WO2013051605A1 - 水生生物の飼育システムとその飼育方法 - Google Patents

水生生物の飼育システムとその飼育方法 Download PDF

Info

Publication number
WO2013051605A1
WO2013051605A1 PCT/JP2012/075641 JP2012075641W WO2013051605A1 WO 2013051605 A1 WO2013051605 A1 WO 2013051605A1 JP 2012075641 W JP2012075641 W JP 2012075641W WO 2013051605 A1 WO2013051605 A1 WO 2013051605A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen sulfide
breeding
breeding water
gas
water
Prior art date
Application number
PCT/JP2012/075641
Other languages
English (en)
French (fr)
Inventor
正朗 小西
智郎 和辻
Original Assignee
独立行政法人海洋研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人海洋研究開発機構 filed Critical 独立行政法人海洋研究開発機構
Priority to US14/349,601 priority Critical patent/US9603345B2/en
Priority to JP2013537531A priority patent/JP5999848B2/ja
Priority to EP12839060.6A priority patent/EP2764774B1/en
Publication of WO2013051605A1 publication Critical patent/WO2013051605A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • A01K63/042Introducing gases into the water, e.g. aerators, air pumps
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/10Culture of aquatic animals of fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/40Culture of aquatic animals of annelids, e.g. lugworms or Eunice
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/50Culture of aquatic animals of shellfish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/50Culture of aquatic animals of shellfish
    • A01K61/54Culture of aquatic animals of shellfish of bivalves, e.g. oysters or mussels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/06Arrangements for heating or lighting in, or attached to, receptacles for live fish
    • A01K63/065Heating or cooling devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Definitions

