q14 行選択トランジスタ
Q21a ロードトランジスタ
Q31 サンプルホールドトランジスタ
Q42 クランプトランジスタ
Q51a GNDレベル設定用トランジスタ
Q52 電圧制御回路入力部用初期化トランジスタ
Q61 共通列信号線接続トランジスタ
Q64 電流削減トランジスタ
Q65 電流削減トランジスタ
Q62 補正信号線接続トランジスタ
Q63 飽和レベル補正信号転送トランジスタ
発明を実施するための最良の形態
[0078] 以下、本発明の実施の形態について図面を参照しながら説明する [0079] (実施の形態 1) 図 10は、本発明の実施の形態 1に係る固体撮像装置の回路概略図である。
[0080] 本発明の実施の形態 1に係る MOS型固体撮像装置 1は、図 10に示されるように、 固体撮像装置 900と同様、 2次元配列される複数(図示 2つ)の画素部 lOanl, 10a n2と、列毎に設けられる複数(図示 1つ)の共通列信号線 Lnと、各共通列信号線 Ln に接続されるロードトランジスタ Q21aと、各共通列信号線 Lnに配設されるサンプル ホールドトランジスタ Q31と、列毎に設けられる複数(図示 1つ)の雑音信号除去回路 40との他、電圧レベル検知回路 50と、電圧制御回路 60と、水平出力回路 90とをさら に備えて構成される。
[0081] 電圧レベル検知回路 50は、電圧変換増幅トランジスタ Q 13aから共通列信号線 Ln に出力される電圧を検知する。
[0082] 電圧制御回路 60は、電圧レベル検知回路 50からの信号によって、共通列信号線 Lnの電圧を直接制御する。より詳しくは、電圧制御回路 60は、電圧レベル検知回路 50の比較結果として出力される論理レベルによって、共通列信号線 Lnの電圧を、電 圧変換増幅トランジスタ Q13aから出力される電圧に設定する力、あらかじめ定められ た電圧に置換するかの制御をする。
[0083] なお、サンプルホールドトランジスタ Q31と、雑音信号除去回路 40と、電圧制御回 路 60とで、列信号処理回路 80が構成される。
[0084] ここであら力じめ定められた電圧力 光電変換素子の初期化時の電圧と同一の電 圧である場合、高輝度入射時に共通列信号線上に出現しない光電変換素子の初期 化時の電圧を強制的に再現させることができ、正常に光電変換素子の電位変化を検 出することができる。
[0085] なお、図 11に示される MOS型固体撮像装置 7では、あらかじめ定められた電圧が 、光電変換素子の飽和蓄積時の雑音信号除去回路の出力電圧すなわち水平出力 回路 90の入力に相当する電圧である場合を示しており、高輝度入射時に共通列信 号線上に光電変換素子の初期化時の電圧が出現しない場合でも、強制的に雑音信 号除去回路の出力部に、飽和レベル補正信号転送トランジスタ Q63を介して飽和レ ベル補正信号 70を入力することで、前記画素部の飽和蓄積時における雑音信号除 去回路からの出力電圧を再現させて補正することができる。 [0086] 図 12は、 MOS型固体撮像装置 1および 7の駆動タイミングを示す図である。
[0087] このタイミングは、画素部 lOanlが AMI型の光電変換素子 PDの電荷検出に対し て、電圧レベル検知回路 50と電圧制御回路 60とが能動的になるタイミングの一例を 表している。
[0088] 電圧レベル検知回路 50からの信号によって、電圧変換増幅トランジスタ Q13aから 列毎に出力される電圧の直接制御を判断する電圧制御回路 60は、水平ブランキン グ期間内に行なわれる光電変換素子 PD力 雑音信号除去回路 40までの電荷検出 期間のみを必要動作期間とし、必要動作期間以外は非動作状態に設定される。
[0089] したがって、消費電力を少なくしつつ、光電変換素子の出力信号が即座に判断で き、共通列信号線の電圧を、増幅回路から出力される電圧と光電変換素子の初期化 電圧に対応する電圧とのいずれかに補正することができる。
[0090] (実施の形態 2)
次 、で、図 10中に示して 、る電圧レベル検知回路 50の具体例につ 、て詳細に説 明する。
[0091] 図 13は、電圧レベル検知回路 50を具体ィ匕した MOS型固体撮像装置 2の回路構 成を示す図である。なお、同図においては、水平出力回路 90等の図示が省略されて いる。
[0092] 電圧レベル検知回路 50は、各列毎に設けられる個別部 501と、 MOS型固体撮像 装置に共通に 1つ設けられる共通部 502とから構成される。
