WO2006003494A2 - Piperidine derivatives and their use as insecticides, acaricides, molluscicides or nematicides - Google Patents

Piperidine derivatives and their use as insecticides, acaricides, molluscicides or nematicides Download PDF

Info

Publication number
WO2006003494A2
WO2006003494A2 PCT/IB2005/002002 IB2005002002W WO2006003494A2 WO 2006003494 A2 WO2006003494 A2 WO 2006003494A2 IB 2005002002 W IB2005002002 W IB 2005002002W WO 2006003494 A2 WO2006003494 A2 WO 2006003494A2
Authority
WO
WIPO (PCT)
Prior art keywords
optionally substituted
alkyl
alkoxy
haloalkyl
heteroaryl
Prior art date
Application number
PCT/IB2005/002002
Other languages
French (fr)
Other versions
WO2006003494A3 (en
Inventor
Peter Maienfisch
Louis-Pierre Molleyres
Jérôme Cassayre
Fredrik Cederbaum
Camilla Corsi
Thomas Pitterna
Original Assignee
Syngenta Participations Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020127019520A priority Critical patent/KR101268288B1/en
Priority to PL05757532T priority patent/PL1763302T3/en
Application filed by Syngenta Participations Ag filed Critical Syngenta Participations Ag
Priority to AP2008004646A priority patent/AP2008004646A0/en
Priority to EP05757532A priority patent/EP1763302B1/en
Priority to KR1020137008545A priority patent/KR101396174B1/en
Priority to AU2005258905A priority patent/AU2005258905B2/en
Priority to CA2568808A priority patent/CA2568808C/en
Priority to ES05757532T priority patent/ES2408856T3/en
Priority to NZ551629A priority patent/NZ551629A/en
Priority to AP2006003830A priority patent/AP1970A/en
Priority to MXPA06014005A priority patent/MXPA06014005A/en
Priority to BRPI0512659-2A priority patent/BRPI0512659A/en
Priority to US11/571,303 priority patent/US8129534B2/en
Priority to KR1020067027660A priority patent/KR101338876B1/en
Priority to JP2007517523A priority patent/JP5043653B2/en
Priority to EA200602170A priority patent/EA014686B1/en
Publication of WO2006003494A2 publication Critical patent/WO2006003494A2/en
Publication of WO2006003494A3 publication Critical patent/WO2006003494A3/en
Priority to IL179745A priority patent/IL179745A/en
Priority to TNP2006000442A priority patent/TNSN06442A1/en
Priority to US13/371,002 priority patent/US8546569B2/en
Priority to US13/949,803 priority patent/US9045422B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/08Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
    • C07D211/18Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D211/34Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/40Oxygen atoms
    • C07D211/44Oxygen atoms attached in position 4
    • C07D211/52Oxygen atoms attached in position 4 having an aryl radical as the second substituent in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings

Definitions

  • the present invention relates to piperidine derivatives, to processes for preparing them, to insecticidal, acaricidal, molluscicidal and nematicidal compositions comprising them and to methods of using them to combat and control insect, acarine, mollusc and nematode pests.
  • Piperidine derivatives with fungicidal properties are disclosed in for example in EP494717.
  • the present invention therefore provides a method of combating and controlling insects, acarines, nematodes or molluscs which comprises applying to a pest, to a locus of a pest, or to a plant susceptible to attack by a pest an insecticidally, acaricidally, nematicidally or molluscicidally effective amount of a compound of formula (I):
  • R 1 is hydrogen, optionally substituted alkyl, optionally substituted alkoxycarbonyl, optionally substituted alkylcarbonyl, aminocarbonyl, optionally substituted alkylaminocarbonyl, optionally substituted dialkylaminocarbonyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxy, optionally substituted aryloxy, optionally substituted heteroaryloxy, optionally substituted heterocyclyloxy, cyano, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkenyl, formyl, optionally substituted heterocyclyl, optionally substituted alkylthio, NO or NR 13 R 14 where R 13 and R 14 are independently hydrogen, COR 15 , optionally substituted alkyl, optionally substituted aryl, optionally substituted heteroary
  • R 2 is H, hydroxy, optionally substituted alkoxy or optionally substituted alkyl; or R 1 and R 2 together with the groups Y and N form a 5-or 6-membered heterocyclic ring which may optionally contain one further heteroatom selected from O, N or S and which may be optionally substituted by C 1-4 alkyl, C 1-4 haloalkyl or halogen;
  • R 3 is H, OH, halogen or optionally substituted alkyl;
  • R 3a is H or R 3 and R 3a together form a bond;
  • each R 4 is independently halogen, nitro, cyano, optionally substituted C 1-8 alkyl, optionally substituted C 2-6 alkenyl, optionally substituted C 2-6 alkynyl, optionally substituted alkoxycarbonyl, optionally substituted alkylcarbonyl, optionally substituted alkylaminocarbonyl, optionally substituted dialkylaminocarbonyl, optionally substituted C 3-7 cycloalky
  • R 8 is optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted alkoxy, optionally substituted aryloxy, optionally substituted alkoxycarbonyl, optionally substituted alkylcarbonyl or optionally substituted alkenylcarbonyl; each Ra is independently halogen, hydroxy, cyano, optionally substituted C 1-8 alkyl, optionally substituted C 2-6 alkenyl, optionally substituted C 2-6 alkynyl, optionally substituted alkoxycarbonyl, optionally substituted alkylcarbonyl, optionally substituted alkylaminocarbonyl, optionally substituted dialkylaminocarbonyl, optionally substituted C 3-7 cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted heterocyclyl, optionally substituted alkoxy, optionally substituted aryloxy
  • the compounds of formula (I) may exist in different geometric or optical isomers or tautomeric forms. This invention covers all such isomers and tautomers and mixtures thereof in all proportions as well as isotopic forms such as deuterated compounds.
  • Each alkyl moiety either alone or as part of a larger group (such as alkoxy, alkoxycarbonyl, alkylcarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl) is a straight or branched chain and is, for example, methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, iso- - A -
  • alkyl groups are suitably C 1 to C 12 alkyl groups, but are preferably C 1 -C 10 , more preferably C 1 -C 8 , even more preferably preferably C 1 -C 6 and most preferably C 1 -C 4 alkyl groups.
  • the optional substituents on an alkyl moiety include one or more of halogen, nitro, cyano, NCS-, C 3-7 cycloalkyl (itself optionally substituted with C 1-6 alkyl or halogen), C 5-7 cycloalkenyl (itself optionally substituted with C 1-6 alkyl or halogen), hydroxy, C 1-10 alkoxy, C 1-10 alkoxy(C 1-10 )alkoxy, tri(C 1-4 )alkylsilyl(C 1-6 )alkoxy, C 1-6 alkoxycarbonyl(C 1-10 )alkoxy, C 1-10 haloalkoxy, aryl(C 1-4 )- alkoxy (where the aryl group is optionally substituted), C 3-7 cycloalkyloxy
  • Alkenyl and alkynyl moieties can be in the form of straight or branched chains, and the alkenyl moieties, where appropriate, can be of either the (E)- or ⁇ -configuration. Examples are vinyl, allyl and propargyl.
  • the optional substituents on alkenyl or alkynyl include those optional substituents given above for an alkyl moiety.
  • acyl is optionally substituted C 1-6 alkylcarbonyl (for example acetyl), optionally substituted C 2-6 alkenylcarbonyl, optionally substituted C 2-6 alkynylcarbonyl, optionally substituted arylcarbonyl (for example benzoyl) or optionally substituted heteroarylcarbonyl.
  • Halogen is fluorine, chlorine, bromine or iodine.
  • Haloalkyl groups are alkyl groups which are substituted with one or more of the same or different halogen atoms and are, for example, CF 3 , CF 2 Cl, CF 3 CH 2 or CHF 2 CH 2 .
  • aryl refers to ring systems which may be mono-, bi- or tricyclic. Examples of such rings include phenyl, naphthalenyl, anthracenyl, indenyl or phenanthrenyl. A preferred aryl group is phenyl.
  • heteroaryl refers to an aromatic ring system containing at least one heteroatom and consisting either of a single ring or of two or more fused rings.
  • single rings will contain up to three and bicyclic systems up to four heteroatoms which will preferably be chosen from nitrogen, oxygen and sulphur.
  • groups include furyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,5-thiadiazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, 1,2,3-triazinyl, 1,2,4-triazinyl, 1,3,5-tria
  • heteroaromatic radicals include pyridyl, pyrimidyl, triazinyl, thienyl, furyl, oxazolyl, isoxazolyl, 2, 1 ,3 -benzoxadiazole and thiazolyl.
  • heterocycle and heterocyclyl refer to a non-aromatic ring containing up to 10 atoms including one or more (preferably one or two) heteroatoms selected from O, S and N. Examples of such rings include 1,3-dioxolane, tetrahydrofuran and morpholine.
  • heterocyclyl When present, the optional substituents on heterocyclyl include C 1-6 alkyl and C 1-6 haloalkyl as well as those optional substituents given above for an alkyl moiety.
  • Cycloalkyl includes cyclopropyl, cyclopentyl and cyclohexyl.
  • Cycloalkenyl includes cyclopentenyl and cyclohexenyl.
  • cycloalkyl or cycloalkenyl include C 1-3 alkyl as well as those optional substituents given above for an alkyl moiety.
  • Carbocyclic rings include aryl, cycloalkyl and cycloalkenyl groups.
  • the optional substituents on aryl or heteroaryl are selected independently, from halogen, nitro, cyano, NCS-, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy- (C 1-6 )alkyl, C 2-6 alkenyl, C 2-6 haloalkenyl, C 2-6 alkynyl, C 3-7 cycloalkyl (itself optionally substituted with C 1-6 alkyl or halogen), C 5-7 cycloalkenyl (itself optionally substituted with C 1-6 alkyl or halogen), hydroxy, C 1-10 alkoxy, C 1-10 alkoxy(C 1-1 o)alkoxy, tri(C 1-4 )alkyl- silyl(C 1-6 )alkoxy, C 1-6 alkoxycarbonyl(C 1-10 )alkoxy, C 1-10 haloalkoxy, aryl(C 1-4 )alkoxy (where the aryl group is
  • substituents are independently selected from halogen, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy(C 1-6 )alkyl, C 1-6 alkoxy, C 1-6 haloalkoxy, C 1-6 alkylthio, C 1-6 haloalkylthio, C 1-6 alkylsulfmyl, C 1-6 haloalkylsulfinyl, C 1-6 alkylsulfonyl, C 1-6 haloalkylsulfonyl, C 2-6 alkenyl, C 2-6 haloalkenyl, C 2-6 alkynyl, C 3-7 cycloalkyl, nitro, cyano, CO 2 H, " C 1-6 alkylcarbonyl, C 1-6 alkoxycarbonyl, R 25 R 26 N or R 27 R 28 NC(O); wherein R 25 R 26 N or R 27 R 28 NC(O); wherein R 25 R 26 N or R 27 R 28 NC(O
  • Haloalkenyl groups are alkenyl groups which are substituted with one or more of the same or different halogen atoms. It is to be understood that dialkylamino substituents include those where the dialkyl groups together with the N atom to which they are attached form a five, six or seven- membered heterocyclic ring which may contain one or two further heteroatoms selected from O, N or S and which is optionally substituted by one or two independently selected (C 1-6 )alkyl groups. When heterocyclic rings are formed by joining two groups on an N atom, the resulting rings are suitably pyrrolidine, piperidine, thiomorpholine and morpholine each of which maybe substituted by one or two independently selected (C 1-6 ) alkyl groups.
  • the optional substituents on an alkyl moiety include one or more of halogen, nitro, cyano, HO 2 C, C 1-10 alkoxy (itself optionally substituted by C 1-10 alkoxy), aryl(C 1-4 )alkoxy, C 1-10 alkylthio, C 1-10 alkylcarbonyl, C 1-10 alkoxycarbonyl, C 1-6 alkylaminocarbonyl, di(C 1-6 alkyl)aminocarbonyl, (C 1-6 )alkylcarbonyloxy, optionally substituted phenyl, heteroaryl, aryloxy, arylcarbonyloxy, heteroaryloxy, heterocyclyl, heterocyclyloxy, C 3-7 cycloalkyl (itself optionally substituted with (C 1-6 )alkyl or halogen), C 3- 7 cycloalkyloxy, C 5-7 cycloalkenyl, C 1-6 alkylsulfonyl, C 1-6 alkyl
  • the optional substituents on alkenyl or alkynyl include one or more of halogen, aryl and C 3-7 cycloalkyl.
  • a preferred optional substituent for heterocyclyl is C 1-6 alkyl.
  • the optional substituents for cycloalkyl include halogen, cyano and C 1-3 alkyl.
  • the optional substituents for cycloalkenyl include C 1-3 alkyl, halogen and cyano.
  • Preferred groups for T, Y, Ra, R 1 , R 2 , R 3 , R 3a , R 4 and R 8 in any combination thereof are set out below.
  • R 1 is hydrogen, C 1-6 alkyl, C 1-6 cyanoalkyl, C 1-6 haloalkyl, C 3-7 cycloalky ⁇ C ⁇ alkyl, C 1-6 alkoxy(C 1-6 )alkyl, heteroaryl(C 1-6 )alkyl (wherein the heteroaryl group may be optionally substituted by halo, nitro, cyano, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy, C 1-6 haloalkoxy, C 1-6 alkylsulfonyl, C 1-6 alkylsulfinyl, C 1-6 alkylthio, C 1-6 alkoxycarbonyl, C 1-6 alkylcarbonylamino, arylcarbonyl, or two adjacent positions on the heteroaryl system may be cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with
  • R 1 is C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy(C 1-6 )alkyl, heteroary ⁇ Ci. 3 )alkyl (wherein the heteroaryl group may be optionally substituted by halo, nitro, cyano, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy, C 1-6 haloalkoxy, C 1-6 alkylsulfonyl, C 1-6 alkoxycarbonyl, or two adjacent positions on the heteroaryl system may be cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen), phenyl(C 1-3 )alkyl (wherein the phenyl group may be optionally substituted by halogen, C 1-4 alkyl, C 1-4 alkoxy, C 1-4 haloalkyl, C 1-4 haloalkoxy, CN, NO 2 ,
  • R 1 is C 1-6 alkyl, C 1-6 haloalkyl, heteroaryl(C 1-3 )alkyl (wherein the heteroaryl group may be optionally substituted by halo, cyano, C 1-6 alkyl, C 1-6 haloalkyl and where the heteroaryl group is a thiazole, pyridine, pyrimidine, pyrazine or pyridazine ring), heteroaryl (optionally substituted by halo, cyano, C 1-6 alkyl, C 1-6 haloalkyl and where the heteroaryl group is a pyridine, pyrimidine, 2,1,3-benzoxadiazole, pyrazine or pyridazine ring), C 1-6 alkoxy, C 1-6 alkoxy(C 1-6 )alkyl, C 1-6 alkylamino, C 1-6 alkyoxy(C 1-6 )alkylamino or heteroaryl(C 1-3 )alkyl (where
  • R 1 is pyridyl (optionally substituted by halo, C 1-3 alkyl or C 1-3 haloalkyl) especially halo-substituted pyridyl. It is preferred that : R R 2 is hydrogen, hydroxy, C 1-6 alkyl or C 1-6 haloalkyl. More preferably R 2 is hydrogen, C 1-4 alkyl or C 1-4 haloalkyl.
  • R 2 is hydrogen or C 1-4 alkyl.
  • R 2 is independently hydrogen or methyl.
  • R 2 is hydrogen. It is preferred that R 3 is hydrogen, hydroxy, halogen, C 1-6 alkyl or C 1-6 haloalkyl.
  • R 3 is hydrogen, hydroxy, halogen,C 1-4 alkyl or C 1-4 haloalkyl.
  • R 3 is hydrogen or C 1-4 alkyl.
  • R 3 is independently hydrogen or methyl.
  • R 3 is hydrogen.
  • R 3a is preferably hydrogen or R 3 and R 3a together form a double bond.
  • each R 4 is independently halogen, cyano, C 1-8 alkyl, C 1-8 haloalkyl, cyanoalkyl, C 1-6 alkoxy(C 1-6 )alkyl, C 3-7 cycloalkyl(C 1-6 )alkyl, C 5-6 cycloalkenyl(C 1-6 )alkyl, C 3-6 alkenyloxy(C 1-6 )alkyl, C 3-6 alkynyloxy(C 1-6 )alkyl, aryloxy(C 1-6 )alkyl, C 1-6 carboxyalkyl, C 1-6 alkylcafbonyl(C 1-6 )alkyl, C 2-6 alkenylcarbonyl(C 1-6 )alkyl, C 2-6 alkynylcarbonyl(C 1-6 )- alkyl, C 1-6 alkoxycarbonyl(C 1-6 )alkyl, C 3-6 alkenyloxycarbonyl(C 1-6 )alkyl
  • heterocyclyl group is optionally substituted by halo, nitro, cyano, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy or C 1-6 haloalkoxy
  • C 2-6 alkenyl aminocarbonyl(C 2-6 )alkenyl, C 1-6 alkylaminocarbonyl(C 2-6 )alkenyl, di(C 1-6 )alkylaminocarbonyl(C 2-6 )alkenyl, phenyl(C 2-4 )- alkenyl, (wherein the phenyl group is optionally substituted by halogen, C 1-4 alkyl, C 1-4 alkoxy, C 1-4 haloalkyl, C 1-4 haloalkoxy, CN, NO 2 , aryl, heteroaryl, amino or dialkylamino), C 2-6 alkynyl, trimethylsilyl(C 2-6 )alkynyl, aminocarbonyl(C
  • each R 4 is independently halogen, cyano, C 1-8 alkyl, C 1-8 haloalkyl, C 1-8 cyanoalkyl, C 1-6 alkoxy(C 1-6 )alkyl, C 2-6 alkynyl, trimethylsilyl(C 2-6 )alkynyl, C 1-6 alkoxycarbonyl, C 3-7 cycloalkyl, C 1-3 alkyl (C 3-7 ) cycloalkyl, phenyl (optionally substituted by halogen, C 1-4 alkyl, C 1-4 alkoxy, C 1-4 haloalkyl, C 1-4 haloalkoxy, CN, NO 2 , aryl, heteroaryl, amino or dialkylamino), heterocyclyl (optionally substituted by halo, nitro, cyano, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy or C 1-6 haloalkoxy), C 1-8 alk
  • each R 4 is independently halogen, cyano, C 1-8 alkyl, C 1-8 haloalkyl, C 1-8 cyanoalkyl, C 1-6 alkoxy(C 1-6 )alkyl, C 2-6 alkynyl, heterocyclyl (optionally substituted by C 1-6 alkyl), C 1-8 alkoxy, C 1-6 haloalkoxy, phenoxy (optionally substituted by halo, cyano, C 1-3 alkyl or C 1-3 haloalkyl), heteroaryloxy (optionally substituted by halo, cyano, C 1-3 alkyl or C 1-3 haloalkyl), di(Ci -8 )alkylamino or 2 adjacent groups R 4 together with the carbon atoms to which they are attached form a 4, 5, 6 or 7 membered carbocylic or heterocyclic ring which may be optionally substituted by halogen; n is 0, 1, 2 or 3.
  • each R 4 is independently fluoro, chloro, bromo, cyano, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 cyanoalkyl or C 1-3 alkoxy(C 1-3 )alkyl; n is 0, 1, 2 or 3, preferably 0, l or 2. Most preferably each R 4 is independently fluoro, chloro, bromo, C 1-4 alkyl or C 1-4 haloalkyl; n is 1, 2 or 3, preferably 1 or 2.
  • R 8 is C 1-10 alkyl, C 1-10 haloalkyl, aryl(C 1-6 )alkyl (wherein the aryl group is optionally substituted by halogen, C 1-4 alkyl, C 1-4 alkoxy, C 1-4 haloalkyl, C 1-4 haloalkoxy, CN, NO 2 , aryl, heteroaryl, amino or dialkylamino), heteroaryl(C 1-6 )alkyl (wherein the heteroaryl group is optionally substituted by halogen, C 1-4 alkyl, C 1-4 alkoxy, C 1-4 haloalkyl, C 1-4 haloalkoxy, CN, NO 2 , aryl, heteroaryl, amino or dialkylamino), arylcarbonyl-(C 1-6 )alkyl (wherein the aryl group may be optionally substituted by halogen, C 1-4 alkyl, C 1-4 alkoxy, C 1- 4 haloalkyl
  • R 8 is phenyl(C 1-4 )alkyl (wherein the phenyl group is optionally substituted by halogen, C 1-4 alkyl, C 1-4 alkoxy, C 1-4 haloalkyl, C 1-4 haloalkoxy, CN, NO 2 , aryl, heteroaryl, amino or dialkylamino), heteroaryl(C 1-6 )alkyl (wherein the heteroaryl group is optionally substituted halogen, C 1-4 alkyl, C 1-4 alkoxy, C 1-4 haloalkyl, C 1-4 haloalkoxy, CN, NO 2 , aryl, heteroaryl, amino or dialkylamino), phenyl(C 2-6 )alkenyl (wherein the phenyl group is optionally substituted by halogen, C 1-4 alkyl, C 1-4 alkoxy, C 1-4 haloalkyl, C 1-4 haloalkoxy, CN, NO 2 , hal
  • R 51 and R 52 are preferably hydrogen.
  • R 53 and R 54 are preferably hydrogen or halogen, especially hydrogen.
  • R 55 is preferably phenyl substituted with one to three substituents selected from halogen, C 1-4 alkyl, C 1-4 alkoxy, C 1-4 haloalkyl, C 1-4 haloalkoxy, CN, NO 2 , aryl, heteroaryl, amino or dialkylamino.
  • ring members other than Z and Z' are each independently CH, S, N, NR 4 , O, or CR 4 provided that there are no more than one O or S atoms present in the ring. More preferably the ring
  • benzene is a benzene, pyridine, pyrimidine, pyrazine, pyridazine, triazine, pyrrole, imidazole, quinoline, isoquinoline, thiophene, pyrazole, oxazole, thiazole, isoxazole, isothiazole, [l,2,3]triazole, [l,2,3]oxadiazole or [l,2,3]thiadiazole.
  • ring is a benzene, pyridine, pyrimidine, pyrazine, pyridazine, triazine, pyrrole, imidazole, quinoline, isoquinoline, thiophene, pyrazole, oxazole, thiazole, isoxazole, isothiazole, [l,2,3]triazole, [l,2,3]oxadiazole or [l,2,3]thiadiazole.
  • benzene is a benzene, pyridine, pyrimidine, pyrazine, thiophene or pyrazole ring, especially a benzene ring.
  • Table III provides 1127 compounds of formula Ic wherein the values of R s , R > 4a , T Rj 4b , T RO 4 4 c C and R 4d ⁇ are given in Table 1
  • Table VI provides 1127 compounds of formula If wherein the values of R s , R >4 4 a a , ⁇ Rj4b , r R>4 4 c C and R 4 w d are given in Table 1
  • Table VII provides 1127 compounds of formula Ig
  • Table IX provides 1127 compounds of formula Ii wherein the values of R 8 , R 4a , R 4b , R 4c and R 4d are given in Table 1.
  • Table XII provides 1127 compounds of formula Il wherein the values of R ⁇ , R >4a , D R4b , - Rr,4 4 c 0 and R 4 4 d ⁇ are given in Table 1
  • Table XIV provides 1127 compounds of formula hi
  • Table XV provides 1127 compounds of formula Io wherein the values of R > 8 5 , - Rr>4a , r R>4b , ⁇ R>4 4 c C and R 4 4 d ⁇ are given in Table 1
  • Table XVIII provides 1127 compounds of formula Lr wherein the values of R 8 , R 4a , R 4b , R 4c and R 4d are given in Table 1.
  • Table XXI provides 1127 compounds of formula Iu wherein the values of R 8 , R >4a , ⁇ R>4b , ⁇ R>4 4 c C and R 4 ⁇ are given in Table 1
  • Table XXVI provides 1127 compounds of formula lab
  • Table XXVII provides 1127 compounds of formula lac wherein the values of R 8 , R , R 4b , T R 5 4 4 c C and R >4 4 d ⁇ are given in Table 1
  • Table XXX provides 1127 compounds of formula Iaf wherein the values of R 8 , R 4a , R 4b , R 4c and R 4d are given in Table 1
  • Table XXXII provides 1127 compounds of formula Iah
  • Table XXXIII provides 1127 compounds of formula Iai wherein the values of R 8 , R 4a , R 4b , R 4c and R 4d are given in Table 1.
  • Table XXXTV provides 1127 compounds of formula Iaj
  • Table XXXVI provides 1127 compounds of formula IaI wherein the values of R ⁇ R >4a, - Rr>4 4 b b , ⁇ R)4 4 c C and R 4 4 d ⁇ are given in Table 1
  • Table XXXIX provides 1127 compounds of formula Iao wherein the values of R s , R >4a, ⁇ R>4b , T Rj 4 4 C C and R 4d are given in Table 1.
  • Table XL provides 1127 compounds of formula lap
  • Table XLII provides 1127 compounds of formula inquire wherein the values of R 8 , R )4a, ⁇ R > 4 4 b D , ⁇ R)4 4 c C and R 4 4 d ⁇ are given in Table 1.
  • Table XLV provides 1127 compounds of formula Iau wherein the values of R 8 , R ,4a, r R>4 4 b 0 , ⁇ R>4 4 c C and ⁇ C 4d a are given in Table 1
  • Table XLVI provides 1127 compounds of formula lav
  • Table XLVII provides 1127 compounds of formula law
  • Table XLVIII provides 1127 compounds of formula lax
  • Table L provides 1127 compounds of formula Iaab
  • Table LI provides 1127 compounds of formula Iaac wherein the values of R ⁇ R 4 4 a a , ⁇ R->4 4 b b , r R>4 4 o 0 and i ⁇ R>4 4 d ⁇ are given in Table 1
  • Table LII provides 1127 compounds of formula Iaad
  • Table LIV provides 1127 compounds of formula Iaaf wherein the values of R ⁇ R > 4a , R ⁇ 4b , R ⁇ 4 4 c C and R 4 ⁇ are given in Table 1
  • Table LV provides 1127 compounds of formula Iaag
  • Table LVII provides 1127 compounds of formula Iaai wherein the values of R 8 , R 4a , R 4b , R 4c and R 4d are given in Table 1.
  • Table LVIII provides 1127 compounds of formula Iaaj
  • Table LIX provides 1127 compounds of formula Iaak
  • Table LX provides 1127 compounds of formula Iaal wherein the values of R 8 , R >4a , ⁇ R>4b , ⁇ R>4*c c and R 4 4 d are given in Table 1.
  • Table LXIII provides 1127 compounds of formula Iaao wherein the values of R , R >4a , ⁇ R>4b , - R D 4 4 C C and R 4 4 d ⁇ are given in Table 1.
  • Table LXV provides 1127 compounds of formula Iaaq
  • Table LXVI provides 1127 compounds of formula Iaar wherein the values of R ⁇ R >4a , r R>4b , ⁇ R)4 4 c Q and R 4 ⁇ are given in Table 1.
  • Table LXIX provides 1127 compounds of formula Iaau wherein the values of R 8 , R >4 w a, D R4b , ⁇ R>4 4 c C and R 4 4 d ⁇ are given in Table 1
  • Table LXXII provides 1127 compounds of formula Iaax
  • Table LXXIII provides 506 compounds of formula Iy
  • Table LXXIV provides 506 compounds of formula Iya
  • Table XCIV provides 506 compounds of formula Iyu
  • Table XCV provides 506 compounds of formula Iyv
  • Pl is R 8 or is a suitable protective group for example a group such as BOC, benzyl or alkyl and S 1 is the group (R 4 )n.
  • a compound of formula 1 maybe obtained from a compound of formula 2 by reaction with a suitable electrophilic species.
  • Compounds of formula 1 where Y is a carbonyl group may be formed by the reaction of compounds of formula 2 with a carboxylic acid derivative of formula R ⁇ C(O)-Z' where Z' is chloride, hydroxy, alkoxy or acyloxy at a temperature between 0°C and 150°C optionally in an organic solvent such as dichloromethane, chloroform or 1 ,2-dichloroethane, optionally in the presence of a tertiary amine base such as triethylamine or diisopropylethylamine and optionally in the presence of a coupling agent such as dicyclohexylcarbodiimide.
  • Compounds of formula 1 where Y is a group of formula S(O) m maybe formed from compounds of formula 2 by treatment with compounds of formula under similar conditions.
  • compounds of formula 1 where Y is a thiocarbonyl group and R 1 is a carbon substituent may be formed by treatment of compounds of formula 1 where Y is a carbonyl group and R 1 is a carbon substituent with a suitable thionating agent such as Lawesson's reagent.
  • a suitable thionating agent such as Lawesson's reagent.
  • sulfur electrophiles of formula R ⁇ S(O) 1n -Cl are either known compounds or may be formed from known compounds by known methods by a person skilled in the art.
  • Compounds of formula 2 may be prepared from compounds of formula 3 by cleavage of the amide bond, according to known methods by a person skilled in the art.
  • Compounds of formula 3 may be obtained from compounds of formula 4 by reaction with an alkylating agent of the formula R 8 -L, where L is chloride, bromide, iodide or a sulfonate (e.g. mesylate or tosylate) or similar leaving group at a temperature of between ambient temperature and 100°C, typically 65 0 C, in an organic solvent such as dichloromethane, chloroform or 1,2-dichloroethane in the presence of a tertiary amine base such as triethylamine or diisopropylethylamine and optionally catalysed by halide salts such as sodium iodide, potassium iodide or tetrabutylammonium iodide.
  • an alkylating agent of the formula R 8 -L where L is chloride, bromide, iodide or a sulfonate (e.g. mesylate or tosylate) or similar
  • a compound of formula 4 may be reacted with an aldehyde of the formula R -CHO at a temperature between ambient temperature and 100°C in an organic solvent such as tetrahydrofuran or ethanol or mixtures of solvents in the presence of a reducing agent such as borane-pyridine complex, sodium borohydride, sodium (triacetoxy)borohydride, sodium cyanoborohydride or such like, to produce a compound of formula 3 where R is CH 2 -R.
  • an organic solvent such as tetrahydrofuran or ethanol or mixtures of solvents
  • a reducing agent such as borane-pyridine complex, sodium borohydride, sodium (triacetoxy)borohydride, sodium cyanoborohydride or such like
  • Compounds of formula 4 may be prepared from compounds of formula 5 where Pl is benzyl or alkyl by a dealkylation reaction, according to known methods by a person skilled in the art. Compounds of formula 4 maybe prepared from compounds of formula 5 where Pl is
  • compounds of formula 4 may be formed by the reaction of compounds of formula 6 where P 1 is BOC by treatment with HCl or H 2 SO 4 in AcOH at a temperature between 0°C and 15O 0 C optionally in an inert organic solvent.
  • Compounds of formula 5 may be prepared from compounds of formula 6 where Pl is benzyl or alkyl by a H 2 O elimination reaction, according to known methods by a person skilled in the art. Most favourable is the treatment of a compound of formula 6 with cone. HCl or H 2 SO 4 in AcOH at a temperature between 0°C and 150°C.
  • compounds of formula 5 maybe prepared from compounds of formula 6 by treatment with SOCl 2 , according to known methods by a person skilled in the art.
  • compounds of formula 5 may be formed by the reaction of compounds of formula 9 with a carboxylic acid derivative of formula t-Bu-C(O)-Z" where Z" is chloride, hydroxy, alkoxy or acyloxy at a temperature between 0°C and 150°C optionally in an inert organic solvent.
  • Compounds of formula 6 maybe prepared from compounds of formula 7 by treatment of lithiated compounds of formula 7 with a piperidinone at a temperature between - 10O 0 C and O 0 C optionally in an inert organic solvent, according to known methods by a person skilled in the art.
  • compounds of formula 1 may be formed by alkylation of compounds of formula 11 as described above for compounds of formula 3.
  • Compounds of formula 11 may be prepared from compounds of formula 10 where P 1 is benzyl or alkyl by a dealkylation reaction, according to known methods by a person skilled in the art.
  • Compounds of formula 10 maybe prepared from compounds of formula 9 by methods described above for the conversion of compounds of formula 2 to compounds of formula 1.
  • Compounds of formula 9 maybe prepared from compounds of formula 6 by a H 2 O elimination reaction, according to known methods by a person skilled in the art. Most favourable is the treatment of a compound of formula 6 with aqueous HCl or H 2 SO 4 in AcOH at a temperature between 0°C and 150°C or with a base in H 2 O and an appropriate solvent.
  • 4-Hydroxy-piperidinyl compounds of the general formula 1 may be prepared according to the reactions of Scheme 2 using synthetic methodologies known by a person skilled in the art and as described above.
  • Pl is R8 or is a suitable protective group for example a group such as BOC, benzyl or alkyl and S 1 is the group (R 4 )n.
  • Piperidinyl compounds of the general formula 1 maybe prepared according to the reactions of Scheme 3 using synthetic methodologies known by a person skilled in the art and as described above.
  • Pl is R8 or is a suitable protective group for example a group such as BOC, benzyl or alkyl and S 1 is the group (R 4 )n.
  • Certain compounds of formula 25 are novel and as such form a further aspect of the invention.
  • piperidinyl-aniline derivatives of the general formula 1 may be prepared according to the reactions of Schemes 8 - 13 where S is the group (R 4 )n using synthetic methodologies known by a person skilled in the art and as described above.
  • a key step in these synthetic routes is a Suzuki coupling reaction to prepare tetrahydro ⁇ yridin-4-yl-aniline derivatives.
  • Other cross coupling reactions such as Stille and Negishi couplings, maybe applied as well.
  • the boronate reagents may be prepared as described in the literature; for example P.R Eastwood, THL 41, 3705 (2000). Examples of coupling reactions are given in Examples 21-23 which describe the synthesis of the compounds in Tables EX23.1 - EX23.11.
  • the compounds of formula (I) can be used to combat and control infestations of insect pests such as Lepidoptera, Diptera, Hemiptera, Thysanoptera, Orthoptera, Dictyoptera, Coleoptera, Siphonaptera, Hymenoptera and Isoptera and also other invertebrate pests, for example, acarine, nematode and mollusc pests. Insects, acarines, nematodes and molluscs are hereinafter collectively referred to as pests.
  • the pests which may be combated and controlled by the use of the, invention compounds include those pests associated with agriculture (which term includes the growing of crops for food and fibre products), horticulture and animal husbandry, companion animals, forestry and the storage of products of vegetable origin (such as fruit, grain and timber); those pests associated with the damage of man-made structures and the transmission of diseases of man and animals; and also nuisance pests (such as flies).
  • pest species which may be controlled by the compounds of formula (I) include: Myzus persicae (aphid), Aphis gossypii (aphid), Aphis fabae (aphid), Lygus spp. (capsids), Dysdercus spp. (capsids), Nilaparvata lugens (planthopper), Nephotettixc incticeps (leafhopper), Nezara spp. (stinkbugs), Euschistus spp. (stinkbugs), Leptocorisa spp. (stinkbugs), Frankliniella occidentalis (thrip), Thrips spp.
  • the invention therefore provides a method of combating and controlling insects, acarines, nematodes or molluscs which comprises applying an insecticidally, acaricidally, nematicidally or molluscicidally effective amount of a compound of formula (T), or a composition containing a compound of formula (I), to a pest, a locus of pest, or to a plant susceptible to attack by a pest,
  • the compounds of formula (I) are preferably used against insects, acarines or nematodes.
  • a compound of formula (I) is usually formulated into a composition which includes, in addition to the compound of formula (I), a suitable inert diluent or carrier and, optionally, a surface active agent (SFA).
  • a suitable inert diluent or carrier and, optionally, a surface active agent (SFA).
  • SFA surface active agent
  • SFAs are chemicals which are able to modify the properties of an interface (for example, liquid/solid, liquid/air or liquid/liquid interfaces) by lowering the interfacial tension and thereby leading to changes in other properties (for example dispersion, • emulsification and wetting).
  • all compositions (both solid and liquid formulations) comprise, by weight, 0.0001 to 95%, more preferably 1 to 85%, for example 5 to 60%, of a compound of formula (I).
  • the composition is generally used for the control of pests such that a compound of formula (I) is applied at a rate of from O.lg to 10kg per hectare, preferably from Ig to 6kg per hectare, more preferably from Ig to lkg per hectare.
  • a compound of formula (I) When used in a seed dressing, a compound of formula (I) is used at a rate of O.OOOlg to 1Og (for example 0.00 Ig or 0.05g), preferably 0.005g to 1Og, more preferably 0.005g to 4g, per kilogram of seed.
  • the present invention provides an insecticidal, acaricidal, nematicidal or molluscicidal composition comprising an insecticidally, acaricidally, nematicidally or molluscicidally effective amount of a compound of formula (I) and a suitable carrier or diluent therefor.
  • the composition is preferably an insecticidal, acaricidal, nematicidal or molluscicidal composition.
  • the invention provides a method of combating and controlling pests at a locus which comprises treating the pests or the locus of the pests with an insecticidally, acaricidally, nematicidally or molluscicidally effective amount of a composition comprising a compound of formula (I).
  • the compounds of formula (I) are preferably used against insects, acarines or nematodes.
  • compositions can be chosen from a number of formulation types, including dustable powders (DP), soluble powders (SP), water soluble granules (SG), water dispersible granules (WG), wettable powders (WP), granules (GR) (slow or fast release), soluble concentrates (SL), oil miscible liquids (OL), ultra low volume liquids (UL), emulsifiable concentrates (EC), dispersible concentrates (DC), emulsions (both oil in water (EW) and water in oil (EO)), micro-emulsions (ME), suspension concentrates (SC), aerosols, fogging/smoke formulations, capsule suspensions (CS) and seed treatment formulations.
  • DP dustable powders
  • SP soluble powders
  • SG water soluble granules
  • WP water dispersible granules
  • GR granules
  • SL soluble concentrates
  • OL oil miscible liquids
  • UL ultra
  • Dustable powders may be prepared by mixing a compound of formula (I) with one or more solid diluents (for example natural clays, kaolin, pyrophyllite, bentonite, alumina, montmorillonite, kieselguhr, chalk, diatomaceous earths, calcium phosphates, calcium and magnesium carbonates, sulphur, lime, flours, talc and other organic and inorganic solid carriers) and mechanically grinding the mixture to a fine powder.
  • solid diluents for example natural clays, kaolin, pyrophyllite, bentonite, alumina, montmorillonite, kieselguhr, chalk, diatomaceous earths, calcium phosphates, calcium and magnesium carbonates, sulphur, lime, flours, talc and other organic and inorganic solid carriers
  • Soluble powders may be prepared by mixing a compound of formula (I) with one or more water-soluble inorganic salts (such as sodium bicarbonate, sodium carbonate or magnesium sulphate) or one or more water-soluble organic solids (such as a polysaccharide) and, optionally, one or more wetting agents, one or more dispersing agents or a mixture of said agents to improve water dispersibility/solubility. The mixture is then ground to a fine powder. Similar compositions may also be granulated to form water soluble granules (SG).
  • water-soluble inorganic salts such as sodium bicarbonate, sodium carbonate or magnesium sulphate
  • water-soluble organic solids such as a polysaccharide
  • WP Wettable powders
  • WG Water dispersible granules
  • Granules may be formed either by granulating a mixture of a compound of formula (I) and one or more powdered solid diluents or carriers, or from pre-formed blank granules by absorbing a compound of formula (I) (or a solution thereof, in a suitable agent) in a porous granular material (such as pumice, attapulgite clays, fuller's earth, kieselguhr, diatomaceous earths or ground corn cobs) or by adsorbing a compound of formula (I) (or a solution thereof, in a suitable agent) on to a hard core material (such as sands, silicates, " mineral carbonates, sulphates or phosphates) and drying if necessary.
  • a hard core material such as sands, silicates, " mineral carbonates, sulphates or phosphates
  • Agents which are commonly used to aid absorption or adsorption include solvents (such as aliphatic and aromatic petroleum solvents, alcohols, ethers, ketones and esters) and sticking agents (such as polyvinyl acetates, polyvinyl alcohols, dextrins, sugars and vegetable oils).
  • solvents such as aliphatic and aromatic petroleum solvents, alcohols, ethers, ketones and esters
  • sticking agents such as polyvinyl acetates, polyvinyl alcohols, dextrins, sugars and vegetable oils.
  • One or more other additives may also be included in granules (for example an emulsifying agent, wetting agent or dispersing agent).
  • DC Dispersible Concentrates
  • a compound of formula (I) may be prepared by dissolving a compound of formula (I) in water or an organic solvent, such as a ketone, alcohol or glycol ether. These solutions may contain a surface active agent (for example to improve water dilution or prevent crystallisation in a spray tank).
  • Emulsifiable concentrates (EC) or oil-in-water emulsions (EW) may be prepared by dissolving a compound of formula (I) in an organic solvent (optionally containing one or more wetting agents, one or more emulsifying agents or a mixture of said agents).
  • Suitable organic solvents for use in ECs include aromatic hydrocarbons (such as alkylbenzenes or alkylnaphthalenes, exemplified by SOLVESSO 100, SOLVESSO 150 and SOLVESSO 200; SOLVESSO is a Registered Trade Mark), ketones (such as cyclohexanone or methylcyclohexanone) and alcohols (such as benzyl alcohol, furfuryl alcohol or butanol), N-alkylpyrrolidones (such as N-methylpyrrolidone or N-octylpyrrolidone), dimethyl amides of fatty acids (such as C 8 -C 10 fatty acid dimethylamide) and chlorinated hydrocarbons.
  • aromatic hydrocarbons such as alkylbenzenes or alkylnaphthalenes, exemplified by SOLVESSO 100, SOLVESSO 150 and SOLVESSO 200; SOLVESSO is a Registered Trade Mark
  • ketones such as cycl
  • An EC product may spontaneously emulsify on addition to water, to produce an emulsion with sufficient stability to allow spray application through appropriate equipment.
  • Preparation of an EW involves obtaining a compound of formula (I) either as a liquid (if it is not a liquid at room temperature, it may be melted at a reasonable temperature, typically below 7O 0 C) or in solution (by dissolving it in an appropriate solvent) and then emulsifiying the resultant liquid or solution into water containing one or more SFAs, under high shear, to produce an emulsion.
  • Suitable solvents for use in EWs include vegetable oils, chlorinated hydrocarbons (such as chlorobenzenes), aromatic solvents (such as alkylbenzenes or alkymaphthalenes) and other appropriate organic solvents which have a low solubility in water.
  • Microemulsions may be prepared by mixing water with a blend of one or more solvents with one or more SFAs, to produce spontaneously a thermodynamically stable isotropic liquid formulation.
  • a compound of formula (I) is present initially in either the water or the solvent/SFA blend.
  • Suitable solvents for use in MEs include those hereinbefore described for use in in ECs or in EWs.
  • An ME may be either an oil-in- water or a water-in-oil system (which system is present may be determined by conductivity measurements) and may be suitable for mixing water-soluble and oil-soluble pesticides in the same formulation.
  • An ME is suitable for dilution into water, either remaining as a microemulsion or forming a conventional oil-in-water emulsion.
  • SC Suspension concentrates
  • SCs may comprise aqueous or non-aqueous suspensions of finely divided insoluble solid particles of a compound of formula (I).
  • SCs may be prepared by ball or bead milling the solid compound of formula (I) in a suitable medium, optionally with one or more dispersing agents, to produce a fine particle suspension of the compound.
  • One or more wetting agents may be included in the composition and a suspending agent may be included to reduce the rate at which the particles settle.
  • a compound of formula (I) may be dry milled and added to water, containing agents hereinbefore described, to produce the desired end product.
  • Aerosol formulations comprise a compound of formula (I) and a suitable propellant (for example n-butane).
  • a compound of formula (I) may also be dissolved or dispersed in a suitable medium (for example water or a water miscible liquid, such as n-propanol) to provide compositions for use in non-pressurised, hand-actuated spray pumps.
  • a compound of formula (I) may be mixed in the dry state with a pyrotechnic mixture to form a composition suitable for generating, in an enclosed space, a smoke containing the compound.
  • Capsule suspensions (CS) may be prepared in a manner similar to the preparation of
  • each oil droplet is encapsulated by a polymeric shell and contains a compound of formula (I) and, optionally, a carrier or diluent therefor.
  • the polymeric shell may be produced by either an interfacial polycondensation reaction or by a coacervation procedure.
  • the compositions may provide for controlled release of the compound of. formula (I) and they may be used for seed treatment.
  • a compound of formula (I) may also be formulated in a biodegradable polymeric matrix to provide a slow, controlled release of the compound.
  • a composition may include one or more additives to improve the biological performance of the composition (for example by improving wetting, retention or distribution on surfaces; resistance to rain on treated surfaces; or uptake or mobility of a compound of formula (I)).
  • additives include surface active agents, spray additives based on oils, for example certain mineral oils or natural plant oils (such as soy bean and rape seed oil), and blends of these with other bio-enhancing adjuvants (ingredients which may aid or modify the action of a compound of formula (I)).
  • a compound of formula (I) may also be formulated for use as a seed treatment, for example as a powder composition, including a powder for dry seed treatment (DS), a water soluble powder (SS) or a water dispersible powder for slurry treatment (WS), or as a liquid composition, including a flowable concentrate (FS), a solution (LS) or a capsule suspension (CS).
  • DS powder for dry seed treatment
  • SS water soluble powder
  • WS water dispersible powder for slurry treatment
  • CS capsule suspension
  • the preparations of DS, SS, WS, FS and LS compositions are very similar to those of, respectively, DP, SP, WP, SC and DC compositions described above.
  • Compositions for treating seed may include an agent for assisting the adhesion of the composition to the seed (for example a mineral oil or a film-forming barrier).
  • Wetting agents, dispersing agents and emulsifying agents maybe surface SFAs of the cationic, anionic, amphoteric or non-ionic type.
  • Suitable SFAs of the cationic type include quaternary ammonium compounds (for example cetyltrimethyl ammonium bromide), imidazolines and amine salts.
  • Suitable anionic SFAs include alkali metals salts of fatty acids, salts of aliphatic monoesters of sulphuric acid (for example sodium lauryl sulphate), salts of sulphonated aromatic compounds (for example sodium dodecylbenzenesulphonate, calcium dodecylbenzenesulphonate, butylnaphthalene sulphonate and mixtures of sodium di- zsopropyl- and tri-wopropyl-naphthalene sulphonates), ether sulphates, alcohol ether sulphates (for example sodium laureth-3-sulphate), ether carboxylates (for example sodium laureth-3-carboxylate), phosphate esters (products from the reaction between one or more fatty alcohols and phosphoric acid (predominately mono-esters) or phosphorus pentoxide (predominately di-esters), for example the reaction between lauryl alcohol and tetraphosphoric acid
  • Suitable SFAs of the non-ionic type include condensation products of alkylene oxides, such as ethylene oxide, propylene oxide, butylene oxide or mixtures thereof, with fatty alcohols (such as oleyl alcohol or cetyl alcohol) or with alkylphenols (such as octylphenol, nonylphenol or octylcresol); partial esters derived from long chain fatty acids or hexitol anhydrides; condensation products of said partial esters with ethylene oxide; block polymers (comprising ethylene oxide and propylene oxide); alkanolamides; simple esters (for example fatty acid polyethylene glycol esters); amine oxides (for example lauryl dimethyl amine oxide); and lecithins.
  • alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide or mixtures thereof
  • fatty alcohols such as oleyl alcohol or cetyl alcohol
  • alkylphenols such as octylphenol, nonyl
  • Suitable suspending agents include hydrophilic colloids (such as polysaccharides, polyvinylpyrrolidone or sodium carboxymethylcellulose) and swelling clays (such as bentonite or attapulgite).
  • hydrophilic colloids such as polysaccharides, polyvinylpyrrolidone or sodium carboxymethylcellulose
  • swelling clays such as bentonite or attapulgite
  • a compound of formula (I) may be applied by any of the known means of applying pesticidal compounds. For example, it may be applied, formulated or unformulated, to the pests or to a locus of the pests (such as a habitat of the pests, or a growing plant liable to infestation by the pests) or to any part of the plant, including the foliage, stems, branches or " roots, to the seed before it is planted or to other media in which plants are growing or are to be planted (such as soil surrounding the roots, the soil generally, paddy water or hydroponic culture systems), directly or it may be sprayed on, dusted on, applied by dipping, applied as a cream or paste formulation, applied as a vapour or applied through distribution or incorporation of a composition (such as a granular composition or a composition packed in a water-soluble bag) in soil or an aqueous environment.
  • a locus of the pests such as a habitat of the pests, or a growing plant liable to infestation by the pests
  • a compound of formula (I) may also be injected into plants or sprayed onto vegetation using electrodynamic spraying techniques or other low volume methods, or applied by land or aerial irrigation systems.
  • Compositions for use as aqueous preparations are generally supplied in the form of a concentrate containing a high proportion of the active ingredient, the concentrate being added to water before use.
  • These concentrates which may include DCs, SCs, ECs, EWs, MEs SGs, SPs, WPs, WGs and CSs, are often required to withstand storage for prolonged periods and, after such storage, to be capable of addition to water to form aqueous preparations which remain homogeneous for a sufficient time to enable them to be applied by conventional spray equipment.
  • Such aqueous preparations may contain varying amounts of a compound of formula (I) (for example 0.0001 to 10%, by weight) depending upon the purpose for which they are to be used.
  • a compound of formula (I) may be used in mixtures with fertilisers (for example nitrogen-, potassium- or phosphorus-containing fertilisers).
  • fertilisers for example nitrogen-, potassium- or phosphorus-containing fertilisers.
  • Suitable formulation types include granules of fertiliser.
  • the mixtures suitably contain up to 25% by weight of the compound of formula (I) .
  • the invention therefore also provides a fertiliser composition comprising a fertiliser and a compound of formula (I).
  • compositions of this invention may contain other compounds having biological activity, for example micronutrients or compounds having fungicidal activity or which possess plant growth regulating, herbicidal, insecticidal, nematicidal or acaricidal activity.
  • the compound of formula (I) may be the sole active ingredient of the composition or it may be admixed with one or more additional active ingredients such as a pesticide, fungicide, synergist, herbicide or plant growth regulator where appropriate.
  • An additional active ingredient may: provide a composition having a broader spectrum of activity or increased persistence at a locus; synergise the activity or complement the activity (for example by increasing the speed of effect or overcoming repellency) of the compound of formula (I); or help to overcome or prevent the development of resistance to individual components.
  • the particular additional active ingredient will depend upon the intended utility of the composition.
  • Suitable pesticides include the following: a) Pyrethroids, such as permethrin, cypermethrin, fenvalerate, esfenvalerate, deltamethrin, cyhalothrin (in particular lambda-cyhalothrin), bifenthrin, fenpropathrin, cyfluthrin, tefluthrin, fish safe pyrethroids (for example ethofenprox), natural pyrethrin, tetramethrin, s-bioallethrin, fenfluthrin, prallethrin or 5-benzyl-3-furylmethyl-(E)-(lR,3S)-2,2-dimethyl- 3 -(2-oxothiolan-3 -ylidenemethyl)cyclopropane carboxylate; b) Organophosphates, such as, profenofos, sulprofos,
  • Chloronicotinyl compounds such as imidacloprid, thiacloprid, acetamiprid, nitenpyram or thiamethoxam;
  • Diacylhydrazines such as tebufenozide, chromafenozide or methoxyfenozide;
  • Diphenyl ethers such as diofenolan or pyriproxifen; o) Indoxacarb; p) Chlorfenapyr; or q) Pymetrozine.
  • pesticides having particular targets may be employed in the composition, if appropriate for the intended utility of the composition.
  • selective insecticides for particular crops for example stemborer specific insecticides (such as cartap) or hopper specific insecticides (such as buprofezin) for use in rice may be employed.
  • insecticides or acaricides specific for particular insect species/stages may also be included in the compositions (for example acaricidal ovo-larvicides, such as clofentezine, flubenzimine, hexythiazox or tetradifon; acaricidal motilicides, such as dicofol or propargite; acaricides, such as bromopropylate or chlorobenzilate; or growth regulators, such as hydramethylnon, cyromazine, methoprene, chlorfluazuron or diflubenzuron).
  • acaricidal ovo-larvicides such as clofentezine, flubenzimine, hexythiazox or tetradifon
  • acaricidal motilicides such as dicofol or propargite
  • acaricides such as bromopropylate or chlorobenzilate
  • growth regulators such
  • fungicidal compounds which may be included in the composition of the invention are (E)-N-methyl-2-[2-(2,5-dimethylphenoxymethyl)phenyl]-2-methoxy- iminoacetamide (SSF-129), 4-bromo-2-cyano-N,N-dimethyl-6-trifluoromethylbenzimidazole- 1 -sulphonamide, ⁇ -[N-(3-chloro-2,6-xylyl)-2-methoxyacetamido]- ⁇ -butyrolactone, 4-chloro- 2-cyano-N,N-dimethyl-5-/>-tolylimidazole- 1 -sulfonamide (IKF-916, cyamidazosulfamid), 3 -5-dichloro-N-(3 -chloro- 1 -ethyl- 1 -methyl-2-oxopropyl)-4-methylbenzamide (RH-7281 , zoxamide
  • the compounds of formula (I) may be mixed with soil, peat or other rooting media for the protection of plants against seed-borne, soil-borne or foliar fungal diseases.
  • synergists for use in the compositions include piperonyl butoxide, sesamex, safroxan and dodecyl imidazole.
  • Suitable herbicides and plant-growth regulators for inclusion in the compositions will depend upon the intended target and the effect required.
  • a rice selective herbicide which may be included is propanil.
  • An example of a plant growth regulator for use in cotton is PIXTM.
  • Some mixtures may comprise active ingredients which have significantly different physical, chemical or biological properties such that they do not easily lend themselves to the same conventional formulation type. In these circumstances other formulation types may be prepared. For example, where one active ingredient is a water insoluble solid and the other a water insoluble liquid, it may nevertheless be possible to disperse each active ingredient in the same continuous aqueous phase by dispersing the solid active ingredient as a suspension (using a preparation analogous to that of an SC) but dispersing the liquid active ingredient as an emulsion (using a preparation analogous to that of an EW).
  • SE suspoemulsion
  • Step A Preparation of N-(4-Chloro-phenyl)-2,2-dimethyl-propiffnide
  • 4-chloroaniline 25.51 g
  • triethylamine 69.73 ml
  • chloroform 350 ml
  • 2,2-dimethyl-propionyl chloride 25.32 g
  • the resulting solution was stirred at r.t. for 1 hour, then water was added and the mixture extracted three times with ethyl acetate.
  • the combined organic layers were dried over sodium sulfate and concentrated in vacuo to afford 35.8 g of product.
  • M.p. 149-15O 0 C Retention Time HPLC 2.83 min
  • Step B Preparation of N-(4-Chloro-2- ⁇ l-[(E)-3-(4-chloro-phenyl)-allyl]-4-hydroxy- piperidin-4-yl ⁇ -phenyl)-2,2-dimethyl-propionamide
  • This Example illustrates the preparation of 4-Chloro-2- ⁇ l-[(E)-3-(4-chloro-phenyl)-allyl]- 1 ,2,3 ,6-tetrahydro-pyridin-4-yl ⁇ -phenylamine and 4-(2-Amino-5-chloro-phenyl)- 1 -[(E)-3 -(4- chloro-phenyl)-allyl]-piperidin-4-ol.
  • This Example illustrates the preparation of 2-(l-Benzyl-l,2,3,6-tetrahydro-pyridin-4-yl)-4- chloro-phenylamine and 4-(2-Amino-5-chloro-phenyl)-l-benzyl-piperidin-4-ol.
  • Step A Preparation of 4- ⁇ 5-Chloro-2-[(2-chloro-pyridine-4-carbonyl)- amino]phenyl ⁇ -3,6-dihydro ⁇ 2H-pyridine-l-carboxylic acid 1-chloro-ethyl ester
  • Step A Preparation of N-(4-Fluoro-phenyl)-2,2-dimethyl-propionamide
  • 4-fluoroaniline 50.0 g
  • triethylamine 157 ml
  • 2,2-dimethyl-propionyl chloride 58.0 ml
  • the resulting solution was stirred at r.t. for 2 hour, then water was added and the mixture extracted three times with ethyl acetate.
  • the combined organic layers were dried over sodium sulfate and concentrated in vacuo to afford 86.0 g of the title compound.
  • M.p. 124-125 0 C Retention Time HPLC 2.57 min
  • Step B Preparation of N-(4-Fluoro-2- ⁇ l-[(E)-3-(4-chloro-phenyl)-allyl]-4-hydroxy- piperidin-4-yl ⁇ -phenyl)-2,2-dimethyl-propionamide
  • N-(4-Fluoro-2-piperidin-4-yl-phenyl)-2,2-dimethyl-propionamide (380 mg) was dissolved in CHCl 3 (20 ml) and treated with triethyl amine (0.260 mg). Then, a solution of l-((E)-3- chloro-propenyl)-4-chloro-benzene (255 mg) was added. After stirring for 16 hours at r.t. the mixture was filtrated and concentrated in vacuo. The residue was subjected to silica gel chromatography (hexane:ethyl acetate:triethyl amine 74:24:2) to afford the title product (380 mg). M.p. 174-176 0 C; Retention Time HPLC 2.37 min; MS (ES+) 4.29 (M+H + ).
  • Triethylamine (2.8 ml) was added to a stirred solution of the compound obtained in example 18 (2.66 g) in dichloromethane (100 ml); the solution was cooled to 0°C and 2- chloroisonicotinoyl chloride (prepared from 2.05 g of 2-chloroisonicotinic acid and 1.46 ml of oxalyl chloride in 50 ml dichloromethane) was added. The resulting mixture was stirred at room temperature for 12 hours, poured into water, extracted two times with dichloromethane; the combined organic layers were dried over sodium sulfate and concentrated in vacuo.
  • 2- chloroisonicotinoyl chloride prepared from 2.05 g of 2-chloroisonicotinic acid and 1.46 ml of oxalyl chloride in 50 ml dichloromethane
  • Step A l-(t-Butoxycarbonyl)-4-tributylstannyl-l,2,3,6-tetrahydropyridine (2.12 g, prepared in 2 steps from l-(t-butoxycarbonyl)-piperidin-4-one according to WO 0123381) was dissolved in toluene (45 ml) in a dried, nitrogen-flushed flask. 2-Chloro-3-nitropyridine (712 mg) and palladium tetrakis(triphenylphosphine) (130 mg) were added and the solution was heated at 110°C for 16 hours.
  • Step B Hydrazine monohydrate (0.4 ml) was added to a suspension of Raney nickel (50% slurry in water, 200 mg) and the product obtained in Step A (240 mg) in ethanol (10 ml). After 4 hours stirring, the reaction mixture was filtered over Hyfio and the solvent removed in vacuo. The residue was dissolved in ethyl acetate, dried over sodium sulfate, filtered and concentrated in vacuo to afford 3-amino-3',6'-dihydro-2'H-[2,4']bipyridinyl-r-carboxylic acid tert-butyl ester (200 mg) as white cystals. M.p.
  • Step C The product obtained in Step B (815 mg) was reduced by transfer hydrogenation using 10% Pd/C (200 mg) and ammonium formate (935 mg) in ethanol (40 ml) at 60°C for 45 min.
  • Step D sodium bicarbonate (714 mg) was added to a stirred solution of the compound obtained in Step C (785 mg) in dichloromethane (30 ml); the solution was then treated with 2-chloro-isonicotinoyl chloride (500 mg) and the resulting mixture was stirred at room temperature for 1 hour, poured into water, extracted two times with dichloromethane, the combined organic layers were dried over sodium sulfate and concentrated in vacuo to afford 3-[(2-Chloro-pyridine-4-carbonyl)-amino]-3',4',5 t ,6'-tetrahydro-2 ⁇ -[2,4']bipyridinyl-r- carboxylic acid tert-butyl ester (1.2 g).
  • Step E A solution of the compound obtained in Step D (834 mg) in dichloromethane (40 ml) was treated with trifiuoroacetic acid (4 ml) for 5 hours at room temperature. The reaction mixture was concentrated in vacuo and then dried under high vacuum for 1 hour. The residue was dissolved in acetonitrile (40 ml), diisopropylethylamine (1.8 ml) and 4- chlorocinnamyl chloride (380 mg) were added. The solution was stirred 20 hours at room temperature, the solvent was removed in vacuo and the residue was subjected to silica gel chromatography (ethyl acetate:methanol 95:5) to afford the title product (409 mg) as a yellow solid. M.p.
  • This Example illustrates the preparation of 2-Chloro-N- ⁇ 5-chloro-l'-[(E)-3-(4-chloro- ⁇ henyl)-allyl]-r,2 l ,3 l ,4',5',6 l -hexahydro-[2,4']bi ⁇ yridinyl-3-yl ⁇ -isonicotinamide.
  • Cotton leaf discs were placed on agar in a 24- well microtiter plate and sprayed with test solutions at an application rate of 200 ppm. After drying, the leaf discs were infested with 5 L 1 larvae. The samples were checked for mortality, repellent effect, feeding behaviour, and growth regulation 3 days after treatment (DAT). The following compounds gave at least 80% control of Spodoptera littoralis: Iaaa-3 and Iaaa-49. Heliothis virescens ( Tobacco budworm):
  • Aedes aegypti Yellow fever mosquito
  • Aedes larvae (L2) together with a nutrition mixture are placed in 96-well microtiter plates. Test solutions at an application rate of 2ppm are pipetted into the wells. 2 days later, insects were checked for mortality and growth inhibition. The following compounds gave at least 80% control of Aedes aegypti: Ia-53, Iaaa-3, Iaaa-26, Iaaa-49, Iaaa-52, Iaab-26, Iaac-26 and Iaai-26.

