WO2006002421A2 - Modulators of atp-binding cassette transporters - Google Patents

Modulators of atp-binding cassette transporters Download PDF

Info

Publication number
WO2006002421A2
WO2006002421A2 PCT/US2005/022768 US2005022768W WO2006002421A2 WO 2006002421 A2 WO2006002421 A2 WO 2006002421A2 US 2005022768 W US2005022768 W US 2005022768W WO 2006002421 A2 WO2006002421 A2 WO 2006002421A2
Authority
WO
WIPO (PCT)
Prior art keywords
optionally substituted
hydrogen
ring
phenyl
compound according
Prior art date
Application number
PCT/US2005/022768
Other languages
French (fr)
Other versions
WO2006002421A3 (en
Inventor
Sarah S. Hadida Ruah
Anna R. Hazlewood
Peter D. J. Grootenhuis
Frederick F. Van Goor
Ashvani K. Singh
Jinglan Zhou
Jason Mccartney
Original Assignee
Vertex Pharmaceuticals Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35429349&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2006002421(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to RS20150171A priority Critical patent/RS53895B1/en
Application filed by Vertex Pharmaceuticals Incorporated filed Critical Vertex Pharmaceuticals Incorporated
Priority to ES05791060.6T priority patent/ES2534606T3/en
Priority to RU2007102578A priority patent/RU2382779C3/en
Priority to MX2011005317A priority patent/MX341797B/en
Priority to NZ552543A priority patent/NZ552543A/en
Priority to EP20155771.7A priority patent/EP3705477A1/en
Priority to EP17164829.8A priority patent/EP3216787B1/en
Priority to MEP-2015-33A priority patent/ME02156B/en
Priority to PL05791060T priority patent/PL1773816T3/en
Priority to SI200531953T priority patent/SI1773816T1/en
Priority to AU2005258320A priority patent/AU2005258320B2/en
Priority to JP2007518350A priority patent/JP4947658B2/en
Priority to EP05791060.6A priority patent/EP1773816B1/en
Priority to CN2005800280552A priority patent/CN101006076B/en
Priority to MX2016011108A priority patent/MX365890B/en
Priority to MX2007000095A priority patent/MX2007000095A/en
Priority to BR122018075478A priority patent/BR122018075478B8/en
Priority to BRPI0511321A priority patent/BRPI0511321B8/en
Priority to CA2571949A priority patent/CA2571949C/en
Priority to DK05791060.6T priority patent/DK1773816T3/en
Publication of WO2006002421A2 publication Critical patent/WO2006002421A2/en
Publication of WO2006002421A3 publication Critical patent/WO2006002421A3/en
Priority to IL180224A priority patent/IL180224A/en
Priority to ZA200700600A priority patent/ZA200700601B/en
Priority to HK07111298.9A priority patent/HK1105970A1/en
Priority to AU2010249302A priority patent/AU2010249302B2/en
Priority to AU2010251787A priority patent/AU2010251787B2/en
Priority to AU2010251789A priority patent/AU2010251789C1/en
Priority to IL213158A priority patent/IL213158A/en
Priority to IL213155A priority patent/IL213155B/en
Priority to IL221828A priority patent/IL221828B/en
Priority to IL221827A priority patent/IL221827A0/en
Priority to IL221826A priority patent/IL221826A0/en
Priority to HRP20150277TT priority patent/HRP20150277T1/en
Priority to HUS1500035C priority patent/HUS1500035I1/en
Priority to LU92761C priority patent/LU92761I2/en
Priority to LTPA2015028C priority patent/LTC1773816I2/en
Priority to CY2015026C priority patent/CY2015026I1/en
Priority to NL300748C priority patent/NL300748I2/nl
Priority to IL245365A priority patent/IL245365A0/en
Priority to IL257540A priority patent/IL257540B/en
Priority to IL273332A priority patent/IL273332A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/08Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/04Nitro compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/136Amines having aromatic rings, e.g. ketamine, nortriptyline having the amino group directly attached to the aromatic ring, e.g. benzeneamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/265Esters, e.g. nitroglycerine, selenocyanates of carbonic, thiocarbonic, or thiocarboxylic acids, e.g. thioacetic acid, xanthogenic acid, trithiocarbonic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/27Esters, e.g. nitroglycerine, selenocyanates of carbamic or thiocarbamic acids, meprobamate, carbachol, neostigmine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/275Nitriles; Isonitriles
    • A61K31/277Nitriles; Isonitriles having a ring, e.g. verapamil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • A61K31/4045Indole-alkylamines; Amides thereof, e.g. serotonin, melatonin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4709Non-condensed quinolines and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/472Non-condensed isoquinolines, e.g. papaverine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4747Quinolines; Isoquinolines spiro-condensed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/5381,4-Oxazines, e.g. morpholine ortho- or peri-condensed with carbocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/5415Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with carbocyclic ring systems, e.g. phenothiazine, chlorpromazine, piroxicam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4906Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom
    • A61K8/4926Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom having six membered rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/10Laxatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/12Antidiarrhoeals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/08Bronchodilators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/02Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/02Muscle relaxants, e.g. for tetanus or cramps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/04Artificial tears; Irrigation solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/10Drugs for disorders of the endocrine system of the posterior pituitary hormones, e.g. oxytocin, ADH
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • A61P5/16Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4 for decreasing, blocking or antagonising the activity of the thyroid hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/18Drugs for disorders of the endocrine system of the parathyroid hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/10Antioedematous agents; Diuretics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/12Antidiuretics, e.g. drugs for diabetes insipidus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/08Preparation of nitro compounds by substitution of hydrogen atoms by nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/07Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by halogen atoms
    • C07C205/11Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by halogen atoms having nitro groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/39Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by esterified hydroxy groups
    • C07C205/42Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by esterified hydroxy groups having nitro groups or esterified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C205/43Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by esterified hydroxy groups having nitro groups or esterified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton to carbon atoms of the same non-condensed six-membered aromatic ring or to carbon atoms of six-membered aromatic rings being part of the same condensed ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/49Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups
    • C07C205/57Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups having nitro groups and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C205/58Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups having nitro groups and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton the carbon skeleton being further substituted by halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/16Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of a saturated carbon skeleton containing rings other than six-membered aromatic rings
    • C07C211/17Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of a saturated carbon skeleton containing rings other than six-membered aromatic rings containing only non-condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/44Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring
    • C07C211/49Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring having at least two amino groups bound to the carbon skeleton
    • C07C211/50Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring having at least two amino groups bound to the carbon skeleton with at least two amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/44Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring
    • C07C211/52Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/22Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being unsaturated
    • C07C215/28Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being unsaturated and containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/68Compounds containing amino and hydroxy groups bound to the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings and hydroxy groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C215/70Compounds containing amino and hydroxy groups bound to the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings and hydroxy groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with rings other than six-membered aromatic rings being part of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/74Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C215/76Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton of the same non-condensed six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/74Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C215/76Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton of the same non-condensed six-membered aromatic ring
    • C07C215/78Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton of the same non-condensed six-membered aromatic ring containing at least two hydroxy groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/76Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings and etherified hydroxy groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/80Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/80Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
    • C07C217/82Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring
    • C07C217/84Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the oxygen atom of at least one of the etherified hydroxy groups being further bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C219/00Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C219/34Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having amino groups and esterified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/52Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/58Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/20Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by nitrogen atoms not being part of nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/01Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms
    • C07C311/02Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C311/08Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/30Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/37Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups having the sulfur atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring
    • C07C311/38Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups having the sulfur atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring having sulfur atoms of sulfonamide groups and amino groups bound to carbon atoms of six-membered rings of the same carbon skeleton
    • C07C311/39Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups having the sulfur atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring having sulfur atoms of sulfonamide groups and amino groups bound to carbon atoms of six-membered rings of the same carbon skeleton having the nitrogen atom of at least one of the sulfonamide groups bound to hydrogen atoms or to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/02Preparation of esters of carbonic or haloformic acids from phosgene or haloformates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/12Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/14Radicals substituted by nitrogen atoms, not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D209/20Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals substituted additionally by nitrogen atoms, e.g. tryptophane
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/42Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/94[b, c]- or [b, d]-condensed containing carbocyclic rings other than six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/96Spiro-condensed ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • C07D213/20Quaternary compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/73Unsubstituted amino or imino radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • C07D215/22Oxygen atoms attached in position 2 or 4
    • C07D215/227Oxygen atoms attached in position 2 or 4 only one oxygen atom which is attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • C07D215/22Oxygen atoms attached in position 2 or 4
    • C07D215/233Oxygen atoms attached in position 2 or 4 only one oxygen atom which is attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/38Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/48Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • C07D215/54Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen attached in position 3
    • C07D215/56Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen attached in position 3 with oxygen atoms in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/02Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines
    • C07D217/04Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines with hydrocarbon or substituted hydrocarbon radicals attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/02Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines
    • C07D217/06Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines with the ring nitrogen atom acylated by carboxylic or carbonic acids, or with sulfur or nitrogen analogues thereof, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D223/00Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
    • C07D223/14Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D223/16Benzazepines; Hydrogenated benzazepines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/281,4-Oxazines; Hydrogenated 1,4-oxazines
    • C07D265/341,4-Oxazines; Hydrogenated 1,4-oxazines condensed with carbocyclic rings
    • C07D265/361,4-Oxazines; Hydrogenated 1,4-oxazines condensed with carbocyclic rings condensed with one six-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D279/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D279/101,4-Thiazines; Hydrogenated 1,4-thiazines
    • C07D279/141,4-Thiazines; Hydrogenated 1,4-thiazines condensed with carbocyclic rings or ring systems
    • C07D279/161,4-Thiazines; Hydrogenated 1,4-thiazines condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/58Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48728Investigating individual cells, e.g. by patch clamp, voltage clamp
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5035Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on sub-cellular localization
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/566Immunoassay; Biospecific binding assay; Materials therefor using specific carrier or receptor proteins as ligand binding reagents where possible specific carrier or receptor proteins are classified with their target compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6872Intracellular protein regulatory factors and their receptors, e.g. including ion channels
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/18Systems containing only non-condensed rings with a ring being at least seven-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/10One of the condensed rings being a six-membered aromatic ring the other ring being six-membered, e.g. tetraline
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/70Ring systems containing bridged rings containing three rings containing only six-membered rings
    • C07C2603/74Adamantanes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants

Definitions

  • the present invention relates to modulators of ATP-Binding Cassette ("ABC”) transporters or fragments thereof, including cystic fibrosis transmembrane conductance regulator (“CFTR”), compositions thereof, and methods therewith.
  • ABSC ATP-Binding Cassette
  • CFTR cystic fibrosis transmembrane conductance regulator
  • the present invention also relates to methods of treating ABC transporter mediated diseases using such modulators.
  • ABC transporters are a family of membrane transporter proteins that regulate the transport of a wide variety of pharmacological agents, potentially toxic drugs, and xenobiotics, as well as anions. ABC transporters are homologous membrane proteins that bind and use cellular adenosine triphosphate (ATP) for their specific activities. Some of these transporters were discovered as multidrug resistance proteins (like the MDRl-P glycoprotein, or the -multidrug resistance protein, MRPl), defending malignant cancer cells against chemotherapeutic agents. To date, 48 ABC Transporters have been identified and grouped into 7 families based on their sequence identity and function.
  • ABC transporters regulate a variety of important physiological roles within the body and provide defense against harmful environmental compounds. Because of this, they represent important potential drug targets for the treatment of diseases associated with defects in the transporter, prevention of drug transport out of the target cell, and intervention in other diseases in which modulation of ABC transporter activity may be beneficial.
  • One member of the ABC transporter family commonly associated with disease is the cAMP/ATP -mediated anion channel, CFTR. CFTR is expressed in a variety of cells types, including absorptive and secretory epithelia cells, where it regulates anion flux across the membrane, as well as the activity of other ion channels and proteins.
  • CFTR In epithelia cells, normal functioning of CFTR is critical for the maintenance of electrolyte transport throughout the body, including respiratory and digestive tissue.
  • CFTR is composed of approximately 1480 amino acids that encode a protein made up of a tandem repeat of transmembrane domains, each containing six transmembrane helices and a nucleotide binding domain. The two transmembrane domains are linked by a large, polar, regulatory (R)-domain with multiple phosphorylation sites that regulate channel activity and cellular trafficking.
  • R polar, regulatory
  • CFTR cystic fibrosis
  • Cystic fibrosis affects approximately one in every 2,500 infants in the United States. Within the general United States population, up to 10 million people carry a single copy of the defective gene without apparent ill effects. In contrast, individuals with two copies of the CF associated gene suffer from the debilitating and fatal effects of CF, including chronic lung disease.
  • the number of channels present in the membrane is far less than observed in cells expressing wild-type CFTR.
  • the mutation results in defective channel gating.
  • the reduced number of channels in the membrane and the defective gating lead to reduced anion transport across epithelia leading to defective ion and fluid transport.
  • the reduced numbers of ⁇ F508-CFTR in the membrane are functional, albeit less than wild-type CFTR.
  • CFTR transports a variety of molecules in addition to anions, it is clear that this role (the transport of anions) represents one element in an important mechanism of transporting ions and water across the epithelium.
  • the other elements include the epithelial Na + channel, ENaC, Na + /2C17K + co-transporter, Na + -K + -ATPaSe pump and the basolateral membrane K + channels, that are responsible for the uptake of chloride into the cell. [011] These elements work together to achieve directional transport across the epithelium via their selective expression and localization within the cell. Chloride absorption takes place by the coordinated activity of ENaC and CFTR present on the apical membrane and the Na -K -ATP ase pump and Cl- channels expressed on the basolateral surface of the cell.
  • COPD chronic obstructive pulmonary disease
  • COPD dry eye disease
  • Sjogren's Syndrome a chronic obstructive pulmonary disease
  • COPD chronic obstructive pulmonary disease
  • Activators of mutant or wild-type CFTR offer a potential treatment of mucus hypersecretion and impaired mucociliary clearance that is common in COPD.
  • CFTR Dry eye disease
  • tear aqueous production and abnormal tear film lipid, protein and mucin profiles There are many causes of dry eye, some of which include age, Lasik eye surgery, arthritis, medications, chemical/thermal burns, allergies, and diseases, such as cystic fibrosis and Sj ⁇ grens's syndrome.
  • Increasing anion secretion via CFTR would enhance fluid transport from the corneal endothelial cells and secretory glands surrounding the eye to increase corneal hydration.
  • Sj ⁇ grens's syndrome is an autoimmune disease in which the immune system attacks moisture- producing glands throughout the body, including the eye, mouth, skin, respiratory tissue, liver, vagina, and gut. Symptoms, include, dry eye, mouth, and vagina, as well as lung disease. The disease is also associated with rheumatoid arthritis, systemic lupus, systemic sclerosis, and polymypositis/dermatomyositis. Defective protein trafficking is believed to cause the disease, for which treatment options are limited. Modulators of CFTR activity may hydrate the various organs afflicted by the disease and help to elevate the associated symptoms.
  • the diseases associated with the first class of ER malfunction are cystic fibrosis (due to misfolded ⁇ F508-CFTR as discussed above), hereditary emphysema (due to al -antitrypsin; non Piz variants), hereditary hemochromatosis, hoagulation-fibrinolysis deficiencies, such as protein C deficiency, Type 1 hereditary angioedema, lipid processing deficiencies, such as familial hypercholesterolemia, Type 1 chylomicronemia, abetalipoproteinemia, lysosomal storage diseases, such as I-cell disease/pseudo-Hurler, Mucopolysaccharidoses (due to lysosomal processing enzymes), Sandhof/Tay-Sachs (due to ⁇ - hexosaminidase), Crigler-Najjar type II (due to UDP-glucuronyl-sialyc-transferase),
  • Glycanosis CDG type 1 hereditary emphysema (due to ⁇ l -Antitrypsin (PiZ variant), congenital hyperthyroidism, osteogenesis imperfecta (due to Type I, II, IV procollagen), hereditary hypofibrinogenemia (due to fibrinogen), ACT deficiency (due to ⁇ l-antichymotrypsin), Diabetes insipidus (DI), neurophyseal DI (due to vasopvessin hormone/V2 -receptor), neprogenic DI (due to aquaporin II), Charcot-Marie Tooth syndrome (due to peripheral myelin protein 22), Perlizaeus- Merzbacher disease, neurodegenerative diseases such as Alzheimer's disease ( due to ⁇ APP and presenilins), Parkinson's disease, amyotrophic lateral sclerosis, progressive supranuclear plasy, Pick
  • CFTR modulators may be beneficial for the treatment of secretory diarrheas, in which epithelial water transport is dramatically increased as a result of secretagogue activated chloride transport. The mechanism involves elevation of cAMP and stimulation of CFTR.
  • secretory diarrheas in which epithelial water transport is dramatically increased as a result of secretagogue activated chloride transport. The mechanism involves elevation of cAMP and stimulation of CFTR.
  • CFTR Although there are numerous causes of diarrhea, the major consequences of diarrheal diseases, resulting from excessive chloride transport are common to all, and include dehydration, acidosis, impaired growth and death.
  • Acute and chronic diarrheas represent a major medical problem in many areas of the world. Diarrhea is both a significant factor in malnutrition and the leading cause of death (5,000,000 deaths/year) in children less than five years old.
  • ETEC enterotoxogenic E.coli
  • Common viral causes of diarrhea include rotavirus and coronavirus.
  • Other infectious agents include Cryptosporidium, giardia lamblia, and salmonella, among others.
  • Symptoms of rotaviral infection include excretion of watery feces, dehydration and weakness. Coronavirus causes a more severe illness in the newborn animals, and has a higher mortality rate than rotaviral infection. Often, however, a young animal may be infected with more than one virus or with a combination of viral and bacterial microorganisms at one time. This dramatically increases the severity of the disease.
  • Ar 1 is a 5-6 membered aromatic monocyclic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein said ring is optionally fused to a 5-12 membered monocyclic or bicyclic, aromatic, partially unsaturated, or saturated ring, wherein each ring contains 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein Ar 1 has m substituents, each independently selected from -WR W ; W is a bond or is an optionally substituted C 1 -C 6 alkylidene chain wherein up to two methylene units of W are optionally and independently replaced by -CO-, -CS-, -COCO-, - CONR'-, -CONR'NR'-, -CO 2 -, -OCO-, -NR 5 CO 2 -, -0-, -NR'CONR'-, -OCONR'-, -NR'NR', - NR
  • Ar 1 is a 5-6 membered aromatic monocyclic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein said ring is optionally fused to a 5-12 membered monocyclic or bicyclic, aromatic, partially unsaturated, or saturated ring, wherein each ring contains 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein Ar has m substituents each independently selected from — WR w ; W is a bond or is an optionally substituted Ci-C 6 alkylidene chain wherein up to two methylene units of W are optionally and independently replaced by -CO-, -CS-, -COCO-, - CONR'-, -CONR'NR'-, -CO 2 -, -OCO-, -NR 5 CO 2 -, -O-, -NR'CONR'-, -OCONR'-, -NR'NR', - NR'NR', - NR'NR
  • ABC-transporter as used herein means an ABC-transporter protein or a fragment thereof comprising at least one binding domain, wherein said protein or fragment thereof is present in vivo or in vitro.
  • binding domain as used herein means a domain on the ABC-transporter that can bind to a modulator. See, e.g., Hwang, T. C. et al., J. Gen. Physiol. (1998): 111(3), 477-90.
  • CFTR cystic fibrosis transmembrane conductance regulator or a mutation thereof capable of regulator activity, including, but not limited to, ⁇ F508 CFTR and G551D CFTR (see, e.g., http://www.genet.sickkids.on.ca/cftr/, for CFTR mutations).
  • modulating means increasing or decreasing by a measurable amount.
  • stable refers to compounds that are not substantially altered when subjected to conditions to allow for their production, detection, and preferably their recovery, purification, and use for one or more of the purposes disclosed herein.
  • a stable compound or chemically feasible compound is one that is not substantially altered when kept at a temperature of 4O 0 C or less, in the absence of moisture or other chemically reactive conditions, for at least a week.
  • aliphatic or "aliphatic group”, as used herein, means a straight-chain (i.e., unbranched) or branched, substituted or unsubstituted hydrocarbon chain that is completely saturated or that contains one or more units of unsaturation, or a monocyclic hydrocarbon or bicyclic hydrocarbon that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic (also referred to herein as “carbocycle” "cycloaliphatic” or “cycloalkyl”), that has a single point of attachment to the rest of the molecule.
  • aliphatic groups contain 1-20 aliphatic carbon atoms.
  • aliphatic groups contain 1-10 aliphatic carbon atoms. In other embodiments, aliphatic groups contain 1-8 aliphatic carbon atoms. In still other embodiments, aliphatic groups contain 1-6 aliphatic carbon atoms, and in yet other embodiments aliphatic groups contain 1-4 aliphatic carbon atoms.
  • cycloaliphatic refers to a monocyclic C 3 -C 8 hydrocarbon or bicyclic or tricyclic Cg-Ci 4 hydrocarbon that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic, that has a single point of attachment to the rest of the molecule wherein any individual ring in said bicyclic ring system has 3-7 members.
  • Suitable aliphatic groups include, but are not limited to, linear or branched, substituted or unsubstituted alkyl, alkenyl, alkynyl groups and hybrids thereof such as (cycloalkyl)alkyl, (cycloalkenyl)alkyl or (cycloalkyl)alkenyl.
  • Suitable cycloaliphatic groups include cycloalkyl, bicyclic cycloalkyl (e.g., decalin), bridged bicycloalkyl such as norbomyl or [2.2.2]bicyclo- octyl, or bridged tricyclic such as adamantyl.
  • heteroaliphatic means aliphatic groups wherein one or two carbon atoms are independently replaced by one or more of oxygen, sulfur, nitrogen, phosphorus, or silicon. Heteroaliphatic groups may be substituted or unsubstituted, branched or unbranched, cyclic or acyclic, and include "heterocycle”, “heterocyclyl”, “heterocycloaliphatic”, or “heterocyclic” groups.
  • heterocycle means non-aromatic, monocyclic, bicyclic, or tricyclic ring systems in which one or more ring members is an independently selected heteroatom.
  • the "heterocycle”, “heterocyclyl”, “heterocycloaliphatic”, or “heterocyclic” group has three to fourteen ring members in which one or more ring members is a heteroatom independently selected from oxygen, sulfur, nitrogen, or phosphorus, and each ring in the system contains 3 to 7 ring members.
  • heteroatom means one or more of oxygen, sulfur, nitrogen, phosphorus, or silicon (including, any oxidized form of nitrogen, sulfur, phosphorus, or silicon; the quaternized form of any basic nitrogen or; a substitutable nitrogen of a heterocyclic ring, for example N (as in 3,4-dihydro-2i/-pyrrolyl), NH (as in pyrrolidinyl) or NR + (as in N- substituted pyrrolidinyl)).
  • unsaturated as used herein, means that a moiety has one or more units of unsaturation.
  • alkoxy refers to an alkyl group, as previously defined, attached to the principal carbon chain through an oxygen (“alkoxy”) or sulfur (“thioalkyl”) atom.
  • halogen or "halo” means F, Cl, Br, or I. Examples of haloaliphatic incude -CHF 2 , -CH 2 F, -CF 3 , -CF 2 -, or perhaloalkyl, such as, -CF 2 CF 3 .
  • aryl used alone or as part of a larger moiety as in “aralkyl”, “aralkoxy”, or “aryloxyalkyl”, refers to monocyclic, bicyclic, and tricyclic ring systems having a total of five to fourteen ring members, wherein at least one ring in the system is aromatic and wherein each ring in the system contains 3 to 7 ring members.
  • aryl may be used interchangeably with the term “aryl ring”.
  • aryl also refers to heteroaryl ring systems as defined hereinbelow.
  • heteroaryl used alone or as part of a larger moiety as in “heteroaralkyl” or “heteroarylalkoxy”, refers to monocyclic, bicyclic, and tricyclic ring systems having a total of five to fourteen ring members, wherein at least one ring in the system is aromatic, at least one ring in the system contains one or more heteroatoms, and wherein each ring in the system contains 3 to 7 ring members.
  • heteroaryl may be used interchangeably with the term “heteroaryl ring” or the term “heteroaromatic”.
  • An aryl (including aralkyl, aralkoxy, aryloxyalkyl and the like) or heteroaryl (including heteroaralkyl and heteroarylalkoxy and the like) group may contain one or more substituents. Suitable substituents on the unsaturated carbon atom of an aryl or heteroaryl group are selected from halo; -R°-; -OR°; -SR°; 1,2-methylene-dioxy; 1,2-ethylenedioxy; phenyl (Ph) optionally substituted with R 0 ; -O(Ph) optionally substituted with R 0 ; -(CH 2 ) ! .
  • Optional substituents on the aliphatic group of R° are selected from NH 2 , NH(Ci_ 4 aliphatic), N(Ci_ 4 aliphatic) 2 , halo, Ci ⁇ aliphatic, OH, O(Ci -4 aliphatic), NO 2 , CN, CO 2 H, CO 2 (C i_ 4 aliphatic), O(haloC M aliphatic), or haloCi. 4 aliphatic, wherein each of the foregoing Ci -4 aliphatic groups of R° is unsubstituted.
  • An aliphatic or heteroaliphatic group, or a non-aromatic heterocyclic ring may contain one or more substituents.
  • Optional substituents on the aliphatic group of R are selected from NH 2 , NH(Ci -4 aliphatic), N(C M aliphatic) 2 , halo, C M aliphatic, OH, O(C M aliphatic), NO 2 , CN, CO 2 H, CO 2 (C 1-4 aliphatic), O(halo Ci -4 aliphatic), or halo(C 1-4 aliphatic), wherein each of the foregoing C 1-4 aliphatic groups of R * is unsubstituted.
  • Optional substituents on the aliphatic group or the phenyl ring of R + are selected from NH 2 , NH(C 1-4 aliphatic), N(C 1-4 ali ⁇ hatic) 2 , halo, C 1-4 aliphatic, OH, 0(Ci -4 aliphatic), NO 2 , CN, CO 2 H, CO 2 (Ci -4 aliphatic), O(halo C 1-4 aliphatic), or ImIo(C 1-4 aliphatic), wherein each of the foregoing C 1-4 aliphatic groups ofR + is unsubstituted.
  • alkylidene chain refers to a straight or branched carbon chain that may be fully saturated or have one or more units of unsaturation and has two points of attachment to the rest of the molecule.
  • spirocycloalkylidene refers to a carbocyclic ring that may be fully saturated or have one or more units of unsaturation and has two points of attachment from the same ring carbon atom to the rest of the molecule.
  • R 0 (or R + , or any other variable similarly defined herein) are taken together together with the atom(s) to which each variable is bound to form a 3-8-membered cycloalkyl, heterocyclyl, aryl, or heteroaryl ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
  • Exemplary rings that are formed when two independent occurrences of R 0 (or R + , or any other variable similarly defined herein) are taken together with the atom(s) to which each variable is bound include, but are not limited to the following: a) two independent occurrences of R 0 (or R , or any other variable similarly defined herein) that are bound to the same atom and are taken together with that atom to form a ring, for example, N(R°) 2 , where both occurrences of R 0 are taken together with the nitrogen atom to form a piperidin-1-yl, piperazin- 1-yl, or morpholin-4-yl group; and b) two independent occurrences of R 0 (or R + , or any other variable similarly defined herein) that are bound to different atoms and are taken together with both of those atoms to form a ring, for example where a phenyl group is substituted with two
  • a substituent bond in, e.g., a bicyclic ring system, as shown below, means that the substituent can be attached to any substitutable ring atom on either ring of the bicyclic ring system:
  • structures depicted herein are also meant to include all isomeric (e.g., enantiomeric, diastereomeric, and geometric (or conformational)) forms of the structure; for example, the R and S configurations for each asymmetric center, (Z) and (E) double bond isomers, and (Z) and (E) conformational isomers. Therefore, single stereochemical isomers as well as enantiomeric, diastereomeric, and geometric (or conformational) mixtures of the present compounds are within the scope of the invention. Unless otherwise stated, all tautomeric forms of the compounds of the invention are within the scope of the invention. E.g., when R 5 in compounds of formula I is hydrogen, compounds of formula I may exist as tautomers:
  • structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms.
  • compounds having the present structures except for the replacement of hydrogen by deuterium or tritium, or the replacement of a carbon by a 13 C- or 14 C-enriched carbon are within the scope of this invention.
  • Such compounds are useful, for example, as analytical tools or probes in biological assays.
  • Ar 1 is selected from:
  • Ai is an optionally substituted 6 membered aromatic ring having 0-4 heteroatoms, wherein said heteroatom is nitrogen.
  • Ai is an optionally substituted phenyl.
  • Ai is an optionally substituted pyridyl, pyrimidinyl, pyrazinyl or triazinyl.
  • Ai is an optionally substituted pyrazinyl or triazinyl. Or, Ai is an optionally substituted pyridyl.
  • Aj is an optionally substituted 5-membered aromatic ring having 0-3 heteroatoms, wherein said heteroatom is nitrogen, oxygen, or sulfur.
  • Ai is an optionally substituted 5-membered aromatic ring having 1-2 nitrogen atoms.
  • Ai is an optionally substituted 5-membered aromatic ring other than thiazolyl.
  • a 2 is an optionally substituted 6 membered aromatic ring having 0-4 heteroatoms, wherein said heteroatom is nitrogen.
  • a 2 is an optionally substituted phenyl.
  • a 2 is an optionally substituted pyridyl, pyrimidinyl, pyrazinyl, or triazinyl.
  • a 2 is an optionally substituted 5-membered aromatic ring having 0-3 heteroatoms, wherein said heteroatom is nitrogen, oxygen, or sulfur.
  • a 2 is an optionally substituted 5-membered aromatic ring having 1-2 nitrogen atoms.
  • a 2 is an optionally substituted pyrrolyl.
  • a 2 is an optionally substituted 5-7 membered saturated or unsaturated heterocyclic ring having 1-3 heteroatoms independently selected from nitrogen, sulfur, or oxygen. Exemplary such rings include piperidyl, piperazyl, morpholinyl, thiomorpholinyl, pyrrolidinyl, tetrahydrofuranyl, etc.
  • a 2 is an optionally substituted 5-10 membered saturated or unsaturated carbocyclic ring. In one embodiment, A 2 is an optionally substituted 5-10 membered saturated carbocyclic ring. Exemplary such rings include cyclohexyl, cyclopentyl, etc. [063] In some embodiments, ring A 2 is selected from:
  • W is a bond or is an optionally substituted Ci -6 alkylidene chain wherein one or two methylene units are optionally and independently replaced by O, NR', S, SO, SO 2 , or COO, CO, SO 2 NR', NR 5 SO 2 , C(O)NR', NR'C(O), OC(O), OC(O)NR', and R w is R' or halo.
  • each occurrence of WR w is independently -C 1-C3 alkyl, C1-C3 perhaloalkyl, -0(Cl-C3alkyl), -CF 3 , -OCF 3 , -SCF 3 , -F, - Cl, -Br, or -COOR', -COR', -O(CH 2 ) 2 N(R)(R'), -0(CH 2 )N(R')(R'), -CON(R)(R'), - (CH 2 ) 2 ⁇ R', -(CH 2 )OR', optionally substituted monocyclic or bicyclic aromatic ring, optionally substituted arylsulfone, optionally substituted 5-membered heteroaryl ring, -N(R')(R'), - (CH 2 ) 2 N(R')(R'), or -(CH 2 )N(RO(R').
  • m is O. Or, m is 1. Or, m is 2. In some embodiments, m is 3. In yet other embodiments, m is 4. [066] In one embodiment, R 5 is X-R x . In some embodiments R 5 is hydrogen. Or, R 5 is an optionally substituted C 1-8 aliphatic group. In some embodiments, R 5 is optionally substituted C 1-4 aliphatic. Or, R 5 is benzyl. [067] In some embodiments R 6 is hydrogen. Or, R 6 is an optionally substituted Ci -8 aliphatic group. In some embodiments, R 6 is optionally substituted C 1-4 aliphatic.
  • R is -(0-C 1-4 aliphatic) or -(S-C 1-4 aliphatic).
  • R 6 is -OMe or - SMe.
  • R 6 is CF 3 .
  • R 1 , R 2 , R 3 , and R 4 are simultaneously hydrogen.
  • R 6 and R 7 are both simultaneously hydrogen.
  • R 1 , R 2 , R 3 , R 4 , and R 5 are simultaneously hydrogen.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are simultaneously hydrogen.
  • R" is X-R , wherein X is - SO 2 NR'-, and R x is R'; i.e., R 2 is -SO 2 N(R') 2 .
  • the two R' therein taken together form an optionally substituted 5-7 membered ring with 0-3 additional heteroatoms selected froni nitrogen, oxygen, or sulfur.
  • R 1 , R 3 , R 4 , R 5 and R 6 are simultaneously hydrogen, and R 2 is SO 2 N(R') 2 .
  • X is a bond or is an optionally substituted Ci -6 alkylidene chain wherein one or two non-adjacent methylene units are optionally and independently replaced by O, NR', S, SO 2 , or COO, CO, and R x is R' or halo.
  • each occurrence of XR X is independently -Ci -3 alkyl, -O(Ci -3 alkyl), -CF 3 , -OCF 3 , -SCF 3 , -F, - Cl, -Br, OH, -COOR', -COR', -O(CH 2 ) 2 N(R')(R'), -O(CH 2 )N(R')(R'), -CON(R')(R'), - (CH 2 ) 2 OR', -(CH 2 )OR', optionally substituted phenyl, -N(R')(R'), -(CH 2 ) 2 N(R')(R'), or - (CH 2 )N(R')(R').
  • R 7 is hydrogen. In certain other embodiment, R 7 is C 1-4 straight or branched aliphatic.
  • R w is selected from halo, cyano, CF 3 , CHF 2 , OCHF 2 , Me, Et, CH(Me) 2 , CHMeEt, n-propyl, t-butyl, OMe, OEt, OPh, O-fluorophenyl, O- difluorophenyl, O-methoxyphenyl, O-tolyl, O-benzyl, SMe, SCF 3 , SCHF 2 , SEt, CH 2 CN, NH 2 , NHMe, N(Me) 2 , NHEt, N(Et) 2 , C(O)CH 3 , C(O)Ph, C(O)NH 2 , SPh, SO 2 -(amino-pyridyl), SO 2 NH
  • R' is hydrogen.
  • R' is a C1-C8 aliphatic group, optionally substituted with up to 3 substituents selected from halo, CN, CF 3 , CHF 2 , OCF 3 , or OCHF 2 , wherein up to two methylene units of said C1-C8 aliphatic is optionally replaced with -CO-, -CONH(C 1-C4 alkyl)-, -CO 2 -, -OCO-, -N(C1-C4 alkyl)CO 2 -, -0-, -N(C1-C4 alkyl)CON(Cl-C4 alkyl)-, -0C0N(Cl-C4 alkyl)-, -N(C1-C4 alkyl)CO-, -S-, -N(C1-C4 alkyl)-, -SO 2 N(C1-C4 alkyl)-
  • R' is a 3-8 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein R' is optionally substituted with up to 3 substituents selected from halo, CN, CF 3 , CHF 2 , OCF 3 , OCHF 2 , or C1-C6 alkyl, wherein up to two methylene units of said C1-C6 alkyl is optionally replaced with -CO-, -CONH(C 1-C4 alkyl)-, -CO 2 -, -OCO-, -N(C1-C4 alkyl)CO 2 -, -0-, -N(Cl-CM alkyl)CON(Cl-C4 alkyl)-, -OCON(Cl- C4 alkyl)-, -N(Cl-CM alkyl)CO-, -S-, -N(Cl-
  • R' is an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur; wherein R' is optionally substituted with up to 3 substituents selected from halo, CN, CF 3 , CHF 2 , OCF 3 , OCHF 2 , or C1-C6 alkyl, wherein up to two methylene units of said C1-C6 alkyl is optionally replaced with -CO-, -CONH(C1-C4 alkyl)-, -CO 2 -, -OCO-, -N(Cl-CM alkyl)CO 2 -, -O-, -N(Cl-CM alkyl)CON(Cl-C4 alkyl)-, -OCON(Cl- C4 alkyl)-, -N(Cl-CM alkyl)CO-, -S-, -N(Cl)
  • two occurrences of R' are taken together with the atom(s) to which they are bound to form an optionally substituted 3-12 membered saturated, partially unsaturated, or fully unsaturated monocyclic or bicyclic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein R' is optionally substituted with up to 3 substituents selected from halo, CN, CF 3 , CHF 2 , OCF 3 , OCHF 2 , or C1-C6 alkyl, wherein up to two methylene units of said C1-C6 alkyl is optionally replaced with -CO-, - CONH(C1-C4 alkyl)-, -CO 2 -, -OCO-, -N(Cl-CM alkyl)CO 2 -, -0-, -N(Cl-CM alkyl)C0N(Cl-C4 alkyl)-, -OCON(C1-C4 alkyl
  • the present invention provides compounds of formula HA or formula HB: IIA HB [080] According to another embodiment, the present invention provides compounds of formula HIA, formula IHB, formula IIIC, formula HID, or formula HIE:
  • each OfX 1 , X 2 , X 3 , X 4 , and X 5 is independently selected from CH or N; and X 6 is O, S, orNR'.