[0093] 共通部 502は、飽和電圧生成用初期化トランジスタ Q51aと、画素部 lOanlのリセ ットトランジスタ Q12aと同一製法で同一サイズに構成されたリセットトランジスタ Q12b と、電圧制御回路入力部用初期化トランジスタ Q52とを備え、光電変換素子 PDにお ける飽和電圧と同一の電位を生成する飽和電圧生成回路として機能する。
[0094] 個別部 501は、画素部 lOanlの電圧変換増幅トランジスタ Q13aと同一製法で同 一サイズに構成された電圧レベル検知用トランジスタ Q13bを備え、電圧変換増幅ト ランジスタ Q 13aから共通列信号線に出力される電圧と、共通部 502が生成した飽和 電圧と同一の電位に応じた電圧とに基づいて、光電変換素子 PDにおける高輝度入 射を判定する判定回路として機能する。 [0095] 電圧レベル検知用トランジスタ Q13bのドレインは共通列信号線 Lnに、そのソース は電圧制御回路 60の入力に、そのゲートは飽和電圧生成用初期化トランジスタ Q51 aとリセットトランジスタ Q12bとにより生成された電圧レベルが入力されている。
[0096] 次いで、 MOS型固体撮像装置 2の電荷検出動作について説明する。なお、ここで は、画素部 lOanlにおける電荷検出動作につ!、て説明する。
[0097] 図 14は、図 13の MOS型固体撮像装置 2の駆動タイミングを示す図である。
[0098] タイミングについて、時刻 tl以降で行われる画素部 lOanlの蓄積電荷検出動作の 前に、時刻 tOで RSVSSパルスにより飽和電圧生成用初期化トランジスタ Q51aを O Nにするとともに、 RSVDDノ ルスにより電圧制御回路入力部用初期化トランジスタ Q 52を ONにする。
[0099] これにより電圧レベル検知用トランジスタ Q13bのゲートには、光電変換素子 PDの 飽和電圧が入力され、ソースには電源電圧 VDDの電圧が入力される。
[0100] 時刻 tlで VSELパルスにより画素部 lOanlの行選択トランジスタ Q14を ONにする と、共通列信号線 Lnに画素部 lOanlの電圧変換増幅トランジスタ Q13aを介して信 号が出現するが、高輝度な入射光が入力したとき、共通列信号線 Lnに出力される電 圧レベルが極度に低下し、電圧レベル検知用トランジスタ Q 13bのゲートを電荷が通 過して行き、電圧レベル検知用トランジスタ Q 13bのソース電位、すなわち電圧制御 回路 60の入力は、電源電圧 VDDの電圧(論理レベル的に High)であったものが、 共通列信号線 Lnに出力される電圧レベルと同等になり、論理レベル的に Low電位 へと変化する。
[0101] この変化を後段の電圧制御回路 60が検知し、補正動作を開始することになる。
[0102] ここで電圧レベル検知用トランジスタ Q13bのゲートに入力する電圧レベルとして、 光電変換素子 PDを初期化するリセットトランジスタ Q 12aのゲートが OFFの時に決ま るレベルと同一にした理由は、高輝度な入射光が入力した場合に光電変換素子 PD に蓄積される電圧レベルは、リセットトランジスタ Q 12aのゲートが OFFになった時の 閾値によって決まり、これ以上低い電圧レベルにはならないからである。ドレインを電 源電圧 VDD、ソースをフローティングなノードとした場合、リセットトランジスタ Q12aの ゲートを OFFした時に決まるソース電位力これに相当する。これによつて光電変換素 子 PDに蓄積される飽和電荷を不要に掃き捨てすることなくレベル検知ができるため 、ダイナミックレンジを最大限活用することができる。
[0103] また、製造工程によるトランジスタの閾値ばらつきが発生した場合を想定して、電圧 レベル検知回路 50に入力するリセットトランジスタ Q12aのゲートが OFFになった時 の飽和電圧の生成には、光電変換素子 PD群を 2次元状の撮像領域以外にも別途 設けることにより、 2次元状の撮像領域内の光電変換素子 PDと全く同一の電圧レべ ルを入力することができるようにしており、製造工程上必ず発生するトランジスタの閾 値ばらつきに左右されずに、精度のょ 、判定ができるようにして 、る。
[0104] (実施の形態 3)
次 、で、図 10中に示して 、る電圧制御回路 60の具体例につ 、て詳細に説明する
