WO2006003864A1 - 溶融塩電解による金属の製造方法および製造装置 - Google Patents

溶融塩電解による金属の製造方法および製造装置 Download PDF

Info

Publication number
WO2006003864A1
WO2006003864A1 PCT/JP2005/011747 JP2005011747W WO2006003864A1 WO 2006003864 A1 WO2006003864 A1 WO 2006003864A1 JP 2005011747 W JP2005011747 W JP 2005011747W WO 2006003864 A1 WO2006003864 A1 WO 2006003864A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
cathode
molten salt
chamber
electrolytic
Prior art date
Application number
PCT/JP2005/011747
Other languages
English (en)
French (fr)
Inventor
Masanori Yamaguchi
Yuichi Ono
Susumu Kosemura
Eiji Nishimura
Original Assignee
Toho Titanium Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co., Ltd. filed Critical Toho Titanium Co., Ltd.
Priority to JP2006528672A priority Critical patent/JP4658053B2/ja
Priority to US11/631,364 priority patent/US20090211916A1/en
Priority to EP05765165A priority patent/EP1785509A4/en
Publication of WO2006003864A1 publication Critical patent/WO2006003864A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/007Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells of cells comprising at least a movable electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing
    • C25C7/08Separating of deposited metals from the cathode

Definitions

  • the present invention relates to recovery of a metal from a metal salt deposit, and more particularly to a method and an apparatus for producing a metal by electrolysis of a molten salt containing a metal chloride.
  • the conventional method has a problem that it is difficult to recover an active metal such as calcium metal alone or the cost is high even if it is possible.
  • Patent Literature l WO99Z064638
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-129268
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-306725
  • Patent Document 4 US3226311
  • the present invention has been made in view of the above situation.
  • a metal used for reducing metal oxides or salts of metal titanium can be recovered in a solid state.
  • the object is to provide a method for producing a metal by molten salt electrolysis that can be carried out by an inexpensive method!
  • an electrolytic bath provided with an anode and a cathode is filled with a metal salt and the metal salt is heated and melted to form an electrolytic bath.
  • the electrolytic bath is electrolyzed to deposit metal in a solid state on the cathode.
  • a metal can be deposited on a cathode in a solid state having low solubility in a molten salt and recovered.
  • metal recovery can be performed at low cost.
  • the present invention fills an electrolytic cell equipped with an anode and a cathode with a metal salt, heats and melts the metal chloride to form an electrolytic bath, and electrolyzes the electrolytic bath to remove the metal.
  • An apparatus for producing metal by molten salt electrolysis that deposits on a negative electrode in a solid state in which an electrolytic bath is divided into an electrolytic chamber and a melting chamber by partition walls, an anode is placed in the electrolytic chamber, and a cathode is connected to the electrolytic chamber and the melting chamber. It is arranged so that it can circulate and revolve, and the metal deposited and deposited on the cathode in the electrolysis chamber is separated and collected in the dissolution chamber! /
  • the cathode when the cathode passes through the electrolytic chamber, electrolysis of the metal chloride proceeds to deposit metal on the cathode, and when the cathode passes through the melting chamber, the deposited metal is recovered. Since the cathode revolves and periodically moves back and forth between the electrolysis chamber and the melting chamber, metal deposition and recovery can be performed automatically and efficiently.
  • reference numeral 1 denotes an electrolytic cell, which is filled with an electrolytic bath 2 that also has salty calcium strength, and is heated to a temperature higher than the melting point of salty calcium by a heating means (not shown). It is kept in a molten state.
  • Reference numeral 3 is an anode and reference numeral 4 is a cathode, which is immersed in the electrolytic bath 2.
  • the present invention can be efficiently carried out even when the temperature of the electrolytic bath 2 is within the temperature range of! /, Which is equal to or higher than the melting point (845 ° C) of the metallic calcium 5.
  • the metallic calcium 5 can be deposited in a solid state on the surface of the cathode 4.
  • the solid metal calcium 5 can be deposited around the cathode 4 by incorporating the cooling structure in the cathode 4.
  • the cathode 4 After depositing a predetermined amount of metallic calcium 5 on the cathode 4, the cathode 4 was removed from the electrolytic bath 2, and the molten salt 6 maintained at a temperature higher than the melting point (845 ° C) of the metallic calcium 5 was retained. Immerse in collection tank 7. The metal calcium 5 deposited on the cathode 4 is partially dissolved in the molten salt 6 held in the recovery tank 7, and the rest melts and floats on the cathode 4 and is concentrated near the liquid level in the recovery tank 7. This is separated and recovered. At this time, the molten salt 6 promotes the evaporation loss of the metal calcium 5 as the temperature increases, so it is practical to keep it within 900 ° C.