  • compounds of formula IHA, formula HIB, formula IIIC, formula HID, or formula IHE have y occurrences of substituent X-R x , wherein y is 0-4. Or, y is 1. Or, y is 2.
  • formula HIA In some embodiments of formula HIA, X 1 , X 2 , X 3 , X 4 , and X 5 taken together with WR W and m is optionally substituted phenyl.
  • Xi, X 2 , X 3 , X 4 , and X 5 taken together is an optionally substituted ring selected from:
  • formula IHB formula IHC, formula HID, or formula HIE, X 1 , X 2 , X 3 , X 4 , X 5 , or X 6 , taken together with ring A 2 is an optionally substituted ring ' selected from:
  • R w is selected from halo, cyano, CF 3 , CHF 2 , OCHF 2 , Me, Et, CH(Me) 2 , CHMeEt, n-propyl, t-butyl, OMe, OEt, OPh, O-fluorophenyl, O- difluorophenyl, O-methoxyphenyl, O-tolyl, O-benzyl, SMe, SCF 3 , SCHF 2 , SEt, CH 2 CN, NH 2 , NHMe, N(Me) 2 , NHEt, N(Et) 2 , C(O)CH 3 , C(O)Ph, C(O)NH 2 , SPh, SO 2 -(amin
  • compounds of formula IVA, formula IVB, and formula IVC have y occurrences of substituent X-R x , wherein y is 0-4. Or, y is 1. Or, y is 2. [089] In one embodiment, the present invention provides compounds of formula IVA, formula IVB, and formula IVC, wherein X is a bond and R is hydrogen. [090] In one embodiment, the present invention provides compounds of formula formula IVB, and formula IVC, wherein ring A 2 is an optionally substituted, saturated, unsaturated, or aromatic seven membered ring with 0-3 hetero atoms selected from O, S, or N.
  • Exemplary rings include azepanyl, 5, 5 -dimethyl azepanyl, etc.
  • the present invention provides compounds of formula IVB and IVC, wherein ring A 2 is an optionally substituted, saturated, unsaturated, or aromatic six membered ring with 0-3 heteroatoms selected from O, S, or N.
  • Exemplary rings include piperidinyl, 4,4-dimethylpiperidinyl, etc.
  • the present invention provides compounds of formula IVB and IVC, wherein ring A 2 is an optionally substituted, saturated, unsaturated, or aromatic five membered ring with 0-3 heteroatoms selected from O, S, or N.
  • the present invention provides compounds of formula IVB and IVC, wherein ring A 2 is an optionally substituted five membered ring with one nitrogen atom, e.g., pyrrolyl or pyrrolidinyl.
  • ring A 2 is an optionally substituted five membered ring with one nitrogen atom, e.g., pyrrolyl or pyrrolidinyl.
  • compounds of formula VA-I have y occurrences of X-R x , wherein y is 0-4. In one embodiment, y is 0.
  • the present invention provides compounds of formula VA- 1, wherein X is a bond and R x is hydrogen.
  • the present invention provides compounds of formula VA- 1, wherein: each of WR W2 and WR W4 is independently selected from hydrogen, CN, CF 3 , halo, C1-C6 straight or branched alkyl, 3-12 membered cycloaliphatic, or phenyl, wherein said WR W2 and WR w4 is independently and optionally substituted with up to three substituents selected from -OR', -CF 3 , -OCF 3 , -SCF 3 , halo, -COOR', -COR', -O(CH 2 ) 2 N(R')(R'), - O(CH 2 )N(R')(R'), -CON(R 1 XR'), -(CH 2 ) 2 OR ⁇ -(CH 2 )OR', optionally substituted phenyl, - N(R')(R'), -NC(O)OR', -NC(O)R', -NC(O)
  • the present invention provides compounds of formula VA- 1, wherein: WR is a pheny ring optionally substituted with up to three substituents selected from — OR', -CF 3 , -OCF 3 , SR', S(O)R', SO 2 R', -SCF 3 , halo, CN, -COOR', -COR', - O(CH 2 ) 2 N(R')(R'), -O(CH 2 )N(R')(R'), -C0N(R')(R'), -(CH 2 ) 2 OR ⁇ -(CH 2 )OR', CH 2 CN, • optionally substituted phenyl or phenoxy, -N(R')(R'), -NR 5 C(O)OR', -NR 5 C(O)R', - (CH 2 ) 2 N(R')(R 5 ), or -(CH 2 )N(R')
  • each of WR W2 and WR w4 is independently selected from CF 3 or halo. In one embodiment, each of WR W2 and WR W4 is independently selected from optionally substituted hydrogen, C1-C6 straight or branched alkyl.
  • each of of WR W2 and WR W4 is independently selected from optionally substituted n-propyl, isopropyl, n-butyl, sec-butyl, t-butyl, l,l-dimethyl-2-hydroxyethyl, l,l-dimethyl-2- (ethoxycarbonyl)-ethyl, l,l-dimethyl-3-(t-butoxycarbonyl-amino) propyl, or n-pentyl.
  • each of WR W2 and WR W4 is independently selected from optionally substituted 3-12 membered cycloaliphatic.
  • cycloaliphatic examples include cyclopentyl, cyclohexyl, cycloheptyl, norbornyl, adamaiityl, [2.2.2.]bicyclo-octyl, [2.3.1.] bicyclo-octyl, or [3.3.1]bicyclo-nonyl.
  • WR W2 is hydrogen and WR W4 is C1-C6 straight or branched alkyl.
  • WR W4 is selected from methyl, ethyl, propyl, n-butyl, sec-butyl, or t-butyl.
  • WR W4 is hydrogen and WR W2 is C1-C6 straight or branched alkyl. In certain embodiments, WR W2 is selected from methyl, ethyl, propyl, n-butyl, sec-butyl, t-butyl, or n-pentyl. [0103] In certain embodiments each of WR W2 and WR W4 is C1-C6 straight or branched alkyl. In certain embodiments, each of WR W2 and WR W4 is selected from methyl, ethyl, propyl, n-butyl, sec-butyl, t-butyl, or pentyl.
  • WR W5 is selected from hydrogen, CHF 2 , NH 2 , CN, NHR', N(R') 2 , CH 2 N(R') 2 , -NHC(O)R', -NHC(O)OR', -OR', C(O)OR', or SO 2 NHR'.
  • WR W5 is - OR', e.g., OH.
  • WR W5 is selected from hydrogen, NH 2 , CN, CHF 2 , NH(Cl-CO alkyl), N(Cl -C6 alkyl) 2 , -NHC(O)(Cl-Co alkyl), -CH 2 NHC(O)O(Cl-Co alkyl), - NHC(O)O(Cl-Co alkyl), -OH, -O(C1-C6 alkyl), C(O)O(Cl-Co alkyl), CH 2 O(Cl-Co alkyl), or SO 2 NH 2 .
  • WR W5 is selected from -OH, OMe, NH 2 , -NHMe, -N(Me) 2 , -CH 2 NH 2 , CH 2 OH, NHC(O)OMe, NHC(O)OEt, CN, CHF 2 , -CH 2 NHC(O)O(t-butyl), -O- (ethoxyethyl), -O-(hydroxyethyl), -C(O)OMe, or -SO 2 NH 2 .
  • compound of formula VA-I has one, preferably more, or more preferably all, of the following features: i) WR W2 is hydrogen; ii) WR W4 is C1-C6 straight or branched alkyl or monocyclic or bicyclic aliphatic; and iii) WR W5 is selected from hydrogen, CN, CHF 2 , NH 2 , NH(C1-C6 alkyl), N(Cl-Co alkyl) 2 , -NHC(O)(C1-C6 alkyl), -NHC(O)O(Cl-Co alkyl), -CH 2 C(O)O(Cl-CO alkyl), -OH, -O(C1-C6 alkyl), C(O)O(C1-C6 alkyl), or SO 2 NH 2 .
  • compound of formula VA-I has one, preferably more, or more preferably all, of the following features: i) WR W2 is halo, C1-C6 alkyl, CF 3 , CN, or phenyl optionally substituted with up to 3 substituents selected from C1-C4 alkyl, -O(C1-C4 alkyl), or halo; ii) WR W4 is CF 3 , halo, C1-C6 alkyl, or C6-C10 cycloaliphatic; and iii) WR W5 is OH, NH 2 , NH(Cl-Co alkyl), or N(Cl-Co alkyl).
  • X-R x is at the 6-position of the quinolinyl ring. In certain embodiments, X-R x taken together is C1-C6 alkyl, -O-(C1-C6 alkyl), or halo. [0109] In one embodiment, X-R x is at the 5-position of the quinolinyl ring. In certain embodiments, X-R taken together is -OH.
  • the present invention provides compounds of formula VA-I, wherein WR W4 and WR W5 taken together form a 5-7 membered ring containing 0-3 three heteroatoms selected from N, O, or S, wherein said ring is optionally substituted with up to three WR W substituents.
  • WR W4 and WR W5 taken together form an optionally substituted 5-7 membered saturated, unsaturated, or aromatic ring containing 0 heteroatoms.
  • WR W4 and WR W5 taken together form an optionally substituted 5-7 membered ring containing 1-3 heteroatoms selected from N, O, or S.
  • WR 4 and WR W5 taken together form an optionally substituted saturated, unsaturated, or aromatic 5-7 membered ring containing 1 nitrogen heteroatom. In certain other embodiments, WR W4 and WR W5 taken together form an optionally substituted 5-7 membered ring containing 1 oxygen heteroatom. [0112] In another embodiment, the present invention provides compounds of formula V-A-2:
  • V-A-2 wherein: Y is CH 2 , C(O)O, C(O), or S(O) 2 ; m is 0-4; and X, R x , W, and R w are as defined above.
  • compounds of formula VA-2 have y occurrences of X-R , wherein y is 0-4. In one embodiment, y is 0. Or, y is 1. Or, y is 2. [0114] In one embodiment, Y is C(O). In another embodiment, Y is C(O)O. Or, Y is S(O) 2 . Or, Y is CH 2 . [0115] In one embodiment, m is 1 or 2. Or, m is 1. Or, m is 0.
  • W is a bond.
  • R w is C1-C6 aliphatic, halo, CF 3 , or phenyl optionally substituted with C1-C6 alkyl, halo, cyano, or CF 3 , wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with -CO-, -CONR'-, -CO 2 -, -OCO-, -NR 5 CO 2 -, -O-, -NR'CONR'-, -OCONR'-, -NR'CO-, -S-, -NR'-, -SO 2 NR'-, NR 5 SO 2 -, or - NR 5 SO 2 NR 5 -.
  • R' above is C1-C4 alkyl.
  • exemplary embodiments of WR W include methyl, ethyl, propyl, tert-butyl, or 2-ethoxyphenyl.
  • R w in Y-R w is C1-C6 aliphatic optionally substituted with N(R") 2 , wherein R 55 is hydrogen, C1-C6 alkyl, or two R" taken together form a 5-7 membered heterocyclic ring with up to 2 additional heteroatoms selected from O, S, or NR'.
  • Exemplary such heterocyclic rings include pyrrolidinyl, piperidyl, morpholinyl, or thiomorpholinyl .
  • the present invention provides compounds of formula V-A-3:
  • V-A-3 wherein: Q is W; R Q is R w ; m is 0-4; n is 0-4; and X, R x , W, and R w are as defined above.
  • compounds of formula VA-3 have y occurrences of X-R x , wherein y is 0-4. In one embodiment, y is 0. Or, y is 1. Or, y is 2. [0121] In one embodiment, n is 0-2. [0122] In another embodiment, m is 0-2. In one embodiment, m is 0. In one embodiment, m is 1. Or, m is 2.
  • QR Q taken together is halo, CF 3 , OCF 3 , CN, C1-C6 aliphatic, O-C1-C6 aliphatic, O-phenyl, NH(Cl-Co aliphatic), or N(Cl-Co aliphatic) 2 , wherein said aliphatic and phenyl are optionally substituted with up to three substituents selected from C1-C6 alkyl, O-C1-C6 alkyl, halo, cyano, OH, or CF 3 , wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with -CO-, -CONR'-, -CO 2 -, -OCO-, -NR 5 CO 2 -, -O-, -NR'CONR'-, -OCONR'-, -NR'CO-, -S-, -NR'-
  • R 5 above is C1-C4 alkyl.
  • exemplary QR Q include methyl, isopropyl, sec-butyl, hydroxymethyl, CF 3 , NMe 2 , CN, CH 2 CN, fluoro, chloro, OEt, OMe, SMe, OCF 3 , OPh, C(O)OMe, C(O)O-iPr, S(O)Me, NHC(O)Me, or S(O) 2 Me.
  • the present invention provides compounds of formula V-A-4:
  • V-A-4 wherein X, R ⁇ , and R w are as defined above.
  • compounds of formula VA-4 have y occurrences of X-R x , wherein y is 0-4. In one embodiment, y is O. Or 3 y is 1. Or, y is 2.
  • R w is C1-C12 aliphatic, C5-C10 cycloaliphatic, or C5-C7 heterocyclic ring, wherein said aliphatic, cycloaliphatic, or heterocyclic ring is optionally substituted with up to three substituents selected from C1-C6 alkyl, halo, cyano, oxo, OH, or CF 3 , wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with -CO-, -CONR'-, -CO 2 -, -OCO-, -NR 5 CO 2 -, -O-, -NR'CONR'-, -OCONR'-, -NR'CO-, -S-, -NR'-, -SO 2 NR'-, NR 5 SO 2 -, or -NR'SO 2 NR'-.
  • R' above is Cl-C4 alkyl.
  • exemplary R w includes methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, t- butyl, n-pentyl, vinyl, cyanomethyl, hydroxymethyl, hydroxyethyl, hydroxybutyl, cyclohexyl, adamantyl, or -C(CH 3 ) 2 -NHC(O)O-T, wherein T is C1-C4 alkyl, methoxyethyl, or tetrahydro furanylmethyl .
  • the present invention provides compounds of formula V-A-5:
  • V-A-5 wherein: m is 0-4; and X, R x , W, R w , and R' are as defined above.
  • compounds of formula VA-5 have y occurrences of X-R x , wherein y is 0-4. In one embodiment, y is 0. Or, y is 1. Or, y is 2. [0131] In one embodiment, m is 0-2. Or, m is 1. Or, m is 2. [0132] In another embodiment, both R' are hydrogen. Or, one R' is hydrogen and the other R' is C1-C4 alkyl, e.g., methyl. Or, both R' are C1-C4 alkyl, e.g., methyl.
  • m is 1 or 2
  • R w is halo, CF 3 , CN, C1-C6 aliphatic, O-C1-C6 aliphatic, or phenyl, wherein said aliphatic and phenyl are optionally substituted with up to three substituents selected from C1-C6 alkyl, O-C1-C6 alkyl, halo, cyano, OH, or CF 3 , wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with -CO-, -CONR'-, -CO 2 -, -OCO-, -NR 5 CO 2 -, -O-, -NR'CONR'-, -OCONR'-, -NR'CO-, -S-, -NR'-, -SO 2 NR'-, NR 5 SO 2 -, or -NR 5 SO 2
  • R 5 above is C1-C4 alkyl.
  • exemplary embodiments of R w include chloro, CF 3 , OCF 3 , methyl, ethyl, n- propyl, isopropyl, n-butyl, t-butyl, methoxy, ethoxy, propyloxy, or 2-ethoxyphenyl.
  • the present invention provides compounds of formula V-A-6:
  • V-A-6 wherein: ring B is a 5-7 membered monocyclic or bicyclic, heterocyclic or heteroaryl ring optionally substituted with up to n occurrences of -Q-R ⁇ , wherein n is 0-4, and Q and R ⁇ are as defined above; and Q, R Q , X, R x , W, and R w are as defined above.
  • compounds of formula VA-6 have y occurrences of X-R , wherein y is 0-4. In one embodiment, y is 0. Or, y is 1. Or, y is 2. [0137] In one embodiment, m is 0-2. Or, m is 0. Or m is 1. [0138] In one embodiment, n is 0-2.
  • ring B is a 5-7 membered monocyclic, heterocyclic ring having up to 2 heteroatoms selected from O, S, or N, optionally substituted with up to n occurrences of -Q-R Q .
  • exemplary heterocyclic rings include N-morpholinyl, N-piperidinyl, 4- benzoyl-piperazin-1-yl, pyrrolidin-1-yl, or 4-methyl-piperidin-l-yl.
  • ring B is a 5-6 membered monocyclic, heteroaryl ring having up to 2 heteroatoms selected from O, S, or N, optionally substituted with up to n occurrences of -Q-R ⁇ .
  • Exemplary such rings include benzimidazol-2-yl, 5-methyl-furan-2-yl, 2,5-dimethyl-pyrrol-l-yl, pyridine-4-yl, indol-5-yl, indol-2-yl, 2,4-dimethoxy-pyrimidin-5-yl, furan-2-yl, furan-3-yl, 2-acyl-thien-2-yl, benzothiophen-2-yl, 4-methyl-thien-2-yl, 5-cyano- thien-2-yl, 3-chloro-5-trifluoromethyl-pyridin-2-yl.
  • the present invention provides compounds of formula V-B-I: V-B-I wherein: one of Qi and Q 3 is N(WR ,w- ) and the other of Qi and Q 3 is selected from O, S, or N(WR W ); Q 2 is C(O), CH 2 -C(O), C(O)-CH 2 , CH 2 , CH 2 -CH 2 , CF 2 , or CF 2 -CF 2 ; m is 0-3; and X, W, R x , and R w are as defined above. [0142] In one embodiment, compounds of formula V-B-I have y occurrences of X-R x , wherein y is 0-4.
  • y is 0. Or, y is 1. Or, y is 2.
  • Q 3 is N(WR W ); exemplary WR W include hydrogen, C1-C6 aliphatic, C(O)C 1-C6 aliphatic, or C(O)OC 1-C6 aliphatic.
  • Q 3 is N(WR W W N), Q 2 is C(O), CH 2 , CH 2 -CH 2 , and Q 1 is O.
  • the present invention provides compounds of formula V-B-2:
  • V-B-2 wherein: R > wi i •s hydrogen or C1-C6 aliphatic; each of R , W3 is hydrogen or C1-C6 aliphatic; or both R ,W3 taken together form a C3-C6 cycloalkyl or heterocyclic ring having up to two heteroatoms selected from O, S, or NR', wherein said ring is optionally substituted with up to two WR w substituents; m is 0-4; and X, R x , W, and R w are as defined above. [0146] In one embodiment, compounds of formula V-B-2 have y occurrences of X-R x , wherein y is 0-4. In one embodiment, y is 0.
  • WR W1 is hydrogen, C1-C6 aliphatic, C(O)Cl-Co aliphatic, or C(O)OCl-Co aliphatic.
  • each R W3 is hydrogen, C1-C4 alkyl.
  • both R W3 taken together form a C3-C6 cycloaliphatic ring or 5-7 membered heterocyclic ring having up to two heteroatoms selected from O, S, or N, wherein said cycloaliphatic or heterocyclic ring is optionally substituted with up to three substitutents selected from WR WI .
  • Exemplary such rings include cyclopropyl, cyclopentyl, optionally substituted piperidyl, etc.
  • the present invention provides compounds of formula V-B-3:
  • V-B-3 wherein: Q 4 is a bond, C(O), C(O)O 5 or S(O) 2 ; R W1 is hydrogen or C1-C6 aliphatic; m is 0-4; and X, W, R w , and R x are as defined above.
  • compounds of formula V-B-3 have y occurrences of X-R , wherein y is 0-4. In one embodiment, y is 0.
  • Q 4 is C(O).
  • Q 4 is C(O)O.
  • R W1 is C1-C6 alkyl. Exemplary R W1 include methyl, ethyl, or t-butyl.
  • the present invention provides compounds of formula V-B-4: V-B-4 wherein: m is 0-4; and X, R x , W, and R w are as defined above.
  • compounds of formula V-B-4 have y occurrences of X-R , wherein y is 0-4. In one embodiment, y is 0. Or, y is 1. Or, y is 2.
  • m is 0-2. Or, m is 0. Or, m is 1.
  • said cycloaliphatic ring is a 5-membered ring. Or, said ring is a six-membered ring.
  • the present invention provides compounds of formula V-B-5:
  • V-B-5 wherein: ring A 2 is a phenyl or a 5-6 membered heteroaryl ring, wherein ring A 2 and the phenyl ring fused thereto together have up 4 substituents independently selected from WR W ; m is 0-4; and X, W, R w and R x are as defined above.
  • compounds of formula V-B-5 have y occurrences of X-R , wherein y is 0-4. In one embodiment, y is 0. Or, y is 1. Or, y is 2.
  • ring A 2 is an optionally substituted 5-membered ring selected from pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl, thiadiazolyl, oxadiazolyl, or triazolyl.
  • ring A 2 is an optionally substituted 5-membered ring selected from pyrrolyl, pyrazolyl, thiadiazolyl, imidazolyl, oxazolyl, or triazolyl. Exemplary such rings include:
  • ring A 2 is an optionally substituted 6-membered ring. Exemplary such rings include pyridyl, pyrazinyl, or triazinyl. In another embodiment, said ring is an optionally pyridyl. [0161] In one embodiment, ring A 2 is phenyl. [0162] In another embodiment, ring A 2 is pyrrolyl, pyrazolyl, pyridyl, or thiadiazolyl. [0163] Examplary W in formula V-B-5 includes a bond, C(O), C(O)O or C1-C6 alkylene.
  • Exemplary R w in formula V-B-5 include cyano, halo, C1-C6 aliphatic, C3-C6 cycloaliphatic, aryl, 5-7 membered heterocyclic ring having up to two heteroatoms selected from O, S, or N, wherein said aliphatic, phenyl, and heterocyclic are independently and optionally substituted with up to three substituents selected from C1-C6 alkyl, O-C1-C6 alkyl, halo, cyano, OH, or CF 3 , wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with -CO-, -CONR'-, -CO 2 -, -OCO-, -NR 5 CO 2 -, -O-, - NR'CONR'-, -OCONR'-, -NR'CO-, -S-, -NR'-,
  • R' above is C1-C4 alkyl.
  • the present invention provides compounds of formula V-B- 5-a: V-B-5-a wherein: G 4 is hydrogen, halo, CN, CF 3 , CHF 2 , CH 2 F, optionally substituted C1-C6 aliphatic, aryl-Cl-C6 alkyl, or a phenyl, wherein G 4 is optionally substituted with up to 4 WR W substituents; wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with -CO-, -CONR'-, -CO 2 -, -OCO-, -NR 5 CO 2 -, -O-, -NR'CONR'-, -OCONR'-, -NR'CO-, -S-, -NR'-, -SO 2 NR'-, NR 5 SO 2 -, or
  • G 5 is hydrogen or an optionally substituted C1-C6 aliphatic; wherein said indole ring system is further optionally substituted with up to 3 substituents independently selected from WR .
  • compounds of formula V-B-5-a have y occurrences of X- R x , wherein y is 0-4. In one embodiment, y is O. Or, y is 1. Or, y is 2.
  • G 4 is hydrogen. Or, G 5 is hydrogen.
  • G 4 is hydrogen
  • G 5 is C1-C6 aliphatic, wherein said aliphatic is optionally substituted with C1-C6 alkyl, halo, cyano, or CF 3 , and wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with -CO-, - CONR'-, -CO 2 -, -OCO-, -NR 5 CO 2 -, -O-, -NR'CONR'-, -OCONR'-, -NR'CO-, -S-, -NR 5 -, -SO 2 NR'-, NR 5 SO 2 -, or -NR 5 SO 2 NR 5 -.
  • R 5 above is C1-C4 alkyl.
  • G 4 is hydrogen, and G 5 is cyano, methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, t-butyl, cyanomethyl, methoxyethyl, CH 2 C(O)OMe, (CH 2 ) 2 - NHC(O)O-fer£-butyl, or cyclopentyl.
  • G 5 is hydrogen
  • G 4 is halo, C1-C6 aliphatic or phenyl, wherein said aliphatic or phenyl is optionally substituted with C1-C6 alkyl, halo, cyano, or CF 3 , wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with -CO-, -CONR'-, -CO 2 -, -OCO-, -NR 5 CO 2 -, -0-, -NR'CONR'-, -OCONR'-, -NR'CO-, -S-, -NR'-, -SO 2 NR'-, NR 5 SO 2 -, or -NR 5 SO 2 NR'-.
  • R' above is C1-C4 alkyl.
  • G 5 is hydrogen
  • G 4 is halo, CF 3 , ethoxycarbonyl, t- butyl, 2-methoxyphenyl, 2-ethoxyphenyl, (4-C(O)NH(CH 2 ) 2 -NMe 2 )-phenyl, 2-methoxy-4- chloro-phenyl, pyridine-3-yl, 4-isopropylphenyl, 2,6-dimethoxyphenyl, sec- butylaminocarbonyl, ethyl, t-butyl, or piperidin-1-ylcarbonyl.
  • G 4 and G 5 are both hydrogen, and the nitrogen ring atom of said indole ring is substituted with C1-C6 aliphatic, C(O)(Cl-Co aliphatic), or benzyl, wherein said aliphatic or benzyl is optionally substituted with C1-C6 alkyl, halo, cyano, or CF 3 , wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with -CO-, -CONR'-, -CO 2 -, -OCO-, -NR 5 CO 2 -, -0-, -NR'CONR'-, -OCONR'-, -NR'CO-, -S-, -NR'-, -SO 2 NR'-, NR 5 SO 2 -, or -NR 5 SO 2 NR 5 -.
  • R 5 above is C1-C4 alkyl.
  • G 4 and G 5 are both hydrogen, and the nitrogen ring atom of said indole ring is substituted with acyl, benzyl, C(O)CH 2 N(Me)C(O)CH 2 NHMe, or ethoxycarbonyl.
  • the present invention provides compounds of formula F:
  • each of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , and Ar 1 in compounds of formula I' is independently as defined above for any of the embodiments of compounds of formula I.
  • Representative compounds of the present invention are set forth below in Table 1 below.. [0177] Table 1
  • the present invention provides compounds useful as intermediates in the synthesis of compounds of formula I.
  • such compounds have formula A-I:
  • G 1 is hydrogen, R', C(O)R', C(S)R', S(O)R', S(O) 2 R', Si(CH 3 ) 2 R', P(O)(OR') 3 , P(S)(OR') 3 , or B(OR') 2 ;
  • G 2 is halo, CN, CF 3 , isopropyl, or phenyl wherein said isopropyl or phenyl is optionally substituted with up to 3 substituents independently selected from WR W , wherein W and R are as defined above for formula I and embodiments thereof;
  • G 3 is an isopropyl or a C3-C10 cycloaliphatic ring, wherein said G 3 is optionally substituted with up to 3 substituents independently selected from WR W , wherein W and R w are as defined above for formula I and embodiments thereof; provided that when Gi is methoxy, G 3 is tert-buty
  • the present invention provides compounds of formula A-I, provided that when G 2 and G 3 each is t-butyl, then Gi is not hydrogen.
  • Gi is hydrogen
  • G 2 is halo or isopropyl, wherein said isopropyl is optionally substituted with up to 3 substituents independently selected from R'
  • G 3 is an isopropyl or a C3 -C 10 cycloaliphatic ring, wherein said G 3 is optionally substituted with up to 3 substituents independently selected from R'.
  • G 1 is hydrogen; G 2 is halo, preferably fluoro; and G 3 is a C3-C10 cycloaliphatic ring, wherein said G 3 is optionally substituted with up to 3 substituents independently selected from methyl, ethyl, propyl, or butyl.
  • G 1 is hydrogen; G 2 is CN, halo, or CF 3 ; and G 3 is an isopropyl or a C3-C10 cycloaliphatic ring, wherein said G 3 is optionally substituted with up to 3 substituents independently selected from R'.
  • G 1 is hydrogen;
  • G 2 is phenyl is optionally substituted with up to 3 substituents independently selected from -OCl -C4 alkyl, CF 3 , halo, or CN; and
  • G 3 is an isopropyl or a C3-C10 cycloaliphatic ring, wherein said G 3 is optionally substituted with up to 3 substituents independently selected from R'.
  • Exemplary G 3 include optionally substituted cyclopentyl, cyclohexyl, cycloheptyl, or adamantyl.
  • G3 is C3-C8 branched aliphatic chain.
  • G3 include isopropyl, t-butyl, 3,3-diethyl-prop-3-yl, or 3,3-diethyl-2,2-dimethyl-prop-3-yl.
  • Gi is hydrogen;
  • G 2 is t-butyl; and
  • G 3 is a t-butyl.
  • the present invention provides a compound of formula A-II:
  • G 4 is hydrogen, halo, CN, CF 3 , CHF 2 , CH 2 F, optionally substituted C1-C6 aliphatic, aralkyl, or a phenyl ring optionally substituted with up to 4 WR W substituents
  • G 5 is hydrogen or an optionally substituted C1-C6 aliphatic; provided that both, G 4 and G 5 , are not simultaneously hydrogen; wherein said indole ring system is further optionally substituted with up to 3 substituents independently selected from WR W .
  • G 4 is hydrogen.
  • G 5 is hydrogen.
  • G 4 is hydrogen
  • G 5 is C1-C6 aliphatic, wherein said aliphatic is optionally substituted with C1-C6 alkyl, halo, cyano, or CF 3 , and wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with -CO-, - CONR'-, -CO 2 -, -OCO-, -NR 5 CO 2 -, -O-, -NR'CONR'-, -OCONR'-, -NR'CO-, -S-, -NR'-, -SO 2 NR'-, NR 5 SO 2 -, or -NR 5 SO 2 NR'-.
  • R' above is C1-C4 alkyl.
  • G 4 is hydrogen
  • G 5 is cyano, methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, t-butyl, cyanomethyl, methoxyethyl, CH 2 C(O)OMe, (CH 2 ) 2 - NHC(O)O-fert-But, or cyclopentyl.
  • G 5 is hydrogen
  • G 4 is halo, C1-C6 aliphatic or phenyl, wherein said aliphatic or phenyl is optionally substituted with C1-C6 alkyl, halo, cyano, or CF 3 , wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with -CO-, -CONR'-, -CO 2 -, -OCO-, -NR 5 CO 2 -, -0-, -NR' CONR'-, -OCONR'-, -NR' CO-, -S-, -NR'-, -SO 2 NR'-, NR'SO 2 -, or -NR 5 SO 2 NR'-.
  • R' above is C1-C4 alkyl.
  • G 5 is hydrogen
  • G 4 is halo, ethoxycarbonyl, t-butyl, 2-methoxyphenyl, 2-ethoxyphenyl, 4-C(O)NH(CH 2 ) 2 -NMe 2 , 2-methoxy-4-chloro-phenyl, pyridine-3-yl, 4-isopropylphenyl, 2,6-dimethoxyphenyl, sec-butylaminocarbonyl, ethyl, t- butyl, or piperidin-1-ylcarbonyl.
  • the nitrogen ring atom of said indole ring is substituted with C1-C6 aliphatic, C(O)(C 1-C6 aliphatic), or benzyl, wherein said aliphatic or benzyl is optionally substituted with C1-C6 alkyl, halo, cyano, or CF 3 , wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with - CO-, -CONR'-, -CO 2 -, -OCO-, -NR 5 CO 2 -, -0-, -NR'CONR'-, -OCONR'-, -NR'CO-, -S-, - NR'-, -SO 2 NR'-, NR 3 SO 2 -, or -NR 5 SO 2 NR'-.
  • R' above is C1-C4 alkyl.
  • the nitrogen ring atom of said indole ring is substituted with acyl, benzyl, C(O)CH 2 N(Me)C(O)CH 2 NHMe, or ethoxycarbonyl.
  • Ar Aryl or Heteroaryl a) Nitration; b) ArB(OH) 2 , Pd; c) BH 3 ; d) (BOC) 2 O
  • Ar 1 RVNH coupling reagent
  • base solvent
  • the radical R employed therein is a substituent, e.g., R w as defined hereinabove.
  • R w is a substituent, e.g., R w as defined hereinabove.
  • synthetic routes suitable for various substituents of the present invention are such that the reaction conditions and steps employed do not modify the intended substituents.
  • compositions are useful as modulators of ABC transporters and thus are useful in the treatment of disease, disorders or conditions such as cystic fibrosis, hereditary emphysema, hereditary hemochromatosis, coagulation-fibrinolysis deficiencies, such as protein C deficiency, Type 1 hereditary angioedema, lipid processing deficiencies, such as familial hypercholesterolemia, Type 1 chylomicronemia, abetalipoproteinemia, lysosomal storage diseases, such as I-cell disease/pseudo-Hurler, mucopolysaccharidoses, Sandhof/Tay-Sachs, Crigler-Najjar type II, polyendocrinopathy/hyperinsulemia, Diabetes mellitus, Laron dwarfism, myleoperoxidase deficiency, primary hypoparathyroidism, melanom
  • compositions comprising any of the compounds as described herein, and optionally comprise a pharmaceutically acceptable carrier, adjuvant or vehicle.
  • these compositions optionally further comprise one or more additional therapeutic agents.
  • certain of the compounds of present invention can exist in free form for treatment, or where appropriate, as a pharmaceutically acceptable derivative or a prodrug thereof.
  • a pharmaceutically acceptable derivative or a prodrug includes, but is not limited to, pharmaceutically acceptable salts, esters, salts of such esters, or any other adduct or derivative which upon administration to a patient in need thereof is capable of providing, directly or indirectly, a compound as otherwise described herein, or a metabolite or residue thereof.
  • pharmaceutically acceptable salt refers to those salts which are, within the scope of sound medical judgement, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio.
  • a “pharmaceutically acceptable salt” means any non-toxic salt or salt of an ester of a compound of this invention that, upon administration to a recipient, is capable of providing, either directly or indirectly, a compound of this invention or an inhibitorily active metabolite or residue thereof.
  • Pharmaceutically acceptable salts are well known in the art. For example, S. M. Berge, et al. describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 1977, 66, 1-19, incorporated herein by reference. Pharmaceutically acceptable salts of the compounds of this invention include those derived from suitable inorganic and organic acids and bases.
  • Examples of pharmaceutically acceptable, nontoxic acid addition salts are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid
  • organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange.
  • salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2- naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate
  • Salts derived from appropriate bases include alkali metal, alkaline earth metal, ammonium and N (C 1-4 alkyl) 4 salts. This invention also envisions the quaternization of any basic nitrogen- containing groups of the compounds disclosed herein. Water or oil-soluble or dispersable products may be obtained by such quaternization.
  • Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like.
  • Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, loweralkyl sulfonate and aryl sulfonate.
  • the pharmaceutically acceptable compositions of the present invention additionally comprise a pharmaceutically acceptable carrier, adjuvant, or vehicle, which, as used herein, includes any and all solvents, diluents, or other liquid vehicle, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubricants and the like, as suited to the particular dosage form desired.
  • a pharmaceutically acceptable carrier, adjuvant, or vehicle which, as used herein, includes any and all solvents, diluents, or other liquid vehicle, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubricants and the like, as suited to the particular dosage form desired.
  • Remington's Pharmaceutical Sciences, Sixteenth Edition, E. W. Martin (Mack Publishing Co., Easton, Pa., 1980) discloses various carriers used in formulating pharmaceutically acceptable compositions
  • any conventional carrier medium is incompatible with the compounds of the invention, such as by producing any undesirable biological effect or otherwise interacting in a deleterious manner with any other component(s) of the pharmaceutically acceptable composition, its use is contemplated to be within the scope of this invention.
  • materials which can serve as pharmaceutically acceptable carriers include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, or potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, wool fat, sugars such as lactose, glucose and sucrose; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc
  • the present invention provides a method of treating a condition, disease, or disorder implicated by ABC transporter activity, e.g., CFTR.
  • the present invention provides a method of treating a condition, disease, or disorder implicated by a deficiency of the ABC transporter activity, the method comprising administering a composition comprising a compound of formula (I) to a subject, preferably a mammal, in need thereof.
  • the present invention provides a method of treating cystic fibrosis, hereditary emphysema, hereditary hemochromatosis, coagulation-fibrinolysis deficiencies, such as protein C deficiency, Type 1 hereditary angioedema, lipid processing deficiencies, such as familial hypercholesterolemia, Type 1 chylomicronemia, abetalipoproteinemia, lysosomal storage diseases, such as I-cell disease/pseudo-Hurler, mucopolysaccharidoses, Sandhof/Tay-Sachs, Crigler-Najjar type II, polyendocrinopathy/hyperinsulemia, Diabetes mellitus, Laron dwarfism, myleoperoxidase deficiency, primary hypoparathyroidism, melanoma, glycanosis CDG type 1, congenital hyperthyroidism, osteogenesis imperfecta, hereditary hypofibrinogen
  • the present invention provides a method of treating cystic fibrosis comprising the step of administering to said mammal a composition comprising the step of administering to said mammal an effective amount of a composition comprising a compound of the present invention.
