WO2006003982A1 - 揮発性溶解物の検出装置と検出方法 - Google Patents

揮発性溶解物の検出装置と検出方法 Download PDF

Info

Publication number
WO2006003982A1
WO2006003982A1 PCT/JP2005/012055 JP2005012055W WO2006003982A1 WO 2006003982 A1 WO2006003982 A1 WO 2006003982A1 JP 2005012055 W JP2005012055 W JP 2005012055W WO 2006003982 A1 WO2006003982 A1 WO 2006003982A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
liquid
detection
volatile
test
Prior art date
Application number
PCT/JP2005/012055
Other languages
English (en)
French (fr)
Inventor
Hajime Komura
Kazuo Onaga
Hiroshi Koda
Original Assignee
Suntory Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntory Limited filed Critical Suntory Limited
Priority to EP05755747A priority Critical patent/EP1767919A4/en
Priority to US11/631,070 priority patent/US7845208B2/en
Priority to AU2005258447A priority patent/AU2005258447B2/en
Publication of WO2006003982A1 publication Critical patent/WO2006003982A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2226Sampling from a closed space, e.g. food package, head space
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N2001/2267Sampling from a flowing stream of gas separating gas from liquid, e.g. bubbles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4055Concentrating samples by solubility techniques
    • G01N2001/4066Concentrating samples by solubility techniques using difference of solubility between liquid and gas, e.g. bubbling, scrubbing or sparging