  • the calcium can be melted and floated and recovered in a liquid state.
  • the molten salt 6 may be cooled below the melting point of metallic calcium as long as it does not solidify.
  • the floated metallic calcium 5 becomes a solid state and can be efficiently recovered. Since the melting point of calcium chloride is around 780 ° C and the melting point of metallic calcium is around 845 ° C, the metallic calcium dissolved in the molten salt 6 can be reduced by reducing the temperature of the recovery tank 7 to around 800 ° C. 5 can be recovered in the solid state.
  • the cathode 4 from which the precipitated metallic calcium 5 has been desorbed and recovered can be returned from the recovery tank 7 to the electrolytic tank 1 and again subjected to molten salt electrolysis.
  • metal calcium can be efficiently recovered.
  • the metal calcium 5 produced in the recovery tank 7 in this way can be used, for example, for the calcium reduction of tetrasalt titanium using a molten salt.
  • the chlorine gas 8 generated in the anode 3 of the electrolytic cell 1 can be separately collected and reused for the chlorination reaction of titanium ore. Or you may utilize for another use.
  • the material of the anode 3 is preferably a material that is conductive, does not dissolve in the electrolytic bath, and does not react with chlorine gas. Carbon is preferred as such a material!
  • the cathode 4 may be made of any material such as carbon steel, stainless steel, copper, or aluminum, as long as it is made of a conductive material. It is preferable that the cathode 4 has a structure in which a cooling medium can flow inside. By taking such a structure, deposition of metallic calcium on the cathode 4 can be promoted.
  • salt calcium is also produced as a by-product in the molten salt electrolysis process of salt titanium and metal calcium, so if molten salt 6 is used as salt calcium, the concentrated metal calcium is melted into salt titanium. When used in the salt electrolysis process, it is not necessary to remove calcium chloride. In addition, after the molten salt electrolysis process of titanium salt titanium, it is also a power that can be recycled to the electrolytic cell 1 together with salt salt calcium which is a by-product of this step.
  • the melting point of the electrolytic bath can be lowered by adding potassium salt to potassium salt constituting the electrolytic bath 2.
  • the salty potassium added to the salty calcium is 20% to 80% by weight. It is preferable to set it as the range of quantity%. By adding potassium salt in such a range, even if the temperature of electrolytic bath 2 is lowered by 150 ° C to 250 ° C below the melting point of metallic calcium, stable operation can be performed without fear of freezing the electrolytic bath. It can be carried out.
  • the temperature of the electrolytic bath 2 can be controlled to a target temperature range by using a heating partner with a cooling function immersed in the electrolytic bath (not shown).
  • the temperature of electrolytic bath 2 may be controlled by other means.
  • FIG. 2 represents another embodiment of the present invention.
  • the electrolytic bath 1 in FIG. 2 (a) is filled with an electrolytic bath 2 that also has calcium chloride power, and is heated to a melting point or higher of salt calcium by a heating means (not shown) and kept in a molten state.
  • an anode 3 and a cylindrical cathode 4 are immersed in the electrolytic bath 2.
  • the cathode 4 is configured to be capable of rotating, and a scraper 9 is disposed adjacent to one end of the cylindrical side surface of the cathode 4.
  • FIG. 2 (b) is a schematic view of the cathode 4 and the collector 9 in the direction A force. As shown in the figure, when the cathode 4 rotates, the metallic calcium 5 deposited on the cathode surface can be efficiently scraped by the scraper 9.
  • Cathode 4 Force Solid metal calcium 5 taken off has a lower density than calcium chloride, and therefore floats on the bath surface of electrolytic bath 2.
  • the metallic calcium 5 floating on the bath surface of the electrolytic bath 2 is appropriately recovered from the electrolytic bath 2.
  • the solid metallic calcium recovered from the electrolytic bath 2 can be used as a reducing agent for titanium oxide by molten salt electrolysis.
  • a net-like ridge may be provided around the rake device 9.
  • the precipitated solid metal can be efficiently recovered by pulling up the soot from the electrolytic bath in a timely manner.
  • a partition wall 10 is disposed in the vicinity of the bath surface of the electrolytic bath 2.