Abstract

The use of a compound of formula (I), Y is a single bond, C=O, C=S or S(O)m where m is 0, 1 or 2; the ring (II) is a 6 membered oaromatic ring or is a 5 or 6 membered heteroaromatic ring; Z and Z' are =C- or -N- provided that both are not N; R1, R2 R3 , R3a, R4 , R8 and Ra are specified organic groups and n and p are independently 0, 1, 2, 3 or 4; or salts or N-oxides thereof or compositions containing them in controlling insects, acarines, nematodes or molluscs. Novel compounds are also provided.

Description

CHEMICAL COMPOUNDS
The present invention relates to piperidine derivatives, to processes for preparing them, to insecticidal, acaricidal, molluscicidal and nematicidal compositions comprising them and to methods of using them to combat and control insect, acarine, mollusc and nematode pests.
Piperidine derivatives with fungicidal properties are disclosed in for example in EP494717.
It has now surprisingly been found that certain piperidines have insecticidal properties.
The present invention therefore provides a method of combating and controlling insects, acarines, nematodes or molluscs which comprises applying to a pest, to a locus of a pest, or to a plant susceptible to attack by a pest an insecticidally, acaricidally, nematicidally or molluscicidally effective amount of a compound of formula (I):
Figure imgf000002_0001
Y is a single bond, C=O, C=S or S(O)m where m is 0, 1 or 2; the ring
Figure imgf000002_0002
is a 6 membered aromatic ring or is a 5 or 6 membered heteroaromatic ring;
gle or a double bond and are =C r I
Z and Z' are joined by a sin - or -N- provided that both are not N; R1 is hydrogen, optionally substituted alkyl, optionally substituted alkoxycarbonyl, optionally substituted alkylcarbonyl, aminocarbonyl, optionally substituted alkylaminocarbonyl, optionally substituted dialkylaminocarbonyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxy, optionally substituted aryloxy, optionally substituted heteroaryloxy, optionally substituted heterocyclyloxy, cyano, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkenyl, formyl, optionally substituted heterocyclyl, optionally substituted alkylthio, NO or NR13R14 where R13 and R14 are independently hydrogen, COR15, optionally substituted alkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted heterocyclyl or R13 and R14 together with the N atom to which they are attached form a group -N=C(R16)-NR17R18 or R13 and R14 together with the N atom to which they are attached form a five, six or seven-membered heterocyclic ring which may contain one or two further heteroatoms selected from O, N or S and which may be optionally substituted by one or two Ci-6 alkyl groups; R15 is H, optionally substituted alkyl, optionally substituted alkoxy, optionally substituted aryl, optionally substituted aryloxy optionally substituted heteroaryl, optionally substituted heteroaryloxy or NR19R20; R16 , R17 and R18 are each independently H or lower alkyl; R19 and R20 are independently optionally substituted alkyl, optionally substituted aryl or optionally substituted heteroaryl;
R2 is H, hydroxy, optionally substituted alkoxy or optionally substituted alkyl; or R1 and R2 together with the groups Y and N form a 5-or 6-membered heterocyclic ring which may optionally contain one further heteroatom selected from O, N or S and which may be optionally substituted by C1-4 alkyl, C1-4haloalkyl or halogen; R3 is H, OH, halogen or optionally substituted alkyl; R3a is H or R3 and R3a together form a bond; each R4 is independently halogen, nitro, cyano, optionally substituted C1-8 alkyl, optionally substituted C2-6 alkenyl, optionally substituted C2-6 alkynyl, optionally substituted alkoxycarbonyl, optionally substituted alkylcarbonyl, optionally substituted alkylaminocarbonyl, optionally substituted dialkylaminocarbonyl, optionally substituted C3-7 cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted heterocyclyl, optionally substituted alkoxy, optionally substituted aryloxy, optionally substituted heteroaryloxy, optionally substituted alkylthio or R21R22N where R21 and R22 are, independently, hydrogen, Ci-8 alkyl, C3-7 cycloalkyl, C3-6 alkenyl, C3-6 alkynyl, C3-7 cycloalkyl(C1-4)alkyl, C2-6 haloalkyl, C1-6 alkoxy(C1-6)alkyl, C1-6 alkoxycarbonyl or R21 and R22 together with the N atom to which they are attached form a five, six or seven- membered heterocyclic ring which may contain one or two further heteroatoms selected from O, N or S and which maybe optionally substituted by one or two C1-6 alkyl groups, or 2 adjacent groups R4 together with the carbon atoms to which they are attached form a 4, 5, 6,or 7 membered carbocyclic or heterocyclic ring which may be optionally substituted by halogen; n is 0, 1, 2, 3 or 4;
R8 is optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted alkoxy, optionally substituted aryloxy, optionally substituted alkoxycarbonyl, optionally substituted alkylcarbonyl or optionally substituted alkenylcarbonyl; each Ra is independently halogen, hydroxy, cyano, optionally substituted C1-8 alkyl, optionally substituted C2-6 alkenyl, optionally substituted C2-6 alkynyl, optionally substituted alkoxycarbonyl, optionally substituted alkylcarbonyl, optionally substituted alkylaminocarbonyl, optionally substituted dialkylaminocarbonyl, optionally substituted C3-7 cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted heterocyclyl, optionally substituted alkoxy, optionally substituted aryloxy, optionally substituted heteroaryloxy, optionally substituted alkylthio, optionally substituted arylthio or R R N where R and R are, independently, hydrogen, C1-8 alkyl, C3-7 cycloalkyl, C3-6 alkenyl, C3-6 alkynyl, C3-7 cycloalkyl(C1-4)alkyl, C2-6 haloalkyl, C1-6 alkoxy(C1-6)alkyl, C1-6 alkoxycarbonyl or R23 and R24 together with the N atom to which they are attached form a five, six or seven-membered heterocyclic ring which may contain one or two further heteroatoms selected from O, N or S and which may be optionally substituted by one or two C1-6 alkyl groups, or two Ra groups attached to the same carbon atom are =O, =S, =NRb, =CRcRd where Rb, Rc and Rd are independently H or optionally substituted alkyl; p is 0, 1, 2, 3 or 4 or salts or N-oxides thereof.
The compounds of formula (I) may exist in different geometric or optical isomers or tautomeric forms. This invention covers all such isomers and tautomers and mixtures thereof in all proportions as well as isotopic forms such as deuterated compounds. Each alkyl moiety either alone or as part of a larger group (such as alkoxy, alkoxycarbonyl, alkylcarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl) is a straight or branched chain and is, for example, methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, iso- - A -
propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl or neo-pentyl. The alkyl groups are suitably C1 to C12 alkyl groups, but are preferably C1-C10, more preferably C1-C8, even more preferably preferably C1-C6 and most preferably C1-C4 alkyl groups.
When present, the optional substituents on an alkyl moiety (alone or as part of a larger group such as alkoxy, alkoxycarbonyl, alkylcarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl) include one or more of halogen, nitro, cyano, NCS-, C3-7 cycloalkyl (itself optionally substituted with C1-6 alkyl or halogen), C5-7 cycloalkenyl (itself optionally substituted with C1-6 alkyl or halogen), hydroxy, C1-10 alkoxy, C1-10 alkoxy(C1-10)alkoxy, tri(C1-4)alkylsilyl(C1-6)alkoxy, C1-6 alkoxycarbonyl(C1-10)alkoxy, C1-10 haloalkoxy, aryl(C1-4)- alkoxy (where the aryl group is optionally substituted), C3-7 cycloalkyloxy (where the cycloalkyl group is optionally substituted with C1-6 alkyl or halogen), C2-10 alkenyloxy, C2-10 alkynyloxy, SH, C1-10 alkylthio, C1-10 haloalkylthio, aryl(C1-4)alkylthio (where the aryl group is optionally substituted), C3-7 cycloalkylthio (where the cycloalkyl group is optionally substituted with C1-6 alkyl or halogen), tri(C1-4)alkylsilyl(C1-6)alkylthio, arylthio (where the aryl group is optionally substituted), C1-6 alkylsulfonyl, C1-6 haloalkylsulfonyl, C1-6 alkylsulfmyl, C1-6 haloalkylsulfmyl, arylsulfonyl (where the aryl group may be optionally substituted), tri(C1-4)alkylsilyl, aryldi(C1-4)alkylsilyl, (C1-4)alkyldiarylsilyl, triarylsilyl, C1-10 alkylcarbonyl, HO2C, C1-10 alkoxycarbonyl, aminocarbonyl, C1-6 alkylaminocarbonyl, di(C1-6 alkyl)aminocarbonyl, N-(C1-3 alkyl)-N-(C1-3 alkoxy)aminocarbonyl, C1-6 alkylcarbonyloxy, arylcarbonyloxy (where the aryl group is optionally substituted), di(C1-6)alkylaminocarbonyloxy, oximes such as =NOalkyl, =NOhaloalkyl and =NOaryl (itself optionally substituted), aryl (itself optionally substituted), heteroaryl (itself optionally substituted), heterocyclyl (itself optionally substituted with C1-6 alkyl or halogen), aryloxy (where the aryl group is optionally substituted), heteroaryloxy, (where the heteroaryl group is optionally substituted), heterocyclyloxy (where the heterocyclyl group is optionally substituted with C1-6 alkyl or halogen), amino, C1-6 alkylamino, di(C1-6)alkylamino, C1-6 alkylcarbonylamino, N-(C1-6)alkylcarbonyl-N-(C1-6)alkylamino, C2-6 alkenylcarbonyl, C2-6 alkynylcarbonyl, C3-6 alkenyloxycarbonyl, C3-6 alkynyloxycarbonyl, aryloxycarbonyl (where the aryl group is optionally substituted) and arylcarbonyl (where the aryl group is optionally substituted). Alkenyl and alkynyl moieties can be in the form of straight or branched chains, and the alkenyl moieties, where appropriate, can be of either the (E)- or ©-configuration. Examples are vinyl, allyl and propargyl.
When present, the optional substituents on alkenyl or alkynyl include those optional substituents given above for an alkyl moiety.
In the context of this specification acyl is optionally substituted C1-6 alkylcarbonyl (for example acetyl), optionally substituted C2-6 alkenylcarbonyl, optionally substituted C2-6 alkynylcarbonyl, optionally substituted arylcarbonyl (for example benzoyl) or optionally substituted heteroarylcarbonyl. Halogen is fluorine, chlorine, bromine or iodine.
Haloalkyl groups are alkyl groups which are substituted with one or more of the same or different halogen atoms and are, for example, CF3, CF2Cl, CF3CH2 or CHF2CH2.
In the context of the present specification the terms "aryl", "aromatic ring" and "aromatic ring system" refer to ring systems which may be mono-, bi- or tricyclic. Examples of such rings include phenyl, naphthalenyl, anthracenyl, indenyl or phenanthrenyl. A preferred aryl group is phenyl. In addition, the terms "heteroaryl", "heteroaromatic ring" or "heteroaromatic ring system" refer to an aromatic ring system containing at least one heteroatom and consisting either of a single ring or of two or more fused rings. Preferably, single rings will contain up to three and bicyclic systems up to four heteroatoms which will preferably be chosen from nitrogen, oxygen and sulphur. Examples of such groups include furyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,5-thiadiazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, 1,2,3-triazinyl, 1,2,4-triazinyl, 1,3,5-triazinyl, benzofuryl, benzisofuryl, benzothienyl, benzisothienyl, indolyl, isoindolyl, indazolyl, benzothiazolyl, benzisothiazolyl, benzoxazolyl, benzisoxazolyl, benzimidazolyl, 2,1,3- benzoxadiazole quinolinyl, isoquinolinyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, naphthyridinyl, benzotriazinyl, purinyl, pteridinyl and indolizinyl. Preferred examples of heteroaromatic radicals include pyridyl, pyrimidyl, triazinyl, thienyl, furyl, oxazolyl, isoxazolyl, 2, 1 ,3 -benzoxadiazole and thiazolyl. The terms heterocycle and heterocyclyl refer to a non-aromatic ring containing up to 10 atoms including one or more (preferably one or two) heteroatoms selected from O, S and N. Examples of such rings include 1,3-dioxolane, tetrahydrofuran and morpholine.
When present, the optional substituents on heterocyclyl include C1-6 alkyl and C1-6 haloalkyl as well as those optional substituents given above for an alkyl moiety. Cycloalkyl includes cyclopropyl, cyclopentyl and cyclohexyl. Cycloalkenyl includes cyclopentenyl and cyclohexenyl.
When present, the optional substituents on cycloalkyl or cycloalkenyl include C1-3 alkyl as well as those optional substituents given above for an alkyl moiety. Carbocyclic rings include aryl, cycloalkyl and cycloalkenyl groups.
When present, the optional substituents on aryl or heteroaryl are selected independently, from halogen, nitro, cyano, NCS-, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy- (C1-6)alkyl, C2-6 alkenyl, C2-6 haloalkenyl, C2-6 alkynyl, C3-7 cycloalkyl (itself optionally substituted with C1-6 alkyl or halogen), C5-7 cycloalkenyl (itself optionally substituted with C1-6 alkyl or halogen), hydroxy, C1-10 alkoxy, C1-10 alkoxy(C1-1o)alkoxy, tri(C1-4)alkyl- silyl(C1-6)alkoxy, C1-6 alkoxycarbonyl(C1-10)alkoxy, C1-10 haloalkoxy, aryl(C1-4)alkoxy (where the aryl group is optionally substituted with halogen or C1-6 alkyl), C3-7 cycloalkyloxy (where the cycloalkyl group is optionally substituted with C1-6 alkyl or halogen), C2-10 alkenyloxy, C2-10 alkynyloxy, SH, C1-10 alkylthio, C1-10 haloalkylthio, aryl(C1-4)alkylthio C3-7 cycloalkylthio (where the cycloalkyl group is optionally substituted with C1-6 alkyl or halogen), tri(C1-4)-alkylsilyl(C1-6)alkylthio, arylthio, C1-6 alkylsulfonyl, C1-6 haloalkylsulfonyl, C1-6 alkylsulfmyl, C1-6 haloalkylsulfmyl, arylsulfonyl, tri(C1-4)alkylsilyl, aryldi(C1-4)-alkylsilyl, (C1-4)alkyldiarylsilyl, triarylsilyl, C1-10 alkylcarbonyl, HO2C, C1-10 alkoxycarbonyl, aminocarbonyl, C1-6 alkylaminocarbonyl, di(C1-6 alkyl)-aminocarbonyl, N- (C1-3 alkyl)-N-(C1-3 alkoxy)aminocarbonyl, C1-6 alkylcarbonyloxy, arylcarbonyloxy, di(C1-6)alkylamino-carbonyloxy, aryl (itself optionally substituted with C1-6 alkyl or halogen), heteroaryl (itself optionally substituted with C1-6 alkyl or halogen), heterocyclyl (itself optionally substituted with C1-6 alkyl or halogen), aryloxy (where the aryl group is optionally substituted with C1-6 alkyl or halogen), heteroaryloxy (where the heteroaryl group is optionally substituted with C1-6 alkyl or halogen), heterocyclyloxy (where the heterocyclyl group is optionally substituted with C1-6 alkyl or halogen), amino, C1-6 alkylamino, di(C1- 6)alkylamino, C1-6 alkylcarbonylamino, N-(C1-6)alkylcarbonyl-N-(C1-6)alkylamino, arylcarbonyl, (where the aryl group is itself optionally substituted with halogen or C1-6 alkyl) or two adjacent positions on an aryl or heteroaryl system may be cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen or C1-6 alkyl. Further substituents for aryl or heteroaryl include aryl carbonyl amino (where the aryl group is substituted by C1-6 alkyl or halogen), (C1-6)alkyloxycarbonylamino
(C1-6)alkyloxycarbonyl-N-(C1-6)alkylamino, aryloxycarbonylamino (where the aryl group is substituted by C1-6 alkyl or halogen), aryloxycarbonyl-N-(C1-6)alkylamino, (where the aryl group is substituted by C1-6 alkyl or halogen), arylsulphonylamino (where the aryl group is substituted by C1-6 alkyl or halogen), arylsulphonyl-N-(C1-6)alkylamino (where the aryl group is substituted by C1-6 alkyl or halogen), aryl-N-(C1-6)alkylamino (where the aryl group is substituted by C1-6 alkyl or halogen), arylamino (where the aryl group is substituted by C1-6 alkyl or halogen), heteroaryl amino (where the heteroaryl group is substituted by C1-6 alkyl or halogen), heterocyclylamino (where the heterocyclyl group is substituted by C1-6 alkyl or halogen), aminocarbonylamino, C1-6 alkylaminocarbonyl amino, di(C1-6)alkylaminocarbonyl amino, arylaminocarbonyl amino where the aryl group is substituted by C1-6 alkyl or halogen), aryl-N-(C1-6)alkylaminocarbonylamino where the aryl group is substituted by C1-6 alkyl or halogen), C1-6 alkylaminocarbonyl-N-(C1-6)alkyl amino, di(C1-6)alkylaminocarbonyl- N-(C1-6)alkyl amino, arylaminocarbonyl-N-(C1-6)alkyl amino where the aryl group is substituted by C1-6 alkyl or halogen) and aryl-N-(C1-6)alkylaminocarbonyl-N-(C1-6)alkyl amino where the aryl group is substituted by C1-6 alkyl or halogen).
For substituted phenyl moieties, heterocyclyl and heteroaryl groups it is preferred that one or more substituents are independently selected from halogen, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy(C1-6)alkyl, C1-6 alkoxy, C1-6 haloalkoxy, C1-6 alkylthio, C1-6 haloalkylthio, C1-6 alkylsulfmyl, C1-6 haloalkylsulfinyl, C1-6 alkylsulfonyl, C1-6 haloalkylsulfonyl, C2-6 alkenyl, C2-6 haloalkenyl, C2-6 alkynyl, C3-7 cycloalkyl, nitro, cyano, CO2H," C1-6 alkylcarbonyl, C1-6 alkoxycarbonyl, R25R26N or R27R28NC(O); wherein R25, R26, R27 and R28 are, independently, hydrogen or C1-6 alkyl. Further preferred substituents are aryl and heteroaryl groups.
Haloalkenyl groups are alkenyl groups which are substituted with one or more of the same or different halogen atoms. It is to be understood that dialkylamino substituents include those where the dialkyl groups together with the N atom to which they are attached form a five, six or seven- membered heterocyclic ring which may contain one or two further heteroatoms selected from O, N or S and which is optionally substituted by one or two independently selected (C1-6)alkyl groups. When heterocyclic rings are formed by joining two groups on an N atom, the resulting rings are suitably pyrrolidine, piperidine, thiomorpholine and morpholine each of which maybe substituted by one or two independently selected (C1-6) alkyl groups. Preferably the optional substituents on an alkyl moiety include one or more of halogen, nitro, cyano, HO2C, C1-10 alkoxy (itself optionally substituted by C1-10 alkoxy), aryl(C1-4)alkoxy, C1-10 alkylthio, C1-10 alkylcarbonyl, C1-10 alkoxycarbonyl, C1-6 alkylaminocarbonyl, di(C1-6 alkyl)aminocarbonyl, (C1-6)alkylcarbonyloxy, optionally substituted phenyl, heteroaryl, aryloxy, arylcarbonyloxy, heteroaryloxy, heterocyclyl, heterocyclyloxy, C3-7 cycloalkyl (itself optionally substituted with (C1-6)alkyl or halogen), C3- 7 cycloalkyloxy, C5-7 cycloalkenyl, C1-6 alkylsulfonyl, C1-6 alkylsulfinyl, tri(Ci-4)alkylsilyl, tri(C1-4)alkylsilyl(C1-6)alkoxy, aryldi(C1-4)alkylsilyl, (C1-4)alkyldiarylsilyl and triarylsilyl.
Preferably the optional substituents on alkenyl or alkynyl include one or more of halogen, aryl and C3-7 cycloalkyl. A preferred optional substituent for heterocyclyl is C1-6 alkyl.
Preferably the optional substituents for cycloalkyl include halogen, cyano and C1-3 alkyl.
Preferably the optional substituents for cycloalkenyl include C1-3 alkyl, halogen and cyano. Preferred groups for T, Y, Ra, R1, R2, R3, R3a, R4 and R8 in any combination thereof are set out below.
Preferably Y is a single bond, C=O or C=S.
More preferably Y is a single bond or C=O.
Most preferably Y is C=O. Preferably R1 is hydrogen, C1-6 alkyl, C1-6 cyanoalkyl, C1-6 haloalkyl, C3-7 cycloalky^C^alkyl, C1-6 alkoxy(C1-6)alkyl, heteroaryl(C1-6)alkyl (wherein the heteroaryl group may be optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy, C1-6 haloalkoxy, C1-6 alkylsulfonyl, C1-6 alkylsulfinyl, C1-6 alkylthio, C1-6 alkoxycarbonyl, C1-6 alkylcarbonylamino, arylcarbonyl, or two adjacent positions on the heteroaryl system may be cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen), aryl(C1-6)alkyl (wherein the aryl group may be optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy, C1-6 haloalkoxy, C1-6 alkylsulfonyl, C1-6 alkylsulfinyl, C1-6 alkylthio, C1-6 alkoxycarbonyl, C1-6 alkylcarbonylamino, arylcarbonyl, or two adjacent positions on the aryl system maybe cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen), C1-6 alkylcarbonylamino(C1-6)alkyl, aryl (which may be optionally substituted by halo, m'tro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy, C1-6 haloalkoxy, C1-6 alkylsulfonyl, C1-6 alkylsulfinyl, C1-6 alkylthio, C1-6 alkoxycarbonyl, C1-6 alkylcarbonylamino, arylcarbonyl, or two adjacent positions on the aryl system maybe cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen), heteroaryl (which may be optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy, C1-6 haloalkoxy, C1-6 alkylsulfonyl, C1-6 alkylsulfinyl, C1-6 alkylthio, C1-6 alkoxycarbonyl, C1-6 alkylcarbonylamino, arylcarbonyl, or two adjacent positions on the heteroaryl system maybe cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen), C1-6 alkoxy, C1-6 haloalkoxy, phenoxy (wherein the phenyl group is optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino), heteroaryloxy (optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy or C1-6 haloalkoxy), heterocyclyloxy (optionally substituted by halo, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy or C1-6 haloalkoxy), cyano, C2-6 alkenyl, C2-6 alkynyl, C3-6 cycloalkyl, C5-7 cycloalkenyl, heterocyclyl (optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy or C1-6 haloalkoxy), C1-6 alkylthio, C1-6 haloalkylthio or NR13R14 where R13 and R14 are independently hydrogen, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxytQ. 6)alkyl, phenyl (which maybe optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino, dialkylamino or C1-4 alkoxycarbonyl), phenyl (C1-6)alkyl (wherein the phenyl group maybe optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino, dialkylamino, C1-6 alkylsulfonyl, C1-6 alkoxycarbonyl, or two adjacent positions on the phenyl ring maybe cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen), heteroaryl (C1-6)alkyl (wherein the heteroaryl group maybe optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy, C1-6 haloalkoxy, C1-6 alkylsulfonyl, C1-6 alkylsulfinyl, C1-6 alkylthio, C1-6 alkoxycarbonyl, C1-6 alkylcarbonylamino, arylcarbonyl, or two adjacent positions on the heteroaryl system maybe cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen) or heteroaryl (which may be optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy or C1-6 haloalkoxy, C1- 4 alkoxycarbonyl C1-6 alkylcarbonylamino, phenyloxycarbonylamino (wherein the phenyl group is optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino), amino, C1-6 alkylarnino or phenylamino (wherein the phenyl group is optionally substituted halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino)). More preferably R1 is C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy(C1-6)alkyl, heteroary^Ci. 3)alkyl (wherein the heteroaryl group may be optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy, C1-6 haloalkoxy, C1-6 alkylsulfonyl, C1-6 alkoxycarbonyl, or two adjacent positions on the heteroaryl system may be cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen), phenyl(C1-3)alkyl (wherein the phenyl group may be optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino, dialkylamino, C1-6 alkylsulfonyl, C1-6 alkoxycarbonyl, or two adjacent positions on the phenyl ring may be cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen), phenyl (which may be optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino, dialkylamino, C1-6 alkylsulfonyl, C1-6 alkoxycarbonyl, or two adjacent positions on the phenyl ring may be cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen), heteroaryl (which maybe optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy, C1-6 haloalkoxy, C1-6 alkylsulfonyl, C1-6 alkoxycarbonyl, or two adjacent positions on the heteroaryl system maybe cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen), C1-6 alkoxy, C1-6 haloalkoxy, C2-6 alkenyl, heterocyclyl (optionally substituted by halo, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy or C1-6 haloalkoxy), C1-6 alkylthio, C1-6 haloalkylthio or NR13R14 where R13 and R14 are independently hydrogen, C1-6 alkyl or C1-6 haloalkyl, C1-6 alkoxy(C1-6)alkyl, C2-6 alkylcarbonyl, phenylcarbonyl, (where the phenyl is optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino), phenyl(C1-3)alkyl (wherein the phenyl group may be optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino, dialkylamino, C1-6 alkylsulfonyl, C1-6 alkoxycarbonyl, or two adjacent positions on the phenyl ring maybe cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen) or heteroaryl(C1-3)alkyl (wherein the heteroaryl group may be optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy, C1-6 haloalkoxy, C1-6 alkylsulfonyl, C1-6 alkylsulfmyl, C1-6 alkylthio, C1-6 alkoxycarbonyl, C1-6 alkylcarbonylamino, arylcarbonyl, or two adjacent positions on the heteroaryl system maybe cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen).
Even more preferably R1 is C1-6 alkyl, C1-6 haloalkyl, heteroaryl(C1-3)alkyl (wherein the heteroaryl group may be optionally substituted by halo, cyano, C1-6 alkyl, C1-6 haloalkyl and where the heteroaryl group is a thiazole, pyridine, pyrimidine, pyrazine or pyridazine ring), heteroaryl (optionally substituted by halo, cyano, C1-6 alkyl, C1-6 haloalkyl and where the heteroaryl group is a pyridine, pyrimidine, 2,1,3-benzoxadiazole, pyrazine or pyridazine ring), C1-6 alkoxy, C1-6 alkoxy(C1-6)alkyl, C1-6 alkylamino, C1-6 alkyoxy(C1-6)alkylamino or heteroaryl(C1-3)alkylamino (wherein the heteroaryl group may be optionally substituted by halo, cyano, C1-6 alkyl, C1-6 haloalkyl and where the heteroaryl group is a thiazole, pyridine, pyrimidine, pyrazine or pyridazine ring).
Most preferably R1 is pyridyl (optionally substituted by halo, C1-3 alkyl or C1-3 haloalkyl) especially halo-substituted pyridyl. It is preferred that : R R2 is hydrogen, hydroxy, C1-6 alkyl or C1-6 haloalkyl. More preferably R2 is hydrogen, C1-4 alkyl or C1-4 haloalkyl.
Even more preferably R2 is hydrogen or C1-4 alkyl.
Yet more preferably R2 is independently hydrogen or methyl.
Most preferably R2 is hydrogen. It is preferred that R3 is hydrogen, hydroxy, halogen, C1-6 alkyl or C1-6 haloalkyl.
More preferably R3 is hydrogen, hydroxy, halogen,C1-4 alkyl or C1-4 haloalkyl.
Even more preferably R3 is hydrogen or C1-4 alkyl.
Yet more preferably R3 is independently hydrogen or methyl.
Most preferably R3 is hydrogen. R3a is preferably hydrogen or R3 and R3a together form a double bond.
Preferably each R4 is independently halogen, cyano, C1-8 alkyl, C1-8 haloalkyl, cyanoalkyl, C1-6 alkoxy(C1-6)alkyl, C3-7 cycloalkyl(C1-6)alkyl, C5-6 cycloalkenyl(C1-6)alkyl, C3-6 alkenyloxy(C1-6)alkyl, C3-6 alkynyloxy(C1-6)alkyl, aryloxy(C1-6)alkyl, C1-6 carboxyalkyl, C1-6 alkylcafbonyl(C1-6)alkyl, C2-6 alkenylcarbonyl(C1-6)alkyl, C2-6 alkynylcarbonyl(C1-6)- alkyl, C1-6 alkoxycarbonyl(C1-6)alkyl, C3-6 alkenyloxycarbonyl(C1-6)alkyl, C3-6 alkynyloxycarbonyl(C1-6)alkyl, aryloxycarbonyl(C1-6)alkyl, C1-6 alkylthio(C1-6)alkyl, C1-6 alkylsulfinyl(C1-6)alkyl, C1-6 alkylsulfonyl(C1-6)alkyl5 ammocarbony^C^alkyl, C1-6 alkylaminocarbonyl(C1-6)alkyl, di(C1-6)alkylaminocarbonyl(C1-6)alkyl, phenyl(C1-4)alkyl (wherein the phenyl group is optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino), heteroaryl(C1-4)alkyl (wherein the heteroaryl group is optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy or C1-6 haloalkoxy), heterocyclyl(C1-4)alkyl
(wherein the heterocyclyl group is optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy or C1-6 haloalkoxy), C2-6 alkenyl, aminocarbonyl(C2-6)alkenyl, C1-6 alkylaminocarbonyl(C2-6)alkenyl, di(C1-6)alkylaminocarbonyl(C2-6)alkenyl, phenyl(C2-4)- alkenyl, (wherein the phenyl group is optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino), C2-6 alkynyl, trimethylsilyl(C2-6)alkynyl, aminocarbonyl(C2-6)alkynyl, C1-6 alkylaminocarbonyl(C2.6)alkynyl, di(C1_6)alkylaminocarbonyl(C2-6)alkynyl, C1-6 alkoxycarbonyl, C3-7 cycloalkyl, C3-7 halocycloalkyl, C3-7 cyanocycloalkyl, C1-3 alkyl(C3-7)- cycloalkyl, C1-3 alkyl(C3-7)halocycloalkyl,phenyl (optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino), heteroaryl (optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy or C1-6 haloalkoxy), heterocyclyl (wherein the heterocyclyl group is optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy or C1-6 haloalkoxy), or 2 adjacent groups R4 together with the carbon atoms to which they are attached form a 4, 5, 6 or 7 membered carbocylic or heterocyclic ring which may be optionally substituted by halogen, C1-8 alkoxy, C1-6 haloalkoxy, phenoxy (optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy or C1-6 haloalkoxy), heteroaryloxy (optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy or C1-6 haloalkoxy), C1-8 alkylthio or R19R20N where R19 and R20 are, independently, hydrogen, C1-8 alkyl, C3-7 cycloalkyl, C3-6 alkenyl, C3-6 alkynyl, C2-6 haloalkyl, C1-6 alkoxycarbonyl or R19 and R20 together with the N atom to which they are attached form a five, six or seven-membered heterocyclic ring which may contain one or two further heteroatoms selected from O, N or S and which may be optionally substituted by one or two C1-6 alkyl groups; n is 0, 1, 2 or 3.
More preferably each R4 is independently halogen, cyano, C1-8 alkyl, C1-8 haloalkyl, C1-8 cyanoalkyl, C1-6 alkoxy(C1-6)alkyl, C2-6 alkynyl, trimethylsilyl(C2-6)alkynyl, C1-6 alkoxycarbonyl, C3-7 cycloalkyl, C1-3 alkyl (C3-7) cycloalkyl, phenyl (optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino), heterocyclyl (optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy or C1-6 haloalkoxy), C1-8 alkoxy, C1-6 haloalkoxy, phenoxy (optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino), heteroaryloxy (optionally substituted by halo, nitro, cyano, C1-3 alkyl, C1-3 haloalkyl, C1-3 alkoxy or C1-3 haloalkoxy), Oi(C1- 8)alkylamino, or 2 adjacent groups R4 together with the carbon atoms to which they are attached form a 4, 5, 6 or 7 membered carbocylic or heterocyclic ring which may be optionally substituted by halogen; n is 0, 1, 2 or 3. Even more preferably each R4 is independently halogen, cyano, C1-8 alkyl, C1-8 haloalkyl, C1-8 cyanoalkyl, C1-6 alkoxy(C1-6)alkyl, C2-6 alkynyl, heterocyclyl (optionally substituted by C1-6 alkyl), C1-8 alkoxy, C1-6 haloalkoxy, phenoxy (optionally substituted by halo, cyano, C1-3 alkyl or C1-3 haloalkyl), heteroaryloxy (optionally substituted by halo, cyano, C1-3 alkyl or C1-3 haloalkyl), di(Ci-8)alkylamino or 2 adjacent groups R4 together with the carbon atoms to which they are attached form a 4, 5, 6 or 7 membered carbocylic or heterocyclic ring which may be optionally substituted by halogen; n is 0, 1, 2 or 3.
Yet more preferably each R4 is independently fluoro, chloro, bromo, cyano, C1-4 alkyl, C1-4 haloalkyl, C1-4 cyanoalkyl or C1-3 alkoxy(C1-3)alkyl; n is 0, 1, 2 or 3, preferably 0, l or 2. Most preferably each R4 is independently fluoro, chloro, bromo, C1-4 alkyl or C1-4 haloalkyl; n is 1, 2 or 3, preferably 1 or 2.
Preferably R8 is C1-10 alkyl, C1-10 haloalkyl, aryl(C1-6)alkyl (wherein the aryl group is optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino), heteroaryl(C1-6)alkyl (wherein the heteroaryl group is optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino), arylcarbonyl-(C1-6)alkyl (wherein the aryl group may be optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1- 4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino and the alkyl group may be optionally substituted by aryl), C2-8 alkenyl, C2-8 haloalkenyl, aryl(C2-6)-alkenyl (wherein the aryl group is optionally substituted halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino, C1-6 alkoxycarbonyl, or two adjacent substituents can cyclise to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring), heteroaryl(C2-6)-alkenyl (wherein the heteroaryl group is optionally substituted halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino, C1-6 alkoxycarbonyl, or two adjacent substituents can cyclise to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring), C2-6 alkynyl, phenyl(C2-6)alkynyl (wherein the phenyl group is optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino), C3-7 cycloalkyl, C1-6 alkoxycarbonyl, C1-6 alkylcarbonyl, C1-6 haloalkylcarbonyl or aryl(C2-6)alkenylcarbonyl (wherein the aryl group may be optionally substituted halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino), or -C(R51)(R52)-[CR53=CR 54]z-R55 where z is 1 or 2, R51 and R52 are each independently H, halo or C1-2 alkyl, R53 and R54 are each independently H, halogen, C1-4 alkyl or C1-4 haloalkyl and R55 is optionally substituted aryl or optionally substituted heteroaryl.
More preferably R8 is phenyl(C1-4)alkyl (wherein the phenyl group is optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino), heteroaryl(C1-6)alkyl (wherein the heteroaryl group is optionally substituted halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino), phenyl(C2-6)alkenyl (wherein the phenyl group is optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino), heteroaryl(C2-6)alkenyl (wherein the heteroaryl group is optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino) or phenyl(C2-6)alkynyl (wherein the phenyl group is optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino, or - C(R51)(R52)-[CR53=CR54]z-R55 where z is 1 or 2, R51 and R52 are each independently H, halo or C1-2 alkyl, R53 and R54 are each independently H, halogen, C1-4 alkyl or C1-4 haloalkyl and R55 is optionally substituted aryl or optionally substituted heteroaryl. Most preferably R8 is -C(R51)(R52)-[CR53=CR54]z-R55 where z is 1 or 2, preferably 1, R51 and R52 are each independently H or C1-2 alkyl, R53 and R54 are each independently H, halogen, C1-4 alkyl or C1-4 haloalkyl and R55 is phenyl substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino or heteroaryl substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino.
R51 and R52 are preferably hydrogen.
R53 and R54 are preferably hydrogen or halogen, especially hydrogen.
R55 is preferably phenyl substituted with one to three substituents selected from halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino.
Preferably each Ra is independently halo, cyano, C1-3 alkyl, hydroxy or two Ra groups together with the carbon atom to which they are attached form =O, =S, =NRb, =CRcRd where Rb, Rc and Rd are idependently H or optionally substituted alkyl, and p is 0, 1 or 2. More preferably each Ra is independently fluoro, methyl, hydroxy or two Ra groups together with the carbon atom to which they are attached form a carbonyl group and p is 0, 1 or 2.
Most preferably p is 0.
It is preferred that that ring
Figure imgf000016_0001
is a 6-membered aromatic ring or is 5 or 6 membered heteroaromatic ring wherein the ring members other than Z and Z' are each independently CH, S, N, NR4, O, or CR4 provided that there are no more than one O or S atoms present in the ring. More preferably the ring
Figure imgf000016_0002
is a benzene, pyridine, pyrimidine, pyrazine, pyridazine, triazine, pyrrole, imidazole, quinoline, isoquinoline, thiophene, pyrazole, oxazole, thiazole, isoxazole, isothiazole, [l,2,3]triazole, [l,2,3]oxadiazole or [l,2,3]thiadiazole. Most preferably the ring
Figure imgf000017_0001
is a benzene, pyridine, pyrimidine, pyrazine, thiophene or pyrazole ring, especially a benzene ring.
Certain compounds of formula (I) are novel and as such form a further aspect of the invention. One group of novel compounds are compounds of formula F
Figure imgf000017_0002
wherein R1, R2, R3, R3a, R4 Ra, T, Y, n and p are as defined in relation to formula I and R8 is -C(R51)(R52)-[CR53=CR54]z-R55 where z is 1 or 2, preferably 1, R51 and R52 are each independently H or C1-2 alkyl, R53 and R54 are each independently H, halogen, C1-4 alkyl or C1-4haloalkyl and R55 is phenyl substituted by halogen, C1-4 alkyl, C1-4 alkoxy, Cμ haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino or heteroaryl substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino or salts or N-oxides thereof. The compounds in Tables I to XCV below illustrate the compounds of the invention.
Table I prpvides 1127 compounds of formula Ia
Figure imgf000017_0003
wherein the values of R", R >4a , r R>44bD, τ R>44cC and R 44dα are given in Table 1. Table 1
Figure imgf000018_0001
Figure imgf000019_0001
Figure imgf000020_0001
Figure imgf000021_0001
Figure imgf000022_0001
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000027_0001
Figure imgf000028_0001
Figure imgf000029_0001
Figure imgf000030_0001
Figure imgf000031_0001
Figure imgf000032_0001
Figure imgf000033_0001
Figure imgf000034_0001
Figure imgf000035_0001
Figure imgf000036_0001
Figure imgf000037_0001
Figure imgf000038_0001
Figure imgf000039_0001
Figure imgf000040_0001
Figure imgf000041_0001
Figure imgf000042_0001
Figure imgf000043_0001
Figure imgf000044_0001
Figure imgf000045_0001
Figure imgf000046_0001
Figure imgf000047_0001
Figure imgf000048_0001
Figure imgf000049_0001
Figure imgf000050_0001
Figure imgf000051_0001
Figure imgf000052_0001
Figure imgf000053_0001
Figure imgf000054_0001
Figure imgf000055_0001
Figure imgf000056_0001
Figure imgf000057_0001
Figure imgf000058_0001
Figure imgf000059_0002
Table II provides 1127 compounds of formula Ib
Figure imgf000059_0001
wherein the values of R8, R4a, R4\ R4° and R4d are given in Table 1.
Table III provides 1127 compounds of formula Ic
Figure imgf000060_0001
wherein the values of Rs, R > 4a , T Rj 4b , T RO 44cC and R 4d α are given in Table 1
Table IV provides 1127 compounds of formula Id
Figure imgf000060_0002
wherein the values of R , R >4a , r R>4b , τ R>4c and R 44dα are given in Table 1
Table V provides 1127 compounds of formula Ie
wherein and the values of R8, R4a, R4b, R4c and R4d are given in Table 1
Table VI provides 1127 compounds of formula If
Figure imgf000061_0001
wherein the values of Rs, R >44aa, τ Rj4b , r R>44cC and R 4wd are given in Table 1
Table VII provides 1127 compounds of formula Ig
Figure imgf000061_0002
wherein the values of R8, R >4a, τ R)4b , τ Rj44cC and R 44dα are given in Table 1
Table VIII provides 1127 compounds of formula Ih
Figure imgf000061_0003
wherein the values of R8, R4a, R4b, R4c and R4d are given in Table 1
Table IX provides 1127 compounds of formula Ii
Figure imgf000062_0001
wherein the values of R8, R4a, R4b, R4c and R4d are given in Table 1.
Table X provides 1127 compounds of formula Ij
Figure imgf000062_0002
wherein the values of R8, R >44aa, τ R>4b , τ R)44cC and R 44dα are given in Table 1
Table XI provides 1127 compounds of formula Ik
Figure imgf000062_0003
wherein the values of R8, R4a, R4b, R4c and R4d are given in Table 1.
Table XII provides 1127 compounds of formula Il
Figure imgf000063_0001
wherein the values of Rδ, R >4a , D R4b , - Rr,44c0 and R 44dα are given in Table 1
Table XIII provides 1127 compounds of formula Im
Figure imgf000063_0002
wherein the values of R\ R >4a , r R>44bD, 1 R,4400 and R 44dα are given in Table 1
Table XIV provides 1127 compounds of formula hi
Figure imgf000063_0003
wherein the values of R5, R4a, Rw, R4C and R are given in Table 1.
Table XV provides 1127 compounds of formula Io
Figure imgf000064_0001
wherein the values of R > 85, - Rr>4a , r R>4b , τ R>44cC and R 44dα are given in Table 1
Table XVI provides 1127 compounds of formula Ip
Figure imgf000064_0002
wherein the values of R8, R >4a , τ R>44b, τ R>44cC and R 44dα are given in Table 1
Table XVII provides 1127 compounds of formula Iq
Figure imgf000064_0003
wherein the values of R8, R4a, R4b, R4c and R4d are given in Table 1.
Table XVIII provides 1127 compounds of formula Lr
Figure imgf000065_0001
wherein the values of R8, R4a, R4b, R4c and R4d are given in Table 1.
Table XIX provides 1127 compounds of formula Is
Figure imgf000065_0002
wherein the values of R8, R ,44aa, r R>44bD, τ R>44cC and R 44dα are given in Table 1.
Table XX provides 1127 compounds of formula It
Figure imgf000065_0003
wherein the values of Rs, R 44aa, r R>44bD, τ R>44cC and A D R44dQ are given in Table 1.
Table XXI provides 1127 compounds of formula Iu
Figure imgf000066_0001
wherein the values of R8, R >4a , τ R>4b , τ R>44cC and R are given in Table 1
Table XXII provides 1127 compounds of formula Iv
Figure imgf000066_0002
wherein the values of Rs, R 4a, R >4b , τ R>44cc and j τ R>44dα are given in Table 1.
Table XXIII provides 1127 compounds of formula Iw
Figure imgf000066_0003
wherein the values of R8, R4a, R4b, R4c and R4d are given in Table 1.
Table XXIV provides 1127 compounds of formula Ix
Figure imgf000067_0001
wherein the values of R8, R4a , R4b , R4c and R4d are given in Table 1. Table XXV provides 1127 compounds of formula Iaa
Figure imgf000067_0002
wherein the values of Rs, R j4a , n R4b , τ R»44cC and R 44dα are given in Table 1
Table XXVI provides 1127 compounds of formula lab
Figure imgf000067_0003
wherein the values of R8, R4a, R4b, R4c and R4d are given in Table 1.