Definitions

  • the present invention relates to a detection container capable of storing a substantially constant amount of liquid while leaving a space above, a nozzle capable of blowing bubbles in the liquid stored in the detection container, and blowing out the nozzle
  • a pressurized gas supply device capable of supplying a pressurized gas for use, and a detection part of a sensor capable of detecting a volatile component facing the communication path communicating with the upper part of the detection container
  • the present invention relates to a detection device and a detection method for a volatile dissolved substance that is provided so that a volatile component volatilized from a liquid in a container for use can be introduced into the communication path and can be detected by the sensor.
  • mineral water is commercialized through various processes such as peculiar filtration, precipitation, and heat sterilization treatment of raw water such as groundwater collected from a specific water source.
  • raw water is contaminated with microorganisms and chemicals, raw water transport and storage containers, pipelines when bottling are contaminated with microorganisms and chemicals, pipelines when bottling, etc. If products of other varieties or cleaning chemicals remain on the product, a strange odor may be added to the product.
  • metal oxide semiconductor type gas sensors hot wire type gas sensors, solid electrolyte type gas sensors, infrared type gas sensors and the like are known as sensors for detecting volatile components in the natural atmosphere. These gas sensors are small, inexpensive, and relatively easy to handle. However, the sensor alone cannot be used to detect trace amounts of volatile organic compounds contained in the atmosphere as described above because it is affected by atmospheric temperature fluctuations, humidity fluctuations, and mixed gases. Therefore, for example, a metal oxide semiconductor gas sensor that can detect the gas species with the highest sensitivity eliminates the effects of variable factors such as temperature, humidity, and miscellaneous gases, and is volatile at a ppb (one billionth) level. Sexual components can be detected.
  • the detection device includes a detection container capable of storing a substantially constant amount of liquid leaving a space above, a nozzle capable of blowing bubbles in the liquid stored in the detection container, and a pressurized gas for blowing to the nozzle.
  • a pressurized gas supply device capable of supplying water, and a detection part of a sensor capable of detecting volatile components is placed in the communication path communicating with the upper part of the detection container to volatilize from the liquid in the detection container. Volatile components are introduced into the communication path so that they can be detected by the sensor.
  • a substantially constant amount of liquid weighed in advance is placed in a detection container so that the volatile component can be detected with high accuracy under a certain condition, and the substantially constant amount of liquid container is measured.
  • the sensor is configured to detect volatilized volatile components.
  • Patent Document 1 JP-A-11-83701
  • a first characteristic configuration of the present invention is a detection container capable of storing a substantially constant amount of liquid with a space left above, and a nozzle capable of blowing bubbles in the liquid stored in the detection container.
  • a pressurized gas supply device capable of supplying a pressurized gas for blowing to the nozzle, and a sensor capable of detecting a volatile component in a communication path communicating with an upper portion of the detection container.
  • a detection device for a volatile dissolved substance that is provided so as to be detected by the sensor by introducing a volatile component that has volatilized from the liquid in the detection container into the communication path with the detection unit facing.
  • a supply mechanism capable of supplying liquid in the liquid container to the detection container, and an overflow mechanism for overflowing the liquid exceeding the predetermined amount to the outside of the detection container force container. It is in the established point .
  • the liquid supply machine of the liquid container When the liquid is supplied to the detection container depending on the structure and the liquid is supplied to the detection container over a certain amount, the liquid exceeding the certain amount overflows to the outside of the detection container force container and enters the detection container. Can store a substantially constant amount of liquid.
  • a second characteristic configuration of the present invention is that the overflow pipe is connected to the detection container to constitute the overflow mechanism, and a valve that can open and close the overflow pipe is provided. .
  • the overflow mechanism is configured by connecting the overflow pipe to the detection container, the liquid exceeding a certain amount can overflow the detection container through the overflow pipe to the outside of the container.
  • a valve that can open and close the overflow pipe is provided, so that after an almost constant amount of liquid enters the detection container, the overflow atmosphere is prevented so that the atmosphere outside the container does not enter the detection container through the overflow pipe.
  • the tube can be kept closed and volatile components can be detected with higher accuracy.
  • a liquid supply path from the liquid container to the detection container and a liquid discharge path communicating with the outside of the container are alternatively selected at a lower end portion of the detection container.
  • the valve mechanism that can be connected is provided.
  • a valve mechanism is provided that can selectively connect the liquid supply path from the liquid container to the detection container and the liquid discharge path communicating with the outside of the container to the lower end of the detection container.
  • the liquid supply path can be connected to the lower end of the detection container for supply.
  • the liquid discharge path can be connected to the lower end of the detection container to discharge the liquid, and supply and discharge of the liquid to and from the detection container can be performed. It can be performed simply.
  • liquid supply to detection containers such as pure water liquid containers such as distilled water and ion exchange water
  • a valve mechanism capable of selectively connecting the channel and the liquid discharge channel communicating with the outside of the container to the lower end portion of the detection container, after supplying pure water to the detection container, By discharging water, the detection container can be easily washed.
  • the pressurized gas supply device in order to configure the supply mechanism, is provided so that a pressurized gas can be supplied to the liquid container, and the liquid is supplied from the pressurized gas supply device.
  • the pressurized gas supply device By supplying pressurized gas to the container, the liquid in the liquid container can be supplied to the detection container.
  • a pressurized gas supply device provided so as to be able to supply a pressurized gas for blowing out to a nozzle capable of blowing bubbles in the liquid of the detection container is used to apply the pressurized gas.
  • a supply device is provided so that pressurized gas can be supplied to the liquid container, and by supplying pressurized gas from the pressurized gas supply device to the liquid container, the liquid in the liquid container can be supplied to the detection container. Therefore, it is possible to simplify the structure of the supply mechanism.
  • the fifth characteristic configuration of the present invention includes a detection result of the reference volatile component volatilized from the reference liquid, and a detection result of the sensor volatile component volatilized from the test liquid. And volatile dissolved matter in the test liquid can be detected; ⁇ .
  • a sixth characteristic configuration of the present invention is that the detection container is provided so that it can alternatively accommodate a substantially constant amount of the reference liquid and a substantially constant amount of the test liquid.
  • the detection container is alternatively accommodated with a substantially constant amount of the reference liquid and a substantially constant amount of the test liquid. Since the reference liquid and the test liquid can be accommodated in the detection container in substantially the same fixed amount, the structure can be simplified.
  • a reference liquid container capable of storing the reference liquid and a test liquid container capable of storing the test liquid are separately provided, and the supply mechanism includes: The reference liquid in the reference liquid container and the test liquid in the test liquid container are provided so as to be selectively supplied to the detection container.
  • a reference liquid container that can store a reference liquid and a test liquid container that can store a test liquid are provided separately, and a supply mechanism is provided for the reference liquid in the reference liquid container and the test liquid container. Since the test liquid can be selectively supplied to the detection container, the reference liquid is stored in the reference liquid container, and the test liquid is stored in the test liquid container. For example, the reference liquid and the liquid to be tested can be accommodated in the detection container in substantially the same amount without requiring any operation by the person in charge of detection.
  • the eighth characteristic configuration of the present invention is a detection container capable of storing a substantially constant amount of liquid leaving a space above, and a nozzle capable of blowing bubbles in the liquid stored in the detection container.
  • a detection unit of a sensor capable of detecting a volatile component is provided in a communication path communicating with the upper part of the detection container using a pressurized gas supply device capable of supplying pressurized gas for blowing to the nozzle.
  • the liquid stored in the liquid container is supplied to the detection container by the supply mechanism and supplied to the detection container. If the liquid exceeds a certain amount, it will exceed that amount.
  • the detection container forces the body and lies in overflowing outside of the container.
  • the liquid stored in the liquid container is supplied to the detection container by the supply mechanism, and the detection container If the liquid supplied to the container exceeds a certain amount, the liquid exceeding the certain amount also overflows the detection container force to the outside of the container. Even if the supply amount of the liquid exceeds a substantially constant amount, the detection container can store a substantially constant amount of liquid.
  • the detection device includes a supply mechanism D that can alternatively supply the reference liquid A in the reference liquid container 2 and the test liquid B in the test liquid container 3 to the detection container 1, and an abbreviation.
  • An overflow mechanism E is provided to overflow the reference liquid A or the test liquid B exceeding a certain amount from the detection container 1 to the outside of the container.
  • the detection container 1 is provided with a powerful nozzle 4 such as a publishing porous glass sphere that can blow out bubbles in the reference liquid A or the test liquid B contained in the detection container 1. It is provided.
  • a sensor control unit 6 that controls the operation of the gas sensor S and makes the detection unit of the gas sensor S capable of detecting volatile components face the upper communication pipe line 5 communicating with the upper part of the detection container 1.
  • a data processing unit 7 for processing the detection data from the gas sensor S and displaying the detection result.
  • Gas for reference volatile components volatilized from reference liquid A which is detected by gas sensor S after introducing the volatile component volatilized from reference liquid A in sample container 1 to liquid B to be detected into upper communication line 5 Comparing the detection result of S with the detection result of the gas sensor S of the test volatile components volatilized from the test liquid B, the volatile dissolved matter in the test liquid B can be detected. .
  • the upper communication pipe 5 is provided with a first three-way valve VI in the middle thereof, and the first communication pipe 5a facing the detection section is replaced with the second communication pipe 5b on the detection container 1 side.
  • the second station Close the communication line 5b and connect the first communication line 5a to the outside of the container, or close the second communication line 5b and block the communication between the first communication line 5a and the outside of the container. It is configured to be switchable.
  • the overflow mechanism E has an overflow pipe 8 connected to the detection container 1 so that the reference liquid A or the test liquid B exceeding a certain amount passes through the overflow pipe 8 from the detection container 1 to the container. It is configured to overflow to the outside. Further, the overflow mechanism E connects the overflow pipe 8 and the first drain discharge pipe F1 communicating with the outside of the container via the second three-way valve V2, and connects the first drain discharge pipe F1 to the overflow pipe. 8 is provided so as to be switchable between a state where it is connected to 8 and a state where the overflow pipe 8 is closed and the first drain discharge pipe F 1 is connected to the outside of the container.
  • the supply mechanism D includes a reference liquid supply line G1 from the reference liquid container 2 to the detection container 1, and a test liquid supply line G2 from the test liquid container 3 to the detection container 1.
  • the second drain discharge line (liquid discharge path) F2 that communicates with the outside of the container can be selectively connected to the lower communication line 9 that communicates with the lower end of the detection container 1. Is provided. Then, the start end of the reference liquid supply pipe G1 enters near the bottom of the reference liquid container 2, and the start end of the test liquid supply pipe G2 enters near the bottom of the test liquid container 3.
  • the test liquid B in the liquid container 3 can be selectively supplied to the detection container 1 by extrusion through the lower communication pipe 9.
  • the supply mechanism D is configured to be able to discharge the liquid in the detection container 1 to the outside of the container through the second drain discharge pipe F2.
  • the liquid valve mechanism H includes a third three-way valve V3 that selectively connects the reference liquid supply line G1 and the test liquid supply line G2 to the first intermediate supply line J1, and (1) A fourth three-way valve V4 that alternatively connects the intermediate supply line J1 and the second drain discharge line F2 to the second intermediate supply line J2, and the lower communication line 9 of the detection container 1 A fifth three-way valve V5 that selectively connects the third drain discharge pipe F3 communicating with the outside of the container to the second intermediate supply pipe J2 is provided.
  • the clean air that has passed through the filter or the like is compressed and compressed by a compressor or the like and stored in the air tank 10, and the pressurized air in the air tank 10 is supplied to the nozzle 4 or each liquid container 2 , 3 is provided with a pressurized air supply device L equipped with a pressurized air supply mechanism K to supply pressurized air for blowing (an example of pressurized gas) to the nozzle 4