  • an "effective amount" of the compound or pharmaceutically acceptable composition is that amount effective for treating or lessening the severity of one.
  • cystic fibrosis hereditary emphysema, hereditary hemochromatosis, coagulation-fibrinolysis deficiencies, such as protein C deficiency, Type 1 hereditary angioedema, lipid processing deficiencies, such as familial hypercholesterolemia, Type 1 chylomicronemia, abetalipoproteinemia, lysosomal storage diseases, such as I-cell disease/pseudo-Hurler, mucopolysaccharidoses, Sandhof/Tay-Sachs, Crigler-Najjar type II, polyendocrinopathy/hyperinsulemia, Diabetes mellitus, Laron dwarfism, myleoperoxidase deficiency, primary hypoparathyroidism, melanoma, glycanosis CDG type 1, congenital hyperthyroidism, osteogenesis imperfecta, hereditary hypofibrinogenemia, ACT deficiency, Diabetes insipidus
  • the compounds and compositions, according to the method of the present invention may be administered using any amount and any route of administration effective for treating or lessening the severity of one or more of cystic fibrosis, hereditary emphysema, hereditary hemochromatosis, coagulation-fibrinolysis.
  • lipid processing deficiencies such as familial hypercholesterolemia, Type 1 chylomicronemia, abetalipoproteinemia, lysosomal storage diseases, such as I-cell disease/pseudo-Hurler, mucopolysaccharidoses, Sandhof/Tay-Sachs, Crigler-Najjar type II, polyendocrinopathy/hyperinsulemia, Diabetes mellitus, Laron dwarfism, myleoperoxidase deficiency, primary hypoparathyroidism, melanoma, glycanosis CDG type 1, congenital hyperthyroidism, osteogenesis imperfecta, hereditary hypofibrinogenemia, ACT deficiency, Diabetes insipidus (DI), neurophyseal DI, neprogenic DI, Charcot-Marie Tooth syndrome, Perlizaeus-Merzbacher disease, neurode
  • the compounds and compositions of the present invention are useful for treating or lessening the severity of cystic fibrosis in a patient.
  • the compounds and compositions of the present invention are useful for treating or lessening the severity of cystic fibrosis in patients who exhibit residual CFTR activity in the apical membrane of respiratory and non-respiratory epithelia.
  • the presence of residual CFTR activity at the epithelial surface can be readily detected using methods known in the art, e.g., standard electrophysiological, biochemical, or histochemical techniques.
  • Such methods identify CFTR activity using in vivo or ex vivo electrophysiological techniques, measurement of sweat or salivary Cl " concentrations, or ex vivo biochemical or histochemical techniques to monitor cell surface density.
  • residual CFTR activity can be readily detected in patients heterozygous or homozygous for a variety of different mutations, including patients homozygous or heterozygous for the most common mutation, ⁇ F508.
  • the compounds and compositions of the present invention are useful for treating or lessening the severity of cystic fibrosis in patients who have residual CFTR activity induced or augmented using pharmacological methods or gene therapy. .
  • the compounds and compositions of the present invention are useful for treating or lessening the severity of cystic fibrosis in patients within certain genotypes exhibiting residual CFTR activity, e.g., class III mutations (impaired regulation or gating), class IV mutations (altered conductance), or class V mutations (reduced synthesis) (Lee R.
  • patient genotypes that exhibit residual CFTR activity include patients homozygous for one of these classes or heterozygous with any other class of mutations, including class I mutations, class II mutations, or a mutation that lacks classification.
  • the compounds and compositions of the present invention are useful for treating or lessening the severity of cystic fibrosis in patients within certain clinical phenotypes, e.g., a moderate to mild clinical phenotype that typically correlates with the amount of residual CFTR activity in the apical membrane of epithelia.
  • phenotypes include patients exhibiting pancreatic sufficiency or patients diagnosed with idiopathic pancreatitis and congenital bilateral absence of the vas deferens, or mild lung disease.
  • the exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the infection, the particular agent, its mode of administration, and the like.
  • the compounds of the invention are preferably formulated in dosage unit form for ease of administration and uniformity of dosage.
  • dosage unit form refers to a physically discrete unit of agent appropriate for the patient to be treated. It will be understood, however, that the total daily usage of the compounds and compositions of the present invention will be decided by the attending physician within the scope of sound medical judgment.
  • the specific effective dose level for any particular patient or organism will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed, and like factors well known in the medical arts.
  • patient means an animal, preferably a mammal, and most preferably a human.
  • compositions of this invention can be administered to humans and other animals orally, rectally, parenterally, intracisternally, intravaginally, intraperitoneally, topically (as by powders, ointments, or drops), bucally, as an oral or nasal spray, or the like, depending on the severity of the infection being treated.
  • the compounds of the invention may be administered orally or parenterally at dosage levels of about 0.01 mg/kg to about 50 mg/kg and preferably from about 1 mg/kg to about 25 mg/kg, of subject body weight per day, one or more times a day, to obtain the desired therapeutic effect.
  • Liquid dosage forms for oral administration include, but are not limited to, pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs.
  • the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
  • inert diluents commonly used in the art such as, for example, water or other solvents,
  • the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.
  • adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.
  • injectable preparations for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents.
  • the sterile injectable preparation may also be a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent, for . example, as a solution in 1,3-butanediol.
  • the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S. P. and isotonic sodium chloride solution.
  • sterile, fixed oils are conventionally employed as a solvent or suspending medium.
  • any bland fixed oil can be employed including synthetic mono- or diglycerides.
  • fatty acids such as oleic acid are used in the preparation of injectables.
  • the injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.
  • compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
  • Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules.
  • the active compound is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar—agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol
  • the dosage form may also comprise buffering agents.
  • Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
  • the solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner.
  • embedding compositions examples include polymeric substances and waxes. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polethylene glycols and the like.
  • the active compounds can also be in microencapsulated form with one or more excipients as noted above.
  • the solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings, release controlling coatings and other coatings well known in the pharmaceutical formulating art.
  • the active compound may be admixed with at least one inert diluent such as sucrose, lactose or starch.
  • inert diluent such as sucrose, lactose or starch.
  • Such dosage forms may also comprise, as is normal practice, additional substances other than inert diluents, e.g., tableting lubricants and other tableting aids such a magnesium stearate and microcrystalline cellulose.
  • the dosage forms may also comprise buffering agents. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes.
  • Dosage forms for topical or transdermal administration of a compound of this invention include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants or patches.
  • the active component is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required.
  • Ophthalmic formulation, eardrops, and eye drops are also contemplated as being within the scope of this invention.
  • the present invention contemplates the use of transdermal patches, which have the added advantage of providing controlled delivery of a compound to the body.
  • Such dosage forms are prepared by dissolving or dispensing the compound in the proper medium.
  • Absorption enhancers can also be used to increase the flux of the compound across the skin.
  • the rate can be controlled by either providing a rate controlling membrane or by dispersing the compound in a polymer matrix or gel.
  • the compounds of the invention are useful as modulators of ABC transporters.
  • the compounds and compositions are particularly useful for treating or lessening the severity of a disease, condition, or disorder where hyperactivity or inactivity of ABC transporters is implicated in the disease, condition, or disorder.
  • hyperactivity or inactivity of an ABC transporter is implicated in a particular disease, condition, or disorder
  • the disease, condition, or disorder may also be referred to as a "ABC transporter-mediated disease, condition or disorder”.
  • the present invention provides a method for treating or lessening the severity of a disease, condition, or disorder where hyperactivity or inactivity of an ABC transporter is implicated in the disease state.
  • the activity of a compound utilized in this invention as a modulator of an ABC transporter may be assayed according to methods described generally in the art and in the Examples herein.
  • the compounds and pharmaceutically acceptable compositions of the present invention can be employed in combination therapies, that is, the compounds and pharmaceutically acceptable compositions can be administered concurrently with, prior to, or subsequent to, one or more other desired therapeutics or medical procedures.
  • the particular combination of therapies (therapeutics or procedures) to employ in a combination regimen will take into account compatibility of the desired therapeutics and/or procedures and the. desired therapeutic effect to be achieved. It will also be appreciated that the therapies employed may achieve a desired effect for the same disorder (for example, an inventive compound may be administered concurrently with another agent used to treat the same disorder), or they may achieve different effects (e.g., control of any adverse effects). As used herein, additional therapeutic agents that are normally administered to treat or prevent a particular disease, or condition, are known as "appropriate for the disease, or condition, being treated".
  • the additional agent is selected from a mucolytic agent, bronchodialator, an anti-biotic, an anti-infective agent, an anti-inflammatory agent, a CFTR modulator other than a compound of the present invention, or a nutritional agent.
  • the amount of additional therapeutic agent present in the compositions of this invention will be no more than the amount that would normally be administered in a composition comprising that therapeutic agent as the only active agent.
  • the amount of additional therapeutic agent in the presently disclosed compositions wjll range from about 50% to 100% of the amount normally present in a composition comprising that agent as the only therapeutically active agent.
  • the present invention in another aspect, includes a composition for coating an implantable device comprising a compound of the present invention as described generally above, and in classes and subclasses herein, and a carrier suitable for coating said implantable device.
  • the present invention includes an implantable device coated with a composition comprising a compound of the present invention as described generally above, and in classes and subclasses herein, and a carrier suitable for coating said implantable device.
  • Suitable coatings and the general preparation of coated implantable devices are described in US Patents 6,099,562; 5,886,026; and 5,304,121.
  • the coatings are typically biocompatible polymeric materials such as a hydrogel polymer, polymethyldisiloxane, polycaprolactone, polyethylene glycol, polylactic acid, ethylene vinyl acetate, and mixtures thereof.
  • the coatings may optionally be further covered by a suitable topcoat of fluorosilicone, polysaccarides, polyethylene glycol, phospholipids or combinations thereof to impart controlled release characteristics in the composition.
  • Another aspect of the invention relates to modulating ABC transporter activity in a biological sample or a patient (e.g., in vitro or in vivo), which method comprises administering to the patient, or contacting said biological sample with a compound of formula I or a composition comprising said compound.
  • biological sample includes, without limitation, cell cultures or extracts thereof; biopsied material obtained from a mammal or extracts thereof; and blood, saliva, urine, feces, semen, tears, or other body fluids or extracts thereof.
  • Modulation of ABC transporter activity, e.g., CFTR, in a biological sample is useful for a variety of purposes that are known to one of skill in the art.
  • a method of modulating activity of an anion channel in vitro or in vivo comprising the step of contacting said channel with a compound of formula (I).
  • the anion channel is a chloride channel or a bicarbonate channel.
  • the anion channel is a chloride channel.
  • the present invention provides a method of increasing the number of functional ABC transporters in a membrane of a cell, comprising the step of contacting said cell with a compound of formula (I).
  • the term "functional ABC transporter” as used herein means an ABC transporter that is capable of transport activity.
  • said functional ABC transporter is CFTR.
  • the activity of the ABC transporter is measured by measuring the transmembrane voltage potential.
  • Means for measuring the voltage potential across a membrane in the biological sample may employ any of the known methods in the art, such as optical membrane potential assay or other electrophysiological methods.
  • the optical membrane potential assay utilizes voltage-sensitive FRET sensors described by Gonzalez and Tsien (See, Gonzalez, J. E. and R. Y. Tsien (1995) "Voltage sensing by fluorescence resonance energy transfer in single cells” Biophvs J 69(4): 1272-80, and Gonzalez, J.
  • the present invention provides a kit for use in measuring the activity of a ABC transporter or a fragment thereof in a biological sample in vitro or in vivo comprising (i) a composition comprising a compound of formula (I) or any of the above embodiments; and (ii) instructions for a) contacting the composition with the biological sample and b) measuring activity of said ABC transporter or a fragment thereof.
  • the kit further comprises instructions for a) contacting an additional composition with the biological sample; b) measuring the activity of said ABC transporter or a fragment thereof in the presence of said additional compound, and c) comparing the activity of the ABC transporter in the presence of the additional compound with the density of the ABC transporter in the presence of a composition of formula (I).
  • the kit is used to measure the density of CFTR.
  • A-1 A mixture of aniline (25.6 g, 0.28 mol) and diethyl 2-(ethoxymethylene)malonate (62.4 g, 0.29 mol) was heated at 140-150 °C for 2 h. The mixture was cooled to room temperature and dried under reduced pressure to afford 2-phenylaminomethylene-malonic acid diethyl ester as a solid, which was used in the next step without further purification.
  • A-I 4-Oxo-l,4-dihydroquinoline-3-carboxylic acid 4-Hydroxyquinoline-3-carboxylic acid ethyl ester (15 g, 69 mmol) was suspended in sodium hydroxide solution (2N, 150 mL) and stirred for 2 h under reflux. After cooling, the mixture was filtered, and the filtrate was acidified to pH 4 with 2N HCl. The resulting precipitate was collected via filtration, washed with water and dried under vacuum to give 4-oxo-l,4- dihydroquinoline-3-carboxylic acid (A-I) as a pale white solid (10.5 g, 92 %).
  • A-4; 5-Methoxy-4-oxo-l, 4-dihydro-quinoline-3-carboxyIic acid A mixture of 5-methoxy-4-oxo-l, 4-dihydro-quinoline-3-carboxylic acid ethyl ester (1 g, 7.1 mmol) in 10% NaOH solution (50 mL) was heated to reflux overnight and then cooled to room temperature. The mixture was extracted with ether. The aqueous phase was separated and acidified with cone. HCl solution to pH 1-2. The resulting precipitate was collected by filtration to give 5-methoxy-4-oxo-l, 4-dihydro-quinoline-3-carboxylic acid (A-4) (530 mg, 52 %).
  • A-15 a) PPh 3 , Et 3 N, CCl 4 , CF 3 CO 2 H; b) diethyl malonate; c) T- 200 0 C; d) 10% NaOH
  • A-15 4-Hydroxy-2-trifluoromethyl-quinoline-3-carboxyIic acid
  • a suspension of 4-hydroxy-2-trifluoromethyl-quinoline-3-carboxylic acid ethyl ester (5 g, 17.5 mmol) in 10% aqueous NaOH solution was heated at reflux for 2 h. After cooling, dichloromethane was added and the aqueous phase was separated and acidified with concentrated HCl to pH 4. The resulting precipitate was collected via filtration, washed with water and Et 2 O to provide 4-hydroxy-2-trifluoromethyl-quinoline-3-carboxylic acid (A-15) (3.6 g, 80 %).
  • A-3 a) CH 3 C(O)ONH 4 , toluene; b) EtOCHC(CO 2 Et) 2 , 130 0 C; c) Ph 2 O; d) I 2 , EtOH; e) NaOH
  • A-3; 5-Hydroxy-4-oxo-l, 4-dihydro-quinoline-3-carboxylic acid A mixture of 5-hydroxy-4-oxo-l,4-dihydro-quinoline-3-carboxylic acid ethyl ester (700 mg, 3 mmol) in 10% NaOH (20 ml) was heated at reflux overnight. After cooling, the mixture was extracted with ether. The aqueous phase was separated and acidified with cone. HCl to pH 1-2. The resulting precipitate was collected via filtration to give 5-hydroxy-4-oxo-l, 4-dihydro- quinoline-3-carboxylic acid (A-3) (540 mg, 87 %).
  • Example 6 a) POCl 3 ; b) MeONa; c) n-BuLi, ClCO 2 Et; d) NaOH
  • B-3 l-(6-Amino-indol-l-yl)-ethanone l-(6-Amino-indol-l-yl)-ethanone (B-3) was synthesized following the general scheme above starting from 6-nitroindole and acetyl chloride. Overall yield ( ⁇ 40 %). HPLC ret. time 0.54 min, 10-99 % CH 3 CN, 5 min run; ESI-MS 175.1 m/z (MH+).
  • methylamino-acetic acid ethyl ester hydrochloride (30.5 g, 129 mmol) was added dropwise at— 20 0 C. The mixture was allowed to warm to room temperature (c.a. 1 h) and quenched with water (500 mL). The organic layer was separated, washed with 10 % citric acid solution, dried over Na 2 SO 4 , filtered and concentrated.
  • B-4-a (3-Nitro-phenyl)-hydrazine hydrochloride salt 3-Nitro-phenylamine (27.6 g, 0.2 mol) was dissolved in a mixture of H 2 O (40 mL) and 37% HCl (40 mL). A solution OfNaNO 2 (13.8 g, 0.2 mol) in H 2 O (60 mL) was added at 0 0 C, followed by the addition Of SnCl 2 -H 2 O (135.5 g, 0.6 mol) in 37% HCl (100 mL) at that temperature.
  • B-4-b 4-Nitro-lH-indole-2-carboxylic acid ethyl ester and 6-Nitro- lH-indole -2-carboxylic acid ethyl ester 2-[(3-Nitro-phenyl)-hydrazono]-propionic acid ethyl ester from the preceding step was dissolved in toluene (300 mL). PPA (30 g) was added. The mixture was heated at reflux overnight and then cooled to room temperature.
  • B-7 3-Methyl-lH-indol-6-ylamine
  • a mixture of 3-methyl-4-nitro-lH-indole and 3-methyl-6-nitro-lH-indole (3 g, 17 mol) and 10 % Pd-C (0.5 g) in ethanol (30 mL) was stirred overnight under H 2 (1 atm) at room temperature.
  • Pd- C was filtered off and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography to give 3 -methyl- lH-indol-6-ylamine (B-7) (0.6 g, 24 %).
  • B-14 3-r ⁇ c-ButyI ⁇ lH-indol-6-ylamine 3 -sec-Butyl- lH-indol-6-yl amine (B-14) was synthesized following the general scheme above starting from 6-nitroindole and 2-bromobutane. Overall yield (20 %). HPLC ret. time 2.32 min, 10-99 % CH 3 CN, 5 min run; ESI-MS 189.5 m/z (MH + ).
  • B-16 3-(2-Ethoxy-ethyl)-lH-indol-6-ylamine 3-(2-Ethoxy-ethyl)-lH-indol-6-ylamine (B-16) was synthesized following the general scheme above starting from 6-nitroindole and l-bromo-2-ethoxy-ethane. Overall yield (15 %). HPLC ret. time 1.56 min, 10-99 % CH 3 CN, 5 min run; ESI-MS 205.1 m/z (MH + ).
  • the reaction mixture was heated at 70 0 C in a sealed pressure flask for 2.5 h., cooled down to room temperature and filtered through a short plug of Celite. The filter cake was washed with EtOAc The combined filtrate was washed with 5% NH 4 OH solution and water, dried over Na 2 SO 4 and concentrated.
  • the crude product was purified by column chromatography (0 - 10 % EtOAc / petroleum ether) to provide 4-tert-butyl-5-nitro-2- trimethylsilanylethynyl-phenylamine as a brown viscous liquid (25 g, 81 %).
  • the crude product was purified by column chromatography (10 - 20 % EtOAc / Hexane) to provide 5-te/t-butyl-6-nitro- lH-indole as a yellow solid (12.9 g, 69 %).
  • C-3 3-(2-Ethoxyethoxy)-4-tert-butylbenzenamine 3-(2-Ethoxyethoxy)-4-tert-butylbenzenamine (C-3) was synthesized following the general scheme above starting from 2-tert-butyl-5-nitrophenol (C-l-a) and l-bromo-2-ethoxyethane.
  • C-4 2-(2-fer ⁇ Butyl-5-aminophenoxy)ethanoI 2-(2-tert-Butyl-5-ammophenoxy)ethanol (C-4) was synthesized following the general scheme above starting from 2-tert-butyl-5-nitrophenol (C-l-a) and 2-bromoethanol. HPLC ret. time 2.08 min, 10-99 % CH 3 CN, 5 min run; ESI-MS 210.3 m/z (MH + ). [00434] Example 3:
  • N-[3-(3-Methyl-but-3-enyloxy)-phenyl]-acetamide A suspension of the mixture of N-(3-hydroxy-phenyl)-acetamide and acetic acid 3-formylamino- phenyl ester (18.12 g, 0.12 mol), 3-methyl-but-3-en-l-ol (8.6 g, 0.1 mol), DEAD (87 g, 0.2 mol) and Ph 3 P (31.44 g, 0.12 mol) in benzene (250 mL) was heated at reflux overnight and then cooled to room temperature. The reaction mixture was poured into water and the organic layer was separated.
  • N-(4,4-Dimethyl-chroman-7-yI)-acetamide A mixture of N-[3-(3-methyl-but-3-enyloxy)-phenyl]-acetamide (2.5 g, 11.4 mmol) and AlCl 3 (4.52 g, 34.3 mmol) in fluoro-benzene (50 mL) was heated at reflux overnight. After cooling, the reaction mixture was poured into water. The organic layer was separated and the aqueous phase was extracted with EtOAc (40 x 3 mL). The combined organic layers were washed with brine, dried over anhydrous Na 2 SO 4 and concentrated under vacuum. The residue was purified by column chromatography to give N-(4,4-dimethyl-cliroman-7-yl)-acetamide (1.35 g, 54 %).
  • X F, Cl; a) ROH, H 2 SO 4 or MeSO 3 H, CH 2 Cl 2 ; b) R 5 CO 2 Cl, Et 3 N, 1,4-dioxane or CHCl 3 ; c) HNO 3 , H 2 SO 4 or KNO 3 , H 2 SO 4 or HNO 3 , AcOH; d) piperidine, CH 2 Cl 2 ; e) HCO 2 NH 4 , Pd-C, EtOH or SnCl 2 .2H 2 O, EtOH or H 2 , Pd-C, MeOH.
  • C-10 2-ter/'-Butyl-5-amino-4-chlorophenol 2 ⁇ tert-Butyl-5-amino-4-chlorophenol (C-10) was synthesized following the general scheme above starting from 4-chlorophenol and fert-butanol. Overall yield (6 %). HPLC ret. time 3.07 min, 10-99 % CH 3 CN, 5 min run; ESI-MS 200.2 m/z (MH 4 ).
  • C-13 5-Amino-4-fluoro-2-(l-methylcyclohexyl)phenol 5-Amino-4-fluoro-2-(l -methyl cyclohexyl)phenol (C-13) was synthesized following the general scheme above starting from 4-fluorophenol and 1-methylcyclohexanol. Overall yield (3 %). HPLC ret. time 3.00 min, 10-99 % CH 3 CN, 5 min run; ESI-MS 224.2 m/z (MH + ).
  • C-20 2-Admantyl-5-amino-4-fluoro-phenol
  • C-20 2-Admantyl-5-amino-4-fluoro-phenol
  • C-21 5-Amino-4-fluoro-2-(l-methylcycloheptyl)phenol 5-Amino-4-fluoro-2-(l -methyl cycloheptyl)phenol (C-21) was synthesized following the general scheme above starting from 4-fluorophenol and 1 -methyl-cycloheptanol.
  • reaction mixture was then added to ice- water and extracted into diethyl ether.
  • the ether layer was dried (MgSO 4 ), concentrated and purified by column chromatography (0 - 10% ethyl acetate - hexanes) to yield a mixture of carbonic acid 2,4-di-tert-butyl ⁇ 5-nitro- phenyl ester methyl ester and carbonic acid 2,4-di-tert-butyl-6-nitro-phenyl ester methyl ester as a pale yellow solid (4.28 g), which was used directly in the next step.
  • C-16 2-fer*-Butyl-4-(3-ethoxyphenyl)-5-aminophenol 2-fert-Butyl-4- ⁇ 3-ethoxyphenyl)-5-aminophenol (C-16) was synthesized following the general scheme above starting from 2 ⁇ tert-butyl-4-bromo-5-nitrophenol (C-14-a) and 3-ethoxyphenyl boronic acid. HPLC ret. time 2.77 min, 10-99 % CH 3 CN, 5 min ran; ESI-MS 286.1 m/z (MH + ).
  • N- ⁇ 3-Amino-4-[2-(2-methoxy-ethoxy)-l,l-dimethyl-ethyl]-phenyl ⁇ - acetamide A mixture ofN- ⁇ 4-[2-(2-methoxy-ethoxy)-l,l-dimethyl-ethyl]-3-nitro-phenyl ⁇ -acetamide (5 g, 16 mmol) and Raney Ni (1 g) in MeOH (50 mL) was stirred under H 2 (1 atm) at room temperature 1 h. The catalyst was filtered off and the filtrate was concentrated.
  • N- ⁇ 3-Hydroxy-4-[2-(2-methoxy-ethoxy)-l,l-dimethyl-ethyl]-phenyl ⁇ - acetamide To a solution of N- ⁇ 3-amino-4-[2- (2-methoxy- ethoxy)-l,l-dimethyl-ethyl]-phenyl ⁇ - acetamide (1.6 g, 5.7 mmol) in H 2 SO 4 (15 %, 6 mL) was added NaNO 2 at 0-5 0 C. The mixture was stirred at this temperature for 20 min and then poured into ice water. The mixture was extracted with EtOAc (30 mL x 3).
  • D-2; 4,6-Dichloro-benzene-l,3-diamine 4,6-Dichloro-benzene-l,3-diamine (D-2) was synthesized following the general scheme above starting from l,5-dichloro-2,4-dinitro-benzene. Yield (95 %).
  • D-3 4-Methoxy-benzene-l,3-diamine 4-Methoxy-benzene- 1,3 -diamine (D-3) was synthesized following the general scheme above starting from l-methoxy-2,4-dinitro-benzene. Yield (quant.). HPLC ret. time 0.31 min, 10-99 % CH 3 CN, 5 min run.
  • D-8 4-Isopropylbenzene-l,3-diamine 4-Isopropylbenzene-l,3-diamine (D-8) was synthesized following the general scheme above starting from isopropylbenezene. Overall yield (78 %).
  • D-Il; (3-Amino-4-isopropyl-phenyl)-carbamic acid tert-butyl ester (3-Amino-4-isopropyl-phenyl)-carbamic acid tert-butyl ester (D-Il) was synthesized following the general scheme above starting from isopropylbenezene. Overall yield (56 %).
  • D-12; (3-Amino-4-ethyl-phenyl)-carbamic acid tert-butyl ester (3-Amino-4-ethyl-phenyl)-carbamic acid tert-butyl ester (D-12) was synthesized following the general scheme above starting from ethylbenezene. Overall yield (64 %).
  • D-13 (3-Amino-4-propyl-phenyl)-carbamic acid tert-butyl ester (3-Amino-4-propyl-phenyl)-carbamic acid tert-buty ⁇ ester (D-13) was synthesized following the general scheme above starting from propylbenezene. Overall yield (48 %).
  • D-16 (3-Amino-4-ethyl-phenyl)-methyl-carbamic acid tert-bxityl ester (3-Amino-4-ethyl-phenyl)-methyl-carbamic acid tert-buty ⁇ ester (D-16) was synthesized following the general scheme above starting from ethylbenezene. Overall yield (57 %).
  • D-17 (3-Amino-4-isopropyl-phenyl)-methyl-carbamic acid tert-butyl ester (3-Ariiino-4-isopropyl-phenyl)-methyl-carbamic acid tert-butyl ester (D-17) was synthesized following the general scheme above starting from isopropylbenezene. Overall yield (38 %).
  • the reaction vessel was purged with argon for additional 1 min., sealed and heated at 80 0 C overnight. After cooling to room temperature, the solution was filtered through a plug of Celite. The filter cake was rinsed with CH 2 Cl 2 (10 mL), and the combined organic extracts were concentrated under reduced pressure to provide the crude product 2'-ethoxy-2,4-dinitro-biphenyl (0.95 g, 82%). No further purification was performed.
  • DC-2 l-Acetyl- ⁇ -amino-l ⁇ -dihydro-S-spiro-l'-cyclopropyl-lH-indole
  • the catalyst was filtered off and the filtrate was concentrated under reduced pressure.
  • N-(2-Bromo-5-nitrophenyl)acetamide Acetic anhydride (1.4 mL, 13.8 mmol) was added dropwise to a stirring solution of 2-bromo-5- nitroaniline (3 g, 13.8 mmol) in glacial acetic acid (30 mL) at 25 0 C. The reaction mixture was stirred at room temperature overnight, and then poured into water. The precipitate was collected via filtration, washed with water and dried under vacuum to provide N-(2-bromo-5- nitrophenyl)acetamide as an off white solid (3.6 g, 90 %).
  • N-(2-Bromo-5-nitrophenyl)-N-(2-methylprop-2-enyI)acetamide At 25 0 C, a solution of 3-bromo-2-methylpropene (3.4 g, 55.6 mmol) in anhydrous DMF (30 mL) was added dropwise to a solution of N-(2-bromo-5-nitropheny)acetamide (3.6 g, 13.9 mmol) and potassium carbonate (3.9 g, 27.8 mmol) in anhydrous DMF (50 mL). The reaction mixture was stirred at 25 °C overnight. The reaction mixture was then filtered and the filtrate was treated with sat. Na 2 CO 3 solution.
  • reaction mixture was stirred at room temperature for 30 min., and then heated at 80 °C for 16 h. After cooling to room temperature, the resulting mixture was filtered through a Celite pad and concentrated. 2'-Ethoxy-2-nitrobiphenyl-4-carbonitrile was isolated as a yellow solid (1.12 g, 95%).
  • tert-Butyl 2-terf-butyl-5-nitrobenzylcarbamate A solution of (2-tert-butyl-5-nitrophenyl)methanamine (208 mg, 1 mmol) and BoC 2 O (229 mg, 1.05 mmol) in THF (5mL) was refluxed for 30 min. After cooling to room temperature, the solution was diluted with water and extracted with EtOAc. The combined organic layers were washed with brine and dried over MgSO 4 . After filtration, the filtrate was concentrated to give tert-butyl 2-tert-butyl-5-nitrobenzylcarbamate (240 mg, 78 %), which was used without further purification.
  • E-4 tert-Butyl 2-t ⁇ rt-butyl-5-aminobenzylcarbamate
  • a solution of tert-butyl 2-fert-butyl-5-nitrobenzylcarbamate (20 mg, 0.065 mmol) in 5% AcOH-MeOH (1 mL) was added 10% Pd-C (14 mg) under nitrogen atmosphere.
  • the mixture was stirred under H 2 (1 atm) at room temperature for 1 h.
  • the catalyst was removed via filtration through Celite, and the filtrate was concentrated to give tert-butyl 2-te/-t-butyl-5- aminobenzyl carbamate (E-4), which was used without further purification.
  • Example 8 [00646] Phosphoric acid 2,4-di-ferf-butyl-phenyl ester diethyl ester To a suspension of NaH (60% in mineral oil, 6.99 g, 174.7 mmol) in THF (350 mL) was added dropwise a solution of 2,4-di-tert-butyl ⁇ henol (35 g, 169.6 mmol) in THF (150 mL) at 0 0 C. The mixture was stirred at 0 0 C for 15 min and then phosphorochloridic acid diethyl ester (30.15 g, 174.7 mmol) was added dropwise at 0 °C.
  • Method B In a 2-dram vial, the corresponding aryl boronic acid (0.58 mmol) was added followed by KF (110 mg, 1.9 mmol). The solids were suspended in THF (2 mL), and then 2-bromoaniline (70 ⁇ L, 0.58 mmol) was added. The vial was purged with argon for 1 min. P( 1 Bu) 3 (100 ⁇ L, 10% sol. in hexanes) was added followed by Pd 2 (dba) 3 (900 ⁇ L, 0.005 M in THF). The vial was purged again with argon and sealed.
  • the vial was agitated on an orbital shaker at room temperature for 30 min and heated in a heating block at 80 0 C for 16 h.
  • the vial was then cooled to 20 °C and the suspension was passed through a pad of Celite.
  • the pad was washed with EtOAc (5 mL). The organics were combined and concentrated under vacuum to give a crude amine that was used without further purification.
  • Methyl iodide 400 ⁇ L, 6.47 mmol was added dropwise over 15 min and the solution was stirred overnight. Sodium tert-butoxide (192 mg, 1.94 mmol) was added and the reaction was stirred at 0 0 C for 10 minutes. Methyl iodide (186 ⁇ L, 2.98 mmol) was added and the reaction was stirred for Ih. The reaction mixture was then partitioned between IN HCl (50 mL) and EtOAc (75 mL).
  • G-3 tert-Butyl 2-methyl-2-(4-aminophenyl)propylcarbamate
  • tert-butyl 2-methyl-2-(4-nitrophenyl)propylcarbamate 725 mg, 2.5 mmol
  • ammonium formate 700 mg, 10.9 mmol
  • EtOH 25 mL
  • Pd-5%wt on carbon 400 mg
  • the mixture was refmxed for 1 h, cooled and filtered through Celite.
  • the filtrate was concentrated to give tert-butyl 2-methyl-2-(4-aminophenyl)propylcarbamate (G-3) (550 mg, 83 %), which was used without further purification.
  • N-(2-Bromo-benzyl)-2,2,2-trifluoro-acetamide To a solution of 2-bromobenzylamine (1.3 mL, 10.8 mmol) in methanol (5 mL) was added ethyl trifluoro acetate (1.54 mL, 21.6 mmol) and triethylamine (1.4 mL, 10.8 mmol) under a nitrogen atmosphere. The reaction was stirred at room temperature for 1 h. The reaction mixture was then concentrated under vacuum to yield N-(2-bromo-benzyl)-2,2,2-trifluoro-acetamide (3.15g, quant.). HPLC ret. time 2.86 min, 10-99 % CH 3 CN, 5 min run; ESI-MS 283.9 m/z (MH + ).
  • AriR7NH coupling reagent, base, solvent.
  • B-27-1 [00693] Specific example: B-27-1 158
  • N-(3-Hydroxy-4-ter ⁇ -butyl-phenyl)-4-methoxy-quinoline-3-carboxamide (415) was synthesized following the general scheme above reacting N-(3-hydroxy-4-tert-butyl-phenyl)-4-oxo-lH- quinoline-3-carboxamide (428) with methyl iodide.
  • X CO, CO 2 , SO 2 : a) R2XC1, DIEA, THF or R2XC1, NMM, 1,4-dioxane or R2XC1, Et 3 N, CH 2 Cl 2 , DMF.
  • N-Indolin-6-yl-4-oxo-lH-quinoline-3-carboxamide A mixture of N-(l-acetylindolin-6-yl)-4-oxo-lH-quinoline-3-carboxamide (233) (43mg, 0.12 mmol), IN NaOH solution (0.5 mL) and ethanol (0.5 mL) was heated to reflux for 48 h. The solution was concentrated and the residue was dissolved in DMSO (1 mL) and purified by HPLC (10-99 % CH 3 CN - H 2 O) to yield the product, N-indolin-6-yl-4-oxo-lH-quinoline-3- carboxamide (258) (10 mg, 20 %). HPLC ret. time 2.05 min, 10-99 % CH 3 CN, 5 min run; ESI- MS 306.3 m/z (MH + ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Diabetes (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Neurology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Emergency Medicine (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Neurosurgery (AREA)
  • Endocrinology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)

Abstract

The present invention relates to modulators of ATP-Binding Cassette (“ABC”) transporters or fragments thereof, including Cystic Fibrosis Transmembrane Conductance Regulator, compositions thereof, and methods therewith. The present invention also relates to methods of treating ABC transporter mediated diseases using such modulators.