Table XXVII provides 1127 compounds of formula lac
Figure imgf000068_0001
wherein the values of R8, R , R 4b , T R544cC and R >44dα are given in Table 1
Table XXVIII provides 1127 compounds of formula lad
Figure imgf000068_0002
wherein the values of R8, R >4a, τ R> 4b , T RTj 4 4CC and R 44dα are given in Table 1
Table XXIX provides 1127 compounds of formula Iae
Figure imgf000068_0003
wherein and the values of R8, R4a, R4b, R4c and R4d are given in Table 1
Table XXX provides 1127 compounds of formula Iaf
Figure imgf000069_0001
wherein the values of R8, R4a, R4b, R4c and R4d are given in Table 1
Table XXXI provides" 1127 compounds of formula lag
Figure imgf000069_0002
wherein the values of R8, R >4a , τ R>4b , r R>44cC and R 44dα are given in Table 1
Table XXXII provides 1127 compounds of formula Iah
Figure imgf000069_0003
wherein the values of R8, R4a, R4b, R4c and R4d are given in Table 1
Table XXXIII provides 1127 compounds of formula Iai
Figure imgf000070_0001
wherein the values of R8, R4a, R4b, R4c and R4d are given in Table 1.
Table XXXTV provides 1127 compounds of formula Iaj
Figure imgf000070_0002
wherein the values of R8, R , R , R4C and R 44dα are given in Table 1.
Table XXXV provides 1127 compounds of formula Iak
Figure imgf000070_0003
wherein the values of R8, R4a, R4b, R4c and R4d are given in Table 1.
Table XXXVI provides 1127 compounds of formula IaI
Figure imgf000071_0001
wherein the values of R\ R >4a, - Rr>44bb, τ R)44cC and R 44dα are given in Table 1
Table XXXVII provides 1127 compounds of formula lam
Figure imgf000071_0002
wherein the values of R8, R >4a , τ R)44bD, τ R)44cC and R 44dα are given in Table 1
Table XXXVIII provides 1127 compounds of formula Ian
Figure imgf000071_0003
wherein the values of R8, R4a, R4b, R4c and R4d are given in Table 1.
Table XXXIX provides 1127 compounds of formula Iao
Figure imgf000072_0001
wherein the values of Rs, R >4a, τ R>4b , T Rj4 4CC and R4d are given in Table 1.
Table XL provides 1127 compounds of formula lap
Figure imgf000072_0002
wherein the values of R , R >4a a, τ Rj4b , r R>4c c and R 44dα are given in Table 1.
Table XLI provides 1127 compounds of formula Iaq
Figure imgf000072_0003
wherein the values of R8, R 144aa, r R» 44bD, τ R> 44o0 and R4d are given in Table 1.
Table XLII provides 1127 compounds of formula Iar
Figure imgf000073_0001
wherein the values of R8, R )4a, τ R>44bD, τ R)44cC and R 44dα are given in Table 1.
Table XLIII provides 1127 compounds of formula las
Figure imgf000073_0002
wherein the values of R*, R j4a, r R>44bb, τ R>44cC and R 44dα are given in Table 1.
Table XLIV provides 1127 compounds of formula Iat
Figure imgf000073_0003
wherein the values of Rb, R 4a , T Rj 4b , T R) 4c and R ,4d are given in Table 1.
Table XLV provides 1127 compounds of formula Iau
Figure imgf000074_0001
wherein the values of R8, R ,4a, r R>44b0, τ R>44cC and ΕC 4da are given in Table 1
Table XLVI provides 1127 compounds of formula lav
Figure imgf000074_0002
wherein the values of R8, R 4a , τ R,4b , τ R>44cc and J τ R>44dα are given in Table 1
Table XLVII provides 1127 compounds of formula law
Figure imgf000074_0003
wherein the values of R8, R4a, R4b, R4C and R4d are given in Table 1.
Table XLVIII provides 1127 compounds of formula lax
Figure imgf000075_0001
wherein the values of R8, R4a , R4b , R4c and R4d are given in Table 1. Table IL provides 1127 compounds of formula Iaaa
Figure imgf000075_0002
Table L provides 1127 compounds of formula Iaab
Figure imgf000075_0003
wherein the values of R8, R4a, R4b, R4c and R4d are given in Table 1.
Table LI provides 1127 compounds of formula Iaac
Figure imgf000076_0001
wherein the values of R\ R 44aa, τ R->44bb, r R>44o0 and i τ R>44dα are given in Table 1
Table LII provides 1127 compounds of formula Iaad
Figure imgf000076_0002
wherein the values of R8, R >4a, τ Rj4b , r R>44cC and R 44dα are given in Table 1
Table LIII provides 1127 compounds of formula Iaae
Figure imgf000076_0003
wherein and the values of R8, R4a, R4b, R4c and R4d are given in Table 1
Table LIV provides 1127 compounds of formula Iaaf
Figure imgf000077_0001
wherein the values of R\ R > 4a , R π 4b , R π 44cC and R are given in Table 1
Table LV provides 1127 compounds of formula Iaag
Figure imgf000077_0002
wherein the values of R8, R ,4a , r R>4b , τ R,44cC and ΕC 4da are given in Table 1.
Table LVI provides 1127 compounds of formula Iaah
Figure imgf000077_0003
wherein the values of R8, R4a, R4b, R4c and R4d are given in Table 1
Table LVII provides 1127 compounds of formula Iaai
Figure imgf000078_0001
wherein the values of R8, R4a, R4b, R4c and R4d are given in Table 1.
Table LVIII provides 1127 compounds of formula Iaaj
Figure imgf000078_0002
wherein the values of R\ R >4a , τ R>4b , τ R)44ce and R 44dα are given in Table 1
Table LIX provides 1127 compounds of formula Iaak
Figure imgf000078_0003
wherein the values of R8, R4a, R4b, R4c and R4d are given in Table 1.
Table LX provides 1127 compounds of formula Iaal
Figure imgf000079_0001
wherein the values of R8, R >4a , τ R>4b , τ R>4*cc and R 44d are given in Table 1.
Table LXI provides 1127 compounds of formula Iaam
Figure imgf000079_0002
wherein the values of R8, R >4a , τ R>4b , τ R>4o and R 4^dα are given in Table 1.
Table LXII provides 1127 compounds of formula Iaan
Figure imgf000079_0003
wherein the values of R8, R4a, R4b, R4c and R4d are given in Table 1.
Table LXIII provides 1127 compounds of formula Iaao
Figure imgf000080_0001
wherein the values of R , R >4a , τ R>4b , - RD 44CC and R 44dα are given in Table 1.
Table LXIV provides 1127 compounds of formula Iaap
Figure imgf000080_0002
wherein the values of R8, R4a, R4b, R4c and R4d are given in Table 1.
Table LXV provides 1127 compounds of formula Iaaq
Figure imgf000080_0003
wherein the values of R8, R4a, R4b, R4c and R4d are given in Table 1.
Table LXVI provides 1127 compounds of formula Iaar
Figure imgf000081_0001
wherein the values of R\ R >4a , r R>4b , τ R)44cQ and R are given in Table 1.
Table LXVII provides 1127 compounds of formula Iaas
Figure imgf000081_0002
wherein the values of R8, R 14a , π R 44bD, τ R> 44cC and R 44dα are given in Table 1.
Table LXVIII provides 1127 compounds of formula Iaat
Figure imgf000081_0003
wherein the values of R8, R4a, R4b, R4c and R4d are given in Table 1.
Table LXIX provides 1127 compounds of formula Iaau
Figure imgf000082_0001
wherein the values of R8, R >4wa, D R4b , τ R>44cC and R 44dα are given in Table 1
Table LXX provides 1127 compounds of formula Iaav
Figure imgf000082_0002
wherein the values of R8, R4a, R4b, R4c and R4d are given in Table 1.
Table LXXI provides 1127 compounds of formula Iaaw
Figure imgf000082_0003
wherein the values of R8, R4a, R4b, R4c and R4d are given in Table 1.
Table LXXII provides 1127 compounds of formula Iaax
Figure imgf000083_0001
wherein the values of R8, R 44aa , r R>44bD , r R»44cC and J τ R>44dα are given in Table 1
Table LXXIII provides 506 compounds of formula Iy
Figure imgf000083_0002
wherein the values of R8 and R1 are given in Table 73.
Table 73
Figure imgf000084_0001
Figure imgf000085_0001
Figure imgf000086_0001
Figure imgf000087_0001
Figure imgf000088_0001
Figure imgf000089_0001
Figure imgf000090_0001
Figure imgf000091_0001
Figure imgf000092_0001
Figure imgf000093_0001
Figure imgf000094_0001
Figure imgf000095_0001
Figure imgf000096_0001
Figure imgf000097_0001
Table LXXIV provides 506 compounds of formula Iya
Figure imgf000098_0001
wherein the values of R8 and R1 are given in Table 73.
Table LXXV provides 506 compounds of formula Iyb
Figure imgf000098_0002
wherein the values of R8 and R1 are given in Table 73. Table LXXVI provides 506 compounds of formula Iyc
Figure imgf000098_0003
wherein the values of R8 and R1 are given in Table 73. Table LXXVII provides 506 compounds of formula Iyd
Figure imgf000099_0001
wherein the values of R8 and R1 are given in Table 73. Table LXXVIII provides 506 compounds of formula lye
Figure imgf000099_0002
wherein the values of R8 and R1 are given in Table 73. Table LXXTX provides 506 compounds of formula Iyf
Figure imgf000099_0003
wherein the values of R8 and R1 are given in Table 73. Table LXXX provides 506 compounds of formula Iyg
Figure imgf000099_0004
wherein the values of R and R are given in Table 73. Table LXXXI provides 506 compounds of formula Iyh
Figure imgf000100_0001
wherein the values of R8 and R1 are given in Table 73. Table LXXXII provides 506 compounds of formula Iyi
Figure imgf000100_0002
wherein the values of R8 and R1 are given in Table 73. Table LXXXIII provides 506 compounds of formula Iyj
Figure imgf000100_0003
wherein the values of R and R are given in Table 73. Table LXXXIV provides 506 compounds of formula Iyk
Figure imgf000101_0001
wherein the values of R8 and R* are given in Table 73. Table LXXXV provides 506 compounds of formula IyI
Figure imgf000101_0002
wherein the values of R8 and R1 are given in Table 73.
Table LXXXVI provides 506 compounds of formula Iym
Figure imgf000101_0003
wherein the values of R8 and R1 are given in Table 73. Table LXXXVII provides 506 compounds of formula Iyn
Figure imgf000102_0001
wherein the values of R8 and R1 are given in Table 73. Table LXXXVIII provides 506 compounds of formula Iyo
Figure imgf000102_0002
wherein the values of R8 and R1 are given in Table 73. Table LXXXTX provides 506 compounds of formula Iyp
Figure imgf000102_0003
wherein the values of R8 and R1 are given in Table 73. Table XC provides 506 compounds of formula Iyq
Figure imgf000102_0004
(iyq) wherein the values of R8 and R1 are given in Table 73. Table XCI provides 506 compounds of formula Iyr
Figure imgf000103_0001
wherein the values of R8 and R1 are given in Table 73. Table XCII provides 506 compounds of formula Iys
Figure imgf000103_0002
wherein the values of R8 and R1 are given in Table 73. Table XCIII provides 506 compounds of formula Iyt
Figure imgf000103_0003
wherein the values of R and R are given in Table 73. Table XCIV provides 506 compounds of formula Iyu
Figure imgf000104_0001
wherein the values of R8 and R1 are given in Table 73. Table XCV provides 506 compounds of formula Iyv
Figure imgf000104_0002
wherein the values of R8 and R1 are given in Table 73. The compounds of the invention may be made by a variety of methods. For example tetrahydropyridyl compounds of the general formula 1 maybe prepared according to the reactions of Scheme 1.
Scheme 1
Figure imgf000105_0001
CH3CN
Figure imgf000105_0002
Pl is R8 or is a suitable protective group for example a group such as BOC, benzyl or alkyl and S1 is the group (R4)n.
The synthetic route shown in Scheme 1 may also be used for the preparation of some compounds of formula I wherein the ring
Figure imgf000105_0003
is a 5 or 6 membered heteroaromatic ring instead of the phenyl group.
Thus a compound of formula 1 maybe obtained from a compound of formula 2 by reaction with a suitable electrophilic species. Compounds of formula 1 where Y is a carbonyl group may be formed by the reaction of compounds of formula 2 with a carboxylic acid derivative of formula R^C(O)-Z' where Z' is chloride, hydroxy, alkoxy or acyloxy at a temperature between 0°C and 150°C optionally in an organic solvent such as dichloromethane, chloroform or 1 ,2-dichloroethane, optionally in the presence of a tertiary amine base such as triethylamine or diisopropylethylamine and optionally in the presence of a coupling agent such as dicyclohexylcarbodiimide. Compounds of formula 1 where Y is a carbonyl group and R1 is an amino substituent of formula R' -NH- maybe formed by the reaction of compounds of formula 2 with an isocyanate of formula R' -N=C=O under similar conditions. Compounds of formula 1 where Y is a group of formula S(O)m maybe formed from compounds of formula 2 by treatment with compounds of formula
Figure imgf000106_0001
under similar conditions. Compounds of formula 1 where Y is a thiocarbonyl group and R1 is an amino substituent of formula R' -NH- may be formed by the reaction of compounds of formula 2 with an isothiocyanate of formula R' -N=C=S under similar conditions.
Alternatively compounds of formula 1 where Y is a thiocarbonyl group and R1 is a carbon substituent may be formed by treatment of compounds of formula 1 where Y is a carbonyl group and R1 is a carbon substituent with a suitable thionating agent such as Lawesson's reagent. In the above procedures, acid derivatives of the formula R^C(O)-Z', isocyanates of formula R' -N=C=O, isothiocyanates of formula R' -N=C=S and sulfur electrophiles of formula R^S(O)1n-Cl are either known compounds or may be formed from known compounds by known methods by a person skilled in the art.
Compounds of formula 2 may be prepared from compounds of formula 3 by cleavage of the amide bond, according to known methods by a person skilled in the art.
Alternatively compounds of formula 2 maybe prepared from compounds of formula 5 where Pl is R8 by cleavage of the amide bond, according to known methods by a person skilled in the art.
Compounds of formula 3 may be obtained from compounds of formula 4 by reaction with an alkylating agent of the formula R8 -L, where L is chloride, bromide, iodide or a sulfonate (e.g. mesylate or tosylate) or similar leaving group at a temperature of between ambient temperature and 100°C, typically 650C, in an organic solvent such as dichloromethane, chloroform or 1,2-dichloroethane in the presence of a tertiary amine base such as triethylamine or diisopropylethylamine and optionally catalysed by halide salts such as sodium iodide, potassium iodide or tetrabutylammonium iodide. Alternatively, a compound of formula 4 may be reacted with an aldehyde of the formula R -CHO at a temperature between ambient temperature and 100°C in an organic solvent such as tetrahydrofuran or ethanol or mixtures of solvents in the presence of a reducing agent such as borane-pyridine complex, sodium borohydride, sodium (triacetoxy)borohydride, sodium cyanoborohydride or such like, to produce a compound of formula 3 where R is CH2-R.
Compounds of formula 4 may be prepared from compounds of formula 5 where Pl is benzyl or alkyl by a dealkylation reaction, according to known methods by a person skilled in the art. Compounds of formula 4 maybe prepared from compounds of formula 5 where Pl is
BOC by treatment with an acid such as CF3COOH, according to known methods by a person skilled in the art.
Alternatively, compounds of formula 4 may be formed by the reaction of compounds of formula 6 where P 1 is BOC by treatment with HCl or H2SO4 in AcOH at a temperature between 0°C and 15O0C optionally in an inert organic solvent.
Compounds of formula 5 may be prepared from compounds of formula 6 where Pl is benzyl or alkyl by a H2O elimination reaction, according to known methods by a person skilled in the art. Most favourable is the treatment of a compound of formula 6 with cone. HCl or H2SO4 in AcOH at a temperature between 0°C and 150°C.
Alternatively, compounds of formula 5 maybe prepared from compounds of formula 6 by treatment with SOCl2, according to known methods by a person skilled in the art.
Alternatively, compounds of formula 5 may be formed by the reaction of compounds of formula 9 with a carboxylic acid derivative of formula t-Bu-C(O)-Z" where Z" is chloride, hydroxy, alkoxy or acyloxy at a temperature between 0°C and 150°C optionally in an inert organic solvent.
Compounds of formula 6 maybe prepared from compounds of formula 7 by treatment of lithiated compounds of formula 7 with a piperidinone at a temperature between - 10O0C and O0C optionally in an inert organic solvent, according to known methods by a person skilled in the art.
Compounds of formula 7 and formula 8 are known or may be made from known compounds by known methods.
Alternatively compounds of formula 1 may be formed by alkylation of compounds of formula 11 as described above for compounds of formula 3. Compounds of formula 11 may be prepared from compounds of formula 10 where P 1 is benzyl or alkyl by a dealkylation reaction, according to known methods by a person skilled in the art. Compounds of formula 10 maybe prepared from compounds of formula 9 by methods described above for the conversion of compounds of formula 2 to compounds of formula 1.
Compounds of formula 9 maybe prepared from compounds of formula 6 by a H2O elimination reaction, according to known methods by a person skilled in the art. Most favourable is the treatment of a compound of formula 6 with aqueous HCl or H2SO4 in AcOH at a temperature between 0°C and 150°C or with a base in H2O and an appropriate solvent.
Certain compounds of formula 2, formula 3, formula 4, formula 5, formula 6, formula 9, formula 10 and formula 11 are novel and as such form a further aspect of the invention.
4-Hydroxy-piperidinyl compounds of the general formula 1 may be prepared according to the reactions of Scheme 2 using synthetic methodologies known by a person skilled in the art and as described above.
Scheme 2
CH3CN
Figure imgf000109_0001
Figure imgf000109_0002
Pl is R8 or is a suitable protective group for example a group such as BOC, benzyl or alkyl and S1 is the group (R4)n.
The synthetic route shown in Scheme 2 may also be used for the preparation of some compounds of formula I wherein the ring
Figure imgf000109_0003
is a 5 or 6 membered heteroaromatic ring instead of the phenyl group.
Certain compounds of formula 12, formula 13, formula 14, formula 15, formula 16, and formula 17 are novel and as such form a further aspect of the invention. Piperidinyl compounds of the general formula 1 maybe prepared according to the reactions of Scheme 3 using synthetic methodologies known by a person skilled in the art and as described above.
Scheme 3
CH3CN
Figure imgf000110_0001
Pl is R8 or is a suitable protective group for example a group such as BOC, benzyl or alkyl and S1 is the group (R4)n.
The synthetic route shown in Scheme 3 may also be used for the preparation of some compounds of formula I wherein the ring
Figure imgf000110_0002
is a 5 or 6 membered heteroaromatic ring instead of the phenyl group. Certain compounds of formula 18, formula 19, formula 20, formula 21, formula 22, formula 23 and formula 24 are novel and as such form a further aspect of the invention. Compounds where the ring
Figure imgf000111_0001
is a 5 or 6 membered heteroaromatic ring instead of the phenyl group can be prepared by synthethic routes shown in Scheme 1 - 3 or many other routes and methods known to a person skilled in the art. For example 2H-pyrazol-3-yl derivatives can be prepared as shown in Scheme 4.
Scheme 4
Figure imgf000111_0002
26 27
Figure imgf000111_0003
25 1
Certain compounds of formula 25 are novel and as such form a further aspect of the invention.
The skilled person will readily recognise that it is possible to convert one compound of formula 1 wherein R2 is H or an intermediate of Schemes 1 - 4 to other compounds of - Ill -
formula I or intermediates thereof. Examples of such transformations are given in Schemes 5, 6 and 7 in which the R groups have the meanings as defined for a compound of formula I above.
Scheme 5
Figure imgf000112_0001
Scheme 6
Figure imgf000112_0002
Scheme 7
Figure imgf000112_0003
.Cl
OCN
Figure imgf000112_0004
Alternatively piperidinyl-aniline derivatives of the general formula 1 may be prepared according to the reactions of Schemes 8 - 13 where S is the group (R4)n using synthetic methodologies known by a person skilled in the art and as described above.
A key step in these synthetic routes is a Suzuki coupling reaction to prepare tetrahydroρyridin-4-yl-aniline derivatives. Other cross coupling reactions, such as Stille and Negishi couplings, maybe applied as well. The boronate reagents may be prepared as described in the literature; for example P.R Eastwood, THL 41, 3705 (2000). Examples of coupling reactions are given in Examples 21-23 which describe the synthesis of the compounds in Tables EX23.1 - EX23.11.
Figure imgf000113_0001
Scheme 9:
Figure imgf000114_0001
Scheme 10:
Figure imgf000114_0002
TFA
Figure imgf000114_0003
Scheme 11:
Figure imgf000115_0001
Scheme 12:
Figure imgf000116_0001
TFA
Figure imgf000116_0002
Scheme 13:
Figure imgf000116_0003
Instead of the BOC group other suitable protective groups maybe used.
The synthetic routes shown in Scheme 8-13 may also be used for the preparation of compounds of formula I wherein the ring
Figure imgf000116_0004
is a 5 or 6 membered heteroaromatic ring instead of the phenyl group.
The compounds of formula (I) can be used to combat and control infestations of insect pests such as Lepidoptera, Diptera, Hemiptera, Thysanoptera, Orthoptera, Dictyoptera, Coleoptera, Siphonaptera, Hymenoptera and Isoptera and also other invertebrate pests, for example, acarine, nematode and mollusc pests. Insects, acarines, nematodes and molluscs are hereinafter collectively referred to as pests. The pests which may be combated and controlled by the use of the, invention compounds include those pests associated with agriculture (which term includes the growing of crops for food and fibre products), horticulture and animal husbandry, companion animals, forestry and the storage of products of vegetable origin (such as fruit, grain and timber); those pests associated with the damage of man-made structures and the transmission of diseases of man and animals; and also nuisance pests (such as flies).
Examples of pest species which may be controlled by the compounds of formula (I) include: Myzus persicae (aphid), Aphis gossypii (aphid), Aphis fabae (aphid), Lygus spp. (capsids), Dysdercus spp. (capsids), Nilaparvata lugens (planthopper), Nephotettixc incticeps (leafhopper), Nezara spp. (stinkbugs), Euschistus spp. (stinkbugs), Leptocorisa spp. (stinkbugs), Frankliniella occidentalis (thrip), Thrips spp. (thrips), Leptinotarsa decemlineata (Colorado potato beetle), Anthonomus grandis (boll weevil), Aonidiella spp. (scale insects), Trialeurodes spp. (white flies), Bemisia tabaci (white fly), Ostrinia nubilalis (European corn borer), Spodoptera littoralis (cotton leafworm), Heliothis virescens (tobacco budworm), Helicoverpa armigera (cotton bollworm), Helicoverpa zea (cotton bollworm), Sylepta derogata (cotton leaf roller), Pieris brassicae (white butterfly), Plutella xylostella (diamond back moth), Agrotis spp. (cutworms), Chilo suppressalis (rice stem borer), Locusta_ migratoria (locust), Chortiocetes terminifera (locust), Diabrotica spp. (rootworms), Panonychus ulmi (European red mite), Panonychus citri (citrus red mite), Tetranychus urticae (two-spotted spider mite), Tetranychus cinnabarinus (carmine spider mite), Phyllocoptruta oleivora (citrus rust mite), Polyphagotarsonemus lotus (broad mite), Brevipalpus spp. (flat mites), Boophilus microplus (cattle tick), Dermacentor variabilis (American dog tick), Ctenocephalides felis (cat flea), Liriomyza spp. (leafminer), Musca domestica (housefly), Aedes aegypti (mosquito), Anopheles spp. (mosquitoes), Culex spp. (mosquitoes), Lucillia spp. (blowflies), Blattella germanica (cockroach), Periplaneta americana (cockroach), Blatta orientalis (cockroach), termites of the Mastotermitidae (for example Mastotermes spp.), the Kalotermitidae (for example Neotermes spp.), the Rhinotermitidae (for example Coptotermes formosanus, Reticulitermes flavipes, R. speratu, R. virginicus, R. hesperus, and R. santonensis) and the Termitidae (for example Glohitermes sulphureus), Solenopsis geminata (fire ant), Monomorium pharaonis (pharaoh's ant), Damalinia spp. and Linognathus spp. (biting and sucking lice), Meloidogyne spp. (root knot nematodes), Globodera spp. and Heterodera spp. (cyst nematodes), Pratylenchus spp. (lesion nematodes), Rhodopholus spp. (banana burrowing nematodes), Tylenchulus spp. (citrus nematodes), Haemonchus contortus (barber pole worm), Caenorhabditis elegans _(vinegar eelworm), Trichostrongylus spp. (gastro intestinal nematodes) and Deroceras reticulatum (slug).
The invention therefore provides a method of combating and controlling insects, acarines, nematodes or molluscs which comprises applying an insecticidally, acaricidally, nematicidally or molluscicidally effective amount of a compound of formula (T), or a composition containing a compound of formula (I), to a pest, a locus of pest, or to a plant susceptible to attack by a pest, The compounds of formula (I) are preferably used against insects, acarines or nematodes.
The term "plant" as used herein includes seedlings, bushes and trees. In order to apply a compound of formula (I) as an insecticide, acaricide, nematicide or molluscicide to a pest, a locus of pest, or to a plant susceptible to attack by a pest, a compound of formula (I) is usually formulated into a composition which includes, in addition to the compound of formula (I), a suitable inert diluent or carrier and, optionally, a surface active agent (SFA). SFAs are chemicals which are able to modify the properties of an interface (for example, liquid/solid, liquid/air or liquid/liquid interfaces) by lowering the interfacial tension and thereby leading to changes in other properties (for example dispersion, emulsification and wetting). It is preferred that all compositions (both solid and liquid formulations) comprise, by weight, 0.0001 to 95%, more preferably 1 to 85%, for example 5 to 60%, of a compound of formula (I). The composition is generally used for the control of pests such that a compound of formula (I) is applied at a rate of from O.lg to 10kg per hectare, preferably from Ig to 6kg per hectare, more preferably from Ig to lkg per hectare. When used in a seed dressing, a compound of formula (I) is used at a rate of O.OOOlg to 1Og (for example 0.00 Ig or 0.05g), preferably 0.005g to 1Og, more preferably 0.005g to 4g, per kilogram of seed. In another aspect the present invention provides an insecticidal, acaricidal, nematicidal or molluscicidal composition comprising an insecticidally, acaricidally, nematicidally or molluscicidally effective amount of a compound of formula (I) and a suitable carrier or diluent therefor. The composition is preferably an insecticidal, acaricidal, nematicidal or molluscicidal composition.
In a still further aspect the invention provides a method of combating and controlling pests at a locus which comprises treating the pests or the locus of the pests with an insecticidally, acaricidally, nematicidally or molluscicidally effective amount of a composition comprising a compound of formula (I). The compounds of formula (I) are preferably used against insects, acarines or nematodes.
The compositions can be chosen from a number of formulation types, including dustable powders (DP), soluble powders (SP), water soluble granules (SG), water dispersible granules (WG), wettable powders (WP), granules (GR) (slow or fast release), soluble concentrates (SL), oil miscible liquids (OL), ultra low volume liquids (UL), emulsifiable concentrates (EC), dispersible concentrates (DC), emulsions (both oil in water (EW) and water in oil (EO)), micro-emulsions (ME), suspension concentrates (SC), aerosols, fogging/smoke formulations, capsule suspensions (CS) and seed treatment formulations. The formulation type chosen in any instance will depend upon the particular purpose envisaged and the physical, chemical and biological properties of the compound of formula (I). Dustable powders (DP) may be prepared by mixing a compound of formula (I) with one or more solid diluents (for example natural clays, kaolin, pyrophyllite, bentonite, alumina, montmorillonite, kieselguhr, chalk, diatomaceous earths, calcium phosphates, calcium and magnesium carbonates, sulphur, lime, flours, talc and other organic and inorganic solid carriers) and mechanically grinding the mixture to a fine powder. Soluble powders (SP) may be prepared by mixing a compound of formula (I) with one or more water-soluble inorganic salts (such as sodium bicarbonate, sodium carbonate or magnesium sulphate) or one or more water-soluble organic solids (such as a polysaccharide) and, optionally, one or more wetting agents, one or more dispersing agents or a mixture of said agents to improve water dispersibility/solubility. The mixture is then ground to a fine powder. Similar compositions may also be granulated to form water soluble granules (SG). Wettable powders (WP) may be prepared by mixing a compound of formula (I) with one or more solid diluents or carriers, one or more wetting agents and, preferably, one or more dispersing agents and, optionally, one or more suspending agents to facilitate the dispersion in liquids. The mixture is then ground to a fine powder. Similar compositions may also be granulated to form water dispersible granules (WG).
Granules (GR) may be formed either by granulating a mixture of a compound of formula (I) and one or more powdered solid diluents or carriers, or from pre-formed blank granules by absorbing a compound of formula (I) (or a solution thereof, in a suitable agent) in a porous granular material (such as pumice, attapulgite clays, fuller's earth, kieselguhr, diatomaceous earths or ground corn cobs) or by adsorbing a compound of formula (I) (or a solution thereof, in a suitable agent) on to a hard core material (such as sands, silicates, " mineral carbonates, sulphates or phosphates) and drying if necessary. Agents which are commonly used to aid absorption or adsorption include solvents (such as aliphatic and aromatic petroleum solvents, alcohols, ethers, ketones and esters) and sticking agents (such as polyvinyl acetates, polyvinyl alcohols, dextrins, sugars and vegetable oils). One or more other additives may also be included in granules (for example an emulsifying agent, wetting agent or dispersing agent).
Dispersible Concentrates (DC) may be prepared by dissolving a compound of formula (I) in water or an organic solvent, such as a ketone, alcohol or glycol ether. These solutions may contain a surface active agent (for example to improve water dilution or prevent crystallisation in a spray tank). Emulsifiable concentrates (EC) or oil-in-water emulsions (EW) may be prepared by dissolving a compound of formula (I) in an organic solvent (optionally containing one or more wetting agents, one or more emulsifying agents or a mixture of said agents). Suitable organic solvents for use in ECs include aromatic hydrocarbons (such as alkylbenzenes or alkylnaphthalenes, exemplified by SOLVESSO 100, SOLVESSO 150 and SOLVESSO 200; SOLVESSO is a Registered Trade Mark), ketones (such as cyclohexanone or methylcyclohexanone) and alcohols (such as benzyl alcohol, furfuryl alcohol or butanol), N-alkylpyrrolidones (such as N-methylpyrrolidone or N-octylpyrrolidone), dimethyl amides of fatty acids (such as C8-C10 fatty acid dimethylamide) and chlorinated hydrocarbons. An EC product may spontaneously emulsify on addition to water, to produce an emulsion with sufficient stability to allow spray application through appropriate equipment. Preparation of an EW involves obtaining a compound of formula (I) either as a liquid (if it is not a liquid at room temperature, it may be melted at a reasonable temperature, typically below 7O0C) or in solution (by dissolving it in an appropriate solvent) and then emulsifiying the resultant liquid or solution into water containing one or more SFAs, under high shear, to produce an emulsion. Suitable solvents for use in EWs include vegetable oils, chlorinated hydrocarbons (such as chlorobenzenes), aromatic solvents (such as alkylbenzenes or alkymaphthalenes) and other appropriate organic solvents which have a low solubility in water.
Microemulsions (ME) may be prepared by mixing water with a blend of one or more solvents with one or more SFAs, to produce spontaneously a thermodynamically stable isotropic liquid formulation. A compound of formula (I) is present initially in either the water or the solvent/SFA blend. Suitable solvents for use in MEs include those hereinbefore described for use in in ECs or in EWs. An ME may be either an oil-in- water or a water-in-oil system (which system is present may be determined by conductivity measurements) and may be suitable for mixing water-soluble and oil-soluble pesticides in the same formulation. An ME is suitable for dilution into water, either remaining as a microemulsion or forming a conventional oil-in-water emulsion. Suspension concentrates (SC) may comprise aqueous or non-aqueous suspensions of finely divided insoluble solid particles of a compound of formula (I). SCs may be prepared by ball or bead milling the solid compound of formula (I) in a suitable medium, optionally with one or more dispersing agents, to produce a fine particle suspension of the compound. One or more wetting agents may be included in the composition and a suspending agent may be included to reduce the rate at which the particles settle. Alternatively, a compound of formula (I) may be dry milled and added to water, containing agents hereinbefore described, to produce the desired end product.
Aerosol formulations comprise a compound of formula (I) and a suitable propellant (for example n-butane). A compound of formula (I) may also be dissolved or dispersed in a suitable medium (for example water or a water miscible liquid, such as n-propanol) to provide compositions for use in non-pressurised, hand-actuated spray pumps.
A compound of formula (I) may be mixed in the dry state with a pyrotechnic mixture to form a composition suitable for generating, in an enclosed space, a smoke containing the compound. Capsule suspensions (CS) may be prepared in a manner similar to the preparation of
EW formulations but with an additional polymerisation stage such that an aqueous dispersion of oil droplets is obtained, in which each oil droplet is encapsulated by a polymeric shell and contains a compound of formula (I) and, optionally, a carrier or diluent therefor. The polymeric shell may be produced by either an interfacial polycondensation reaction or by a coacervation procedure. The compositions may provide for controlled release of the compound of. formula (I) and they may be used for seed treatment. A compound of formula (I) may also be formulated in a biodegradable polymeric matrix to provide a slow, controlled release of the compound.
A composition may include one or more additives to improve the biological performance of the composition (for example by improving wetting, retention or distribution on surfaces; resistance to rain on treated surfaces; or uptake or mobility of a compound of formula (I)). Such additives include surface active agents, spray additives based on oils, for example certain mineral oils or natural plant oils (such as soy bean and rape seed oil), and blends of these with other bio-enhancing adjuvants (ingredients which may aid or modify the action of a compound of formula (I)).
A compound of formula (I) may also be formulated for use as a seed treatment, for example as a powder composition, including a powder for dry seed treatment (DS), a water soluble powder (SS) or a water dispersible powder for slurry treatment (WS), or as a liquid composition, including a flowable concentrate (FS), a solution (LS) or a capsule suspension (CS). The preparations of DS, SS, WS, FS and LS compositions are very similar to those of, respectively, DP, SP, WP, SC and DC compositions described above. Compositions for treating seed may include an agent for assisting the adhesion of the composition to the seed (for example a mineral oil or a film-forming barrier).
Wetting agents, dispersing agents and emulsifying agents maybe surface SFAs of the cationic, anionic, amphoteric or non-ionic type.
Suitable SFAs of the cationic type include quaternary ammonium compounds (for example cetyltrimethyl ammonium bromide), imidazolines and amine salts.
Suitable anionic SFAs include alkali metals salts of fatty acids, salts of aliphatic monoesters of sulphuric acid (for example sodium lauryl sulphate), salts of sulphonated aromatic compounds (for example sodium dodecylbenzenesulphonate, calcium dodecylbenzenesulphonate, butylnaphthalene sulphonate and mixtures of sodium di- zsopropyl- and tri-wopropyl-naphthalene sulphonates), ether sulphates, alcohol ether sulphates (for example sodium laureth-3-sulphate), ether carboxylates (for example sodium laureth-3-carboxylate), phosphate esters (products from the reaction between one or more fatty alcohols and phosphoric acid (predominately mono-esters) or phosphorus pentoxide (predominately di-esters), for example the reaction between lauryl alcohol and tetraphosphoric acid; additionally these products may be ethoxylated), sulphosuccinamates, paraffin or olefine sulphonates, taurates and lignosulphonates. Suitable SFAs of the amphoteric type include betaines, propionates and glycinates.
Suitable SFAs of the non-ionic type include condensation products of alkylene oxides, such as ethylene oxide, propylene oxide, butylene oxide or mixtures thereof, with fatty alcohols (such as oleyl alcohol or cetyl alcohol) or with alkylphenols (such as octylphenol, nonylphenol or octylcresol); partial esters derived from long chain fatty acids or hexitol anhydrides; condensation products of said partial esters with ethylene oxide; block polymers (comprising ethylene oxide and propylene oxide); alkanolamides; simple esters (for example fatty acid polyethylene glycol esters); amine oxides (for example lauryl dimethyl amine oxide); and lecithins.
Suitable suspending agents include hydrophilic colloids (such as polysaccharides, polyvinylpyrrolidone or sodium carboxymethylcellulose) and swelling clays (such as bentonite or attapulgite).
A compound of formula (I) may be applied by any of the known means of applying pesticidal compounds. For example, it may be applied, formulated or unformulated, to the pests or to a locus of the pests (such as a habitat of the pests, or a growing plant liable to infestation by the pests) or to any part of the plant, including the foliage, stems, branches or " roots, to the seed before it is planted or to other media in which plants are growing or are to be planted (such as soil surrounding the roots, the soil generally, paddy water or hydroponic culture systems), directly or it may be sprayed on, dusted on, applied by dipping, applied as a cream or paste formulation, applied as a vapour or applied through distribution or incorporation of a composition (such as a granular composition or a composition packed in a water-soluble bag) in soil or an aqueous environment.
A compound of formula (I) may also be injected into plants or sprayed onto vegetation using electrodynamic spraying techniques or other low volume methods, or applied by land or aerial irrigation systems. Compositions for use as aqueous preparations (aqueous solutions or dispersions) are generally supplied in the form of a concentrate containing a high proportion of the active ingredient, the concentrate being added to water before use. These concentrates, which may include DCs, SCs, ECs, EWs, MEs SGs, SPs, WPs, WGs and CSs, are often required to withstand storage for prolonged periods and, after such storage, to be capable of addition to water to form aqueous preparations which remain homogeneous for a sufficient time to enable them to be applied by conventional spray equipment. Such aqueous preparations may contain varying amounts of a compound of formula (I) (for example 0.0001 to 10%, by weight) depending upon the purpose for which they are to be used.
A compound of formula (I) may be used in mixtures with fertilisers (for example nitrogen-, potassium- or phosphorus-containing fertilisers). Suitable formulation types include granules of fertiliser. The mixtures suitably contain up to 25% by weight of the compound of formula (I) .
The invention therefore also provides a fertiliser composition comprising a fertiliser and a compound of formula (I).
The compositions of this invention may contain other compounds having biological activity, for example micronutrients or compounds having fungicidal activity or which possess plant growth regulating, herbicidal, insecticidal, nematicidal or acaricidal activity.