  • the compressed liquid container 2 can be supplied to the liquid container 3 to be tested.
  • the pressurized air supply mechanism K includes an air supply pipe M connected to the air tank 10, a first air supply pipe Ml for supplying pressurized air to the nozzle 4, a reference liquid container 2, and a test object.
  • the liquid container 3 branches to a second air supply pipe M2 that supplies pressurized air to the liquid container 3.
  • a needle valve 11 and a flow meter 12 are connected to each of the first and second air supply pipes Ml and M2 in order of upstream force.
  • the pressurized air supply mechanism K connects the nozzle side air pipe 13 connected to the nozzle 4 and the first air supply pipe Ml via the sixth three-way valve V6.
  • the air supply pipe M1 is connected in communication with the nozzle-side air pipe 13, the nozzle-side air pipe 13 is closed to block the flow of pressurized air from the first air supply pipe Ml, and the first air Switching between the supply pipe Ml and the outside of the container is also possible.
  • the container-side air pipe 14 and the second air supply pipe M2, which are branched and connected to the upper space of the reference liquid container 2 and the upper space of the test liquid container 3, are connected via a seventh three-way valve V7.
  • the container-side air pipe 14 can be switched between the state in which the second air supply pipe M2 is connected in communication and the state in which the second air supply pipe M2 is closed and the container-side air pipe 14 is connected in communication with the outside of the container! RU
  • the needle valve 11 and the flow meter 12 may be connected to each of the first and second air supply pipes Ml and M2 in order from the downstream side.
  • the gas sensor S is a metal oxide semiconductor gas sensor.
  • the detection unit (sensing element) is mainly composed of a metal oxide semiconductor such as tin oxide (SnO).
  • the sensor control unit 6 controls the heating of the heater combined electrode of the sensing element.
  • the data processing unit 7 is configured to detect a volatile component from the resistance change of the gas sensitive body.
  • the gas sensitive body was formed by supporting 1.5 wt% of palladium (Pd) on the main component tin oxide.
  • the gas sensitive body hydrolyzes an aqueous solution of salty tin (SnCl) with ammonia (NH).
  • the stannic acid sol was obtained, air-dried and then calcined in the air at, for example, 500 ° C. for 1 hour, impregnated with an aqueous solution of palladium, for example, at 500 ° C. in the air. Calcination was carried out for a period of time to load the medium.
  • an equal amount of 1000-mesh alumina is mixed with acid tin that supports aluminum, and then terbineol is calcined to form a paste, and then a heater electrode and a resistance detection electrode For example, it is formed by baking in air at 500 ° C. for 1 hour.
  • the detection container 1, the reference liquid container 2, the test liquid container 3, and the overflow pipe 8, various pipes 5, 9, F1 to F3, Gl, G2, Jl, J2, and various air pipes 13, 14 and the air supply pipes M, Ml, M2, etc. are made of a material that does not adsorb the volatile components to be detected, such as glass teflon (registered trademark) resin.
  • the reference liquid container 2 contains reference liquid A such as pure water, the test liquid container 3 and the test liquid B, and the first to seventh three-way valves as shown in Fig. 1. Switches between V1 and V7. That is, the second three-way valve V2 connects the overflow pipe 8 and the first drain discharge pipe F1.
  • the third to fifth three-way valves V3 to V5 connect the reference liquid container 2 and the empty detection container 1 to the reference liquid supply line G1, the first intermediate supply line J1, and the second intermediate supply line. Communicate through the route J2 and the lower communication line 9.
  • the first three-way valve VI blocks communication between the first communication line 5a and the second communication line 5b.
  • the sixth three-way valve V6 blocks communication between the first air supply pipe Ml and the nozzle-side air pipe 13.
  • the seventh three-way valve V7 blocks communication between the second air supply pipe M2 and the container-side air pipe 14.
  • the seventh three-way valve V7 is switched to supply pressurized air to the reference liquid container 2 so that the container-side air pipe 14 communicates with the second air supply pipe M2. Then, supply the reference liquid A to the detection container 1. Excess reference liquid A is allowed to overflow from the overflow pipe 8, leaving a space C in the upper part, and storing a substantially constant amount of the reference liquid A in the detection container 1.
  • V5 is switched to block communication between the reference liquid container 2 and the detection container 1.
  • the container side air pipe 14 is outside the container.
  • the sixth three-way valve V6 is set so that the nozzle side air pipe 13 communicates with the first air supply pipe Ml so that the amount of the reference liquid A in the detection container 1 during publishing can be kept substantially constant. Switch to generate bubbles so that the reference liquid A in the detection container 1 overflows the overflow pipe.
  • the second three-way valve V2 is switched so that the communication between the overflow pipe 8 and the first drain discharge pipe F1 is blocked and the overflow pipe 8 is closed.
  • the first three-way valve VI is switched so that the first communication line 5a and the second communication line 5b communicate with each other, and the reference liquid A force has been volatilized by publishing the nozzle 4 force. Introduced to upper communication line 5.
  • a reference volatile component is detected by the gas sensor S, and this detection data is processed by the data processing unit 7 and the detection result is stored in a memory or the like and displayed on a liquid crystal monitor or the like.
  • the first three-way valve VI is switched so that the communication between the second communication line 5a and the first communication line 5b is blocked, and the second communication line 5b Shut off.
  • the fifth three-way valve V5 is switched so that the lower communication line 9 communicates with the second intermediate supply line J2, and the reference liquid A in the detection container 1 passes through the second drain discharge line F2 to the outside of the container. To discharge.
  • the second three-way valve V2 is switched so that the overflow pipe 8 and the first drain discharge pipe F1 communicate with each other.
  • the test liquid container 3 and the empty detection container 1 are connected via the test liquid supply line G2, the first intermediate supply line J1, the second intermediate supply line J2, and the lower communication line 9. Switch the 3rd and 4th three-way valves V3 and V4 so that they communicate.
  • the sixth three-way valve V6 is switched so that the communication between the nozzle side air pipe 13 and the first air supply pipe Ml is cut off.
  • the seventh three-way valve V7 is switched so that the container-side air pipe 14 communicates with the second air supply pipe M2, and pressurized air is supplied to the test liquid container 3, and the test liquid B is supplied to the detection container. Supply to 1.
  • the excess test liquid B is allowed to overflow from the overflow pipe 8 and a substantially constant amount of the test liquid B is stored in the detection container 1.
  • V5 is switched to block communication between the liquid container 3 to be detected and the detection container 1.
  • the container side air pipe 14 Switch the seventh three-way valve V7 so that it communicates with, and stop supplying pressurized air to the liquid container 3 to be tested.
  • the sixth three-way valve V6 is connected so that the nozzle-side air pipe 13 communicates with the first air supply pipe Ml so that the amount of the liquid B to be detected in the detection container 1 during publishing can be substantially constant. To generate bubbles so that the test liquid B in the detection container 1 overflows from the overflow pipe 8.
  • the third and fourth three-way valves V3 and V4 are switched so that the reference liquid container 2 and the third drain discharge pipe F3 communicate with each other.
  • the seventh three-way valve V7 is switched so that the container-side air pipe 14 communicates with the second air supply pipe M2.
  • pressurized air is supplied to the reference liquid container 2, and the reference liquid A is passed through the first intermediate supply line J1 and the second intermediate supply line J2, and from the third drain discharge line F3.
  • the first intermediate supply line J1 and the second intermediate supply line J2 are washed, and the remaining test liquid B is discharged.
  • the fourth three-way valve V4 is switched so that the second intermediate supply line J2 communicates with the second drain discharge line F2 and the third drain discharge line F3.
  • the communication between the reference liquid container 2 and the third drain discharge pipe F3 is cut off.
  • the seventh three-way valve V7 is switched so that the container-side air pipe 14 communicates with the outside of the container, and the supply of pressurized air to the reference liquid container 2 is stopped. 1 Shut off the communication with the drain discharge pipe F1 and switch the second three-way valve V2 so that the overflow pipe 8 is closed.
  • the first three-way valve VI is switched so that the first communication line 5a and the second communication line 5b communicate with each other, and the test volatile component volatilized from the test liquid B by the four-force nozzle publishing Introduced into communication path 5.
  • the detection data of the volatile component to be detected detected by the gas sensor S is processed by the data processing unit 7, and the detection result is stored in a memory or the like and displayed on a liquid crystal monitor or the like.
  • the first three-way valve VI is switched so that the communication between the first communication line 5a and the second communication line 5b is blocked, and the second communication line 5b Shut off.
  • the fifth three-way valve V5 is switched so that the lower communication line 9 communicates with the second intermediate supply line J2, and the test liquid B in the detection container 1 passes through the second drain discharge line F2 to the outside of the container. To discharge.
  • the second three-way valve V2 is switched so that the overflow pipe 8 and the first drain discharge pipe F1 communicate with each other.
  • the reference liquid container 2 and the empty detection container 1 The reference liquid supply line Gl, the first intermediate supply line Jl, the second intermediate supply line J2, and the lower communication line 9 are switched to switch the fourth three-way valve V4 to communicate with the reference liquid.
  • the second three-way valve V2 is switched so as to cut off the communication between the overflow pipe 8 and the first drain discharge pipe F1.
  • the fourth three-way valve V4 is switched so that the lower communication line 9 communicates with the second drain discharge line F2, and the reference liquid A in the detection container 1 is passed through the second drain discharge line F2. Discharge to the outside. Repeat these operations several times (2 to 3 times) to clean the inside of the detection container 1.
  • the reference volatile component is detected again by the gas sensor S, and the detected data is processed by the data processing unit 7.
  • the detection result is stored in a memory and displayed on a liquid crystal monitor.
  • the data processing unit 7 compares the detection data of the test volatile component with the detection data of the reference volatile component detected before and after the detection of the test volatile component. Calculate the presence / absence and amount of volatile dissolved matter dissolved in liquid B, and display the presence / absence and amount of dissolution on a liquid crystal monitor.
  • the volatile dissolved matter detection device is a volatile organic compound that can cause off-flavors and aromas in trace amounts of raw water such as mineral water and soft drinks, as well as wastewater from sewage treatment facilities and various factories. It may be used for detecting volatile organic compounds therein.
  • the detector for detecting volatile dissolved matter may use a hot-wire gas sensor, a solid electrolyte gas sensor, an infrared gas sensor, or the like as a sensor.
  • the detection device for volatile dissolved matter according to the present invention may be provided with an overflow mechanism for supplying a liquid exceeding a certain amount to the upper opening force of the detection container and overflowing the outside of the container.
  • a detection device for a volatile lysate comprises a combination of a liquid container for storing a reference liquid and a detection container for storing only the reference liquid in the liquid container; You may provide the combination of the liquid container which accommodates a body, and the container for a detection which accommodates only the to-be-tested liquid of the liquid container.
  • the volatile lysate detection apparatus may be provided with a single liquid container and a supply mechanism capable of supplying only the liquid in the single liquid container to the detection container.
  • the liquid container may be provided so that the reference liquid and the test liquid can be alternatively accommodated.
  • the volatile dissolved matter detection device may be configured to manually switch the first to seventh three-way valves V1 to V7 shown in the embodiment.
  • a control device for controlling the switching operation of the first to seventh three-way valves V1 to V7 may be provided so that the supply mechanism D, the overflow mechanism E, and the pressurized air supply mechanism K operate in cooperation.
  • the volatile lysate detection apparatus may use a test liquid that has been subjected to adsorption treatment with an adsorbent of odorous components such as pure water and activated carbon as a reference liquid in a reference liquid container. good.
  • test liquid subjected to the adsorption process When the test liquid subjected to the adsorption process is used as the reference liquid, the test liquid may be accommodated in the reference liquid container together with the adsorbent. Alternatively, the test liquid that has been subjected to adsorption treatment through activated carbon or the like may be stored in a reference liquid container and used.
  • the volatile dissolved matter detection apparatus can detect volatile components easily and accurately under certain conditions. Therefore, in order to detect volatile organic compounds that can cause off-flavors and flavors in trace amounts of raw water such as mineral water and soft drinks, as well as volatile organic compounds in wastewater from sewage treatment facilities and various factories. Can be used.
  • FIG. 1 Schematic diagram of a volatile lysate detector
  • FIG.2 Schematic diagram of volatile lysate detector ⁇ 3] Schematic diagram of the volatile lysate detector ⁇ 4] Schematic diagram of the volatile lysate detector ⁇ 5] Schematic diagram of the volatile lysate detector ⁇ 6] Schematic diagram [Fig. 7] Schematic diagram of volatile lysate detector ⁇ 8] Schematic diagram of volatile lysate detector ⁇ 9] Schematic diagram of volatile lysate detector ⁇ 10] Volatile lysate detector Schematic diagram of the detector ⁇ 11] Schematic diagram of the volatile lysate detector ⁇ 12] Schematic diagram of the volatile lysate detector Symbol explanation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