Description

MODULATORS OF ATP-BINDING CASSETTE TRANSPORTERS
CROSS-REFERENCE TO RELATED APPLICATIONS [001] The present application claims priority under 35 U. S. C. § 119 to United States Provisional Application No. 60/582,676, filed June 24, 2004 and entitled "MODULATORS OF ATP-BINDING CASSETTE TRANSPORTERS", United States Provisional Application No. 60/630,127, filed November 22, 2004 and entitled "MODULATORS OF ATP-BINDING CASSETTE TRANSPORTERS", United States Provisional Application No. 60/635,674, filed December 13, 2004 and entitled "MODULATORS OF ATP-BINDING CASSETTE TRANSPORTERS", United States Provisional Application No. 60/658,219, filed March 3, 2005 and entitled "MODULATORS OF ATP-BINDING CASSETTE TRANSPORTERS", and United States Provisional Application No. 60/661,311, filed March 11 , 2005 and entitled "MODULATORS OF ATP-BINDING CASSETTE TRANSPORTERS", the entire contents of each of the above application being incorporated herein by reference. TECHNICAL FIELD OF THE INVENTION [002] The present invention relates to modulators of ATP-Binding Cassette ("ABC") transporters or fragments thereof, including cystic fibrosis transmembrane conductance regulator ("CFTR"), compositions thereof, and methods therewith. The present invention also relates to methods of treating ABC transporter mediated diseases using such modulators. BACKGROUND OF THE INVENTION [003] ABC transporters are a family of membrane transporter proteins that regulate the transport of a wide variety of pharmacological agents, potentially toxic drugs, and xenobiotics, as well as anions. ABC transporters are homologous membrane proteins that bind and use cellular adenosine triphosphate (ATP) for their specific activities. Some of these transporters were discovered as multidrug resistance proteins (like the MDRl-P glycoprotein, or the -multidrug resistance protein, MRPl), defending malignant cancer cells against chemotherapeutic agents. To date, 48 ABC Transporters have been identified and grouped into 7 families based on their sequence identity and function. [004] ABC transporters regulate a variety of important physiological roles within the body and provide defense against harmful environmental compounds. Because of this, they represent important potential drug targets for the treatment of diseases associated with defects in the transporter, prevention of drug transport out of the target cell, and intervention in other diseases in which modulation of ABC transporter activity may be beneficial. [005] One member of the ABC transporter family commonly associated with disease is the cAMP/ATP -mediated anion channel, CFTR. CFTR is expressed in a variety of cells types, including absorptive and secretory epithelia cells, where it regulates anion flux across the membrane, as well as the activity of other ion channels and proteins. In epithelia cells, normal functioning of CFTR is critical for the maintenance of electrolyte transport throughout the body, including respiratory and digestive tissue. CFTR is composed of approximately 1480 amino acids that encode a protein made up of a tandem repeat of transmembrane domains, each containing six transmembrane helices and a nucleotide binding domain. The two transmembrane domains are linked by a large, polar, regulatory (R)-domain with multiple phosphorylation sites that regulate channel activity and cellular trafficking. [006] The gene encoding CFTR has been identified and sequenced (See Gregory, R. J. et al. (1990) Nature 347:382-386; Rich, D. P. et al. (1990) Nature 347:358-362), (Riordan, J. R. et al. (1989) Science 245:1066-1073). A defect in this gene causes mutations in CFTR resulting in cystic fibrosis ("CF"), the most common fatal genetic disease in humans. Cystic fibrosis affects approximately one in every 2,500 infants in the United States. Within the general United States population, up to 10 million people carry a single copy of the defective gene without apparent ill effects. In contrast, individuals with two copies of the CF associated gene suffer from the debilitating and fatal effects of CF, including chronic lung disease. [007] In patients with cystic fibrosis, mutations in CFTR endogenously expressed in respiratory epithelia leads to reduced apical anion secretion causing an imbalance in ion and fluid transport. The resulting decrease in anion transport contributes to enhanced mucus accumulation in the lung and the accompanying microbial infections that ultimately cause death in CF patients. In addition to respiratory disease, CF patients typically suffer from gastrointestinal problems and pancreatic insufficiency that, if left untreated, results in death. In addition, the majority of males with cystic fibrosis are infertile and fertility is decreased among females with cystic fibrosis. In contrast to the severe effects of two copies of the CF associated gene, individuals with a single copy of the CF associated gene exhibit increased resistance to cholera and to dehydration resulting from diarrhea - perhaps explaining the relatively high frequency of the CF gene within the population. [008] Sequence analysis of the CFTR gene of CF chromosomes has revealed a variety of disease causing mutations (Cutting, G. R. et al. (1990) Nature 346:366-369; Dean, M. et al. (1990) Cell 61 :863:870; and Kerem, B-S. et al. (1989) Science 245:1073-1080; Kerem, B-S et al. (1990) Proc. Natl. Acad. Sci. USA 87:8447-8451). To date, > 1000 disease causing mutations in the CF gene have been identified (http://www.genet.sic-ckids.on.ca/cftr/). The most prevalent mutation is a deletion of phenylalanine at position 508 of the CFTR amino acid sequence, and is commonly referred to as ΔF508-CFTR. This mutation occurs in approximately 70% of the cases of cystic fibrosis and is associated with a severe disease . [009] The deletion of residue 508 in ΔF508-CFTR prevents the nascent protein from folding correctly. This results in the inability of the mutant protein to exit the ER, and traffic to the plasma membrane. As a result, the number of channels present in the membrane is far less than observed in cells expressing wild-type CFTR. In addition to impaired trafficking, the mutation results in defective channel gating. Together, the reduced number of channels in the membrane and the defective gating lead to reduced anion transport across epithelia leading to defective ion and fluid transport. (Quinton, P. M. (1990), FASEB J. 4: 2709-2727). Studies have shown, however, that the reduced numbers of ΔF508-CFTR in the membrane are functional, albeit less than wild-type CFTR. (Dalemans et al. (1991), Nature Lond. 354: 526- 528; Denning et al., supra; Pasyk and Foskett (1995), J. Cell. Biochem. 270: 12347-50). In addition to ΔF508-CFTR, other disease causing mutations in CFTR that result in defective trafficking, synthesis, and/or channel gating could be up- or down-regulated to alter anion secretion and modify disease progression and/or severity. [010] Although CFTR transports a variety of molecules in addition to anions, it is clear that this role (the transport of anions) represents one element in an important mechanism of transporting ions and water across the epithelium. The other elements include the epithelial Na+ channel, ENaC, Na+/2C17K+ co-transporter, Na+-K+-ATPaSe pump and the basolateral membrane K+ channels, that are responsible for the uptake of chloride into the cell. [011] These elements work together to achieve directional transport across the epithelium via their selective expression and localization within the cell. Chloride absorption takes place by the coordinated activity of ENaC and CFTR present on the apical membrane and the Na -K -ATP ase pump and Cl- channels expressed on the basolateral surface of the cell. Secondary active transport of chloride from the luminal side leads to the accumulation of intracellular chloride, which can then passively leave the cell via Cl" channels, resulting in a vectorial transport. Arrangement of Na+/2C17K+ co-transporter, Na+-K+-ATPaSe pump and the basolateral membrane K+ channels on the basolateral surface and CFTR on the luminal side coordinate the secretion of chloride via CFTR on the luminal side. Because water is probably never actively transported itself, its flow across epithelia depends on tiny transepithelial osmotic gradients generated by the bulk flow of sodium and chloride. [012] In addition to cystic fibrosis, modulation of CFTR activity may be beneficial for other diseases not directly caused by mutations in CFTR, such as secretory diseases and other protein folding diseases mediated by CFTR. These include, but are not limited to, chronic obstructive pulmonary disease (COPD), dry eye disease, and Sjogren's Syndrome.,, COPD is characterized by airflow limitation that is progressive and not fully reversible. The airflow limitation is due to mucus hypersecretion, emphysema, and bronchiolitis. Activators of mutant or wild-type CFTR offer a potential treatment of mucus hypersecretion and impaired mucociliary clearance that is common in COPD. Specifically, increasing anion secretion across CFTR may facilitate fluid transport into the airway surface liquid to hydrate the mucus and optimized periciliary fluid viscosity. This would lead to enhanced mucociliary clearance and a reduction in the symptoms associated with COPD. Dry eye disease is characterized by a decrease in tear aqueous production and abnormal tear film lipid, protein and mucin profiles. There are many causes of dry eye, some of which include age, Lasik eye surgery, arthritis, medications, chemical/thermal burns, allergies, and diseases, such as cystic fibrosis and Sjδgrens's syndrome. Increasing anion secretion via CFTR would enhance fluid transport from the corneal endothelial cells and secretory glands surrounding the eye to increase corneal hydration. This would help to alleviate the symptoms associated with dry eye disease. Sjδgrens's syndrome is an autoimmune disease in which the immune system attacks moisture- producing glands throughout the body, including the eye, mouth, skin, respiratory tissue, liver, vagina, and gut. Symptoms, include, dry eye, mouth, and vagina, as well as lung disease. The disease is also associated with rheumatoid arthritis, systemic lupus, systemic sclerosis, and polymypositis/dermatomyositis. Defective protein trafficking is believed to cause the disease, for which treatment options are limited. Modulators of CFTR activity may hydrate the various organs afflicted by the disease and help to elevate the associated symptoms. [013] As discussed above, it is believed that the deletion of residue 508 in ΔF508- CFTR prevents the nascent protein from folding correctly, resulting in the inability of this mutant protein to exit the ER, and traffic to the plasma membrane. As a result, insufficient amounts of the mature protein are present at the plasma membrane and chloride transport within epithelial tissues is significantly reduced. Infact, this cellular phenomenon of defective ER processing of ABC transporters by the ER machinery, has been shown to be the underlying basis not only for CF disease, but for a wide range of other isolated and inherited diseases. The two ways that the ER machinery can malfunction is. either by loss of coupling to ER export of the proteins leading to degradation, or by the ER accumulation of these defective/misfolded proteins [Aridor M, et al, Nature Med!, 5(7), pp 745- 751 (1999); Shastry, B.S., et al, Neurochem. International, 43, pp 1-7 (2003); Rutishauser, J., et al, Swiss Med WkIy, 132, pp 211-222 (2002); Morello, JP et al, TIPS, 21, pp. 466- 469 (2000); Bross P., et al, Human Mut, 14, pp. 186-198 (1999)]. The diseases associated with the first class of ER malfunction are cystic fibrosis (due to misfolded ΔF508-CFTR as discussed above), hereditary emphysema (due to al -antitrypsin; non Piz variants), hereditary hemochromatosis, hoagulation-fibrinolysis deficiencies, such as protein C deficiency, Type 1 hereditary angioedema, lipid processing deficiencies, such as familial hypercholesterolemia, Type 1 chylomicronemia, abetalipoproteinemia, lysosomal storage diseases, such as I-cell disease/pseudo-Hurler, Mucopolysaccharidoses (due to lysosomal processing enzymes), Sandhof/Tay-Sachs (due to β- hexosaminidase), Crigler-Najjar type II (due to UDP-glucuronyl-sialyc-transferase), polyendocrinopathy/hyperiήsulemia, Diabetes mellitus (due to insulin receptor), Laron dwarfism (due to growth hormone receptor), myleoperoxidase deficiency, primary hypoparathyroidism (due to preproparathyroid hormone), melanoma (due to tyrosinase). The diseases associated with the latter class of ER malfunction are Glycanosis CDG type 1, hereditary emphysema (due to αl -Antitrypsin (PiZ variant), congenital hyperthyroidism, osteogenesis imperfecta (due to Type I, II, IV procollagen), hereditary hypofibrinogenemia (due to fibrinogen), ACT deficiency (due to αl-antichymotrypsin), Diabetes insipidus (DI), neurophyseal DI (due to vasopvessin hormone/V2 -receptor), neprogenic DI (due to aquaporin II), Charcot-Marie Tooth syndrome (due to peripheral myelin protein 22), Perlizaeus- Merzbacher disease, neurodegenerative diseases such as Alzheimer's disease ( due to βAPP and presenilins), Parkinson's disease, amyotrophic lateral sclerosis, progressive supranuclear plasy, Pick's disease, several polyglutamine neurological disorders asuch as Huntington, spinocerebullar ataxia type I, spinal and bulbar muscular atrophy, dentatorubal pallidoluysian, and myotonic dystrophy, as well as spongiform encephalopathies, such as hereditary Creutzfeldt-Jakob disease (due to prion protein processing defect), Fabry disease (due to lysosomal α-galactosidase A) and Straussler-Scheinker syndrome (due to Prp processing defect). [014] In addition to up-regulation of CFTR activity, reducing anion secretion by CFTR modulators may be beneficial for the treatment of secretory diarrheas, in which epithelial water transport is dramatically increased as a result of secretagogue activated chloride transport. The mechanism involves elevation of cAMP and stimulation of CFTR. [015] Although there are numerous causes of diarrhea, the major consequences of diarrheal diseases, resulting from excessive chloride transport are common to all, and include dehydration, acidosis, impaired growth and death. [016] Acute and chronic diarrheas represent a major medical problem in many areas of the world. Diarrhea is both a significant factor in malnutrition and the leading cause of death (5,000,000 deaths/year) in children less than five years old. [017] Secretory diarrheas are also a dangerous condition in patients of acquired immunodeficiency syndrome (AIDS) and chronic inflammatory bowel disease (IBD). 16 million travelers to developing countries from industrialized nations every year develop diarrhea, with the severity and number of cases of diarrhea varying depending on the country and area of travel. [018] Diarrhea in barn animals and pets such as cows, pigs and horses, sheep, goats, cats and dogs, also known as scours, is a major cause of death in these animals. Diarrhea can result from any major transition, such as weaning or physical movement, as well as in response to a variety of bacterial or viral infections and generally occurs within the first few hours of the animal's life. [019] The most common diarrheal causing bacteria is enterotoxogenic E.coli (ETEC) having the K99 pilus antigen. Common viral causes of diarrhea include rotavirus and coronavirus. Other infectious agents include Cryptosporidium, giardia lamblia, and salmonella, among others. [020] Symptoms of rotaviral infection include excretion of watery feces, dehydration and weakness. Coronavirus causes a more severe illness in the newborn animals, and has a higher mortality rate than rotaviral infection. Often, however, a young animal may be infected with more than one virus or with a combination of viral and bacterial microorganisms at one time. This dramatically increases the severity of the disease. [021] Accordingly, there is a need for modulators of an ABC transporter activity, and compositions thereof, that can be used to modulate the activity of the ABC transporter in the cell membrane of a mammal. [022] There is a need for methods of treating ABC transporter mediated diseases using such modulators of ABC transporter activity. [023] There is a need for methods of modulating an ABC transporter activity in an ex vivo cell membrane of a mammal. [024] There is a need for modulators of CFTR activity that can be used to modulate the activity of CFTR in the cell membrane of a mammal. [025] There is a need for methods of treating CFTR-mediated diseases using such modulators of CFTR activity. [026] There is a need for methods of modulating CFTR activity in an ex vivo cell membrane of a mammal. SUMMARY OF THE INVENTION [027] It has now been found that compounds of this invention, and pharmaceutically acceptable compositions thereof, are useful as modulators of ABC transporter activity. These compounds have the general formula I:
Figure imgf000008_0001
I or a pharmaceutically acceptable salt thereof, wherein R1, R2, R3, R4, R5, R6, R7, and Ar1 are described generally and in classes and subclasses below. [028] These compounds and pharmaceutically acceptable compositions are useful for treating or lessening the severity of a variety of diseases, disorders, or conditions, including, but not limited to, cystic fibrosis, Hereditary emphysema, Hereditary hemochromatosis, Coagulation-Fibrinolysis deficiencies, such as Protein C deficiency, Type 1 hereditary angioedema, Lipid processing deficiencies, such as Familial hypercholesterolemia, Type 1 chylomicronemia, Abetalipoproteinemia, Lysosomal storage diseases, such as I-cell disease/Pseudo-Hurler, Mucopolysaccharidoses, Sandhof/Tay-Sachs, Crigler-Najjar type II, Polyendocrinopathy/Hyperinsulemia, Diabetes mellitus, Laron dwarfism, Myleoperoxidase deficiency, Primary hypoparathyroidism, Melanoma, Glycanosis CDG type 1, Hereditary emphysema, Congenital hyperthyroidism, Osteogenesis imperfecta, Hereditary hypofibrinogenemia, ACT deficiency, Diabetes insipidus (DI), Neurophyseal DI, Neprogenic DI, Charcot-Marie Tooth syndrome, Perlizaeus-Merzbacher disease, neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Progressive supranuclear plasy, Pick's disease, several polyglutamine neurological disorders asuch as Huntington, Spinocerebullar ataxia type I, Spinal and bulbar muscular atrophy, Dentatorubal pallidoluysian, and Myotonic dystrophy, as well as Spongiform encephalopathies, such as Hereditary Creutzfeldt- Jakob disease, Fabry disease, Straussler- Scheinker syndrome, COPD, dry-eye disease, and Sjogren's disease.
DETAILED DESCRIPTION OF THE INVENTION [029] /. General Description of Compounds of the Invention: [030] The present invention relates to compounds of formula I useful as modulators of ABC transporter activity:
Figure imgf000009_0001
I or a pharmaceutically acceptable salt thereof, wherein: Ar1 is a 5-6 membered aromatic monocyclic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein said ring is optionally fused to a 5-12 membered monocyclic or bicyclic, aromatic, partially unsaturated, or saturated ring, wherein each ring contains 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein Ar1 has m substituents, each independently selected from -WRW; W is a bond or is an optionally substituted C1-C6 alkylidene chain wherein up to two methylene units of W are optionally and independently replaced by -CO-, -CS-, -COCO-, - CONR'-, -CONR'NR'-, -CO2-, -OCO-, -NR5CO2-, -0-, -NR'CONR'-, -OCONR'-, -NR'NR', - NR'NR'CO-, -NR'CO-, -S-, -SO, -SO2-, -NR'-, -SO2NR'-, NR5SO2-, or -NR5SO2NR'-; Rw is independently R', halo, NO2, CN, CF3, or OCF3; m is 0-5; each of R1, R2, R3, R4, and R5 is indendently -X-Rx; X is a bond or is an optionally substituted C1-C6 alkylidene chain wherein up to two methylene units of X are optionally and independently replaced by -CO-, -CS-, -COCO-, - CONR'-, -CONR'NR'-, -CO2-, -OCO-, -NR5CO2-, -O-, -NR'CONR'-, -OCONR'-, -NR'NR', - NR'NR'CO-, -NR'CO-, -S-, -SO, -SO2-, -NR'-, -SO2NR'-, NR5SO2-, or -NR5SO2NR5-; Rxis independently R5, halo, NO2, CN, CF3, or OCF3; R6 is hydrogen, CF3, -OR', -SR', or an optionally substituted C1-6 aliphatic group; R7 is hydrogen or a C1-6 aliphatic group optionally substituted with — X-Rx; R' is independently selected from hydrogen or an optionally substituted group selected from a C1-C8 aliphatic group, a 3-8-membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur; or two occurrences of R are taken together with the atom(s) to which they are bound to form an optionally substituted 3-12 membered saturated, partially unsaturated, or fully unsaturated monocyclic or bicyclic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. [031] In certain other embodiments, compounds of formula I are provided:
Figure imgf000010_0001
or a pharmaceutically acceptable salt thereof, wherein: Ar1 is a 5-6 membered aromatic monocyclic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein said ring is optionally fused to a 5-12 membered monocyclic or bicyclic, aromatic, partially unsaturated, or saturated ring, wherein each ring contains 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein Ar has m substituents each independently selected from — WR w; W is a bond or is an optionally substituted Ci-C6 alkylidene chain wherein up to two methylene units of W are optionally and independently replaced by -CO-, -CS-, -COCO-, - CONR'-, -CONR'NR'-, -CO2-, -OCO-, -NR5CO2-, -O-, -NR'CONR'-, -OCONR'-, -NR'NR', - NR'NR'CO-, -NR9CO-, -S-, -SO, -SO2-, -NR'-, -SO2NR'-, NR5SO2-, -NR5SO2NR5-; Rw is independently R', halo, NO2, CN, CF3, or OCF3; m is 0-5; each of R1, R2, R3, R4, and R5 is independently -X-Rx; X is a bond or is an optionally substituted C1-C6 alkylidene chain wherein up to two methylene units of X are optionally and independently replaced by -CO-, -CS-, -COCO-, - CONR5-, -CONR'NR'-, -CO2-, -OCO-, -NR5CO2-, -O-, -NR'CONR'-, -OCONR'-, -NR5NR5, - NR'NR'CO-, -NR'CO-, -S-, -SO, -SO2-, -NR5-, -SO2NR'-, NR3SO2-, or -NR5SO2NR'-; Rxis independently R5, halo, NO2, CN, CF3, or OCF3; R6 is hydrogen, CF3, -OR5, -SR', or an optionally substituted C1-C8 aliphatic group; R is hydrogen or a C1-C6 aliphatic group optionally substituted with -X-R ; R' is independently selected from hydrogen or an optionally substituted group selected from a C1-C8 aliphatic group, a 3-8-membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur; or two occurrences of R are taken together with the atom(s) to which they are bound to form an optionally substituted 3-12 membered saturated, partially unsaturated, or fully unsaturated monocyclic or bicyclic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; provided that: i) when R1, R2, R3, R4, R5, R6 and R7 are hydrogen, then Ar1 is not phenyl, 2- methoxyphenyl, 4-methoxyphenyl, 2-methylphenyl, 2,6-dichlorophenyl, 2,4-dichlorophenyl, 2- bromophenyl, 4-bromophenyl, 4-hydroxyphenyl, 2,4-dinitrophenyl, 3,5-dicarboxylic acid phenyl, 2,4-dimethylphenyl, 2,6-dimethylphenyl, 2-ethylphenyl, 3-nitro-4-methylphenyl, 3- carboxylic-acid phenyl, 2-fluorophenyl, 3 -fluorophenyl, 3-trifluoromethylphenyl, 3- ethoxyphenyl, 4-chlorophenyl, 3-methoxyphenyl, 4-dimethylaminophenyl, 3,4-dimethylphenyl, 2-ethylphenyl, or 4-ethoxycarbonylphenyl; ii) when R1, R2, R3, R5, R6 and R7 are hydrogen, and R4 is methoxy, then Ar1 is not 2- fluorophenyl or 3 -fluorophenyl; iii) when R1, R3, R4, R5, R6 and R7 are hydrogen, R2 is 1,2,3,4-tetrahydroisoquinolin-l-yl- sulfonyl, then Ar1 is not 3-trifluoromethylphenyl; iv) when R1, R2, R3, R4, R5 and R7 are hydrogen, R6 is methyl, then Ar1 is not phenyl; v) when R1, R4, R5, R6 and R7 are hydrogen, R2 and R3, taken together, are methylenedioxy, then Ar1 is not 4-chlorophenyl, 4-bromophenyl, 4-nitrophenyl, A- carboethoxyphenyl, 6-ethoxy-benzothiazol-2-yl, 6-carboethoxy-benzothiazol-2-yl, 6-halo- benzothiazol-2-yl, 6-nitro-benzothiazol-2-yl, or 6-thiocyano-benzothiazol-2-yl. vi) when R1, R4, R5, R6 and R7 are hydrogen, R2 and R3, taken together, are methylenedioxy, then Ar1 is not 4-substituted phenyl wherein said substituent is -SO2NHRXX, wherein Rxx is 2-pyridinyl, 4-methyl-2-pyrimidinyl, 3,4-dimethyl-5-isoxazolyl; vii) when R1, R2, R3, R4, R5, R6, and R7 are hydrogen, then Ar1 is not thiazol-2-yl, IH- l,2,4-triazol-3-yl, or lH-l,3,4-triazol-2-yl; viii) when R1, R2, R3, R5, R6, and R7 are hydrogen, and R4 is CF3, OMe, chloro, SCF3, or OCF3, then Ar1 is not 5-methyl-l,2-oxazol-3-yl, thiazol-2-yl, 4-fluorophenyl, pyrimidin-2-yl, 1- methyl-l,2-(7/i)-pyrazol~5-yl, pyridine-2-yl, phenyl, N-methyl-imidazol-2-yl, imidazol-2-yl, 5- methyl-imidazol-2-yl, l,3-oxazol-2-yl, or l,3,5-(7H)-triazol-2-yl; ix) when R1, R2, R3, R4, R5, R6, and R7 each is hydrogen, then Ar1 is not pyrimidin-2-yl, 4,6-dimethyl-pyrirnidin-2-yl, 4-methoxy-6-methyl-l ,3,5-triazin-2-yl; 5-bromo-pyridin-2-yl, pyridin-2-yl, or 3,5-dichloro-pyridin-2-yl; x) when R1, R2, R3, R4, R5 and R7 each is hydrogen, R6 is hydroxy, then Ar1 is not 2,6- dichloro-4-aminosulfonyl-phenyl; xi) when R or R is an optionally substituted N-piperazyl, N-piperidyl, or N- morpholinyl, then Ar1 is not an optionally substituted ring selected from thiazol-2-yl, pyridyl, phenyl, thiadiazolyl, benzothiazol-2-yl, or indazolyl; xii) when R2 is optionally substituted cyclohexylamino, then Ar1 is not optionally substituted phenyl, pyridyl, or thiadiazolyl; xiii) Ar1 is not optionally substituted tetrazolyl; xiv) when R2, R4, R5, R6, and R7 each is hydrogen, and R1 and R3 both are simultaneously CF3, chloro, methyl, or methoxy, then Ar1 is not 4,5-dihydro-l,3-thiazol-2-yl, thiazol-2-yl, or [3,5-bis(trifluoromethyl)-iH-pyrazol-l-yl]phenyl; xv) when R1, R4, R5, R6, and R7 each is hydrogen, and Ar1 is thiazol-2-yl, then neither R2 nor R3 is isopropyl, chloro, or CF3; xvi) when Ar1 is 4-methoxyphenyl, 4-trifluoromethylphenyl, 2-fluorophenyl, phenyl, or 3-chlorophenyl, then: a) when R1, R2, R4, R5, R6, and R7 each is hydrogen, then R3 is not methoxy; or b) when R1, R3, R4, R5, R6, and R7 each is hydrogen, then R2 is not chloro; or c) when R1, R2, R3, R5, R6, and R7 each is hydrogen, then R4 is not methoxy; or d) when when R1, R3, R4, R6, and R7 each is hydrogen, and R5 is ethyl, then R2 is not chloro; e) when R1, R2, R4, R5, R6, and R7 each is hydrogen, then R3 is not chloro; xvi) when R1, R3, R4, R5, R6, and R7 each is hydrogen, and R2 is CF3 or OCF3, then Ar1 is not [3 ,5-bis(trifluoromethyl)-iH"-pyrazol- 1 -yl]phenyl; xvii) when R1, R2, R4, R5, R6, and R7 each is hydrogen, and R3 is hydrogen or CF3, then ArI is not a phenyl substituted with -OCH2CH2Ph, -OCH2CH2(2-trifluoromethyl-phenyl), - OCH2CH2-(6,7-dimethoxy-l,2,3,4-tetrahydroisoquinolin-2-yl), or substituted lH-pyrazol-3-yl; and xviii) the following two compounds are excluded:
Figure imgf000014_0001
and
[032] 2. Compounds and Definitions: [033] Compounds of this invention include those described generally above, and are further illustrated by the classes, subclasses, and species disclosed herein. As used herein, the following definitions shall apply unless otherwise indicated. [034] The term "ABC-transporter" as used herein means an ABC-transporter protein or a fragment thereof comprising at least one binding domain, wherein said protein or fragment thereof is present in vivo or in vitro. The term "binding domain" as used herein means a domain on the ABC-transporter that can bind to a modulator. See, e.g., Hwang, T. C. et al., J. Gen. Physiol. (1998): 111(3), 477-90. [035] The term "CFTR" as used herein means cystic fibrosis transmembrane conductance regulator or a mutation thereof capable of regulator activity, including, but not limited to, ΔF508 CFTR and G551D CFTR (see, e.g., http://www.genet.sickkids.on.ca/cftr/, for CFTR mutations). [036] The term "modulating" as used herein means increasing or decreasing by a measurable amount. [037] For purposes of this invention, the chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, Handbook of Chemistry and Physics, 75th Ed. Additionally, general principles of organic chemistry are described in "Organic Chemistry", Thomas Sorrell, University Science Books, Sausalito: 1999, and "March's Advanced Organic Chemistry", 5th Ed., Ed.: Smith, M.B. and March, J., John Wiley & Sons, New York: 2001, the entire contents of which are hereby incorporated by reference. [038] As described herein, compounds of the invention may optionally be substituted with one or more substituents, such as are illustrated generally above, or as exemplified by particular classes, subclasses, and species of the invention. It will be appreciated that the phrase "optionally substituted" is used interchangeably with the phrase "substituted or unsubstituted." In general, the term "substituted", whether preceded by the term "optionally" or not, refers to the replacement of hydrogen radicals in a given structure with the radical of a specified substituent. Unless otherwise indicated, an optionally substituted group may have a substituent at each substitutable position of the group, and when more than one position in any given structure may be substituted with more than one substituent selected from a specified group, the substituent may be either the same or different at every position. Combinations of substituents envisioned by this invention are preferably those that result in the formation of stable or chemically feasible compounds. The term "stable", as used herein, refers to compounds that are not substantially altered when subjected to conditions to allow for their production, detection, and preferably their recovery, purification, and use for one or more of the purposes disclosed herein. In some embodiments, a stable compound or chemically feasible compound is one that is not substantially altered when kept at a temperature of 4O0C or less, in the absence of moisture or other chemically reactive conditions, for at least a week. [039] The term "aliphatic" or "aliphatic group", as used herein, means a straight-chain (i.e., unbranched) or branched, substituted or unsubstituted hydrocarbon chain that is completely saturated or that contains one or more units of unsaturation, or a monocyclic hydrocarbon or bicyclic hydrocarbon that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic (also referred to herein as "carbocycle" "cycloaliphatic" or "cycloalkyl"), that has a single point of attachment to the rest of the molecule. Unless otherwise specified, aliphatic groups contain 1-20 aliphatic carbon atoms. In some embodiments, aliphatic groups contain 1-10 aliphatic carbon atoms. In other embodiments, aliphatic groups contain 1-8 aliphatic carbon atoms. In still other embodiments, aliphatic groups contain 1-6 aliphatic carbon atoms, and in yet other embodiments aliphatic groups contain 1-4 aliphatic carbon atoms. In some embodiments, "cycloaliphatic" (or "carbocycle" or "cycloalkyl") refers to a monocyclic C3-C8 hydrocarbon or bicyclic or tricyclic Cg-Ci4 hydrocarbon that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic, that has a single point of attachment to the rest of the molecule wherein any individual ring in said bicyclic ring system has 3-7 members. Suitable aliphatic groups include, but are not limited to, linear or branched, substituted or unsubstituted alkyl, alkenyl, alkynyl groups and hybrids thereof such as (cycloalkyl)alkyl, (cycloalkenyl)alkyl or (cycloalkyl)alkenyl. Suitable cycloaliphatic groups include cycloalkyl, bicyclic cycloalkyl (e.g., decalin), bridged bicycloalkyl such as norbomyl or [2.2.2]bicyclo- octyl, or bridged tricyclic such as adamantyl. [040] The term "heteroaliphatic", as used herein, means aliphatic groups wherein one or two carbon atoms are independently replaced by one or more of oxygen, sulfur, nitrogen, phosphorus, or silicon. Heteroaliphatic groups may be substituted or unsubstituted, branched or unbranched, cyclic or acyclic, and include "heterocycle", "heterocyclyl", "heterocycloaliphatic", or "heterocyclic" groups. [041] The term "heterocycle", "heterocyclyl", "heterocycloaliphatic", or "heterocyclic" as used herein means non-aromatic, monocyclic, bicyclic, or tricyclic ring systems in which one or more ring members is an independently selected heteroatom. In some embodiments, the "heterocycle", "heterocyclyl", "heterocycloaliphatic", or "heterocyclic" group has three to fourteen ring members in which one or more ring members is a heteroatom independently selected from oxygen, sulfur, nitrogen, or phosphorus, and each ring in the system contains 3 to 7 ring members. [042] The term "heteroatom" means one or more of oxygen, sulfur, nitrogen, phosphorus, or silicon (including, any oxidized form of nitrogen, sulfur, phosphorus, or silicon; the quaternized form of any basic nitrogen or; a substitutable nitrogen of a heterocyclic ring, for example N (as in 3,4-dihydro-2i/-pyrrolyl), NH (as in pyrrolidinyl) or NR+ (as in N- substituted pyrrolidinyl)). [043] The term "unsaturated", as used herein, means that a moiety has one or more units of unsaturation. [044] The term "alkoxy", or "thioalkyl", as used herein, refers to an alkyl group, as previously defined, attached to the principal carbon chain through an oxygen ("alkoxy") or sulfur ("thioalkyl") atom. [045] The terms "haloaliphatic" and "haloalkoxy" means aliphatic or alkoxy, as the case may be, substituted with one or more halo atoms. The term "halogen" or "halo" means F, Cl, Br, or I. Examples of haloaliphatic incude -CHF2, -CH2F, -CF3, -CF2-, or perhaloalkyl, such as, -CF2CF3. [046] The term "aryl" used alone or as part of a larger moiety as in "aralkyl", "aralkoxy", or "aryloxyalkyl", refers to monocyclic, bicyclic, and tricyclic ring systems having a total of five to fourteen ring members, wherein at least one ring in the system is aromatic and wherein each ring in the system contains 3 to 7 ring members. The term "aryl" may be used interchangeably with the term "aryl ring". The term "aryl" also refers to heteroaryl ring systems as defined hereinbelow. [047] The term "heteroaryl", used alone or as part of a larger moiety as in "heteroaralkyl" or "heteroarylalkoxy", refers to monocyclic, bicyclic, and tricyclic ring systems having a total of five to fourteen ring members, wherein at least one ring in the system is aromatic, at least one ring in the system contains one or more heteroatoms, and wherein each ring in the system contains 3 to 7 ring members. The term "heteroaryl" may be used interchangeably with the term "heteroaryl ring" or the term "heteroaromatic". [048] An aryl (including aralkyl, aralkoxy, aryloxyalkyl and the like) or heteroaryl (including heteroaralkyl and heteroarylalkoxy and the like) group may contain one or more substituents. Suitable substituents on the unsaturated carbon atom of an aryl or heteroaryl group are selected from halo; -R°-; -OR°; -SR°; 1,2-methylene-dioxy; 1,2-ethylenedioxy; phenyl (Ph) optionally substituted with R0; -O(Ph) optionally substituted with R0; -(CH2)!. 2(Ph), optionally substituted with R0; -CH=CH(Ph), optionally substituted with R0; -NO2; -CN; -N(R°)2; -NR0C(O)R0; -NR°C(O)N(R°)2; -NR0CO2R0; -NR0NR0C(O)R0; - NR°NR°C(O)N(R°)2; -NR0NR0CO2R0; -C(O)C(O)R0; -C(O)CH2C(O)R0; -CO2R0; -C(O)R0; - C(O)N(R°)2; -OC(O)N(R°)2; -S(O)2R0; -SO2N(R°)2; -S(O)R0; -NR°SO2N(R°)2; -NR0SO2R0; -C(=S)N(R°)2; -C(=NH)-N(R°)2; or -(CH2)0-2NHC(O)R° wherein each independent occurrence of R° is selected from hydrogen, optionally substituted C1-6 aliphatic, an unsubstituted 5-6 membered heteroaryl or heterocyclic ring, phenyl, -O(Ph), or -CH2(Ph), or, notwithstanding the definition above, two independent occurrences of R0, on the same substituent or different substituents, taken together with the atom(s) to which each R° group is bound, form a 3-8- membered cycloalkyl, heterocyclyl, aryl, or heteroaryl ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur. Optional substituents on the aliphatic group of R° are selected from NH2, NH(Ci_4aliphatic), N(Ci_4aliphatic)2, halo, Ci ^aliphatic, OH, O(Ci-4aliphatic), NO2, CN, CO2H, CO2(C i_4aliphatic), O(haloCM aliphatic), or haloCi. 4aliphatic, wherein each of the foregoing Ci-4aliphatic groups of R° is unsubstituted. [049] An aliphatic or heteroaliphatic group, or a non-aromatic heterocyclic ring may contain one or more substituents. Suitable substituents on the saturated carbon of an aliphatic or heteroaliphatic group, or of a non-aromatic heterocyclic ring are selected from those listed above for the unsaturated carbon of an aryl or heteroaryl group and additionally include the following: =O, =S, =NNHR*, =NN(R*)2, -NNHC(O)R*, =NNHCO2(alkyl), =NNHSO2(alkyl), or =NR , where each R is independently selected from hydrogen or an optionally substituted Ci-6 aliphatic. Optional substituents on the aliphatic group of R are selected from NH2, NH(Ci-4 aliphatic), N(CM aliphatic)2, halo, CM aliphatic, OH, O(CM aliphatic), NO2, CN, CO2H, CO2(C1-4 aliphatic), O(halo Ci-4 aliphatic), or halo(C1-4 aliphatic), wherein each of the foregoing C1-4aliphatic groups of R* is unsubstituted. [050] Optional substituents on the nitrogen of a non-aromatic heterocyclic ring are selected from -R+, -N(R+)2, -C(O)R+, -CO2R+, -C(O)C(O)R+, -C(O)CH2C(O)R+, -SO2R+, -SO2N(R+)2, -C(=S)N(R+)2, -C(=NH)-N(R+)2, or -NR+SO2R+; wherein R+ is hydrogen, an optionally substituted C1-6 aliphatic, optionally substituted phenyl, optionally substituted -O(Ph), optionally substituted -CH2(Ph), optionally substituted -(CH2)1-2(Ph); optionally substituted -CH=CH(Ph); or an unsubstituted 5-6 membered heteroaryl or heterocyclic ring having one to four heteroatoms independently selected from oxygen, nitrogen, or sulfur, or, notwithstanding the definition above, two independent occurrences of R+, on the same substituent or different substituents, taken together with the atom(s) to which each R+ group is bound, form a 3-8-membered cycloalkyl, heterocyclyl, aryl, or heteroaryl ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur. Optional substituents on the aliphatic group or the phenyl ring of R+ are selected from NH2, NH(C1-4 aliphatic), N(C1-4 aliρhatic)2, halo, C1-4 aliphatic, OH, 0(Ci-4 aliphatic), NO2, CN, CO2H, CO2(Ci-4 aliphatic), O(halo C1-4 aliphatic), or ImIo(C1-4 aliphatic), wherein each of the foregoing C1-4aliphatic groups ofR+ is unsubstituted. [051] The term "alkylidene chain" refers to a straight or branched carbon chain that may be fully saturated or have one or more units of unsaturation and has two points of attachment to the rest of the molecule. The term "spirocycloalkylidene" refers to a carbocyclic ring that may be fully saturated or have one or more units of unsaturation and has two points of attachment from the same ring carbon atom to the rest of the molecule. [052] As detailed above, in some embodiments, two independent occurrences of R0 (or R+, or any other variable similarly defined herein), are taken together together with the atom(s) to which each variable is bound to form a 3-8-membered cycloalkyl, heterocyclyl, aryl, or heteroaryl ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur. Exemplary rings that are formed when two independent occurrences of R0 (or R+, or any other variable similarly defined herein) are taken together with the atom(s) to which each variable is bound include, but are not limited to the following: a) two independent occurrences of R0 (or R , or any other variable similarly defined herein) that are bound to the same atom and are taken together with that atom to form a ring, for example, N(R°)2, where both occurrences of R0 are taken together with the nitrogen atom to form a piperidin-1-yl, piperazin- 1-yl, or morpholin-4-yl group; and b) two independent occurrences of R0 (or R+, or any other variable similarly defined herein) that are bound to different atoms and are taken together with both of those atoms to form a ring, for example where a phenyl group is substituted with two
occurrences of
Figure imgf000019_0001
these two occurrences of R0 are taken together with the oxygen atoms to which they are bound to form a fused 6-membered oxygen containing ring:
Figure imgf000019_0002
It will be appreciated that a variety of other rings can be formed when two independent occurrences of R0 (or R+, or any other variable similarly defined herein) are taken together with the atom(s) to which each variable is bound and that the examples detailed above are not intended to be limiting. [053] A substituent bond in, e.g., a bicyclic ring system, as shown below, means that the substituent can be attached to any substitutable ring atom on either ring of the bicyclic ring system:
Figure imgf000019_0003
[054] Unless otherwise stated, structures depicted herein are also meant to include all isomeric (e.g., enantiomeric, diastereomeric, and geometric (or conformational)) forms of the structure; for example, the R and S configurations for each asymmetric center, (Z) and (E) double bond isomers, and (Z) and (E) conformational isomers. Therefore, single stereochemical isomers as well as enantiomeric, diastereomeric, and geometric (or conformational) mixtures of the present compounds are within the scope of the invention. Unless otherwise stated, all tautomeric forms of the compounds of the invention are within the scope of the invention. E.g., when R5 in compounds of formula I is hydrogen, compounds of formula I may exist as tautomers:
Figure imgf000020_0001
I I Additionally, unless otherwise stated, structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structures except for the replacement of hydrogen by deuterium or tritium, or the replacement of a carbon by a 13C- or 14C-enriched carbon are within the scope of this invention. Such compounds are useful, for example, as analytical tools or probes in biological assays.