The compound of formula (I) may be the sole active ingredient of the composition or it may be admixed with one or more additional active ingredients such as a pesticide, fungicide, synergist, herbicide or plant growth regulator where appropriate. An additional active ingredient may: provide a composition having a broader spectrum of activity or increased persistence at a locus; synergise the activity or complement the activity (for example by increasing the speed of effect or overcoming repellency) of the compound of formula (I); or help to overcome or prevent the development of resistance to individual components. The particular additional active ingredient will depend upon the intended utility of the composition. Examples of suitable pesticides include the following: a) Pyrethroids, such as permethrin, cypermethrin, fenvalerate, esfenvalerate, deltamethrin, cyhalothrin (in particular lambda-cyhalothrin), bifenthrin, fenpropathrin, cyfluthrin, tefluthrin, fish safe pyrethroids (for example ethofenprox), natural pyrethrin, tetramethrin, s-bioallethrin, fenfluthrin, prallethrin or 5-benzyl-3-furylmethyl-(E)-(lR,3S)-2,2-dimethyl- 3 -(2-oxothiolan-3 -ylidenemethyl)cyclopropane carboxylate; b) Organophosphates, such as, profenofos, sulprofos, acephate, methyl parathion, azinphos-methyl, demeton-s-methyl, heptenophos, thiometon, fenamiphos, monocrotophos, profenofos, triazophos, methamidophos, dimethoate, phosphamidon, malathion, chlorpyrifos, phosalone, terbufos, fensulfothion, fonofos, phorate, phoxim, pirimiphos-methyl, pirimiphos-ethyl, fenitrothion, fosthiazate or diazinon; c) Carbamates (including aryl carbamates), such as pirimicarb, triazamate, cloethocarb, carbofuran, furathiocarb, ethiofencarb, aldicarb, thiofurox, carbosulfan, bendiocarb, fenobucarb, propoxur, methomyl or oxamyl; d) Benzoyl ureas, such as diflubenzuron, triflumuron, hexaflumuron, flufenoxuron or chlorfluazuron; e) Organic tin compounds, such as cyhexatin, fenbutatin oxide or azocyclotin; f) Pyrazoles, such as tebufenpyrad and fenpyroximate; g) Macrolides, such as avermectins or milbemycins, for example abamectin, emamectin benzoate, ivermectin, milbemycin, spinosad or azadirachtin; h) Hormones or pheromones; i) Organochlorine compounds such as endosulfan, benzene hexachloride, DDT, chlordane or dieldrin; j) Amidines, such as chlordimeform or amitraz; k) Fumigant agents, such as chloropicrin, dichloropropane, methyl bromide or metam;
1) Chloronicotinyl compounds such as imidacloprid, thiacloprid, acetamiprid, nitenpyram or thiamethoxam; m) Diacylhydrazines, such as tebufenozide, chromafenozide or methoxyfenozide; n) Diphenyl ethers, such as diofenolan or pyriproxifen; o) Indoxacarb; p) Chlorfenapyr; or q) Pymetrozine.
In addition to the major chemical classes of pesticide listed above, other pesticides having particular targets may be employed in the composition, if appropriate for the intended utility of the composition. For instance, selective insecticides for particular crops, for example stemborer specific insecticides (such as cartap) or hopper specific insecticides (such as buprofezin) for use in rice may be employed. Alternatively insecticides or acaricides specific for particular insect species/stages may also be included in the compositions (for example acaricidal ovo-larvicides, such as clofentezine, flubenzimine, hexythiazox or tetradifon; acaricidal motilicides, such as dicofol or propargite; acaricides, such as bromopropylate or chlorobenzilate; or growth regulators, such as hydramethylnon, cyromazine, methoprene, chlorfluazuron or diflubenzuron).
Examples of fungicidal compounds which may be included in the composition of the invention are (E)-N-methyl-2-[2-(2,5-dimethylphenoxymethyl)phenyl]-2-methoxy- iminoacetamide (SSF-129), 4-bromo-2-cyano-N,N-dimethyl-6-trifluoromethylbenzimidazole- 1 -sulphonamide, α-[N-(3-chloro-2,6-xylyl)-2-methoxyacetamido]-γ-butyrolactone, 4-chloro- 2-cyano-N,N-dimethyl-5-/>-tolylimidazole- 1 -sulfonamide (IKF-916, cyamidazosulfamid), 3 -5-dichloro-N-(3 -chloro- 1 -ethyl- 1 -methyl-2-oxopropyl)-4-methylbenzamide (RH-7281 , zoxamide), N-allyl-4,5,-dimethyl-2-trimethylsilylthiophene-3-carboxamide (MON65500), N- (l-cyano-l,2-dimethylpropyl)-2-(2,4-dichlqrophenoxy)propionamide (AC382042),
N-(2-methoxy-5-pyridyl)-cyclopropane carboxamide, acibenzolar (CGA245704), alanycarb, aldimorph, anilazine, azaconazole, azoxystrobin, benalaxyl, benomyl, biloxazol, bitertanol, blasticidin S, bromuconazole, bupirimate, captafol, captan, carbendazim, carbendazim chlorhydrate, carboxin, carpropamid, carvone, CGA41396, CGA41397, chinomethionate, chlorothalonil, chlorozolinate, clozylacon, copper containing compounds such as copper oxychloride, copper oxyquinolate, copper sulphate, copper tallate and Bordeaux mixture, cymoxanil, cyproconazole, cyprodinil, debacarb, di-2-pyridyl disulphide l,l'-dioxide, dichlofluanid, diclomezine, dicloran, diethofencarb, difenoconazole, difenzoquat, diflumetorim, O,O-di-z5O-propyl-5'-benzyl thiophosphate, dimefluazole, dimetconazole, dimethomorph, dimethirimol, diniconazole, dinocap, dithianon, dodecyl dimethyl ammonium chloride, dodemorph, dodine, doguadine, edifenphos, epoxiconazole, ethirimol, ethyl(Z)-N-benzyl-N([methyl(methyl-thioethylideneaminooxycarbonyl)amino]thio)-β -alaninate, etridiazole, famoxadone, fenamidone (RPA407213), fenarimol, fenbuconazole, fenfuram, fenhexamid (KBR2738), fenpiclonil, fenpropidin, fenpropimorph, fentin acetate, fentin hydroxide, ferbam, ferimzone, fluazinam, fludioxonil, flumetover, fluoroimide, fluquinconazole, flusilazole, flutolanil, flutriafol, folpet, fuberidazole, furalaxyl, furametpyr, guazatine, hexaconazole, hydroxyisoxazole, hymexazole, imazalil, imibenconazole, iminoctadine, iminoctadine triacetate, ipconazole, iprobenfos, iprodione, iprovalicarb (SZX0722), isopropanyl butyl carbamate, isoprothiolane, kasugamycin, kresoxim-methyl, LYl 86054, LY211795, LY248908, mancozeb, maneb, mefenoxam, mepanipyrim, mepronil, metalaxyl, metconazole, metiram, metiram-zinc, metominostrobin, myclobutanil, neoasozin, nickel dimethyldithiocarbamate, nitrothal-wopropyl, nuarimol, ofurace, organomercury compounds, oxadixyl, oxasulfuron, oxolinic acid, oxpoconazole, oxycarboxin, pefurazoate, penconazole, pencycuron, phenazin oxide, phosetyl-Al, phosphorus acids, phthalide, picoxystrobin (ZAl 963), polyoxin D, polyram, probenazole, prochloraz, procymidone, propamocarb, propiconazole, propineb, propionic acid, pyrazophos, pyrifenox, pyrimethanil, pyroquilon, pyroxyfur, pyrrolnitrin, quaternary ammonium compounds, quinomethionate, quinoxyfen, quintozene, sipconazole (F-155), sodium pentachlorophenate, spiroxamine, streptomycin, sulphur, tebuconazole, tecloftalam, tecnazene, tetraconazole, thiabendazole, thifluzamid, 2-(thiocyanomethylthio)benzothiazole, thiophanate-methyl, thiram, timibenconazole, tolclofos-methyl, tolylfluanid, triadimefon, triadimenol, triazbutil, triazoxide, tricyclazole, tridemorph, trifloxystrobin (CGA279202), triforine, triflumizole, triticonazole, validamycin A, vapam, vinclozolin, zineb and ziram.
The compounds of formula (I) may be mixed with soil, peat or other rooting media for the protection of plants against seed-borne, soil-borne or foliar fungal diseases.
Examples of suitable synergists for use in the compositions include piperonyl butoxide, sesamex, safroxan and dodecyl imidazole.
Suitable herbicides and plant-growth regulators for inclusion in the compositions will depend upon the intended target and the effect required.
An example of a rice selective herbicide which may be included is propanil. An example of a plant growth regulator for use in cotton is PIX™. Some mixtures may comprise active ingredients which have significantly different physical, chemical or biological properties such that they do not easily lend themselves to the same conventional formulation type. In these circumstances other formulation types may be prepared. For example, where one active ingredient is a water insoluble solid and the other a water insoluble liquid, it may nevertheless be possible to disperse each active ingredient in the same continuous aqueous phase by dispersing the solid active ingredient as a suspension (using a preparation analogous to that of an SC) but dispersing the liquid active ingredient as an emulsion (using a preparation analogous to that of an EW). The resultant composition is a suspoemulsion (SE) formulation. The invention is illustrated by the following Examples:
Mass spectra data were obtained for selected compounds of the following examples using LCMS: LC5: 254nm - gradient 10% A to 100% B A=H2O+0.01%HCOOH B<Η3CN/CH3OH+0.01%HCOOH positive electrospray 150-1000 m/z.
EXAMPLE 1
This Example illustrates the preparation of N-(4-Chloro-2-{l-[(E)-3-(4-chloro-phenyl)-allyl]- 4-hydroxy-piperidin-4-yl}-phenyl)-2,2-dimethyl-propionamide
Figure imgf000128_0001
Step A: Preparation of N-(4-Chloro-phenyl)-2,2-dimethyl-propionarnide To a solution of 4-chloroaniline (25.51 g) and triethylamine (69.73 ml) in chloroform (350 ml) were added 2,2-dimethyl-propionyl chloride (25.32 g) over a 30 minutes period. The resulting solution was stirred at r.t. for 1 hour, then water was added and the mixture extracted three times with ethyl acetate. The combined organic layers were dried over sodium sulfate and concentrated in vacuo to afford 35.8 g of product. M.p. 149-15O0C; Retention Time HPLC 2.83 min; MS (ES+) 212 (M+H+).
Step B: Preparation of N-(4-Chloro-2-{l-[(E)-3-(4-chloro-phenyl)-allyl]-4-hydroxy- piperidin-4-yl}-phenyl)-2,2-dimethyl-propionamide
A solution of n-buthyllithium in hexane (47.0 ml of a 1.6 M solution) was added dropwise to a solution of N-(4-chloro-phenyl)-2,2-dimethyl-propionamide (6.35 g) in dry THF (100 ml) -at -50C under a N2 atmosphere over 15 min. The resulting solution was stirred at O0C for 2 hours, and then a solution of l-[(E)-3-(4-chloro-phenyl)-allyl]-piperidin-4-one (7.49 g) in THF (15 ml) was added dropewise to the above solution of the dianion at O0C over a 1 hour period. The reaction mixture was stirred for 2 hours at O0C and then overnight at r.t. The solution was then poured into ice water, made acidic with cone. HCl and extracted with ethyl acetate. The water layer was made basic and extracted three times with ethyl acetate. The combined organic layers were washed with water, dried over sodium sulfate and concentrated in vacuo. The residue was subjected to silica gel chromatography (hexane:ethyl acetate:triethyl amine 49:49:2) to afford the title product (6.2 g). M.p. 177-1790C; Retention Time HPLC 2.19 min; MS (ES+) 461 (M+H1"). 1 EXAMPLE 2
This Example illustrates the preparation of 4-Chloro-2-{l-[(E)-3-(4-chloro-phenyl)-allyl]- 1 ,2,3 ,6-tetrahydro-pyridin-4-yl} -phenylamine and 4-(2-Amino-5-chloro-phenyl)- 1 -[(E)-3 -(4- chloro-phenyl)-allyl]-piperidin-4-ol.
Figure imgf000129_0001
A suspension of N-(4-chloro-2- { 1 -[(E)-3 -(4-chloro-phenyl)-allyl] -4-hydroxy- piperidin-4-yl}-ρhenyl)-2,2-dimethyl-propionamide (1.00 g) in 3N H2SO4 (7.5 ml) and DMSO (3 ml) was heated to reflux temperature for 48 hours. Then, water was added and the mixture extracted three times with CH2Cl2, the combined organic layers were dried over sodium sulfate and concentrated in vacuo. The residue was subjected to silica gel chromatography (CH2Cl2:Me0H 95:5) to afford 4-chloro-2-{l-[(E)-3-(4-chloro-phenyl)- allyl]-l,2,3,6-tetrahydro-pyridin-4-yl}-phenylamine (0.205 g; viscous oil; Retention Time HPLC 2.15 min; MS (ES+) 359 (M+H+) and 4-(2-amino-5-chloro-phenyl)-l-[(E)-3-(4- chloro-phenyl)-allyl]-piperidin-4-ol (0.182 g; M.p. 168-17O0C; Retention Time HPLC 1.95 min; MS (ES+) 377 (M+H+).
EXAMPLE 3
This Example illustrates the preparation 2-Chloro-N-(4-chloro-2-{l-[(E)-3-(4-chloro- phenyl)-allyl]-l,2,3,6-tetrahydro-pyridin-4-yl}-phenyl)-isonicotinamide
Figure imgf000129_0002
To a solution of 4-chloro-2-{l-[(E)-3-(4-chloro-ρhenyl)-allyl]-l,2,3,6 tetrahydro-pyridm-4- yl} -phenylamine (60 mg) and triethylamine (0.059 ml) in CH2Cl2 (10 ml) were added 2- chloro-isonicotinoyl chloride (1.5 equivalents; as a 0.2 M solution in CH2Cl2) over a 10 minutes period. The resulting solution was stirred at r.t. for 2 hour, poured into saturated aqueous NaHCO3 solution and the mixture extracted three times with CH2Cl2. The combined organic layers were dried over sodium sulfate and concentrated in vacuo. The residue was subjected to silica gel chromatography (hexane:ethyl acetate:triethyl amine 25:73:2) to afford the title product (28 mg). Viscous oil; Retention Time HPLC 2.28 min; MS (ES+) 500, 498 (M+H4). EXAMPLE 4
This Example illustrates the preparation of N-[2-(l-Benzyl-4-hydroxy-piperidin-4-yi)-4- chloro-phenyl]-2,2-dimethyl-propionamide
Figure imgf000130_0001
A solution of n-buthyllithium in hexane (22.6 ml of a solution containing 15% n- buthyllithium) was added dropewise to a solution of N-(4-chloro-phenyl)-2,2-dimethyl- propionamide (3.00 g) in dry THF (80 ml) at -50C under a N2 atmosphere over 15 min. The resulting solution was stirred at O0C for 2 hours, and then a solution of l-benzyl-piperidin-4- one (2.67) in THF (4.5 ml) was added dropewise to the above solution of the dianion at O0C over a 1 hour period. The reaction mixture was stirred for 2 hours at O0C and then overnight at r.t. The solution was then poured into ice water, made acidic with cone. HCl and extracted with ethyl acetate. The water layer was made basic and extracted three times with ethyl acetate. The combined organic layers were washed with water, dried over sodium sulfate and concentrated in vacuo. The residue was recrystallized from ethyl acetate / THF to afford the title product (2.6 g). M.p. 252-2550C.
EXAMPLE 5
This Example illustrates the preparation of 2-(l-Benzyl-l,2,3,6-tetrahydro-pyridin-4-yl)-4- chloro-phenylamine and 4-(2-Amino-5-chloro-phenyl)-l-benzyl-piperidin-4-ol.
Figure imgf000130_0002
A suspension of N-[2-(l -benzyl-4-hydroxy-piperidin-4-yl)-4-chloro-phenyl]-2,2-dimethyl- propionamide (6.00 g) in n-BuOH (50 ml) and 6N HCl (120 ml) was heated to reflux temperature for 5 days. The solution was then poured into ice water, made acidic with cone. HCl and extracted with ethyl acetate. The water layer was made basic and extracted three times with CH2Cl2, dried over sodium sulfate and concentrated in vacuo. The residue was subjected to silica gel chromatography (hexane:ethyl acetate:triethyl amine 49:49:2) to afford 2-(l -benzyl- 1, 2,3, 6-tetrahydro-pyridin-4-yl)-4-chloro-phenylamine (2.11 g; viscous oil; Retention Time HPLC 1.81 min; MS (ES+) 299 (M+H+)) and 4-(2-amino-5-chloro-phenyl)- l-benzyl-piperidin-4-ol (2.11 g; viscous oil; Retention Time HPLC 1.58 min; MS (ES+) 317 (MH-H+).
EXAMPLE 6
This Example illustrates the preparation of N-[2-(l-Benzyl-l,2,3,6-tetrahydro-pyridin-4-yl)- 4-chloro-phenyl]-2-chloro-isonicotinamide.
Figure imgf000131_0001
To a solution of 2-(l-benzyl-l,2,3,6-tetrahydro-pyridin-4-yl)-4-chloro-phenylamine (500 mg) and triethylamine (0.350 ml) in CHCl3 (25 ml) were added 2-chloro-isonicotinoyl chloride (1.2 equivalents; as a 1.0 M solution in CH2Cl2) over a 10 minutes period. The resulting solution was stirred at r.t. overnight, poured into saturated aqueous NaHCO3 solution and the mixture extracted three times with CH2Cl2. The combined organic layers were dried over sodium sulfate and concentrated in vacuo. The residue was subjected to silica gel chromatography (hexane:ethyl acetate:triethyl amine 49:49:2) to afford the title product (595 mg). White solid; Retention Time HPLC 1.89 min; MS (ES+) 440, 438 (M+H+). EXAMPLE 7
This Example illustrates the preparation of 2-Chloro-N-[4-chloro-2-(l,2,3,6-tetrahydro- pyridin-4-yl)-phenyl]-isonicotinamide hydrochloride.
Figure imgf000131_0002
Step A: Preparation of 4-{5-Chloro-2-[(2-chloro-pyridine-4-carbonyl)- amino]phenyl}-3,6-dihydro~2H-pyridine-l-carboxylic acid 1-chloro-ethyl ester
1-Chloroethyl chloroformate ( 2.64 ml) was added to a suspension of N-[2-(l-benzyl-l,2,3,6- tetrahydro-pyridin-4-yl)-4-chloro-phenyl]-2-chloro-isonicotinamide (530 mg) in toluene (30 ml). After 15 min. the solution was heated to reflux for 16 hours, then poured into saturated aqueous NaHCO3 solution and the mixture extracted three times with CH2Cl2. The combined organic layers were dried over sodium sulfate and concentrated in vacuo to afford the crude title product (550 mg). Step B: Preparation of 2-Chloro-N-[4-chloro-2-(l,253,6-tetrahydro-pyridin-4-yl)- phenyl]-isonicotinamide hydrochloride.
Crude 4- {5-chloro-2-[(2-chloro-pyridine-4-carbonyl)-amino]ρhenyl} -3 ,6-dihydro-2H- pyridine-1-carboxylic acid 1-chloro-ethyl ester (550 mg) was dissolved in methanol (25 ml) in and heated to reflux for 16 hours. Evaporation afforded the crude title product (465 mg). Retention Time HPLC 1.48 min; MS (ES+) 350, 348 (M+H+).
EXAMPLE 8
This Example illustrates the preparation of 2-Chloro-N-(4-chloro-2-{l-[(E)-3-(4-fluoro- phenyl)-allyl]-l,2,3,6-tetrahydro-pyridin-4-yl}-phenyl)-isonicotinamide
Figure imgf000132_0001
Crude 4-{5-chloro-2-[(2-chloro-pyridine-4-carbonyl)-amino]-phenyl}-l-methyl-l, 2,3,6- tetrahydro-pyridinium hydrochloride (69 mg; product obtained in Example 7) was dissolved in acetonitrile (5 ml) and treated with K2CO3 (87 mg). Then a solution of l-((E)-3-chloro- propenyl)-4-fluoro-benzene in acetonitrile (1.0 ml) was added. After stirring for 3 hours at r.t. and 16 hours at 5O0C and heated to reflux for 16 hours the mixture was filtrated and concentrated in vacuo. The residue was subjected to silica gel chromatography (hexanerethyl acetate:triethyl amine 74:24:2) to afford the title product (51 mg). Viscous oil; Retention Time HPLC 2.02 min; MS (ES+) 484, 482 (M+H+).
EXAMPLE 9 This Example illustrates the preparation of 2-Chloro-N-(4-chloro-2- { 1 -[(E)-3-(4- trifluoromethyl-phenyl)-allyl]- 1 ,2,3 ,6-tetrahydro-pyridin-4-yl} -phenyl)-isonicotinamide
Figure imgf000132_0002
Crude 4-{5-chloro-2-[(2-chloro-pyridine-4-carbonyl)-amino]-phenyl}-l-methyl-l, 2,3,6- tetrahydro-pyridinium hydrochloride (69 mg; product obtained in Example 7) was dissolved in acetonitrile (5 ml) and treated with Hϋnig's base (0.068 ml). Then a solution of l-((E)-3- chloro-propenyl)-4-trifluoromethyl-benzene (53 mg) in CHCl3 (1.0 ml) was added. After stirring for 3 hours at r.t. and 16 hours at 5O0C and heated to reflux for 16 hours the mixture was filtrated and concentrated in vacuo. The residue was subjected to silica gel chromatography (hexane:ethyl acetate:triethyl amine 74:24:2) to afford the title product (23 mg). Viscous oil; Retention Time HPLC 2.02 min; MS (ES+) 534, 532 (M+H+).
EXAMPLE 10
This Example illustrates the preparation of 2-Chloro-N-(4-chloro-2-{l-[(E)-3-(4- rrifluoromethoxy-phenyl)-allyl]-l,2,3,6-tetrahydro-pyridin-4-yl}-phenyl)-isonicotinamide
Figure imgf000133_0001
Crude 4-{5-chloro-2-[(2-chloro-pyridine-4-carbonyl)-amino]-phenyl}-l-methyl-l,2,3,6- tetrahydro-pyridinium hydrochloride (69 mg; product obtained in Example 7) was dissolved in acetonitrile (5 ml) and treated with Hύnig's base (0.068 ml). Then a solution of l-((E)-3- chloro-propenyl)-4-trifluoromethoxy-benzene (56 mg) in CHCl3 (1.0 ml) was added. After stirring for 3 hours at r.t. and 16 hours at 5O0C and heated to reflux for 16 hours the mixture was filtrated and concentrated in vacuo. The residue was subjected to silica gel chromatography (hexane:ethyl acetate:triethyl amine 74:24:2) to afford the title product (46 mg). Viscous oil; Retention Time HPLC 2.33 min; MS (ES+) 550, 548 (M+H+).
EXAMPLE Il
This Example illustrates the preparation of 2-Chloro-N-{4-chloro-2-[l-((E)-3-phenyl- allyl) 1 ,2,3 ,6-tetrahydro-pyridin-4-yl] -phenyl} -isonicotinamide
Figure imgf000133_0002
Crude 4-{5-chloro-2-[(2-chloro-pyridine-4-carbonyl)-amino]-phenyl}-l-methyl-l,2,3,6- tetrahydro-pyridinium hydrochloride (69 mg; product obtained in Example 7) was dissolved in acetonitrile (5 ml) and treated with Hunig's base (0.068 ml). Then a solution of ((E)-3- chloro-propenyl)-benzene (32 mg) in CHCl3 (1.0 ml) was added. After stirring for 3 hours at r.t. and 16 hours at 5O0C and heated to reflux for 16 hours the mixture was filtrated and concentrated in vacuo. The residue was subjected to silica gel chromatography (hexane:ethyl acetate:triethyl amine 74:24:2) to afford the title product (36 mg). Viscous oil; Retention Time HPLC 2.01 min; MS (ES+) 466, 464 (M+H+).
EXAMPLE 12
This Example illustrates the preparation of N-[2-(l-Benzyl-4-hydroxy-piperidin-4-yl)-4- fluoro-phenyl] -2,2-dimethyl-propionamide
Figure imgf000134_0001
Step A: Preparation of N-(4-Fluoro-phenyl)-2,2-dimethyl-propionamide To a solution of 4-fluoroaniline (50.0 g) and triethylamine (157 ml) in CH2Cl2 (700 ml) were added 2,2-dimethyl-propionyl chloride (58.0 ml) over a 30 minutes period. The resulting solution was stirred at r.t. for 2 hour, then water was added and the mixture extracted three times with ethyl acetate. The combined organic layers were dried over sodium sulfate and concentrated in vacuo to afford 86.0 g of the title compound. M.p. 124-1250C; Retention Time HPLC 2.57 min; MS (ES+) 196 (M+H+).
Step B: Preparation of N-(4-Fluoro-2-{l-[(E)-3-(4-chloro-phenyl)-allyl]-4-hydroxy- piperidin-4-yl}-phenyl)-2,2-dimethyl-propionamide
A solution of n-buthyllithium in hexane (80.0 ml of a 1.6 M solution) was added dropwise to a solution of N-(4-fluoro-phenyl)-2,2-dimethyl-propionamide (10.0 g) in dry THF (200 ml) at -50C under a N2 atmosphere over 15 min. The resulting solution was stirred at O0C for 2 hours, and then a solution of l-benzyl-piperidin-4-one (9.20 ml) in THF (20 ml) was added dropewise to the above solution of the dianion at O0C over a 1 hour period. The reaction mixture was stirred for 2 hours at O0C and then overnight at r.t. The solution was the poured into ice water, made acidic with cone. HCl and extracted with ethyl acetate. The water layer was made basic and extracted three times with ethyl acetate. The combined organic layers were washed with water, dried over sodium sulfate and concentrated in vacuo. The residue was subjected to silica gel chromatography (hexane:ethyl acetate:triethyl amine 49:49:2) to afford the title product (8.3 g). M.p. 172-1730C; Retention Time HPLC 1.47 min; MS (ES+) 385 (M+H+).
EXAMPLE 13 This Example illustrates the preparation of N-[2-(l -Benzyl- 1,2,3, 6-tetrahydro-pyridin-4-yl)- 4-fluoro-phenyl]-2,2-dimethyl-propionamide
Figure imgf000135_0001
A solution of N-(4-fluoro-2-{l-[(E)-3-(4-chloro-phenyl)-allyl]-4-hydroxy-piperidin- 4-yl}-phenyl)-232-dimethyl-propionamide (4.00 g) in cone HCl (2.4 ml) and cone. AcOH (30 ml) was heated to reflux temperature for 24 hours. Then, water was added and the mixture extracted three times with CH2Cl2, the combined organic layers were dried over sodium sulfate and concentrated in vacuo. The residue was dissolved in CH2Cl2 (30 ml) and treated with triethylamine (2.8 ml) and 2,2-dimethyl-propionyl chloride (0.61 ml). The resulting solution was stirred at r.t. for 2 hour, then water was added and the mixture extracted three times with ethyl acetate. The combined organic layers were dried over sodium sulfate and concentrated in vacuo. The residue was subjected to silica gel chromatography (hexane:ethyl acetate:triethyl amine 79:19:2) to afford the title product (3.1 g). Viscous oil; Retention Time HPLC 2.00 min; MS (ES+) 367 (M+H+).
EXAMPLE 14 This Example illustrates the preparation of N-(4-Fluoro-2-piperidin-4-yl-phenyl)-2,2- dimethyl-propionamide
Figure imgf000135_0002
A suspension of N-[2-(l-Benzyl-l,2,3,6-tetrahydro-pyridin-4-yl)-4-fluoro-phenyl]- 2,2-dimethyl-proρionamide (500 mg) and 10% Pd-C (50 mg) in EtOH (50 ml) was stirred in a H2 atmosphere for 16 hours. Then, the mixture was filtered and the resulting solution concentrated in vacuo to afford the title compound (380 mg). Viscous oil; Retention Time HPLC 1.61 min; MS (ES+) 279 (M+H+).
EXAMPLE 15
This Example illustrates the preparation of N-(2-{l-[(E)-3-(4-Chloro-phenyl)-allyl]-. piperidm-4-yl}-4-fluoro-phenyl)-2,2-dimethyl-propionamide
Figure imgf000135_0003
N-(4-Fluoro-2-piperidin-4-yl-phenyl)-2,2-dimethyl-propionamide (380 mg) was dissolved in CHCl3 (20 ml) and treated with triethyl amine (0.260 mg). Then, a solution of l-((E)-3- chloro-propenyl)-4-chloro-benzene (255 mg) was added. After stirring for 16 hours at r.t. the mixture was filtrated and concentrated in vacuo. The residue was subjected to silica gel chromatography (hexane:ethyl acetate:triethyl amine 74:24:2) to afford the title product (380 mg). M.p. 174-1760C; Retention Time HPLC 2.37 min; MS (ES+) 4.29 (M+H+).
EXAMPLE 16
This Example illustrates the preparation of 2- {1 -[(E)-3-(4-Chloro-phenyl)-allyl]-piperidin-4- yl} -4-fluoro-phenylamine
Figure imgf000136_0001
A solution of N-(2-{l-[(E)-3-(4-chloro-phenyl)-allyl]-ρiperidin-4-yl}-4-fluoro-phenyl)-2,2- dimethyl-propionamide (315 mg) in 6N HCl (25 ml) and cone. AcOH (25 ml) was heated to reflux temperature for 20 hours. Then, the solution was made basic (pH = 12) by the addition of solid NaOH, and extracted three times with CH2Cl2. The combined organic layers were dried over sodium sulfate and concentrated in vacuo. The residue was subjected to silica gel chromatography (hexane:ethyl acetate:triethyl amine 79:19:2) to afford the title product (201 mg). M.p. 93-940C; Retention Time HPLC 2.18 min; MS (ES+) 345 (M+H+).
EXAMPLE 17
This Example illustrates the preparation of 2-Chloro-N-(2-{l~[(E)-3-(4-chloro-ρhenyl)-allyl]- piperidin-4-yl}-4-fluoro-phenyl)-isonicotinamide
Figure imgf000136_0002
To a solution of 2-{l-[(E)-3-(4-chloro-phenyl)-allyl]-ρiperidin-4-yl}-4-fluoro-phenylamine (40 mg) and triethylamine (0.025 ml) in CHCl3 (10 ml) were added 2-chloro-isonicotinoyl chloride (1.2 equivalents; as a 1.0 M solution in CH2Cl2) over a 10 minute period. The resulting solution was stirred at r.t. over night, poured into saturated aqueous NaHCO3 solution and the mixture extracted three times with CH2Cl2. The combined organic layers were dried over sodium sulfate and concentrated in vacuo. The residue was subjected to silica gel chromatography (ethyl acetate:methanol 9:1) to afford the title product (43 mg). White solid; Retention Time HPLC 2.36 min; MS (ES+) 486, 484 (M+H+).
According to this method the following compounds have been prepared starting from 2- {l-[(E)-3-(4-chloro-phenyl)-allyl]-piperidin-4-yl}-4-fluoro-phenylamine:
• 2,6-Dichloro-N-(2-{l-[(E)-3-(4-chloro-phenyl)-allyl]-piperidin-4-yl}-4-fluoro- phenyl)-isonicotinamide White solid; Retention Time HPLC 2.67 min; MS (ES+) 520, 518 (M+H+).
Figure imgf000137_0001
• N-(2- { 1 -[(E)-3 -(4-Chloro-phenyl)-allyl]-piperidin-4-yl} -4-fluoro-phenyl)- isonicotinamide
White solid; Retention Time HPLC 2.07 min; MS (ES+) 450 (M+H+).
Figure imgf000137_0002
EXAMPLE 18
This Example illustrates the preparation of 4-(5-Amino-pyrazol-l-yl)-piperidine-l-carboxylic acid tert-butyl ester
Figure imgf000137_0003
A solution of 2-cyanoethyl hydrazine (5.1 g) in absolute ethanol (20 ml) was added dropwise to a solution of N-BOC-piperidone (12 g) in absolute ethanol at room temperature. The resulting solution was stirred at room temperature for 1 hour then the solvent was removed in vacuo. The resulting oil was then added to a solution of sodium butoxide (prepared from 2.8 g of sodium and 60 ml of n-butanol) and the reaction mixture was refluxed for 3 hours, cooled to room temperature, washed with saturated aqueous ammonium chloride then with water, and the solvent was removed in vacuo. Precipitation from hexane afforded the title compound (11.5 g) as a yellow powder. M.p. 145-147°C; 1H NMR (400 MHz, CDCl3) 1.5 (s, 9H), 1.9 (m, 2H), 2.1 (m, 2H), 2.9 (m, 2H), 3.5 (m, 2H), 4.0 (m, IH), 4.2 (m, 2H), 5.5 (s,
Figure imgf000138_0001
EXAMPLE 19
This Example illustrates the preparation of 4-{5-[(2-Chloro-pyridine-4-carbonyl)-amino]- pyrazol-l-yl}-piperidine-l-carboxylic acid tert-butyl ester
Figure imgf000138_0002
Triethylamine (2.8 ml) was added to a stirred solution of the compound obtained in example 18 (2.66 g) in dichloromethane (100 ml); the solution was cooled to 0°C and 2- chloroisonicotinoyl chloride (prepared from 2.05 g of 2-chloroisonicotinic acid and 1.46 ml of oxalyl chloride in 50 ml dichloromethane) was added. The resulting mixture was stirred at room temperature for 12 hours, poured into water, extracted two times with dichloromethane; the combined organic layers were dried over sodium sulfate and concentrated in vacuo. The residue was precipitated from ethyl acetate / hexane to afford the title compound as a pale yellow powder (3.4 g). M.p. 209-210 °C; 1H NMR (400 MHz, CDCl3) 1.5 (s, 9H), 1.9 (m, 2H), 2.1 (m, 2H), 2.9 (m, 2H), 3.5 (m, 2H), 4.0 (m, IH), 4.2 (m, 2H), 6.1 (s, IH), 7.5 (s, IH), 7.6 (m, IH), 7.7 (s, IH), 8.2 (sm, IH), 8.5 (d, J = 6 Hz, IH). EXAMPLE 20
This Example illustrates the preparation of 2-Chloro-N-(2-{l-[3-(4-chloro-phenyl)-allyl]- piperidin-4-yl}-2H-pyrazol-3-yl)-isonicotinamide
Figure imgf000139_0001
A solution of the compound obtained in in Example 19 (2.7 g) in dichloromethane (150 ml) was treated with trifluoroacetic acid (3.8 ml) for 6 hours at room temperature and the solvent was removed in vacuo. The residue was dissolved in acetonitrile (100 ml), N5N- diisopropylethylamine (9 ml) and 4-chlorocinnamyl chloride (1.9 g) were added. The resulting solution was stirred for 24 hours at room temperature, the solvent was removed in vacuo and the residue was subjected to silica gel chromatography (ethyl acetate:methanol 95:5) to afford a product identified as 2-{l-[3-(4-Chloro-ρhenyl)-allyl]-piperidin-4-yl}-2H- pyrazol-3-ylamine. This product was re-acylated using 1.05 g of 2-chloroisonicotinoyl chloride, 0.7 ml of triethylamine in 50 ml dichloromethane according to the method described in Step B. Silica gel chromatography of the residue (ethyl acetate:methanol 95:5) finally afforded the title product (370 mg). M.p. 69-7O0C. 1H NMR (400 MHz, CDCl3) 1.9- 2.4 (m, 6H), 3.0 (d, J = 11.6 Hz, 2H), 3.1 (d, J = 6.4 Hz, 2H), 3.9 (m, IH), 6.2 (m, 2H), 6.5 (d, J = 16.0 Hz, IH), 7.3 (m, 4H), 7.5 (s, IH), 7.6 (s, IH), 7.7 (br s, IH), 8.6 (d, J = 4.8 Hz, IH). Retention Time HPLC 2.32 min; MS (ES+) 456/458 (M+H+).
The invention is further illustrated by the following Examples applying cross coupling reactions.
EXAMPLE 21
This Example illustrates the preparation of 2-Chloro-N-{r-[(E)-3-(4-chloro-phenyl)-allyl]- r^'jS'^'jS'jό'-hexahydro-p^'Jbipyridmyl-S-ylj-isonicotinamide.
Figure imgf000140_0001
Step A: l-(t-Butoxycarbonyl)-4-tributylstannyl-l,2,3,6-tetrahydropyridine (2.12 g, prepared in 2 steps from l-(t-butoxycarbonyl)-piperidin-4-one according to WO 0123381) was dissolved in toluene (45 ml) in a dried, nitrogen-flushed flask. 2-Chloro-3-nitropyridine (712 mg) and palladium tetrakis(triphenylphosphine) (130 mg) were added and the solution was heated at 110°C for 16 hours. The reaction mixture was cooled to room temperature, the solvent removed in vacuo and the residue partitioned between ethyl acetate (100 ml) and NaOH 2N (100 ml). After 30 min stirring at room temperature, the organic layer was separated, washed with NaOH 2N then water, dried over sodium sulfate and concentrated in vacuo. The residue was subjected to silica gel chromatography (ethyl acetate: cyclohexane 3:7) to afford 3-nitro-3',6'-dihydro-2'H-[2,4']bipyridinyl-r-carboxylic acid tert-butyl (1.1 g) as light yellow crystals. M.p. 104-1050C; 1H NMR (400 MHz, CDCl3) 1.4 (s, 9H), 2.5 (m, 2H), 3.6 (m, 2H), 4.0 (m, 2H), 5.9 (m, IH), 7.3 (dd, J = 4.8, 8.4 Hz, IH), 8.0 (d, J = 8.4 Hz, IH), 8.7 (d, J = 4.8 Hz, IH); MS (ES+) 206 (MH+ -BOC), 248 (MH+-isoprene). Step B: Hydrazine monohydrate (0.4 ml) was added to a suspension of Raney nickel (50% slurry in water, 200 mg) and the product obtained in Step A (240 mg) in ethanol (10 ml). After 4 hours stirring, the reaction mixture was filtered over Hyfio and the solvent removed in vacuo. The residue was dissolved in ethyl acetate, dried over sodium sulfate, filtered and concentrated in vacuo to afford 3-amino-3',6'-dihydro-2'H-[2,4']bipyridinyl-r-carboxylic acid tert-butyl ester (200 mg) as white cystals. M.p. 104-105 °C; 1H NMR (400 MHz, CDCl3) 1.4 (s, 9H), 2.5 (m, 2H), 3.6 (m, 2H), 3.7 (brs, 2H), 4.0 (m, 2H), 5.9 (m, IH), 6.9 (m, 2H), 8.0 (m, IH); MS (ES+) 176 (MH+ -BOC), 220 (MH+-isoprene), 276 (MH+). Step C: The product obtained in Step B (815 mg) was reduced by transfer hydrogenation using 10% Pd/C (200 mg) and ammonium formate (935 mg) in ethanol (40 ml) at 60°C for 45 min. After filtration over Hyflo, the solvent was removed in vacuo. The residue was portioned between ethyl acetate and water, the organic layer separated, washed with water, dried over sodium sulfate and concentrated in vacuo to give 3-amino-3',4',5',6'-dihydro-2'H- [2,4']biρyridinyl-r-carboxylic acid tert-butyl ester (785 mg) as an oil. 1H NMR (400 MHz, CDCl3) 1.4 (s, 9H), 1.6 (m, 4H), 2.7 (m, 3H)5 3.5 (brs, 2H), 4.0 (m, 2H), 6.9 (m, 2H), 8.0 (m, IH); MS (ES+) 178 (MH+ -BOC), 222 (MH+-isoprene), 278 (MH+). Step D: sodium bicarbonate (714 mg) was added to a stirred solution of the compound obtained in Step C (785 mg) in dichloromethane (30 ml); the solution was then treated with 2-chloro-isonicotinoyl chloride (500 mg) and the resulting mixture was stirred at room temperature for 1 hour, poured into water, extracted two times with dichloromethane, the combined organic layers were dried over sodium sulfate and concentrated in vacuo to afford 3-[(2-Chloro-pyridine-4-carbonyl)-amino]-3',4',5t,6'-tetrahydro-2Η-[2,4']bipyridinyl-r- carboxylic acid tert-butyl ester (1.2 g). Step E: A solution of the compound obtained in Step D (834 mg) in dichloromethane (40 ml) was treated with trifiuoroacetic acid (4 ml) for 5 hours at room temperature. The reaction mixture was concentrated in vacuo and then dried under high vacuum for 1 hour. The residue was dissolved in acetonitrile (40 ml), diisopropylethylamine (1.8 ml) and 4- chlorocinnamyl chloride (380 mg) were added. The solution was stirred 20 hours at room temperature, the solvent was removed in vacuo and the residue was subjected to silica gel chromatography (ethyl acetate:methanol 95:5) to afford the title product (409 mg) as a yellow solid. M.p. 78-80 °C; 1H NMR (400 MHz, CDCl3) 1.9 (m, 2H), 2.2 (m, 4H), 2.8 (m, IH), 3.2 (d, J = 9 Hz, 2H), 3.3 (m, 2H), 6.2 (dt, J = 18, 9 Hz, IH), 6.5 (d, J = 18 Hz, IH), 7.1-7.3 (m, 5H), 7.6 (d, J = 4.4 Hz, IH), 7.7 (s, IH), 7.9 (m, IH, NH), 8.0 (d, J = 7.6 Hz, IH), 8.6 (d, J = 3.6 Hz, IH), 8.7 (d, J = 5.5 Hz, IH); Retention Time HPLC 1.53 min; MS (ES+) 467/469 (M+H+).
EXAMPLE 22
This Example illustrates the preparation of 2-Chloro-N-{r-[(E)-3-(4-chloro-phenyl)-allyl]- 1 ',2',3 ',6'-hexahydro-[2,4']bipyridinyl-3 -yl} -isonicotinamide.
Figure imgf000141_0001
3-amino-3',6'-dihydro-2Η-[2,4']bipyridinyl-r-carboxylic acid tert-butyl ester (Example 1, Step B, 205 mg) was treated as described in Example 1, steps D and E to afford the title product (182 mg) as a yellow solid. M.p. 75-77 °C; 1H NMR (400 MHz, CDCl3) 1.8 (m, 2H), 2.7 (m, 2H), 2.8 (m, 2H), 3.2 (m, 2H), 3.3 (m, 2H)5 6.0 (s, IH), 6.2 (dt, J = 18, 9 Hz, IH), 6.5 (d, J = 18 Hz, IH), 7.1-7.3 (m, 6H), 7.6 (m, IH), 7.7 (s, IH), 7.7 (s, IH), 8.3 (d, J = 3.6 Hz, IH), 8.5 (d, J = 5.5 Hz, IH), 8.8 (m, IH, NH); Retention Time HPLC 1.51 min; MS (ES+) 465/467 (M+H+).
The following compounds were prepared according to procedures analogous to those described in Example 22:
Figure imgf000142_0002
EXAMPLE 23
This Example illustrates the preparation of 2-Chloro-N-{5-chloro-l'-[(E)-3-(4-chloro- ρhenyl)-allyl]-r,2l,3l,4',5',6l-hexahydro-[2,4']biρyridinyl-3-yl}-isonicotinamide.
Figure imgf000142_0001
A mixture of trimethylchlorosilane and 1,2-dibromoethane (7:5 v/v, 0.125 ml) was added dropwise (keeping the T0C below 5O0C) to a suspension of zinc powder (422 mg) in dimethylacetamide (3 ml). The mixture was stirred 20 min at room temperature then a solution of l-(t-butoxycarbonyl)-4-iodo-piperidine (1.62 g, prepared in 2 steps from l-(t- butoxycarbonyl)-piperidin-4-one according to J. Org. Chem. 2004, 5120) in dimethylacetamide (3 ml) was added dropwise over 5 min (slightly exothermic). The resulting mixture was stirred at room temperature for 30 min then cannulated into a mixture of 2,5-dichloro-3-aminopyridine (603 mg), copper(I) iodide (42 mg) and PdCl2(dppf) (91 mg) in dimethylacetamide (5 ml). The resulting mixture was stirred at 80°C for 3 hours, cooled to room temperature, poured into water, extracted with ethyl acetate, dried over sodium sulfate and concentrated in vacuo. The residue was subjected to silica gel chromatography (ethyl acetate: cyclohexane 3:7) to afford 3-amino-5-chloro-3',6'-dihydro- 2'H-[2,4']bipyridinyl-r-carboxylic acid tert-butyl ester (535 mg) as a yellow solid. 1H NMR (400 MHz, CDCl3) 1.4 (s, 9H), 1.8 (m, 4H), 2.6 (m, IH), 2.8 (m, 2H)5 3.7 (br s, 2H), 4.2 (m, 2H), 6.9 (s, IH), 7.9 (s, IH).
The product thus obtained (448 mg) was treated as described in Example 1, Steps D and E to afford the title product (455 mg) as a white solid. M.p. 63-67 °C; 1H NMR (400 MHz, CDCl3) 1.9 (m, 2H), 2.2 (m, 4H), 2.7 (m, IH), 3.2 (m, 2H), 3.3 (m, 2H), 6.2 (dt, J = 18, 9 Hz, IH), 6.5 (d, J = 18 Hz, IH), 7.1-7.3 (m, 4H), 7.7 (d, J = 5.2 Hz, IH), 7.8 (s, IH), 7.9 (m, IH, NH), 8.3 (d, J = 2.4 Hz, IH), 8.4 (d, J = 2.4 Hz, IH), 8.6 (d, J = 4.8 Hz, IH), 8.7 (d, J = 5.5 Hz, IH); Retention Time HPLC 1.53 min; MS (ES+) 501/503/505 (M+H+).
The following compounds were prepared according to procedures analogous to those described in Example 23:
Figure imgf000144_0002
The following compounds (Tables EX23.1 - EX23.11) were prepared applying Suzuki cross coupling reactions as described in Schemes 8-13. Reaction conditions described in the literature [P. R Eastwood, THL 41, 3705 (2000) for example] or as described above were applied.
Figure imgf000144_0001
Table EX23.1
Figure imgf000144_0003
Figure imgf000145_0007
D DlMF
Figure imgf000145_0001
Figure imgf000145_0002
Table EX23.2
Figure imgf000145_0008
Figure imgf000145_0003
Figure imgf000145_0004
Figure imgf000145_0005
S-3-8toS-3-13
Figure imgf000145_0006
TableEX23.3
Figure imgf000146_0002
Figure imgf000146_0001
TableEX23.4
Figure imgf000146_0003
Figure imgf000147_0002
Figure imgf000147_0001
TableEX23.5
Figure imgf000147_0003
Figure imgf000148_0001
Hϋnig base, CH3CN
Figure imgf000148_0003
Figure imgf000148_0002
TableEX23.6
Figure imgf000148_0004
Figure imgf000149_0001
Base, CH2CI2
Figure imgf000149_0002
Figure imgf000149_0003
TableEX23.7
Figure imgf000149_0005
Figure imgf000149_0004
TableEX23.8
Figure imgf000149_0006
Figure imgf000150_0001
Hϋnig base, CH3CN
Figure imgf000150_0003
Figure imgf000150_0002
TableEX23.9
Figure imgf000150_0005
Figure imgf000150_0004
Table EX23.10
Figure imgf000150_0006
Figure imgf000151_0002
Figure imgf000151_0001
Table EX23.11
Figure imgf000151_0003
EXAMPLE 24
This Example illustrates the pesticidal/insecticidal properties of compounds of formula (I). Test against were performed as follows: Spodoptera littoralis (Egyptian cotton leafworm)
Cotton leaf discs were placed on agar in a 24- well microtiter plate and sprayed with test solutions at an application rate of 200 ppm. After drying, the leaf discs were infested with 5 L1 larvae. The samples were checked for mortality, repellent effect, feeding behaviour, and growth regulation 3 days after treatment (DAT). The following compounds gave at least 80% control of Spodoptera littoralis: Iaaa-3 and Iaaa-49. Heliothis virescens ( Tobacco budworm):
Eggs (0-24 h old) were placed in 24-well microtiter plate on artificial diet and treated with test solutions at an application rate of 200 ppm by pipetting. After an incubation period of 4 days, samples were checked for egg mortality, larval mortality, and growth regulation. The following compounds gave at least 80% control of Heliothis virescen: Ia-49, Ia-50, Ia-53, Iaaa-3, Iaaa-26, Iaaa-49, Iaaa-52, Iaab-26 and Iaac-26. Plutella xylostella (Diamond back moth): 24-well microtiter plate (MTP) with artificial diet was treated with test solutions at an application rate of 18.2 ppm by pipetting. After drying, the MTP 's were infested with larvae (L2)(10-15 per well). After an incubation period of 5 days, samples were checked for larval mortality, antifeedant and growth regulation. The following compounds gave at least 80% control of Plutella xylostella: Ia-49, Ia-53, Iaaa-3, Iaaa-26, Iaaa-49 and Iaac-26.
Aedes aegypti (Yellow fever mosquito):
10-15 Aedes larvae (L2) together with a nutrition mixture are placed in 96-well microtiter plates. Test solutions at an application rate of 2ppm are pipetted into the wells. 2 days later, insects were checked for mortality and growth inhibition. The following compounds gave at least 80% control of Aedes aegypti: Ia-53, Iaaa-3, Iaaa-26, Iaaa-49, Iaaa-52, Iaab-26, Iaac-26 and Iaai-26.