 略一定量の液体A,Bを上部に空間を残して収容可能な検出用容器1と、検出用容器の液体中で気泡を吹き出し可能なノズル4と、ノズルに吹き出し用の加圧気体を供給可能な加圧気体供給装置Lとを設け、検出用容器の上部に連通する連通路5に、揮発性成分を検出可能なセンサSの検知部を臨ませて、検出用容器の液体から揮発した揮発性成分を連通路に導入してセンサで検出可能に設けてある揮発性溶解物の検出装置であって、液体を収容可能な液体容器2,3を設けるとともに、液体容器の液体を検出用容器に供給可能な供給機構Dと、略一定量を越える液体を検出用容器から容器外部にオーバーフローさせるオーバーフロー機構Eとを設けてある。

Description

揮発性溶解物の検出装置と検出方法
技術分野
[0001] 本発明は、略一定量の液体を上部に空間を残して収容可能な検出用容器と、前記 検出用容器に収容する液体中で気泡を吹き出し可能なノズルと、前記ノズルに吹き 出し用の加圧気体を供給可能な加圧気体供給装置とを使用し、前記検出用容器の 上部に連通する連通路に、揮発性成分を検出可能なセンサの検知部を臨ませて、 前記検出用容器の液体から揮発した揮発性成分を前記連通路に導入して前記セン サで検出可能に設けてある揮発性溶解物の検出装置と検出方法に関する。
背景技術
[0002] 例えば、ミネラルウォーターは、特定水源より採水された地下水等の原水を独特の 濾過、沈殿および加熱殺菌処理等、各種工程を経て製品化される。ここで原水が微 生物や化学物質で汚染されていたり、原水の運搬容器や貯蔵容器、ボトリングの際 のパイプライン等が微生物やィ匕学物質で汚染されていたり、ボトリングの際のパイプ ライン等に他品種製品等や洗浄薬剤が残って 、たりすると製品に異臭が付 、てしま う場合がある。
また、ジュース等の清涼飲料製品の場合も同じく水が主原料であるため、同様の原 因で製品に異臭が付いてしまう場合がある。
汚染の原因物質によっては百万分の一以下の微量な混入であっても異臭として感 じるため、ミネラルウォーターや清涼飲料の原水や工程力 の異臭、着香物質等の 混入防止、監視、管理は重要である。また下水道処理施設や各種工場からの廃水 中に異臭物質が残存している場合は地域住民に多大な迷惑、健康問題が生じるた め、排水中の異臭物質管理も重要である。
このため、従来から人の嗅覚による官能評価試験が異臭、着香検出手段として行 われている。しかし食品工場や下水道処理施設や各種工場では、その雰囲気中に 力なりの量の臭い成分が充満している場合が多ぐ各現場での官能評価試験は雰囲 気のマスキング作用により正確性に欠ける場合が多い。また評価者の体調によって は評価結果にばらつきが生じたり等、客観性に欠ける評価試験方法とも言える。 一方機器を用いた評価試験方法としてはガスクロマトグラフ装置やガスクロマトダラ フ 'マススペクトル装置が頻繁に用いられる。これら装置は大部分の化合物の場合一 成分あたり O.lngのサンプル量があれば検出できる非常に高感度な装置である。しか し、これらの装置は精密で高価な装置であり、操作に専門知識を必要とするため、ェ 場や処理施設の工程中に設置して簡単な操作で使用できる装置ではな 、。また測 定する試料の前処理力 結果判定までかなりの時間と労力を要するため、すぐに結 果が必要とされる場合や部署での使用にはむかな!/、。
一方自然大気中の揮発性成分を検出するためのセンサとしては金属酸ィ匕物半導 体方式ガスセンサ、熱線方式ガスセンサ、固体電解質方式ガスセンサ、赤外線方式 ガスセンサ等が知られている。これらガスセンサは小型、低価格で取扱いも比較的簡 単である。しかし、雰囲気の温度変動、湿度変動、混在する雑ガス等の影響を受ける ため、センサ単独では上記のような雰囲気中に含まれる微量な揮発性有機化合物検 出には使用できない。そこで、例えば、もっとも高感度にガス種を検出できる金属酸 化物半導体方式ガスセンサは温度、湿度、雑ガス等の変動要因の影響を排除した 雰囲気条件下では ppb (十億分の一)レベルの揮発性成分を検出することができる。 小型、低価格で、揮発性成分を検出するための取扱いも比較的簡単なガスセンサ を使用して、雰囲気中にかなりの量の臭!、成分が充満して!/、る工場や処理施設のェ 程中に設置しても簡単な操作で、原水などの液体中に含まれる揮発性溶解物を積 極的に揮発させて検出できるように、揮発性溶解物の検出装置が従来力 提案され ている。前記検出装置は、略一定量の液体を上部に空間を残して収容可能な検出 用容器と、検出用容器に収容する液体中で気泡を吹き出し可能なノズルと、ノズルに 吹き出し用の加圧気体を供給可能な加圧気体供給装置とを設けるとともに、検出用 容器の上部に連通する連通路に、揮発性成分を検出可能なセンサの検知部を臨ま せて、検出用容器の液体から揮発した揮発性成分を連通路に導入してセンサで検 出可能に設けてある。この従来の検出装置では、揮発性成分を一定条件下で精度 良く検出することができるように、予め計量した略一定量の液体を検出用容器に入れ て、その略一定量の液体カゝら揮発した揮発性成分をセンサで検出するように構成し ている(例えば、特許文献 1参照)。
特許文献 1 :特開平 11— 83701号公報
発明の開示
発明が解決しょうとする課題
[0003] 工場や処理施設などの液体を取り扱う現場においては、特に熟練を要することなく 、必要に応じて、揮発性成分を簡便に検出したい要望がある。し力しながら、上記従 来の検出装置では、予め計量した略一定量の液体を検出用容器に入れて検出する ので、検出担当者によっては、検出用容器に入れる液体の量が多力つたり少なかつ たりして、揮発性成分を一定条件下で精度良く検出することができないおそれがある 本発明は上記実情に鑑みてなされたものであって、特に熟練を要することなぐ必 要に応じて、揮発性成分を一定条件下で簡便に、かつ、精度良く検出できるようにす ることを目的とする。
課題を解決するための手段
[0004] 本発明の第 1特徴構成は、略一定量の液体を上部に空間を残して収容可能な検 出用容器と、前記検出用容器に収容する液体中で気泡を吹き出し可能なノズルと、 前記ノズルに吹き出し用の加圧気体を供給可能な加圧気体供給装置とを設けるとと もに、前記検出用容器の上部に連通する連通路に、揮発性成分を検出可能なセン サの検知部を臨ませて、前記検出用容器の液体から揮発した揮発性成分を前記連 通路に導入して前記センサで検出可能に設けてある揮発性溶解物の検出装置であ つて、前記液体を収容可能な液体容器を設けるとともに、前記液体容器の液体を前 記検出用容器に供給可能な供給機構と、前記略一定量を越える液体を前記検出用 容器力 容器外部にオーバーフローさせるオーバーフロー機構とを設けてある点に ある。
[0005] 〔作用及び効果〕
液体を収容可能な液体容器を設けるとともに、液体容器の液体を検出用容器に供 給可能な供給機構と、略一定量を越える液体を検出用容器力 容器外部にオーバ 一フローさせるオーバーフロー機構とを設けてあるので、液体容器の液体を供給機 構によって検出用容器に供給し、その液体が略一定量を越えて検出用容器に供給 されると、その略一定量を越える液体が検出用容器力 容器外部にオーバーフロー して、検出用容器には、略一定量の液体を収容できる。
従って、予め計量することなぐ略一定量の液体を検出用容器に入れることができ、 特に熟練を要することなぐ必要に応じて、揮発性成分を一定条件下で簡便に、かつ 、精度良く検出できる。
[0006] 本発明の第 2特徴構成は、前記検出用容器にオーバーフロー管を連通接続して前 記オーバーフロー機構を構成し、前記オーバーフロー管を開閉自在な弁を設けてあ る;^、にある。
[0007] 〔作用及び効果〕
検出用容器にオーバーフロー管を連通接続してオーバーフロー機構を構成してある ので、略一定量を越える液体を、検出用容器力もオーバーフロー管を通して、容器 外部にオーバーフローさせることができる。
また、オーバーフロー管を開閉自在な弁を設けてあるので、略一定量の液体が検 出用容器に入った後は、容器外部の雰囲気がオーバーフロー管を通して検出用容 器に入り込まないように、オーバーフロー管を閉じておくことができ、揮発性成分を一 層精度良く検出することができる。
[0008] 本発明の第 3特徴構成は、前記液体容器から前記検出用容器への液体供給路と、 容器外部に連通する液体排出路とを、前記検出用容器の下端部に択一的に連通接 続可能な弁機構を設けてある点にある。
[0009] 〔作用及び効果〕
液体容器から検出用容器への液体供給路と、容器外部に連通する液体排出路と を、検出用容器の下端部に択一的に連通接続可能な弁機構を設けてあるので、液 体容器から検出用容器に液体を供給するときは、液体供給路を検出用容器の下端 部に連通接続して供給することができる。また、検出用容器の液体を容器外部に排 出するときは、液体排出路を検出用容器の下端部に連通接続して排出することがで き、検出用容器に対する液体の供給と排出とを簡便に行うことができる。
また、蒸留水やイオン交換水などの純水の液体容器カゝら検出用容器への液体供給 路と、容器外部に連通する液体排出路とを、検出用容器の下端部に択一的に連通 接続可能な弁機構を設けてある場合は、純水を検出用容器に供給した後、その水を 排出することによって、検出用容器を簡便に洗浄することもできる。
[0010] 本発明の第 4特徴構成は、前記供給機構を構成するに、前記液体容器に加圧気 体を供給可能に、前記加圧気体供給装置を設け、前記加圧気体供給装置から前記 液体容器に加圧気体を供給することにより、その液体容器の液体を前記検出用容器 に供給可能に構成してある点にある。
[0011] 〔作用及び効果〕
供給機構を構成するに、検出用容器の液体中で気泡を吹き出し可能なノズルに吹 き出し用の加圧気体を供給可能に設けてある加圧気体供給装置を活用して、その加 圧気体供給装置を液体容器に加圧気体を供給可能に設け、その加圧気体供給装 置から液体容器に加圧気体を供給することにより、その液体容器の液体を検出用容 器に供給可能に構成してあるので、供給機構の構造の簡略ィ匕を図ることができる。
[0012] 本発明の第 5特徴構成は、参照用液体から揮発した参照用揮発性成分の前記セ ンサによる検出結果と、被検液体から揮発した被検揮発性成分の前記センサによる 検出結果とを比較して、前記被検液体中の揮発性溶解物を検出可能に構成してあ る;^、にある。
[0013] 〔作用及び効果〕
参照用液体から揮発した参照用揮発性成分のセンサによる検出結果と、被検液体 力も揮発した被検揮発性成分のセンサによる検出結果とを比較して、被検液体中の 揮発性溶解物を検出可能に構成してあるので、参照用液体中に溶解している揮発 性溶解物以外の揮発性溶解物が、被検液体中に溶解していることや、参照用液体 中に溶解して!/ヽる揮発性溶解物と同じ揮発性溶解物が被検液体中に溶解して!/ヽて も、その量が参照用液体中に比べて多いことなどを、定性的に簡便に検出できる。
[0014] 本発明の第 6特徴構成は、前記検出用容器を、参照用液体の略一定量と被検液 体の略一定量とを択一的に収容可能に設けてある点にある。
[0015] 〔作用及び効果〕
検出用容器を、参照用液体の略一定量と被検液体の略一定量とを択一的に収容 可能に設けてあるので、参照用液体も被検液体も、略同じ一定量で検出用容器に収 容できると共に、構造の簡略化も図ることができる。