  • the present invention relates to an aquatic organism breeding system suitable for breeding chemically synthesized ecosystem organisms utilizing hydrogen sulfide in an environment such as a hot water / cold spring eruption region of aquatic organisms, particularly deep sea organisms, and the like. It relates to breeding methods.
  • the aquarium local temperature region forming device disclosed in Patent Document 1 described above and therefore, as an aquatic organism, particularly a deep-sea organism breeding device, a water tank formed of a pressure-resistant vessel, and one direction (lateral direction) in the water tank A water flow generator for generating a water flow, a temperature generator such as a heater for heating or cooling a part of the water flow at the bottom of the water tank to form a local temperature region, and a local temperature region formed by the temperature region generator.
  • a temperature range holding device such as a nozzle that holds the entire water tank so as not to diffuse is provided, and deep sea creatures such as shellfish that are not swept away by water flow are bred in the temperature range holding device.
  • the aquatic organism rearing device disclosed in Patent Document 2 includes a main water tank that houses aquatic organisms together with water, hot water supply means that ejects hot water upward from an ejection hole disposed at the bottom of the main water tank, A hot water discharge means is provided in the upper part of the main water tank and discharges the rising hot water to the outside, and forms a cold water area and a local hot water area in the water.
  • the gas cannot be added in order to breed a chemically synthesized ecosystem organism that uses hydrogen sulfide.
  • sodium sulfide to the gas, hot water containing hydrogen sulfide can be supplied, but the concentration of hydrogen sulfide in the breeding device cannot be controlled, so an appropriate amount of hydrogen sulfide gas must be supplied. Is difficult.
  • an object of the present invention is to provide an aquatic organism breeding system and its breeding method capable of keeping the hydrogen sulfide concentration in the breeding water constant without measuring the hydrogen sulfide concentration in the breeding water.
  • An aquatic organism breeding system for solving the above-described problems includes a water tank that stores breeding water while leaving a gas phase at the top, a gas sensor that detects the concentration of hydrogen sulfide gas in the gas phase, It has hydrogen sulfide supply means for supplying hydrogen sulfide to the breeding water so that the concentration of hydrogen sulfide in the breeding water becomes constant based on the detection signal output from the gas sensor.
  • the aquatic organism breeding method according to the present invention for solving the above-mentioned problems uses the aquatic organism breeding device described above, and the concentration of hydrogen sulfide gas in the gas phase is detected by a gas sensor. Based on the detection signal output from the gas sensor, hydrogen sulfide is supplied to the breeding water by hydrogen sulfide supply means so that the concentration of hydrogen sulfide in the breeding water becomes constant.
  • the hydrogen sulfide concentration in the breeding water can be kept constant without measuring the hydrogen sulfide concentration in the breeding water.
  • FIG. 5 is a graph obtained by plotting a value obtained by measuring a hydrogen sulfide concentration in artificial seawater at 5 to 5.4 degrees Celsius and pH 7.6 by a colorimetric method and an output value of a gas sensor in a log-log graph. It is a figure which shows the time-dependent change of the output value of a gas sensor, and the time-dependent change of the estimated value of the hydrogen sulfide density
  • FIG. 1 is a block diagram showing a schematic configuration of an aquatic animal breeding system according to an embodiment of the present invention.
  • the solid line indicates the breeding water flow path
  • the broken line indicates the gas flow path
  • the dotted line indicates the electrical signal path
  • the black arrow indicates the circulation direction of the breeding water
  • the white arrow indicates the gas flow. Shows direction.
  • an aquatic organism breeding system A1 will be schematically described.
  • a chemically synthesized ecosystem organism which is an example of an aquatic organism using hydrogen sulfide, a highly biotoxic sulfide.
  • the content is to control the increase and decrease of hydrogen continuously at a low concentration.
  • seawater is used as the “bred water W” and deep sea creatures are used as the “aquatic organisms”, but the present invention is not limited to these.
  • seawater may be used as the breeding water W.
  • chemosynthesis ecosystem organisms that use hydrogen sulfide that can be raised include deep-sea organisms that live at a depth of 200 m or more, and organisms that live in the vicinity of hydrothermal vents and cold springs.
  • chemosynthetic ecosystem organisms include cynomolgus crabs, Goemon squirrel, Shin-koshiko riebi, Ohara shrimp, hydrothermal barnacles, sandworms, scallops, white clams, horned beetles, cynomolgus, whale bones Biological creatures, thorn crab, genge, etc.
  • the specific configuration of the aquatic organism breeding system A1 includes a water tank 10, an oxygen control device B, a temperature control device C, a pH display device D, and a hydrogen sulfide control device E. It is comprised.
  • the aquarium 10 accommodates aquatic organisms together with the breeding water W having a capacity to leave a gas phase (space) in the upper part, for example, a main body 11 having a size of about 100 ⁇ 75 ⁇ 75 cm, and an upper opening of the main body 11 And a lid 12 that closes gas tightly.
  • the optimum dissolved oxygen concentration for breeding is preferably 6 to 7 ppm in consideration of the dissolved oxygen concentration in deep seawater.
  • dissolved oxygen in the breeding water W is consumed due to respiration by aquatic organisms and microorganisms, oxidation of hydrogen sulfide, etc.
  • the breeding water W is at a low temperature, oxygen in the air is easily dissolved and excessive dissolved oxygen is present. Sometimes it becomes.
  • the oxygen control apparatus B in the present embodiment includes a breeding water circulation system including the submersible pump 20, the prefilter 21, and the follow fiber module 22, a dissolved oxygen electrode 23, a dissolved oxygen meter 24, an air pump 25, and a vacuum pump 26. It consists of an oxygen increase / decrease adjustment system.
  • the detailed structure of the breeding water circulation system is as follows.
  • the submersible pump 20 is disposed in the breeding water W, and the submersible pump 20 and the water receiving port 22a of the follow fiber module 22 are connected by the feed pipe 27, and the above-described partway through the feed pipe 27.
  • a prefilter 21 is provided.
  • the prefilter 21 removes dust and the like contained in the breeding water W sucked up by the submersible pump 20.
  • the follow fiber module 22 in the oxygen control device B is an oxygen deaeration device for deaerating oxygen dissolved in the breeding water W, and has a structure in which a hollow fiber (not shown) is accommodated in a cylindrical main body 22b. The oxygen contained in the breeding water W that circulates in the hollow fiber is degassed.
  • One end of a return pipe 28 is connected to the water supply port 22 c of the follow fiber module 22, and the other end of the return pipe 28 is disposed in the breeding water W.
  • the breeding water W after deaeration is returned.
  • a vacuum pump 26 is connected to the main body 22b of the follow fiber module 22 via a connection pipe 29 so that oxygen dissolved in the breeding water W circulating in the follow fiber module 22 can be degassed. Yes.
  • the dissolved oxygen electrode 23 is for detecting oxygen dissolved in the breeding water W stored in the water tank 10, and is disposed in the breeding water W.
  • the dissolved oxygen electrode 23 is connected to the input side of the dissolved oxygen meter 24, and the vacuum pump 26 and the air pump 25 are connected to the output side of the dissolved oxygen meter 24.
  • the vacuum pump 26 degasses the oxygen dissolved in the breeding water W flowing through the follow fiber module 22 described above, and is turned on / off by the dissolved oxygen meter 24.
  • the air pump 25 is for supplying oxygen to the breeding water W stored in the above-described water tank 10, to which one end of the feed pipe 29 is connected and the other end The part is located in the breeding water W.
  • the dissolved oxygen meter (dissolved oxygen controller) 24 calculates the dissolved amount of oxygen detected by the dissolved oxygen electrode 23, and connects the air pump 25 and the vacuum pump 26 connected to the output side of the oxygen to the calculated oxygen. It has a function of appropriately increasing / decreasing by on / off driving based on the dissolved amount. That is, the air pump 25 and the vacuum pump 26 are driven on / off independently of each other so as to obtain an optimum dissolved oxygen amount for aquatic organisms.
  • the dissolved oxygen increase / decrease adjustment means H for increasing / decreasing the oxygen dissolved in the breeding water W includes a follow fiber module (oxygen deaerator) 22, an air pump 25, a vacuum pump 26, and a dissolved oxygen controller ( (Dissolved oxygen meter) 24.
  • the temperature control device C includes a temperature sensor 30 for detecting the temperature of the breeding water W and a temperature regulator 31 for adjusting the temperature of the breeding water W up and down based on the detected temperature.
  • a thermocouple is employed as the temperature sensor 30, but another known one may be employed.
  • the temperature adjuster 31 has a function of heating or cooling the breeding water W, and a water intake pipe 33 and a drain pipe 34 are suspended from this. That is, after the breeding water W is taken from the intake pipe 33 and heated or cooled, the breeding water W whose temperature is adjusted is returned from the drain pipe 34 to the water tank 10.
  • a temperature control device C By providing such a temperature control device C, the temperature of the breeding water W can always be kept at an optimum temperature for aquatic organisms.
  • the pH display device D is disposed in the breeding water W, a pH electrode 41 for detecting the pH of the breeding water W, and a device main body for displaying the pH of the breeding water W detected by the pH electrode 41 40.
  • the pH of the breeding water W is preferably about 7.6 to 8.4 when breeding deep-sea organisms, but is not limited to this value.
  • the pH adjusting member 9 mainly composed of calcium carbonate or calcium carbonate is disposed in the breeding water W.