Claims

1. A method of combating and controlling insects, acarines, nematodes or molluscs which comprises applying to a pest, to a locus of a pest, or to a plant susceptible to attack by a pest an insecticidally, acaricidally, nematicidally or molluscicidally effective amount of a compound of formula I
Figure imgf000153_0001
where Y is a single bond, C=O, C=S or S(O)m where m is 0, 1 or 2; the ring
Figure imgf000153_0002
is a 6 membered aromatic ring or is a 5 or 6 membered heteroaromatic ring;
I I
Z and Z' are joined by a single or a double bond and are =C- or -N- provided that both are not N;
R1 is hydrogen, optionally substituted alkyl, optionally substituted alkoxycarbonyl, optionally substituted alkylcarbonyl, aminocarbonyl, optionally substituted alkylaminocarbonyl, optionally substituted dialkylaminocarbonyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxy, optionally substituted aryloxy, optionally substituted heteroaryloxy, optionally substituted heterocyclyloxy, cyano, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkenyl, formyl, optionally substituted heterocyclyl, optionally substituted alkylthio, NO Or NR13R14 where R13 and R14 are independently hydrogen, COR15, optionally substituted alkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted heterocyclyl or R13 and R14 together with the N atom to which they are attached form a group -N=C(R16)-NR17R18 or R13 and R14 together with the N atom to which they are attached form a five, six or seven-membered heterocyclic ring which may contain one or two further heteroatoms selected from O, N or S and which may be optionally substituted by one or two C1-6 alkyl groups; R15 is H, optionally substituted alkyl, optionally substituted alkoxy, optionally substituted aryl, optionally substituted aryloxy optionally substituted heteroaryl, optionally substituted heteroaryloxy or NR19R20; R16 , R17 and R18 are each independently H or lower alkyl; R19 and R20 are independently optionally substituted alkyl, optionally substituted aryl or optionally substituted heteroaryl;
R2 is H, hydroxy, optionally substituted alkoxy or optionally substituted alkyl; or R1 and R2 together with the groups Y and N form a 5-or 6-membered heterocyclic ring which may optionally contain one further heteroatom selected from O, N or S and which may be optionally substituted by C1-4 alkyl, C1-4 haloalkyl or halogen; R3 is H, OH, halogen or optionally substituted alkyl;
R3a is H or R3 and R3a together form a bond; each R4 is independently halogen, nitro, cyano, optionally substituted C1-8 alkyl, optionally substituted C2-6 alkenyl, optionally substituted C2-6 alkynyl, optionally substituted alkoxycarbonyl, optionally substituted alkylcarbonyl, optionally substituted alkylaminocarbonyl, optionally substituted dialkylaminocarbonyl, optionally substituted C3-7 cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted heterocyclyl, optionally substituted alkoxy, optionally substituted aryloxy, optionally substituted heteroaryloxy, optionally substituted alkylthio or R21R22N where R21 and R22 are, independently, hydrogen, C1-8 alkyl, C3-7 cycloalkyl, C3-6 alkenyl, C3-6 alkynyl, C3-7 cycloalkyl(Ci.
4)alkyl, C2-6 haloalkyl, C1-6 alkoxy(C1-6)alkyl, C1-6 alkoxycarbonyl or R21 and R22 together with the N atom to which they are attached form a five, six or seven- membered heterocyclic ring which may contain one or two further heteroatoms selected from O, N or S and which may be optionally substituted by one or two C1-6 alkyl groups, or 2 adjacent groups R together with the carbon atoms to which they are attached form a 4, 5, 6,or 7 membered carbocyclic or heterocyclic ring which may be optionally substituted by halogen; n is 0, 1, 2, 3 or 4; R is optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, . optionally substituted alkoxy, optionally substituted aryloxy, optionally substituted alkoxycarbonyl, optionally substituted alkylcarbonyl or optionally substituted alkenylcarbonyl; each Ra is independently halogen, hydroxy, cyano, optionally substituted C1-8 alkyl, optionally substituted C2-6 alkenyl, optionally substituted C2-6 alkynyl, optionally substituted alkoxycarbonyl, optionally substituted alkylcarbonyl, optionally substituted alkylaminocarbonyl, optionally substituted dialkylaminocarbonyl, optionally substituted C3-7 cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted heterocyclyl, optionally substituted alkoxy, optionally substituted aryloxy, optionally substituted heteroaryloxy, optionally substituted alkylthio, optionally substituted arylthio or R23R24N where R23 and R24 are, independently, hydrogen, C1-8 alkyl, C3-7 cycloalkyl, C3-6 alkenyl, C3-6 alkynyl, C3-7 cycloalkyl(C1-4)alkyl, C2-6 haloalkyl, C1-6 alkoxyCC^alkyl, C1-6 alkoxycarbonyl or R23 and R24 together with the N atom to which they are attached form a five, six or seven-membered heterocyclic ring which may contain one or two further heteroatoms selected from O, N or S and which may be optionally substituted by one or two C1-6 alkyl groups, or two Ra groups attached to the same carbon atom are =0, =S, =NRb, =CRcRd where Rb, Rc and Rd are independently H or optionally substituted alkyl; p is 0, 1 , 2, 3 or 4 or salts or N-oxides thereof.
2. A method according to claim 1 wherein the ring
Figure imgf000155_0001
is a 6-membered aromatic ring or is 5 or 6 membered heteroaromatic ring wherein the ring members are each independently CH, S, N, NR4, O, or CR4 provided that at least one ring member is other than CH or CR4 and that there are no more than one O or S atoms present in the ring.
3. A method according to claim 1 or claim 2 wherein Y is a single bond, C=O or C=S.
4. A method according to any preceding claim wherein R1 is hydrogen, C1-6 alkyl, C1-6 cyanoalkyl, C1-6 haloalkyl, C3-7 cycloalkyl(C1-4)alkyl, C1-6 alkoxy(C1-6)alkyl, heteroaryl(C1-6)alkyl (wherein the heteroaryl group may be optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy, C1-6 haloalkoxy, C1-6 alkylsulfonyl, C1-6 alkylsulfmyl, C1-6 alkylthio, C1-6 alkoxycarbonyl, C1-6 alkylcarbonylamino, arylcarbonyl, or two adjacent positions on the heteroaryl system may be cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen), aryl(C1-6)alkyl (wherein the aryl group maybe optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy, C1- β haloalkoxy, C1-6 alkylsulfonyl, C1-6 alkylsulfinyl, C1-6 alkylthio, C1-6 alkoxycarbonyl, C1-6 alkylcarbonylamino, arylcarbonyl, or two adjacent positions on the aryl system maybe cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen), C1-6 alkylcarbonylamino(C1-6)alkyl, aryl (which may be optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy, C1-6 haloalkoxy, C1-6 alkylsulfonyl, C1-6 alkylsulfinyl, C1-6 alkylthio, C1-6 alkoxycarbonyl, C1-6 alkylcarbonylamino, arylcarbonyl, or two adjacent positions on the aryl system may be cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen), heteroaryl (which may be optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy, C1-6 haloalkoxy, C1-6 alkylsulfonyl, C1-6 alkylsulfinyl, C1-6 alkylthio, C1-6 alkoxycarbonyl, C1-6 alkylcarbonylamino, arylcarbonyl, or two adjacent positions on the heteroaryl system may be cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen), C1-6 alkoxy, C1-6 haloalkoxy, phenoxy (wherein the phenyl group is optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino), heteroaryloxy (optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy or C1-6 haloalkoxy), heterocyclyloxy (optionally substituted by halo, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy or C1-6 haloalkoxy), cyano, C2-6 alkenyl, C2-6 alkynyl, C3-6 cycloalkyl, C5-7 cycloalkenyl, heterocyclyl (optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy or C1-6 haloalkoxy), C1-6 alkylthio, C1-6 haloalkylthio or NR13R14 where R13 and R14 are independently hydrogen, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy(C1-6)alkyl, phenyl (which may be optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino, dialkylamino or C1-4 alkoxycarbonyl), phenyl (C1-6)alkyl (wherein the phenyl group may be optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino, dialkylamino, C1-6 alkylsulfonyl, C1-6 alkoxycarbonyl, or two adjacent positions on the phenyl ring may be cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen), heteroaryl (C1-6)alkyl (wherein the heteroaryl group may be optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy, C1-6 haloalkoxy, C1-6 alkylsulfonyl, C1-6 alkylsulfinyl, C1-6 alkylthio, C1-6 alkoxycarbonyl, C1-6 alkylcarbonylarnino, arylcarbonyl, or two adjacent positions on the heteroaryl system may be cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen) or heteroaryl (which may be optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy or C1-6 haloalkoxy, C1-4 alkoxycarbonyl C1-6 alkylcarbonylamino, phenyloxycarbonylamino (wherein the phenyl group is optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino), amino, C1-6 alkylamino or phenylamino (wherein the phenyl group is optionally substituted halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino)).
5. A method according to any preceding claim wherein R2 is hydrogen, hydroxy, C1-6 alkyl or C1-6 haloalkyl.
6. A method according to any preceding claim wherein each R4 is independently halogen, cyano, C1-8 alkyl, C1-8 haloalkyl, C1-6 cyanoalkyl, C1-6 alkoxy(C1-6)alkyl, C3-7 cycloalkyl(C1-6)alkyl, C5-6 cycloalkenyl(C1-6)alkyl, C3-6 alkenyloxy(C1-6)alkyl, C3-6 alkynyloxy(C1-6)alkyl, aryloxy(C1-6)alkyl, C1-6 carboxyalkyl, C1-6 alkylcarbony^C^
6)alkyl, C2-6 alkenylcarbonyl(C1-6)alkyl, C2-6 alkynylcarbonyl(C1-6)-alkyl, C1-6 alkoxycarbonyl(C1-6)alkyl, C3-6 alkenyloxycarbonyl(C1-6)alkyl, C3-6 alkynyloxycarbonyl(C1-6)alkyl, aryloxycarbonyl(C1-6)alkyl, C1-6 alkylthio(C1-6)alkyl, C1-6 alkylsulfinyl(C1-6)alkyl, C1-6 alkylsulfonyl(C1-6)alkyl, aminocarbonyl(C1-6)alkyl, C1-6 alkylaminocarbonyl(C1-6)alkyl, di(C1-6)alkylaminocarbonyl(C1-6)alkyl, phenyl(C1-4)alkyl (wherein the phenyl group is optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino), heteroaryl(C1-4)alkyl (wherein the heteroaryl group is optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy or C1-6 haloalkoxy), heterocyclyl(C1-4)alkyl (wherein the heterocyclyl group is optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy or C1-6 haloalkoxy), C2-6 alkenyl, aminocarbonyl(C2-6)alkenyl, C1-6 alkylaminocarbonyl(C2-
6)alkenyl, di(C1-6)alkylaminocarbonyl(C2-6)alkenyl, phenyl(C2-4)-alkenyl, (wherein the phenyl group is optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino), C2-6 alkynyl, trimethylsilyl(C2-6)alkynyl, aminocarbonyl(C2-6)alkynyl, C1-6 alkylaminocarbonyl(C2.6)alkynyl, di(C1-6)alkylaminocarbonyl(C2-6)alkynyl, C1-6 alkoxycarbonyl, C3-7 cycloalkyl, C3-7 halocycloalkyl, C3-7 cyanocycloalkyl, C1-3 alkyl(C3-7)-cycloalkyl, C1-3 alkyl(C3-7)halocycloalkyl,phenyl (optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino), heteroaryl (optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy or C1-6 haloalkoxy), heterocyclyl
(wherein the heterocyclyl group is optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy or C1-6 haloalkoxy), or 2 adjacent groups R4 together with the carbon atoms to which they are attached form a 4, 5, 6 or 7 membered carbocylic or heterocyclic ring which may be optionally substituted by halogen, C1-8 alkoxy, C1-6 haloalkoxy, phenoxy (optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy or C1-6 haloalkoxy), heteroaryloxy (optionally substituted by halo, nitro, cyano, C1-6 alkyl, C1-6 haloalkyl, C1-6 alkoxy or C1-6 haloalkoxy), C1-8 alkylthio or R19R20N where R19 and R20 are, independently, hydrogen, C1-8 alkyl, C3-7 cycloalkyl, C3-6 alkenyl, C3-6 alkynyl, C2-6 haloalkyl, C1-6 alkoxycarbonyl or R19 and R20 together with the N atom to which they are attached form a five, six or seven-membered heterocyclic ring which may contain one or two further heteroatoms selected from O, N or S and which may be optionally substituted by one or two C1-6 alkyl groups; n is 0, 1, 2 or 3.
7. A method according to any preceding claim wherein R8 is C1-10 alkyl, C1-10 haloalkyl, aryl(C1-6)alkyl (wherein the aryl group is optionally substituted by halogen, C1-4 alkyl,
C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino), heteroaryl(C1-6)alkyl (wherein the heteroaryl group is optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino), arylcarbonyl-(C1-6)alkyl (wherein the aryl group may be optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino and the alkyl group may be optionally substituted by aryl), C2-8 alkenyl, C2-8 haloalkenyl, aryl(C2-6)-alkenyl (wherein the aryl group is optionally substituted halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino, C1-6 alkoxycarbonyl, or two adjacent substituents can cyclise to form a
5, 6 or 7 membered carbocyclic or heterocyclic ring), heteroaryl(C2-6)-alkenyl (wherein the heteroaryl group is optionally substituted halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino, C1-6 alkoxycarbonyl, or two adjacent substituents can cyclise to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring), C2-6 alkynyl, phenyl(C2- 6)alkynyl (wherein the phenyl group is optionally substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino), C3-7 cycloalkyl, C1-6 alkoxycarbonyl, C1-6 alkylcarbonyl, C1-6 haloalkylcarbonyl or aryl(C2-6)alkenylcarbonyl (wherein the aryl group may be optionally substituted halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino), or -C(R51)(R52)- [CR53=CR 54Jz-R55 where z is 1 or 2, R51 and R52 are each independently H, halo or C1-2 alkyl, R53 and R54 are each independently H, halogen, C1-4 alkyl or C1-4 haloalkyl and R55 is optionally substituted aryl or optionally substituted heteroaryl.
8. A method according to any preceding claim wherein Ra is independently halo, cyano, C1-3 alkyl, hydroxy or two Ra groups together with the carbon atom to which they are attached form =0, =S, =NRb, =CRcRd where Rb3 Rc and Rd are idependently H or optionally substituted alkyl, and p is 0, 1 or 2.
9. A method according to any proceding claim wherein R3 is hydrogen, hydroxy, halogen, C1-6 alkyl or C1-6 haloalkyl and R3a is hydrogen or R3 and R3a together form a double bond.
10. A compound of formula F
Figure imgf000160_0001
wherein ; the ring
Figure imgf000160_0002
and R1, R2, R3, R3a, R4, Ra, Y, n and p are as defined in relation to formula I in claim 1 and R8 is -C(R51)(R52)-[CR53==CR54]z-R55 where z is 1 or 2, R51 and R52 are each independently H or C1-2 alkyl, R53 and R54 are each independently H, halogen, C1-4 alkyl or C1-4 haloalkyl and R55 is phenyl substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino or heteroaryl substituted by halogen, C1-4 alkyl, C1-4 alkoxy, C1-4 haloalkyl, C1-4 haloalkoxy, CN, NO2, aryl, heteroaryl, amino or dialkylamino or salts or N-oxides thereof.
11. A compound of formula Ha
Figure imgf000161_0001
wherein ; the ring
Figure imgf000161_0002
and R3, R3a, R4, R8, Ra, n and p are as defined in relation to formula F in claim 10 and R60 is NH2, NO2 or halogen; or a compound of formula (lib)
Figure imgf000161_0003
wherein ; the ring
Figure imgf000161_0004
and R4, R60 and n are as defined in relation to formula Ha, R3 and R3a are both H or together form a bond and R8 is methyl, benzyl or COOC1-6alkyl provided that the compound is not tert-butyl 4-(2-aminophenyl)piperidine-l-carboxylate or 2,4- diamino-5-(l-benzyl-4-piperidinyl)-pyrimidine.
12. An insecticidal acaricidal and nematicidal composition comprising an insecticidally, acaricidally or nematicidally effective amount of a compound of formula I as defined in claim 1.
PCT/IB2005/002002 2004-06-28 2005-06-22 Piperidine derivatives and their use as insecticides, acaricides, molluscicides or nematicides WO2006003494A2 (en)