[0016] 本発明の第 7特徴構成は、前記参照用液体を収容可能な参照用液体容器と、前 記被検液体を収容可能な被検液体容器とを各別に設け、前記供給機構を、前記参 照用液体容器の参照用液体と、前記被検液体容器の被検液体とを、前記検出用容 器に択一的に供給可能に設けてある点にある。
[0017] 〔作用及び効果〕
参照用液体を収容可能な参照用液体容器と、被検液体を収容可能な被検液体容 器とを各別に設け、供給機構を、参照用液体容器の参照用液体と、被検液体容器の 被検液体とを、検出用容器に択一的に供給可能に設けてあるので、参照用液体容 器に参照用液体を収容しておき、被検液体容器に被検液体を収容しておけば、検 出担当者による操作を特に必要とすることなぐ参照用液体も被検液体も、略同じ一 定量で検出用容器に収容できる。
[0018] 本発明の第 8特徴構成は、略一定量の液体を上部に空間を残して収容可能な検 出用容器と、前記検出用容器に収容する液体中で気泡を吹き出し可能なノズルと、 前記ノズルに吹き出し用の加圧気体を供給可能な加圧気体供給装置とを使用し、前 記検出用容器の上部に連通する連通路に、揮発性成分を検出可能なセンサの検知 部を臨ませて、前記検出用容器の液体から揮発した揮発性成分を前記連通路に導 入して前記センサで検出する揮発性溶解物の検出方法であって、前記液体を収容 可能な液体容器と、前記液体容器の液体を前記検出用容器に供給可能な供給機構 とを使用して、前記液体容器に収容した液体を前記供給機構で前記検出用容器に 供給し、前記検出用容器に供給した液体が略一定量を越えると、その略一定量を越 える液体を前記検出用容器力も容器外部にオーバーフローさせる点にある。
[0019] 〔作用及び効果〕
液体を収容可能な液体容器と、液体容器の液体を検出用容器に供給可能な供給 機構とを使用して、液体容器に収容した液体を供給機構で検出用容器に供給し、検 出用容器に供給した液体が略一定量を越えると、その略一定量を越える液体を検出 用容器力も容器外部にオーバーフローさせるので、供給機構による検出用容器への 液体の供給量が略一定量を越えても、検出用容器には、略一定量の液体を収容で きる。
従って、予め計量することなぐ略一定量の液体を検出用容器に入れることができ、 特に熟練を要することなぐ必要に応じて、揮発性成分を一定条件下で簡便に、かつ 、精度良く検出できる。
発明を実施するための最良の形態
[0020] 以下に本発明の実施の形態を図面に基づいて説明する。
図 1〜図 12は、本発明による揮発性溶解物の検出装置を示す。蒸留水などの参照 用液体 Aの略一定量、又は、揮発性溶解物を検出するべき被検液体 Bの略一定量 を、上部に空間 Cを残して択一的に収容可能な一つの検出用容器 1と、参照用液体 Aを収容可能な参照用液体容器 2と、被検液体 Bを収容可能な被検液体容器 3とが 密閉可能に設けられている。これらと共に、前記検出装置には、参照用液体容器 2の 参照用液体 Aと被検液体容器 3の被検液体 Bとを検出用容器 1に択一的に供給可能 な供給機構 Dと、略一定量を越える参照用液体 A又は被検液体 Bを検出用容器 1か ら容器外部にオーバーフローさせるオーバーフロー機構 Eとが設けられている。更に 、前記検出用容器 1には、検出用容器 1に収容してある参照用液体 A中又は被検液 体 B中で気泡を吹き出し可能なパブリング用の多孔質ガラス球など力 なるノズル 4を 設けてある。
[0021] そして、検出用容器 1の上部に連通する上部連通管路 5に、揮発性成分を検出可 能なガスセンサ Sの検知部を臨ませるとともに、ガスセンサ Sの作動を制御するセンサ 制御部 6と、ガスセンサ Sによる検出データを処理して検出結果を表示するデータ処 理部 7とが設けられている。検出用容器 1の参照用液体 Aゃ被検液体 Bから揮発した 揮発性成分を上部連通管路 5に導入してガスセンサ Sで検出し、参照用液体 Aから 揮発した参照用揮発性成分のガスセンサ Sによる検出結果と、被検液体 Bから揮発し た被検揮発性成分のガスセンサ Sによる検出結果とを比較して、被検液体 B中の揮 発性溶解物を検出可能に構成してある。
[0022] 前記上部連通管路 5は、その途中に第 1三方弁 VIを設けて、検知部を臨ませてあ る第 1連通管路 5aを検出用容器 1側の第 2連通管路 5bに連通させる状態と、第 2連 通管路 5bを閉じて第 1連通管路 5aを容器外部に連通させる、或いは、第 2連通管路 5bを閉じて第 1連通管路 5aと容器外部との連通も遮断する状態と、に切り換え自在 に構成してある。
[0023] 前記オーバーフロー機構 Eは、検出用容器 1にオーバーフロー管 8を連通接続して 、略一定量を越える参照用液体 A又は被検液体 Bを、オーバーフロー管 8を通して、 検出用容器 1から容器外部にオーバーフローさせるように構成してある。また、前記 オーバーフロー機構 Eは、前記オーバーフロー管 8と容器外部に連通する第 1ドレン 排出管路 F1とを第 2三方弁 V2を介して接続して、第 1ドレン排出管路 F1をオーバー フロー管 8に連通接続する状態と、オーバーフロー管 8を閉じて第 1ドレン排出管路 F 1を容器外部に連通接続する状態とに切り換え自在に設けてある。
[0024] 前記供給機構 Dは、参照用液体容器 2から検出用容器 1への参照用液体供給管 路 G1と、被検液体容器 3から検出用容器 1への被検液体供給管路 G2と、容器外部 に連通する第 2ドレン排出管路 (液体排出路) F2とを、検出用容器 1の下端部に連通 する下部連通管路 9に択一的に連通接続可能な液体用弁機構 Hを設けてある。そし て、参照用液体供給管路 G1の始端部を参照用液体容器 2の底面近くに入り込ませ 、被検液体供給管路 G2の始端部を被検液体容器 3の底面近くに入り込ませて、液 体用弁機構 Hの弁切り換え操作で、加圧空気 (加圧気体の一例)で加圧してある参 照用液体容器 2の参照用液体 Aと、加圧空気で加圧してある被検液体容器 3の被検 液体 Bとを、下部連通管路 9を通して検出用容器 1に択一的に押出供給可能に構成 してある。また、前記供給機構 Dは、検出用容器 1の液体を第 2ドレン排出管路 F2を 通して容器外部へ排出可能に構成してある。
[0025] 前記液体用弁機構 Hは、参照用液体供給管路 G1と被検液体供給管路 G2とを第 1 中間供給管路 J1に択一的に接続する第 3三方弁 V3と、第 1中間供給管路 J1と第 2ド レン排出管路 F2とを第 2中間供給管路 J2に択一的に接続する第 4三方弁 V4と、検 出用容器 1の下部連通管路 9と容器外部に連通する第 3ドレン排出管路 F3とを第 2 中間供給管路 J2に択一的に接続する第 5三方弁 V5とを設けて構成してある。
[0026] また、フィルターなどを通過した清浄空気をコンプレッサーなどで加圧圧縮して空気 タンク 10に貯留しておいて、その空気タンク 10の加圧空気をノズル 4や各液体容器 2 , 3に供給する為の加圧空気供給機構 Kを備えた加圧空気供給装置 Lを設けて、吹 き出し用の加圧空気 (加圧気体の一例)をノズル 4に供給したり、加圧空気を参照用 液体容器 2ゃ被検液体容器 3に供給したりできるように構成してある。
[0027] 前記加圧空気供給機構 Kは、空気タンク 10に接続してある空気供給管 Mをノズル 4に加圧空気を供給する第 1空気供給管 Mlと、参照用液体容器 2と被検液体容器 3 とに加圧空気を供給する第 2空気供給管 M2とに分岐している。前記第 1,第 2空気 供給管 Ml, M2の各々には、ニードル弁 11と流量計 12とが上流側力 順に接続さ れている。これによつて、前記加圧空気供給機構 Kは、前記ノズル 4に接続してあるノ ズル側空気管 13と第 1空気供給管 Mlとを第 6三方弁 V6を介して接続して、第 1空 気供給管 M 1をノズル側空気管 13に連通接続する状態と、ノズル側空気管 13を閉じ て第 1空気供給管 Mlからの加圧空気の流入を遮断し、かつ、第 1空気供給管 Mlと 容器外部との連通も遮断する状態とに切り換え自在にされている。また、参照用液体 容器 2の上部空間と被検液体容器 3の上部空間とに分岐接続してある容器側空気管 14と第 2空気供給管 M2とは第 7三方弁 V7を介して接続され、容器側空気管 14を第 2空気供給管 M2に連通接続する状態と、第 2空気供給管 M2を閉じて容器側空気 管 14を容器外部に連通接続する状態とに切り換え自在にされて!、る。
尚、第 1,第 2空気供給管 Ml, M2の各々に、下流側から順にニードル弁 11と流量 計 12とを接続しても良い。
[0028] 前記ガスセンサ Sは金属酸ィ匕物半導体方式ガスセンサで構成してある。その検知 部(センシング素子)は、酸化錫 (SnO )などの金属酸化物半導体を主成分として略
2
球状に形成された所謂焼結体型の感ガス体を有しており、この感ガス体中にコイル 状の白金よりなるヒータ兼用電極を埋設するとともに、ヒータ兼用電極のコイルの中心 を貫通するようにして貴金属線カゝらなる抵抗検出用電極を感ガス体中に埋設して形 成されている。センサ制御部 6は、センシング素子のヒータ兼用電極の加熱を制御す る。データ処理部 7は、感ガス体の抵抗変化カゝら揮発性成分を検出するように構成し てある。
[0029] 前記感ガス体は、主成分の酸化錫に対してパラジューム (Pd)を 1.5wt%担持して形 成した。前記感ガス体は、塩ィ匕錫 (SnCl )の水溶液をアンモニア (NH )で加水分解し て錫酸ゾルを得て、この得た錫酸ゾルを風乾後に空気中において、例えば 500°Cで 一時間焼成し、パラジュームの王水溶液を含浸させ、例えば、 500°Cで空気中におい て一時間焼成し、ノ《ラジュ一ムを担持させた。ノ《ラジュ一ムを担持させた酸ィ匕錫に骨 材として、例えば、 1000メッシュのアルミナを等量混合し、更にテルビネオールをカロえ てペースト状にした後、ヒータ兼用電極及び抵抗検出用電極に塗布し、例えば、 500 °Cで空気中にお!、て一時間焼成することにより形成してある。
[0030] 尚、検出用容器 1や参照用液体容器 2,被検液体容器 3、並びに、オーバーフロー 管 8や各種管路 5, 9, F1〜F3, Gl, G2, Jl, J2、各種空気管 13, 14、空気供給管 M, Ml, M2などは、検出しょうとする揮発性成分が吸着されない材質、例えばガラ スゃテフロン (登録商標)榭脂等で形成してある。
[0031] 以下に、上記検出装置の操作方法を説明する。
参照用液体容器 2には純水などの参照用液体 Aを入れておき、被検液体容器 3〖こ は被検液体 Bを入れておき、図 1に示すように第 1〜第 7三方弁 V1〜V7を切り換え る。即ち、第 2三方弁 V2は、オーバーフロー管 8と第 1ドレン排出管路 F1とを連通さ せる。また、第 3〜5三方弁 V3〜5は、参照用液体容器 2と空の検出用容器 1とを、参 照用液体供給管路 G1と第 1中間供給管路 J1と第 2中間供給管路 J2と下部連通管路 9とを介して連通させる。第 1三方弁 VIは、第 1連通管路 5aと第 2連通管路 5bとの連 通を遮断する。第 6三方弁 V6は、第 1空気供給管 Mlとノズル側空気管 13との連通 を遮断する。第 7三方弁 V7は、第 2空気供給管 M2と容器側空気管 14との連通を遮 断する。