[055] 3. Description ofExemplaiy Compounds: [056] In some embodiments of the present invention, Ar1 is selected from:
Figure imgf000020_0002
a-i a-ii; wherein ring A1 5-6 membered aromatic monocyclic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; or A1 and A2, together, is an 8-14 aromatic, bicyclic or tricyclic aryl ring, wherein each ring contains 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. [057] In some embodiments, Ai is an optionally substituted 6 membered aromatic ring having 0-4 heteroatoms, wherein said heteroatom is nitrogen. In some embodiments, Ai is an optionally substituted phenyl. Or, Ai is an optionally substituted pyridyl, pyrimidinyl, pyrazinyl or triazinyl. Or, Ai is an optionally substituted pyrazinyl or triazinyl. Or, Ai is an optionally substituted pyridyl. [058] In some embodiments, Aj is an optionally substituted 5-membered aromatic ring having 0-3 heteroatoms, wherein said heteroatom is nitrogen, oxygen, or sulfur. In some embodiments, Ai is an optionally substituted 5-membered aromatic ring having 1-2 nitrogen atoms. In one embodiment, Ai is an optionally substituted 5-membered aromatic ring other than thiazolyl. [059] In some embodiments, A2 is an optionally substituted 6 membered aromatic ring having 0-4 heteroatoms, wherein said heteroatom is nitrogen. In some embodiments, A2 is an optionally substituted phenyl. Or, A2 is an optionally substituted pyridyl, pyrimidinyl, pyrazinyl, or triazinyl. [060] In some embodiments, A2 is an optionally substituted 5-membered aromatic ring having 0-3 heteroatoms, wherein said heteroatom is nitrogen, oxygen, or sulfur. In some embodiments, A2 is an optionally substituted 5-membered aromatic ring having 1-2 nitrogen atoms. In certain embodiments, A2 is an optionally substituted pyrrolyl. [061] In some embodiments, A2 is an optionally substituted 5-7 membered saturated or unsaturated heterocyclic ring having 1-3 heteroatoms independently selected from nitrogen, sulfur, or oxygen. Exemplary such rings include piperidyl, piperazyl, morpholinyl, thiomorpholinyl, pyrrolidinyl, tetrahydrofuranyl, etc. [062] In some embodiments, A2 is an optionally substituted 5-10 membered saturated or unsaturated carbocyclic ring. In one embodiment, A2 is an optionally substituted 5-10 membered saturated carbocyclic ring. Exemplary such rings include cyclohexyl, cyclopentyl, etc. [063] In some embodiments, ring A2 is selected from:
Figure imgf000021_0001
U IU IV /O (WRw)m (WRw)m
Figure imgf000022_0001
Figure imgf000022_0002
V vi vii viii
o (WRw)m
Figure imgf000022_0003
IX Xl xii
Figure imgf000022_0004
XlU XlV XV xvi
Figure imgf000022_0005
xvii XVJUl XlX
Figure imgf000022_0006
XX XXl xxii xxiii
Figure imgf000022_0007
XXlV XXV XXVl xxviii
Figure imgf000023_0001
xxix xxx xxxi xxxn; wherein ring A2 is fused to ring Aj through two adjacent ring atoms. [064] In other embodiments, W is a bond or is an optionally substituted Ci-6 alkylidene chain wherein one or two methylene units are optionally and independently replaced by O, NR', S, SO, SO2, or COO, CO, SO2NR', NR5SO2, C(O)NR', NR'C(O), OC(O), OC(O)NR', and Rw is R' or halo. In still other embodiments, each occurrence of WR w is independently -C 1-C3 alkyl, C1-C3 perhaloalkyl, -0(Cl-C3alkyl), -CF3, -OCF3, -SCF3, -F, - Cl, -Br, or -COOR', -COR', -O(CH2)2N(R)(R'), -0(CH2)N(R')(R'), -CON(R)(R'), - (CH2)2θR', -(CH2)OR', optionally substituted monocyclic or bicyclic aromatic ring, optionally substituted arylsulfone, optionally substituted 5-membered heteroaryl ring, -N(R')(R'), - (CH2)2N(R')(R'), or -(CH2)N(RO(R'). [065] In some embodiments, m is O. Or, m is 1. Or, m is 2. In some embodiments, m is 3. In yet other embodiments, m is 4. [066] In one embodiment, R5 is X-Rx. In some embodiments R5 is hydrogen. Or, R5 is an optionally substituted C1-8 aliphatic group. In some embodiments, R5 is optionally substituted C1-4 aliphatic. Or, R5 is benzyl. [067] In some embodiments R6 is hydrogen. Or, R6 is an optionally substituted Ci-8 aliphatic group. In some embodiments, R6 is optionally substituted C1-4 aliphatic. In certain other embodiments, R is -(0-C1-4 aliphatic) or -(S-C1-4 aliphatic). Preferably, R6 is -OMe or - SMe. In certain other embodiments, R6 is CF3. [068] In one embodiment of the present invention, R1, R2, R3, and R4 are simultaneously hydrogen. In another embodiment, R6 and R7 are both simultaneously hydrogen. [069] In another embodiment of the present invention, R1, R2, R3, R4, and R5 are simultaneously hydrogen. In another embodiment of the present invention, R1, R2, R3, R4, R5 and R6 are simultaneously hydrogen. [070] In another embodiment of the present invention, R" is X-R , wherein X is - SO2NR'-, and Rx is R'; i.e., R2 is -SO2N(R')2. In one embodiment, the two R' therein taken together form an optionally substituted 5-7 membered ring with 0-3 additional heteroatoms selected froni nitrogen, oxygen, or sulfur. Or, R1, R3, R4, R5 and R6 are simultaneously hydrogen, and R2 is SO2N(R')2. [071] In some embodiments, X is a bond or is an optionally substituted Ci-6 alkylidene chain wherein one or two non-adjacent methylene units are optionally and independently replaced by O, NR', S, SO2, or COO, CO, and Rx is R' or halo. In still other embodiments, each occurrence of XRX is independently -Ci-3alkyl, -O(Ci-3alkyl), -CF3, -OCF3, -SCF3, -F, - Cl, -Br, OH, -COOR', -COR', -O(CH2)2N(R')(R'), -O(CH2)N(R')(R'), -CON(R')(R'), - (CH2)2OR', -(CH2)OR', optionally substituted phenyl, -N(R')(R'), -(CH2)2N(R')(R'), or - (CH2)N(R')(R'). [072] In some embodiments, R7 is hydrogen. In certain other embodiment, R7 is C1-4 straight or branched aliphatic. [073] In some embodiments, Rw is selected from halo, cyano, CF3, CHF2, OCHF2, Me, Et, CH(Me)2, CHMeEt, n-propyl, t-butyl, OMe, OEt, OPh, O-fluorophenyl, O- difluorophenyl, O-methoxyphenyl, O-tolyl, O-benzyl, SMe, SCF3, SCHF2, SEt, CH2CN, NH2, NHMe, N(Me)2, NHEt, N(Et)2, C(O)CH3, C(O)Ph, C(O)NH2, SPh, SO2-(amino-pyridyl), SO2NH2, SO2Ph, SO2NHPh, SO2-N-morpholino, SO2-N-ρyrrolidyl, N-pyrrolyl, N-morpholino, 1-piperidyl, phenyl, benzyl, (cyclohexyl-methylammo)methyl, 4-Methyl-2,4-dihydro-pyrazol-3- one-2-yl, benzimidazol-2yl, furan-2-yl, 4-methyl-4H-[l,2,4]triazol-3-yl, 3-(4'-chlorophenyl)- [l,2,4]oxadiazol-5-yl, NHC(O)Me, NHC(O)Et, NHC(O)Ph, NHSO2Me, 2-indolyl, 5-indolyl, - CH2CH2OH, -OCF3, O-(2,3-dimethylphenyl), 5-methylfuryl, -SO2-N-piperidyl, 2-tolyl, 3-tolyl, 4-tolyl, O-butyl, NHCO2C(Me)3, CO2C(Me)3, isopropenyl, n-butyl, 0-(2,4-dichlorophenyl), NHSO2PhMe, O-(3-chloro-5-trifluoromethyl-2-ρyridyl), phenylhydroxymethyl, 2,5- dimethylpyrrolyl, NHCOCH2C(Me)3, 0-(2-tert-butyl)phenyl, 2,3-dimethylphenyl, 3,4- dimethylphenyl, 4-hydroxymethyl phenyl, 4-dimethylaminophenyl, 2-trifluoromethylphenyl, 3- trifluoromethylphenyl, 4- trifluoromethylphenyl, 4-cyanomethylphenyl, 4-isobutylphenyl, 3- pyridyl, 4-pyridyl, 4-isopropylphenyl, 3-isoproρylphenyl, 2-methoxyphenyl, 3-methoxyρhenyl, 4.-methoxyphenyl, 3,4-methylenedioxyphenyl, 2-ethoxyphenyl, 3-ethoxyphenyl, 4-ethoxyphenyl, 2-methylthiophenyl, 4-methylthiophenyl, 2,4-dimethoxyphenyl, 2,5-dimethoxyphenyl, 2,6- dimethoxyphenyl, 3,4-dimethoxyphenyl, 5-chloro-2-methoxyphenyl, 2-OCF3-phenyl, 3- trifluoromethoxy-phenyl, 4-trifluoromethoxyphenyl, 2-phenoxyphenyl, 4-phenoxyphenyl, 2- fluoro-3-methoxy-phenyl, 2,4-dimethoxy-5-pyrimidyl, 5-isopropyl-2-methoxyphenyl, 2- fluorophenyl, 3 -fluorophenyl, 4-fluorophenyl, 3-cyanophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,3-difluorophenyl, 2,4-difluorophenyl, 2,5-difluorophenyl, 3,4-difluorophenyl, 3,5- difluorophenyl, 3-chloro-4-fluoro-phenyl, 3,5-dichlorophenyl, 2,5-dichlorophenyl, 2,3- dichlorophenyl, 3,4-dichlorophenyl, 2,4-dichlorophenyl, 3-methoxycarbonylphenyl, 4- methoxycarbonyl phenyl, 3-isopropyloxycarbonylphenyl, 3-acetamidophenyl, 4-fluoro-3- methylphenyl, 4-methanesulfinyl-phenyl, 4-methanesulfonyl-phenyl, 4-N-(2-N,N- dimethylaminoethyl)carbamoylphenyl, 5-acetyl-2-thienyl, 2-benzothienyl, 3-benzothienyl, furan- 3-yl, 4-methyl-2-thienyl, 5-cyano-2-thienyl, N' -phenyl carbonyl-N-piperazinyl, -NHCO2Et, - NHCO2Me, N-pyrrolidinyl, -NHSO2(CH2)2N-piperidine, -NHSO2(CH2)2N-morpholine, - NHSO2(CH2)2N(Me)2, COCH2N(Me)COCH2NHMe, -CO2Et, O-propyl, - CH2CH2NHCO2C(Me)3, hydroxy, aminomethyl, pentyl, adamantyl, cyclopentyl, ethoxyethyl, C(Me)2CH2OH, C(Me)2CO2Et, -CHOHMe, CH2CO2Et, -C(Me)2CH2NHCO2C(Me)3, O(CH2)2OEt, O(CH2)2OH, CO2Me, hydroxymethyl, , 1 -methyl- 1-cyclohexyl, 1 -methyl- 1- cyclooctyl, 1 -methyl- 1-cycloheptyl, C(Et)2C(Me)3, C(Et)3, CONHCH2CH(Me)2, 2-aminomethyl- phenyl, ethenyl, 1-piperidinylcarbonyl, ethynyl, cyclohexyl, 4-methylpiperidinyl, -OCO2Me, - C(Me)2CH2NHCO2CH2CH(Me)2, -C(Me)2CH2NHCO2CH2CH2CH3, .C(Me)2CH2NHCO2Et, - C(Me)2CH2NHCO2Me, -C(Me)2CH2NHCO2CH2C(Me)3, -CH2NHCOCF3, -CH2NHCO2C(Me)3, -C(Me)2CH2NHCO2(CH2)3CH3, C(Me)2CH2NHCO2(CH2)2OMe, C(OH) (CF3)2, - C(Me)2CH2NHCO2CH2-tetrahydrofurane-3-yl, C(Me)2CH2O(CH2)2OMe, or 3-ethyl-2,6- dioxopiperidin-3-yl. [074] In one embodiment, R' is hydrogen. [075] In one embodiment, R' is a C1-C8 aliphatic group, optionally substituted with up to 3 substituents selected from halo, CN, CF3, CHF2, OCF3, or OCHF2, wherein up to two methylene units of said C1-C8 aliphatic is optionally replaced with -CO-, -CONH(C 1-C4 alkyl)-, -CO2-, -OCO-, -N(C1-C4 alkyl)CO2-, -0-, -N(C1-C4 alkyl)CON(Cl-C4 alkyl)-, -0C0N(Cl-C4 alkyl)-, -N(C1-C4 alkyl)CO-, -S-, -N(C1-C4 alkyl)-, -SO2N(C1-C4 alkyl)-, N(C1-C4 alkyl)SO2-, or -N(C1-C4 alkyl)SO2N(Cl-C4 alkyl)-. [076] In one embodiment, R' is a 3-8 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein R' is optionally substituted with up to 3 substituents selected from halo, CN, CF3, CHF2, OCF3, OCHF2, or C1-C6 alkyl, wherein up to two methylene units of said C1-C6 alkyl is optionally replaced with -CO-, -CONH(C 1-C4 alkyl)-, -CO2-, -OCO-, -N(C1-C4 alkyl)CO2-, -0-, -N(Cl-CM alkyl)CON(Cl-C4 alkyl)-, -OCON(Cl- C4 alkyl)-, -N(Cl-CM alkyl)CO-, -S-, -N(Cl-CM alkyl)-, -SO2N(C 1-C4 alkyl)-, N(C1-C4 alkyl)SO2-, or -N(Cl -C4 alkyl) S O2N(C 1-C4 alkyl)-. [077] In one embodiment, R' is an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur; wherein R' is optionally substituted with up to 3 substituents selected from halo, CN, CF3, CHF2, OCF3, OCHF2, or C1-C6 alkyl, wherein up to two methylene units of said C1-C6 alkyl is optionally replaced with -CO-, -CONH(C1-C4 alkyl)-, -CO2-, -OCO-, -N(Cl-CM alkyl)CO2-, -O-, -N(Cl-CM alkyl)CON(Cl-C4 alkyl)-, -OCON(Cl- C4 alkyl)-, -N(Cl-CM alkyl)CO-, -S-, -N(Cl-CM alkyl)-, -SO2N(C1-C4 alkyl)-, N(Cl-CM alkyl)SO2-, or -N(Cl-CM alkyl) S O2N(C 1-C4 alkyl)-. [078] In one embodiment, two occurrences of R' are taken together with the atom(s) to which they are bound to form an optionally substituted 3-12 membered saturated, partially unsaturated, or fully unsaturated monocyclic or bicyclic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein R' is optionally substituted with up to 3 substituents selected from halo, CN, CF3, CHF2, OCF3, OCHF2, or C1-C6 alkyl, wherein up to two methylene units of said C1-C6 alkyl is optionally replaced with -CO-, - CONH(C1-C4 alkyl)-, -CO2-, -OCO-, -N(Cl-CM alkyl)CO2-, -0-, -N(Cl-CM alkyl)C0N(Cl-C4 alkyl)-, -OCON(C1-C4 alkyl)-, -N(Cl-CM alkyl)CO-, -S-, -N(Cl-CM alkyl)-, -SO2N(C1-C4 alkyl)-, N(Cl-CM alkyl)SO2-, or -N(Cl-CM alkyl)SO2N(Cl-C4 alkyl)-. [079] According to one embodiment, the present invention provides compounds of formula HA or formula HB:
Figure imgf000027_0001
IIA HB [080] According to another embodiment, the present invention provides compounds of formula HIA, formula IHB, formula IIIC, formula HID, or formula HIE:
Figure imgf000027_0002
IHA
Figure imgf000027_0003
IHB IIIC
Figure imgf000027_0004
IHD HIE wherein each OfX1, X2, X3, X4, and X5 is independently selected from CH or N; and X6 is O, S, orNR'. [081] In one embodiment, compounds of formula IHA, formula HIB, formula IIIC, formula HID, or formula IHE have y occurrences of substituent X-Rx, wherein y is 0-4. Or, y is 1. Or, y is 2. [082] In some embodiments of formula HIA, X1, X2, X3, X4, and X5 taken together with WRW and m is optionally substituted phenyl. [083] In some embodiments of formula IHA, Xi, X2, X3, X4, and X5 taken together is an optionally substituted ring selected from:
Figure imgf000028_0001
a-vi a-vn a-viii a-ix a-x
Figure imgf000028_0002
a-xi a-xu a-xui a-xiv a-xv a-xvi
Figure imgf000028_0003
a-xvii a-xviii a-xix a-xx a-xxi
Figure imgf000028_0004
a-xxu a-xxm a-xxiv a-xxv
[084] In some embodiments of formula IHB, formula IHC, formula HID, or formula HIE, X1, X2, X3, X4, X5, or X6, taken together with ring A2 is an optionally substituted ring ' selected from:
Figure imgf000028_0005
b-i b-ii b-iii b-iv b-v
Figure imgf000029_0001
Figure imgf000029_0002
b-xvi b-xvii b-xviϋ b-xix b-xx
Figure imgf000029_0003
bxxxi b-xxxii b-xxxiϋ b-xxxiv
Figure imgf000030_0001
b-xxxv b-xxxvi b-xxxvii
Figure imgf000030_0002
b-xxxviii bxxxix b-xL b-xLi b-xLii
Figure imgf000030_0003
Figure imgf000030_0004
b-xLviii
Figure imgf000030_0005
Figure imgf000030_0006
Figure imgf000031_0001
b-Lix b-Lx b-Lxi b-Lxϋ
Figure imgf000031_0002
b-Lxvii b-Lxviii b-Lxix b-Lxx
Figure imgf000031_0003
b-Lxxi b-Lxxii b-Lxxiii b-Lxxiv
Figure imgf000032_0001
b-Lxxv b-Lxxvi b-Lxxvii b-Lxxviii
Figure imgf000032_0002
b-Lxxix b-Lxxx b-Lxxxi b-Lxxxii
Figure imgf000032_0003
b-Lxxxv b-Lxxxvi
Figure imgf000032_0005
Figure imgf000032_0004
b-Lxxxviii b-Lxxxix
Figure imgf000032_0006
b-xCi
Figure imgf000032_0007
b-xCi b-xCii b-xCiii b-xCiv
Figure imgf000032_0008
b-xCv b-xCvi b-xCvii b-xCviii
Figure imgf000033_0001
b-xCix b-C b-Ci b-Cii. [085] In some embodiments, Rw is selected from halo, cyano, CF3, CHF2, OCHF2, Me, Et, CH(Me)2, CHMeEt, n-propyl, t-butyl, OMe, OEt, OPh, O-fluorophenyl, O- difluorophenyl, O-methoxyphenyl, O-tolyl, O-benzyl, SMe, SCF3, SCHF2, SEt, CH2CN, NH2, NHMe, N(Me)2, NHEt, N(Et)2, C(O)CH3, C(O)Ph, C(O)NH2, SPh, SO2-(amino-pyridyl), SO2NH2, SO2Ph, SO2NHPh, SO2-N-morpholino, SO2-N-pyrrolidyl, N-pyrrolyl, N- morpholino, 1-piperidyl, phenyl, benzyl, (cyclohexyl-methylamino)methyl, 4-Methyl-2,4- dihydro-pyrazol-3-one-2-yl, benzimidazol-2yl, furan-2-yl, 4-methyl-4H-[l,2,4]triazol-3-yl, 3- (4'-chlorophenyl)-[l,2,4]oxadiazol-5-yl, NHC(O)Me, NHC(O)Et, NHC(O)Ph, Or NHSO2Me [086] In some embodiments, X and Rx, taken together, is Me, Et, halo, CN, CE3, OH, OMe, OEt, SO2N(Me)(fluoroρhenyl), SO2-(4-methyl-piρeridin-l-yl, or S02-N-pyrrolidinyl. [087] According to another embodiment, the present invention provides compounds of formula IVA, formula IVB, or formula IVC:
Figure imgf000033_0002
IVA
Figure imgf000033_0003
IVB IVC [088] In one embodiment compounds of formula IVA, formula IVB, and formula IVC have y occurrences of substituent X-Rx, wherein y is 0-4. Or, y is 1. Or, y is 2. [089] In one embodiment, the present invention provides compounds of formula IVA, formula IVB, and formula IVC, wherein X is a bond and R is hydrogen. [090] In one embodiment, the present invention provides compounds of formula formula IVB, and formula IVC, wherein ring A2 is an optionally substituted, saturated, unsaturated, or aromatic seven membered ring with 0-3 hetero atoms selected from O, S, or N. Exemplary rings include azepanyl, 5, 5 -dimethyl azepanyl, etc. [091] In one embodiment, the present invention provides compounds of formula IVB and IVC, wherein ring A2 is an optionally substituted, saturated, unsaturated, or aromatic six membered ring with 0-3 heteroatoms selected from O, S, or N. Exemplary rings include piperidinyl, 4,4-dimethylpiperidinyl, etc. [092] In one embodiment, the present invention provides compounds of formula IVB and IVC, wherein ring A2 is an optionally substituted, saturated, unsaturated, or aromatic five membered ring with 0-3 heteroatoms selected from O, S, or N. [093] In one embodiment, the present invention provides compounds of formula IVB and IVC, wherein ring A2 is an optionally substituted five membered ring with one nitrogen atom, e.g., pyrrolyl or pyrrolidinyl. [094] According to one embodiment of formula IVA, the following compound of formula VA-I is provided:
Figure imgf000034_0001
VA-I wherein each of WR W2 a _n. d W mRW4 i s independently selected from hydrogen, CN, CF3, halo, C1-C6 straight or branched alkyl, 3-12 membered cycloaliphatic, phenyl, C5-C10 heteroaryl or C3-C7 heterocyclic, wherein said heteroaryl or heterocyclic has up to 3 heteroatoms selected from O, S, or N, wherein said WRW2 and WRW4 is independently and optionally substituted with up to three substituents selected from -OR', -CF3, -OCF3, SR', S(O)R', SO2R', -SCF3, halo, CN, -COOR', -COR', -O(CH2)2N(R')(R'), -O(CH2)N(R')(R'), - CON(R'XR'), -(CH2)2OR', -(CH2)OR', CH2CN, optionally substituted phenyl or phenoxy, - N(R')(R'), -NR5C(O)OR', -NR5C(O)R', -(CH2)2N(R')(R5), or -(CH2)N(R')(R5); and WRW5 is selected from hydrogen, -OH, NH2, CN, CHF2, NHR', N(R')2, -NHC(O)R5, -NHC(O)OR5, NHSO2R5, -OR5, CH2OH, CH2N(R')2, C(O)OR', SO2NHR', SO2N(R')2, or CH2NHC(O)OR'. Or, WR W4 and WRW5 taken together form a 5-7 membered ring containing 0-3 three heteroatoms selected from N, O, or S, wherein said ring is optionally substituted with up to three WRW substituents. [095] In one embodiment, compounds of formula VA-I have y occurrences of X-Rx, wherein y is 0-4. In one embodiment, y is 0. [096] In one embodiment, the present invention provides compounds of formula VA- 1, wherein X is a bond and Rx is hydrogen. [097] In one embodiment, the present invention provides compounds of formula VA- 1, wherein: each of WR W2 and WR W4 is independently selected from hydrogen, CN, CF3, halo, C1-C6 straight or branched alkyl, 3-12 membered cycloaliphatic, or phenyl, wherein said WR W2 and WR w4 is independently and optionally substituted with up to three substituents selected from -OR', -CF3, -OCF3, -SCF3, halo, -COOR', -COR', -O(CH2)2N(R')(R'), - O(CH2)N(R')(R'), -CON(R1XR'), -(CH2)2OR\ -(CH2)OR', optionally substituted phenyl, - N(R')(R'), -NC(O)OR', -NC(O)R', -(CH2)2N(R')(R'), or -(CH2)N(R')(R'); and WRW5 is selected from hydrogen, -OH, NH2, CN, NHR', N(R')2, -NHC(O)R', - NHC(O)OR', NHSO2R', -OR', CH2OH, C(O)OR', SO2NHR', or CH2NHC(O)O-(R'). [098] In one embodiment, the present invention provides compounds of formula VA- 1, wherein: WR is a pheny ring optionally substituted with up to three substituents selected from — OR', -CF3, -OCF3, SR', S(O)R', SO2R', -SCF3, halo, CN, -COOR', -COR', - O(CH2)2N(R')(R'), -O(CH2)N(R')(R'), -C0N(R')(R'), -(CH2)2OR\ -(CH2)OR', CH2CN, optionally substituted phenyl or phenoxy, -N(R')(R'), -NR5C(O)OR', -NR5C(O)R', - (CH2)2N(R')(R5), or -(CH2)N(R')(R'); WRW4 is C1-C6 straight or branched alkyl; and WRW5 is OH. [099] In one embodiment, each of WRW2 and WRw4 is independently selected from CF3 or halo. In one embodiment, each of WRW2 and WRW4 is independently selected from optionally substituted hydrogen, C1-C6 straight or branched alkyl. In certain embodiments, each of of WRW2 and WRW4 is independently selected from optionally substituted n-propyl, isopropyl, n-butyl, sec-butyl, t-butyl, l,l-dimethyl-2-hydroxyethyl, l,l-dimethyl-2- (ethoxycarbonyl)-ethyl, l,l-dimethyl-3-(t-butoxycarbonyl-amino) propyl, or n-pentyl. [0100] In one embodiment, each of WR W2 and WR W4 is independently selected from optionally substituted 3-12 membered cycloaliphatic. Exemplary embodiments of such cycloaliphatic include cyclopentyl, cyclohexyl, cycloheptyl, norbornyl, adamaiityl, [2.2.2.]bicyclo-octyl, [2.3.1.] bicyclo-octyl, or [3.3.1]bicyclo-nonyl. [0101] In certain embodiments WRW2 is hydrogen and WRW4 is C1-C6 straight or branched alkyl. In certain embodiments, WR W4 is selected from methyl, ethyl, propyl, n-butyl, sec-butyl, or t-butyl. [0102] In certain embodiments WRW4 is hydrogen and WRW2 is C1-C6 straight or branched alkyl. In certain embodiments, WR W2 is selected from methyl, ethyl, propyl, n-butyl, sec-butyl, t-butyl, or n-pentyl. [0103] In certain embodiments each of WRW2 and WRW4 is C1-C6 straight or branched alkyl. In certain embodiments, each of WRW2 and WRW4 is selected from methyl, ethyl, propyl, n-butyl, sec-butyl, t-butyl, or pentyl. [0104] In one embodiment, WRW5 is selected from hydrogen, CHF2, NH2, CN, NHR', N(R')2, CH2N(R')2, -NHC(O)R', -NHC(O)OR', -OR', C(O)OR', or SO2NHR'. Or, WRW5 is - OR', e.g., OH. [0105] In certain embodiments, WRW5 is selected from hydrogen, NH2, CN, CHF2, NH(Cl-CO alkyl), N(Cl -C6 alkyl)2, -NHC(O)(Cl-Co alkyl), -CH2NHC(O)O(Cl-Co alkyl), - NHC(O)O(Cl-Co alkyl), -OH, -O(C1-C6 alkyl), C(O)O(Cl-Co alkyl), CH2O(Cl-Co alkyl), or SO2NH2. In another embodiment, WRW5 is selected from -OH, OMe, NH2, -NHMe, -N(Me)2, -CH2NH2, CH2OH, NHC(O)OMe, NHC(O)OEt, CN, CHF2, -CH2NHC(O)O(t-butyl), -O- (ethoxyethyl), -O-(hydroxyethyl), -C(O)OMe, or -SO2NH2. [0106] In one embodiment, compound of formula VA-I has one, preferably more, or more preferably all, of the following features: i) WRW2 is hydrogen; ii) WRW4 is C1-C6 straight or branched alkyl or monocyclic or bicyclic aliphatic; and iii) WRW5 is selected from hydrogen, CN, CHF2, NH2, NH(C1-C6 alkyl), N(Cl-Co alkyl)2, -NHC(O)(C1-C6 alkyl), -NHC(O)O(Cl-Co alkyl), -CH2C(O)O(Cl-CO alkyl), -OH, -O(C1-C6 alkyl), C(O)O(C1-C6 alkyl), or SO2NH2. [0107] In one embodiment, compound of formula VA-I has one, preferably more, or more preferably all, of the following features: i) WRW2 is halo, C1-C6 alkyl, CF3, CN, or phenyl optionally substituted with up to 3 substituents selected from C1-C4 alkyl, -O(C1-C4 alkyl), or halo; ii) WRW4 is CF3, halo, C1-C6 alkyl, or C6-C10 cycloaliphatic; and iii) WRW5 is OH, NH2, NH(Cl-Co alkyl), or N(Cl-Co alkyl). [0108] In one embodiment, X-Rx is at the 6-position of the quinolinyl ring. In certain embodiments, X-Rx taken together is C1-C6 alkyl, -O-(C1-C6 alkyl), or halo. [0109] In one embodiment, X-Rx is at the 5-position of the quinolinyl ring. In certain embodiments, X-R taken together is -OH. [0110] In another embodiment, the present invention provides compounds of formula VA-I, wherein WRW4 and WRW5 taken together form a 5-7 membered ring containing 0-3 three heteroatoms selected from N, O, or S, wherein said ring is optionally substituted with up to three WRW substituents. [0111] In certain embodiments, WRW4 and WRW5 taken together form an optionally substituted 5-7 membered saturated, unsaturated, or aromatic ring containing 0 heteroatoms. In other embodiments, WRW4 and WRW5 taken together form an optionally substituted 5-7 membered ring containing 1-3 heteroatoms selected from N, O, or S. In certain other embodiments, WR 4 and WRW5 taken together form an optionally substituted saturated, unsaturated, or aromatic 5-7 membered ring containing 1 nitrogen heteroatom. In certain other embodiments, WRW4 and WRW5 taken together form an optionally substituted 5-7 membered ring containing 1 oxygen heteroatom. [0112] In another embodiment, the present invention provides compounds of formula V-A-2:
Figure imgf000037_0001
V-A-2 wherein: Y is CH2, C(O)O, C(O), or S(O)2; m is 0-4; and X, Rx, W, and Rw are as defined above. [0113] In one embodiment, compounds of formula VA-2 have y occurrences of X-R , wherein y is 0-4. In one embodiment, y is 0. Or, y is 1. Or, y is 2. [0114] In one embodiment, Y is C(O). In another embodiment, Y is C(O)O. Or, Y is S(O)2. Or, Y is CH2. [0115] In one embodiment, m is 1 or 2. Or, m is 1. Or, m is 0. [0116] In one embodiment, W is a bond. [0117] In another embodiment, Rw is C1-C6 aliphatic, halo, CF3, or phenyl optionally substituted with C1-C6 alkyl, halo, cyano, or CF3, wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with -CO-, -CONR'-, -CO2-, -OCO-, -NR5CO2-, -O-, -NR'CONR'-, -OCONR'-, -NR'CO-, -S-, -NR'-, -SO2NR'-, NR5SO2-, or - NR5SO2NR5-. In another embodiment, R' above is C1-C4 alkyl. Exemplary embodiments of WRW include methyl, ethyl, propyl, tert-butyl, or 2-ethoxyphenyl. [0118] In another embodiment, Rw in Y-Rw is C1-C6 aliphatic optionally substituted with N(R")2, wherein R55 is hydrogen, C1-C6 alkyl, or two R" taken together form a 5-7 membered heterocyclic ring with up to 2 additional heteroatoms selected from O, S, or NR'. Exemplary such heterocyclic rings include pyrrolidinyl, piperidyl, morpholinyl, or thiomorpholinyl . [0119] In another embodiment, the present invention provides compounds of formula V-A-3:
Figure imgf000038_0001
V-A-3 wherein: Q is W; RQ is Rw; m is 0-4; n is 0-4; and X, Rx, W, and Rw are as defined above. [0120] In one embodiment, compounds of formula VA-3 have y occurrences of X-Rx, wherein y is 0-4. In one embodiment, y is 0. Or, y is 1. Or, y is 2. [0121] In one embodiment, n is 0-2. [0122] In another embodiment, m is 0-2. In one embodiment, m is 0. In one embodiment, m is 1. Or, m is 2. [0123] In one embodiment, QRQ taken together is halo, CF3, OCF3, CN, C1-C6 aliphatic, O-C1-C6 aliphatic, O-phenyl, NH(Cl-Co aliphatic), or N(Cl-Co aliphatic)2, wherein said aliphatic and phenyl are optionally substituted with up to three substituents selected from C1-C6 alkyl, O-C1-C6 alkyl, halo, cyano, OH, or CF3, wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with -CO-, -CONR'-, -CO2-, -OCO-, -NR5CO2-, -O-, -NR'CONR'-, -OCONR'-, -NR'CO-, -S-, -NR'-, SOR', SO2R', -SO2NR'-, NR5SO2-, or -NR5SO2NR'-. In another embodiment, R5 above is C1-C4 alkyl. [0124] Exemplary QRQ include methyl, isopropyl, sec-butyl, hydroxymethyl, CF3, NMe2, CN, CH2CN, fluoro, chloro, OEt, OMe, SMe, OCF3, OPh, C(O)OMe, C(O)O-iPr, S(O)Me, NHC(O)Me, or S(O)2Me. [0125] In another embodiment, the present invention provides compounds of formula V-A-4:
Figure imgf000039_0001
V-A-4 wherein X, RΛ, and Rw are as defined above. [0126] In one embodiment, compounds of formula VA-4 have y occurrences of X-Rx, wherein y is 0-4. In one embodiment, y is O. Or3 y is 1. Or, y is 2. [0127] In one embodiment, Rw is C1-C12 aliphatic, C5-C10 cycloaliphatic, or C5-C7 heterocyclic ring, wherein said aliphatic, cycloaliphatic, or heterocyclic ring is optionally substituted with up to three substituents selected from C1-C6 alkyl, halo, cyano, oxo, OH, or CF3, wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with -CO-, -CONR'-, -CO2-, -OCO-, -NR5CO2-, -O-, -NR'CONR'-, -OCONR'-, -NR'CO-, -S-, -NR'-, -SO2NR'-, NR5SO2-, or -NR'SO2NR'-. In another embodiment, R' above is Cl-C4 alkyl. [0128] Exemplary Rw includes methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, t- butyl, n-pentyl, vinyl, cyanomethyl, hydroxymethyl, hydroxyethyl, hydroxybutyl, cyclohexyl, adamantyl, or -C(CH3)2-NHC(O)O-T, wherein T is C1-C4 alkyl, methoxyethyl, or tetrahydro furanylmethyl . [0129] In another embodiment, the present invention provides compounds of formula V-A-5:
Figure imgf000040_0001
V-A-5 wherein: m is 0-4; and X, Rx, W, Rw, and R' are as defined above. [0130] In one embodiment, compounds of formula VA-5 have y occurrences of X-Rx, wherein y is 0-4. In one embodiment, y is 0. Or, y is 1. Or, y is 2. [0131] In one embodiment, m is 0-2. Or, m is 1. Or, m is 2. [0132] In another embodiment, both R' are hydrogen. Or, one R' is hydrogen and the other R' is C1-C4 alkyl, e.g., methyl. Or, both R' are C1-C4 alkyl, e.g., methyl. [0133] In another embodiment, m is 1 or 2, and Rw is halo, CF3, CN, C1-C6 aliphatic, O-C1-C6 aliphatic, or phenyl, wherein said aliphatic and phenyl are optionally substituted with up to three substituents selected from C1-C6 alkyl, O-C1-C6 alkyl, halo, cyano, OH, or CF3, wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with -CO-, -CONR'-, -CO2-, -OCO-, -NR5CO2-, -O-, -NR'CONR'-, -OCONR'-, -NR'CO-, -S-, -NR'-, -SO2NR'-, NR5SO2-, or -NR5SO2NR5-. In another embodiment, R5 above is C1-C4 alkyl. [0134] Exemplary embodiments of Rw include chloro, CF3, OCF3, methyl, ethyl, n- propyl, isopropyl, n-butyl, t-butyl, methoxy, ethoxy, propyloxy, or 2-ethoxyphenyl. [0135] In another embodiment, the present invention provides compounds of formula V-A-6:
Figure imgf000041_0001