Priority Applications (20)

Application Number Priority Date Filing Date Title
EA200602170A EA014686B1 (en) 2004-06-28 2005-06-22 Piperidine derivatives, compositions based thereon methods for use thereof
AP2006003830A AP1970A (en) 2004-06-28 2005-06-22 Piperidine derivatives and their use as insecticides, acaricides, molluscicides or nematicides
AP2008004646A AP2008004646A0 (en) 2004-06-28 2005-06-22 Piperidine derivatives and their use as insecticides, acaricides, molluscicides or nematicides
EP05757532A EP1763302B1 (en) 2004-06-28 2005-06-22 Chemical compounds
KR1020137008545A KR101396174B1 (en) 2004-06-28 2005-06-22 Piperidine derivatives and their use as insecticides, acaricides, molluscicides or nematicides
AU2005258905A AU2005258905B2 (en) 2004-06-28 2005-06-22 Piperidine derivatives and their use as insecticides, acaricides, molluscicides or nematicides
CA2568808A CA2568808C (en) 2004-06-28 2005-06-22 Chemical compounds
ES05757532T ES2408856T3 (en) 2004-06-28 2005-06-22 Chemical compounds
BRPI0512659-2A BRPI0512659A (en) 2004-06-28 2005-06-22 chemical compounds
KR1020127019520A KR101268288B1 (en) 2004-06-28 2005-06-22 Piperidine derivatives and their use as insecticides, acaricides, molluscicides or nematicides
MXPA06014005A MXPA06014005A (en) 2004-06-28 2005-06-22 Chemical compounds.
NZ551629A NZ551629A (en) 2004-06-28 2005-06-22 Piperidine derivatives and their use as insecticides, acaricides, molluscicides or nematicides
US11/571,303 US8129534B2 (en) 2004-06-28 2005-06-22 Chemical compounds
KR1020067027660A KR101338876B1 (en) 2004-06-28 2005-06-22 Piperidine derivatives and their use as insecticides, acaricides, molluscicides or nematicides
JP2007517523A JP5043653B2 (en) 2004-06-28 2005-06-22 Compound
PL05757532T PL1763302T3 (en) 2004-06-28 2005-06-22 Chemical compounds
IL179745A IL179745A (en) 2004-06-28 2006-11-30 Method for combating and controlling insects, piperidine derivatives and insecticidal and acaricidal compositions comprising said derivatives
TNP2006000442A TNSN06442A1 (en) 2004-06-28 2006-12-27 Chemical compounds
US13/371,002 US8546569B2 (en) 2004-06-28 2012-02-10 Chemical compounds
US13/949,803 US9045422B2 (en) 2004-06-28 2013-07-24 Piperidine derivatives with pesticidal properties

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0414438.2 2004-06-28
GBGB0414438.2A GB0414438D0 (en) 2004-06-28 2004-06-28 Chemical compounds

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/571,303 A-371-Of-International US8129534B2 (en) 2004-06-28 2005-06-22 Chemical compounds
US13/371,002 Division US8546569B2 (en) 2004-06-28 2012-02-10 Chemical compounds

Publications (2)

Publication Number Publication Date
WO2006003494A2 true WO2006003494A2 (en) 2006-01-12
WO2006003494A3 WO2006003494A3 (en) 2006-06-15

Family

ID=32800314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2005/002002 WO2006003494A2 (en) 2004-06-28 2005-06-22 Piperidine derivatives and their use as insecticides, acaricides, molluscicides or nematicides

Country Status (26)

Country Link
US (3) US8129534B2 (en)
EP (1) EP1763302B1 (en)
JP (1) JP5043653B2 (en)
KR (3) KR101396174B1 (en)
CN (2) CN1976584A (en)
AP (2) AP2008004646A0 (en)
AR (1) AR049556A1 (en)
AU (1) AU2005258905B2 (en)
BR (1) BRPI0512659A (en)
CA (1) CA2568808C (en)
CR (1) CR8790A (en)
EA (1) EA014686B1 (en)
EC (1) ECSP067112A (en)
ES (1) ES2408856T3 (en)
GB (1) GB0414438D0 (en)
IL (1) IL179745A (en)
MA (1) MA28678B1 (en)
MX (1) MXPA06014005A (en)
NZ (1) NZ551629A (en)
PL (1) PL1763302T3 (en)
PT (1) PT1763302E (en)
TN (1) TNSN06442A1 (en)
TW (1) TWI379636B (en)
UA (1) UA89788C2 (en)
WO (1) WO2006003494A2 (en)
ZA (1) ZA200609687B (en)

Cited By (304)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072143A2 (en) * 2005-12-21 2007-06-28 Syngenta Participations Ag Chemical compounds
WO2009138219A2 (en) * 2008-05-15 2009-11-19 Syngenta Participations Ag Insecticidal compounds
WO2010009968A1 (en) * 2008-07-22 2010-01-28 Syngenta Participations Ag Insecticidal phenyl- or pyridyl-piperidine compounds
WO2011003684A1 (en) * 2009-07-06 2011-01-13 Syngenta Participations Ag Insecticidal compounds
US8114868B2 (en) 2008-07-25 2012-02-14 Boehringer Ingelheim International Gmbh Cyclic inhibitors of 11β-hydroxysteroid dehydrogenase 1
US8138178B2 (en) 2008-05-01 2012-03-20 Vitae Pharmaceuticals, Inc. Cyclic inhibitors of 11beta-hydroxysteroid dehydrogenase 1
US8202857B2 (en) 2008-02-11 2012-06-19 Vitae Pharmaceuticals, Inc. 1,3-oxazepan-2-one and 1,3-diazepan-2-one inhibitors of 11β-hydroxysteroid dehydrogenase 1
US8242111B2 (en) 2008-05-01 2012-08-14 Vitae Pharmaceuticals, Inc. Cyclic inhibitors of 11β-hydroxysteroid dehydrogenase 1
US8329897B2 (en) 2007-07-26 2012-12-11 Vitae Pharmaceuticals, Inc. Synthesis of inhibitors of 11β-hydroxysteroid dehydrogenase type 1
US8440658B2 (en) 2007-12-11 2013-05-14 Vitae Pharmaceuticals, Inc. Cyclic urea inhibitors of 11β-hydroxysteroid dehydrogenase 1
US8569292B2 (en) 2008-05-01 2013-10-29 Vitae Pharmaceuticals, Inc. Cyclic inhibitors of 11β-hydroxysteroid dehydrogenase 1
WO2013164954A1 (en) * 2012-05-01 2013-11-07 住友化学株式会社 Piperidine compound and pest-control use therefore
US8592410B2 (en) 2008-05-01 2013-11-26 Vitae Pharmaceuticals, Inc. Cyclic inhibitors of 11BETA-hydroxysteroid dehydrogenase 1
US8592409B2 (en) 2008-01-24 2013-11-26 Vitae Pharmaceuticals, Inc. Cyclic carbazate and semicarbazide inhibitors of 11β-hydroxysteroid dehydrogenase 1
US8598160B2 (en) 2008-02-15 2013-12-03 Vitae Pharmaceuticals, Inc. Cycloalkyl lactame derivatives as inhibitors of 11-beta-hydroxysteroid dehydrogenase 1
WO2014005982A1 (en) 2012-07-05 2014-01-09 Bayer Cropscience Ag Insecticide and fungicide active ingredient combinations
US8637505B2 (en) 2009-02-04 2014-01-28 Boehringer Ingelheim International Gmbh Cyclic inhibitors of 11beta-hydroxysteroid dehydrogenase 1
US8680281B2 (en) 2008-01-07 2014-03-25 Vitae Pharmaceuticals, Inc. Lactam inhibitors of 11-β-hydroxysteroid dehydrogenase 1
US8680093B2 (en) 2009-04-30 2014-03-25 Vitae Pharmaceuticals, Inc. Cyclic inhibitors of 11beta-hydroxysteroid dehydrogenase 1
US8765744B2 (en) 2010-06-25 2014-07-01 Boehringer Ingelheim International Gmbh Azaspirohexanones
US8835426B2 (en) 2007-02-26 2014-09-16 Vitae Pharmaceuticals, Inc. Cyclic urea and carbamate inhibitors of 11β-hydroxysteroid dehydrogenase 1
US8846613B2 (en) 2010-11-02 2014-09-30 Boehringer Ingelheim International Gmbh Pharmaceutical combinations for the treatment of metabolic disorders
US8846668B2 (en) 2008-07-25 2014-09-30 Vitae Pharmaceuticals, Inc. Inhibitors of 11beta-hydroxysteroid dehydrogenase 1
US8883778B2 (en) 2009-07-01 2014-11-11 Vitae Pharmaceuticals, Inc. Cyclic inhibitors of 11 beta-hydroxysteroid dehydrogenase 1
US8927539B2 (en) 2009-06-11 2015-01-06 Vitae Pharmaceuticals, Inc. Cyclic inhibitors of 11β-hydroxysteroid dehydrogenase 1 based on the 1,3-oxazinan-2-one structure
US8933072B2 (en) 2010-06-16 2015-01-13 Vitae Pharmaceuticals, Inc. Substituted 5-,6- and 7-membered heterocycles, medicaments containing such compounds, and their use
WO2015055554A1 (en) 2013-10-14 2015-04-23 Bayer Cropscience Ag Active substance for treating seed and soil
WO2015059088A1 (en) 2013-10-23 2015-04-30 Bayer Cropscience Ag Substituted quinoxaline derivatives as pest control agent
WO2015101622A1 (en) 2014-01-03 2015-07-09 Bayer Cropscience Ag Novel pyrazolyl-heteroarylamides as pesticides
US9079861B2 (en) 2007-11-07 2015-07-14 Vitae Pharmaceuticals, Inc. Cyclic urea inhibitors of 11β-hydroxysteroid dehydrogenase 1
WO2015107133A1 (en) 2014-01-20 2015-07-23 Bayer Cropscience Ag Quinoline derivatives as insecticides and acaricides
EP2910126A1 (en) 2015-05-05 2015-08-26 Bayer CropScience AG Active compound combinations having insecticidal properties
WO2015150300A1 (en) 2014-04-02 2015-10-08 Bayer Cropscience Ag N-(1-(hetero)aryl-1h-pyrazol-4-yl)-(hetero)arylamide derivatives and use thereof as pesticides
WO2015169776A1 (en) 2014-05-08 2015-11-12 Bayer Cropscience Ag Pyrazolopyridine sulfonamides as nematicides
WO2015185531A1 (en) 2014-06-05 2015-12-10 Bayer Cropscience Aktiengesellschaft Bicyclic compounds as pesticides
WO2016001119A1 (en) 2014-07-01 2016-01-07 Bayer Cropscience Aktiengesellschaft Insecticide and fungicide active ingredient combinations
WO2016008830A1 (en) 2014-07-15 2016-01-21 Bayer Cropscience Aktiengesellschaft Aryl-triazolyl pyridines as pest control agents
WO2016055096A1 (en) 2014-10-07 2016-04-14 Bayer Cropscience Ag Method for treating rice seed
WO2016091857A1 (en) 2014-12-11 2016-06-16 Bayer Cropscience Aktiengesellschaft Five-membered c-n bonded aryl sulphide and aryl sulphoxide derivatives as pest control agents
WO2016124563A1 (en) 2015-02-05 2016-08-11 Bayer Cropscience Aktiengesellschsaft 2-(het)aryl-substituted condensed bicyclic heterocycle derivatives as pest control agents
WO2016124557A1 (en) 2015-02-05 2016-08-11 Bayer Cropscience Aktiengesellschaft 2-(het)aryl-substituted condensed bicyclic heterocycle derivatives as pest control agents
WO2016128298A1 (en) 2015-02-09 2016-08-18 Bayer Cropscience Aktiengesellschaft Substituted 2-thioimidazolyl-carboxamides as pest control agents
WO2016142394A1 (en) 2015-03-10 2016-09-15 Bayer Animal Health Gmbh Pyrazolyl-derivatives as pest control agents
WO2016162318A1 (en) 2015-04-08 2016-10-13 Bayer Cropscience Aktiengesellschaft Condensed bicyclic heterocycle derivatives as pest control agents and intermediate product
EP3081085A1 (en) 2015-04-14 2016-10-19 Bayer CropScience AG Method for improving earliness in cotton
WO2016174049A1 (en) 2015-04-30 2016-11-03 Bayer Animal Health Gmbh Anti-parasitic combinations including halogen-substituted compounds
WO2016180802A1 (en) 2015-05-13 2016-11-17 Bayer Cropscience Aktiengesellschaft Insecticidal arylpyrrolidines, method for synthesizing same, and use thereof as agents for controlling animal pests
WO2017005717A1 (en) 2015-07-06 2017-01-12 Bayer Cropscience Aktiengesellschaft Heterocyclic compounds as pesticides
WO2017072039A1 (en) 2015-10-26 2017-05-04 Bayer Cropscience Aktiengesellschaft Condensed bicyclic heterocycle derivatives as pest control agents
WO2017093180A1 (en) 2015-12-01 2017-06-08 Bayer Cropscience Aktiengesellschaft Condensed bicyclic heterocycle derivatives as pest control agents
WO2017093214A1 (en) 2015-12-03 2017-06-08 Bayer Cropscience Aktiengesellschaft Mesoionic halogenated 3-(acetyl)-1-[(1,3-thiazol-5-yl)methyl]-1h-imidazo[1,2-a]pyridin-4-ium-2-olate derivatives and related compounds as insecticides
WO2017137338A1 (en) 2016-02-11 2017-08-17 Bayer Cropscience Aktiengesellschaft Substituierted 2-(het)aryl-imidazolyl-carboxyamides as pest control agents
WO2017137339A1 (en) 2016-02-11 2017-08-17 Bayer Cropscience Aktiengesellschaft Substituted 2-oxyimidazolyl-carboxamides as pest control agents
EP3210468A1 (en) 2016-02-26 2017-08-30 Bayer CropScience Aktiengesellschaft Solvent-free formulations of low-melting point agents
WO2017144341A1 (en) 2016-02-23 2017-08-31 Bayer Cropscience Aktiengesellschaft Condensed bicyclic heterocycle derivatives as pest control agents
WO2017157885A1 (en) 2016-03-16 2017-09-21 Bayer Cropscience Aktiengesellschaft N-(cyanobenzyl)-6-(cyclopropyl-carbonylamino)-4-(phenyl)-pyridine-2-carboxamide derivatives and related compounds as pesticides and plant protection agents
WO2017157735A1 (en) 2016-03-15 2017-09-21 Bayer Cropscience Aktiengesellschaft Substituted sulfonyl amides for controlling animal pests
US9776967B2 (en) 2013-10-14 2017-10-03 Bayer Animal Health Gmbh Carboxamide derivatives as pesticidal compounds
WO2017174414A1 (en) 2016-04-05 2017-10-12 Bayer Cropscience Aktiengesellschaft Naphthaline-derivatives as pest control agents
WO2017178416A1 (en) 2016-04-15 2017-10-19 Bayer Animal Health Gmbh Pyrazolopyrimidine derivatives
WO2017186536A1 (en) 2016-04-25 2017-11-02 Bayer Cropscience Aktiengesellschaft Substituted 2-alkylimidazolyl-carboxamides as pest control agents
EP3241830A1 (en) 2016-05-04 2017-11-08 Bayer CropScience Aktiengesellschaft Condensed bicyclic heterocyclic derivatives as pesticides
EP3245865A1 (en) 2016-05-17 2017-11-22 Bayer CropScience Aktiengesellschaft Method for increasing yield in brassicaceae
WO2017198450A1 (en) 2016-05-15 2017-11-23 Bayer Cropscience Nv Method for increasing yield in maize
WO2017198449A1 (en) 2016-05-15 2017-11-23 Bayer Cropscience Nv Method for increasing yield in brassicaceae
WO2017198452A1 (en) 2016-05-16 2017-11-23 Bayer Cropscience Nv Method for increasing yield in soybean
WO2017198451A1 (en) 2016-05-17 2017-11-23 Bayer Cropscience Nv Method for increasing yield in small grain cereals such as wheat and rice
WO2017198454A1 (en) 2016-05-17 2017-11-23 Bayer Cropscience Nv Method for increasing yield in cotton
WO2017198455A2 (en) 2016-05-17 2017-11-23 Bayer Cropscience Nv Method for increasing yield in beta spp. plants
WO2017198453A1 (en) 2016-05-16 2017-11-23 Bayer Cropscience Nv Method for increasing yield in potato, tomato or alfalfa
WO2018011111A1 (en) 2016-07-12 2018-01-18 Bayer Cropscience Aktiengesellschaft Bicyclic compounds as pest control agents
WO2018013380A1 (en) 2016-07-11 2018-01-18 Covestro Llc, Et Al. Methods for treating seeds with an aqueous compostion and seeds treated therewith
WO2018013381A1 (en) 2016-07-11 2018-01-18 Covestro Llc, Et Al. Aqueous compositions for treating seeds, seeds treated therewith, and methods for treating seeds
WO2018013382A1 (en) 2016-07-11 2018-01-18 Covestro Llc, Et Al Aqueous compositions for treating seeds, seeds treated therewith, and methods for treating seeds
WO2018015289A1 (en) 2016-07-19 2018-01-25 Bayer Cropscience Aktiengesellschaft Condensed bicyclic heterocycle derivatives as pest control agents
WO2018019937A1 (en) 2016-07-29 2018-02-01 Bayer Cropscience Aktiengesellschaft Formulation comprising a beneficial p. bilaii strain and talc for use in seed treatment
WO2018029102A1 (en) 2016-08-10 2018-02-15 Bayer Cropscience Aktiengesellschaft Substituted 2-heterocyclyl imidazolyl-carboxamides as pest control agents
EP3284739A1 (en) 2017-07-19 2018-02-21 Bayer CropScience Aktiengesellschaft Substituted (het) aryl compounds as pesticides
WO2018033455A1 (en) 2016-08-15 2018-02-22 Bayer Cropscience Aktiengesellschaft Condensed bicyclic heterocycle derivatives as pest control agents
WO2018050825A1 (en) 2016-09-19 2018-03-22 Bayer Cropscience Aktiengesellschaft Pyrazolo [1,5-a]pyridine derivatives and their use as pesticides
EP3305786A2 (en) 2018-01-22 2018-04-11 Bayer CropScience Aktiengesellschaft Condensed bicyclic heterocycle derivatives as pesticides
WO2018065292A1 (en) 2016-10-06 2018-04-12 Bayer Cropscience Aktiengesellschaft 2-(het)aryl-substituted condensed bicyclic heterocycle derivatives as pest control agents
WO2018065288A1 (en) 2016-10-07 2018-04-12 Bayer Cropscience Aktiengesellschaft 2-[2-phenyl-1-(sulfonyl-methyl)-vinyl]-imidazo-[4,5-b] pyridine derivatives and related compounds as pesticides in plant protection
WO2018069842A1 (en) 2016-10-14 2018-04-19 Pi Industries Ltd 4-amino substituted phenylamidine derivatives and their use to protect crops by fighting undesired phytopathogenic micoorganisms
WO2018069841A1 (en) 2016-10-14 2018-04-19 Pi Industries Ltd 4-substituted phenylamine derivatives and their use to protect crops by fighting undesired phytopathogenic micoorganisms
WO2018083288A1 (en) 2016-11-07 2018-05-11 Bayer Aktiengesellschaft Substituted sulfonyl amides for controlling animal pests
WO2018087036A1 (en) 2016-11-11 2018-05-17 Bayer Animal Health Gmbh New anthelmintic quinoline-3-carboxamide derivatives
WO2018095953A1 (en) 2016-11-23 2018-05-31 Bayer Cropscience Aktiengesellschaft 2-[3-(alkylsulfonyl)-2h-indazol-2-yl]-3h-imidazo[4,5-b]pyridine derivatives and similar compounds as pesticides
WO2018104500A1 (en) 2016-12-09 2018-06-14 Bayer Cropscience Aktiengesellschaft Plant health effect of purpureocillium lilacinum
WO2018108730A1 (en) 2016-12-16 2018-06-21 Bayer Aktiengesellschaft Mesoionic imidazopyridines for use as insecticides
WO2018108791A1 (en) 2016-12-16 2018-06-21 Bayer Cropscience Aktiengesellschaft Thiadiazole derivatives as pesticides
WO2018116073A1 (en) 2016-12-21 2018-06-28 Pi Industries Ltd. 1, 2, 3-thiadiazole compounds and their use as crop protecting agent
WO2018116072A1 (en) 2016-12-20 2018-06-28 Pi Industries Ltd. Heterocyclic compounds
WO2018130443A1 (en) 2017-01-10 2018-07-19 Bayer Aktiengesellschaft Heterocyclene derivatives as pest control agents
WO2018130437A1 (en) 2017-01-10 2018-07-19 Bayer Aktiengesellschaft Heterocyclene derivatives as pest control agents
WO2018138050A1 (en) 2017-01-26 2018-08-02 Bayer Aktiengesellschaft Condensed bicyclic heterocyclene derivatives as pest control agents
WO2018141954A1 (en) 2017-02-06 2018-08-09 Bayer Aktiengesellschaft Aryl or heteroaryl-substituted imidazo pyridine derivatives and their use as pesticides
EP3369320A1 (en) 2017-03-02 2018-09-05 Bayer CropScience Aktiengesellschaft Agent for controlling bugs
WO2018177993A1 (en) 2017-03-31 2018-10-04 Bayer Cropscience Aktiengesellschaft Pyrazoles for controlling arthropods
WO2018177995A1 (en) 2017-03-31 2018-10-04 Bayer Cropscience Aktiengesellschaft Tricyclic carboxamides for controlling arthropods
WO2018189077A1 (en) 2017-04-12 2018-10-18 Bayer Aktiengesellschaft Mesoionic imidazopyridines for use as insecticides
WO2018192872A1 (en) 2017-04-21 2018-10-25 Bayer Aktiengesellschaft Mesoionic imidazopyridines as insecticides
WO2018193385A1 (en) 2017-04-20 2018-10-25 Pi Industries Ltd. Novel phenylamine compounds
WO2018197257A1 (en) 2017-04-24 2018-11-01 Bayer Aktiengesellschaft Condensed bicyclic heterocyclic-compound derivatives as pest control agents
WO2018197401A1 (en) 2017-04-27 2018-11-01 Bayer Animal Health Gmbh New bicyclic pyrazole derivatives
WO2018197692A1 (en) 2017-04-27 2018-11-01 Bayer Aktiengesellschaft Heteroarylphenylaminoquinolines and analogues
WO2018202712A1 (en) 2017-05-03 2018-11-08 Bayer Aktiengesellschaft Trisubstitutedsilylmethylphenoxyquinolines and analogues
WO2018202494A1 (en) 2017-05-02 2018-11-08 Bayer Aktiengesellschaft 2-(het)aryl-substituted condensed bicyclic heterocyclic derivatives as pest control agents
WO2018202706A1 (en) 2017-05-03 2018-11-08 Bayer Aktiengesellschaft Trisubstitutedsilylheteroaryloxyquinolines and analogues
WO2018202524A1 (en) 2017-05-04 2018-11-08 Bayer Cropscience Aktiengesellschaft 2-{[2-(phenyloxymethyl)pyridin-5-yl]oxy}-ethanamin-derivatives and related compounds as pest-control agents e.g. for the protection of plants
WO2018202525A1 (en) 2017-05-04 2018-11-08 Bayer Cropscience Aktiengesellschaft Phenoxyethanamine derivatives for controlling pests
WO2018202501A1 (en) 2017-05-02 2018-11-08 Bayer Aktiengesellschaft 2-(het)aryl-substituted condensed bicyclic heterocyclic derivatives as pest control agents
WO2018202715A1 (en) 2017-05-03 2018-11-08 Bayer Aktiengesellschaft Trisubstitutedsilylbenzylbenzimidazoles and analogues
WO2019002132A1 (en) 2017-06-30 2019-01-03 Bayer Animal Health Gmbh New azaquinoline derivatives
WO2019007888A1 (en) 2017-07-06 2019-01-10 Bayer Aktiengesellschaft Insecticidal active ingredient combinations
WO2019007887A1 (en) 2017-07-06 2019-01-10 Bayer Aktiengesellschaft Insecticide and fungicide active ingredient combinations
WO2019007891A1 (en) 2017-07-06 2019-01-10 Bayer Aktiengesellschaft Insecticidal active ingredient combinations
WO2019025341A1 (en) 2017-08-04 2019-02-07 Bayer Animal Health Gmbh Quinoline derivatives for treating infections with helminths
WO2019035881A1 (en) 2017-08-17 2019-02-21 Bayer Cropscience Lp Liquid fertilizer-dispersible compositions and methods thereof
WO2019038195A1 (en) 2017-08-22 2019-02-28 Bayer Aktiengesellschaft Heterocyclene derivatives as pest control agents
WO2019059412A1 (en) 2017-09-20 2019-03-28 Mitsui Chemicals Agro, Inc. Prolonged ectoparasite-controlling agent for animal
WO2019068572A1 (en) 2017-10-04 2019-04-11 Bayer Aktiengesellschaft Derivatives of heterocyclic compounds as pest control agents
EP3473103A1 (en) 2017-10-17 2019-04-24 Bayer AG Aqueous suspension concentrates based on 2- [(2,4-dichlorophenyl) -methyl] -4,4 '-dimethyl-3-isoxazolidinone
EP3473100A1 (en) 2017-10-18 2019-04-24 Bayer Aktiengesellschaft Active compound combinations having insecticidal/acaricidal properties
WO2019076754A1 (en) 2017-10-18 2019-04-25 Bayer Aktiengesellschaft Active compound combinations having insecticidal/acaricidal properties
WO2019076750A1 (en) 2017-10-18 2019-04-25 Bayer Aktiengesellschaft Active compound combinations having insecticidal/acaricidal properties
WO2019076749A1 (en) 2017-10-18 2019-04-25 Bayer Aktiengesellschaft Active compound combinations having insecticidal/acaricidal properties
WO2019076752A1 (en) 2017-10-18 2019-04-25 Bayer Aktiengesellschaft Active compound combinations having insecticidal/acaricidal properties
WO2019076751A1 (en) 2017-10-18 2019-04-25 Bayer Aktiengesellschaft Active compound combinations having insecticidal/acaricidal properties
WO2019092086A1 (en) 2017-11-13 2019-05-16 Bayer Aktiengesellschaft Tetrazolylpropyl derivatives and their use as fungicides
WO2019105875A1 (en) 2017-11-28 2019-06-06 Bayer Aktiengesellschaft Heterocyclic compounds as pesticides
WO2019105871A1 (en) 2017-11-29 2019-06-06 Bayer Aktiengesellschaft Nitrogenous heterocycles as a pesticide
WO2019123196A1 (en) 2017-12-20 2019-06-27 Pi Industries Ltd. Fluoralkenyl compounds, process for preparation and use thereof
WO2019122319A1 (en) 2017-12-21 2019-06-27 Bayer Aktiengesellschaft Trisubstitutedsilylmethylheteroaryloxyquinolines and analogues
WO2019150311A1 (en) 2018-02-02 2019-08-08 Pi Industries Ltd. 1-3 dithiol compounds and their use for the protection of crops from phytopathogenic microorganisms
WO2019155066A1 (en) 2018-02-12 2019-08-15 Bayer Aktiengesellschaft Fungicidal oxadiazoles
WO2019162228A1 (en) 2018-02-21 2019-08-29 Bayer Aktiengesellschaft 1-(5-substituted imidazol-1-yl)but-3-en derivatives and their use as fungicides
WO2019162174A1 (en) 2018-02-21 2019-08-29 Bayer Aktiengesellschaft Condensed bicyclic heterocyclic derivatives as pest control agents
WO2019170626A1 (en) 2018-03-08 2019-09-12 Bayer Aktiengesellschaft Use of heteroaryl-triazole and heteroaryl-tetrazole compounds as pesticides in plant protection
WO2019175046A1 (en) 2018-03-12 2019-09-19 Bayer Aktiengesellschaft Condensed bicyclic heterocyclic derivatives as pest control agents
EP3545764A1 (en) 2019-02-12 2019-10-02 Bayer AG Crystal form of 2-({2-fluoro-4-methyl-5-[(r)-(2,2,2-trifluoroethyl)sulfinyl]phenyl}imino)-3-(2,2,2- trifluoroethyl)-1,3-thiazolidin-4-one
WO2019197371A1 (en) 2018-04-10 2019-10-17 Bayer Aktiengesellschaft Oxadiazoline derivatives
WO2019197615A1 (en) 2018-04-13 2019-10-17 Bayer Aktiengesellschaft Active ingredient combinations with fungicides, insecticides and acaricidal properties
WO2019197468A1 (en) 2018-04-12 2019-10-17 Bayer Aktiengesellschaft N-(cyclopropylmethyl)-5-(methylsulfonyl)-n-{1-[1-(pyrimidin-2-yl)-1h-1,2,4-triazol-5-yl]ethyl}benzamide derivatives and the corresponding pyridine-carboxamide derivatives as pesticides
WO2019197623A1 (en) 2018-04-13 2019-10-17 Bayer Aktiengesellschaft Active ingredient combinations with insecticidal, fungicidal and acaricidal properties
WO2019202077A1 (en) 2018-04-20 2019-10-24 Bayer Aktiengesellschaft Heteroaryl-triazole and heteroaryl-tetrazole compounds as pesticides
WO2019201835A1 (en) 2018-04-17 2019-10-24 Bayer Aktiengesellschaft Heteroaryl-triazole and heteroaryl-tetrazole compounds as pesticides
WO2019201921A1 (en) 2018-04-20 2019-10-24 Bayer Aktiengesellschaft Heterocyclene derivatives as pest control agents
WO2019206799A1 (en) 2018-04-25 2019-10-31 Bayer Aktiengesellschaft Novel heteroaryl-triazole and heteroaryl-tetrazole compounds as pesticides
EP3564225A1 (en) 2019-03-21 2019-11-06 Bayer Aktiengesellschaft Crystalline form of spiromesifen
WO2019215182A1 (en) 2018-05-09 2019-11-14 Bayer Animal Health Gmbh New quinoline derivatives
WO2019224143A1 (en) 2018-05-24 2019-11-28 Bayer Aktiengesellschaft Active ingredient combinations with insecticidal, nematicidal and acaricidal properties
EP3586630A1 (en) 2018-06-28 2020-01-01 Bayer AG Active compound combinations having insecticidal/acaricidal properties
WO2020005678A1 (en) 2018-06-25 2020-01-02 Bayer Cropscience Lp Seed treatment method
WO2020002189A1 (en) 2018-06-27 2020-01-02 Bayer Aktiengesellschaft Active substance combinations
WO2020007902A1 (en) 2018-07-05 2020-01-09 Bayer Aktiengesellschaft Substituted thiophenecarboxamides and analogues as antibacterials agents
WO2020020816A1 (en) 2018-07-26 2020-01-30 Bayer Aktiengesellschaft Novel triazole derivatives
WO2020021082A1 (en) 2018-07-27 2020-01-30 Bayer Aktiengesellschaft Controlled release formulations for agrochemicals
WO2020020813A1 (en) 2018-07-25 2020-01-30 Bayer Aktiengesellschaft Fungicidal active compound combinations
WO2020025650A1 (en) 2018-07-31 2020-02-06 Bayer Aktiengesellschaft Controlled release formulations with lignin for agrochemicals
EP3608311A1 (en) 2019-06-28 2020-02-12 Bayer AG Crystalline form a of n-[4-chloro-3-[(1-cyanocyclopropyl)carbamoyl]phenyl]-2-methyl-4-methylsulfonyl-5-(1,1,2,2,2-pentafluoroethyl)pyrazole-3-carboxamide
WO2020035826A1 (en) 2018-08-17 2020-02-20 Pi Industries Ltd. 1,2-dithiolone compounds and use thereof
WO2020043650A1 (en) 2018-08-29 2020-03-05 Bayer Aktiengesellschaft Active compound combinations having insecticidal/acaricidal properties
EP3620052A1 (en) 2018-12-12 2020-03-11 Bayer Aktiengesellschaft Use of phenoxypyridinyl-substituted (1h-1,2,4-triazol-1-yl)alcohols for controlling fungicidal diseases in maize
WO2020053282A1 (en) 2018-09-13 2020-03-19 Bayer Aktiengesellschaft Heterocyclene derivatives as pest control agents
WO2020057939A1 (en) 2018-09-17 2020-03-26 Bayer Aktiengesellschaft Use of the fungicide isoflucypram for controlling claviceps purpurea and reducing sclerotia in cereals
WO2020070050A1 (en) 2018-10-01 2020-04-09 Bayer Aktiengesellschaft Fungicidal 5-substituted imidazol-1-yl carbinol derivatives
EP3636644A1 (en) 2018-10-11 2020-04-15 Bayer Aktiengesellschaft Mesoionic imidazopyridines as insecticides
WO2020079232A1 (en) 2018-10-20 2020-04-23 Bayer Aktiengesellschaft Oxetanylphenoxyquinolines and analogues
WO2020079167A1 (en) 2018-10-18 2020-04-23 Bayer Aktiengesellschaft Heteroarylaminoquinolines and analogues
WO2020079173A1 (en) 2018-10-18 2020-04-23 Bayer Aktiengesellschaft Pyridylphenylaminoquinolines and analogues
WO2020078839A1 (en) 2018-10-16 2020-04-23 Bayer Aktiengesellschaft Active substance combinations
EP3643711A1 (en) 2018-10-24 2020-04-29 Bayer Animal Health GmbH New anthelmintic compounds
WO2020109391A1 (en) 2018-11-28 2020-06-04 Bayer Aktiengesellschaft Pyridazine (thio)amides as fungicidal compounds
WO2020114932A1 (en) 2018-12-07 2020-06-11 Bayer Aktiengesellschaft Herbicidal compositions
WO2020114934A1 (en) 2018-12-07 2020-06-11 Bayer Aktiengesellschaft Herbicide compositions
EP3669652A1 (en) 2018-12-21 2020-06-24 Bayer AG Active compound combination
WO2020126980A1 (en) 2018-12-18 2020-06-25 Bayer Aktiengesellschaft Active compound combinations having insecticidal/acaricidal properties
WO2020127780A1 (en) 2018-12-20 2020-06-25 Bayer Aktiengesellschaft Heterocyclyl pyridazine as fungicidal compounds
WO2020127974A1 (en) 2018-12-21 2020-06-25 Bayer Aktiengesellschaft 1,3,4-oxadiazoles and their derivatives as new antifungal agents
EP3679790A1 (en) 2019-01-08 2020-07-15 Bayer AG Active compound combinations
EP3679793A1 (en) 2019-01-08 2020-07-15 Bayer AG Active compound combinations
EP3679791A1 (en) 2019-01-08 2020-07-15 Bayer AG Active compound combinations
EP3679789A1 (en) 2019-01-08 2020-07-15 Bayer AG Active compound combinations
EP3679792A1 (en) 2019-01-08 2020-07-15 Bayer AG Active compound combinations
EP3701796A1 (en) 2019-08-08 2020-09-02 Bayer AG Active compound combinations
WO2020173861A1 (en) 2019-02-26 2020-09-03 Bayer Aktiengesellschaft Condensed bicyclic heterocyclic derivatives as pest control agents
WO2020173860A1 (en) 2019-02-26 2020-09-03 Bayer Aktiengesellschaft Fused bicyclic heterocycle derivatives as pesticides
WO2020178307A1 (en) 2019-03-05 2020-09-10 Bayer Aktiengesellschaft Active compound combination
WO2020178067A1 (en) 2019-03-01 2020-09-10 Bayer Aktiengesellschaft Active compound combinations having insecticidal/acaricidal properties
EP3708565A1 (en) 2020-03-04 2020-09-16 Bayer AG Pyrimidinyloxyphenylamidines and the use thereof as fungicides
WO2020182929A1 (en) 2019-03-13 2020-09-17 Bayer Aktiengesellschaft Substituted ureas and derivatives as new antifungal agents
WO2020187656A1 (en) 2019-03-15 2020-09-24 Bayer Aktiengesellschaft Active compound combinations having insecticidal/acaricidal properties
EP3725788A1 (en) 2019-04-15 2020-10-21 Bayer AG Novel heteroaryl-substituted aminoalkyl azole compounds as pesticides
WO2020225242A1 (en) 2019-05-08 2020-11-12 Bayer Aktiengesellschaft Active compound combination
WO2020225439A1 (en) 2019-05-08 2020-11-12 Bayer Aktiengesellschaft Ulv formulations with enhanced rainfastness
WO2020231751A1 (en) 2019-05-10 2020-11-19 Bayer Cropscience Lp Active compound combinations
WO2020229398A1 (en) 2019-05-14 2020-11-19 Bayer Aktiengesellschaft (1-alkenyl)-substituted pyrazoles and triazoles as pest control agents
EP3750888A1 (en) 2019-06-12 2020-12-16 Bayer Aktiengesellschaft Crystalline form a of 1,4-dimethyl-2-[2-(pyridin-3-yl)-2h-indazol-5-yl]-1,2,4-triazolidine-3,5-dione
WO2020254487A1 (en) 2019-06-21 2020-12-24 Bayer Aktiengesellschaft Hydroxyisoxazolines and derivatives thereof
WO2020254494A1 (en) 2019-06-21 2020-12-24 Bayer Aktiengesellschaft Fungicidal oxadiazoles
WO2020254488A1 (en) 2019-06-21 2020-12-24 Bayer Aktiengesellschaft Hydroxyisoxazolines and use thereof as fungicides
WO2020254492A1 (en) 2019-06-21 2020-12-24 Bayer Aktiengesellschaft Hydroxyisoxazolines and derivatives thereof
WO2020254493A1 (en) 2019-06-21 2020-12-24 Bayer Aktiengesellschaft Thienylhydroxyisoxazolines and derivatives thereof
WO2020254486A1 (en) 2019-06-21 2020-12-24 Bayer Aktiengesellschaft Hydroxyisoxazolines and derivatives thereof
WO2020254489A1 (en) 2019-06-21 2020-12-24 Bayer Aktiengesellschaft Benzylphenyl hydroxyisoxazolines and analogues as new antifungal agents
WO2020254490A1 (en) 2019-06-21 2020-12-24 Bayer Aktiengesellschaft Phenoxyphenyl hydroxyisoxazolines and analogues as new antifungal agents
WO2020263812A1 (en) 2019-06-24 2020-12-30 Auburn University A bacillus strain and methods of its use for plant growth promotion
WO2021001273A1 (en) 2019-07-04 2021-01-07 Bayer Aktiengesellschaft Herbicidal compositions
WO2021001331A1 (en) 2019-07-03 2021-01-07 Bayer Aktiengesellschaft Substituted thiophene carboxamides and derivatives thereof as microbicides
WO2021013721A1 (en) 2019-07-22 2021-01-28 Bayer Aktiengesellschaft 5-amino substituted pyrazoles and triazoles as pest control agents
WO2021013720A1 (en) 2019-07-23 2021-01-28 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
WO2021013719A1 (en) 2019-07-23 2021-01-28 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
EP3771714A1 (en) 2019-07-30 2021-02-03 Bayer AG Nitrogen-containing heterocycles as pesticides
WO2021018839A1 (en) 2019-07-30 2021-02-04 Bayer Animal Health Gmbh Isoquinoline derivatives and their use for the treatment of parasitic infections
WO2021048188A1 (en) 2019-09-11 2021-03-18 Bayer Aktiengesellschaft Highly effective formulations on the basis of 2-[(2,4-dichlorphenyl)-methyl]-4,4'-dimethyl-3-isoxazolidinones and preemergence herbicides
WO2021058659A1 (en) 2019-09-26 2021-04-01 Bayer Aktiengesellschaft Rnai-mediated pest control
WO2021069567A1 (en) 2019-10-09 2021-04-15 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
WO2021069575A1 (en) 2019-10-11 2021-04-15 Bayer Animal Health Gmbh Heteroaryl-substituted pyrazine derivatives as pesticides
WO2021069569A1 (en) 2019-10-09 2021-04-15 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
WO2021089673A1 (en) 2019-11-07 2021-05-14 Bayer Aktiengesellschaft Substituted sulfonyl amides for controlling animal pests
WO2021097162A1 (en) 2019-11-13 2021-05-20 Bayer Cropscience Lp Beneficial combinations with paenibacillus
WO2021099303A1 (en) 2019-11-18 2021-05-27 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
WO2021105091A1 (en) 2019-11-25 2021-06-03 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
WO2021123051A1 (en) 2019-12-20 2021-06-24 Bayer Aktiengesellschaft Substituted thiophene carboxamides, thiophene carboxylic acids and derivatives thereof
WO2021122986A1 (en) 2019-12-20 2021-06-24 Bayer Aktiengesellschaft Thienyloxazolones and analogues
EP3845304A1 (en) 2019-12-30 2021-07-07 Bayer AG Capsule suspension concentrates based on polyisocyanates and biodegradable amine based cross-linker
EP3868207A1 (en) 2020-02-24 2021-08-25 Bayer Aktiengesellschaft Encapsulated pyrethroids with improved activity in soil and leaf applications
WO2021165195A1 (en) 2020-02-18 2021-08-26 Bayer Aktiengesellschaft Heteroaryl-triazole compounds as pesticides
WO2021204930A1 (en) 2020-04-09 2021-10-14 Bayer Animal Health Gmbh Substituted condensed azines as anthelmintic compounds
EP3896065A1 (en) 2015-08-07 2021-10-20 Bayer CropScience Aktiengesellschaft 2-(het)aryl-substituted condensed heterocycle derivatives as pesticides
WO2021209490A1 (en) 2020-04-16 2021-10-21 Bayer Aktiengesellschaft Cyclaminephenylaminoquinolines as fungicides
WO2021209368A1 (en) 2020-04-16 2021-10-21 Bayer Aktiengesellschaft Active compound combinations and fungicide compositions comprising those
WO2021209364A1 (en) 2020-04-16 2021-10-21 Bayer Aktiengesellschaft Active compound combinations and fungicide compositions comprising those
WO2021209363A1 (en) 2020-04-16 2021-10-21 Bayer Aktiengesellschaft Active compound combinations and fungicide compositions comprising those
WO2021209366A1 (en) 2020-04-16 2021-10-21 Bayer Aktiengesellschaft Active compound combinations and fungicide compositions comprising those
WO2021209365A1 (en) 2020-04-16 2021-10-21 Bayer Aktiengesellschaft Active compound combinations and fungicide compositions comprising those
WO2021213978A1 (en) 2020-04-21 2021-10-28 Bayer Aktiengesellschaft 2-(het)aryl-substituted condensed heterocyclic derivatives as pest control agents
WO2021224220A1 (en) 2020-05-06 2021-11-11 Bayer Aktiengesellschaft Pyridine (thio)amides as fungicidal compounds
WO2021224323A1 (en) 2020-05-06 2021-11-11 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
WO2021228734A1 (en) 2020-05-12 2021-11-18 Bayer Aktiengesellschaft Triazine and pyrimidine (thio)amides as fungicidal compounds
WO2021233861A1 (en) 2020-05-19 2021-11-25 Bayer Aktiengesellschaft Azabicyclic(thio)amides as fungicidal compounds
EP3915371A1 (en) 2020-11-04 2021-12-01 Bayer AG Active compound combinations and fungicide compositions comprising those
EP3915971A1 (en) 2020-12-16 2021-12-01 Bayer Aktiengesellschaft Phenyl-s(o)n-phenylamidines and the use thereof as fungicides
WO2021245087A1 (en) 2020-06-04 2021-12-09 Bayer Aktiengesellschaft Heterocyclyl pyrimidines and triazines as novel fungicides
WO2021249995A1 (en) 2020-06-10 2021-12-16 Bayer Aktiengesellschaft Azabicyclyl-substituted heterocycles as fungicides
WO2021255170A1 (en) 2020-06-19 2021-12-23 Bayer Aktiengesellschaft 1,3,4-oxadiazole pyrimidines as fungicides
WO2021255091A1 (en) 2020-06-19 2021-12-23 Bayer Aktiengesellschaft 1,3,4-oxadiazoles and their derivatives as fungicides
WO2021255169A1 (en) 2020-06-19 2021-12-23 Bayer Aktiengesellschaft 1,3,4-oxadiazole pyrimidines as fungicides
WO2021255071A1 (en) 2020-06-18 2021-12-23 Bayer Aktiengesellschaft 3-(pyridazin-4-yl)-5,6-dihydro-4h-1,2,4-oxadiazine derivatives as fungicides for crop protection
WO2021255089A1 (en) 2020-06-19 2021-12-23 Bayer Aktiengesellschaft 1,3,4-oxadiazole pyrimidines and 1,3,4-oxadiazole pyridines as fungicides
EP3929189A1 (en) 2020-06-25 2021-12-29 Bayer Animal Health GmbH Novel heteroaryl-substituted pyrazine derivatives as pesticides
WO2021260017A1 (en) 2020-06-26 2021-12-30 Bayer Aktiengesellschaft Aqueous capsule suspension concentrates comprising biodegradable ester groups
WO2022002818A1 (en) 2020-07-02 2022-01-06 Bayer Aktiengesellschaft Heterocyclene derivatives as pest control agents
WO2022033991A1 (en) 2020-08-13 2022-02-17 Bayer Aktiengesellschaft 5-amino substituted triazoles as pest control agents
WO2022053453A1 (en) 2020-09-09 2022-03-17 Bayer Aktiengesellschaft Azole carboxamide as pest control agents
WO2022058327A1 (en) 2020-09-15 2022-03-24 Bayer Aktiengesellschaft Substituted ureas and derivatives as new antifungal agents
EP3974414A1 (en) 2020-09-25 2022-03-30 Bayer AG 5-amino substituted pyrazoles and triazoles as pesticides
EP3994993A1 (en) 2020-11-08 2022-05-11 Bayer Aktiengesellschaft Low drift, rainfastness, high spreading and ulv tank mix adjuvant formulation
EP3994989A1 (en) 2020-11-08 2022-05-11 Bayer AG Agrochemical composition with improved drift, rainfastness and uptake properties
EP3994994A1 (en) 2020-11-08 2022-05-11 Bayer Aktiengesellschaft Low drift, rainfastness, high spreading, high uptake and ulv tank mix adjuvant formulation
EP3994988A1 (en) 2020-11-08 2022-05-11 Bayer AG Agrochemical composition with improved drift, spreading and rainfastness properties
EP3994986A1 (en) 2020-11-08 2022-05-11 Bayer Aktiengesellschaft Agrochemical composition with improved drift and spreading properties
EP3994995A1 (en) 2020-11-08 2022-05-11 Bayer Aktiengesellschaft Low drift, rainfastness, high spreading, high uptake and ulv tank mix adjuvant formulation
EP3994985A1 (en) 2020-11-08 2022-05-11 Bayer Aktiengesellschaft Agrochemical composition with improved drift properties
EP3994992A1 (en) 2020-11-08 2022-05-11 Bayer AG Low drift, rainfastness, high uptake and ulv tank mix adjuvant formulation
EP3994991A1 (en) 2020-11-08 2022-05-11 Bayer Aktiengesellschaft Agrochemical composition with improved drift, spreading, uptake and rainfastness properties
EP3994990A1 (en) 2020-11-08 2022-05-11 Bayer AG Agrochemical composition with improved drift, spreading and uptake properties
WO2022096687A1 (en) 2020-11-08 2022-05-12 Bayer Aktiengesellschaft Agrochemical composition with improved drift and uptake properties
WO2022129190A1 (en) 2020-12-18 2022-06-23 Bayer Aktiengesellschaft (hetero)aryl substituted 1,2,4-oxadiazoles as fungicides
WO2022129188A1 (en) 2020-12-18 2022-06-23 Bayer Aktiengesellschaft 1,2,4-oxadiazol-3-yl pyrimidines as fungicides
WO2022129196A1 (en) 2020-12-18 2022-06-23 Bayer Aktiengesellschaft Heterobicycle substituted 1,2,4-oxadiazoles as fungicides
WO2022152728A1 (en) 2021-01-15 2022-07-21 Bayer Aktiengesellschaft Herbicidal compositions
EP4036083A1 (en) 2021-02-02 2022-08-03 Bayer Aktiengesellschaft 5-oxy substituted heterocycles as pesticides
WO2022162129A1 (en) 2021-01-28 2022-08-04 Rhodia Operations Method for treating rice seed with improved retention of agrochemical, micronutrient and colorant
WO2022207496A1 (en) 2021-03-30 2022-10-06 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2022207494A1 (en) 2021-03-30 2022-10-06 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2022233777A1 (en) 2021-05-06 2022-11-10 Bayer Aktiengesellschaft Alkylamide substituted, annulated imidazoles and use thereof as insecticides
WO2022238391A1 (en) 2021-05-12 2022-11-17 Bayer Aktiengesellschaft 2-(het)aryl-substituted condensed heterocycle derivatives as pest control agents
WO2022238194A1 (en) 2021-05-10 2022-11-17 Bayer Aktiengesellschaft Herbicide/safener combination based on safeners from the class of substituted [(1,5-diphenyl-1h-1,2,4-triazol-3-yl)oxy]acetic acids and their salts
WO2023017120A1 (en) 2021-08-13 2023-02-16 Bayer Aktiengesellschaft Active compound combinations and fungicide compositions comprising those
WO2023025682A1 (en) 2021-08-25 2023-03-02 Bayer Aktiengesellschaft Novel pyrazinyl-triazole compounds as pesticides
EP4144739A1 (en) 2021-09-02 2023-03-08 Bayer Aktiengesellschaft Anellated pyrazoles as parasiticides
EP4148052A1 (en) 2021-09-09 2023-03-15 Bayer Animal Health GmbH New quinoline derivatives
WO2023078915A1 (en) 2021-11-03 2023-05-11 Bayer Aktiengesellschaft Bis(hetero)aryl thioether (thio)amides as fungicidal compounds
WO2023092050A1 (en) 2021-11-20 2023-05-25 Bayer Cropscience Lp Beneficial combinations with recombinant bacillus cells expressing a serine protease
WO2023099445A1 (en) 2021-11-30 2023-06-08 Bayer Aktiengesellschaft Bis(hetero)aryl thioether oxadiazines as fungicidal compounds
WO2023110656A1 (en) 2021-12-15 2023-06-22 Bayer Aktiengesellschaft Spectroscopic solution for non-destructive quantification of one or more chemical substances in a matrix comprising coating and bulk material in a sample, such as coated seeds, using multivariate data analysis
EP4265110A1 (en) 2022-04-20 2023-10-25 Bayer AG Water dispersible granules with low melting active ingredients prepared by extrusion
WO2023205602A1 (en) 2022-04-18 2023-10-26 Basf Corporation High-load agricultural formulations and methods of making same
WO2023213626A1 (en) 2022-05-03 2023-11-09 Bayer Aktiengesellschaft Use of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine for controlling unwanted microorganisms
WO2023213670A1 (en) 2022-05-03 2023-11-09 Bayer Aktiengesellschaft Crystalline forms of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine
WO2023217619A1 (en) 2022-05-07 2023-11-16 Bayer Aktiengesellschaft Low drift aqueous liquid formulations for low, medium, and high spray volume application
WO2023237444A1 (en) 2022-06-06 2023-12-14 Bayer Aktiengesellschaft Agrochemical formulations comprising crystalline form a of 4-[(6-chloro-3-pyridylmethyl)(2,2-difluoroethyl)amino]furan-2(5h)-one
EP4295688A1 (en) 2022-09-28 2023-12-27 Bayer Aktiengesellschaft Active compound combination
EP4295683A1 (en) 2022-06-21 2023-12-27 Bayer Aktiengesellschaft Agrochemical formulations comprising crystalline form a of 4-[(6-chloro-3-pyridylmethyl)(2,2-difluoroethyl)amino]furan-2(5h)-one
WO2024013016A1 (en) 2022-07-11 2024-01-18 Bayer Aktiengesellschaft Herbicidal compositions
WO2024013015A1 (en) 2022-07-11 2024-01-18 Bayer Aktiengesellschaft Herbicidal compositions
WO2024068473A1 (en) 2022-09-27 2024-04-04 Bayer Aktiengesellschaft Herbicide/safener combination based on safeners from the class of substituted [(1,5-diphenyl-1h-1,2,4-triazol-3-yl)oxy]acetic acids and their salts
WO2024068518A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-heteroaryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2024068519A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2024068517A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2024068520A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
EP4353082A1 (en) 2022-10-14 2024-04-17 Bayer Aktiengesellschaft Herbicidal compositions