[0032] 次に、図 2に示すように、容器側空気管 14が第 2空気供給管 M2に連通するように 第 7三方弁 V7を切り換えて参照用液体容器 2に加圧空気を供給し、参照用液体 Aを 検出用容器 1に供給する。余剰の参照用液体 Aはオーバーフロー管 8からオーバー フローさせ、上部に空間 Cを残して、略一定量の参照用液体 Aを検出用容器 1に収 容する。
[0033] 次に、図 3に示すように、第 2中間供給管路 J2が第 2ドレン排出管路 F2と第 3ドレン 排出管路 F3とに連通するように第 4,第 5三方弁 V4, V5を切り換えて、参照用液体 容器 2と検出用容器 1との連通を遮断する。これとともに、容器側空気管 14が容器外 部に連通するように第 7三方弁 V7を切り換えて、参照用液体容器 2への加圧空気の 供給を停止する。また、パブリング時における検出用容器 1中の参照用液体 Aの液量 を略一定ィ匕できるように、ノズル側空気管 13が第 1空気供給管 Mlに連通するように 第 6三方弁 V6を切り換えて、検出用容器 1中の参照用液体 Aがオーバーフロー管 8 力 溢れ出るように気泡を生じさせる。
[0034] 次に、図 4に示すように、オーバーフロー管 8と第 1ドレン排出管路 F1との連通を遮 断してオーバーフロー管 8が閉じられるように、第 2三方弁 V2を切り換える。また、第 1連通管路 5aと第 2連通管路 5bとが連通するように第 1三方弁 VIを切り換えて、ノズ ル 4力 のパブリングで参照用液体 A力 揮発した参照用揮発性成分を上部連通管 路 5に導入する。ガスセンサ Sで参照用揮発性成分を検出し、この検出データをデー タ処理部 7で処理して、その検出結果をメモリなどに記憶させておくと共に液晶モニタ などに表示する。
[0035] 次に、図 5に示すように、第 2連通管路 5aと第 1連通管路 5bとの連通が遮断される ように第 1三方弁 VIを切り換えて、第 2連通管路 5bを遮断する。また、下部連通管路 9が第 2中間供給管路 J2に連通するように第 5三方弁 V5を切り換えて、検出用容器 1 中の参照用液体 Aを第 2ドレン排出管路 F2を通して容器外部に排出する。
[0036] 次に、図 6に示すように、オーバーフロー管 8と第 1ドレン排出管路 F1とが連通する ように第 2三方弁 V2を切り換える。また、被検液体容器 3と空の検出用容器 1とが、被 検液体供給管路 G2と第 1中間供給管路 J1と第 2中間供給管路 J2と下部連通管路 9 とを介して連通するように第 3,第 4三方弁 V3, V4を切り換える。また、ノズル側空気 管 13と第 1空気供給管 Mlとの連通が遮断されるように第 6三方弁 V6を切り換える。 また、容器側空気管 14が第 2空気供給管 M2に連通するように第 7三方弁 V7を切り 換えて、被検液体容器 3に加圧空気を供給し、被検液体 Bを検出用容器 1に供給す る。余剰の被検液体 Bはオーバーフロー管 8からオーバーフローさせ、略一定量の被 検液体 Bを検出用容器 1に収容する。
[0037] 次に、図 7に示すように、第 2中間供給管路 J2が第 2ドレン排出管路 F2と第 3ドレン 排出管路 F3とに連通するように第 4,第 5三方弁 V4, V5を切り換えて、被検液体容 器 3と検出用容器 1との連通を遮断する。これとともに、容器側空気管 14が容器外部 に連通するように第 7三方弁 V7を切り換えて、被検液体容器 3への加圧空気の供給 を停止する。また、パブリング時における検出用容器 1中の被検液体 Bの液量を略一 定化できるように、ノズル側空気管 13が第 1空気供給管 Mlに連通するように第 6三 方弁 V6を切り換えて、検出用容器 1中の被検液体 Bがオーバーフロー管 8から溢れ 出るように気泡を生じさせる。
[0038] 次に、図 8に示すように、参照用液体容器 2と第 3ドレン排出管路 F3とが連通するよ うに第 3,第 4三方弁 V3, V4を切り換える。また、容器側空気管 14が第 2空気供給 管 M2に連通するように第 7三方弁 V7を切り換える。この状態で、参照用液体容器 2 に加圧空気を供給し、参照用液体 Aを第 1中間供給管路 J1と第 2中間供給管路 J2と に通して、第 3ドレン排出管路 F3から排出することで、第 1中間供給管路 J1と第 2中 間供給管路 J2を洗浄して、残存して!/、た被検液体 Bを排出する。
[0039] 次に、図 9に示すように、第 2中間供給管路 J2が第 2ドレン排出管路 F2と第 3ドレン 排出管路 F3とに連通するように第 4三方弁 V4を切り換えて、参照用液体容器 2と第 3ドレン排出管路 F3との連通を遮断する。これととも〖こ、容器側空気管 14が容器外 部に連通するように第 7三方弁 V7を切り換えて、参照用液体容器 2への加圧空気の 供給を停止し、オーバーフロー管 8と第 1ドレン排出管路 F1との連通を遮断して、ォ 一バーフロー管 8が閉じられるように第 2三方弁 V2を切り換える。また、第 1連通管路 5aと第 2連通管路 5bとが連通するように第 1三方弁 VIを切り換えて、ノズル 4力もの パブリングで被検液体 Bから揮発した被検揮発性成分を上部連通路 5に導入する。 そして、ガスセンサ Sで検出した被検揮発性成分の検出データをデータ処理部 7で 処理して、その検出結果をメモリなどに記憶させておくと共に液晶モニタなどに表示 する。
[0040] 次に、図 10に示すように、第 1連通管路 5aと第 2連通管路 5bとの連通が遮断される ように第 1三方弁 VIを切り換えて、第 2連通管路 5bを遮断する。また、下部連通管路 9が第 2中間供給管路 J2に連通するように第 5三方弁 V5を切り換えて、検出用容器 1 中の被検液体 Bを第 2ドレン排出管路 F2を通して容器外部に排出する。
[0041] 次に、図 11に示すように、オーバーフロー管 8と第 1ドレン排出管路 F1とが連通す るように第 2三方弁 V2を切り換える。また、参照用液体容器 2と空の検出用容器 1とが 、参照用液体供給管路 Glと第 1中間供給管路 Jlと第 2中間供給管路 J2と下部連通 管路 9とを介して連通するように第 4三方弁 V4を切り換えて、参照用液体容器 2に加 圧空気を供給し、参照用液体 Aを検出用容器 1に供給する。その後、図 12に示すよ うに、オーバーフロー管 8と第 1ドレン排出管路 F1との連通を遮断するように第 2三方 弁 V2を切り換える。これと共に、下部連通管路 9が第 2ドレン排出管路 F2に連通する ように第 4三方弁 V4を切り換えて、検出用容器 1中の参照用液体 Aを第 2ドレン排出 管路 F2を通して容器外部に排出する。これらの動作を複数回(2〜3回)繰り返して 検出用容器 1内を洗浄する。
[0042] 次に、図 1〜図 4に示した手順で、参照用液体 Aについて、再度、参照用揮発性成 分をガスセンサ Sで検出し、その検出データをデータ処理部 7で処理して、その検出 結果をメモリなどに記憶させておくと共に液晶モニタなどに表示する。
[0043] そして、データ処理部 7において、被検揮発性成分の検出データと、その被検揮発 性成分の検出の前後に検出した参照用揮発性成分の検出データとを比較して、被 検液体 B中に溶解している揮発性溶解物の有無や溶解量を算出し、その有無や溶 解量を液晶モニタなどに表示する。
[0044] 〔その他の実施形態〕
1.本発明による揮発性溶解物の検出装置は、ミネラルウォーターや清涼飲料などの 原水中の微量で異臭や着香の原因となりうる揮発性有機化合物の他、下水道処理 施設や各種工場からの廃水中の揮発性有機化合物を検出するために使用するもの であっても良い。
2.本発明による揮発性溶解物の検出装置は、センサとして、熱線方式ガスセンサや 固体電解質方式ガスセンサ,赤外線方式ガスセンサ等を使用するものであっても良 い。
3.本発明による揮発性溶解物の検出装置は、略一定量を越える液体を検出用容器 の上部開口力 供給して容器外部にオーバーフローさせるオーバーフロー機構を設 けてあっても良い。
4.本発明による揮発性溶解物の検出装置は、参照用液体を収容する液体容器と、 その液体容器の参照用液体のみを収容する検出用容器との組み合わせと、被検液 体を収容する液体容器と、その液体容器の被検液体のみを収容する検出用容器と の組み合わせとを設けてあっても良い。
5.本発明による揮発性溶解物の検出装置は、単一の液体容器と、その単一の液体 容器の液体のみを検出用容器に供給可能な供給機構とを設けてあっても良い。 この場合は、参照用揮発性成分の検出結果と被検揮発性成分の検出結果とを比 較するために、液体容器を参照用液体と被検液体とを択一的に収容可能に設けたり 、液体容器に参照用液体を収容してある検出装置と、液体容器に被検液体を収容し てある検出装置との 2基の検出装置を使用して、被検液体中の揮発性溶解物を検出 することができる。
6.本発明による揮発性溶解物の検出装置は、実施形態で示した第 1〜第 7三方弁 V1〜V7を手動操作で切り換えるように構成してあっても良いが、実施形態で示した 供給機構 Dとオーバーフロー機構 Eと加圧空気供給機構 Kとが連係して作動するよう に、第 1〜第 7三方弁 V1〜V7の切り換え動作を制御する制御装置を設けてあっても 良い。
7.本発明による揮発性溶解物の検出装置は、参照用液体容器に、参照用液体とし て、純水や活性炭などの臭気成分の吸着材によって吸着処理を施した被検液体を 用いても良い。
尚、吸着処理を施した被検液体を参照用液体として用いる場合は、被検液体を吸 着材とともに参照用液体容器に収容して用いても良い。あるいは、活性炭などに通し て吸着処理を施した後の被検液体を参照用液体容器に収容して用いても良 、。 産業上の利用可能性
[0045] 本発明による揮発性溶解物の検出装置は、揮発性成分を一定条件下で簡便に、 かつ、精度良く検出できる。従って、ミネラルウォーターや清涼飲料などの原水中の 微量で異臭や着香の原因となりうる揮発性有機化合物の他、下水道処理施設や各 種工場からの廃水中の揮発性有機化合物を検出するために使用できる。
図面の簡単な説明
[0046] [図 1]揮発性溶解物の検出装置の概略図
[図 2]揮発性溶解物の検出装置の概略図 圆 3]揮発性溶解物の検出装置の概略図 圆 4]揮発性溶解物の検出装置の概略図 圆 5]揮発性溶解物の検出装置の概略図 圆 6]揮発性溶解物の検出装置の概略図 [図 7]揮発性溶解物の検出装置の概略図 圆 8]揮発性溶解物の検出装置の概略図 圆 9]揮発性溶解物の検出装置の概略図 圆 10]揮発性溶解物の検出装置の概略図 圆 11]揮発性溶解物の検出装置の概略図 圆 12]揮発性溶解物の検出装置の概略図 符号の説明
1 検出用容器
2 参照用液体容器
3 被検液体容器
4 ノズル
5 連通路
8 オーバーフロー -管
A 参照用液体
B 被検液体
C 空間
D 供給機構
E オーバーフロー -機:
F2 液体排出路
G1 液体供給路
G2 液体供給路
H 弁機構
L 加圧気体供給装置
S センサ