V-A-6 wherein: ring B is a 5-7 membered monocyclic or bicyclic, heterocyclic or heteroaryl ring optionally substituted with up to n occurrences of -Q-R^, wherein n is 0-4, and Q and R^ are as defined above; and Q, RQ, X, Rx, W, and Rw are as defined above. [0136] In one embodiment, compounds of formula VA-6 have y occurrences of X-R , wherein y is 0-4. In one embodiment, y is 0. Or, y is 1. Or, y is 2. [0137] In one embodiment, m is 0-2. Or, m is 0. Or m is 1. [0138] In one embodiment, n is 0-2. Or, n is 0. Or, n is 1. [0139] In another embodiment, ring B is a 5-7 membered monocyclic, heterocyclic ring having up to 2 heteroatoms selected from O, S, or N, optionally substituted with up to n occurrences of -Q-RQ. Exemplary heterocyclic rings include N-morpholinyl, N-piperidinyl, 4- benzoyl-piperazin-1-yl, pyrrolidin-1-yl, or 4-methyl-piperidin-l-yl. [0140] In another embodiment, ring B is a 5-6 membered monocyclic, heteroaryl ring having up to 2 heteroatoms selected from O, S, or N, optionally substituted with up to n occurrences of -Q-R^. Exemplary such rings include benzimidazol-2-yl, 5-methyl-furan-2-yl, 2,5-dimethyl-pyrrol-l-yl, pyridine-4-yl, indol-5-yl, indol-2-yl, 2,4-dimethoxy-pyrimidin-5-yl, furan-2-yl, furan-3-yl, 2-acyl-thien-2-yl, benzothiophen-2-yl, 4-methyl-thien-2-yl, 5-cyano- thien-2-yl, 3-chloro-5-trifluoromethyl-pyridin-2-yl. [0141] In another embodiment, the present invention provides compounds of formula V-B-I:
Figure imgf000042_0001
V-B-I wherein: one of Qi and Q3 is N(WR ,w- ) and the other of Qi and Q3 is selected from O, S, or N(WRW); Q2 is C(O), CH2-C(O), C(O)-CH2, CH2, CH2-CH2, CF2, or CF2-CF2; m is 0-3; and X, W, Rx, and Rw are as defined above. [0142] In one embodiment, compounds of formula V-B-I have y occurrences of X-Rx, wherein y is 0-4. In one embodiment, y is 0. Or, y is 1. Or, y is 2. [0143] In one embodiment, Q3 is N(WRW); exemplary WRW include hydrogen, C1-C6 aliphatic, C(O)C 1-C6 aliphatic, or C(O)OC 1-C6 aliphatic. [0144] In another embodiment, Q3 is N(WR WWN), Q2 is C(O), CH2, CH2-CH2, and Q1 is O. [0145] In another embodiment, the present invention provides compounds of formula V-B-2:
Figure imgf000042_0002
V-B-2 wherein: R >wi i •s hydrogen or C1-C6 aliphatic; each of R , W3 is hydrogen or C1-C6 aliphatic; or both R ,W3 taken together form a C3-C6 cycloalkyl or heterocyclic ring having up to two heteroatoms selected from O, S, or NR', wherein said ring is optionally substituted with up to two WR w substituents; m is 0-4; and X, Rx, W, and Rw are as defined above. [0146] In one embodiment, compounds of formula V-B-2 have y occurrences of X-Rx, wherein y is 0-4. In one embodiment, y is 0. Or, y is 1. Or, y is 2. [0147] In one embodiment, WRW1 is hydrogen, C1-C6 aliphatic, C(O)Cl-Co aliphatic, or C(O)OCl-Co aliphatic. [0148] In another embodiment, each RW3 is hydrogen, C1-C4 alkyl. Or, both RW3 taken together form a C3-C6 cycloaliphatic ring or 5-7 membered heterocyclic ring having up to two heteroatoms selected from O, S, or N, wherein said cycloaliphatic or heterocyclic ring is optionally substituted with up to three substitutents selected from WRWI. Exemplary such rings include cyclopropyl, cyclopentyl, optionally substituted piperidyl, etc. [0149] In another embodiment, the present invention provides compounds of formula V-B-3:
Figure imgf000043_0001
V-B-3 wherein: Q4 is a bond, C(O), C(O)O5 or S(O)2; RW1 is hydrogen or C1-C6 aliphatic; m is 0-4; and X, W, Rw, and Rx are as defined above. [0150] In one embodiment, compounds of formula V-B-3 have y occurrences of X-R , wherein y is 0-4. In one embodiment, y is 0. [0151] In one embodiment, Q4 is C(O). Or Q4 is C(O)O. In another embodiment, RW1 is C1-C6 alkyl. Exemplary RW1 include methyl, ethyl, or t-butyl. [0152] In another embodiment, the present invention provides compounds of formula V-B-4:
Figure imgf000044_0001
V-B-4 wherein: m is 0-4; and X, Rx, W, and Rw are as defined above. [0153] In one embodiment, compounds of formula V-B-4 have y occurrences of X-R , wherein y is 0-4. In one embodiment, y is 0. Or, y is 1. Or, y is 2. [0154] In one embodiment, m is 0-2. Or, m is 0. Or, m is 1. [0155] In another embodiment, said cycloaliphatic ring is a 5-membered ring. Or, said ring is a six-membered ring. [0156] In another embodiment, the present invention provides compounds of formula V-B-5:
Figure imgf000044_0002
V-B-5 wherein: ring A2 is a phenyl or a 5-6 membered heteroaryl ring, wherein ring A2 and the phenyl ring fused thereto together have up 4 substituents independently selected from WRW; m is 0-4; and X, W, Rw and Rx are as defined above. [0157] In one embodiment, compounds of formula V-B-5 have y occurrences of X-R , wherein y is 0-4. In one embodiment, y is 0. Or, y is 1. Or, y is 2. [0158] In one embodiment, ring A2 is an optionally substituted 5-membered ring selected from pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl, thiadiazolyl, oxadiazolyl, or triazolyl. [0159] In one embodiment, ring A2 is an optionally substituted 5-membered ring selected from pyrrolyl, pyrazolyl, thiadiazolyl, imidazolyl, oxazolyl, or triazolyl. Exemplary such rings include:
Figure imgf000045_0001
aa bb cc dd
Figure imgf000045_0002
ee ff gg; wherein said ring is optionally substituted as set forth above. [0160] In another embodiment, ring A2 is an optionally substituted 6-membered ring. Exemplary such rings include pyridyl, pyrazinyl, or triazinyl. In another embodiment, said ring is an optionally pyridyl. [0161] In one embodiment, ring A2 is phenyl. [0162] In another embodiment, ring A2 is pyrrolyl, pyrazolyl, pyridyl, or thiadiazolyl. [0163] Examplary W in formula V-B-5 includes a bond, C(O), C(O)O or C1-C6 alkylene. [0164] Exemplary Rw in formula V-B-5 include cyano, halo, C1-C6 aliphatic, C3-C6 cycloaliphatic, aryl, 5-7 membered heterocyclic ring having up to two heteroatoms selected from O, S, or N, wherein said aliphatic, phenyl, and heterocyclic are independently and optionally substituted with up to three substituents selected from C1-C6 alkyl, O-C1-C6 alkyl, halo, cyano, OH, or CF3, wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with -CO-, -CONR'-, -CO2-, -OCO-, -NR5CO2-, -O-, - NR'CONR'-, -OCONR'-, -NR'CO-, -S-, -NR'-, -SO2NR'-, NR5SO2-, or -NR5SO2NR'-. In another embodiment, R' above is C1-C4 alkyl. [0165] In one embodiment, the present invention provides compounds of formula V-B- 5-a:
Figure imgf000046_0001
V-B-5-a wherein: G4 is hydrogen, halo, CN, CF3, CHF2, CH2F, optionally substituted C1-C6 aliphatic, aryl-Cl-C6 alkyl, or a phenyl, wherein G4 is optionally substituted with up to 4 WRW substituents; wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with -CO-, -CONR'-, -CO2-, -OCO-, -NR5CO2-, -O-, -NR'CONR'-, -OCONR'-, -NR'CO-, -S-, -NR'-, -SO2NR'-, NR5SO2-, or -NR5SO2NR'-. ; G5 is hydrogen or an optionally substituted C1-C6 aliphatic; wherein said indole ring system is further optionally substituted with up to 3 substituents independently selected from WR . [0166] In one embodiment, compounds of formula V-B-5-a have y occurrences of X- Rx, wherein y is 0-4. In one embodiment, y is O. Or, y is 1. Or, y is 2. [0167] In one embodiment, G4 is hydrogen. Or, G5 is hydrogen. [0168] In another embodiment, G4 is hydrogen, and G5 is C1-C6 aliphatic, wherein said aliphatic is optionally substituted with C1-C6 alkyl, halo, cyano, or CF3, and wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with -CO-, - CONR'-, -CO2-, -OCO-, -NR5CO2-, -O-, -NR'CONR'-, -OCONR'-, -NR'CO-, -S-, -NR5-, -SO2NR'-, NR5SO2-, or -NR5SO2NR5-. In another embodiment, R5 above is C1-C4 alkyl. [0169] In another embodiment, G4 is hydrogen, and G5 is cyano, methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, t-butyl, cyanomethyl, methoxyethyl, CH2C(O)OMe, (CH2)2- NHC(O)O-fer£-butyl, or cyclopentyl. [0170] In another embodiment, G5 is hydrogen, and G4 is halo, C1-C6 aliphatic or phenyl, wherein said aliphatic or phenyl is optionally substituted with C1-C6 alkyl, halo, cyano, or CF3, wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with -CO-, -CONR'-, -CO2-, -OCO-, -NR5CO2-, -0-, -NR'CONR'-, -OCONR'-, -NR'CO-, -S-, -NR'-, -SO2NR'-, NR5SO2-, or -NR5SO2NR'-. In another embodiment, R' above is C1-C4 alkyl. [0171] In another embodiment, G5 is hydrogen, and G4 is halo, CF3, ethoxycarbonyl, t- butyl, 2-methoxyphenyl, 2-ethoxyphenyl, (4-C(O)NH(CH2)2-NMe2)-phenyl, 2-methoxy-4- chloro-phenyl, pyridine-3-yl, 4-isopropylphenyl, 2,6-dimethoxyphenyl, sec- butylaminocarbonyl, ethyl, t-butyl, or piperidin-1-ylcarbonyl. [0172] In another embodiment, G4 and G5 are both hydrogen, and the nitrogen ring atom of said indole ring is substituted with C1-C6 aliphatic, C(O)(Cl-Co aliphatic), or benzyl, wherein said aliphatic or benzyl is optionally substituted with C1-C6 alkyl, halo, cyano, or CF3, wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with -CO-, -CONR'-, -CO2-, -OCO-, -NR5CO2-, -0-, -NR'CONR'-, -OCONR'-, -NR'CO-, -S-, -NR'-, -SO2NR'-, NR5SO2-, or -NR5SO2NR5-. In another embodiment, R5 above is C1-C4 alkyl. [0173] In another embodiment, G4 and G5 are both hydrogen, and the nitrogen ring atom of said indole ring is substituted with acyl, benzyl, C(O)CH2N(Me)C(O)CH2NHMe, or ethoxycarbonyl. [0174] In another embodiment, the present invention provides compounds of formula F:
Figure imgf000047_0001
I' or pharmaceutically acceptable salts thereof, wherein R , R , R , R , R , R , R , and Ar is as defined above for compounds of formula r. [0175] In one embodiment, each of R1, R2, R3, R4, R5, R6, R7, and Ar1 in compounds of formula I' is independently as defined above for any of the embodiments of compounds of formula I. [0176] Representative compounds of the present invention are set forth below in Table 1 below.. [0177] Table 1
Figure imgf000048_0001
Figure imgf000049_0001
Figure imgf000050_0001
Figure imgf000051_0001
Figure imgf000052_0001
Figure imgf000053_0001
Figure imgf000054_0001
Figure imgf000055_0001
Figure imgf000056_0001
Figure imgf000057_0001
Figure imgf000058_0001
Figure imgf000059_0001
Figure imgf000060_0001
Figure imgf000061_0001
Figure imgf000062_0001
Figure imgf000063_0001
Figure imgf000064_0001
Figure imgf000065_0001
Figure imgf000066_0001
Figure imgf000067_0002
[0178] In another embodiment, the present invention provides compounds useful as intermediates in the synthesis of compounds of formula I. In one embodiment, such compounds have formula A-I:
Figure imgf000067_0001
A-I; or a salt thereof; wherein: G1 is hydrogen, R', C(O)R', C(S)R', S(O)R', S(O)2R', Si(CH3)2R', P(O)(OR')3, P(S)(OR')3, or B(OR')2; G2 is halo, CN, CF3, isopropyl, or phenyl wherein said isopropyl or phenyl is optionally substituted with up to 3 substituents independently selected from WRW, wherein W and R are as defined above for formula I and embodiments thereof; G3 is an isopropyl or a C3-C10 cycloaliphatic ring, wherein said G3 is optionally substituted with up to 3 substituents independently selected from WRW, wherein W and Rw are as defined above for formula I and embodiments thereof; provided that when Gi is methoxy, G3 is tert-butyl, then G2 is not 2-amino-4-methoxy-5-tert- butyl-phenyl. [0179] In one embodiment, the present invention provides compounds of formula A-I, provided that when G2 and G3 each is t-butyl, then Gi is not hydrogen. [0180] In another embodiment: Gi is hydrogen; G2 is halo or isopropyl, wherein said isopropyl is optionally substituted with up to 3 substituents independently selected from R'; and G3 is an isopropyl or a C3 -C 10 cycloaliphatic ring, wherein said G3 is optionally substituted with up to 3 substituents independently selected from R'. [0181] In another embodiment: G1 is hydrogen; G2 is halo, preferably fluoro; and G3 is a C3-C10 cycloaliphatic ring, wherein said G3 is optionally substituted with up to 3 substituents independently selected from methyl, ethyl, propyl, or butyl. [0182] In another embodiment: G1 is hydrogen; G2 is CN, halo, or CF3; and G3 is an isopropyl or a C3-C10 cycloaliphatic ring, wherein said G3 is optionally substituted with up to 3 substituents independently selected from R'. [0183] In another embodiment: G1 is hydrogen; G2 is phenyl is optionally substituted with up to 3 substituents independently selected from -OCl -C4 alkyl, CF3, halo, or CN; and G3 is an isopropyl or a C3-C10 cycloaliphatic ring, wherein said G3 is optionally substituted with up to 3 substituents independently selected from R'. [0184] Exemplary G3 include optionally substituted cyclopentyl, cyclohexyl, cycloheptyl, or adamantyl. Or, G3 is C3-C8 branched aliphatic chain. Exemplary G3 include isopropyl, t-butyl, 3,3-diethyl-prop-3-yl, or 3,3-diethyl-2,2-dimethyl-prop-3-yl. [0185] In another embodiment: Gi is hydrogen; G2 is t-butyl; and G3 is a t-butyl. [0186] In another embodiment, the present invention provides a compound of formula A-II:
Figure imgf000069_0001
A ll; or a salt thereof, wherein: G4 is hydrogen, halo, CN, CF3, CHF2, CH2F, optionally substituted C1-C6 aliphatic, aralkyl, or a phenyl ring optionally substituted with up to 4 WRW substituents; G5 is hydrogen or an optionally substituted C1-C6 aliphatic; provided that both, G4 and G5, are not simultaneously hydrogen; wherein said indole ring system is further optionally substituted with up to 3 substituents independently selected from WRW. [0187] In one embodiment, G4 is hydrogen. Or, G5 is hydrogen. [0188] In another embodiment, G4 is hydrogen, and G5 is C1-C6 aliphatic, wherein said aliphatic is optionally substituted with C1-C6 alkyl, halo, cyano, or CF3, and wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with -CO-, - CONR'-, -CO2-, -OCO-, -NR5CO2-, -O-, -NR'CONR'-, -OCONR'-, -NR'CO-, -S-, -NR'-, -SO2NR'-, NR5SO2-, or -NR5SO2NR'-. In another embodiment, R' above is C1-C4 alkyl. [0189] In another embodiment, G4 is hydrogen, and G5 is cyano, methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, t-butyl, cyanomethyl, methoxyethyl, CH2C(O)OMe, (CH2)2- NHC(O)O-fert-But, or cyclopentyl. [0190] In another embodiment, G5 is hydrogen, and G4 is halo, C1-C6 aliphatic or phenyl, wherein said aliphatic or phenyl is optionally substituted with C1-C6 alkyl, halo, cyano, or CF3, wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with -CO-, -CONR'-, -CO2-, -OCO-, -NR5CO2-, -0-, -NR' CONR'-, -OCONR'-, -NR' CO-, -S-, -NR'-, -SO2NR'-, NR'SO2-, or -NR5SO2NR'-. In another embodiment, R' above is C1-C4 alkyl. [0191] In another embodiment, G5 is hydrogen, and G4 is halo, ethoxycarbonyl, t-butyl, 2-methoxyphenyl, 2-ethoxyphenyl, 4-C(O)NH(CH2)2-NMe2, 2-methoxy-4-chloro-phenyl, pyridine-3-yl, 4-isopropylphenyl, 2,6-dimethoxyphenyl, sec-butylaminocarbonyl, ethyl, t- butyl, or piperidin-1-ylcarbonyl. [0192] In a related embodiment of formula A-II, the nitrogen ring atom of said indole ring is substituted with C1-C6 aliphatic, C(O)(C 1-C6 aliphatic), or benzyl, wherein said aliphatic or benzyl is optionally substituted with C1-C6 alkyl, halo, cyano, or CF3, wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with - CO-, -CONR'-, -CO2-, -OCO-, -NR5CO2-, -0-, -NR'CONR'-, -OCONR'-, -NR'CO-, -S-, - NR'-, -SO2NR'-, NR3SO2-, or -NR5SO2NR'-. In another embodiment, R' above is C1-C4 alkyl. [0193] In another embodiment the nitrogen ring atom of said indole ring is substituted with acyl, benzyl, C(O)CH2N(Me)C(O)CH2NHMe, or ethoxycarbonyl.
[0194] 4. General Synthetic Schemes [0195] Compounds of the present invention are readily prepared by methods known in the art. Illustrated below are exemplary methods for the preparation of compounds of the present invention. [0196] The scheme below illustrates the synthesis of acid precursors of the compounds of the present invention. [0197] Synthesis of Acid Precursors P-IV-A, P-IV-B or P-IV-C: R6=SMe R6=H R6=CF3
Figure imgf000071_0001
a) (CO2Et)2CH2; b) (CO2Et)2CH=CH(OEt); c) CF3CO2H3 PPh3, CCl4, Et3N; d) MeI; e) PPA or diphenylether; f) NaOH. [0198] Synthesis of Acid Precursors P-IV-A, P-IV-B or P-IV-C:
Figure imgf000071_0002
a) AcONH4; b) EtOCHC(CO2Et)2, 13O0C; c) Ph2O, ΔT; d) I2, EtOH; e) NaOH. [0199] Synthesis of Acid Precursors P-IV-A, P-IV-B or P-IV-C
Figure imgf000072_0001
Figure imgf000072_0002
[0200] POCl3; b) R'ONa; c) n-BuLi, ClCO2Et; d) NaOH [0201] Synthesis of Amine Precursor P-III-A:
Figure imgf000072_0003
(CH3)2SO4; b) K3Fe(CN)6, NaOH, H2O; c) HNO3, H2SO4; d) RCOCH3, MeOH, NH3; e) H2, Raney Ni [0202] Synthesis of Amine Precursor P-IV-A:
Figure imgf000072_0004
Figure imgf000072_0005
[0203] HNO3, HOAc; b) Na2S2O4, THF/H2O; c) H2, Pd/C. [0204] Synthesis of Amine Precursor P-V-A-I:
Figure imgf000073_0001
[0205] KNO3, H2SO4; b) NaNO2, H2SO4- H2O; c) NH4CO2H, Pd-C; d) R'X; e) NH4CO2H, Pd-C [0206] Synthesis of Amine Precursor P-V-A-I:
Figure imgf000074_0001
Figure imgf000074_0002
k
Figure imgf000074_0003
a) SO2Cl2, R2= Cl; b) R2OH, R2=alkyl; c) NBS, Rl=Br; d) ClCO2R, TEA; e) HNO3, H2SO4; f) base; g) ArB(OH)2, Rl=Br; h) [H]; I) R'X, Rl- Br; j) ClCF2CO2Me; k) [H]; 1) [H]. [0207] Synthesis of Amine Precursor P-V-A-I:
Figure imgf000075_0001
Figure imgf000075_0002
Figure imgf000075_0003
[0208] KNO3; b) [H]; c) KNO3; d) AcCl; e) [H]; f) i) NaNO2; ii) H2O; g) HCl [0209] Synthesis of Amine Precursor P-V-A-I:
Figure imgf000076_0001
[0210] HNO3, H2SO4; b) [H]; c) protection; d) R'CHO; e) deprotection; f) [H]; g) Na2S, S, H2O; h) nitration; i) (BOC)2O; j) [H]; k) RX; 1) [H]; PG= protecting group [0211] Synthesis of Amine Precursors P-V-A-I or P-V-A-2:
Figure imgf000077_0001
[0212] a) Br2; b) Zn(CN)2, Pd(PPh)3; c) [H]; d) BH3; e) (BOC)2O; f) [H]; g) H2SO4, H2O; h) R'X; i) [H]; j) LiAlH4 [0213] Synthesis of Amine Precursors P-V-A-I or P-V-A-2:
Figure imgf000077_0002
Figure imgf000077_0003
(i)NaN02, HCl; ii) Na2SO3, CuSO4, HCl; b) NH4Cl; c) [H] [0214] Synthesis of Amine Precursors P-V-A-I:
Figure imgf000078_0001
Figure imgf000078_0002
a) CHCl2OMe; b) KNO3, H2SO4; c) Deoxo-Fluor; d) Fe [0215] Synthesis of Amine Precursors P-V-A-3:
Figure imgf000078_0003
Figure imgf000078_0004
Ar = Aryl or Heteroaryl a) Nitration; b) ArB(OH)2, Pd; c) BH3; d) (BOC)2O
[0216] Synthesis of Amine Precursors P-V-B-I:
Figure imgf000078_0005
a) AcCl; b) DEAD; c) AlCl3; d) NaOH [0217] Synthesis of Amine Precursors P-V-B-I:
Figure imgf000079_0001
Y=O1 S
Figure imgf000079_0002
a) ClCH2COCl; b) [H]; c) protection; d) [H] PG= protecting group [0218] Synthesis of Amine Precursors P-V-B-I:
Figure imgf000079_0003
X=F, Cl a) HSCH2CO2H; b) [H] [0219] Synthesis of Amine Precursors P-V-B-2:
Figure imgf000080_0001
a) AlCl3; b) [H]; c) i) R1R2CHCOCH2CH2C1; ii) NaBH4; d) NH2OH; e) DIBAL-H; f) nitration; g) protection; h) [H] PG= protecting group
[0220] Synthesis of Amine Precursors P-V-B-3 :
Figure imgf000080_0002
a) Nitration; b) Protection: ; c) [H] PG= protecting ] group [0221] Synthesis < Df Amine Precursors P-V-B-5:
Figure imgf000081_0001
a) when X=Cl, Br, I: RX, K2CO3, DMF or CH3CN; when X=OH: RX, TFFH, DIEA, THF b) H2, Pd-C, EtOH or SnCl2.2H2O, EtOH or SnCl2.2H2O, DIEA, EtOH.
[0222] Synthesis of Amine Precursors P-V-B-5:
Figure imgf000081_0002
a) RCOCl, Et3N, CH2Cl2; b) n-BuLi, THF; c) NaBH4, AcOH; d) KNO3, H2SO4; e) DDQ, 1,4- dioxane; f) NaNO2, HCl, SnCl2.2H2O, H2O; g) MeCOR, EtOH; h) PPA; i) LiAlH4, THF or H2, Raney Ni, EtOH or MeOH [0223] Synthesis of Amine Precursors V-B-5:
Figure imgf000082_0001
a) NaNO2, HCl, SnCl2.2H2O, H2O; b) RCH2COR, AcOH, EtOH; c) H3PO4, toluene; d) H2, Pd-C, EtOH [0224] Synthesis of Amine Precursors P- V-B-5:
Figure imgf000082_0002
a) NaNO2, HCl, SnCl2.2H2O, H2O; b) RCH2COH, AcOH, EtOH; c) H3PO4, toluene; d) H2, Pd-C, EtOH [0225] Synthesis of Amine Precursors P-V-B-5:
Figure imgf000083_0001
a) RX (X=Br, I), zinc triflate, TBAI, DIEA, toluene; b) H2, Raney Ni, EtOH or H2, Pd-C, EtOH or SnCl2.2H2O, EtOH; c) ClSO2NCO, DMF, CH3CN; d) Me2NH, H2CO, AcOH; e) MeI, DMF, THF, H2O; f) MNu (M= Na, K, Li; Nu= nucleophile) [0226] Synthesis of Amine Precursors P-V-B-5:
Figure imgf000083_0002
a) HNO3, H2SO4; b) Me2NCH(OMe)2, DMF; c) H2, Raney Ni, EtOH [0227] Synthesis of Amine Precursors P-V-B-5:
Figure imgf000084_0001
a) When PG= SO2Ph: PhSO2Cl, Et3N, DMAP, CH2Cl2; When PG- Ac: AcCl, NaHCO3, CH2Cl2; b) When R= RCO: (RCO)2O, AlCl3, CH2Cl2; When R=Br: Br2, AcOH; c) HBr or HCl; d) KNO3, H2SO4; e) MnO2, CH2Cl2 or DDQ, 1,4-dioxane; f) H2, Raney Ni, EtOH.
[0228] Synthesis of Amine Precursors P-V-B-5:
Figure imgf000084_0002
a) NBS, DMF; b) KNO3, H2SO4; c) HC=CSiMe3, Pd(PPh3)2Cl2, CuI, Et3N, Toluene, H2O; d) CuI, DMF; e) H2, Raney Ni, MeOH [02291 Synthesis of Amine Precursors P-V-A-3 and P-V-A-6: Ar= Aryl or heteroaryl
Figure imgf000085_0001
a) ArB(OH)2, Pd(PPh3)4, K2CO3, H2O, THF or ArB(OH)2, Pd2(dba)3, P(tBu)3, KF, THF [0230] Synthesis of Amine Precursors P-V-A-4:
Figure imgf000085_0002
R= CN, CO2Et; a) MeI, NaOtBu, DMF; b) HCO2K, Pd-C, EtOH or HCO2NH4, Pd-C, EtOH [0231] Synthesis of Amine Precursors P-V-A-4:
Figure imgf000085_0003
a) ArBr, Pd(OAc)2, PS-PPh3, K2CO3, DMF [0232] Synthesis of Amine Precursors P-V-B-4:
Figure imgf000086_0001
a) H2, Pd-C MeOH
[0233] Synthesis of Amine Precursors P-V-B-4:
Figure imgf000086_0002
a) NaBH4, MeOH; b) H2, Pd-C, MeOH; c) NH2OH, Pyridine; d) H2, Pd-C, MeOH; e) BoC2O, Et3N, MeOH
[0234] Synthesis of Compounds of Formula I:
Figure imgf000086_0003
a) Ar1RVNH, coupling reagent, base, solvent. Examples of conditions used: HATU, DIEA; BOP, DIEA, DMF; HBTU, Et3N, CH2Cl2; PFPTFA, pyridine. [0235] Synthesis of Compounds of Formula I':
Figure imgf000087_0001
R5 = aliphatic: a) R5X (X= Br, I), Cs2CO3, DMF [0236] Syntheis of Compounds of formula V-B-5:
Figure imgf000087_0002
a) NaOH, THF; b) HNR2, HATU, DIEA, DMF [0237] Syntheis of Compounds of formula V-B-5:
Figure imgf000087_0003
WRW = aryl or heteroaryl: a) ArB(OH)2, (dppf)PdCl2, K2CO3, DMF [0238] Synthesis of Compounds of Formula V-A-2 & V-A-5:
Figure imgf000088_0001
(X=SO2, R=CHCH2)
Figure imgf000088_0002
a) SnCl2.2H2O, EtOH; b) PG= BOC: TFA, CH2Cl2; c) CH2O, NaBH3CN, CH2Cl2, MeOH; d) RXCl, DIEA, THF or RXCl, NMM, 1,4-dioxane or RXCl, CH2Cl2, DMF; e) R'R"NH, LiClO4, CH2Cl2, iPrOH [0239] Synthesis of compounds of formula V-B-2:
Figure imgf000089_0001
a) When PG = BOC: TFA, CH2Cl2; When PG = Ac: NaOH or HCl, EtOH or THF [0240] Synthesis of compounds of formula V-A-2:
Figure imgf000089_0002
a) When PG = BOC: TFA, CH2Cl2
Figure imgf000089_0003
a) When PG = BOC: TFA5 CH2Cl2; b) ROCOCl, Et3N, DMF [0241] Synthesis of compounds of formula V-A-4:
Figure imgf000090_0001
a)When PG = BOC: TFA, CH2Cl2; b) When Rw = CO2R: ROCOCl, DIEA, MeOH
. [0242] In the schemes above, the radical R employed therein is a substituent, e.g., Rw as defined hereinabove. One of skill in the art will readily appreciate that synthetic routes suitable for various substituents of the present invention are such that the reaction conditions and steps employed do not modify the intended substituents. [0243] 5. Uses, Formulation and Administration [0244] Pharmaceutically acceptable compositions [0245] As discussed above, the present invention provides compounds that are useful as modulators of ABC transporters and thus are useful in the treatment of disease, disorders or conditions such as cystic fibrosis, hereditary emphysema, hereditary hemochromatosis, coagulation-fibrinolysis deficiencies, such as protein C deficiency, Type 1 hereditary angioedema, lipid processing deficiencies, such as familial hypercholesterolemia, Type 1 chylomicronemia, abetalipoproteinemia, lysosomal storage diseases, such as I-cell disease/pseudo-Hurler, mucopolysaccharidoses, Sandhof/Tay-Sachs, Crigler-Najjar type II, polyendocrinopathy/hyperinsulemia, Diabetes mellitus, Laron dwarfism, myleoperoxidase deficiency, primary hypoparathyroidism, melanoma, glycanosis CDG type 1, congenital hyperthyroidism, osteogenesis imperfecta, hereditary hypofϊbrinogenemia, ACT deficiency, Diabetes insipidus (DI), neurophyseal DI, neprogenic DI, Charcot-Marie Tooth syndrome, Perlizaeus-Merzbacher disease, neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, progressive supranuclear plasy, Pick's disease, several polyglutamine neurological disorders asuch as Huntington, spinocerebullar ataxia type I, spinal and bulbar muscular atrophy, dentatorubal pallidoluysian, and myotonic dystrophy, as well as spongiform encephalopathies, such as hereditary Creutzfeldt-Jakob disease (due to prion protein processing defect), Fabry disease, Straussler-Scheinker syndrome, COPD, dry-eye disease, or Sjogren's disease. [0246] Accordingly, in another aspect of the present invention, pharmaceutically acceptable compositions are provided, wherein these compositions comprise any of the compounds as described herein, and optionally comprise a pharmaceutically acceptable carrier, adjuvant or vehicle. In certain embodiments, these compositions optionally further comprise one or more additional therapeutic agents. [0247] It will also be appreciated that certain of the compounds of present invention can exist in free form for treatment, or where appropriate, as a pharmaceutically acceptable derivative or a prodrug thereof. According to the present invention, a pharmaceutically acceptable derivative or a prodrug includes, but is not limited to, pharmaceutically acceptable salts, esters, salts of such esters, or any other adduct or derivative which upon administration to a patient in need thereof is capable of providing, directly or indirectly, a compound as otherwise described herein, or a metabolite or residue thereof. [0248] As used herein, the term "pharmaceutically acceptable salt" refers to those salts which are, within the scope of sound medical judgement, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. A "pharmaceutically acceptable salt" means any non-toxic salt or salt of an ester of a compound of this invention that, upon administration to a recipient, is capable of providing, either directly or indirectly, a compound of this invention or an inhibitorily active metabolite or residue thereof. [0249] Pharmaceutically acceptable salts are well known in the art. For example, S. M. Berge, et al. describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 1977, 66, 1-19, incorporated herein by reference. Pharmaceutically acceptable salts of the compounds of this invention include those derived from suitable inorganic and organic acids and bases. Examples of pharmaceutically acceptable, nontoxic acid addition salts are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange. Other pharmaceutically acceptable salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2- naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, p-toluenesulfonate, undecanoate, valerate salts, and the like. Salts derived from appropriate bases include alkali metal, alkaline earth metal, ammonium and N (C1-4alkyl)4 salts. This invention also envisions the quaternization of any basic nitrogen- containing groups of the compounds disclosed herein. Water or oil-soluble or dispersable products may be obtained by such quaternization. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like. Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, loweralkyl sulfonate and aryl sulfonate. [0250] As described above, the pharmaceutically acceptable compositions of the present invention additionally comprise a pharmaceutically acceptable carrier, adjuvant, or vehicle, which, as used herein, includes any and all solvents, diluents, or other liquid vehicle, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubricants and the like, as suited to the particular dosage form desired. Remington's Pharmaceutical Sciences, Sixteenth Edition, E. W. Martin (Mack Publishing Co., Easton, Pa., 1980) discloses various carriers used in formulating pharmaceutically acceptable compositions and known techniques for the preparation thereof. Except insofar as any conventional carrier medium is incompatible with the compounds of the invention, such as by producing any undesirable biological effect or otherwise interacting in a deleterious manner with any other component(s) of the pharmaceutically acceptable composition, its use is contemplated to be within the scope of this invention. Some examples of materials which can serve as pharmaceutically acceptable carriers include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, or potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, wool fat, sugars such as lactose, glucose and sucrose; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients such as cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil; safflower oil; sesame oil; olive oil; corn oil and soybean oil; glycols; such a propylene glycol or polyethylene glycol; esters such as ethyl oleate and ethyl laurate; agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol, and phosphate buffer solutions, as well as other non-toxic compatible lubricants such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, releasing agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the composition, according to the judgment of the formulator.