[0105] 図 15は、電圧制御回路 60を具体ィ匕した MOS型固体撮像装置 3の回路構成を示 す図である。なお、同図においても、水平出力回路 90等の図示が省略されている。
[0106] 電圧制御回路 60は、各列毎に設けられる個別部 601aと、 MOS型固体撮像装置 に共通に 1つ設けられる共通部 602とから構成される。
[0107] 共通部 602は、初期化電圧生成のために画素部 lOanlのリセットトランジスタ Q12 aと同一製法で同一サイズに形成されるリセットトランジスタ Q12cと、飽和電圧生成の ために GNDレベルにリセットする GNDレベル設定用トランジスタ Q5 lbと、生成され た初期化電圧または飽和電圧をゲートとする検出トランジスタ Q13cと、ソースフォロ ァ回路を形成するロードトランジスタ Q21bとから構成され、光電変換素子 PDの初期 化電圧が出力された共通列信号線 Lnの電圧レベルと同一の電圧を生成する初期化 電圧生成回路として機能する。 個別部 601aは、高輝度入射によってゲートが Low レベルに変化する共通列信号線接続トランジスタ Q61と、電圧レベル検知用トランジ スタ Q13bのソースを入力とするインバータ回路 INVと、そして、インバータ回路 INV の出力をゲートとして、共通列信号線 Lnと検出トランジスタ力 出力される補正信号 線 Lsとを接続する補正信号線接続トランジスタ Q62と、補正信号線接続トランジスタ Q62のゲートとインバータ回路 INVの出力を接続するトランジスタ Q63とから構成さ れ、共通部 602により生成された同一の電圧を共通列信号線 Lnに入力することによ つて、光電変換素子 PDの初期化電圧を置換する置換回路として機能する。
[0108] 図 16は、図 15の MOS型固体撮像装置 3の駆動タイミングを示す図である。
[0109] 高輝度入射があった場合のタイミングについて、時刻 tOで RSVSSパルスにより飽 和電圧生成用初期化トランジスタ Q51a, GNDレベル設定用トランジスタ Q51bを O Nにすることで、補正信号線 Lsには、光電変換素子 PDの飽和電圧が出力された共 通列信号線 Lnと同一の電圧が発生する。
[0110] 時刻 tlで VSELパルスにより画素部 lOanlの行選択トランジスタ Q14を ONにする と、共通列信号線 Lnに画素部 lOanlの電圧変換増幅トランジスタ Q13aを介して信 号が出現するが、高輝度な入射光が入力したとき、上述したように電圧制御回路 60 の入力は、電源電圧 VDDの電圧(論理レベル的に High)であったもの力 共通列信 号線 Lnに出力される電圧レベルと同等になり、論理レベル的に Low電位へと変化す る。これを後段のインバータ回路 INVを介することにより、電圧制御回路出力電圧( 補正信号線接続トランジスタ Q62のゲート)は、論理レベル的に High電位となり、補 正信号線 Lsと共通列信号線 Lnを接続する。
[0111] このとき、同時に共通列信号線接続トランジスタ Q61は、高輝度入射によってゲート 力 SLowレベルに変化するため、 2次元状の撮像領域力 の共通列信号線 Lnの出力 は遮断される。この時点で、補正信号線 Lsの電圧すなわち、光電変換素子 PDの飽 和電圧が出力された共通列信号線 Lnと同一の電圧が、もともとの共通列信号線 Ln 出力と置換されて雑音信号除去回路 40へと入力される。
[0112] 時刻 t3において、雑音信号除去回路 40内部の CPパルスによって、蓄積信号とし てクランプされたのち、時刻 t5において、光電変換素子 PDの初期化レベルを検知 するタイミングで、 RESETパルスによりリセットトランジスタ Q 12a, Q12cを ONするこ とで、補正信号線 Lsには、光電変換素子 PDの初期化電圧が出力された共通列信 号線 Lnの電圧レベルと同一の電圧が現れ、もともとの共通列信号線 Ln出力と置換さ れて雑音信号除去回路 40へと入力される。
[0113] 時刻 t6以降で、雑音信号除去回路 40内部で相関二重サンプリングが行われて、 雑音除去された正常な光電変換素子 PDの電荷検出を行うことができる。
[0114] 上述したように補正信号線 Lsには、光電変換素子 PDの飽和電圧および初期化電 圧が出力された共通列信号線 Lnと同一の電圧を生成している力 その理由は、飽和 直後の光電変換素子 PDに蓄積される電圧レベルは、リセットトランジスタのゲートが OFFになった時の閾値によって決まり、初期化直後の光電変換素子 PDに蓄積され る電圧レベルは、リセットトランジスタのゲートが ONになった時の閾値によって決まる 力 である。