  • the metallic calcium deposited on the cathode 4 is scraped off, then floats up and diffuses to the bath surface, reaches the vicinity of the anode 3 and tends to react with the chlorine gas generated at the anode 3,
  • diffusion of the floating metal calcium 5 can be prevented and the reverse reaction can be effectively suppressed.
  • a heater may be immersed in the vicinity of the scraper 9, and the temperature of the electrolytic bath in the vicinity of the scraper 9 may be limitedly kept above the melting point of metallic calcium.
  • the metallic calcium taken from the cathode 4 can be recovered in a molten state.
  • Gold in the molten state A part of the genus calcium is dissolved in calcium chloride and floats in the electrolytic bath 2.
  • the calcium chloride salt enriched with metallic calcium floats on the bath surface of the electrolytic bath 2 through the partition wall 10.
  • Calcium chloride enriched in floating metal calcium can be extracted and used, for example, for the reduction of tetrasalt-titanium.
  • FIGS. 3 (a) to (c) show other embodiments of the present invention.
  • Fig. 3 (b) is a schematic view of Fig. 3 (a) viewed from the direction A
  • Fig. 3 (c) is a schematic view of Fig. 3 (a) also viewed in the direction B force.
  • the electrolytic cell 1 in FIG. 3 is filled with an electrolytic bath 2 having a salty calcium strength, and is heated to a melting point or higher of salty calcium by a heating means (not shown) and kept in a molten state.
  • an anode 3 and a cathode 4 are immersed in the electrolytic bath 2 .
  • the electrolytic cell 1 is divided into an electrolytic chamber la in which the anode 3 is immersed and a melting chamber lb by a partition wall 10 provided near the bath surface of the electrolytic bath 2. However, only the vicinity of the bath surface of the upper part of the electrolytic bath 2 is divided by the partition wall 10 and is integrated in the lower part of the electrolytic bath 2. As shown in FIG. 3 (c), a plurality of cathodes 4 are arranged so that they can circulate through the electrolysis chamber la and the melting chamber lb. These cathodes 4 can pass through a cutting portion provided in a part of the partition wall 10 and circulate through the electrolytic chamber and the melting chamber to revolve.
  • the cathode 4 has a heating function and a cooling function.
  • the cathode 4 is provided with a flow path through which a heater and a cooling medium can be circulated, and the temperature of the cathode 4 can be arbitrarily controlled to be equal to or lower than the melting point of the metal calcium 5. ing.
  • the cathode 4 when the cathode 4 is on the electrolysis chamber side, the temperature of the cathode 4 is kept below the melting point of metallic calcium, and metallic calcium is deposited on the surface of the cathode 4 in a solid state.
  • the cathode 4 revolves and reaches the melting chamber side, the temperature of the cathode 4 is maintained above the melting point of metal calcium, and the precipitated metallic calcium is brought into a molten state.
  • Part of the metallic calcium 5 melted and separated from the cathode 4 is dissolved in calcium chloride and floats in the electrolytic bath to form a concentrated metallic calcium layer.
  • the metal calcium concentrated layer formed on the dissolution chamber side bath surface of the electrolytic bath 2 can be appropriately extracted and used as, for example, a reducing agent for titanium oxide by molten salt electrolysis.
  • the temperature of the cathode 4 varies depending on the position of the cathode 4 that revolves inside the electrolytic bath 2.
  • metallic calcium can be efficiently recovered.
  • salt calcium carbonate is used in an electrolytic bath, and this is melt-electrolyzed to deposit metallic calcium continuously on the cathode, and this is scraped off by a scraper.
  • the solid state calcium metal was recovered.
  • the production amount of metallic calcium per unit time increased about twice as much as that in Example 1.
  • metallic calcium can be efficiently produced by electrolysis of calcium chloride.
  • FIG. 1 is a schematic diagram showing a method for producing metallic calcium in an embodiment of the present invention.
  • FIG. 2 (a) is a schematic diagram showing a method for producing metallic calcium in another embodiment of the present invention, and (b) is a schematic diagram of a collector at the cathode when (a) is also viewed in the direction A force.
  • FIG. 2 (a) is a schematic diagram showing a method for producing metallic calcium in another embodiment of the present invention, and (b) is a schematic diagram of a collector at the cathode when (a) is also viewed in the direction A force.
  • FIG. 3 (a) is a schematic diagram showing a method for producing metallic calcium in another embodiment of the present invention, (b) is a schematic diagram showing (a) also in the direction A force, and (c) is a schematic diagram.
  • FIG. 5 is a schematic view of (a) as viewed from direction B.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