[0251] Uses of Compounds and Pharmaceutically Acceptable Compositions [0252] In yet another aspect, the present invention provides a method of treating a condition, disease, or disorder implicated by ABC transporter activity, e.g., CFTR. In certain embodiments, the present invention provides a method of treating a condition, disease, or disorder implicated by a deficiency of the ABC transporter activity, the method comprising administering a composition comprising a compound of formula (I) to a subject, preferably a mammal, in need thereof. [0253] In certain embodiments, the present invention provides a method of treating cystic fibrosis, hereditary emphysema, hereditary hemochromatosis, coagulation-fibrinolysis deficiencies, such as protein C deficiency, Type 1 hereditary angioedema, lipid processing deficiencies, such as familial hypercholesterolemia, Type 1 chylomicronemia, abetalipoproteinemia, lysosomal storage diseases, such as I-cell disease/pseudo-Hurler, mucopolysaccharidoses, Sandhof/Tay-Sachs, Crigler-Najjar type II, polyendocrinopathy/hyperinsulemia, Diabetes mellitus, Laron dwarfism, myleoperoxidase deficiency, primary hypoparathyroidism, melanoma, glycanosis CDG type 1, congenital hyperthyroidism, osteogenesis imperfecta, hereditary hypofibrinogenemia, ACT deficiency, Diabetes insipidus (DI), neurophyseal DI, neprogenic DI, Charcot-Marie Tooth syndrome, Perlizaeus-Merzbacher disease, neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, progressive supranuclear plasy, Pick's disease, several polyglutamine neurological disorders asuch as Huntington, spinocerebullar ataxia type I, spinal and bulbar muscular atrophy, dentatorubal pallidoluysian, and myotonic dystrophy, as well as spongiform encephalopathies, such as hereditary Creutzfeldt-Jakob disease (due to prion protein processing defect), Fabry disease, Straussler-Scheinker syndrome, COPD, dry-eye disease, or Sjogren's disease, comprising the step of administering to said mammal an effective amount of a composition comprising a compound of the present invention. [0254] According to an alternative preferred embodiment, the present invention provides a method of treating cystic fibrosis comprising the step of administering to said mammal a composition comprising the step of administering to said mammal an effective amount of a composition comprising a compound of the present invention. [0255] According to the invention an "effective amount" of the compound or pharmaceutically acceptable composition is that amount effective for treating or lessening the severity of one. or more of cystic fibrosis, hereditary emphysema, hereditary hemochromatosis, coagulation-fibrinolysis deficiencies, such as protein C deficiency, Type 1 hereditary angioedema, lipid processing deficiencies, such as familial hypercholesterolemia, Type 1 chylomicronemia, abetalipoproteinemia, lysosomal storage diseases, such as I-cell disease/pseudo-Hurler, mucopolysaccharidoses, Sandhof/Tay-Sachs, Crigler-Najjar type II, polyendocrinopathy/hyperinsulemia, Diabetes mellitus, Laron dwarfism, myleoperoxidase deficiency, primary hypoparathyroidism, melanoma, glycanosis CDG type 1, congenital hyperthyroidism, osteogenesis imperfecta, hereditary hypofibrinogenemia, ACT deficiency, Diabetes insipidus (DI), neurophyseal DI, neprogenic DI, Charcot-Marie Tooth syndrome, Perlizaeus-Merzbacher disease, neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, progressive supranuclear plasy, Pick's disease, several polyglutamine neurological disorders asuch as Huntington, spinocerebullar ataxia type I, spinal and bulbar muscular atrophy, dentatorubal pallidoluysian, and myotonic dystrophy, as well as spongiform encephalopathies, such as hereditary Creutzfeldt-Jakob disease (due to prion protein processing defect), Fabry disease, Straussler-Scheinker syndrome, COPD, dry-eye disease, or Sjogren's disease. [0256] The compounds and compositions, according to the method of the present invention, may be administered using any amount and any route of administration effective for treating or lessening the severity of one or more of cystic fibrosis, hereditary emphysema, hereditary hemochromatosis, coagulation-fibrinolysis. deficiencies, such as protein C deficiency, Type 1 hereditary angioedema, lipid processing deficiencies, such as familial hypercholesterolemia, Type 1 chylomicronemia, abetalipoproteinemia, lysosomal storage diseases, such as I-cell disease/pseudo-Hurler, mucopolysaccharidoses, Sandhof/Tay-Sachs, Crigler-Najjar type II, polyendocrinopathy/hyperinsulemia, Diabetes mellitus, Laron dwarfism, myleoperoxidase deficiency, primary hypoparathyroidism, melanoma, glycanosis CDG type 1, congenital hyperthyroidism, osteogenesis imperfecta, hereditary hypofibrinogenemia, ACT deficiency, Diabetes insipidus (DI), neurophyseal DI, neprogenic DI, Charcot-Marie Tooth syndrome, Perlizaeus-Merzbacher disease, neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, progressive supranuclear plasy, Pick's disease, several polyglutamine neurological disorders asuch as Huntington, spinocerebullar ataxia type I, spinal and bulbar muscular atrophy, dentatorubal pallidoluysian, and myotonic dystrophy, as well as spongiform encephalopathies, such as hereditary Creutzfeldt-Jakob disease (due to prion protein processing defect), Fabry disease, Straussler- Scheinker syndrome, COPD, dry-eye disease, or Sjogren's disease. [0257] In one embodiment, the compounds and compositions of the present invention are useful for treating or lessening the severity of cystic fibrosis in a patient. [0258] In certain embodiments, the compounds and compositions of the present invention are useful for treating or lessening the severity of cystic fibrosis in patients who exhibit residual CFTR activity in the apical membrane of respiratory and non-respiratory epithelia. The presence of residual CFTR activity at the epithelial surface can be readily detected using methods known in the art, e.g., standard electrophysiological, biochemical, or histochemical techniques. Such methods identify CFTR activity using in vivo or ex vivo electrophysiological techniques, measurement of sweat or salivary Cl" concentrations, or ex vivo biochemical or histochemical techniques to monitor cell surface density. Using such methods, residual CFTR activity can be readily detected in patients heterozygous or homozygous for a variety of different mutations, including patients homozygous or heterozygous for the most common mutation, ΔF508. [0259] In another embodiment, the compounds and compositions of the present invention are useful for treating or lessening the severity of cystic fibrosis in patients who have residual CFTR activity induced or augmented using pharmacological methods or gene therapy. . Such methods increase the amount of CFTR present at the cell surface, thereby inducing a hitherto absent CFTR activity in a patient or augmenting the existing level of residual CFTR activity in a patient. [0260] In one embodiment, the compounds and compositions of the present invention are useful for treating or lessening the severity of cystic fibrosis in patients within certain genotypes exhibiting residual CFTR activity, e.g., class III mutations (impaired regulation or gating), class IV mutations (altered conductance), or class V mutations (reduced synthesis) (Lee R. Choo-Kang, Pamela L., Zeitlin, Type I, II, III, IV, and V cystic fibrosis Tansmembrane Conductance Regulator Defects and Opportunities of Therapy; Current Opinion in Pulmonary Medicine 6:521 - 529, 2000). Other patient genotypes that exhibit residual CFTR activity include patients homozygous for one of these classes or heterozygous with any other class of mutations, including class I mutations, class II mutations, or a mutation that lacks classification. [0261] In one embodiment, the compounds and compositions of the present invention are useful for treating or lessening the severity of cystic fibrosis in patients within certain clinical phenotypes, e.g., a moderate to mild clinical phenotype that typically correlates with the amount of residual CFTR activity in the apical membrane of epithelia. Such phenotypes include patients exhibiting pancreatic sufficiency or patients diagnosed with idiopathic pancreatitis and congenital bilateral absence of the vas deferens, or mild lung disease. [0262] The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the infection, the particular agent, its mode of administration, and the like. The compounds of the invention are preferably formulated in dosage unit form for ease of administration and uniformity of dosage. The expression "dosage unit form" as used herein refers to a physically discrete unit of agent appropriate for the patient to be treated. It will be understood, however, that the total daily usage of the compounds and compositions of the present invention will be decided by the attending physician within the scope of sound medical judgment. The specific effective dose level for any particular patient or organism will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed, and like factors well known in the medical arts. The term "patient", as used herein, means an animal, preferably a mammal, and most preferably a human. [0263] The pharmaceutically acceptable compositions of this invention can be administered to humans and other animals orally, rectally, parenterally, intracisternally, intravaginally, intraperitoneally, topically (as by powders, ointments, or drops), bucally, as an oral or nasal spray, or the like, depending on the severity of the infection being treated. In certain embodiments, the compounds of the invention may be administered orally or parenterally at dosage levels of about 0.01 mg/kg to about 50 mg/kg and preferably from about 1 mg/kg to about 25 mg/kg, of subject body weight per day, one or more times a day, to obtain the desired therapeutic effect. [0264] Liquid dosage forms for oral administration include, but are not limited to, pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active compounds, the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents. [0265] Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent, for . example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S. P. and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid are used in the preparation of injectables. [0266] The injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use. [0267] In order to prolong the effect of a compound of the present invention, it is often desirable to slow the absorption of the compound from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the compound then depends upon its rate of dissolution that, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered compound form is accomplished by dissolving or suspending the compound in an oil vehicle. Injectable depot forms are made by forming micro encapsule matrices of the compound in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of compound to polymer and the nature of the particular polymer employed, the rate of compound release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the compound in liposomes or microemulsions that are compatible with body tissues. [0268] Compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound. [0269] Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar—agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate, h) absorbents such as kaolin and bentonite clay, and i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof. In the case of capsules, tablets and pills, the dosage form may also comprise buffering agents. [0270] Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polethylene glycols and the like. [0271] The active compounds can also be in microencapsulated form with one or more excipients as noted above. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings, release controlling coatings and other coatings well known in the pharmaceutical formulating art. In such solid dosage forms the active compound may be admixed with at least one inert diluent such as sucrose, lactose or starch. Such dosage forms may also comprise, as is normal practice, additional substances other than inert diluents, e.g., tableting lubricants and other tableting aids such a magnesium stearate and microcrystalline cellulose. In the case of capsules, tablets and pills, the dosage forms may also comprise buffering agents. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes. , [0272] Dosage forms for topical or transdermal administration of a compound of this invention include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants or patches. The active component is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required. Ophthalmic formulation, eardrops, and eye drops are also contemplated as being within the scope of this invention. Additionally, the present invention contemplates the use of transdermal patches, which have the added advantage of providing controlled delivery of a compound to the body. Such dosage forms are prepared by dissolving or dispensing the compound in the proper medium. Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate can be controlled by either providing a rate controlling membrane or by dispersing the compound in a polymer matrix or gel. [0273] As described generally above, the compounds of the invention are useful as modulators of ABC transporters. Thus, without wishing to be bound by any particular theory, the compounds and compositions are particularly useful for treating or lessening the severity of a disease, condition, or disorder where hyperactivity or inactivity of ABC transporters is implicated in the disease, condition, or disorder. When hyperactivity or inactivity of an ABC transporter is implicated in a particular disease, condition, or disorder, the disease, condition, or disorder may also be referred to as a "ABC transporter-mediated disease, condition or disorder". Accordingly, in another aspect, the present invention provides a method for treating or lessening the severity of a disease, condition, or disorder where hyperactivity or inactivity of an ABC transporter is implicated in the disease state. [0274] The activity of a compound utilized in this invention as a modulator of an ABC transporter may be assayed according to methods described generally in the art and in the Examples herein. [0275] It will also be appreciated that the compounds and pharmaceutically acceptable compositions of the present invention can be employed in combination therapies, that is, the compounds and pharmaceutically acceptable compositions can be administered concurrently with, prior to, or subsequent to, one or more other desired therapeutics or medical procedures. The particular combination of therapies (therapeutics or procedures) to employ in a combination regimen will take into account compatibility of the desired therapeutics and/or procedures and the. desired therapeutic effect to be achieved. It will also be appreciated that the therapies employed may achieve a desired effect for the same disorder (for example, an inventive compound may be administered concurrently with another agent used to treat the same disorder), or they may achieve different effects (e.g., control of any adverse effects). As used herein, additional therapeutic agents that are normally administered to treat or prevent a particular disease, or condition, are known as "appropriate for the disease, or condition, being treated". [0276] In one embodiment, the additional agent is selected from a mucolytic agent, bronchodialator, an anti-biotic, an anti-infective agent, an anti-inflammatory agent, a CFTR modulator other than a compound of the present invention, or a nutritional agent. [0277] The amount of additional therapeutic agent present in the compositions of this invention will be no more than the amount that would normally be administered in a composition comprising that therapeutic agent as the only active agent. Preferably the amount of additional therapeutic agent in the presently disclosed compositions wjll range from about 50% to 100% of the amount normally present in a composition comprising that agent as the only therapeutically active agent. [0278] The compounds of this invention or pharmaceutically acceptable compositions thereof may also be incorporated into compositions for coating an implantable medical device, such as prostheses, artificial valves, vascular grafts, stents and catheters. Accordingly, the present invention, in another aspect, includes a composition for coating an implantable device comprising a compound of the present invention as described generally above, and in classes and subclasses herein, and a carrier suitable for coating said implantable device. In still another aspect, the present invention includes an implantable device coated with a composition comprising a compound of the present invention as described generally above, and in classes and subclasses herein, and a carrier suitable for coating said implantable device. Suitable coatings and the general preparation of coated implantable devices are described in US Patents 6,099,562; 5,886,026; and 5,304,121. The coatings are typically biocompatible polymeric materials such as a hydrogel polymer, polymethyldisiloxane, polycaprolactone, polyethylene glycol, polylactic acid, ethylene vinyl acetate, and mixtures thereof. The coatings may optionally be further covered by a suitable topcoat of fluorosilicone, polysaccarides, polyethylene glycol, phospholipids or combinations thereof to impart controlled release characteristics in the composition. [0279] Another aspect of the invention relates to modulating ABC transporter activity in a biological sample or a patient (e.g., in vitro or in vivo), which method comprises administering to the patient, or contacting said biological sample with a compound of formula I or a composition comprising said compound. The term "biological sample", as used herein, includes, without limitation, cell cultures or extracts thereof; biopsied material obtained from a mammal or extracts thereof; and blood, saliva, urine, feces, semen, tears, or other body fluids or extracts thereof. [0280] Modulation of ABC transporter activity, e.g., CFTR, in a biological sample is useful for a variety of purposes that are known to one of skill in the art. Examples of such purposes include, but are not limited to, the study of ABC transporters in biological and pathological phenomena; and the comparative evaluation of new modulators of ABC transporters. [0281] In yet another embodiment, a method of modulating activity of an anion channel in vitro or in vivo, is provided comprising the step of contacting said channel with a compound of formula (I). In preferred embodiments, the anion channel is a chloride channel or a bicarbonate channel. In other preferred embodiments, the anion channel is a chloride channel. [0282] According to an alternative embodiment, the present invention provides a method of increasing the number of functional ABC transporters in a membrane of a cell, comprising the step of contacting said cell with a compound of formula (I). The term "functional ABC transporter" as used herein means an ABC transporter that is capable of transport activity. In preferred embodiments, said functional ABC transporter is CFTR. [0283] According to another preferred embodiment, the activity of the ABC transporter is measured by measuring the transmembrane voltage potential. Means for measuring the voltage potential across a membrane in the biological sample may employ any of the known methods in the art, such as optical membrane potential assay or other electrophysiological methods. [0284] The optical membrane potential assay utilizes voltage-sensitive FRET sensors described by Gonzalez and Tsien (See, Gonzalez, J. E. and R. Y. Tsien (1995) "Voltage sensing by fluorescence resonance energy transfer in single cells" Biophvs J 69(4): 1272-80, and Gonzalez, J. E. and R. Y. Tsien (1997) "Improved indicators of cell membrane potential that use fluorescence resonance energy transfer" ChemJBiol 4(4): 269-77) in combination with instrumentation for measuring fluorescence changes such as the Voltage/Ion Probe Reader (VIPR) (See, Gonzalez, J. E., K. Oades, et al. (1999) "Cell-based assays and instrumentation for screening ion-channel targets" Drug Discov Today 4(9): 431-439). [0285] These voltage sensitive assays are based on the change in fluorescence resonant energy transfer (FRET) between the membrane-soluble, voltage-sensitive dye, DiSBAC2(3), and a fluorescent phospholipid, CC2-DMPE, which is attached to the outer leaflet of the plasma membrane and acts as a FRET donor. Changes in membrane potential (Vm) cause the negatively charged DiSBAC2(S) to redistribute across the plasma membrane and the amount of energy transfer from CC2-DMPE changes accordingly. The changes in fluorescence emission can be monitored using VIPR™ II, which is an integrated liquid handler and fluorescent detector designed to conduct cell-based screens in 96- or 384-well microtiter plates. [0286] In another aspect the present invention provides a kit for use in measuring the activity of a ABC transporter or a fragment thereof in a biological sample in vitro or in vivo comprising (i) a composition comprising a compound of formula (I) or any of the above embodiments; and (ii) instructions for a) contacting the composition with the biological sample and b) measuring activity of said ABC transporter or a fragment thereof. In one embodiment, the kit further comprises instructions for a) contacting an additional composition with the biological sample; b) measuring the activity of said ABC transporter or a fragment thereof in the presence of said additional compound, and c) comparing the activity of the ABC transporter in the presence of the additional compound with the density of the ABC transporter in the presence of a composition of formula (I). In preferred embodiments, the kit is used to measure the density of CFTR. [0287] In order that the invention described herein may be more fully understood, the following examples are set forth. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting this invention in any manner.
EXAMPLES [00286] Example 1:
[00287] General scheme to prepare Acid Moities:
Figure imgf000104_0001
a) 140-150 0C; b) PPA, POCl3, 70 0C or diphenyl ether, 220 0C; c) i) 2N NaOH ii) 2N HCl
[00288] Specific example: 2-Phenylaminomethylene-maIonic acid diethyl ester
Figure imgf000104_0002
A-1 A mixture of aniline (25.6 g, 0.28 mol) and diethyl 2-(ethoxymethylene)malonate (62.4 g, 0.29 mol) was heated at 140-150 °C for 2 h. The mixture was cooled to room temperature and dried under reduced pressure to afford 2-phenylaminomethylene-malonic acid diethyl ester as a solid, which was used in the next step without further purification. 1H NMR (J-DMSO) δ 11.00 (d, IH), 8.54 (d, J= 13.6 Hz, IH), 7.36-7.39 (m, 2H), 7.13-7.17 (m, 3 H), 4.17-4.33 (m, 4H), 1.18- 1.40 (m, 6H).
[00289] 4-Hydroxyquinoliiie-3-carboxylic acid ethyl ester A l L three-necked flask fitted with a mechanical stirrer was charged with 2- phenylaminomethylene-malonic acid diethyl ester (26.3 g, 0.1 mol), polyphosphoric acid (270 g) and phosphoryl chloride (750 g). The mixture was heated to about 70 0C and stirred for 4 h. The mixture was cooled to room temperature, and filtered. The residue was treated with aqueous Na2CO3 solution, filtered, washed with water and dried. 4-Hydroxyquinoline-3-carboxylic acid ethyl ester was obtained as a pale brown solid (15.2 g, 70 %). The crude product was used in next step without further purification.
[00290] A-I; 4-Oxo-l,4-dihydroquinoline-3-carboxylic acid 4-Hydroxyquinoline-3-carboxylic acid ethyl ester (15 g, 69 mmol) was suspended in sodium hydroxide solution (2N, 150 mL) and stirred for 2 h under reflux. After cooling, the mixture was filtered, and the filtrate was acidified to pH 4 with 2N HCl. The resulting precipitate was collected via filtration, washed with water and dried under vacuum to give 4-oxo-l,4- dihydroquinoline-3-carboxylic acid (A-I) as a pale white solid (10.5 g, 92 %). 1H NMR (d- DMSO) δ 15.34 (s, 1 H), 13.42 (s, 1 H), 8.89 (s, IH), 8.28 (d, J= 8.0 Hz, IH), 7.88 (m, IH), 7.81 (d, J = 8.4 Hz, IH), 7.60 (m, IH).
[00291] Specific Example: A-2; 6-Fluoro-4-hydroxy-quinoIine-3-carboxylic acid
Figure imgf000105_0001
6-Fluoro-4-hydroxy-quinolme-3-carboxylic acid (A-2) was synthesized following the general scheme above starting from 4-fluoro-phenylamine. Overall yield (53 %). 1H NMR (DMSO-J6) δ 15.2 (br s, 1 H), 8.89 (s, 1 H), 7.93-7.85 (m, 2 H), 7.80-7.74 (m, 1 H); ESI-MS 207.9 m/z (MH+).
[00292] Example 2:
Figure imgf000106_0001
A-4
[00293] 2-Bromo-5-methoxy-phenyIamine A mixture of l-bromo-4-methoxy-2-nitro-benzene (10 g, 43 mmol) and Raney Ni (5 g) in ethanol (100 mL) was stirred under H2 (1 atm) for 4 h at room temperature. Raney Ni was filtered off and the filtrate was concentrated under reduced pressure. The resulting solid was purified by column chromatography to give 2-bromo-5-methoxy-phenylamine (7.5 g, 86 %).
[00294] 2-[(2-Bromo-5-methoxy-phenylamino)-methylene]-malonic acid diethyl ester A mixture of 2-bromo-5-methoxy-phenylamine (540 mg, 2.64 mmol) and diethyl 2- (ethoxymethylene)malonate (600 mg, 2.7 mmol) was stirred at 100 °C for "2 h. After cooling, the reaction mixture was recrystallized from methanol (10 mL) to give 2-[(2-bromo-5-methoxy- phenylamino)-methylene]-malonic acid diethyl ester as a yellow solid (0.8 g, 81 %).
[00295] 8-Bromo-5-methoxy-4-oxo-l,4-dihydro-quinoline-3-carboxylic acid ethyl ester 2-[(2-Bromo-5-methoxy-phenylamino)-methylene]-malonic acid diethyl ester (9 g, 24.2 mmol) was slowly added to polyphosphoric acid (30 g) at 120 °C. The mixture was stirred at this temperature for additional 30 min and then cooled to room temperature. Absolute ethanol (30 mL) was added and the resulting mixture was refluxed for 30 min. The mixture was basifϊed with aqueous sodium bicarbonate at 25 0C and extracted with EtOAc (4 x 100 mL). The organic layers were combined, dried and the solvent evaporated to give 8-bromo-5-methoxy-4-oxo-l,4- dihydro-quinoline-3-carboxylic acid ethyl ester (2.3 g, 30 %). [00296] 5-Methoxy-4-oxo-l,4-dihydro-quinoline-3-carboxylic acid ethyl ester A mixture of 8-bromo-5-methoxy-4-oxo-l,4-dihydro-quinoline-3-carboxylic acid ethyl ester (2.3 g, 7.1 mrnol), sodium acetate (580 mg, 7.1 mmol) and 10 % Pd/C (100 mg) in glacial acetic acid (50 ml) was stirred under H2 (2.5 ami) overnight. The catalyst was removed via filtration, and the reaction mixture was concentrated under reduced pressure. The resulting oil was dissolved in CH2Cl2 (100 mL) and washed with aqueous sodium bicarbonate solution and water. The organic layer was dried, filtered and concentrated. The crude product was purified by column chromatography to afford 5-methoxy-4-oxo-l,4-dihydro-quinoline-3-carboxylic acid ethyl ester as a yellow solid (1 g, 57 %).
[00297] A-4; 5-Methoxy-4-oxo-l, 4-dihydro-quinoline-3-carboxyIic acid A mixture of 5-methoxy-4-oxo-l, 4-dihydro-quinoline-3-carboxylic acid ethyl ester (1 g, 7.1 mmol) in 10% NaOH solution (50 mL) was heated to reflux overnight and then cooled to room temperature. The mixture was extracted with ether. The aqueous phase was separated and acidified with cone. HCl solution to pH 1-2. The resulting precipitate was collected by filtration to give 5-methoxy-4-oxo-l, 4-dihydro-quinoline-3-carboxylic acid (A-4) (530 mg, 52 %). 1H NMR (DMSO) δ: 15.9 (s, 1 H), 13.2 (br, 1 H), 8.71 (s, 1 H), 7.71 (t, J- 8.1 Hz, 1 H), 7.18 (d, J = 8.4 Hz, 1 H), 6.82 (d, J= 8.4 Hz, 1 H), 3.86 (s, 3 H); ESI-MS 219.9 m/z (MH+).
[00298] Example 3:
Figure imgf000107_0001
[0288] Sodium 2-(mercapto-phenylamino-methylene)-malonic acid diethyl ester To a suspension of NaH (60% in mineral oil, 6 g, 0.15 mol) in Et2O at room temperature was added dropwise, over a 30 minutes period, ethyl malonate (24 g, 0.15 mol). Phenyl isothiocyanate (20.3 g, 0.15 mol) was then added dropwise with stirring over 30 min. The mixture was refiuxed for 1 h and then stirred overnight at room temperature. The solid was separated, washed with anhydrous ether (200 mL), and dried under vacuum to yield sodium 2- (mercapto-phenylamino-methylene)-malonic acid diethyl ester as a pale yellow powder (46 g, 97 %).
[00299] 2-(Methylsulfanyl-phenylamino-methylene)-malonic acid diethyl ester Over a 30 min period, methyl iodide (17.7 g, 125 mmol) was added dropwise to a solution of sodium 2-(mercapto-phenylamino-methylene)-malonic acid diethyl ester (33 g, 104 mmol) in DMF (100 mL) cooled in an ice bath. The mixture was stirred at room temperature for 1 h, and then poured into ice water (300 mL). The resulting solid was collected via filtration, washed with water and dried to give 2-(methylsulfanyl-phenylamino-methylene)-malonic acid diethyl ester as a pale yellow solid (27 g, 84 %).
[00300] 4-Hydroxy-2-methylsuIfanyl-quinoline-3-carboxylic acid ethyl ester A mixture of 2-(methylsulfanyl-phenylamino-methylene)-malonic acid diethyl ester (27 g, 87 mmol) in 1,2-dichlorobenzene (100 mL) was heated to reflux for 1.5 h. The solvent was removed under reduced pressure and the oily residue was triturated with hexane to afford a pale yellow solid that was purified by preparative HPLC to yield 4-hydroxy-2-methylsulfanyl- quinoline-3-carboxylic acid ethyl ester (8 g, 35 %).
[00301] A-16; 2-Methylsulfanyl-4-oxo-l,4-dihydro-quinoline-3-carboxylic acid 4-Hydroxy-2-methylsulfanyl-quinoline-3-carboxylic acid ethyl ester (8 g, 30 mmol) was heated under reflux in NaOH solution (10%, 100 mL) for 1.5 h. After cooling, the mixture was acidified with concentrated HCl to pH 4. The resulting solid was collected via filtration, washed with water (100 mL) and MeOH (100 mL) to give 2-methylsulfanyl-4-oxo-l,4-dihydro- quinoline-3-carboxylic acid (A-16) as a white solid (6 g, 85 %). 1H NMR (CDCl3) δ 16.4 (br s, 1 H), 11.1 (br s, 1 H), 8.19 (d, J= 8 Hz, IH), 8.05 (d, J= 8 Hz, IH), 7.84 (t, J- 8, 8 Hz, IH), 7.52 (t, J= 8 Hz, IH), 2.74 (s, 3H); ESI-MS 235.9 m/z (MH+). [00302] Example 4:
Figure imgf000109_0001
A-15 a) PPh3, Et3N, CCl4, CF3CO2H; b) diethyl malonate; c) T- 2000C; d) 10% NaOH
[00303] 2,2,2-Trifluoro-N-phenyl-acetimidoyI chloride A mixture Of Ph3P (138.0 g, 526 mmol), Et3N (21.3 g, 211 mmol), CCl4 (170 mL) and TFA (20 g, 175 mmol) was stirred for 10 min in an ice-bath. Aniline (19.6 g, 211 mmol) was dissolved in CCl4 (20 mL) was added. The mixture was stirred at reflux for 3 h. The solvent was removed under vacuum and hexane was added. The precipitates (Ph3PO and Ph3P) were filtered off and washed with hexane. The filtrate was distilled under reduced pressure to yield 2,2,2-trifluoro-N- phenyl-acetimidoyl chloride (19 g), which was used in the next step without further purification.
[00304] 2-(2,2,2-Trifluoro-l-phenylimino-ethyl)-malonic acid diethyl ester To a suspension of NaH (3.47 g, 145 mmol, 60 % in mineral oil) in THF (200 mL) was added diethyl malonate (18.5 g, 116 mmol) at 0 0C. The mixture was stirred for 30 min at this temperature and 2,2,2-trifluoro-N-phenyl-acetimidoyl chloride (19 g, 92 mmol) was added at 0 0C. The reaction mixture was allowed to warm to room temperature and stirred overnight. The mixture was diluted with CH2Cl2, washed with saturated sodium bicarbonate solution and brine. The combined organic layers were dried over Na2SO4, filtered and concentrated to provide 2- (2,2,2-trifluoro-l-phenylimino-ethyl)-malonic acid diethyl ester, which was used directly in the next step without further purification.
[00305] 4-Hydroxy-2-trifluoromethyl-quinoIine-3-carboxylic acid ethyl ester 2-(2,2,2-Trifluoro-l-phenylimino-ethyl)-malonic acid diethyl ester was heated at 2100C for 1 h with continuous stirring. The mixture was purified by column chromatography (petroleum ether) to yield 4-hydroxy-2-trifiuoromethyl-quinoline-3-carboxylic acid ethyl ester (12 g, 24 % over 3 steps). [00306] A-15; 4-Hydroxy-2-trifluoromethyl-quinoline-3-carboxyIic acid A suspension of 4-hydroxy-2-trifluoromethyl-quinoline-3-carboxylic acid ethyl ester (5 g, 17.5 mmol) in 10% aqueous NaOH solution was heated at reflux for 2 h. After cooling, dichloromethane was added and the aqueous phase was separated and acidified with concentrated HCl to pH 4. The resulting precipitate was collected via filtration, washed with water and Et2O to provide 4-hydroxy-2-trifluoromethyl-quinoline-3-carboxylic acid (A-15) (3.6 g, 80 %). 1H NMR (DMSO-J6) δ 8.18-8.21 (d, J= 7.8 Hz, 1 H), 7.92-7.94 (d, J= 8.4 Hz, 1 H), 7.79-7.83 (t, J = 14.4 Hz, 1 H), 7.50-7.53 (t, J= 15 Hz, 1 H); ESI-MS 257.0 m/z (MH+).
[00307] Example 5:
Figure imgf000110_0001
A-3 a) CH3C(O)ONH4, toluene; b) EtOCHC(CO2Et)2, 130 0C; c) Ph2O; d) I2, EtOH; e) NaOH
[00308] 3-Amino-cyclohex-2-enone A mixture of cyclohexane-l,3-dione (56.1 g, 0.5 mol) and AcONH4 (38.5 g, 0.5 mol) in toluene was heated at reflux for 5 h with a Dean-stark apparatus. The resulting oily layer was separated and concentrated under reduced pressure to give 3-amino-cyclohex-2-enone (49.9 g, 90 %), which was used directly in the next step without further purification.
[00309] 2-[(3-Oxo-cyclohex-l-enylamino)-methylene]-malonic acid diethyl ester A mixture of 3-amino-cyclohex-2-enone (3.3 g, 29.7 mmol) and diethyl 2- (ethoxymethylene)malonate (6.7 g, 31.2 mmol) was stirred at 130 0C for 4 h. The reaction mixture was concentrated under reduced pressure and the resulting oil was purified by column chromatography (silica gel, ethyl acetate) to give 2-[(3-oxo-cyclohex-l-enylamino)-methylene]- malonic acid diethyl ester (7.5 g, 90 %).
[00310] 4,5-Dioxo-l,4,5,6,7,8-hexahydro-quinoline-3-carboxylic acid ethyl ester A mixture of 2-[(3-oxo-cyclohex-l-enylamino)-methylene]-malonic acid diethyl ester (2.8 g, 1 mmol) and diphenylether (20 mL) was refluxed for 15 min. After cooling, π-hexane (80 niL) was added. The resulting solid was isolated via filtration and recrystallized from methanol to give 4,5-dioxo-l,4,5,6,7,8-hexahydro-quinoline-3-carboxylic acid ethyl ester (1.7 g 72 %).
[00311] 5-Hydroxy-4-oxo-l,4-dihydro-quinoline-3-carboxylic acid ethyl ester To a solution of 4,5-dioxo-l,4,5,6,7,8-hexahydro-quinoline-3-carboxylic acid ethyl ester (1.6 g, 6.8 mmol) in ethanol (100 mL) was added iodine (4.8 g, 19 mmol). The mixture was refluxed for 19 h and then concentrated under reduced pressure. The resulting solid was washed with ethyl acetate, water and acetone, and then recrystallized from DMF to give 5-hydroxy-4-oxo-l,4- dihydro-quinoline-3-carboxylic acid ethyl ester (700 mg, 43 %).
[00312] A-3; 5-Hydroxy-4-oxo-l, 4-dihydro-quinoline-3-carboxylic acid A mixture of 5-hydroxy-4-oxo-l,4-dihydro-quinoline-3-carboxylic acid ethyl ester (700 mg, 3 mmol) in 10% NaOH (20 ml) was heated at reflux overnight. After cooling, the mixture was extracted with ether. The aqueous phase was separated and acidified with cone. HCl to pH 1-2. The resulting precipitate was collected via filtration to give 5-hydroxy-4-oxo-l, 4-dihydro- quinoline-3-carboxylic acid (A-3) (540 mg, 87 %). 1H NMR (DMSOi6) δ 13.7 (br, 1 H), 13.5 (br, 1 H), 12.6 (s, 1 H), 8.82 (s, 1 H), 7.68 (t, J= 8.1 Hz, 1 H), 7.18 (d, J= 8.4 Hz, 1 H), 6.82 (d, J= 8.4 Hz, 1 H); ESI-MS 205.9 m/z (MH+).
[00313] Example 6 :
Figure imgf000112_0001
a) POCl3; b) MeONa; c) n-BuLi, ClCO2Et; d) NaOH
2,4-Dichloroquinoline A suspension of quinoline-2,4-diol (15 g, 92.6 mmol) in POCl3 was heated at reflux for 2 h. After cooling, the solvent was removed under reduced pressure to yield 2,4-dichloroquinoline, which was used without further purification.
[00314] 2,4-Dimethoxyquinoline To a suspension of 2,4-dichloroquinoline in MeOH (100 mL) was added sodium methoxide (50 g). The mixture was heated at reflux for 2 days. After cooling, the mixture was filtered. The filtrate was concentrated under reduced pressure to yield a residue that was dissolved in water and extracted with CH2Cl2. The combined organic layers were dried over Na2SO4 and concentrated to give 2,4-dimethoxyquinoline as a white solid (13 g, 74 % over 2 steps).
[00315] Ethyl 2,4-dimethoxyquinoline-3-carboxylate To a solution of 2,4-dimethoxyquinoliήe (11.5 g, 60.8 mmol) in anhydrous THF was added dropwise n-BuLi (2.5 M in hexane, 48.6 mL, 122 mmol) at 0 °C. After stirring for 1.5 h at 0 °C, the mixture was added to a solution of ethyl chloro formate in anhydrous THF and stirred at 0 0C for additional 30 min and then at room temperature overnight. The reaction mixture was poured into water and extracted with CH2Cl2. The organic layer was dried over Na2SO4 and concentrated under vacuum. The resulting residue was purified by column chromatography (petroleum ether / EtOAc = 50 / 1) to give ethyl 2, 4-dimethoxyquinoline-3-carboxylate (9.6 g, 60 %).
- I l l - [00316] A-17; 2,4-Dimethoxyquinoline-3-carboxylic acid Ethyl 2,4-dimethoxyquinoline-3-carboxylate (1.5 g, 5.7 mmol) was heated at reflux in NaOH solution (10 %, 100 mL) for 1 h. After cooling, the mixture was acidified with concentrated HCl to pH 4. The resulting precipitate was collected via filtration and washed with water and ether to give 2,4-dimethoxyquinoline-3-carboxylic acid (A-17) as a white solid (670 mg, 50 %). H NMR (CDCl3) δ 8.01-8.04 (d, J=U Hz, 1 H), 7.66-7.76 (m, 2 H), 7.42-7.47 (t, J= 22 Hz, 2 H), 4.09 (s, 3 H). 3.97 (s, 3 H); ESI-MS 234.1 m/z (MH+).