[0115] また、製造工程によるトランジスタの閾値ばらつきが発生した場合を想定して、光電 変換素子 PD群を 2次元状の撮像領域以外にも別途設けて、光電変換素子 PDの飽 和電圧および初期化電圧が出力された共通列信号線 Lnと同一の電圧を生成してい るので、 2次元状の撮像領域内の光電変換素子 PDと全く同一の電圧レベルを入力 することができるようにしており、製造工程上必ず発生するトランジスタの閾値ばらつ きに左右されずに、正確な電圧レベルの入力ができるようにしている。
[0116] (実施の形態 4)
上記の電圧制御回路 60は、水平ブランキング期間内に行なわれる光電変換素子 P D力も雑音信号除去回路 40までの電荷検出期間のみ稼動状態にして、それ以外の 水平走査期間においては、非稼動状態に設定されることにより、消費電力の低減を 行うことができる。この具体例を図 17に示す。
[0117] 図 17は、電圧制御回路 60の消費電力の低減を図った MOS型固体撮像装置 4の 回路構成を示す図である。なお、同図においても、水平出力回路 90等の図示が省 略されている。
[0118] 電圧制御回路 60の個別部 601bは、個別部 601aの構成に加えて、インバータ回 路 INVの入力とグランドとの間に配設される電流削減トランジスタ Q64と、補正信号 線接続トランジスタ Q62のゲートとグランドとの間に配設される電流削減トランジスタ Q 65とをさらに備えて構成される。
[0119] 図 18は、図 17の MOS型固体撮像装置 4の駆動タイミングを示す図である。
[0120] 高輝度入射があった場合のタイミングについて、時刻 tOOにて、電圧制御回路用電 流削減パルス Aにより電流削減トランジスタ Q64を ONし、電圧制御回路 60の入力端 子を論理レベル的に Low電位にする。これにより、後段のインバータ回路 INVの電 流経路が遮断される。次に時刻 tOから時刻 t8まで、実施の形態 1にある光電変換素 子 PDの電荷検出動作が完了したのち、電圧制御回路用電流削減パルス Bにより電 流削減トランジスタ Q65を ONし、電圧制御回路出力電圧 (補正信号線接続トランジ スタ Q62のゲート)を論理レベル的に Lowにして、補正信号線 Lsと共通列信号線 Ln との接続を OFFし、電圧制御回路用電流削減パルス Aにより電流削減トランジスタ Q 64を ONして、電圧制御回路入力電圧(電圧レベル検知用トランジスタ Ql 3bのソー ス)を論理的に Lowにして、インバータ回路 INVの電流経路を遮断している。これに より、不必要な電流消費をなくすことができる。
[0121] (実施の形態 5)
上記の入射光を電荷に変換する光電変換素子 PDにおける電位として、光電変換 素子 PDカゝら電荷検出部(フローティングディフュージョン)に蓄積電荷を転送する機 能を備えたフローティングディフュージョンアンプリファー型における電荷検出部(フロ 一ティングディフュージョン)の電位を適用することもできる。
[0122] 図 19に回路図を示す。
[0123] 図 19は、 FDA型の MOS型固体撮像装置 5の回路構成を示す図である。なお、同 図においても、水平出力回路 90等の図示が省略されている。
[0124] 図 17との相違点は、画素部 lObnlが AMI型力も FDA型になっていることである。
[0125] すなわち光電変換素子 PDの蓄積電荷を転送トランジスタ Q11によって、一且フロ 一ティングディフュージョン FDに転送し、フローティングディフュージョンの電位を電 圧変換増幅トランジスタ Q13aによって、電圧出力している。
[0126] 高輝度入射があった場合のタイミングを図 20に示す。
[0127] 時刻 tOOで電圧制御回路用電流削減パルス Aにより電流削減トランジスタ Q64を O Nし、電圧制御回路 60の入力端子を論理レベル的に Low電位にする。これにより、 後段のインバータ回路 INVの電流経路が遮断される。