 陽極および陰極を備えた電解槽に金属塩化物を満たし、この金属塩化物を加熱溶融して電解浴とし、この電解浴を電解して、金属を固体状態で陰極に析出させる金属の製造方法。また、陽極および陰極を備えた電解槽に金属塩化物を満たし、この金属塩化物を加熱溶融して電解浴とし、この電解浴を電解して、金属を固体状態で上記陰極に析出させる溶融塩電解による金属の製造装置であって、電解浴を隔壁によって電解室および溶解室に分割し、陽極を電解室に配置し、陰極を電解室と溶解室を循環して公転移動可能なように配置し、電解室において陰極に析出付着した金属を溶解室において離脱・回収する金属の製造装置。

Description

溶融塩電解による金属の製造方法および製造装置
技術分野
[0001] 本発明は、金属塩ィ匕物からの金属の回収に関し、特に、金属塩化物を含む溶融塩 の電解による金属の製造方法および製造装置に関する。
背景技術
[0002] 従来、単体の金属チタンは、四塩ィ匕チタンを溶融マグネシウムで還元してスポンジ チタンを得るクロール法により製造されており、種々の改良の積み重ねにより製造コ ストの削減が図られてきた。し力しながら、クロール法は、一連の操作を非連続的に 繰り返すバッチプロセスであるため、効率ィ匕にも限界があった。
[0003] 上記のような状況に対し、溶融塩中にて酸ィ匕チタンを金属カルシウムで還元して直 接金属チタンを製造するという方法 (例えば特許文献 1、 2参照)や、カルシウム等の 活性金属または活性金属合金を含む還元剤を製造し、この還元剤から放出される電 子によってチタンィ匕合物を還元して金属チタンを得る EMR法 (例えば、特許文献 3 参照)が提案されている。これらの方法では、電解反応で副生した酸化カルシウムを 塩ィ匕カルシウムに溶解させた後、溶融塩電解することにより金属カルシウムを回収 · 再利用している。しカゝしながら、電解反応で生成した金属カルシウムは液体状態のた め塩ィ匕カルシウムに対する溶解度が高く容易に溶解してしま 、、固体状態の金属力 ルシゥムを単味で回収する技術にっ 、ての開示はな 、。
[0004] また、金属カルシウムよりも低 、融点を持つ複合溶融塩を用い、従来よりも低温で 溶融塩電解を行うことによって固体状態で金属カルシウムを陰極に析出させる技術 が開示されている (例えば、特許文献 4参照)。しかしながら、この方法では、複合溶 融塩を特別に準備することが必要であり、また、コストについても配慮する必要がある
[0005] このように、従来の方法では、金属カルシウム等の活性金属を単体で回収すること が困難であったり、可能であってもコストが高いという問題を有していた。
[0006] 特許文献 l :WO99Z064638号 特許文献 2 :特開 2003— 129268号公報
特許文献 3:特開 2003 - 306725号公報
特許文献 4: US3226311号
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、上記状況に鑑みてなされたものであり、例えば金属チタンの酸ィ匕物ある いは塩ィ匕物を還元するために用いる金属を固体状態で回収することができるのはも ちろんのこと、安価な方法で実施することができる溶融塩電解による金属の製造方法 を提供することを目的として!ヽる。
課題を解決するための手段
[0008] すなわち、本発明の溶融塩電解による金属の製造方法は、陽極および陰極を備え た電解槽に金属塩ィ匕物を満たし、この金属塩ィ匕物を加熱溶融して電解浴とし、この 電解浴を電解して、金属を固体状態で陰極に析出させることを特徴として 、る。
[0009] 本発明によれば、溶融塩に対する溶解度が低い固体状態で金属を陰極に析出さ せ、回収することができる。また、金属の回収を低コストで実施することができる。
[0010] また、本発明は、陽極および陰極を備えた電解槽に金属塩ィ匕物を満たし、この金 属塩化物を加熱溶融して電解浴とし、この電解浴を電解して、金属を固体状態で陰 極に析出させる溶融塩電解による金属の製造装置であって、電解浴を隔壁によって 電解室および溶解室に分割し、陽極を電解室に配置し、陰極を電解室と溶解室を循 環して公転移動可能なように配置し、電解室において陰極に析出付着した金属を溶 解室にお 、て離脱 ·回収することを特徴として!/、る。
[0011] 本発明によれば、陰極が電解室を通過する際には金属塩化物の電解が進行して 陰極に金属が析出し、陰極が溶解室を通過する際には析出した金属を回収すること ができ、し力も、陰極は公転移動して電解室と溶解室を定期的に行き来するので、金 属の析出および回収を自動的に効率良く行うことができる。
発明を実施するための最良の形態
[0012] 本発明の実施形態について図面を用いて以下に説明する。図 1〜3は、本発明を 実施するための装置構成例を表している。以下、電解浴が塩化カルシウム、生成金 属が金属カルシウムである場合を例にとり説明する。
[0013] 図 1において、符号 1は電解槽であり、その内部には塩ィ匕カルシウム力もなる電解 浴 2が満たされており、図示しない加熱手段によって塩ィ匕カルシウムの融点以上にカロ 熱され、溶融状態に保たれている。符号 3は陽極、符号 4は陰極であり、電解浴 2に 浸漬されている。
[0014] 陽極 3と陰極 4を図示しない直流電源に接続して電解浴の電解を開始すると、電解 浴 2中の塩ィ匕物イオンが陽極 3に引きつけられて電子を放出し、塩素ガスとなって系 外に放出される。カルシウムイオンは陰極 4に引きつけられて電子を受け取り、金属 カルシウム 5となって陰極 4の表面に析出する。