  • the pH adjusting member 9 is, for example, cinnabar and the like. By installing this in the breeding water W, the pH of the breeding water W can be maintained at the above-mentioned pH 7.6 to 8.4.
  • the hydrogen sulfide control device E includes a gas sensor 50, a hydrogen sulfide gas measuring system comprising a relay 51 and a recorder 52 connected thereto, a hydrogen sulfide cylinder 53, an electromagnetic valve 54, a follow fiber module 22 equivalent to the above, It comprises a hydrogen sulfide gas increase / decrease adjustment system comprising a pre-filter 55 and a tubing pump 56.
  • the detailed configuration of the hydrogen sulfide gas measurement system is as follows.
  • the gas sensor 50 is for detecting hydrogen sulfide gas, and is disposed in the gas phase G of the water tank 10 described above, and is connected to the input terminal of the relay 51.
  • the gas sensor 50 may use any one of known methods for detecting hydrogen sulfide in a gas phase that can be converted into an electrical signal.
  • a thin film of copper hydroxide (not shown) is provided on the base material, and the change of the thin surface layer is measured by infrared absorption spectrum. Incomplete stoichiometric molybdenum trioxide is used as the material to change the electrical characteristics.
  • Those that measure the gas mixture concentration by using a solid electrolyte, those that use a solid electrolyte, etc. that can continuously detect the gas concentration and can output an electrical signal or convert it to an electrical signal Can be adopted.
  • the hydrogen sulfide gas concentration of the breeding water W can be detected easily at low cost.
  • the recorder (data logger) 52 is for recording the detected sulfur gas concentration.
  • the relay 51 has a function of driving the electromagnetic valve 54 and the tubing pump 56 on / off based on a signal detected by the gas sensor 50.
  • the detailed configuration of the hydrogen sulfide gas increase / decrease adjustment system is as follows.
  • the hydrogen sulfide cylinder 53 is filled with a required amount of hydrogen sulfide gas, and this is connected to the main body 22b of the follow fiber module 22 by a connecting pipe 53a.
  • the follow fiber module 22 in the hydrogen sulfide gas increase / decrease adjustment system is a hydrogen sulfide gas supply device for supplying hydrogen sulfide gas to breeding water, and a hollow fiber (not shown) is accommodated in a cylindrical main body 22b.
  • the structure is equivalent to that described above.
  • the solenoid valve 54 allows and stops the supply of hydrogen sulfide gas from the hydrogen sulfide cylinder 53 to the follow fiber module 22, and is disposed in the connecting pipe 53a.
  • the electromagnetic valve 54 is turned on / off by the relay 51 described above, thereby permitting and stopping the pumping of hydrogen sulfide gas from the hydrogen sulfide cylinder 53 to the follow fiber module 22.
  • the prefilter 55 removes dust and the like contained in the breeding water W sucked by the tubing pump 56, and a water receiving port (not shown) is connected to the base end portion of the water absorption pipe 55a.
  • the tip of the water absorption pipe 55a is positioned in the breeding water W.
  • a connecting pipe 55b is connected between a water supply port (not shown) of the prefilter 2 and a water receiving port of the follow fiber module 22.
  • a connecting pipe 57 is connected between the water supply port 22 c of the follow fiber module 22 and the water receiving port 56 a of the tubing pump 56, and the water supply port 56 b of the tubing pump 56 is connected to the base of the water supply pipe 58. The ends are connected and the open end of the water supply pipe 58 is positioned in the breeding water W.
  • the tubing pump 56 is a feed pump for feeding the breeding water W.
  • the feed pump itself does not come into contact with the breeding water W, and there is no valve structure so that the breeding water W is not pulsated or shocked.
  • the above-described relay 51, solenoid valve 54, and tubing pump 56 supply hydrogen sulfide to supply hydrogen sulfide to the breeding water so that the concentration of hydrogen sulfide in the breeding water W is constant.
  • Means F are configured.
  • “the concentration of hydrogen sulfide in the breeding water” means a hydrogen sulfide gas concentration appropriate for aquatic organisms in the breeding water W, and thus, the breeding of chemically synthesized aquatic organisms can be continuously and prolonged. Can be done over.
  • the aquatic organism breeding method using the aquatic organism breeding system A1 described above uses the gas sensor 50 to detect the concentration of hydrogen sulfide gas in the gas phase G, and based on the detection signal output from the gas sensor 50, The content is to supply hydrogen sulfide to the breeding water W so that the concentration of hydrogen sulfide in the breeding water W is constant.
  • the operation of the aquatic organism breeding system A1 having the above-described configuration will be described.
  • the operation of the oxygen control device B is as follows.
  • the air pump 25 is driven to supply air to the breeding water W.
  • the vacuum pump 26 is driven from the breeding water W that circulates the follow fiber module 22 to deaerate oxygen, thereby reducing the dissolved oxygen concentration.
  • the operation of the hydrogen sulfide control device C is as follows. When the hydrogen sulfide dissolved in the breeding water W is insufficient, the solenoid valve 54 and the tubing pump 56 are driven by the relay 51 so that the concentration of hydrogen sulfide in the breeding water W is constant. Supply hydrogen sulfide.
  • a wide variety of organisms in a chemosynthetic ecosystem using hydrogen sulfide can be bred for a long time. That is, using a gas sensor, the concentration of hydrogen sulfide in the breeding water is estimated from the concentration of hydrogen sulfide gas present in the gas phase at the top of the water tank, and from the electrical change of the semiconductor gas sensor, via a relay, An appropriate amount of hydrogen sulfide gas can be supplied by controlling the gas supply valve, the circulation pump, and the like.
  • an appropriate amount of hydrogen sulfide gas can be supplied continuously and over a long period of time, and long-term breeding of chemically synthesized aquatic organisms can be performed. -Since the hydrogen sulfide gas is supplied to the breeding water using the follow fiber module, it is possible to increase safety without releasing excess lithium hydrogen gas out of the system.
  • FIG. 2 is a graph obtained by plotting a value obtained by measuring the hydrogen sulfide concentration in artificial seawater at 5 to 5.4 degrees Celsius and pH 7.6 by a colorimetric method and an output value of a gas sensor in a log-log graph.
  • the output of the gas sensor in the case where the breeding water W containing hydrogen sulfide of an arbitrary concentration exists was examined.
  • the concentration of hydrogen sulfide in the breeding water W was measured using a diamine method improved from the methylene blue method.
  • the volume of the breeding water W was 150 liters, the temperature of the breeding water W was set to 5 degrees, the dissolved oxygen concentration was maintained at 6.4, and the pH was maintained at 7.4.
  • the gas sensor was set so that an output of 4.0 V was obtained in clean air.
  • the measurement of the hydrogen sulfide concentration using the diamine method was performed as follows.
  • a mixed diamine reagent was prepared by completely dissolving 1.8 g of N, N-dimethyl-phenylenediamine sulfate and 3.0 g of ferric chloride hexahydrate in 50 ml of 6N hydrochloric acid.
  • 500 ⁇ l of breeding water was added, stirred well, and allowed to stand for 1 to 2 minutes.
  • the absorbance at a wavelength of 670 nm which was diluted 11 times with distilled water, was measured with a spectrophotometer.
  • a standard curve was created using a standard solution prepared by dissolving sodium sulfide nonahydrate of any concentration prepared in advance in distilled water, and the hydrogen sulfide concentration was calculated from the measured absorbance.
  • the relationship between the hydrogen sulfide concentration in the breeding water and the output of the gas sensor is such that the common logarithm values are inversely proportional when the hydrogen sulfide concentration in the breeding water is in the range of 50 to 500 ⁇ M ( ⁇ mol / L).
  • FIG. 3 is a graph showing the change over time in the output value of the gas sensor and the change over time in the estimated value of the hydrogen sulfide concentration in the breeding water by the methylene blue method.
  • the hydrogen sulfide concentration in the breeding water was sampled over time and measured using the diamine method.
  • the volume of the breeding water was 150 liters, the temperature of the breeding water was set to 5 degrees Celsius, the dissolved oxygen concentration was maintained at 6.4, and the pH was maintained at 7.4.
  • the gas sensor was set so that an output of 4.0 V was obtained in clean air.
  • the relay 51 turns off the power of the solenoid valve 54 and the tubing pump 56 and the power of the solenoid valve 54 and the tubing pump 56 is turned on with a sensor output value larger than 3.8 V.
  • the output value of the gas sensor was recorded using the data logger 52 every minute. Recording of the output value of the gas sensor was started 8 hours after the start, and the supply of hydrogen sulfide gas was started by opening the solenoid valve 54 of the hydrogen sulfide cylinder 53. The flow rate of the tubing pump 56 was set to 10 ml / min.
  • the output value of the gas sensor was maintained between 3.7 and 3.9V.
  • the breeding water W was collected over time, and the hydrogen sulfide concentration in the breeding water was measured by the diamine method. As a result, it was found that the hydrogen sulfide concentration in the breeding water W could be maintained between 52 and 131 ⁇ M.
  • FIG. 4 is a diagram showing the relationship between hydrogen sulfide concentration and elapsed time
  • FIG. 5 is a diagram showing the relationship between temperature, pH, dissolved oxygen and elapsed time
  • FIG. 6 is the relationship between survival rate and elapsed time.
  • the inventors of the present invention have reared Goemon sorghum as a chemosynthetic ecosystem using hydrogen sulfide by the aquatic breeding system configured as described above. A breeding effect as shown in FIGS. 4 to 6 was obtained.
  • the hydrogen sulfide gas supply device for supplying hydrogen sulfide gas to the breeding water is exemplified by using the follow fiber module, but the function of supplying hydrogen sulfide gas to the breeding water can be provided. What is necessary is just to have.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Zoology (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Physical Water Treatments (AREA)