[0128] 次に時刻 tOにて、 RSVSSパルスと RSVDDパルスを ONする。これにより電圧レべ ル検知用トランジスタ Q13bのゲートには、光電変換素子 PDの飽和電圧が入力され 、ソースには電源電圧 VDDの電圧が入力される。時刻 tlで画素部 lOanlの VSEL パルスにより行選択トランジスタ Q14を ONにすると、共通列信号線 Lnに画素部 10a nlの電圧変換増幅トランジスタ Q13aを介して信号が出現するが、高輝度な入射光 が入力したとき、共通列信号線 Lnに出力される電圧レベルが極度に低下し、電圧レ ベル検知用トランジスタ Q13bのゲートを電荷が通過して行き、電圧レベル検知用トラ ンジスタ Q 13bのソース電位すなわち電圧制御回路 60の入力は、電源電圧 VDDの 電圧 (論理レベル的に High)であったものが、共通列信号線 Lnに出力される電圧レ ベルと同等になり、論理レベル的に Low電位へと変化する。この変化を後段の電圧 制御回路 60も検知して、電圧制御回路出力電圧が論理的に Highとなり、補正信号 線 Lsの電圧を共通列信号線 Lnに接続する。このとき、同時に共通列信号線接続トラ ンジスタ Q61は、高輝度入射によってゲートが Lowレベルに変化するため、 2次元状 の撮像領域力ゝらの共通列信号線 Ln出力は遮断される。時刻 t3で RESETパルスに よりリセットトランジスタ Q12a, Q12cを ONすると、補正信号線 Lsの電圧すなわち、 光電変換素子 PDの初期化電圧が出力された共通列信号線 Lnと同一の電圧が、も ともとの共通列信号線 Ln出力と置換されて雑音信号除去回路 40へと入力される。時 刻 t3において、雑音信号除去回路 40内部の CPパルスによって、初期化信号として クランプされたのち、時刻 t5において、光電変換素子 PDの蓄積信号レベルを検知 するタイミングで、 RSVSSパルスにより飽和電圧生成用初期化トランジスタ Q51a, G NDレベル設定用トランジスタ Q5 lbを ONすることで、補正信号線 Lsには、光電変換 素子 PDの飽和電圧が出力された共通列信号線 Lnの電圧レベルと同一の電圧が現 れ、もともとの共通列信号線 Ln出力と置換されて雑音信号除去回路 40へと入力され る。時刻 t6以降で、雑音信号除去回路 40内部で相関二重サンプリングが行われて、 雑音除去された正常な光電変換素子 PDの電荷検出を行うことができる。
[0129] (実施の形態 6)
上記の入射光を電荷に変換する光電変換素子 PDにおける電位として、光電変換 素子 PDカゝら電荷検出部(フローティングディフュージョン)に蓄積電荷を転送する機 能を備えたフローティングディフュージョンアンプリファー型における電荷検出部(フロ 一ティングディフュージョン)の初期化電圧を適用することもできる。
[0130] 図 21に回路図を示す。
[0131] 図 21は、 FDA型の MOS型固体撮像装置 6の回路構成を示す図である。なお、同 図においても、水平出力回路 90等の図示が省略されている。 [0132] MOS型固体撮像装置 4との相違点は、画素部が AMI型力も FDI型になっているこ とである。すなわち、画素部 lObnlにおいて、光電変換素子 PDの蓄積電荷を転送ト ランジスタ Q 11によって、ー且フローティングディフュージョン FDに転送し、フローテ イングディフュージョン FDの電位を電圧変換増幅トランジスタ Q13aによって電圧に 変換して出力していることである。
[0133] 高輝度入射があった場合のタイミングを図 22に示す。
[0134] 時刻 tOOで電圧制御回路用電流削減パルス Aにより電流削減トランジスタ Q64を O Nし、電圧制御回路 60の入力端子を論理レベル的に Low電位にする。これにより、 後段のインバータ回路 INVの電流経路が遮断される。次に時刻 tOにて、 RSVSSパ ルスと RSVDDパルスを ONする。これにより電圧レベル検知用トランジスタ Q13bの ゲートには、光電変換素子 PDの飽和電圧が入力され、ソースには電源電圧 VDDの 電圧が入力される。時刻 tlで VSELパルスにより画素部 lObnlの行選択トランジスタ Q14を ONにすると、共通列信号線 Lnに画素部 lObnlの電圧変換増幅トランジスタ Q13aを介して信号が出現するが、高輝度な入射光が入力したとき、共通列信号線 L nに出力される電圧レベルが極度に低下し、電圧レベル検知用トランジスタ Q 13bの ゲートを電荷が通過して行き、電圧レベル検知用トランジスタ Q 13bのソース電位す なわち電圧制御回路 60の入力は、電源電圧 VDDの電圧(論理レベル的に High)で あったものが、共通列信号線 Lnに出力される電圧レベルと同等になり、論理レベル 的に Low電位へと変化する。