[0015] 電解浴 2の温度は、金属カルシウム 5の融点(845°C)以上または以下の!/、ずれの 温度範囲においても本発明を効率よく実施することができる。特に、電解浴 2の温度 が金属カルシウム 5の融点以下である場合は、陰極 4の表面に金属カルシウム 5を固 体状態で析出させることができる。一方、電解浴 2の温度が金属カルシウム 5の融点 以上であっても、陰極 4に冷却構造を内蔵させることによって、陰極 4の周囲に固体 の金属カルシウム 5を析出させることができる。
[0016] いずれの温度で電解した場合でも、電解反応で生成した金属カルシウム 5は固体 状態で析出するため、生成した固体の金属カルシウム 5と接する塩ィ匕カルシウムへの 溶解度は、殆ど無視できる程度に少ない。したがって、高い効率で金属カルシウムを 回収することが可能である。
[0017] 所定量の金属カルシウム 5を陰極 4に析出させた後、陰極 4を電解浴 2から取り出し 、金属カルシウム 5の融点(845°C)よりも高温に保持された溶融塩 6を保持した回収 槽 7に浸漬させる。陰極 4に析出した金属カルシウム 5は、回収槽 7に保持された溶融 塩 6に一部溶解され、残りは陰極 4力 溶融して浮上し、回収槽 7の液面近傍に濃縮 されるので、これを分離回収する。この際、溶融塩 6は、高温になるほど金属カルシゥ ム 5の蒸発ロスを助長するので、 900°C以内に留めておくことが実用的である。
[0018] このようにカルシウムを溶融 '浮上させて液体状態で回収することもできる力 溶融 塩 6が凝固しない範囲で金属カルシウムの融点以下に冷却しても良い。このような冷 却操作を行うことで、浮上した金属カルシウム 5は固体状態となり、効率よく回収する ことができる。塩ィ匕カルシウムの融点は 780°C付近、金属カルシウムの融点は 845°C 付近にあるので、回収槽 7の温度を 800°C付近まで低下させることにより、溶融塩 6中 に溶解した金属カルシウム 5を固体状態で回収することができる。
[0019] 析出した金属カルシウム 5を脱離 '回収した陰極 4は、回収槽 7から電解槽 1に戻し て再度溶融塩電解に供することができる。以上一連の操作を繰り返すことにより、金 属カルシウムを効率よく回収することができる。このようにして回収槽 7に生成した金 属カルシウム 5は、例えば、溶融塩を用いた四塩ィ匕チタンのカルシウム還元に利用す ることがでさる。
[0020] また、回収槽 7において金属カルシウムを回収せず、溶融塩 6中の金属カルシウム の濃度を高めた状態にしておき、これを溶融塩ごと四塩化チタンの還元反応に利用 することも可會である。
[0021] 電解槽 1の陽極 3で発生した塩素ガス 8は、別途回収してチタン鉱石の塩素化反応 に再利用することができる。あるいは、その他の用途に利用しても良い。
[0022] 陽極 3の材料としては、導電性を有し、かつ電解浴に溶解せず、また塩素ガスと反 応しな 、ものであることが好まし 、。このような材質としてはカーボンが好まし!/、。
[0023] 陰極 4は、導電性を有する材質で構成すれば良ぐ例えば、炭素鋼、ステンレス鋼、 あるいは、銅、アルミニウム等任意の素材で構成することができる。陰極 4は、その内 部に冷却媒体が流通できる構造にしておけば好ましい。このような構造をとることで、 陰極 4への金属カルシウムの析出を促進することができる。
[0024] 回収槽 7内の溶融塩 6としては任意のものが使用可能である力 塩ィ匕カルシウムを 用いるのが好ましい。塩ィ匕カルシウムは、塩ィ匕チタンと金属カルシウムの溶融塩電解 工程においても副生するので、溶融塩 6を塩ィ匕カルシウムとしておけば、濃化された 金属カルシウムを塩ィ匕チタンの溶融塩電解工程に用いる際に、塩ィ匕カルシウムを取 り除く必要がなくなる。また、塩ィ匕チタンの溶融塩電解工程後は、この工程の副生物 である塩ィ匕カルシウムと共に電解槽 1にリサイクルして用いることができる力もである。
[0025] 電解浴 2を構成する塩ィ匕カルシウムに塩ィ匕カリウムを添加することで電解浴の融点 を下げることができる。塩ィ匕カルシウムに添加する塩ィ匕カリウムは、 20重量%〜80重 量%の範囲とすることが好ましい。このような範囲に塩ィ匕カリウムを添加することで電 解浴 2の温度を金属カルシウムの融点よりも 150°C〜250°C低下させても電解浴をフ リーズさせる心配なく安定した運転を行うことができる。
[0026] 電解浴 2の温度は、図示しな ヽ電解浴中に浸漬させた冷却機能付きの加熱パーナ 一を用いることで、目的の温度範囲に制御することができる。その他の手段により電 解浴 2の温度を制御してもよ 、。
[0027] 図 2は、本発明の他の態様を表している。図 2 (a)の電解槽 1には、塩化カルシウム 力もなる電解浴 2が満たされており、図示しない加熱手段によって塩ィ匕カルシウムの 融点以上に加熱され、溶融状態に保たれている。また、電解浴 2には陽極 3と円筒形 の陰極 4が浸漬配置されている。この陰極 4は自転可能なように構成されており、陰 極 4の円筒側面の一端には搔取器 9が隣接配置されている。図 2 (b)は、陰極 4およ び搔取器 9を方向 A力も見た模式図である。図に示すように、陰極 4が自転することに よって、陰極表面に析出した金属カルシウム 5を搔取器 9によって効率良く搔取ること ができる。
[0028] 陰極 4力 搔取られた固体の金属カルシウム 5は、塩ィ匕カルシウムよりも密度が小さ いので、電解浴 2の浴面に浮上する。電解浴 2の浴面に浮上した金属カルシウム 5は 、適宜、電解浴 2から回収される。電解浴 2から回収された固体の金属カルシウムは、 溶融塩電解による酸ィ匕チタンの還元剤として利用することができる。