Abstract

 飼育水中の硫化水素濃度を測定することなく、その飼育水中の硫化水素濃度を一定に保つことができるようにする。 本発明は、上部に気相を残して飼育水Wを貯留した水槽10と、上記気相G中における硫化水素ガスの濃度を検知するガスセンサ50と、そのガスセンサ50から出力される検知信号に基づいて、飼育水W中における硫化水素の濃度が所定の値となるように、その飼育水Wに対して硫化水素を供給する硫化水素供給手段Fとを有している。

Description

水生生物の飼育システムとその飼育方法
 本発明は、水生生物、特に深海生物のうちの熱水・冷湧水噴出領域等の環境において、硫化水素を利用する化学合成生態系生物を飼育するのに好適な水生生物の飼育システムとその飼育方法に関する。
 従来、この種の水生生物の飼育システムとして、「水槽内局部温度域形成装置」、「水生生物の飼育装置」とした名称において特許文献1,2に開示された構成のものがある。
 上記した特許文献1に開示された水槽内局部温度域形成装置、従ってまた、水生生物、特に深海生物の飼育装置としては、耐圧容器で形成された水槽と、水槽内に一方向(横方向)の水流を生じさせる水流生成装置と、水槽の底部の水流の一部を加熱若しくは冷却して局部温度域を形成するヒータ等の温度域発生装置と、温度域発生装置で形成した局部温度域を水槽全体に拡散しないように保持するノズル等の温度域保持装置を備え、温度域保持装置内で、貝類のように水流で流されない深海生物を飼育するものである。
 一方、特許文献2に開示された水生生物の飼育装置は、水とともに水生生物を収容する主水槽と、主水槽の底部に配置した噴出孔から上方に熱水を噴出させる熱水供給手段と、主水槽の上部に配置され且つ上昇してきた熱水を外部に排出する熱水排出手段を備え、水中に冷水域と局部的な熱水域を形成するものである。
特開平9-117235号公報 国際公開第2008/114720号
 上記した特許文献1,2に開示された水槽内局部温度域形成装置や水生生物の飼育装置では、硫化水素を利用する化学合成生態系生物を飼育するために、当該ガスを添加することができないが、若しくは当該ガスに硫化ナトリウムを添加することにより、硫化水素を含有する熱水を供給できるものの、飼育装置内の硫化水素濃度を制御できないために、適切な量の硫化水素ガスを供給することが困難である。
 そこで本発明は、飼育水中の硫化水素濃度を測定することなく、その飼育水中の硫化水素濃度を一定に保つことができる水生生物の飼育システムとその飼育方法の提供を目的としている。
 上記した課題を解決するための本発明に係る水生生物の飼育システムは、上部に気相を残して飼育水を貯留した水槽と、上記気相中における硫化水素ガスの濃度を検知するガスセンサと、上記ガスセンサから出力される検知信号に基づいて、飼育水中における硫化水素の濃度が一定となるように、その飼育水に対して硫化水素を供給する硫化水素供給手段とを有することを特徴としている。
 同上の課題を解決するための本発明に係る水生生物の飼育方法は、上記した水生生物の飼育装置を用いたものであり、ガスセンサによって、気相中における硫化水素ガスの濃度を検知し、そのガスセンサから出力される検知信号に基づいて、飼育水中における硫化水素の濃度が一定となるように、その飼育水に対して硫化水素供給手段により硫化水素を供給することを特徴としている。
 本発明によれば、飼育水中の硫化水素濃度を測定することなく、その飼育水中の硫化水素濃度を一定に保つことができる。
本発明の一実施形態に係る水生生物の飼育装置の概略構成を示すブロック図である。 摂氏5~5.4度、pH7.6の人工海水中の硫化水素濃度を比色定量法で測定した値と、ガスセンサの出力値を両対数グラフにプロットした図である。 ガスセンサの出力値の経時変化とメチレンブルー法による飼育水中の硫化水素濃度の推定値の経時変化を示す図である。 硫化水素濃度と経過時間との関係を示す図である。 温度・pH・溶存酸素と経過時間との関係を示す図である。 生存率と経過時間との関係を示す図である。
 以下に、本発明を実施するための形態について、図面を参照して説明する。図1は、本発明の一実施形態に係る水生生物の飼育システムの概略構成を示すブロック図である。
 なお、図1において、実線は飼育水の流路、破線はガス流路、点線は電気的な信号路を示し、また、黒塗りの矢印は飼育水の循環方向、白色の矢印はガスの流通方向を示している。
 まず、本発明の一実施形態に係る水生生物の飼育システムA1を概略的に説明すると、硫化水素を利用する水生生物の一例である化学合成生態系生物を飼育するために、生物毒性の強い硫化水素を低濃度かつ連続的に増減制御することを内容としている。
 すなわち、温度・pH等の物理的な条件が一定であれば、予め飼育水W中の硫化水素濃度と、飼育水上部に形成されている気相中の硫化水素ガス濃度の関係を調べておくことにより、その硫化水素ガス濃度の測定値から飼育水中の硫化水素濃度を推定しかつ制御することができることを闡明にしたものである。
 本実施形態においては、「飼育水W」として人工海水、また、「水生生物」として深海生物を例としているが、それらに限るものではなく、例えば飼育水Wとして海水を使用してもよい。
 また、海水や人工海水としては、飼育する当該生物の特性に応じ、微量金属成分・有機成分等を追加したものを用いることができる。
 さらに、飼育可能な硫化水素を利用する化学合成生態系生物は、水深200m以深に生息する深海生物、熱水噴出孔や冷湧水域付近に生息する生物を挙げることができる。
 化学合成生態系生物の具体的例としては、ユノハナガニ類、ゴエモンコシオリエビ類、シンカイコシオリエビ類、オハラエビ類、熱水性フジツボ類、ハオリムシ類、シンカイヒバリガイ類、シロウリガイ類、ホネクイハナムシ類、ヒラノマクラ類、鯨骨につく生物、イバラガニ類、ゲンゲ類等である。
 本発明の一実施形態に係る水生生物の飼育システムA1の具体的構成は、図1に示すように、水槽10、酸素制御装置B、温度制御装置C、pH表示装置D及び硫化水素制御装置Eを有して構成されている。
 水槽10は、上部に気相(空間)を残す容量の飼育水Wとともに水生生物を収容するものであり、例えば100×75×75cm程度の大きさにした本体11と、この本体11の上部開口をガス密的に閉じる蓋体12とからなる。
 ところで、飼育に最適な溶存酸素濃度は、深海水の溶存酸素濃度を考慮した場合、6~7ppmが望ましい。
 また、飼育水Wの溶存酸素は、水生生物や微生物による呼吸、硫化水素の酸化等により消費される一方、飼育水Wが低温である場合、空気中の酸素が溶けやすくなり、溶存酸素が過多になる場合もある。
 そこで、本実施形態における酸素制御装置Bは、水中ポンプ20、プレフィルタ21及びフォローファイバーモジュール22からなる飼育水循環系と、溶存酸素電極23、溶存酸素計24、エアーポンプ25及び真空ポンプ26からなる酸素増減調整系からなるものとしている。
 飼育水循環系の詳細な構成は、次のとおりである。
 水中ポンプ20は飼育水W内に配置されており、その水中ポンプ20とフォローファイバーモジュール22の受水口22aとが送給パイプ27によって連結されているとともに、その送給パイプ27の途中に上記したプレフィルタ21が配設されている。
 プレフィルタ21は、水中ポンプ20によって吸い上げられた飼育水Wに含まれるゴミ等を除去するものである。