この変化を後段の電圧制御回路 60も検知して、電圧 制御回路出力電圧が論理的に Highとなり、補正信号線 Lsの電圧を共通列信号線 L nに接続する。このとき補正信号線 Lsの電圧は、光電変換素子 PDの初期化電圧が 出力された共通列信号線 Lnと同一の電圧が出力されている。このとき同時に共通列 信号線接続トランジスタ Q61は、高輝度入射によってゲートが Lowレベルに変化す るため、 2次元状の撮像領域力 の共通列信号線 Ln出力は遮断される。時刻 t3の 時点で、補正信号線 Lsの電圧すなわち、光電変換素子 PDの初期化電圧が出力さ れた共通列信号線 Lnと同一の電圧が、もともとの共通列信号線 Ln出力と置換されて 雑音信号除去回路 40へと入力される。時刻 t3において、雑音信号除去回路 40内部 の CPパルスによって、初期化信号としてクランプされたのち、時刻 t5において、光電 変換素子 PDの蓄積信号レベルを検知するタイミングで、 RSVDDパルスを ONにす ることで、電圧制御回路 60の入力は、電源電圧 VDDの電圧(論理レベル的に High )となり、共通列信号線接続トランジスタ Q61のゲートが Highレベルに変化するため 、 2次元状の撮像領域からの共通列信号線 Ln出力がふたたび接続される。このとき 同時に電圧制御回路用電流削減パルス Bにより電流削減トランジスタ Q65を ONし、 電圧制御回路出力電圧を論理レベル的に Lowにして、補正信号線 Lsと共通列信号 線 Lnとの接続を遮断する。これにより、 2次元状の撮像領域からの光電変換素子 PD の飽和電圧が出力された共通列信号線 Lnの電圧が雑音信号除去回路 40へと入力 される。時刻 t6以降で、雑音信号除去回路 40内部で相関二重サンプリングが行わ れて、雑音除去された正常な光電変換素子 PDの電荷検出を行うことができる。
[0135] なお、本発明に係るカメラは、上記実施の形態 1〜6に示した固体撮像装置や、レ ンズ等を備えて構成され、上記と同様の構成、作用、効果を奏する。
[0136] 図 23は、上述の実施の形態 1〜6の固体撮像装置を用いたカメラの構成を示す図 である。
[0137] 図 23に示されるようにカメラ 400は、被写体の光学像を撮像素子に結像させるレン ズ 401と、レンズ 401を通過した光学像の光学処理を行うミラーや、シャツタなどの光 学系 402と、上記の固体撮像装置により実現される MOS型撮像素子 403と、信号処 理部 410と、タイミング制御部 411等とを備える。タイミング制御部 411は、 MOS型撮 像素子 403から出力されるフィールドスルーの信号と出力信号との差分をとる CDS 回路 404と、 CDS回路 404から出力される OBレベルの信号を検出する OBクランプ 回路 405と、 OBレベルと有効画素の信号レベルとの差分をとり、その差分のゲインを 調整する GCA406と、 GCA406から出力されたアナログ信号をデジタル信号に変 換する ADC407等とから構成される。タイミング制御部 411は、 ADC407から出力さ れたデジタル信号に信号処理を施すと共に、駆動タイミングの制御を行う DSP408と 、 DSP408の指示〖こ従って、 MOS型撮像素子 403に対して種々の駆動パルスを種 々のタイミングで発生させる TG409等と力 構成される。
[0138] このように構成されたカメラ 400によれば、上記の固体撮像装置により実現される M OS型撮像素子 403によって、画素部の出力信号レベルを固体撮像素子内部で即 座に判定し、高輝度入射時の信号に補正をかけることができる高画質のカメラを実現 することができる。
[0139] なお、ここでは固体撮像装置として MOS型を用いた場合について説明した力 CC D型であってもよい。
産業上の利用可能性
[0140] 本発明に係る MOS型固体撮像装置は、太陽光などの高輝度発光体を背景にした 撮影した場合に無信号レベルとして検出してしまう現象を起こすことがなぐ多画素の 高速連写撮影時でも自然な撮影画像を生成することができ、この MOS型固体撮像 装置を備えるビデオカメラやデジタルカメラ、携帯電話等 PDAに搭載されるカメラに 適用することができる。