[0029] この際、搔取器 9の周囲に網状の籠を設けておいても良い。電解浴から適時、籠を 引き上げることにより析出した固体状の金属を効率よく回収することができる。
[0030] また、電解浴 2の浴面近傍には隔壁 10を配置しておくことが好ましい。陰極 4に析 出した金属カルシウムは、搔き取られた後、浮上して浴面に拡散し、陽極 3近傍に到 達し、陽極 3で生じた塩素ガスと逆反応を起こす傾向にあるが、隔壁 10を設けること によって、浮上した金属カルシウム 5の拡散を防ぎ、逆反応を効果的に抑制すること ができる。
[0031] 搔取器 9の近傍にヒーターを浸漬配置し、搔取器 9の近傍にある電解浴の温度を限 定的に金属カルシウムの融点以上に保持しても良い。このようにすることで、陰極 4か ら搔取られた金属カルシウムを溶融状態で回収することができる。溶融状態にある金 属カルシウムは、一部が塩化カルシウムに溶解し、電解浴 2中を浮上する。このため 、金属カルシウムが濃縮された塩ィ匕カルシウムが隔壁 10を介して電解浴 2の浴面に 浮遊する状態になる。浮遊状態にある金属カルシウムが濃化された塩化カルシウム を抜き出して、例えば、四塩ィ匕チタンの還元反応に利用することができる。
[0032] 図 3 (a)〜(c)は、本発明の他の態様を表して!/、る。図 3 (b)は、図 3 (a)を方向 Aか ら見た模式図であり、図 3 (c)は、図 3 (a)を方向 B力も見た模式図である。図 3の電解 槽 1には、塩ィ匕カルシウム力 なる電解浴 2が満たされており、図示しない加熱手段 によって塩ィ匕カルシウムの融点以上に加熱され、溶融状態に保たれている。また、電 解浴2には陽極3と陰極 4が浸漬配置されている。電解槽 1は、電解浴 2の浴面近傍 に設けられた隔壁 10によって、陽極 3を浸漬した電解室 laと、溶解室 lbに分割され ている。ただし、隔壁 10によって分割されているのは電解浴 2上部の浴面近傍のみ であり、電解浴 2下部においては一体となっている。図 3 (c)に示すように、電解室 la と溶解室 lbを循環して公転移動可能なように複数の陰極 4が配置されて 、る。これら 陰極 4は、隔壁 10の一部に設けられた切断部を通過することで、電解室と溶解室を 循環して公転移動させることが可能となる。
[0033] 陰極 4には、加熱機能および冷却機能が備えられている。すなわち、陰極 4内部に は、ヒーターおよび冷却媒体を流通可能な流路が設けられており、陰極 4の温度を金 属カルシウム 5の融点以下力 融点以上に任意に制御することができるようになって いる。
[0034] 以上のような装置構成において、陰極 4が電解室側にあるときは、陰極 4の温度を 金属カルシウムの融点以下に保持し、陰極 4表面に金属カルシウムを固体状態で析 出させる。一方、陰極 4が公転して溶解室側に到達したときには、陰極 4の温度を金 属カルシウムの融点以上に保持し、析出した金属カルシウムを溶融状態とする。陰極 4から溶融離脱した金属カルシウム 5は、一部は塩ィ匕カルシウムに溶解して電解浴中 を浮上し、金属カルシウム濃化層を形成する。電解浴 2の溶解室側浴面に形成され た金属カルシウム濃化層は適宜抜き出されて、例えば、溶融塩電解による酸化チタ ンの還元剤として利用することができる。
[0035] このように、電解浴 2の内部を公転する陰極 4の位置に応じて、陰極 4の温度を金属 カルシウムの融点以下と融点以上に制御することにより、効率よく金属カルシウムを 回収することができる。
実施例 1
[0036] 図 1に示した電解槽および回収槽を併用して、塩化カルシウムの溶融塩電解を行 つた。塩ィ匕カルシウムで構成した電解浴の温度を 800 ± 5°Cに制御して、陰極に金 属カルシウムを析出させた。その結果、陽極および陰極に対する通電量力 計算さ れる理論重量の 85%に相当する金属カルシウムを回収することができた。
実施例 2
[0037] 図 2に示した装置を用いて、塩ィ匕カルシウムを電解浴に用い、これを溶融電解して 陰極に連続的に金属カルシウムを析出させて、これを搔取器によって搔き取り、固体 状態の金属カルシウムを回収した。単位時間当たりの金属カルシウムの生産量は、 実施例 1に比べて約 2倍に高まった。
実施例 3
[0038] 図 3に示した装置を用いて、塩ィ匕カルシウムを電解浴に用い、これを溶融電解して 陰極に連続的に金属カルシウムを析出させて、一部電解浴を含む溶融状態の金属 カルシウムとして回収した。単位時間当たりの金属カルシウムの生産量は、実施例 2 に比べて約 2倍に高まった。
産業上の利用可能性
[0039] 本発明によれば、塩ィ匕カルシウムの電解により効率よく金属カルシウムを製造する ことができる。
図面の簡単な説明
[0040] [図 1]本発明の実施形態における金属カルシウムの製造方法を示す模式図である。
[図 2] (a)は本発明の他の実施形態における金属カルシウムの製造方法を示す模式 図であり、 (b)は (a)を方向 A力も見た場合の陰極における搔取器の模式図である。
[図 3] (a)は本発明の他の実施形態における金属カルシウムの製造方法を示す模式 図であり、(b)は (a)を方向 A力も見た模式図であり、(c)は (a)を方向 Bから見た模式 図である。 符号の説明
1 電解槽
la 電解室
lb 溶解室
2 電解浴
3 陽極
4 陰極
5 金属(カルシウム)
6 溶融塩
7 回収槽