 酸素制御装置Bにおけるフォローファイバーモジュール22は、飼育水Wに溶存する酸素を脱気するための酸素脱気装置であり、それは、円筒形の本体22b内に中空糸(図示しない)を収容した構造のものであり、その中空糸内を流通する飼育水Wに含まれる酸素を脱気するようにしている。
 このフォローファイバーモジュール22の送水口22cには、返戻パイプ28の一端部が連結され、また、その返戻パイプ28の他端部は飼育水W中に配置されており、フォローファイバーモジュール22から送給される脱気後の飼育水Wを返戻させている。
 フォローファイバーモジュール22の本体22bには、連結パイプ29を介して真空ポンプ26が連結されており、そのフォローファイバーモジュール22内を流通する飼育水Wに溶存している酸素を脱気できるようにしている。
 溶存酸素電極23は、水槽10に貯留している飼育水Wに溶存している酸素を検知するためのものであり、その飼育水W内に配置されている。
 上記溶存酸素電極23は、溶存酸素計24の入力側に接続され、また、その溶存酸素計24の出力側には、真空ポンプ26とエアーポンプ25とが接続されている。
 真空ポンプ26は、上記したフォローファイバーモジュール22内を流通する飼育水Wに溶存する酸素を減圧脱気するものであり、溶存酸素計24によってオン/オフ駆動されるようになっている。
 エアーポンプ25は、上記した水槽10に貯留されている飼育水Wに酸素を給気するためのものであり、これには、送給パイプ29の一端部が連結されているとともに、当該他端部を飼育水W内に位置させている。
 溶存酸素計(溶存酸素コントローラ)24は、溶存酸素電極23によって検知した酸素の溶存量を算出するとともに、これの出力側に接続されているエアーポンプ25と真空ポンプ26とを、算出した酸素の溶存量に基づいて適宜オン/オフ駆動して増減調整する機能を有している。
 すなわち、水生生物にとって最適な溶存酸素量となるように、エアーポンプ25と真空ポンプ26とを互いに独立してオン/オフ駆動している。
 本実施形態においては、飼育水Wに溶存する酸素を増減調整するための溶存酸素増減調整手段Hを、フォローファイバーモジュール(酸素脱気装置)22、エアーポンプ25、真空ポンプ26及び溶存酸素コントローラ(溶存酸素計)24により構成している。
 温度制御装置Cは、飼育水Wの温度を検知するための温度センサ30と、検知された温度に基づいて、その飼育水Wの温度を昇降調整するための温度調整器31とからなる。
 本実施形態においては、温度センサ30として熱電対を採用しているが、公知の他のものを採用してもよい。
 温度調整器31は、飼育水Wを加熱し又はその冷却を行なう機能を有するものであり、これに、取水パイプ33と排水パイプ34を垂設している。
 すなわち、取水パイプ33から飼育水Wを取り込んで加熱又は冷却した後、温度調整をした飼育水Wを排水パイプ34から水槽10に返戻するようにしている。このような温度制御装置Cを設けることにより、飼育水Wの温度を常に水生生物にとって最適な温度に保つことができる。
 pH表示装置Dは、飼育水W中に配置され、その飼育水WのpHを検知するためのpH電極41と、そのpH電極41により検知された飼育水WのpHを表示するための装置本体40とからなる。このように、飼育水WのpHを目視できるので、水生生物の飼育をより容易に行なうことができる。
 飼育水WのpHは、深海生物を飼育する場合、望ましくはpH7.6~8.4程度がよいが、その値に限るものではない。
 深海生物を飼育するときには、飼育水W中に、炭酸カルシウム又は炭酸カルシウムを主成分とするpH調整部材9を配する。
 pH調整部材9としては、例えば珊瑚砂等であり、これを飼育水W内に設置することにより、飼育水WのpHを上記したpH7.6~8.4に維持することができる。
 硫化水素制御装置Eは、ガスセンサ50、これに接続されたリレー51及び記録計52からなる硫化水素ガス測定系と、硫化水素ボンベ53、電磁弁54、上述したものと同等のフォローファイバーモジュール22、プレフィルタ55及びチュービングポンプ56からなる硫化水素ガス増減調整系からなる。
 硫化水素ガス測定系の詳細な構成は、次のとおりである。
 ガスセンサ50は、硫化水素ガスを検知するためのものであり、上記した水槽10の気相G中に配設されており、これには上記リレー51の入力端子に接続されている。
 このガスセンサー50は公知の気相中硫化水素検出法のうち、電気的な信号へ変換可能な方法のいずれかを用いればよい。例えば基材上に水酸化銅の薄膜(いずれも図示しない)を備えるとともに、表面薄層の変化を赤外吸収スペクトルを測定するもの、不完全化学量三酸化モリブデンを材料とし、電気特性の変化によりガス混合物濃度を測定するもの、固体電解質を利用するもの等、連続的にガス濃度を検出でき、かつ、電気的な信号を出力可能であるか、電気的な信号に変換可能なものであれば、採用することができる。
 一般的には、ガス警報器等に利用される半導体センサを採用することにより、安価で簡便に飼育水Wの硫化水素ガス濃度を検出できる。
 記録計(データロガー)52は、検出した硫化ガス濃度を記録するためのものである。
 リレー51は、ガスセンサ50で検出した信号に基づいて、電磁弁54とチュービングポンプ56とをオン/オフ駆動する機能を有するものである。
 硫化水素ガス増減調整系の詳細な構成は、次のとおりである。
 硫化水素ボンベ53は、所要量の硫化水素ガスを充填したものであり、これと、フォローファイバーモジュール22の本体22bとを連結パイプ53aで連結されている。
 硫化水素ガス増減調整系におけるフォローファイバーモジュール22は、硫化水素ガスを飼育水に給気するための硫化水素ガス給気装置であり、円筒形の本体22b内に中空糸(図示しない)を収容した構造のものであることは、上記したものと同等である。
 電磁弁54は、硫化水素ボンベ53からフォローファイバーモジュール22への硫化水素ガスの給気の許容と停止を行なうものであり、上記の連結パイプ53aに配設されている。 この電磁弁54は、上記したリレー51によってオン/オフ駆動されることにより、硫化水素ボンベ53からフォローファイバーモジュール22への硫化水素ガスの圧送の許容と停止を行なうようになっている。
 プレフィルタ55は、チュービングポンプ56によって吸引された飼育水Wに含まれるゴミ等を除去するものであり、これの受水口(図示しない)には吸水パイプ55aの基端部が連結されているとともに、その吸水パイプ55aの先端部を飼育水W内に位置させている。
 上記プレフィルタ2の送水口(図示しない)とフォローファイバーモジュール22の受水口との間には連結パイプ55bが連結されている。
 また、フォローファイバーモジュール22の送水口22cと、チュービングポンプ56の受水口56aとの間には連結パイプ57が連結されているとともに、そのチュービングポンプ56の送水口56bには、送水パイプ58の基端部が連結されているとともに、その送水パイプ58の開放端部を飼育水W内に位置させている。
 チュービングポンプ56は、飼育水Wを送給するための送給ポンプであり、弾力性のあるチューブをローラ(いずれも図示しない)で扱くことにより、そのチューブ内の飼育水Wを押出す方式のものである。このチュービングポンプ56の採用により、送給ポンプ自体が飼育水Wに接触せず、また、弁構造がなく飼育水Wを脈動させたり衝撃を与えることがない。
 本実施形態においては、上記したリレー51、電磁弁54及びチュービングポンプ56により、飼育水W中における硫化水素の濃度が一定となるように、その飼育水に対して硫化水素を供給する硫化水素供給手段Fを構成している。