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2817302B1 (en) * 2012-02-21 2015-12-30 Aziende Chimiche Riunite Angelini Francesco A.C.R.A.F. S.p.A. 1h-indazole-3-carboxamide compounds as glycogen synthase kinase 3 beta inhibitors
JPWO2015068719A1 (en) * 2013-11-07 2017-03-09 日本曹達株式会社 Pyridine compounds and pest control agents
MX369857B (en) * 2014-02-14 2019-11-25 Takeda Pharmaceuticals Co Pyrazines modulators of gpr6.
CN107987012A (en) * 2018-01-29 2018-05-04 田元强 A kind of 4- benzyl piepridines class amide compound and its application in plant nematode diseases are prevented

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL253320A (en) * 1959-07-03
FR1365661A (en) * 1963-07-24 1964-07-03 Sandoz Sa New pyrazole derivatives and their preparation
NL286158A (en) * 1962-12-03
GB9100505D0 (en) * 1991-01-10 1991-02-20 Shell Int Research Piperidine derivatives
US6977264B2 (en) 2001-07-25 2005-12-20 Amgen Inc. Substituted piperidines and methods of use
GB0808888D0 (en) * 2008-05-15 2008-06-25 Syngenta Participations Ag Insecticidal compounds
GB0813436D0 (en) * 2008-07-22 2008-08-27 Syngenta Participations Ag Insecticidal compounds
MA33416B1 (en) * 2009-07-06 2012-07-03 Syngenta Participations Ag Pesticide compounds