Claims

請求の範囲
[1] 陽極および陰極を備えた電解槽に金属塩ィ匕物を満たし、この金属塩化物を加熱溶 融して電解浴とし、この電解浴を電解して、金属を固体状態で上記陰極に析出させ ることを特徴とする溶融塩電解による金属の製造方法。
[2] 前記溶融塩電解に用いる前記電解浴の温度を前記金属の融点以下に保持するこ とを特徴とする請求項 1に記載の溶融塩電解による金属の製造方法。
[3] 前記溶融塩電解に用いる前記電解浴の温度を前記金属の融点以上に保持し、か つ前記陰極の温度を上記金属の融点以下に保持することを特徴とする請求項 1に記 載の溶融塩電解による金属の製造方法。
[4] 前記陰極に析出した固体の金属を機械的手段により搔き取ることを特徴とする請求 項 1〜3のいずれかに記載の溶融塩電解による金属の製造方法。
[5] 前記固体の金属が析出した陰極を上記金属の融点以上に保持した金属塩ィ匕物を 満たした回収槽に浸漬して上記金属を回収することを特徴とする請求項 1〜3のいず れかに記載の溶融塩電解による金属の製造方法。
[6] 前記電解浴を隔壁によって電解室および溶解室に分割し、陽極を上記電解室に 配置し、陰極を上記電解室と上記溶解室を循環して公転移動可能なように配置し、 上記陰極が電解室を通過する際は上記陰極の温度を上記金属の融点以下に保持 し、上記陰極が溶解室を通過する際は上記陰極の温度を上記金属の融点以上に保 持することを特徴とする請求項 1に記載の溶融塩電解による金属の製造方法。
[7] 前記陰極は、複数の陰極からなり、前記陰極の公転軌道上に配置されたことを特 徴とする請求項 6に記載の溶融塩電解による金属の製造方法。
[8] 前記金属塩ィ匕物が塩ィ匕カルシウム、前記金属が金属カルシウムであることを特徴と する請求項 1に記載の溶融塩電解による金属の製造方法。
[9] 陽極および陰極を備えた電解槽に金属塩ィ匕物を満たし、この金属塩化物を加熱溶 融して電解浴とし、この電解浴を電解して、金属を固体状態で上記陰極に析出させ る溶融塩電解による金属の製造装置であって、
上記電解浴を隔壁によって電解室および溶解室に分割し、上記陽極を上記電解 室に配置し、上記陰極を上記電解室と上記溶解室を循環して公転移動可能なように 配置し、上記電解室において上記陰極に析出付着した金属を上記溶解室において 離脱'回収することを特徴とする溶融塩電解による金属の製造装置。
前記陰極は、複数の陰極からなり、前記陰極の公転軌道上に配置されたことを特 徴とする請求項 9に記載の溶融塩電解による金属の製造装置。
PCT/JP2005/011747 2004-06-30 2005-06-27 溶融塩電解による金属の製造方法および製造装置 WO2006003864A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006528672A JP4658053B2 (ja) 2004-06-30 2005-06-27 溶融塩電解による金属の製造方法および製造装置
US11/631,364 US20090211916A1 (en) 2004-06-30 2005-06-27 Method and apparatus for producing metal by electrolysis of molton salt
EP05765165A EP1785509A4 (en) 2004-06-30 2005-06-27 PROCESS AND APPARATUS FOR PRODUCING METAL BY MELT SALT ELECTROLYSIS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004192905 2004-06-30
JP2004-192905 2004-06-30

Publications (1)

Publication Number Publication Date
WO2006003864A1 true WO2006003864A1 (ja) 2006-01-12

Family

ID=35782673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011747 WO2006003864A1 (ja) 2004-06-30 2005-06-27 溶融塩電解による金属の製造方法および製造装置

Country Status (5)

Country Link
US (1) US20090211916A1 (ja)
EP (1) EP1785509A4 (ja)
JP (1) JP4658053B2 (ja)
AU (1) AU2005258596A1 (ja)
WO (1) WO2006003864A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102520A1 (ja) * 2007-02-19 2008-08-28 Toho Titanium Co., Ltd. 溶融塩電解による金属の製造装置およびこれを用いた金属の製造方法
WO2009008121A1 (ja) * 2007-07-12 2009-01-15 Toho Titanium Co., Ltd. 高純度金属カルシウムの製造方法、同高純度金属カルシウムを用いた金属チタンの製造方法および同高純度金属カルシウムの製造装置
JP2009144176A (ja) * 2007-12-11 2009-07-02 Toho Titanium Co Ltd 金属カルシウムの製造方法および溶融塩電解装置
JP2009287045A (ja) * 2008-05-27 2009-12-10 Toho Titanium Co Ltd 金属カルシウムの製造方法および製造装置
US11585003B2 (en) 2016-03-25 2023-02-21 Elysis Limited Partnership Electrode configurations for electrolytic cells and related methods