 本実施形態において「飼育水中における硫化水素の濃度」とは、飼育水W中における水生生物にとって適切な硫化水素ガス濃度という意味であり、これにより、化学合成系水生生物の飼育を連続的かつ長期にわたって行なうことができる。
 上述した水生生物の飼育システムA1を用いた水生生物の飼育方法は、ガスセンサ50によって、上記気相G中における硫化水素ガスの濃度を検知し、そのガスセンサ50から出力される検知信号に基づいて、飼育水W中における硫化水素の濃度が一定となるように、その飼育水Wに対して硫化水素を供給することを内容としている。
 上記構成からなる水生生物の飼育システムA1の動作について説明する。
 酸素制御装置Bの動作は、次のとおりである。
 飼育水W中の溶存酸素が不足する場合、エアーポンプ25を駆動させて、飼育水Wに空気を給気する。
 一方、飼育水W中の溶存酸素が過多の場合、フォローファイバーモジュール22を流通している飼育水Wから、真空ポンプ26を駆動させて酸素を脱気して、溶存酸素濃度を低下させる。
 硫化水素制御装置Cの動作は、次のとおりである。
 飼育水W中に溶存する硫化水素が不足する場合、電磁弁54及びチュービングポンプ56をリレー51によって駆動させ、飼育水W中における硫化水素の濃度が一定となるように、その飼育水Wに対して硫化水素を供給する。
 上記構成からなる水生生物の飼育システムA1及び飼育方法の効果について説明する。
・硫化水素を利用する化学合成生態系の多種多様な生物を長期にわたって飼育することができる。
 すなわち、ガスセンサを用いて、水槽上部の気相中に存在する硫化水素ガスの濃度から、飼育水中の硫化水素の濃度を推定し、かつ、半導体ガスセンサの電気的な変化から、リレーを介して、ガス供給弁、循環ポンプ等を制御することにより、適切な量の硫化水素ガスを供給できる。これにより、連続的かつ長期にわたって適切な量の硫化水素ガスを供給でき、化学合成系水生生物の長期飼育を行なうことができる。
・フォローファイバーモジュールを用いて、硫化水素ガスを飼育水に供給しているので、余剰のリュウ水素ガスを系外に放出させることがなくん安全性を高めることができる。
 図2は、摂氏5~5.4度、pH7.6の人工海水中の硫化水素濃度を比色定量法で測定した値と、ガスセンサの出力値を両対数グラフにプロットした図である。
 飼育水W中の硫化水素の濃度とガスセンサの出力の関係を調べるために、任意の濃度の硫化水素を含む飼育水Wが存在する場合のガスセンサの出力を調べた。
 飼育水W中の硫化水素の濃度は、メチレンブルー法を改良したジアミン法を用いて測定した。
 飼育水Wの体積は、150リッターとし、飼育水Wの温度を5度、溶存酸素濃度は6.4、pHは7.4で維持するように設定した。また、ガスセンサは清浄な空気中で4.0Vの出力が得られるように設定した。
 ジアミン法を用いた硫化水素濃度の測定は以下のように行なった。
 6N塩酸50mlにN,N‐ジメチル‐フェニレンジアミン硫酸1.8gと塩化第二鉄6水和物を3.0gを完全に溶かして混合ジアミン試薬とした。
 発色試薬50μlに対して、飼育水500μlを添加し、よく攪拌した後、1,2分放置した。
 さらに、蒸留水で11倍に希釈したものの波長670nmの吸光度を分光光度計で測定した。予め用意した任意の濃度の硫化ナトリウム9水和物を蒸留水に溶かした標準液を用いて標準曲線を作成し、測定した吸光度から硫化水素濃度を算出した。
 飼育水中の硫化水素濃度とガスセンサとの出力の関係は、図2に示すように、飼育水中の硫化水素濃度が50~500μM(μmol/L)の範囲で、それぞれの常用対数値が反比例する関係となることがわかった。
 飼育水中の硫化水素濃度とセンサー出力の関係から、リレー51のオン/オフ動作のしきい値を繊維に設定することにより、飼育水中の硫化水素濃度を任意の範囲において制御できることがわかった。
 図3は、ガスセンサの出力値の経時変化とメチレンブルー法による飼育水中における硫化水素濃度の推定値の経時変化を示す図である。
 実際に飼育水中の硫化水素濃度を制御できることを確認するため、深海水生生物を飼育するのに適した硫化水素濃度50~150(μmol/L)の範囲において硫化水素濃度が維持できることを確認する実験を実施した。
 上記した実施例と同様に、飼育水中の硫化水素濃度は経時的に採水し、ジアミン法を用いて測定した。
 飼育水の体積は150リッターとし、飼育水の温度を摂氏5度、溶存酸素濃度は6.4、pHは7.4で維持するように設定した。
 ガスセンサは、清浄な空気中で4.0Vの出力が得られるように設定した。リレー51は、ガスセンサの出力が3.8V以下になると電磁弁54及びチュービングポンプ56の電源が切れた状態になり、3.8Vより大きなセンサー出力値で電磁弁54及びチュービングポンプ56の電源が入るように設定した。
 ガスセンサの出力値は1分おきにデータロガー52を用いて記録した。ガスセンサの出力値の記録を、開始から8時間後から硫化水素ボンベ53の電磁弁54を開いて、硫化水素ガスの供給を開始した。なお、チュービングポンプ56の流量は10ml/分に設定した。
 図3に示すように、硫化水素ガスの供給を開始した後、ガスセンサの出力値は3.7~3.9Vの間で維持された。飼育水Wを経時的に採取し、その飼育水中の硫化水素濃度をジアミン法で測定した結果、飼育水W中の硫化水素濃度は、52~131μMの間で維持できることがわかった。
 図4は、硫化水素濃度と経過時間との関係を示す図、図5は、温度・pH・溶存酸素と経過時間との関係を示す図、図6は、生存率と経過時間との関係を示す図である。
 本発明者らは、上記した構成からなる水生生物の飼育システムにより、硫化水素を利用する化学合成生態系生物としてゴエモンコシオリエビを飼育した。図4~6に示すような飼育効果を得ることができた。
・深海性のカニ「ゴエモンコシオリエビ」を、硫化水素存在下で80日間飼育することができた。
・硫化水素を添加して飼育したゴエモンコシオリエビの外部共生菌は、硫化水素を添加しなかった場合に比べて、1000倍以上の高濃度にまで増殖させることができた。
・増殖した外部共生菌の系統群は深海性の共生菌とされるものと近縁であるものが多く検出できた。
・飼育水槽に、副次的に発生した深海性硫黄酸化細菌を主体とするバクテリアマットを増殖させることができた。
 なお、本発明は上述した実施形態に限るものではなく、次のような変形実施が可能である。
 上述した実施形態においては、飼育水Wに溶存する酸素を脱気するための酸素脱気装置としてフォローファイバーモジュールを用いたものを例示したが、飼育水Wに溶存する酸素を脱気できる機能を有するものであればよい。
 上述した実施形態においては、硫化水素ガスを飼育水に給気するための硫化水素ガス給気装置としてフォローファイバーモジュールを用いたものを例示したが、硫化水素ガスを飼育水に給気できる機能を有するものであればよい。
10  水槽
22  酸素脱気装置、硫化水素ガス給気装置(フォローファイバーモジュール)
24  溶存酸素コントローラ(溶存酸素計)
25  エアーポンプ
26  真空ポンプ
30  温度センサ
50  ガスセンサ
51  リレー
53  硫化水素ボンベ
54  電磁弁
56  送給ポンプ(チュービングポンプ)
C   温度制御装置
F   硫化水素供給手段
H   溶存酸素増減調整手段
W   飼育水