Claims

請求の範囲
[1] 略一定量の液体を上部に空間を残して収容可能な検出用容器と、前記検出用容器 に収容する液体中で気泡を吹き出し可能なノズルと、前記ノズルに吹き出し用の加 圧気体を供給可能な加圧気体供給装置とを設けるとともに、
前記検出用容器の上部に連通する連通路に、揮発性成分を検出可能なセンサの検 知部を臨ませて、前記検出用容器の液体カゝら揮発した揮発性成分を前記連通路に 導入して前記センサで検出可能に設けてある揮発性溶解物の検出装置であって、 前記液体を収容可能な液体容器を設けるとともに、
前記液体容器の液体を前記検出用容器に供給可能な供給機構と、
前記略一定量を越える液体を前記検出用容器から容器外部にオーバーフローさせ るオーバーフロー機構と、を設けてある揮発性溶解物の検出装置。
[2] 前記検出用容器にオーバーフロー管を連通接続して前記オーバーフロー機構を 構成し、前記オーバーフロー管を開閉自在な弁を設けてある請求項 1記載の揮発性 溶解物の検出装置。
[3] 前記液体容器から前記検出用容器への液体供給路と、容器外部に連通する液体 排出路とを、前記検出用容器の下端部に択一的に連通接続可能な弁機構を設けて ある請求項 1記載の揮発性溶解物の検出装置。
[4] 前記供給機構を構成するに、
前記液体容器に加圧気体を供給可能に、前記加圧気体供給装置を設け、 前記加圧気体供給装置から前記液体容器に加圧気体を供給することにより、その 液体容器の液体を前記検出用容器に供給可能に構成してある請求項 1記載の揮発 性溶解物の検出装置。
[5] 参照用液体力も揮発した参照用揮発性成分の前記センサによる検出結果と、被検 液体から揮発した被検揮発性成分の前記センサによる検出結果とを比較して、前記 被検液体中の揮発性溶解物を検出可能に構成してある請求項 1記載の揮発性溶解 物の検出装置。
[6] 前記検出用容器を、参照用液体の略一定量と被検液体の略一定量とを択一的に 収容可能に設けてある請求項 5記載の揮発性溶解物の検出装置。
[7] 前記参照用液体を収容可能な参照用液体容器と、前記被検液体を収容可能な被検 液体容器とを各別に設け、
前記供給機構を、前記参照用液体容器の参照用液体と、前記被検液体容器の被 検液体とを、前記検出用容器に択一的に供給可能に設けてある請求項 6記載の揮 発性溶解物の検出装置。
[8] 略一定量の液体を上部に空間を残して収容可能な検出用容器と、前記検出用容器 に収容する液体中で気泡を吹き出し可能なノズルと、前記ノズルに吹き出し用の加 圧気体を供給可能な加圧気体供給装置とを使用し、
前記検出用容器の上部に連通する連通路に、揮発性成分を検出可能なセンサの検 知部を臨ませて、前記検出用容器の液体カゝら揮発した揮発性成分を前記連通路に 導入して前記センサで検出する揮発性溶解物の検出方法であって、
前記液体を収容可能な液体容器と、前記液体容器の液体を前記検出用容器に供 給可能な供給機構とを使用して、
前記液体容器に収容した液体を前記供給機構で前記検出用容器に供給し、前記 検出用容
器に供給した液体が略一定量を越えると、その略一定量を越える液体を前記検出用 容器から容器外部にオーバーフローさせる揮発性溶解物の検出方法。
PCT/JP2005/012055 2004-07-02 2005-06-30 揮発性溶解物の検出装置と検出方法 WO2006003982A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05755747A EP1767919A4 (en) 2004-07-02 2005-06-30 DEVICE AND METHOD FOR DETECTING VOLATILE SOLVENT SUBSTANCES
US11/631,070 US7845208B2 (en) 2004-07-02 2005-06-30 Apparatus and method for detecting volatile dissolved substance
AU2005258447A AU2005258447B2 (en) 2004-07-02 2005-06-30 Device and method for detecting volatile dissolved matter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-197086 2004-07-02
JP2004197086A JP4194982B2 (ja) 2004-07-02 2004-07-02 揮発性溶解物の検出装置と検出方法