Claims

請求の範囲
[1] 1次元または 2次元に配置された画素部と、
前記画素部力 共通列信号線に出力される画素出力電圧を検知する電圧レベル 検知手段と、
前記電圧レベル検知手段の論理出力電圧および前記画素出力電圧に基づいて、 水平出力手段に所定の電圧を出力する列信号処理手段とを備え、
前記列信号処理手段は、前記論理出力電圧によって、前記画素出力電圧に対応 する電圧および固定電圧の!/、ずれかを出力する
ことを特徴とする固体撮像装置。
[2] 前記画素部は、
入射光を電荷に変換する光電変換素子と、
前記光電変換素子に蓄積された電荷を電圧出力する増幅手段と
を有することを特徴とする請求項 1記載の固体撮像装置。
[3] 前記列信号処理手段は、前記画素出力電圧を入力とし、前記水平出力手段に電 圧を出力する雑音信号除去手段を有し、
前記雑音信号除去手段は、前記画素部の初期化時における前記画素出力電圧と 、前記画素部の蓄積時における前記画素出力電圧との差分を出力する
ことを特徴とする請求項 1記載の固体撮像装置。
[4] 前記列信号処理手段は、電圧制御手段をさらに備え、前記列信号処理手段が前 記固定電圧を出力する場合は、前記画素部の初期化時における前記画素出力電圧 の代わりに、予め定められた初期化電圧を前記電圧制御手段から前記雑音信号除 去手段に入力する
ことを特徴とする請求項 3記載の固体撮像装置。
[5] 前記電圧制御手段は、
前記画素部の初期化時における前記画素出力電圧と同一の電圧を生成する初 期化電圧生成手段と、
前記初期化電圧生成手段が生成した初期化電圧を前記共通列信号線に入力す ることによって、前記画素部の初期化状態を再現する置換手段と を備えることを特徴とする請求項 4記載の固体撮像装置。
[6] 前記初期化電圧生成手段は、前記画素部の領域外に形成され、
前記置換手段は共通列信号線ごとに設けられる
ことを特徴とする請求項 5記載の固体撮像装置。
[7] 前記電圧制御手段は、水平ブランキング期間内に行なわれる前記画素部力 前記 雑音信号除去手段までの電荷検出期間を動作期間とし、前記動作期間以外は非動 作状態に設定される
ことを特徴とする請求項 4記載の固体撮像装置。
[8] 前記画素部がフローティングディフュージョンを備え、前記初期化電圧を前記フロ 一ティングディフュージョンの初期時の電圧とする
ことを特徴とする請求項 4記載の固体撮像装置。
[9] 前記列信号処理手段は、電圧制御手段をさらに備え、前記列信号処理手段が前 記固定電圧を出力する場合は、予め定められた飽和電圧を前記電圧制御手段から 前記水平出力手段に出力する
ことを特徴とする請求項 3記載の固体撮像装置。
[10] 前記電圧制御手段は、水平ブランキング期間内に行なわれる前記画素部力 前記 雑音信号除去手段までの電荷検出期間を動作期間とし、前記動作期間以外は非動 作状態に設定される
ことを特徴とする請求項 9記載の固体撮像装置。
[11] 前記画素部がフローティングディフュージョンを備え、前記飽和電圧を前記フロー ティングディフュージョンの飽和時の電圧とする
ことを特徴とする請求項 9記載の固体撮像装置。
[12] 前記電圧レベル検知手段は、
前記画素部の飽和蓄積時における前記画素出力電圧と同一の電圧を生成する 飽和電圧生成手段と、
前記飽和電圧生成手段が生成した飽和電圧と前記画素出力電圧とを比較する 判定手段と
を備えることを特徴とする請求項 1記載の固体撮像装置。
[13] 前記飽和電圧生成手段は、前記画素部の領域外に形成され、前記判定手段は前 記共通列信号線ごとに設けられる
ことを特徴とする請求項 12記載の固体撮像装置。
[14] 請求項 1から請求項 13のいずれ力 1項記載の固体撮像装置を備えることを特徴と するカメラ。
PCT/JP2005/012352 2004-07-06 2005-07-04 固体撮像装置 WO2006004096A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200580022718XA CN1981517B (zh) 2004-07-06 2005-07-04 固体摄像装置
US11/571,461 US7667171B2 (en) 2004-07-06 2005-07-04 Solid-state imaging device
JP2006528891A JP4279880B2 (ja) 2004-07-06 2005-07-04 固体撮像装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004199803 2004-07-06
JP2004-199803 2004-07-06