Claims (10)

  1.  上部に気相を残して飼育水を貯留した水槽と、
     上記気相中における硫化水素ガスの濃度を検知するガスセンサと、
     上記ガスセンサから出力される検知信号に基づいて、飼育水中における硫化水素の濃度が所定の値となるように、その飼育水に対して硫化水素を供給する硫化水素供給手段とを有することを特徴とする水生生物の飼育装置。
  2.  所定の値は、飼育水中における水生生物にとって適切な硫化水素濃度である請求項1に記載の水生生物の飼育装置。
  3.  飼育水の温度を検知する温度センサと、
     上記温度センサによって検知した温度に基づき、その飼育水の温度を昇降調整するための温度調整器とを有する温度制御装置とを設けた請求項1又は2に記載の水生生物の飼育装置。
  4.  硫化水素供給手段は、
     硫化水素ガスを充填した硫化水素ボンベと、
     硫化水素ガスを飼育水に給気するための硫化水素ガス給気装置と、
     硫化水素ボンベから硫化水素ガス給気装置への硫化水素ガスの給気の許容と停止を行なう電磁弁と、
     飼育水を送給するための送給ポンプと、
     ガスセンサで検知した信号に基づいて、電磁弁と送給ポンプとをオン/オフ駆動するリレーとを有している請求項1~3のいずれか1項に記載の水生生物の飼育装置。
  5.  飼育水に溶存する酸素を増減調整するための溶存酸素増減調整手段を有する請求項1~4のいずれか1項に記載の水生生物の飼育装置。
  6.  溶存酸素増減調整手段は、
     飼育水に溶存する酸素を脱気するための酸素脱気装置と、
     飼育水に酸素を給気するためのエアーポンプと、
     飼育水に溶存する酸素を酸素給気装置を介して脱気させる真空ポンプと、
     酸素の溶存量を算出するとともに、算出した酸素の溶存量に基づいてエアーポンプと真空ポンプとを適宜オン/オフ駆動して増減調整する溶存酸素コントローラとを有している請求項5に記載の水生生物の飼育装置。
  7.  ガスセンサが、半導体センサである請求項1~6のいずれか1項に記載の水生生物の飼育装置。
  8.  飼育水は、海水又は人工海水である請求項1~7のいずれか1項に記載の水生生物の飼育装置。
  9.  飼育水中に、炭酸カルシウム又は炭酸カルシウムを主成分とするpH調整部材を配した請求項1~8のいずれか1項に記載の水生生物の飼育装置。
  10.  請求項1~9のいずれか1項に記載した水生生物の飼育装置を用いた水生生物の飼育方法であって、
     ガスセンサによって、気相中における硫化水素ガスの濃度を検知し、そのガスセンサから出力される検知信号に基づいて、飼育水中における硫化水素の濃度が一定となるように、その飼育水に対して硫化水素供給手段により硫化水素を供給することを特徴とする水生生物の飼育方法。
PCT/JP2012/075641 2011-10-03 2012-10-03 水生生物の飼育システムとその飼育方法 WO2013051605A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/349,601 US9603345B2 (en) 2011-10-03 2012-10-03 Aquatic organism rearing system and aquatic organism rearing method
JP2013537531A JP5999848B2 (ja) 2011-10-03 2012-10-03 水生生物の飼育システムとその飼育方法
EP12839060.6A EP2764774B1 (en) 2011-10-03 2012-10-03 Aquatic organism rearing system and aquatic organism rearing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-219498 2011-10-03
JP2011219498 2011-10-03

Publications (1)