Publications (1)

Publication Number Publication Date
WO2006003982A1 true WO2006003982A1 (ja) 2006-01-12

Family

ID=35782789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012055 WO2006003982A1 (ja) 2004-07-02 2005-06-30 揮発性溶解物の検出装置と検出方法

Country Status (8)

Country Link
US (1) US7845208B2 (ja)
EP (1) EP1767919A4 (ja)
JP (1) JP4194982B2 (ja)
KR (1) KR20070026684A (ja)
CN (1) CN1981185A (ja)
AU (1) AU2005258447B2 (ja)
TW (1) TW200617366A (ja)
WO (1) WO2006003982A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020065981A1 (ja) * 2018-09-28 2020-04-02 日本電気株式会社 データ処理装置、測定システム、データ処理方法、測定方法、およびプログラム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101300063A (zh) * 2005-09-21 2008-11-05 斯达克公司 沥青反应器和混合系统
GB0606976D0 (en) * 2006-04-07 2006-05-17 Kelman Ltd Apparatus for performing dissolved gas analysis
WO2013051605A1 (ja) * 2011-10-03 2013-04-11 独立行政法人海洋研究開発機構 水生生物の飼育システムとその飼育方法
JP6597043B2 (ja) * 2015-08-19 2019-10-30 東亜ディーケーケー株式会社 反応槽ユニット、ガス化装置、前処理装置および水銀計
US10337131B2 (en) * 2017-05-12 2019-07-02 Handi Quilter, Inc. Reconfigurable fabric frame for a maneuverable sewing machine
DE102017119439A1 (de) * 2017-08-24 2019-02-28 Khs Gmbh Verfahren zum Steuern der Menge eines auf einen Träger aufzubringenden Klebemittels
CN109524136B (zh) * 2018-11-22 2022-05-20 西南石油大学 一种高能管断裂甩击行为的试验装置及方法
US11119011B2 (en) * 2019-02-12 2021-09-14 National Tsing Hua University Method for extracting and detecting volatile organic compounds

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08105881A (ja) * 1994-10-04 1996-04-23 Shokuhin Sangyo Intelligence Control Gijutsu Kenkyu Kumiai 醤油諸味中のエタノール濃度の測定方法
JP2530416B2 (ja) * 1993-08-23 1996-09-04 アサヒビール株式会社 発泡性液体の試料調製装置
JP2001272321A (ja) * 2000-03-27 2001-10-05 Yokogawa Electric Corp 汚染除去機能付き分析計
JP3554761B2 (ja) * 1998-05-19 2004-08-18 横河電機株式会社 水中臭気物質測定装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2987912A (en) * 1956-06-01 1961-06-13 Mine Safety Appliances Co Method and apparatus for measurement of gas dissolved in a liquid
US3740320A (en) * 1971-01-25 1973-06-19 R Arthur Apparatus and method for measuring the amount of gas absorbed or released by a substance
CA1095737A (en) * 1977-03-09 1981-02-17 Dennis J. C. Macourt Chemical analysis and mineral prospecting
US4740356A (en) * 1983-06-10 1988-04-26 The Perkin-Elmer Corporation Device for producing a gaseous measuring sample for atomic absorption spectroscopy
FR2613247B1 (fr) * 1987-04-06 1991-08-30 Rhone Poulenc Chimie Appareil de detection et/ou de mesure par separation et changement de phase
JPH0754841Y2 (ja) 1990-01-16 1995-12-18 工業技術院長 試料液等の吸引補給及び加圧送出装置
DE4007064A1 (de) * 1990-03-07 1991-09-12 Bayer Ag Vorrichtung zur bestimmung fluechtiger stoffe in einer fluessigkeit
US5222032A (en) * 1990-10-26 1993-06-22 E. I. Du Pont De Nemours And Company System and method for monitoring the concentration of volatile material dissolved in a liquid
US5604297A (en) * 1991-02-19 1997-02-18 Seiden; Louis W. Degassing techniques applied to sealed containers for beverages, waste water and respirometers for bacteria
GB9206796D0 (en) * 1992-03-27 1992-05-13 Thames Water Utilites Limited Apparatus and method for monitoring condition of a biomass
JPH1183701A (ja) 1997-09-05 1999-03-26 Mitsubishi Electric Corp におい測定装置
CA2253690A1 (en) * 1998-11-09 2000-05-09 Fantom Technologies Inc. Method and apparatus for measuring the degree of treatment of a medium by a gas
JP4634720B2 (ja) * 2004-01-20 2011-02-16 サントリーホールディングス株式会社 ガス検出方法および検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2530416B2 (ja) * 1993-08-23 1996-09-04 アサヒビール株式会社 発泡性液体の試料調製装置
JPH08105881A (ja) * 1994-10-04 1996-04-23 Shokuhin Sangyo Intelligence Control Gijutsu Kenkyu Kumiai 醤油諸味中のエタノール濃度の測定方法
JP3554761B2 (ja) * 1998-05-19 2004-08-18 横河電機株式会社 水中臭気物質測定装置
JP2001272321A (ja) * 2000-03-27 2001-10-05 Yokogawa Electric Corp 汚染除去機能付き分析計

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1767919A4 *
SHUJI URABE ET AL: "Josuijo Gensui no Biryo Yubun Kanshi System (Feasibility Study of Oil Contamination Monitoring System for Water Plants)", YOKOGAWA GIHO, vol. 42, no. 4, 20 October 1998 (1998-10-20), pages 139 - 142, XP002998250 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020065981A1 (ja) * 2018-09-28 2020-04-02 日本電気株式会社 データ処理装置、測定システム、データ処理方法、測定方法、およびプログラム
JPWO2020065981A1 (ja) * 2018-09-28 2021-08-30 日本電気株式会社 データ処理装置、測定システム、データ処理方法、測定方法、およびプログラム
JP7180682B2 (ja) 2018-09-28 2022-11-30 日本電気株式会社 データ処理装置、測定システム、データ処理方法、測定方法、およびプログラム

Also Published As

Publication number Publication date
AU2005258447B2 (en) 2011-03-17
EP1767919A4 (en) 2012-03-28
JP4194982B2 (ja) 2008-12-10
US20090188299A1 (en) 2009-07-30
TW200617366A (en) 2006-06-01
KR20070026684A (ko) 2007-03-08
AU2005258447A1 (en) 2006-01-12
JP2006017635A (ja) 2006-01-19
CN1981185A (zh) 2007-06-13
EP1767919A1 (en) 2007-03-28
US7845208B2 (en) 2010-12-07

Similar Documents

Publication Publication Date Title
WO2006003982A1 (ja) 揮発性溶解物の検出装置と検出方法
RU2410679C2 (ru) Способ анализа газа
US9518900B2 (en) Sample preparation system for an analytical system for determining a measured variable of a liquid sample
JP5731010B2 (ja) 気液接触抽出方法及び装置
WO1996006348A1 (en) Discharge monitoring system
KR20190128624A (ko) 수질 측정 장치
EP0725926A1 (en) Environmental monitoring of organic compounds
GB2593511A (en) Sensor apparatus
US20170219537A1 (en) Real-time automatic analysis device for organic contaminant in water
US20230228723A1 (en) A gas monitor and method of detecting gas, including a ripening monitor
CN204129035U (zh) 一种便携式气敏型氨氮测定仪
US6293430B1 (en) Apparatus and method for recovering beverage syrup
GB2210023A (en) Liquid sampling valve for gas chromatography; cleaning circuit
US6814992B2 (en) Anaerobic fermentation method and apparatus
Buelow et al. An Improved Method for Determining Organics by Activated Carbon Adsorption and Solvent Extraction—Part I
JPH04501463A (ja) ビールの瓶詰め方法
US7393380B2 (en) Method of guaranteeing at least one characteristic of a fluid used for producing food products
US20170021308A1 (en) Control of an ro installation for flushing solutions
WO2008023511A1 (en) Wastewater purification method
JPH09236566A (ja) pH簡易校正方法
GB2585176A (en) Apparatus and method for providing purified water
EP3098601A1 (en) A system for producing reference gas mixtures, especially smell ones
EP0425119A1 (en) Determining concentration of pollutant gas in atmosphere
RU2365913C2 (ru) Способ и устройство контроля содержания озона
JPH0650874A (ja) プラスチック製ボトルのガスの透過度を測定する方法及 び装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11631070

Country of ref document: US

Ref document number: 1020067027689

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005258447

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200580022288.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005755747

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2005258447

Country of ref document: AU

Date of ref document: 20050630

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005258447

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020067027689

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005755747

Country of ref document: EP