Publications (3)

Publication Number Publication Date
WO2006004096A2 true WO2006004096A2 (ja) 2006-01-12
WO2006004096A1 WO2006004096A1 (ja) 2006-01-12
WO2006004096A3 WO2006004096A3 (ja) 2006-03-09

Family

ID=

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010005212A (ja) * 2008-06-27 2010-01-14 Canon Inc 放射線撮像装置、その制御方法及び放射線撮像システム
JP2012073035A (ja) * 2010-09-27 2012-04-12 Olympus Corp スペクトル情報測定方法、カラーセンサおよびバーチャルスライド装置
JP2016001713A (ja) * 2014-05-23 2016-01-07 パナソニックIpマネジメント株式会社 撮像装置
JP2020113859A (ja) * 2019-01-10 2020-07-27 キヤノン株式会社 光電変換装置及び光電変換システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000287131A (ja) * 1998-12-25 2000-10-13 Toshiba Corp 固体撮像装置
JP2001024949A (ja) * 1999-07-08 2001-01-26 Canon Inc 固体撮像装置及びそれを用いた撮像システム
JP2004312700A (ja) * 2003-03-25 2004-11-04 Matsushita Electric Ind Co Ltd 撮像装置及び撮像方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000287131A (ja) * 1998-12-25 2000-10-13 Toshiba Corp 固体撮像装置
JP2001024949A (ja) * 1999-07-08 2001-01-26 Canon Inc 固体撮像装置及びそれを用いた撮像システム
JP2004312700A (ja) * 2003-03-25 2004-11-04 Matsushita Electric Ind Co Ltd 撮像装置及び撮像方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010005212A (ja) * 2008-06-27 2010-01-14 Canon Inc 放射線撮像装置、その制御方法及び放射線撮像システム
JP2012073035A (ja) * 2010-09-27 2012-04-12 Olympus Corp スペクトル情報測定方法、カラーセンサおよびバーチャルスライド装置
US8884210B2 (en) 2010-09-27 2014-11-11 Olympus Corporation Spectrum information measurement method, color sensor and virtual slide device
JP2016001713A (ja) * 2014-05-23 2016-01-07 パナソニックIpマネジメント株式会社 撮像装置
JP2020113859A (ja) * 2019-01-10 2020-07-27 キヤノン株式会社 光電変換装置及び光電変換システム

Also Published As

Publication number Publication date
JP4279880B2 (ja) 2009-06-17
CN1981517B (zh) 2010-05-26
CN1981517A (zh) 2007-06-13
US20080061216A1 (en) 2008-03-13
WO2006004096A3 (ja) 2006-03-09
JPWO2006004096A1 (ja) 2008-04-24
US7667171B2 (en) 2010-02-23

Similar Documents

Publication Publication Date Title
JP4279880B2 (ja) 固体撮像装置
US7936386B2 (en) Solid-state imaging device
JP3517614B2 (ja) 固体撮像装置
US8670049B2 (en) Photoelectric conversion device and image capturing device
JP4848739B2 (ja) 物理量検出装置および撮像装置
US8068155B2 (en) Solid-state image sensor and driving method thereof, and image sensor
US8149304B2 (en) Solid-state imaging device and imaging device
US8610795B2 (en) Solid-state imaging apparatus for suppressing noise
WO2010092651A1 (ja) 固体撮像装置及び撮像装置
US20060176519A1 (en) Black out correction device
JP2007074435A (ja) 固体撮像装置およびその駆動方法
US8134769B2 (en) Imaging apparatus
JP4093220B2 (ja) 固体撮像装置及びこの固体撮像装置を備える撮像装置
JP2004349907A (ja) 固体撮像装置
JP2003259223A (ja) 撮像システム
US7087881B2 (en) Solid state image pickup device including an integrator with a variable reference potential
JP5403019B2 (ja) 物理量検出装置および撮像装置
JP4715851B2 (ja) 固体撮像装置及びこの固体撮像装置を備える撮像装置
JP2007166419A (ja) 固体撮像装置
JP2006295512A (ja) 固体撮像装置及び撮像装置
JP2005323124A (ja) 固体撮像装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

B Later publication of amended claims

Effective date: 20051125

WWE Wipo information: entry into national phase

Ref document number: 2006528891

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11571461

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580022718.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11571461

Country of ref document: US