Publication Number Publication Date
WO2013051605A1 true WO2013051605A1 (ja) 2013-04-11

Family

ID=48043759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075641 WO2013051605A1 (ja) 2011-10-03 2012-10-03 水生生物の飼育システムとその飼育方法

Country Status (4)

Country Link
US (1) US9603345B2 (ja)
EP (1) EP2764774B1 (ja)
JP (1) JP5999848B2 (ja)
WO (1) WO2013051605A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106508748A (zh) * 2016-11-09 2017-03-22 湖南澳华农牧科技有限公司 一种草鲫鲤鳊鱼养殖新方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117530208B (zh) * 2023-11-09 2024-05-24 广东省农业科学院动物科学研究所 一种基于光伏制氢的抗鱼类饥饿胁迫养殖方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08173988A (ja) * 1994-12-21 1996-07-09 Nagayanagi Kogyo Kk 嫌気的水処理装置
JPH09117235A (ja) 1995-10-25 1997-05-06 Mitsubishi Heavy Ind Ltd 水槽内局部温度域形成装置
JPH11169011A (ja) * 1997-12-08 1999-06-29 Kyushu Medical:Kk 甲殻類養殖システム及び方法
JP2002186977A (ja) * 2000-12-20 2002-07-02 Mikasa:Kk 加圧タンク方式水の溶存気体(ガス)自動制御方法
JP2006211914A (ja) * 2005-02-01 2006-08-17 Rikujo Yoshoku Kogaku Kenkyusho:Kk 硫黄酸化型脱窒素処理装置
JP2007152275A (ja) * 2005-12-07 2007-06-21 Sharp Corp 水処理方法および水処理装置
WO2008114720A1 (ja) 2007-03-16 2008-09-25 Japan Agency For Marine-Earth Science And Technology 水生生物の飼育装置
JP2009247255A (ja) * 2008-04-04 2009-10-29 Taisei Corp 飼育水浄化方法および飼育水浄化装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2638489A1 (de) * 1976-08-26 1978-03-02 Linde Ag Verfahren und vorrichtung zur aufzucht von wassertieren in einer kontrollierten umgebung
US4055145A (en) * 1976-09-29 1977-10-25 David Mager System and method of ocean thermal energy conversion and mariculture
JP2566165B2 (ja) * 1989-07-07 1996-12-25 海洋科学技術センター 生物飼育用高圧水槽
US5353745A (en) * 1992-09-29 1994-10-11 Fahs Ii Richard W Aquaculture system and methods for using the same
US20020185080A1 (en) * 1994-06-07 2002-12-12 Eliud Ortiz Self-photoperiodic acclimatization aquatic pedestal
US20060191828A1 (en) * 2001-09-12 2006-08-31 Cummins Ian G Aquaculture system
JP2003333954A (ja) * 2002-05-17 2003-11-25 Natl Space Development Agency Of Japan 稚魚飼育方法及び装置
US7204203B2 (en) * 2003-07-08 2007-04-17 Vincent Riemma Aquarium water changing and water stabalization system
JP4194982B2 (ja) * 2004-07-02 2008-12-10 サントリー株式会社 揮発性溶解物の検出装置と検出方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08173988A (ja) * 1994-12-21 1996-07-09 Nagayanagi Kogyo Kk 嫌気的水処理装置
JPH09117235A (ja) 1995-10-25 1997-05-06 Mitsubishi Heavy Ind Ltd 水槽内局部温度域形成装置
JPH11169011A (ja) * 1997-12-08 1999-06-29 Kyushu Medical:Kk 甲殻類養殖システム及び方法
JP2002186977A (ja) * 2000-12-20 2002-07-02 Mikasa:Kk 加圧タンク方式水の溶存気体(ガス)自動制御方法
JP2006211914A (ja) * 2005-02-01 2006-08-17 Rikujo Yoshoku Kogaku Kenkyusho:Kk 硫黄酸化型脱窒素処理装置
JP2007152275A (ja) * 2005-12-07 2007-06-21 Sharp Corp 水処理方法および水処理装置
WO2008114720A1 (ja) 2007-03-16 2008-09-25 Japan Agency For Marine-Earth Science And Technology 水生生物の飼育装置
JP2009247255A (ja) * 2008-04-04 2009-10-29 Taisei Corp 飼育水浄化方法および飼育水浄化装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106508748A (zh) * 2016-11-09 2017-03-22 湖南澳华农牧科技有限公司 一种草鲫鲤鳊鱼养殖新方法

Also Published As

Publication number Publication date
JPWO2013051605A1 (ja) 2015-03-30
US20140245963A1 (en) 2014-09-04
EP2764774A1 (en) 2014-08-13
US9603345B2 (en) 2017-03-28
JP5999848B2 (ja) 2016-09-28
EP2764774A4 (en) 2015-04-22
EP2764774B1 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
KR100906732B1 (ko) 어패류의 보관 및 양식할 수 있는 수조탱크
JP5190342B2 (ja) トラフグ稚魚の飼育方法
CN103002730B (zh) 活水生动物运输系统和方法
US4496443A (en) Method for electrically introducing substances into liquid solution
JP4142708B2 (ja) 陸上鮪養殖システム
CA2958724A1 (en) Eel aquaculture system using ict
KR101981496B1 (ko) 가두리 양식장의 실시간 빈산소수괴 모니터링 장치
JP5999848B2 (ja) 水生生物の飼育システムとその飼育方法
TWI436729B (zh) 水生生物之飼育裝置
JP2008148687A (ja) 陸上鮪養殖システム
Kugino et al. Long-duration carbon dioxide anesthesia of fish using ultra fine (nano-scale) bubbles
CN106596525A (zh) 一种水质生物毒性检测方法及装置
JP2003333954A (ja) 稚魚飼育方法及び装置
JP2009213424A (ja) ブラインシュリンプの孵化・給餌装置
Bailey et al. Measurement of in situ oxygen consumption of deep-sea fish using an autonomous lander vehicle
JP4939130B2 (ja) 寄生虫の駆除方法及び魚体耐力試験方法
WO2013051603A1 (ja) 溶存ガスの供給装置
JP2019514408A (ja) 水産養殖システム
Vahrushev Technological aspects of keeping Dytiscus latissimus Linnaeus, 1758(Coleoptera: Dytiscidae) in laboratory conditions
CN205756558U (zh) 水族箱控制器
CN205511698U (zh) 一种用于研究鱼类急、慢性毒性的实验装置
NO741508L (ja)
CN112136750A (zh) 一种方便换水的智能鱼缸
KR20160135019A (ko) 해양생물 실험용 해수의 pH 및 용존산소량 조절장치
Wucliffe et al. Standard, routine and active oxygen consumption of a freshwater shrimp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013537531

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012839060

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14349601

Country of ref document: US