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107385474B (zh) * 2017-08-04 2018-10-12 中南大学 一种氯化钙熔盐电解制钙用电解质及使用该电解质的电解方法
US20230279572A1 (en) * 2022-04-26 2023-09-07 Case Western Reserve University System and process for sustainable electrowinning of metal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3043756A (en) 1958-07-31 1962-07-10 Dow Chemical Co Calcium metal production
JPS5443811A (en) 1977-09-16 1979-04-06 Asahi Glass Co Ltd Production of metallic lithium
JPH1053888A (ja) 1996-08-12 1998-02-24 Central Res Inst Of Electric Power Ind 溶融塩電解装置における被回収金属物質の回収方法及び装置
JP2002129250A (ja) 2000-10-30 2002-05-09 Katsutoshi Ono 金属チタンの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2344859A (en) * 1941-02-07 1944-03-21 Abraham L Fox Method of producing calcium boride
US2960397A (en) * 1958-09-03 1960-11-15 Dow Chemical Co Separation of calcium metal from contaminants
ES257371A1 (es) * 1959-05-13 1960-11-16 Solvay Procedimiento para la preparaciën de un metal alcalino-terreo por electrëlisis de banos de cloruros fundidos
CA2012009C (en) * 1989-03-16 1999-01-19 Tadashi Ogasawara Process for the electrolytic production of magnesium
GB9812169D0 (en) * 1998-06-05 1998-08-05 Univ Cambridge Tech Purification method
JP2003129268A (ja) * 2001-10-17 2003-05-08 Katsutoshi Ono 金属チタンの精錬方法及び精錬装置
NO318164B1 (no) * 2002-08-23 2005-02-07 Norsk Hydro As Metode for elektrolytisk produksjon av aluminiummetall fra en elektrolytt samt anvendelse av samme.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3043756A (en) 1958-07-31 1962-07-10 Dow Chemical Co Calcium metal production
JPS5443811A (en) 1977-09-16 1979-04-06 Asahi Glass Co Ltd Production of metallic lithium
JPH1053888A (ja) 1996-08-12 1998-02-24 Central Res Inst Of Electric Power Ind 溶融塩電解装置における被回収金属物質の回収方法及び装置
JP2002129250A (ja) 2000-10-30 2002-05-09 Katsutoshi Ono 金属チタンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1785509A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102520A1 (ja) * 2007-02-19 2008-08-28 Toho Titanium Co., Ltd. 溶融塩電解による金属の製造装置およびこれを用いた金属の製造方法
EP2123798A1 (en) * 2007-02-19 2009-11-25 Toho Titanium CO., LTD. Apparatus for producing metal by molten salt electrolysis, and process for producing metal using the apparatus
EP2123798A4 (en) * 2007-02-19 2010-03-17 Toho Titanium Co Ltd DEVICE FOR PRODUCING METAL BY MELT FLUOR ELECTROLYSIS AND METHOD FOR PRODUCING METAL USING THE DEVICE
WO2009008121A1 (ja) * 2007-07-12 2009-01-15 Toho Titanium Co., Ltd. 高純度金属カルシウムの製造方法、同高純度金属カルシウムを用いた金属チタンの製造方法および同高純度金属カルシウムの製造装置
JP2009144176A (ja) * 2007-12-11 2009-07-02 Toho Titanium Co Ltd 金属カルシウムの製造方法および溶融塩電解装置
JP2009287045A (ja) * 2008-05-27 2009-12-10 Toho Titanium Co Ltd 金属カルシウムの製造方法および製造装置
US11585003B2 (en) 2016-03-25 2023-02-21 Elysis Limited Partnership Electrode configurations for electrolytic cells and related methods

Also Published As

Publication number Publication date
JP4658053B2 (ja) 2011-03-23
AU2005258596A1 (en) 2006-01-12
JPWO2006003864A1 (ja) 2008-04-17
US20090211916A1 (en) 2009-08-27
EP1785509A1 (en) 2007-05-16
EP1785509A4 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
CN101336496B (zh) 用于从锂二次电池中回收贵重物质的回收方法和回收装置
WO2006003864A1 (ja) 溶融塩電解による金属の製造方法および製造装置
WO2006040978A1 (ja) 溶融塩電解による金属の製造方法および製造装置
JP3868635B2 (ja) 核燃料サイクル施設からの廃棄物処理方法及びその処理装置
US11667990B2 (en) Process for recovering lead from a lead pastel and use thereof in a process for recovering lead-acid accumulator components
JP2904744B2 (ja) マグネシウム又はその合金の電解製造方法
JP3718691B2 (ja) チタンの製造方法、純金属の製造方法、及び純金属の製造装置
WO2007034605A1 (ja) 還元性金属の溶融塩電解装置およびその電解方法並びに還元性金属を用いた高融点金属の製造方法
EA011005B1 (ru) СПОСОБ И УСТРОЙСТВО ДЛЯ ПРОИЗВОДСТВА Ti ПОСРЕДСТВОМ ВОССТАНОВЛЕНИЯ Ca
JP2007063585A (ja) 溶融塩電解方法および電解槽並びにそれを用いたTiの製造方法
JP2007084847A (ja) Tiの製造方法および装置
JP2002198104A (ja) 水素吸蔵合金のリサイクル方法
JP4934012B2 (ja) 金属カルシウムの製造方法
US272391A (en) Antonin thiolliee
JP2005048210A (ja) 溶融塩中不純物の分離回収方法および装置
WO2006003865A1 (ja) 溶融塩電解による金属の製造方法
JP2008308738A (ja) 金属Ti又はTi合金の製造方法
JP4190519B2 (ja) 溶融塩電解による金属カルシウムの製造方法および製造装置
JP2006274340A (ja) Ti又はTi合金の製造方法
JPWO2008102520A1 (ja) 溶融塩電解による金属の製造装置およびこれを用いた金属の製造方法
JP2006063359A (ja) 金属の製造方法および装置
WO2006103944A1 (ja) TiまたはTi合金の製造方法およびそれに適用できる引上げ電解方法
JP3687364B2 (ja) 合金メッキ浴に消費された金属イオンを供給する方法および装置
JP2024094070A (ja) 溶融塩電解装置及び、チタン系電析物の製造方法
JP4227113B2 (ja) 引上げ電解方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528672

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005258596

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2005258596

Country of ref document: AU

Date of ref document: 20050627

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005258596

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005765165

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005765165

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11631364

Country of ref document: US