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (373)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072143A3 (en) * 2005-12-21 2007-12-06 Syngenta Participations Ag Chemical compounds
WO2007072143A2 (en) * 2005-12-21 2007-06-28 Syngenta Participations Ag Chemical compounds
US8338443B2 (en) 2005-12-21 2012-12-25 Syngenta Crop Protection Llc Chemical compounds
US8835426B2 (en) 2007-02-26 2014-09-16 Vitae Pharmaceuticals, Inc. Cyclic urea and carbamate inhibitors of 11β-hydroxysteroid dehydrogenase 1
US8329897B2 (en) 2007-07-26 2012-12-11 Vitae Pharmaceuticals, Inc. Synthesis of inhibitors of 11β-hydroxysteroid dehydrogenase type 1
US8575156B2 (en) 2007-07-26 2013-11-05 Vitae Pharmaceuticals, Inc. Cyclic inhibitors of 11β-hydroxysteroid dehydrogenase 1
US9079861B2 (en) 2007-11-07 2015-07-14 Vitae Pharmaceuticals, Inc. Cyclic urea inhibitors of 11β-hydroxysteroid dehydrogenase 1
US8748444B2 (en) 2007-12-11 2014-06-10 Vitae Pharmaceuticals, Inc. Cyclic urea inhibitors of 11β-hydroxysteroid dehydrogenase 1
US8440658B2 (en) 2007-12-11 2013-05-14 Vitae Pharmaceuticals, Inc. Cyclic urea inhibitors of 11β-hydroxysteroid dehydrogenase 1
US8680281B2 (en) 2008-01-07 2014-03-25 Vitae Pharmaceuticals, Inc. Lactam inhibitors of 11-β-hydroxysteroid dehydrogenase 1
US8592409B2 (en) 2008-01-24 2013-11-26 Vitae Pharmaceuticals, Inc. Cyclic carbazate and semicarbazide inhibitors of 11β-hydroxysteroid dehydrogenase 1
US8202857B2 (en) 2008-02-11 2012-06-19 Vitae Pharmaceuticals, Inc. 1,3-oxazepan-2-one and 1,3-diazepan-2-one inhibitors of 11β-hydroxysteroid dehydrogenase 1
US8598160B2 (en) 2008-02-15 2013-12-03 Vitae Pharmaceuticals, Inc. Cycloalkyl lactame derivatives as inhibitors of 11-beta-hydroxysteroid dehydrogenase 1
US8592410B2 (en) 2008-05-01 2013-11-26 Vitae Pharmaceuticals, Inc. Cyclic inhibitors of 11BETA-hydroxysteroid dehydrogenase 1
US8242111B2 (en) 2008-05-01 2012-08-14 Vitae Pharmaceuticals, Inc. Cyclic inhibitors of 11β-hydroxysteroid dehydrogenase 1
US8673899B2 (en) 2008-05-01 2014-03-18 Vitae Pharmaceuticals, Inc. Cyclic inhibitors of 11beta-hydroxysteroid dehydrogenase 1
US8569292B2 (en) 2008-05-01 2013-10-29 Vitae Pharmaceuticals, Inc. Cyclic inhibitors of 11β-hydroxysteroid dehydrogenase 1
US8138178B2 (en) 2008-05-01 2012-03-20 Vitae Pharmaceuticals, Inc. Cyclic inhibitors of 11beta-hydroxysteroid dehydrogenase 1
US8193362B2 (en) 2008-05-15 2012-06-05 Syngenta Crop Protection Llc Insecticidal compounds
WO2009138219A3 (en) * 2008-05-15 2010-01-21 Syngenta Participations Ag Insecticidal compounds
WO2009138219A2 (en) * 2008-05-15 2009-11-19 Syngenta Participations Ag Insecticidal compounds
EA019508B1 (en) * 2008-05-15 2014-04-30 Зингента Партисипейшнс Аг Insecticidal compounds
CN103396403B (en) * 2008-05-15 2015-09-09 先正达参股股份有限公司 Pesticidal compound
CN103396403A (en) * 2008-05-15 2013-11-20 先正达参股股份有限公司 Insecticidal compound
US9808006B2 (en) 2008-07-22 2017-11-07 Syngenta Participations Ag Insecticidal phenyl-or pyridyl-piperdine compounds
WO2010009968A1 (en) * 2008-07-22 2010-01-28 Syngenta Participations Ag Insecticidal phenyl- or pyridyl-piperidine compounds
US10034476B2 (en) 2008-07-22 2018-07-31 Syngenta Participations Ag Insecticidal phenyl-or pyridyl-piperdine compounds
AU2009273368B2 (en) * 2008-07-22 2013-09-26 Syngenta Participations Ag Insecticidal phenyl- or pyridyl-piperidine compounds
US8518971B2 (en) 2008-07-22 2013-08-27 Syngenta Crop Protection, Inc. Insecticidal phenyl- or pyridyl-piperdine compounds
CN102105461B (en) * 2008-07-22 2013-07-10 先正达参股股份有限公司 Insecticidal phenyl- or pyridyl-piperidine compounds
CN102105461A (en) * 2008-07-22 2011-06-22 先正达参股股份有限公司 Insecticidal phenyl- or pyridyl-piperidine compounds
EA017523B1 (en) * 2008-07-22 2013-01-30 Зингента Партисипейшнс Аг Insecticidal phenyl- or pyridyl-piperidine compounds
US8114868B2 (en) 2008-07-25 2012-02-14 Boehringer Ingelheim International Gmbh Cyclic inhibitors of 11β-hydroxysteroid dehydrogenase 1
US8754076B2 (en) 2008-07-25 2014-06-17 Vitae Pharmaceuticals, Inc./Boehringer-Ingelheim Cyclic inhibitors of 11beta-hydroxysteroid dehydrogenase 1
US8846668B2 (en) 2008-07-25 2014-09-30 Vitae Pharmaceuticals, Inc. Inhibitors of 11beta-hydroxysteroid dehydrogenase 1
US8637505B2 (en) 2009-02-04 2014-01-28 Boehringer Ingelheim International Gmbh Cyclic inhibitors of 11beta-hydroxysteroid dehydrogenase 1
US8680093B2 (en) 2009-04-30 2014-03-25 Vitae Pharmaceuticals, Inc. Cyclic inhibitors of 11beta-hydroxysteroid dehydrogenase 1
US8927539B2 (en) 2009-06-11 2015-01-06 Vitae Pharmaceuticals, Inc. Cyclic inhibitors of 11β-hydroxysteroid dehydrogenase 1 based on the 1,3-oxazinan-2-one structure
US8883778B2 (en) 2009-07-01 2014-11-11 Vitae Pharmaceuticals, Inc. Cyclic inhibitors of 11 beta-hydroxysteroid dehydrogenase 1
WO2011003684A1 (en) * 2009-07-06 2011-01-13 Syngenta Participations Ag Insecticidal compounds
AU2010270464B2 (en) * 2009-07-06 2015-01-22 Syngenta Participations Ag Insecticidal compounds
EA019857B1 (en) * 2009-07-06 2014-06-30 Зингента Партисипейшнс Аг Insecticidal compounds
US8586593B2 (en) 2009-07-06 2013-11-19 Syngenta Crop Protection, Inc. Insecticidal compounds
US8933072B2 (en) 2010-06-16 2015-01-13 Vitae Pharmaceuticals, Inc. Substituted 5-,6- and 7-membered heterocycles, medicaments containing such compounds, and their use
US9090605B2 (en) 2010-06-16 2015-07-28 Vitae Pharmaceuticals, Inc. Substituted 5-,6- and 7-membered heterocycles, medicaments containing such compounds, and their use
US8765744B2 (en) 2010-06-25 2014-07-01 Boehringer Ingelheim International Gmbh Azaspirohexanones
US8846613B2 (en) 2010-11-02 2014-09-30 Boehringer Ingelheim International Gmbh Pharmaceutical combinations for the treatment of metabolic disorders
CN104302623A (en) * 2012-05-01 2015-01-21 住友化学株式会社 Piperidine compound and pest-control use therefore
WO2013164954A1 (en) * 2012-05-01 2013-11-07 住友化学株式会社 Piperidine compound and pest-control use therefore
WO2014005982A1 (en) 2012-07-05 2014-01-09 Bayer Cropscience Ag Insecticide and fungicide active ingredient combinations
US9776967B2 (en) 2013-10-14 2017-10-03 Bayer Animal Health Gmbh Carboxamide derivatives as pesticidal compounds
WO2015055554A1 (en) 2013-10-14 2015-04-23 Bayer Cropscience Ag Active substance for treating seed and soil
WO2015059088A1 (en) 2013-10-23 2015-04-30 Bayer Cropscience Ag Substituted quinoxaline derivatives as pest control agent
WO2015101622A1 (en) 2014-01-03 2015-07-09 Bayer Cropscience Ag Novel pyrazolyl-heteroarylamides as pesticides
WO2015107133A1 (en) 2014-01-20 2015-07-23 Bayer Cropscience Ag Quinoline derivatives as insecticides and acaricides
WO2015150300A1 (en) 2014-04-02 2015-10-08 Bayer Cropscience Ag N-(1-(hetero)aryl-1h-pyrazol-4-yl)-(hetero)arylamide derivatives and use thereof as pesticides
WO2015169776A1 (en) 2014-05-08 2015-11-12 Bayer Cropscience Ag Pyrazolopyridine sulfonamides as nematicides
WO2015185531A1 (en) 2014-06-05 2015-12-10 Bayer Cropscience Aktiengesellschaft Bicyclic compounds as pesticides
WO2016001119A1 (en) 2014-07-01 2016-01-07 Bayer Cropscience Aktiengesellschaft Insecticide and fungicide active ingredient combinations
WO2016008830A1 (en) 2014-07-15 2016-01-21 Bayer Cropscience Aktiengesellschaft Aryl-triazolyl pyridines as pest control agents
WO2016055096A1 (en) 2014-10-07 2016-04-14 Bayer Cropscience Ag Method for treating rice seed
WO2016091857A1 (en) 2014-12-11 2016-06-16 Bayer Cropscience Aktiengesellschaft Five-membered c-n bonded aryl sulphide and aryl sulphoxide derivatives as pest control agents
WO2016124563A1 (en) 2015-02-05 2016-08-11 Bayer Cropscience Aktiengesellschsaft 2-(het)aryl-substituted condensed bicyclic heterocycle derivatives as pest control agents
WO2016124557A1 (en) 2015-02-05 2016-08-11 Bayer Cropscience Aktiengesellschaft 2-(het)aryl-substituted condensed bicyclic heterocycle derivatives as pest control agents
WO2016128298A1 (en) 2015-02-09 2016-08-18 Bayer Cropscience Aktiengesellschaft Substituted 2-thioimidazolyl-carboxamides as pest control agents
WO2016142394A1 (en) 2015-03-10 2016-09-15 Bayer Animal Health Gmbh Pyrazolyl-derivatives as pest control agents
WO2016162318A1 (en) 2015-04-08 2016-10-13 Bayer Cropscience Aktiengesellschaft Condensed bicyclic heterocycle derivatives as pest control agents and intermediate product
EP3081085A1 (en) 2015-04-14 2016-10-19 Bayer CropScience AG Method for improving earliness in cotton
WO2016174049A1 (en) 2015-04-30 2016-11-03 Bayer Animal Health Gmbh Anti-parasitic combinations including halogen-substituted compounds
EP2910126A1 (en) 2015-05-05 2015-08-26 Bayer CropScience AG Active compound combinations having insecticidal properties
WO2016180802A1 (en) 2015-05-13 2016-11-17 Bayer Cropscience Aktiengesellschaft Insecticidal arylpyrrolidines, method for synthesizing same, and use thereof as agents for controlling animal pests
WO2017005717A1 (en) 2015-07-06 2017-01-12 Bayer Cropscience Aktiengesellschaft Heterocyclic compounds as pesticides
EP3896065A1 (en) 2015-08-07 2021-10-20 Bayer CropScience Aktiengesellschaft 2-(het)aryl-substituted condensed heterocycle derivatives as pesticides
EP3896066A2 (en) 2015-08-07 2021-10-20 Bayer CropScience Aktiengesellschaft 2-(het)aryl-substituted condensed heterocycle derivatives as pesticides
WO2017072039A1 (en) 2015-10-26 2017-05-04 Bayer Cropscience Aktiengesellschaft Condensed bicyclic heterocycle derivatives as pest control agents
WO2017093180A1 (en) 2015-12-01 2017-06-08 Bayer Cropscience Aktiengesellschaft Condensed bicyclic heterocycle derivatives as pest control agents
WO2017093214A1 (en) 2015-12-03 2017-06-08 Bayer Cropscience Aktiengesellschaft Mesoionic halogenated 3-(acetyl)-1-[(1,3-thiazol-5-yl)methyl]-1h-imidazo[1,2-a]pyridin-4-ium-2-olate derivatives and related compounds as insecticides
WO2017137339A1 (en) 2016-02-11 2017-08-17 Bayer Cropscience Aktiengesellschaft Substituted 2-oxyimidazolyl-carboxamides as pest control agents
WO2017137338A1 (en) 2016-02-11 2017-08-17 Bayer Cropscience Aktiengesellschaft Substituierted 2-(het)aryl-imidazolyl-carboxyamides as pest control agents
WO2017144341A1 (en) 2016-02-23 2017-08-31 Bayer Cropscience Aktiengesellschaft Condensed bicyclic heterocycle derivatives as pest control agents
WO2017144497A1 (en) 2016-02-26 2017-08-31 Bayer Cropscience Aktiengesellschaft Solvent-free formulations of low-melting active substances
EP3210468A1 (en) 2016-02-26 2017-08-30 Bayer CropScience Aktiengesellschaft Solvent-free formulations of low-melting point agents
WO2017157735A1 (en) 2016-03-15 2017-09-21 Bayer Cropscience Aktiengesellschaft Substituted sulfonyl amides for controlling animal pests
WO2017157885A1 (en) 2016-03-16 2017-09-21 Bayer Cropscience Aktiengesellschaft N-(cyanobenzyl)-6-(cyclopropyl-carbonylamino)-4-(phenyl)-pyridine-2-carboxamide derivatives and related compounds as pesticides and plant protection agents
WO2017174414A1 (en) 2016-04-05 2017-10-12 Bayer Cropscience Aktiengesellschaft Naphthaline-derivatives as pest control agents
WO2017178416A1 (en) 2016-04-15 2017-10-19 Bayer Animal Health Gmbh Pyrazolopyrimidine derivatives
WO2017186536A1 (en) 2016-04-25 2017-11-02 Bayer Cropscience Aktiengesellschaft Substituted 2-alkylimidazolyl-carboxamides as pest control agents
EP3241830A1 (en) 2016-05-04 2017-11-08 Bayer CropScience Aktiengesellschaft Condensed bicyclic heterocyclic derivatives as pesticides
WO2017198450A1 (en) 2016-05-15 2017-11-23 Bayer Cropscience Nv Method for increasing yield in maize
WO2017198449A1 (en) 2016-05-15 2017-11-23 Bayer Cropscience Nv Method for increasing yield in brassicaceae
WO2017198452A1 (en) 2016-05-16 2017-11-23 Bayer Cropscience Nv Method for increasing yield in soybean
WO2017198453A1 (en) 2016-05-16 2017-11-23 Bayer Cropscience Nv Method for increasing yield in potato, tomato or alfalfa
WO2017198451A1 (en) 2016-05-17 2017-11-23 Bayer Cropscience Nv Method for increasing yield in small grain cereals such as wheat and rice
WO2017198454A1 (en) 2016-05-17 2017-11-23 Bayer Cropscience Nv Method for increasing yield in cotton
WO2017198455A2 (en) 2016-05-17 2017-11-23 Bayer Cropscience Nv Method for increasing yield in beta spp. plants
EP3245865A1 (en) 2016-05-17 2017-11-22 Bayer CropScience Aktiengesellschaft Method for increasing yield in brassicaceae
WO2018013381A1 (en) 2016-07-11 2018-01-18 Covestro Llc, Et Al. Aqueous compositions for treating seeds, seeds treated therewith, and methods for treating seeds
US10653136B2 (en) 2016-07-11 2020-05-19 Covestro Llc Aqueous compositions for treating seeds, seeds treated therewith, and methods for treating seeds
US10653135B2 (en) 2016-07-11 2020-05-19 Covestro Llc Methods for treating seeds with an aqueous composition and seeds treated therewith
US10750750B2 (en) 2016-07-11 2020-08-25 Covestro Llc Aqueous compositions for treating seeds, seeds treated therewith, and methods for treating seeds
WO2018013382A1 (en) 2016-07-11 2018-01-18 Covestro Llc, Et Al Aqueous compositions for treating seeds, seeds treated therewith, and methods for treating seeds
WO2018013380A1 (en) 2016-07-11 2018-01-18 Covestro Llc, Et Al. Methods for treating seeds with an aqueous compostion and seeds treated therewith
WO2018011111A1 (en) 2016-07-12 2018-01-18 Bayer Cropscience Aktiengesellschaft Bicyclic compounds as pest control agents
WO2018015289A1 (en) 2016-07-19 2018-01-25 Bayer Cropscience Aktiengesellschaft Condensed bicyclic heterocycle derivatives as pest control agents
WO2018019937A1 (en) 2016-07-29 2018-02-01 Bayer Cropscience Aktiengesellschaft Formulation comprising a beneficial p. bilaii strain and talc for use in seed treatment
WO2018029102A1 (en) 2016-08-10 2018-02-15 Bayer Cropscience Aktiengesellschaft Substituted 2-heterocyclyl imidazolyl-carboxamides as pest control agents
WO2018033455A1 (en) 2016-08-15 2018-02-22 Bayer Cropscience Aktiengesellschaft Condensed bicyclic heterocycle derivatives as pest control agents
WO2018050825A1 (en) 2016-09-19 2018-03-22 Bayer Cropscience Aktiengesellschaft Pyrazolo [1,5-a]pyridine derivatives and their use as pesticides
WO2018065292A1 (en) 2016-10-06 2018-04-12 Bayer Cropscience Aktiengesellschaft 2-(het)aryl-substituted condensed bicyclic heterocycle derivatives as pest control agents
WO2018065288A1 (en) 2016-10-07 2018-04-12 Bayer Cropscience Aktiengesellschaft 2-[2-phenyl-1-(sulfonyl-methyl)-vinyl]-imidazo-[4,5-b] pyridine derivatives and related compounds as pesticides in plant protection
US11155517B2 (en) 2016-10-14 2021-10-26 Pi Industries Ltd. 4-substituted phenylamine derivatives and their use to protect crops by fighting undesired phytopathogenic micoorganisms
WO2018069841A1 (en) 2016-10-14 2018-04-19 Pi Industries Ltd 4-substituted phenylamine derivatives and their use to protect crops by fighting undesired phytopathogenic micoorganisms
WO2018069842A1 (en) 2016-10-14 2018-04-19 Pi Industries Ltd 4-amino substituted phenylamidine derivatives and their use to protect crops by fighting undesired phytopathogenic micoorganisms
WO2018083288A1 (en) 2016-11-07 2018-05-11 Bayer Aktiengesellschaft Substituted sulfonyl amides for controlling animal pests
US10889573B2 (en) 2016-11-11 2021-01-12 Bayer Animal Health Gmbh Anthelmintic quinoline-3-carboxamide derivatives
WO2018087036A1 (en) 2016-11-11 2018-05-17 Bayer Animal Health Gmbh New anthelmintic quinoline-3-carboxamide derivatives
US11505545B2 (en) 2016-11-11 2022-11-22 Bayer Animal Health Gmbh Anthelmintic quinoline-3-carboxamide derivatives
WO2018095953A1 (en) 2016-11-23 2018-05-31 Bayer Cropscience Aktiengesellschaft 2-[3-(alkylsulfonyl)-2h-indazol-2-yl]-3h-imidazo[4,5-b]pyridine derivatives and similar compounds as pesticides
WO2018104500A1 (en) 2016-12-09 2018-06-14 Bayer Cropscience Aktiengesellschaft Plant health effect of purpureocillium lilacinum
WO2018108791A1 (en) 2016-12-16 2018-06-21 Bayer Cropscience Aktiengesellschaft Thiadiazole derivatives as pesticides
WO2018108730A1 (en) 2016-12-16 2018-06-21 Bayer Aktiengesellschaft Mesoionic imidazopyridines for use as insecticides
WO2018116072A1 (en) 2016-12-20 2018-06-28 Pi Industries Ltd. Heterocyclic compounds
WO2018116073A1 (en) 2016-12-21 2018-06-28 Pi Industries Ltd. 1, 2, 3-thiadiazole compounds and their use as crop protecting agent
WO2018130437A1 (en) 2017-01-10 2018-07-19 Bayer Aktiengesellschaft Heterocyclene derivatives as pest control agents
WO2018130443A1 (en) 2017-01-10 2018-07-19 Bayer Aktiengesellschaft Heterocyclene derivatives as pest control agents
WO2018138050A1 (en) 2017-01-26 2018-08-02 Bayer Aktiengesellschaft Condensed bicyclic heterocyclene derivatives as pest control agents
WO2018141954A1 (en) 2017-02-06 2018-08-09 Bayer Aktiengesellschaft Aryl or heteroaryl-substituted imidazo pyridine derivatives and their use as pesticides
EP3369320A1 (en) 2017-03-02 2018-09-05 Bayer CropScience Aktiengesellschaft Agent for controlling bugs
WO2018177993A1 (en) 2017-03-31 2018-10-04 Bayer Cropscience Aktiengesellschaft Pyrazoles for controlling arthropods
WO2018177995A1 (en) 2017-03-31 2018-10-04 Bayer Cropscience Aktiengesellschaft Tricyclic carboxamides for controlling arthropods
WO2018189077A1 (en) 2017-04-12 2018-10-18 Bayer Aktiengesellschaft Mesoionic imidazopyridines for use as insecticides
US11524934B2 (en) 2017-04-20 2022-12-13 Pi Industries Ltd Phenylamine compounds
WO2018193385A1 (en) 2017-04-20 2018-10-25 Pi Industries Ltd. Novel phenylamine compounds
WO2018192872A1 (en) 2017-04-21 2018-10-25 Bayer Aktiengesellschaft Mesoionic imidazopyridines as insecticides
WO2018197257A1 (en) 2017-04-24 2018-11-01 Bayer Aktiengesellschaft Condensed bicyclic heterocyclic-compound derivatives as pest control agents
WO2018197692A1 (en) 2017-04-27 2018-11-01 Bayer Aktiengesellschaft Heteroarylphenylaminoquinolines and analogues
WO2018197401A1 (en) 2017-04-27 2018-11-01 Bayer Animal Health Gmbh New bicyclic pyrazole derivatives
US11130768B2 (en) 2017-04-27 2021-09-28 Bayer Animal Health Gmbh Bicyclic pyrazole derivatives
WO2018202494A1 (en) 2017-05-02 2018-11-08 Bayer Aktiengesellschaft 2-(het)aryl-substituted condensed bicyclic heterocyclic derivatives as pest control agents
WO2018202501A1 (en) 2017-05-02 2018-11-08 Bayer Aktiengesellschaft 2-(het)aryl-substituted condensed bicyclic heterocyclic derivatives as pest control agents
WO2018202706A1 (en) 2017-05-03 2018-11-08 Bayer Aktiengesellschaft Trisubstitutedsilylheteroaryloxyquinolines and analogues
WO2018202712A1 (en) 2017-05-03 2018-11-08 Bayer Aktiengesellschaft Trisubstitutedsilylmethylphenoxyquinolines and analogues
WO2018202715A1 (en) 2017-05-03 2018-11-08 Bayer Aktiengesellschaft Trisubstitutedsilylbenzylbenzimidazoles and analogues
WO2018202524A1 (en) 2017-05-04 2018-11-08 Bayer Cropscience Aktiengesellschaft 2-{[2-(phenyloxymethyl)pyridin-5-yl]oxy}-ethanamin-derivatives and related compounds as pest-control agents e.g. for the protection of plants
US11827616B2 (en) 2017-05-04 2023-11-28 Discovery Purchaser Corporation Heterocyclic compounds as pesticides
WO2018202525A1 (en) 2017-05-04 2018-11-08 Bayer Cropscience Aktiengesellschaft Phenoxyethanamine derivatives for controlling pests
EP3400801A1 (en) 2017-05-10 2018-11-14 Bayer CropScience Aktiengesellschaft Plant health effect of purpureocillium lilacinum
WO2019002132A1 (en) 2017-06-30 2019-01-03 Bayer Animal Health Gmbh New azaquinoline derivatives
WO2019007887A1 (en) 2017-07-06 2019-01-10 Bayer Aktiengesellschaft Insecticide and fungicide active ingredient combinations
WO2019007888A1 (en) 2017-07-06 2019-01-10 Bayer Aktiengesellschaft Insecticidal active ingredient combinations
WO2019007891A1 (en) 2017-07-06 2019-01-10 Bayer Aktiengesellschaft Insecticidal active ingredient combinations
EP3284739A1 (en) 2017-07-19 2018-02-21 Bayer CropScience Aktiengesellschaft Substituted (het) aryl compounds as pesticides
WO2019025341A1 (en) 2017-08-04 2019-02-07 Bayer Animal Health Gmbh Quinoline derivatives for treating infections with helminths
WO2019035881A1 (en) 2017-08-17 2019-02-21 Bayer Cropscience Lp Liquid fertilizer-dispersible compositions and methods thereof
WO2019038195A1 (en) 2017-08-22 2019-02-28 Bayer Aktiengesellschaft Heterocyclene derivatives as pest control agents
WO2019059412A1 (en) 2017-09-20 2019-03-28 Mitsui Chemicals Agro, Inc. Prolonged ectoparasite-controlling agent for animal
WO2019068572A1 (en) 2017-10-04 2019-04-11 Bayer Aktiengesellschaft Derivatives of heterocyclic compounds as pest control agents
WO2019076744A1 (en) 2017-10-17 2019-04-25 Bayer Aktiengesellschaft Aqueous [2-(2,4-dichlorophenyl)methyl]-4,4-dimethyl-3-isoxazolidinone-based suspension concentrates
EP3473103A1 (en) 2017-10-17 2019-04-24 Bayer AG Aqueous suspension concentrates based on 2- [(2,4-dichlorophenyl) -methyl] -4,4 '-dimethyl-3-isoxazolidinone
WO2019076752A1 (en) 2017-10-18 2019-04-25 Bayer Aktiengesellschaft Active compound combinations having insecticidal/acaricidal properties
EP3473100A1 (en) 2017-10-18 2019-04-24 Bayer Aktiengesellschaft Active compound combinations having insecticidal/acaricidal properties
WO2019076749A1 (en) 2017-10-18 2019-04-25 Bayer Aktiengesellschaft Active compound combinations having insecticidal/acaricidal properties
WO2019076750A1 (en) 2017-10-18 2019-04-25 Bayer Aktiengesellschaft Active compound combinations having insecticidal/acaricidal properties
WO2019076754A1 (en) 2017-10-18 2019-04-25 Bayer Aktiengesellschaft Active compound combinations having insecticidal/acaricidal properties
WO2019076751A1 (en) 2017-10-18 2019-04-25 Bayer Aktiengesellschaft Active compound combinations having insecticidal/acaricidal properties
WO2019092086A1 (en) 2017-11-13 2019-05-16 Bayer Aktiengesellschaft Tetrazolylpropyl derivatives and their use as fungicides
WO2019105875A1 (en) 2017-11-28 2019-06-06 Bayer Aktiengesellschaft Heterocyclic compounds as pesticides
WO2019105871A1 (en) 2017-11-29 2019-06-06 Bayer Aktiengesellschaft Nitrogenous heterocycles as a pesticide
WO2019123196A1 (en) 2017-12-20 2019-06-27 Pi Industries Ltd. Fluoralkenyl compounds, process for preparation and use thereof
WO2019122319A1 (en) 2017-12-21 2019-06-27 Bayer Aktiengesellschaft Trisubstitutedsilylmethylheteroaryloxyquinolines and analogues
EP3305786A2 (en) 2018-01-22 2018-04-11 Bayer CropScience Aktiengesellschaft Condensed bicyclic heterocycle derivatives as pesticides
WO2019150311A1 (en) 2018-02-02 2019-08-08 Pi Industries Ltd. 1-3 dithiol compounds and their use for the protection of crops from phytopathogenic microorganisms
WO2019155066A1 (en) 2018-02-12 2019-08-15 Bayer Aktiengesellschaft Fungicidal oxadiazoles
WO2019162174A1 (en) 2018-02-21 2019-08-29 Bayer Aktiengesellschaft Condensed bicyclic heterocyclic derivatives as pest control agents
WO2019162228A1 (en) 2018-02-21 2019-08-29 Bayer Aktiengesellschaft 1-(5-substituted imidazol-1-yl)but-3-en derivatives and their use as fungicides
WO2019170626A1 (en) 2018-03-08 2019-09-12 Bayer Aktiengesellschaft Use of heteroaryl-triazole and heteroaryl-tetrazole compounds as pesticides in plant protection
WO2019175045A1 (en) 2018-03-12 2019-09-19 Bayer Aktiengesellschaft Condensed bicyclic heterocyclic derivatives as pest control agents
WO2019175046A1 (en) 2018-03-12 2019-09-19 Bayer Aktiengesellschaft Condensed bicyclic heterocyclic derivatives as pest control agents
WO2019197371A1 (en) 2018-04-10 2019-10-17 Bayer Aktiengesellschaft Oxadiazoline derivatives
EP3904350A1 (en) 2018-04-12 2021-11-03 Bayer Aktiengesellschaft N-(cyclopropylmethyl)-5-(methylsulfonyl)-n-{1-[1-(pyrimidin-2-yl)-1h-1,2,4-triazol-5-yl]ethyl}benzamide derivatives and the corresponding pyridine-carboxamide derivatives as pesticides
EP3904349A2 (en) 2018-04-12 2021-11-03 Bayer Aktiengesellschaft N-(cyclopropylmethyl)-5-(methylsulfonyl)-n-{1-[1-(pyrimidin-2-yl)-1h-1,2,4-triazol-5-yl]ethyl}heterocyclyl amide derivatives and similar compounds as pesticides
WO2019197468A1 (en) 2018-04-12 2019-10-17 Bayer Aktiengesellschaft N-(cyclopropylmethyl)-5-(methylsulfonyl)-n-{1-[1-(pyrimidin-2-yl)-1h-1,2,4-triazol-5-yl]ethyl}benzamide derivatives and the corresponding pyridine-carboxamide derivatives as pesticides
WO2019197623A1 (en) 2018-04-13 2019-10-17 Bayer Aktiengesellschaft Active ingredient combinations with insecticidal, fungicidal and acaricidal properties
WO2019197615A1 (en) 2018-04-13 2019-10-17 Bayer Aktiengesellschaft Active ingredient combinations with fungicides, insecticides and acaricidal properties
EP4039682A1 (en) 2018-04-17 2022-08-10 Bayer Aktiengesellschaft Novel heteroaryl-triazole and heteroaryl-tetrazole compounds as pesticides
WO2019201835A1 (en) 2018-04-17 2019-10-24 Bayer Aktiengesellschaft Heteroaryl-triazole and heteroaryl-tetrazole compounds as pesticides
WO2019202077A1 (en) 2018-04-20 2019-10-24 Bayer Aktiengesellschaft Heteroaryl-triazole and heteroaryl-tetrazole compounds as pesticides
WO2019201921A1 (en) 2018-04-20 2019-10-24 Bayer Aktiengesellschaft Heterocyclene derivatives as pest control agents
EP3919486A1 (en) 2018-04-25 2021-12-08 Bayer Aktiengesellschaft Novel heteroaryl-triazole and heteroaryl-tetrazole compounds as pesticides
WO2019206799A1 (en) 2018-04-25 2019-10-31 Bayer Aktiengesellschaft Novel heteroaryl-triazole and heteroaryl-tetrazole compounds as pesticides
WO2019215182A1 (en) 2018-05-09 2019-11-14 Bayer Animal Health Gmbh New quinoline derivatives
WO2019224143A1 (en) 2018-05-24 2019-11-28 Bayer Aktiengesellschaft Active ingredient combinations with insecticidal, nematicidal and acaricidal properties
WO2020005678A1 (en) 2018-06-25 2020-01-02 Bayer Cropscience Lp Seed treatment method
WO2020002189A1 (en) 2018-06-27 2020-01-02 Bayer Aktiengesellschaft Active substance combinations
EP3586630A1 (en) 2018-06-28 2020-01-01 Bayer AG Active compound combinations having insecticidal/acaricidal properties
WO2020007905A1 (en) 2018-07-05 2020-01-09 Bayer Aktiengesellschaft Substituted thiophenecarboxamides and analogues as antibacterials agents
US11884643B2 (en) 2018-07-05 2024-01-30 Bayer Aktiengesellschaft Substituted thiophenecarboxamides and analogues as antibacterials agents
WO2020007902A1 (en) 2018-07-05 2020-01-09 Bayer Aktiengesellschaft Substituted thiophenecarboxamides and analogues as antibacterials agents
WO2020007904A1 (en) 2018-07-05 2020-01-09 Bayer Aktiengesellschaft Substituted thiophenecarboxamides and analogues as antibacterials agents
US11952359B2 (en) 2018-07-05 2024-04-09 Bayer Aktiengesellschaft Substituted thiophenecarboxamides and analogues as antibacterials agents
WO2020020813A1 (en) 2018-07-25 2020-01-30 Bayer Aktiengesellschaft Fungicidal active compound combinations
WO2020020816A1 (en) 2018-07-26 2020-01-30 Bayer Aktiengesellschaft Novel triazole derivatives
WO2020021082A1 (en) 2018-07-27 2020-01-30 Bayer Aktiengesellschaft Controlled release formulations for agrochemicals
WO2020025650A1 (en) 2018-07-31 2020-02-06 Bayer Aktiengesellschaft Controlled release formulations with lignin for agrochemicals
WO2020035826A1 (en) 2018-08-17 2020-02-20 Pi Industries Ltd. 1,2-dithiolone compounds and use thereof
WO2020043650A1 (en) 2018-08-29 2020-03-05 Bayer Aktiengesellschaft Active compound combinations having insecticidal/acaricidal properties
WO2020053282A1 (en) 2018-09-13 2020-03-19 Bayer Aktiengesellschaft Heterocyclene derivatives as pest control agents
WO2020057939A1 (en) 2018-09-17 2020-03-26 Bayer Aktiengesellschaft Use of the fungicide isoflucypram for controlling claviceps purpurea and reducing sclerotia in cereals
WO2020070050A1 (en) 2018-10-01 2020-04-09 Bayer Aktiengesellschaft Fungicidal 5-substituted imidazol-1-yl carbinol derivatives
EP3636644A1 (en) 2018-10-11 2020-04-15 Bayer Aktiengesellschaft Mesoionic imidazopyridines as insecticides
WO2020078839A1 (en) 2018-10-16 2020-04-23 Bayer Aktiengesellschaft Active substance combinations
WO2020079167A1 (en) 2018-10-18 2020-04-23 Bayer Aktiengesellschaft Heteroarylaminoquinolines and analogues
WO2020079173A1 (en) 2018-10-18 2020-04-23 Bayer Aktiengesellschaft Pyridylphenylaminoquinolines and analogues
WO2020079232A1 (en) 2018-10-20 2020-04-23 Bayer Aktiengesellschaft Oxetanylphenoxyquinolines and analogues
EP3643711A1 (en) 2018-10-24 2020-04-29 Bayer Animal Health GmbH New anthelmintic compounds
WO2020083971A2 (en) 2018-10-24 2020-04-30 Bayer Animal Health Gmbh New anthelmintic compounds
WO2020109391A1 (en) 2018-11-28 2020-06-04 Bayer Aktiengesellschaft Pyridazine (thio)amides as fungicidal compounds
WO2020114932A1 (en) 2018-12-07 2020-06-11 Bayer Aktiengesellschaft Herbicidal compositions
WO2020114934A1 (en) 2018-12-07 2020-06-11 Bayer Aktiengesellschaft Herbicide compositions
EP3620052A1 (en) 2018-12-12 2020-03-11 Bayer Aktiengesellschaft Use of phenoxypyridinyl-substituted (1h-1,2,4-triazol-1-yl)alcohols for controlling fungicidal diseases in maize
WO2020126980A1 (en) 2018-12-18 2020-06-25 Bayer Aktiengesellschaft Active compound combinations having insecticidal/acaricidal properties
WO2020127780A1 (en) 2018-12-20 2020-06-25 Bayer Aktiengesellschaft Heterocyclyl pyridazine as fungicidal compounds
EP3669652A1 (en) 2018-12-21 2020-06-24 Bayer AG Active compound combination
WO2020127974A1 (en) 2018-12-21 2020-06-25 Bayer Aktiengesellschaft 1,3,4-oxadiazoles and their derivatives as new antifungal agents
EP3679792A1 (en) 2019-01-08 2020-07-15 Bayer AG Active compound combinations
EP3679790A1 (en) 2019-01-08 2020-07-15 Bayer AG Active compound combinations
EP3679793A1 (en) 2019-01-08 2020-07-15 Bayer AG Active compound combinations
EP3679791A1 (en) 2019-01-08 2020-07-15 Bayer AG Active compound combinations
EP3679789A1 (en) 2019-01-08 2020-07-15 Bayer AG Active compound combinations
EP3545764A1 (en) 2019-02-12 2019-10-02 Bayer AG Crystal form of 2-({2-fluoro-4-methyl-5-[(r)-(2,2,2-trifluoroethyl)sulfinyl]phenyl}imino)-3-(2,2,2- trifluoroethyl)-1,3-thiazolidin-4-one
WO2020173861A1 (en) 2019-02-26 2020-09-03 Bayer Aktiengesellschaft Condensed bicyclic heterocyclic derivatives as pest control agents
WO2020173860A1 (en) 2019-02-26 2020-09-03 Bayer Aktiengesellschaft Fused bicyclic heterocycle derivatives as pesticides
WO2020178067A1 (en) 2019-03-01 2020-09-10 Bayer Aktiengesellschaft Active compound combinations having insecticidal/acaricidal properties
WO2020178307A1 (en) 2019-03-05 2020-09-10 Bayer Aktiengesellschaft Active compound combination
WO2020182929A1 (en) 2019-03-13 2020-09-17 Bayer Aktiengesellschaft Substituted ureas and derivatives as new antifungal agents
WO2020187656A1 (en) 2019-03-15 2020-09-24 Bayer Aktiengesellschaft Active compound combinations having insecticidal/acaricidal properties
EP3564225A1 (en) 2019-03-21 2019-11-06 Bayer Aktiengesellschaft Crystalline form of spiromesifen
EP3725788A1 (en) 2019-04-15 2020-10-21 Bayer AG Novel heteroaryl-substituted aminoalkyl azole compounds as pesticides
WO2020212235A1 (en) 2019-04-15 2020-10-22 Bayer Animal Health Gmbh Novel heteroaryl-substituted aminoalkyl azole compounds as pesticides
WO2020225434A1 (en) 2019-05-08 2020-11-12 Bayer Aktiengesellschaft High spreading ulv formulations for agrochemical compounds ii
WO2020225437A1 (en) 2019-05-08 2020-11-12 Bayer Aktiengesellschaft Ulv formulations with enhanced uptake
WO2020225436A1 (en) 2019-05-08 2020-11-12 Bayer Aktiengesellschaft High spreading, uptake and rainfastness ulv formulations
WO2020225438A1 (en) 2019-05-08 2020-11-12 Bayer Aktiengesellschaft High uptake and rainfastness ulv formulations
WO2020225435A1 (en) 2019-05-08 2020-11-12 Bayer Aktiengesellschaft High spreading and uptake ulv formulations
WO2020225440A1 (en) 2019-05-08 2020-11-12 Bayer Aktiengesellschaft High spreading and rainfastness ulv formulations
WO2020225428A1 (en) 2019-05-08 2020-11-12 Bayer Aktiengesellschaft High spreading ulv formulations for insecticides
WO2020225439A1 (en) 2019-05-08 2020-11-12 Bayer Aktiengesellschaft Ulv formulations with enhanced rainfastness
WO2020225242A1 (en) 2019-05-08 2020-11-12 Bayer Aktiengesellschaft Active compound combination
WO2020231751A1 (en) 2019-05-10 2020-11-19 Bayer Cropscience Lp Active compound combinations
WO2020229398A1 (en) 2019-05-14 2020-11-19 Bayer Aktiengesellschaft (1-alkenyl)-substituted pyrazoles and triazoles as pest control agents
EP3750888A1 (en) 2019-06-12 2020-12-16 Bayer Aktiengesellschaft Crystalline form a of 1,4-dimethyl-2-[2-(pyridin-3-yl)-2h-indazol-5-yl]-1,2,4-triazolidine-3,5-dione
WO2020254493A1 (en) 2019-06-21 2020-12-24 Bayer Aktiengesellschaft Thienylhydroxyisoxazolines and derivatives thereof
WO2020254489A1 (en) 2019-06-21 2020-12-24 Bayer Aktiengesellschaft Benzylphenyl hydroxyisoxazolines and analogues as new antifungal agents
WO2020254487A1 (en) 2019-06-21 2020-12-24 Bayer Aktiengesellschaft Hydroxyisoxazolines and derivatives thereof
WO2020254494A1 (en) 2019-06-21 2020-12-24 Bayer Aktiengesellschaft Fungicidal oxadiazoles
WO2020254490A1 (en) 2019-06-21 2020-12-24 Bayer Aktiengesellschaft Phenoxyphenyl hydroxyisoxazolines and analogues as new antifungal agents
WO2020254492A1 (en) 2019-06-21 2020-12-24 Bayer Aktiengesellschaft Hydroxyisoxazolines and derivatives thereof
WO2020254488A1 (en) 2019-06-21 2020-12-24 Bayer Aktiengesellschaft Hydroxyisoxazolines and use thereof as fungicides
WO2020254486A1 (en) 2019-06-21 2020-12-24 Bayer Aktiengesellschaft Hydroxyisoxazolines and derivatives thereof
WO2020263812A1 (en) 2019-06-24 2020-12-30 Auburn University A bacillus strain and methods of its use for plant growth promotion
EP3608311A1 (en) 2019-06-28 2020-02-12 Bayer AG Crystalline form a of n-[4-chloro-3-[(1-cyanocyclopropyl)carbamoyl]phenyl]-2-methyl-4-methylsulfonyl-5-(1,1,2,2,2-pentafluoroethyl)pyrazole-3-carboxamide
WO2021001331A1 (en) 2019-07-03 2021-01-07 Bayer Aktiengesellschaft Substituted thiophene carboxamides and derivatives thereof as microbicides
WO2021001273A1 (en) 2019-07-04 2021-01-07 Bayer Aktiengesellschaft Herbicidal compositions
WO2021013721A1 (en) 2019-07-22 2021-01-28 Bayer Aktiengesellschaft 5-amino substituted pyrazoles and triazoles as pest control agents
WO2021013719A1 (en) 2019-07-23 2021-01-28 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
WO2021013720A1 (en) 2019-07-23 2021-01-28 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
WO2021018839A1 (en) 2019-07-30 2021-02-04 Bayer Animal Health Gmbh Isoquinoline derivatives and their use for the treatment of parasitic infections
EP3771714A1 (en) 2019-07-30 2021-02-03 Bayer AG Nitrogen-containing heterocycles as pesticides
EP3701796A1 (en) 2019-08-08 2020-09-02 Bayer AG Active compound combinations
WO2021048188A1 (en) 2019-09-11 2021-03-18 Bayer Aktiengesellschaft Highly effective formulations on the basis of 2-[(2,4-dichlorphenyl)-methyl]-4,4'-dimethyl-3-isoxazolidinones and preemergence herbicides
WO2021058659A1 (en) 2019-09-26 2021-04-01 Bayer Aktiengesellschaft Rnai-mediated pest control
WO2021069569A1 (en) 2019-10-09 2021-04-15 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
WO2021069567A1 (en) 2019-10-09 2021-04-15 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
WO2021069575A1 (en) 2019-10-11 2021-04-15 Bayer Animal Health Gmbh Heteroaryl-substituted pyrazine derivatives as pesticides
WO2021089673A1 (en) 2019-11-07 2021-05-14 Bayer Aktiengesellschaft Substituted sulfonyl amides for controlling animal pests
WO2021097162A1 (en) 2019-11-13 2021-05-20 Bayer Cropscience Lp Beneficial combinations with paenibacillus
WO2021099303A1 (en) 2019-11-18 2021-05-27 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
WO2021105091A1 (en) 2019-11-25 2021-06-03 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
WO2021122986A1 (en) 2019-12-20 2021-06-24 Bayer Aktiengesellschaft Thienyloxazolones and analogues
WO2021123051A1 (en) 2019-12-20 2021-06-24 Bayer Aktiengesellschaft Substituted thiophene carboxamides, thiophene carboxylic acids and derivatives thereof
EP3845304A1 (en) 2019-12-30 2021-07-07 Bayer AG Capsule suspension concentrates based on polyisocyanates and biodegradable amine based cross-linker
WO2021136758A1 (en) 2019-12-30 2021-07-08 Bayer Aktiengesellschaft Aqueous capsule suspension concentrates based on polyurea shell material containing polyfunctional aminocarboxylic esters
WO2021165195A1 (en) 2020-02-18 2021-08-26 Bayer Aktiengesellschaft Heteroaryl-triazole compounds as pesticides
EP3868207A1 (en) 2020-02-24 2021-08-25 Bayer Aktiengesellschaft Encapsulated pyrethroids with improved activity in soil and leaf applications
WO2021170527A1 (en) 2020-02-24 2021-09-02 Bayer Aktiengesellschaft Encapsulated pyrethroids with improved effictiveness in soil and leaf applications
EP3708565A1 (en) 2020-03-04 2020-09-16 Bayer AG Pyrimidinyloxyphenylamidines and the use thereof as fungicides
WO2021204930A1 (en) 2020-04-09 2021-10-14 Bayer Animal Health Gmbh Substituted condensed azines as anthelmintic compounds
WO2021209366A1 (en) 2020-04-16 2021-10-21 Bayer Aktiengesellschaft Active compound combinations and fungicide compositions comprising those
WO2021209368A1 (en) 2020-04-16 2021-10-21 Bayer Aktiengesellschaft Active compound combinations and fungicide compositions comprising those
WO2021209364A1 (en) 2020-04-16 2021-10-21 Bayer Aktiengesellschaft Active compound combinations and fungicide compositions comprising those
WO2021209363A1 (en) 2020-04-16 2021-10-21 Bayer Aktiengesellschaft Active compound combinations and fungicide compositions comprising those
WO2021209490A1 (en) 2020-04-16 2021-10-21 Bayer Aktiengesellschaft Cyclaminephenylaminoquinolines as fungicides
WO2021209365A1 (en) 2020-04-16 2021-10-21 Bayer Aktiengesellschaft Active compound combinations and fungicide compositions comprising those
WO2021213978A1 (en) 2020-04-21 2021-10-28 Bayer Aktiengesellschaft 2-(het)aryl-substituted condensed heterocyclic derivatives as pest control agents
WO2021224220A1 (en) 2020-05-06 2021-11-11 Bayer Aktiengesellschaft Pyridine (thio)amides as fungicidal compounds
WO2021224323A1 (en) 2020-05-06 2021-11-11 Bayer Aktiengesellschaft Novel heteroaryl-triazole compounds as pesticides
WO2021228734A1 (en) 2020-05-12 2021-11-18 Bayer Aktiengesellschaft Triazine and pyrimidine (thio)amides as fungicidal compounds
WO2021233861A1 (en) 2020-05-19 2021-11-25 Bayer Aktiengesellschaft Azabicyclic(thio)amides as fungicidal compounds
WO2021245087A1 (en) 2020-06-04 2021-12-09 Bayer Aktiengesellschaft Heterocyclyl pyrimidines and triazines as novel fungicides
WO2021249995A1 (en) 2020-06-10 2021-12-16 Bayer Aktiengesellschaft Azabicyclyl-substituted heterocycles as fungicides
WO2021255071A1 (en) 2020-06-18 2021-12-23 Bayer Aktiengesellschaft 3-(pyridazin-4-yl)-5,6-dihydro-4h-1,2,4-oxadiazine derivatives as fungicides for crop protection
WO2021255089A1 (en) 2020-06-19 2021-12-23 Bayer Aktiengesellschaft 1,3,4-oxadiazole pyrimidines and 1,3,4-oxadiazole pyridines as fungicides
WO2021255169A1 (en) 2020-06-19 2021-12-23 Bayer Aktiengesellschaft 1,3,4-oxadiazole pyrimidines as fungicides
WO2021255091A1 (en) 2020-06-19 2021-12-23 Bayer Aktiengesellschaft 1,3,4-oxadiazoles and their derivatives as fungicides
WO2021255170A1 (en) 2020-06-19 2021-12-23 Bayer Aktiengesellschaft 1,3,4-oxadiazole pyrimidines as fungicides
WO2021259997A1 (en) 2020-06-25 2021-12-30 Bayer Animal Health Gmbh Novel heteroaryl-substituted pyrazine derivatives as pesticides
EP3929189A1 (en) 2020-06-25 2021-12-29 Bayer Animal Health GmbH Novel heteroaryl-substituted pyrazine derivatives as pesticides
WO2021260017A1 (en) 2020-06-26 2021-12-30 Bayer Aktiengesellschaft Aqueous capsule suspension concentrates comprising biodegradable ester groups
WO2022002818A1 (en) 2020-07-02 2022-01-06 Bayer Aktiengesellschaft Heterocyclene derivatives as pest control agents
WO2022033991A1 (en) 2020-08-13 2022-02-17 Bayer Aktiengesellschaft 5-amino substituted triazoles as pest control agents
WO2022053453A1 (en) 2020-09-09 2022-03-17 Bayer Aktiengesellschaft Azole carboxamide as pest control agents
WO2022058327A1 (en) 2020-09-15 2022-03-24 Bayer Aktiengesellschaft Substituted ureas and derivatives as new antifungal agents
EP3974414A1 (en) 2020-09-25 2022-03-30 Bayer AG 5-amino substituted pyrazoles and triazoles as pesticides
EP3915371A1 (en) 2020-11-04 2021-12-01 Bayer AG Active compound combinations and fungicide compositions comprising those
EP3994988A1 (en) 2020-11-08 2022-05-11 Bayer AG Agrochemical composition with improved drift, spreading and rainfastness properties
EP3994985A1 (en) 2020-11-08 2022-05-11 Bayer Aktiengesellschaft Agrochemical composition with improved drift properties
EP3994992A1 (en) 2020-11-08 2022-05-11 Bayer AG Low drift, rainfastness, high uptake and ulv tank mix adjuvant formulation
EP3994991A1 (en) 2020-11-08 2022-05-11 Bayer Aktiengesellschaft Agrochemical composition with improved drift, spreading, uptake and rainfastness properties
EP3994990A1 (en) 2020-11-08 2022-05-11 Bayer AG Agrochemical composition with improved drift, spreading and uptake properties
WO2022096692A1 (en) 2020-11-08 2022-05-12 Bayer Aktiengesellschaft Agrochemical composition with improved drift, spreading, uptake and rainfastness properties
WO2022096685A1 (en) 2020-11-08 2022-05-12 Bayer Aktiengesellschaft Agrochemical composition with improved drift and spreading properties
WO2022096693A1 (en) 2020-11-08 2022-05-12 Bayer Aktiengesellschaft Low drift, rainfastness, high uptake and ulv tank mix adjuvant formulation
WO2022096686A1 (en) 2020-11-08 2022-05-12 Bayer Aktiengesellschaft Agrochemical composition with improved drift properties
WO2022096694A1 (en) 2020-11-08 2022-05-12 Bayer Aktiengesellschaft Low drift, rainfastness, high spreading and ulv tank mix adjuvant formulation
WO2022096690A1 (en) 2020-11-08 2022-05-12 Bayer Aktiengesellschaft Agrochemical composition with improved drift, spreading and uptake properties
WO2022096687A1 (en) 2020-11-08 2022-05-12 Bayer Aktiengesellschaft Agrochemical composition with improved drift and uptake properties
WO2022096688A1 (en) 2020-11-08 2022-05-12 Bayer Aktiengesellschaft Agrochemical composition with improved drift, spreading and rainfastness properties
WO2022096695A1 (en) 2020-11-08 2022-05-12 Bayer Aktiengesellschaft Low drift, rainfastness, high spreading, high uptake and ulv tank mix adjuvant formulation
WO2022096691A1 (en) 2020-11-08 2022-05-12 Bayer Aktiengesellschaft Agrochemical composition with improved drift, uptake and rainfastness properties
WO2022096696A1 (en) 2020-11-08 2022-05-12 Bayer Aktiengesellschaft Low drift, rainfastness, high spreading, high uptake and ulv tank mix adjuvant formulation
EP3994995A1 (en) 2020-11-08 2022-05-11 Bayer Aktiengesellschaft Low drift, rainfastness, high spreading, high uptake and ulv tank mix adjuvant formulation
EP3994986A1 (en) 2020-11-08 2022-05-11 Bayer Aktiengesellschaft Agrochemical composition with improved drift and spreading properties
EP3994994A1 (en) 2020-11-08 2022-05-11 Bayer Aktiengesellschaft Low drift, rainfastness, high spreading, high uptake and ulv tank mix adjuvant formulation
EP3994989A1 (en) 2020-11-08 2022-05-11 Bayer AG Agrochemical composition with improved drift, rainfastness and uptake properties
EP3994993A1 (en) 2020-11-08 2022-05-11 Bayer Aktiengesellschaft Low drift, rainfastness, high spreading and ulv tank mix adjuvant formulation
EP3915971A1 (en) 2020-12-16 2021-12-01 Bayer Aktiengesellschaft Phenyl-s(o)n-phenylamidines and the use thereof as fungicides
WO2022129190A1 (en) 2020-12-18 2022-06-23 Bayer Aktiengesellschaft (hetero)aryl substituted 1,2,4-oxadiazoles as fungicides
WO2022129188A1 (en) 2020-12-18 2022-06-23 Bayer Aktiengesellschaft 1,2,4-oxadiazol-3-yl pyrimidines as fungicides
WO2022129196A1 (en) 2020-12-18 2022-06-23 Bayer Aktiengesellschaft Heterobicycle substituted 1,2,4-oxadiazoles as fungicides
WO2022152728A1 (en) 2021-01-15 2022-07-21 Bayer Aktiengesellschaft Herbicidal compositions
WO2022162129A1 (en) 2021-01-28 2022-08-04 Rhodia Operations Method for treating rice seed with improved retention of agrochemical, micronutrient and colorant
EP4036083A1 (en) 2021-02-02 2022-08-03 Bayer Aktiengesellschaft 5-oxy substituted heterocycles as pesticides
WO2022207494A1 (en) 2021-03-30 2022-10-06 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2022207496A1 (en) 2021-03-30 2022-10-06 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2022233777A1 (en) 2021-05-06 2022-11-10 Bayer Aktiengesellschaft Alkylamide substituted, annulated imidazoles and use thereof as insecticides
WO2022238194A1 (en) 2021-05-10 2022-11-17 Bayer Aktiengesellschaft Herbicide/safener combination based on safeners from the class of substituted [(1,5-diphenyl-1h-1,2,4-triazol-3-yl)oxy]acetic acids and their salts
WO2022238391A1 (en) 2021-05-12 2022-11-17 Bayer Aktiengesellschaft 2-(het)aryl-substituted condensed heterocycle derivatives as pest control agents
WO2023017120A1 (en) 2021-08-13 2023-02-16 Bayer Aktiengesellschaft Active compound combinations and fungicide compositions comprising those
WO2023025682A1 (en) 2021-08-25 2023-03-02 Bayer Aktiengesellschaft Novel pyrazinyl-triazole compounds as pesticides
EP4144739A1 (en) 2021-09-02 2023-03-08 Bayer Aktiengesellschaft Anellated pyrazoles as parasiticides
EP4148052A1 (en) 2021-09-09 2023-03-15 Bayer Animal Health GmbH New quinoline derivatives
WO2023036821A1 (en) 2021-09-09 2023-03-16 Bayer Animal Health Gmbh New quinoline derivatives
WO2023078915A1 (en) 2021-11-03 2023-05-11 Bayer Aktiengesellschaft Bis(hetero)aryl thioether (thio)amides as fungicidal compounds
WO2023092050A1 (en) 2021-11-20 2023-05-25 Bayer Cropscience Lp Beneficial combinations with recombinant bacillus cells expressing a serine protease
WO2023099445A1 (en) 2021-11-30 2023-06-08 Bayer Aktiengesellschaft Bis(hetero)aryl thioether oxadiazines as fungicidal compounds
WO2023110656A1 (en) 2021-12-15 2023-06-22 Bayer Aktiengesellschaft Spectroscopic solution for non-destructive quantification of one or more chemical substances in a matrix comprising coating and bulk material in a sample, such as coated seeds, using multivariate data analysis
WO2023205602A1 (en) 2022-04-18 2023-10-26 Basf Corporation High-load agricultural formulations and methods of making same
WO2023203009A1 (en) 2022-04-20 2023-10-26 Bayer Aktiengesellschaft Water dispersible granules with low melting active ingredients prepared by extrusion
EP4265110A1 (en) 2022-04-20 2023-10-25 Bayer AG Water dispersible granules with low melting active ingredients prepared by extrusion
WO2023213670A1 (en) 2022-05-03 2023-11-09 Bayer Aktiengesellschaft Crystalline forms of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine
WO2023213626A1 (en) 2022-05-03 2023-11-09 Bayer Aktiengesellschaft Use of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine for controlling unwanted microorganisms
WO2023217619A1 (en) 2022-05-07 2023-11-16 Bayer Aktiengesellschaft Low drift aqueous liquid formulations for low, medium, and high spray volume application
WO2023237444A1 (en) 2022-06-06 2023-12-14 Bayer Aktiengesellschaft Agrochemical formulations comprising crystalline form a of 4-[(6-chloro-3-pyridylmethyl)(2,2-difluoroethyl)amino]furan-2(5h)-one
EP4295683A1 (en) 2022-06-21 2023-12-27 Bayer Aktiengesellschaft Agrochemical formulations comprising crystalline form a of 4-[(6-chloro-3-pyridylmethyl)(2,2-difluoroethyl)amino]furan-2(5h)-one
WO2024013016A1 (en) 2022-07-11 2024-01-18 Bayer Aktiengesellschaft Herbicidal compositions
WO2024013015A1 (en) 2022-07-11 2024-01-18 Bayer Aktiengesellschaft Herbicidal compositions
WO2024068473A1 (en) 2022-09-27 2024-04-04 Bayer Aktiengesellschaft Herbicide/safener combination based on safeners from the class of substituted [(1,5-diphenyl-1h-1,2,4-triazol-3-yl)oxy]acetic acids and their salts
EP4295688A1 (en) 2022-09-28 2023-12-27 Bayer Aktiengesellschaft Active compound combination
WO2024068519A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2024068517A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2024068520A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2024068518A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-heteroaryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
EP4353082A1 (en) 2022-10-14 2024-04-17 Bayer Aktiengesellschaft Herbicidal compositions

Also Published As

Publication number Publication date
PT1763302E (en) 2013-05-21
PL1763302T3 (en) 2013-08-30
KR20070029214A (en) 2007-03-13
CN1976584A (en) 2007-06-06
CA2568808C (en) 2013-02-19
AP1970A (en) 2009-03-11
US8546569B2 (en) 2013-10-01
CR8790A (en) 2007-08-28
EP1763302A2 (en) 2007-03-21
MA28678B1 (en) 2007-06-01
TWI379636B (en) 2012-12-21
JP5043653B2 (en) 2012-10-10
EA014686B1 (en) 2010-12-30
MXPA06014005A (en) 2007-02-08
ZA200609687B (en) 2008-01-30
AP2006003830A0 (en) 2006-12-31
KR101268288B1 (en) 2013-05-28
KR101396174B1 (en) 2014-05-19
AR049556A1 (en) 2006-08-16
US20090042938A1 (en) 2009-02-12
CA2568808A1 (en) 2006-01-12
IL179745A0 (en) 2007-05-15
TNSN06442A1 (en) 2008-02-22
IL179745A (en) 2012-08-30
CN103214460A (en) 2013-07-24
EP1763302B1 (en) 2013-03-06
EA200602170A1 (en) 2007-08-31
AU2005258905A1 (en) 2006-01-12
BRPI0512659A (en) 2008-04-01
GB0414438D0 (en) 2004-07-28
UA89788C2 (en) 2010-03-10
ES2408856T3 (en) 2013-06-21
US9045422B2 (en) 2015-06-02
TW200603736A (en) 2006-02-01
US8129534B2 (en) 2012-03-06
KR20120098928A (en) 2012-09-05
WO2006003494A3 (en) 2006-06-15
AU2005258905B2 (en) 2011-03-10
NZ551629A (en) 2010-09-30
US20120270885A1 (en) 2012-10-25
KR101338876B1 (en) 2013-12-09
JP2008504253A (en) 2008-02-14
ECSP067112A (en) 2007-02-28
AP2008004646A0 (en) 2008-10-31
KR20130041387A (en) 2013-04-24
US20130310399A1 (en) 2013-11-21

Similar Documents

Publication Publication Date Title
WO2006003494A2 (en) Piperidine derivatives and their use as insecticides, acaricides, molluscicides or nematicides
EP1515969B2 (en) Spiroindolinepiperidine derivatives
EP1755396A1 (en) Piperazin derivatives and their use in controlling pests
US8193362B2 (en) Insecticidal compounds
EP1979354A1 (en) Diaza-spiro-[4, 5]-decanes useful as pesticides
WO2005058035A1 (en) Use of (3-(1-(3-phenyl-propenyl)-piperidin-4-yl)-2,3-dihydro-indol-1-yl)-(pyridin-4-yl)-methanone derivatives and related compounds as insecticides
WO2005058897A1 (en) Spiroindoline derivatives having insecticidal properties
WO2005061500A1 (en) Spiropiperidine derivatives for controlling pests
TWI466881B (en) Insecticidal compounds
EP1697376A1 (en) Spiro-condensed indoline derivatives as pesticides
EP2207421B1 (en) Haloalkylsubstituted aryloxyalkylimidazolines for use as pesticides
WO2007072143A2 (en) Chemical compounds
WO2005058836A1 (en) Insecticidal spiroindane derivatives
WO2007060541A2 (en) Piperazine derivatives and their use as insecticides, acaricides, molluscicides, and nematicides

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 12006502277

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 200609687

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2005757532

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: AP/P/2006/003830

Country of ref document: AP

WWE Wipo information: entry into national phase

Ref document number: 551629

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/014005

Country of ref document: MX

Ref document number: 179745

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2568808

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: CR2006-008790

Country of ref document: CR

WWE Wipo information: entry into national phase

Ref document number: 2005258905

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007517523

Country of ref document: JP

Ref document number: 06129099

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 1020067027660

Country of ref document: KR

Ref document number: 200580021847.7

Country of ref document: CN

Ref document number: 4783/CHENP/2006

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

ENP Entry into the national phase

Ref document number: 2005258905

Country of ref document: AU

Date of ref document: 20050622

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005258905

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: DZP2007000065

Country of ref document: DZ

WWE Wipo information: entry into national phase

Ref document number: 200602170

Country of ref document: EA

WWP Wipo information: published in national office

Ref document number: 1020067027660

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005757532

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11571303

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0512659

Country of ref document: BR