[00317] Commercially available acids
Figure imgf000113_0001
[00318] Amine Moieties
[00319] N-I Substituted 6-aminoindoles
[00320] Example 1:
[00321] General Scheme:
Figure imgf000114_0001
a) RX (X = Cl, Br, I), K2CO3, DMF or CH3CN; b) H2, Pd-C, EtOH or SnCl2-2H2O, EtOH.
[00322] Specific example:
Figure imgf000114_0002
B-1
[00323] l-Methyl-6-nitro-lH-indole To a solution of 6-nitroindole (4.05g 25 mmol) in DMF (50 mL) was added K2CO3 (8.63 g, 62.5 mmol) and MeI (5.33 g, 37.5 mmol). After stirring at room temperature overnight, the mixture was poured into water and extracted with ethyl acetate. The combined organic layers were dried over Na2SO4 and concentrated under vacuum to give the product l-methyl-6-nitro-lH-indole (4.3 g, 98 %).
[00324] B-I; l-Methyl-lH-indol-6-ylamine A suspension of l-methyl-6-nitro-lH-indole (4.3 g, 24.4 mmol) and 10% Pd-C (0.43 g) in EtOH (50 mL) was stirred under H2 (1 atm) at room temperature overnight. After filtration, the filtrate was concentrated and acidified with HCl-MeOH (4 mol/L) to give 1 -methyl- lH-indol-6-ylamine hydrochloride salt (B-I) (1.74 g, 49 %) as a grey powder. 1H NMR (DMSO-^6): δ 9.10'(s, 2 H), 7.49 (d, J= 8.4 Hz, 1 H), 7.28 (d, J= 2.0 Hz, IH), 7.15(s, 1 H), 6.84 (d, J = 8.4 Hz, 1 H), 6.38 (d, J= 2.8 Hz, IH), 3.72 (s, 3 H); ESI-MS 146.08 m/z (MH+).
[00325] Other examples:
Figure imgf000115_0001
[00326] B-2; l-Benzyl-lH-indol-6-ylamine 1 -Benzyl- lH-indol-6-ylamine (B-2) was synthesized following the general scheme above starting from 6-nitroindole and benzyl bromide. Overall yield (~ 40 %). HPLC ret. time 2.19 min, 10-99 % CH3CN, 5 min run; ESI-MS 223.3 m/z (MH+).
Figure imgf000115_0002
[00327] B-3; l-(6-Amino-indol-l-yl)-ethanone l-(6-Amino-indol-l-yl)-ethanone (B-3) was synthesized following the general scheme above starting from 6-nitroindole and acetyl chloride. Overall yield (~ 40 %). HPLC ret. time 0.54 min, 10-99 % CH3CN, 5 min run; ESI-MS 175.1 m/z (MH+).
[00328] Example 2:
Figure imgf000116_0001
B-26
[00329] {[2-(tert-Butoxycarbonyl-methyl-amino)-acetyl]-methyl-amino}-acetic acid ethyl ester To a stirred solution of (tert-butoxycarbonyl-methyl-amino)-acetic acid (37 g, 0.2 mol) and Et3N (60.6 g, 0.6 mol) in CH2Cl2 (300 mL) was added isobutyl chloroformate (27.3 g, 0.2 mmol) dropwise at -20 °C under argon. After stirring for 0.5 h, methylamino-acetic acid ethyl ester hydrochloride (30.5 g, 129 mmol) was added dropwise at— 20 0C. The mixture was allowed to warm to room temperature (c.a. 1 h) and quenched with water (500 mL). The organic layer was separated, washed with 10 % citric acid solution, dried over Na2SO4, filtered and concentrated. The residue was purified by column chromatography (petroleum ether / EtOAc 1 : 1) to give {[2- (tert-butoxycarbonyl-methyl-amino)-acetyl]-methyl-amino}- acetic acid ethyl ester (12.5 g, 22 %).
[00330] { [2-(tei ^-Butoxycarbonyl-methyl-amino)-acetyl] -methyl-aminoj-acetic acid A suspension of {[2-(fert-butoxycarbonyl-methyl-amino)-acetyl]- methyl-amino}-acetic acid ethyl ester (12.3 g, 42.7 mmol) and LiOH (8.9 g, 214 mmol) in H2O (20 mL) and THF (100 mL) was stirred overnight. Volatile solvent was removed under vacuum and the residue was extracted with ether (2 x 100 mL). The aqueous phase was acidified to pH 3 with dilute HCl solution, and then extracted with CH2Cl2 (2 x 300 mL). The combined organic layers were washed with brine, dried over Na2SO4 and concentrated under vacuum to give {[2-(tert-butoxycarbonyl-methyl- amino)-acetyl]-methyl-amino}-acetic acid as a colorless oil (10 g, 90 %). 1H NMR (CDCl3) δ 7.17 (br s, 1 H), 4.14-4.04 (m, 4 H), 3.04-2.88 (m, 6 H), 1.45-1.41 (m, 9 H); ESI-MS 282.9 m/z (M+Na+).
[00331] Methyl-({methyl-[2-(6-nitro-indol-l-yl)-2-oxo-ethyl]-carbamoyI}- methyl)-carbamic acid tert-butyl ester To a mixture of {[2-(tert-butoxycarbonyl-methyl-amino)-acetyl]-methyl-amino}-acetic acid (13.8g, 53 mmol) and TFFH (21.Og, 79.5 mmol) in anhydrous THF (125 mL) was added DIEA (27.7 mL, 159 mmol) at room temperature under nitrogen. The solution was stirred at room temperature for 20 min. A solution of 6-nitroindole (8.6g, 53 mmol) in THF (75 mL) was added and the reaction mixture was heated at 60 0C for 18 h. The solvent was evaporated and the crude mixture was re-partitioned between EtOAc and water. The organic layer was separated, washed with water (x 3), dried over Na2SO4 and concentrated. Diethyl ether followed by EtOAc was added. The resulting solid was collected via filtration, washed with diethyl ether and air dried to yield methyl-( {methyl-[2-(6-nitro-indol- 1 -yl)-2-oxo-ethyl]-carbamoyl} -methyl)-carbamic acid tert-butyl ester (6.42 g, 30 %). 1H NMR (400 MHz, DMSO-d6) δ 1.37 (m, 9H), 2.78 (m, 3H), 2.95 (d, J = 1.5 Hz, IH), 3.12 (d, J = 2.1 Hz, 2H), 4.01 (d, J = 13.8 Hz, 0.6H), 4.18 (d, J = 12.0 Hz, 1.4H), 4.92 (d, J = 3.4 Hz, 1.4H), 5.08 (d, J = 11.4 Hz, 0.6H), 7.03 (m, IH), 7.90 (m, IH), 8.21 (m, IH), 8.35 (d, J = 3.8 Hz, IH), 9.18 (m, IH); HPLC ret. time 3.12 min, 10-99 % CH3CN, 5 min run; ESI-MS 405.5 m/z (MH+).
[00332] B-26; ({[2-(6-Amino-indol-l-yl)-2-oxo-ethyl]-methyl-carbamoyl}- methyl)-methyl-carbamic acid tert-butyl ester A mixture of methyl-({methyl-[2-(6-nitro-indol-l-yl)-2-oxo-etliyl]-carbamoyl}-methyl)- carbamic acid tert-butyl ester (12.4 g, 30.6 mmol), SnCl2-2H2O (34.5g, 153.2 mmol) and DIEA (74.8 mL, 429 mmol) in ethanol (112 mL) was heated to 70 0C for 3 h. Water and EtOAc were added and the mixture was filtered through a short plug of Celite. The organic layer was separated, dried over Na2SO4 and concentrated to yield ({[2-(6-Amino-indol-l-yl)-2-oxo-ethyl]- methyl-carbamoyl}-methyl)-methyl-carbamic acid tert-butyl ester (B-26) (11.4 g, quant.). HPLC ret. time 2.11 min, 10-99 % CH3CN, 5 min run; ESI-MS 375.3 m/z (MH+).
[00333] 2-Substituted 6-aminoindoles [00334] Example 1:
Figure imgf000118_0001
B-4-b
[00335] B-4-a; (3-Nitro-phenyl)-hydrazine hydrochloride salt 3-Nitro-phenylamine (27.6 g, 0.2 mol) was dissolved in a mixture of H2O (40 mL) and 37% HCl (40 mL). A solution OfNaNO2 (13.8 g, 0.2 mol) in H2O (60 mL) was added at 0 0C, followed by the addition Of SnCl2-H2O (135.5 g, 0.6 mol) in 37% HCl (100 mL) at that temperature. After stirring at 0 0C for 0.5 h, the solid was isolated via filtration and washed with water to give (3- nitro-phenyl)-hydrazine hydrochloride salt (B-4-a) (27.6 g, 73 %).
[00336] 2-[(3-Nitro~phenyl)-hydrazono]-propionic acid ethyl ester (3-Nitro-phenyl)-hydrazine hydrochloride salt (B-4-a) (30.2 g, 0.16 mol) and 2-oxo-propionic acid ethyl ester (22.3 g, 0.19 mol) was dissolved in ethanol (300 mL). The mixture was stirred at room temperature for 4 h. The solvent was evaporated under reduced pressure to give 2-[(3- nitro-phenyl)-hydrazono]-propionic acid ethyl ester, which was used directly in the next step..
[00337] B-4-b; 4-Nitro-lH-indole-2-carboxylic acid ethyl ester and 6-Nitro- lH-indole -2-carboxylic acid ethyl ester 2-[(3-Nitro-phenyl)-hydrazono]-propionic acid ethyl ester from the preceding step was dissolved in toluene (300 mL). PPA (30 g) was added. The mixture was heated at reflux overnight and then cooled to room temperature. The solvent was removed to give a mixture of 4-nitro-lH- indole-2-carboxylic acid ethyl ester and 6-nitro-lH-indole -2-carboxylic acid ethyl ester (B-4-b) (15 g, 40 %).
[00338] B-4; 2-Methyl-lH-indol-6-ylamine To a suspension of LiAlH4 (7.8 g, 0.21 mol) in THF (300 mL) was added dropwise a mixture of 4-nitro-lH-indole-2-carboxylic acid ethyl ester and 6-nitro-lH-indole -2-carboxylic acid ethyl ester (B-4-b) (6g, 25.7 mmol) in THF (50 mL) at 0 °C under N2. The mixture was heated at reflux overnight and then cooled to 0 0C. H2O (7.8 mL) and 10 % NaOH (7.8 mL) were added to the mixture at 0 0C. The insoluble solid was removed via filtration. The filtrate was dried over Na2SO4, filtered and concentrated under reduced pressure. The crude residue was purified by column chromatography to afford 2-methyl-lH-indol-6-ylamine (B-4) (0.3 g, 8 %). 1H NMR (CDCl3) δ 7.57 (br s,- 1 H), 7.27 (d, J= 8.8 Hz, 1 H), 6.62 (s, 1 H), 6.51-6.53 (m, 1 H), 6.07 (s, 1 H), 3.59-3.25 (br s, 2 H), 2.37 (s, 3H); ESI-MS 147.2 m/z (MH+).
[00339] Example 2:
Figure imgf000119_0001
[00340] 6-Nitro-lH-indole-2-carboxylic acid and 4-Nitro-lH- indole-2- carboxylic acid A mixture of 4-nitro-lH-indole-2-carboxylic acid ethyl ester and 6-nitro-lH-indole -2-carboxylic acid ethyl ester (B-4-b) (0.5 g, 2.13 mmol) in 10 % NaOH (20 mL) was heated at reflux overnight and then cooled to room temperature. The mixture was extracted with ether. The aqueous phase was separated and acidified with HCl to pH 1-2. The resulting solid was isolated via filtration to give a mixture of 6-nitro-lH-indole-2-carboxylic acid and 4-nitro-lH- indole-2- carboxylic acid (0.3 g, 68 %).
[00341] 6-Nitro-lH-indole-2-carboxyIic acid amide and 4-Nitro-lH- indole-2- carboxylic acid amide A mixture of ό-nitro-lH-indole^-carboxylic acid and 4-nitro-lH- indole-2-carboxylic acid (12 g, 58 mmol) and SOCl2 (50 mL, 64 mmol) in benzene (150 mL) was refluxed for 2 h. The benzene and excessive SOCl2 was removed under reduced pressure. The residue was dissolved in CH2Cl2 (250 mL). NH4OH (21.76 g, 0.32 mol) was added dropwise at 0 0C. The mixture was stirred at room temperature for 1 h. The resulting solid was isolated via filtration to give a crude mixture of 6-nitro-lH-indole-2-carboxylic acid amide and 4-nitro-lH- indole-2-carboxylic acid amide (9 g, 68 %), which was used directly in the next step.
[00342] 6-Nitro-lH-indole-2-carbonitrile and 4-Nitro-lH- indole-2- carbonitrile A mixture of 6-nitro-lH-indole-2-carboxylic acid amide and 4-nitro-lH- indole-2-carboxylic acid amide (5 g, 24 mmol) was dissolved in CH2Cl2 (200 mL). Et3N (24.24 g, 0.24 mol) was added, followed by the addition Of(CF3CO)2O (51.24 g, 0.24 mol) at room temperature. The mixture was stirred for 1 h and poured into water (100 mL). The organic layer was separated. The aqueous layer was extracted with EtOAc (100 mL x 3). The combined organic layers were dried over Na2SO4, filtered and concentrated under reduced pressure. The crude residue was purified by column chromatography to give a mixture of 6-nitro-lH-indole-2-carbonitrile and 4- nitro-lH- indole-2-carbonitrile (2.5 g, 55 %).
[00343] Br5; 6-Amino-lH-indole-2-carbonitrile A mixture of 6-nitro-lH-indole-2-carbonitrile and 4-nitro-lH- indole-2-carbonitrile (2.5 g, 13.4 mmol) and Raney Ni (500 mg) in EtOH (50 mL) was stirred at room temperature under H2 (1 atm) for 1 h. Raney Ni was filtered off. The filtrate was evaporated under reduced pressure and purified by column chromatography to give 6-amino-lH-indole-2-carbonitrile (B-5) (1 g, 49 %). 1H NMR (DMSO-J6) δ 12.75 (br s, 1 H), 7.82 (d, J= 8 Hz, 1 H), 7.57 (s, 1 H), 7.42 (s, 1 H), 7.15 (d, J- 8 Hz, 1 H); ESI-MS 158.2 m/z (MH+).
[00344] Example 3:
Figure imgf000121_0001
Figure imgf000121_0002
DDQ H2, Raney Ni
Figure imgf000121_0003
1 ,4-dioxane
Figure imgf000121_0004
MeOH B-6
[00345] 2,2-Dimethyl-N-ø-tolyl-propionamide To a solution of o-tolylamine (21.4 g, 0.20 mol) and Et3N (22.3 g, 0.22 mol) in CH2Cl2 was added 2,2-dimethyl-propionyl chloride (25.3 g, 0.21 mol) at 10 0C. The mixture was stirred overnight at room temperature, washed with aq. HCl (5%, 80 mL), saturated NaHCO3 solution and brine, dried over Na2SO4 and concentrated under vacuum to give 2,2-dimethyl-N-o-tolyl- propionamide (35.0 g, 92 %).
[00346] 2-tert-Butyl-lH-indole To a solution of 2,2-dimethyl-N-o-tolyl- propionamide (30.0 g, 159 mmol) in dry THF (100 mL) was added dropwise n-BuLi (2.5 M, in hexane, 190 mL) at 15 °C. The mixture was stirred overnight at 15 0C, cooled in an ice-water bath and treated with saturated NH4Cl solution. The organic layer was separated and the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na2SO4, filtered, and concentrated in vacuum. The residue was purified by column chromatography to give 2-ter^-butyl-lH-indole (23.8 g, 88 %).
[00347] 2-fert-Butyl-2,3-dihydro-lH-indoIe To a solution of 2-tert-butyl-lH-indole (5.0 g, 29 mmol) in AcOH (20 mL) was added NaBH4 at 10 0C. The mixture was stirred for 20 min at 10 0C, treated dropwise with H2O under ice cooling, and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na2SO4, filtered, and concentrated under vacuum to give a mixture of starting material and 2- terf-butyl-2,3-dihydro-lH-indole (4.9 g), which was used directly in the next step.
[00348] 2-tert-Butyl-6-nitro-2,3-dihydro-lH-indole To a solution of the mixture of 2-fer£-butyl-2,3-dihydro-lH-mdole and 2-tert-butyl-lH-indole (9.7 g ) in H2SO4 (98%, 80 mL) was slowly added KNO3 (5.6 g, 55.7 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 1 h, carefully poured into cracked ice, basifϊed with Na2CO3 to pH~8 and extracted with ethyl acetate. The combined extracts were washed with brine, dried over anhydrous Na2SO4 and concentrated under vacuum. The residue was purified by column chromatography to give 2-tert-butyl-6-nitro-2,3-dihydro-lH-indole (4.0 g, 32 % over 2 steps).
[00349] 2-fert-Butyl-6-nitro-lH-indole To a solution of 2-tert-butyl-6-nitro-2,3-dihydro-lH-indole (2.0 g, 9.1 mmol) in 1,4-dioxane (20 mL) was added DDQ at room temperature. After refluxing for 2.5 h, the mixture was filtered and the filtrate was concentrated under vacuum. The residue was purified by column chromatography to give 2-fert-butyl-6-nitro-lH-indole (1.6 g, 80 %).
[00350] B-6; 2-tert-Butyl-lH-indol-6-ylamine To a solution of 2-tert-butyl-6-nitro-lH-indole (1.3 g, 6.0 mmol) in MeOH (10 mL) was added Raney Ni (0.2 g). The mixture was stirred at room temperature under H2 (1 atm) for 3 h. The reaction mixture was filtered and the filtrate was concentrated. The residue was washed with petroleum ether to give 2-tert-butyl-lH-indol-6-ylamine (B-6) (1.0 g, 89 %). 1H NMR (DMSO- d6) δ 10.19 (s, 1 H), 6.99 (d, J- 8.1 Hz, 1 H), 6.46 (s, 1 H), 6.25 (dd, J= 1.8, 8.1 Hz, 1 H), 5.79 (d, J= 1.8 Hz, 1 H), 4.52 (s, 2 H), 1.24 (s, 9 H); ESI-MS 189.1 m/z (MH+).
[00351] 3-Substituted 6-aminoindoIes
[00352] Example 1:
Figure imgf000123_0001
[00353] N-(3-Nitro-phenyl)-N'-propylidene-hydrazine Sodium hydroxide solution (10 %, 15 mL) was added slowly to a stirred suspension of (3-nitro- phenyl)-hydrazine hydrochloride salt (B-4-a) (1.89 g, 10 mmol) in ethanol (20 mL) until pH 6. Acetic acid (5 mL) was added to the mixture followed by propionaldehyde (0.7 g, 12 mmol). After stirring for 3 h at room temperature, the mixture was poured into ice- water and the resulting precipitate was isolated via filtration, washed with water and dried in air to obtain N-(3- nitro-phenyl)-N'-propylidene-hydrazine, which was used directly in the next step.
[00354] 3-Methyl-4-nitro-lH-indole and 3-MethyI-6-nitro-lH-indole A mixture of N-(3-nitro-phenyl)-N'-propylidene-hydrazine dissolved in 85 % H3PO4 (20 mL) and toluene (20 mL) was heated at 90-100 0C for 2 h. After cooling, toluene was removed under reduced pressure. The resultant oil was basified with 10 % NaOH to pH 8. The aqueous layer was extracted with EtOAc (100 mL x 3). The combined organic layers were dried, filtered and concentrated under reduced pressure to afford a mixture of 3-methyl-4-nitro-lH-indole and 3- methyl-6-nitro-lH-indole (1.5 g, 86 % over two steps), which was used directly in the next step.
[00355] B-7; 3-Methyl-lH-indol-6-ylamine A mixture of 3-methyl-4-nitro-lH-indole and 3-methyl-6-nitro-lH-indole (3 g, 17 mol) and 10 % Pd-C (0.5 g) in ethanol (30 mL) was stirred overnight under H2 (1 atm) at room temperature. Pd- C was filtered off and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography to give 3 -methyl- lH-indol-6-ylamine (B-7) (0.6 g, 24 %). 1H NMR (CDCl3) δ 7.59 (br s, 1 H), 7.34 (d, J= 8.0 Hz, 1 H), 6.77 (s, IH), 6.64 (s, 1 H), 6.57 (m, 1 H), 3.57 (br s, 2 H), 2.28 (s, 3H); ESI-MS 147.2 m/z (MH+).
[00356] Example 2:
Figure imgf000124_0001
[00357] β-Nitro-lH-indole-θ-carbonitrile To a solution of 6-nitroindole (4.86 g 30 mmol) in DMF (24.3 mL) and CH3CN (243 mL) was added dropwise a solution of ClSO2NCO (5 mL, 57 mmol) in CH3CN (39 mL) at 0 °C . After addition, the reaction was allowed to warm to room temperature and stirred for 2 h. The mixture was poured into ice-water, basified with sat. NaHCO3 solution to pH 7-8 and extracted with ethyl acetate. The organic layer was washed with brine, dried over Na2SO4 and concentrated to give 6-nitro-lH-indole-3-carbonitrile (4.6 g, 82 %).
[00358] B-8; β-Aimno-lH-indole-θ-carbonitrile A suspension of 6-nitro.-lH-indole-3-carbonitrile (4.6 g, 24.6 mmol) and 10% Pd-C (0.46 g) in EtOH (50 mL) was stirred under H2 (1 atm) at room temperature overnight. After filtration, the filtrate was concentrated and the residue was purified by column chromatography (Pet. Ether / EtOAc = 3 / 1) to give 6-amino-lH-mdole-3-carbonitrile (B-8) (1 g, 99 %) as a pink powder. 1H NMR (DMSO-J6) δ l 1.51 (s, 1 H), 7.84 (d, J- 2.4 Hz, 1 H), 7.22 (d, J= 8.4 Hz, 1 H), 6.62 (s, IH), 6.56 (d, J= 8.4 Hz, 1 H), 5.0 (s, 2H); ESI-MS 157.1 m/z (MH+).
[003591 Example 3:
Figure imgf000125_0001
B-9-a B-9
[00360] Dimethyl-(6-nitro-lH-indol-3-ylmethyl)-amine A solution of dimethylamine (25 g, 0.17 mol) and formaldehyde (14.4 mL, 0.15 mol) in acetic acid (100 mL) was stirred at 0 0C for 30 min. To this solution was added 6-nitro-lH-indole (20 g, 0.12 mol). After stirring for 3 days at room temperature, the mixture was poured into 15% aq. NaOH solution (500 mL) at 0 °C. The precipitate was collected via filtration and washed with water to give dimethyl-(6-nitro-lH-indol-3-ylmethyl)-amine (23 g, 87 %).
[00361] B-9-a; (6-Nitro-lH-indol-3-yl)-acetonitrile To a mixture of DMF (35 mL) and MeI (74.6 g, 0.53 mol) in water (35 mL) and THF (400 mL) was added dimethyl-(6-nitro-lH-indol-3-ylmethyl)-amine (23 g, 0.105 mol). After the reaction mixture was refluxed for 10 min, potassium cyanide (54.6 g, 0.84 mol) was added and the mixture was kept refluxing overnight. The mixture was then cooled to room temperature and filtered. The filtrate was washed with brine (300 mL x 3), dried over Na2SO4, filtered and concentrated. The residue was purified by column chromatography to give (6-nitro-lH-indol-3- yl)-acetonitrile (B-9-a) (7.5 g, 36 %).
[00362] B-9; (6-Amino-lH-indol-3-yl)-acetonitrile A mixture of (6-nitro-lH-indol-3-yl)-acetonitrile (B-9-a) (1.5 g, 74.5 mml) and 10 % Pd-C (300 mg) in EtOH (50 mL) was stirred at room temperature under H2 (1 atm) for 5 h. Pd-C was removed via filtration and the filtrate was evaporated to give (6-amino-lH-indol-3-yl)- acetonitrile (B-9) (1.1 g, 90 %). 1H NMR (DMSO-J6) δ 10.4 (br s, 1 H), 7.18 (d, J= 8.4 Hz, 1 H), 6.94 (s, IH), 6.52 (s, 1 H), 6.42 (dd, J= 8.4, 1.8 Hz, 1 H), 4.76(s, 2 H), 3.88 (s, 2 H); ESI- MS 172.1 m/z (MH+).
[00363] Example 4: HBoc
Figure imgf000126_0001
B-9-a B-10 [00364] [2-(6-Nitro-lH- indol-3-yl)-ethyl]-carbamic acid tert-butyl ester To a solution of (6-nitro-lH-indol-3-yl)-acetonitrile (B-9-a) (8.6 g, 42.8 mmol) in dry THF (200 mL) was added a solution of 2 M borane-dimethyl sulfide complex in THF (214 mL. 0.43 mol) at 0 °C. The mixture was heated at reflux overnight under nitrogen. The mixture was then cooled to room temperature and a solution of (Boc)2O (14 g, 64.2 mmol) and Et3N (89.0 mL, 0.64 mol) in THF was added. The reaction mixture was kept stirring overnight and then poured into ice-water. The organic layer was separated and the aqueous phase was extracted with EtOAc (200 x 3 mL). The combined organic layers were washed with water and brine, dried over Na2SO4, filtered and concentrated under reduced pressure. The crude was purified by column chromatography to give [2-(6-nitro-lH- indol-3-yl)-ethyl]-carbamic acid tert-butyl ester (5 g, 38 %).
[00365] B-IO; [2-(6-Amino-lH-indol-3-yl)-ethyl]-carbamic acid tert-butyl ester A mixture of [2-(6-nitro-lH- indol-3-yl)-ethyl]-carbamic acid tert-butyl ester (5 g, 16.4 mmol) and Raney Ni (1 g) in EtOH (100 mL) was stirred at room temperature under H2 (1 arm) for 5 h. Raney Ni was filtered off and the filtrate was evaporated under reduced pressure. The crude product was purified by column chromatography to give [2-(6-amino-lH-indol-3-yl)-ethyl]- carbamic acid tert-butyl ester (B-IO) (3 g, 67 %). 1H NMR (DMSO-J6) δ 10.1 (br s, 1 H), 7.11 (d, J= 8.4 Hz, 1 H), 6.77-6.73 (m, 2 H), 6.46 (d, J= 1.5 Hz, 1 H), 6.32 (dd, J= 8.4, 2.1 Hz, 1 H), 4.62 (s, 2 H), 3.14-3.08 (m, 2 H), 2.67-2.62 (m, 2 H), 1.35 (s, 9H); ESI-MS 275.8 m/z (MH+). [00366] Example 5:
[00367] General Scheme:
Figure imgf000127_0001
a) RX (X=Br5I), zinc triflate, TBAI, DIEA, toluene; b) H2, Raney Ni, EtOH or SnCl2-2H2O, EtOH. [00368] Specific example:
Figure imgf000127_0002
B-11
[00369] 3-tert-Butyl-6-nitro-lH-indole To a mixture of 6-nitroindole (1 g, 6.2 mmol), zinc triflate (2.06 g, 5.7 mmol) and TBAI (1.7 g, 5.16 mmol) in anhydrous toluene (11 mL) was added DIEA (1.47 g, 11.4 mmol) at room temperature under nitrogen. The reaction mixture was stirred for 10 min at 120 °C, followed by addition of t-butyl bromide (0.707 g, 5.16 mmol). The resulting mixture was stirred for 45 min at 120 °C. The solid was filtered off and the filtrate was concentrated to dryness and purified by column chromatography on silica gel (Pet.Ether./EtOAc 20:1) to give 3-tert-butyl-6-nitro-lH- indole as a yellow solid (0.25 g, 19 %). 1H NMR (CDCl3) δ 8.32 (d, J= 2.1 Hz, IH), 8.00 (dd, J = 2.1, 14.4 Hz, IH), 7.85 (d, J= 8.7 Hz, IH), 7.25 (s, IH), 1.46 (s, 9H).
[00370] B-Il; 3-fert-Butyl-lH-indol-6-ylamine A suspension of 3-tert-butyl-6-nitro-lH-indole (3.0 g, 13.7mmol) and Raney Ni (0.5g) in efhanol was stirred at room temperature under H2 (1 atm) for 3 h. The catalyst was filtered off and the filtrate was concentrated to dryness. The residue was purified by column chromatography on silica gel (Pet.Ether. / EtOAc 4 : 1) to give 3-tert-butyl-lH-indol-6-ylamine (B-Il) (2.0 g, 77.3%) as a gray solid. 1H NMR (CDCl3): δ 7.58 (m, 2H), 6.73 (d, J= 1.2 Hz, IH), 6.66 (s, IH), 6.57(dd, J= 0.8, 8.6 Hz, IH), 3.60 (br s, 2H), 1.42 (s, 9H).
[00371] Other examples:
Figure imgf000128_0001
[00372] B-12; 3-Ethyl-lH-indol-6-ylamine 3-Ethyl-lH-indol-6-ylamine (B-12) was synthesized following the general scheme above starting from 6-nitroindole and ethyl bromide. Overall yield (42 %). HPLC ret. time 1.95 min, 10-99 % CH3CN, 5 min run; ESI-MS 161.3 m/z (MH+).
Figure imgf000128_0002
[00373] B-13; 3-Isopropyl-lH-indol-6-yIamine 3-Isopropyl-lH-indol-6-ylamine (B-13) was synthesized following the general scheme above starting from 6-nitroindole and isopropyl iodide. Overall yield (17 %). HPLC ret. time 2.06 min, 10-99 % CH3CN, 5 min run; ESI-MS 175.2 m/z (MH+).
Figure imgf000128_0003
[00374] B-14; 3-røc-ButyI~lH-indol-6-ylamine 3 -sec-Butyl- lH-indol-6-yl amine (B-14) was synthesized following the general scheme above starting from 6-nitroindole and 2-bromobutane. Overall yield (20 %). HPLC ret. time 2.32 min, 10-99 % CH3CN, 5 min run; ESI-MS 189.5 m/z (MH+).
Figure imgf000129_0001
[00375] B-15; S-Cyclopentyl-lH-indoI-ό-ylamine 3- Cyclopentyl -lH-indol-6-ylamine (B-15) was synthesized following the general scheme above starting from 6-nitroindole and iodo-cyclopentane. Overall yield (16 %). HPLC ret. time 2.39 min, 10-99 % CH3CN, 5 min run; ESI-MS 201.5 m/z (MH+)..
Figure imgf000129_0002
[00376] B-16; 3-(2-Ethoxy-ethyl)-lH-indol-6-ylamine 3-(2-Ethoxy-ethyl)-lH-indol-6-ylamine (B-16) was synthesized following the general scheme above starting from 6-nitroindole and l-bromo-2-ethoxy-ethane. Overall yield (15 %). HPLC ret. time 1.56 min, 10-99 % CH3CN, 5 min run; ESI-MS 205.1 m/z (MH+).
Figure imgf000129_0003
[00377] B-17; (6-Amino-lH-indol-3-yl)-acetic acid ethyl ester (ό-Amino-lH-indol-S-y^-acetic acid ethyl ester (B-17) was synthesized following the general scheme above starting from 6-nitroindole and iodo-acetic acid ethyl ester. Overall yield (24 %). HPLC ret. time 0.95 min, 10-99 % CH3CN, 5 min run; ESI-MS 219.2 m/z (MH+).
[00378] 4-Substituted 6-aminoindole
Figure imgf000130_0001
B-18
[00379] 2-Methyl-3,5-dinitro-benzoic acid To a mixture OfHNO3 (95%, 80 mL) and H2SO4 (98%, 80 mL) was slowly added 2- methylbenzoic acid (50 g, 0.37 mol) at O 0C. After addition, the reaction mixture was stirred for 1.5 h while keeping the temperature below 30 °C, poured into ice-water and stirred for 15 min. The resulting precipitate was collected via filtration and washed with water to give 2-methyl-3,5- dinitro-benzoic acid (70 g, 84 %).
[00380] 2-Methyl-3,5-dinitro-benzoic acid ethyl ester A mixture of 2-methyl-3,5-dinitro-benzoic acid (50 g, 0.22 mol) in SOCl2 (80 mL) was heated at reflux for 4 h and then was concentrated to dryness. CH2Cl2 (50 mL) and EtOH (80 mL) were added. The mixture was stirred at room temperature for 1 h, poured into ice-water and extracted with EtOAc (3 x 100 mL). The combined extracts were washed with sat. Na2CO3 (80 mL), water (2 x 100 mL) and brine (100 mL), dried over Na2SO4 and concentrated to dryness to give 2-methyl-3,5-dinitro-benzoic acid ethyl ester (50 g, 88 %). [00381] 2-(2-Dimethylamino-vinyl)-3,5-dinitro-benzoic acid ethyl ester A mixture of 2-methyl-3,5-dinitro-benzoic acid ethyl ester (35 g, 0.14 mol) and dimethoxymethyl-dimethyl-amine (32 g, 0.27 mol) in DMF (200 mL) was heated at 100 0C for 5 h. The mixture was poured into ice-water. The precipitate was collected via filtration and washed with water to give 2-(2-dimethylamino-vinyl)-3,5-dinitro-benzoic acid ethyl ester (11.3 g, 48 %).
[00382] B-18; 6-Amino-lH-indole-4-carboxylic acid ethyl ester A mixture of 2-(2-dimethylamino-vinyl)-3,5-dinitro- benzoic acid ethyl ester (11.3 g, 0.037 mol) and SnCl2 (83 g. 0.37 mol) in ethanol was heated at reflux for 4 h. The mixture was concentrated to dryness and the residue was poured into water and basified with sat. Na2CO3 solution to pH 8. The precipitate was filtered off and the filtrate was extracted with ethyl acetate (3 x 100 mL). The combined extracts were washed with water (2 x 100 mL) and brine (150 mL), dried over Na2SO4 and concentrated to dryness. The residue was purified by column chromatography on silica gel to give 6-amino-lH-indole-4-carboxylic acid ethyl ester (B-18) (3 g, 40 %). 1H NMR (DMSO-J6) δ 10.76 (br s, 1 H), 7.11-7.14 (m, 2 H), 6.81-6.82 (m, 1 H), 6.67-6.68 (m, 1 H), 4.94 (br s, 2 H), 4.32-4.25 (q, J= 7.2 Hz, 2 H), 1.35-1.31 (t, J= 7.2, 3 H). ESI-MS 205.0 m/z (MH+).
[00383] 5-Substituted 6-aminoindoles
[00384] Example 1:
Figure imgf000131_0001
[00386] Specific example:
Figure imgf000132_0001
B-20 l-Fluoro-5-methyl-2,4-dinitro-benzene To a stirred solution Of HNO3 (60 mL) and H2SO4 (80 mL), cooled in an ice bath, was added 1- fluoro-3-methyl-benzene (27.5g, 25 mmol) at such a rate that the temperature did not rise over 35 °C. The mixture was allowed to stir for 30 min at room temperature and poured into ice water (500 mL). The resulting precipitate (a mixture of the desired product and l-fluoro-3-methyl-2,4- dinitro-benzene, approx. 7:3) was collected via filtration and purified by recrystallization from 50 mL isopropyl ether to give l-fluoro-5-methyl-2,4-dinitro-benzene as a white solid (18 g, 36 %).
[00387] [2-(5-Fluoro-2,4-dinitro-phenyl)-vinyl]-dimethyl-amine A mixture of l-fluoro-5-methyl-2,4-dinitro-benzene (10 g, 50 mmol), dimethoxymethyl- dimethylamine (11.9 g, 100 mmol) and DMF (50 mL) was heated at 100 0C for 4 h. The solution was cooled and poured into water. The red precipitate was collected via filtration, washed with water adequately and dried to give [2-(5-fluoro-2,4-dinitro-phenyl)-vinyl]- dimethyl-amine (8 g, 63 %).
[00388] B-20; 5-Fluoro-lH-indol-6-ylamine A suspension of [2-(5-fluoro-2,4-dinitro-phenyl)-vinyl]-dimethyl-amine (8 g, 31.4 mmol) and Raney Ni (8 g) in EtOH (80 mL) was stirred under H2 (40 psi) at room temperature for 1 h. After filtration, the filtrate was concentrated and the residue was purified by chromatography (Pet.Ether/ EtOAc = 5 / 1) to give 5-fluoro-lH-indol-6-ylamme (B-20) as a brown solid (1 g, 16 %). 1H NMR (DMSO-4) δ 10.56 (br s, 1 H), 7.07 (d, J= 12 Hz, 1 H), 7.02 (m, IH), 6.71 (d, J= 8 Hz, IH), 6.17 (s, IH), 3.91 (br s , 2H); ESI-MS 150.1 m/z (MH+).
[00389] Other examples:
Figure imgf000132_0002
[00390] B-21; 5-Chloro-lH-indol-6-ylamine 5-Chloro-lH-indol-6-ylamine (B-21) was synthesized following the general scheme above starting from l-chloro-3 -methyl-benzene. Overall yield (7 %). 1H NMR (CDCl3) δ.7.85 (br s, 1 H), 7.52 (s, 1 H), 7.03 (s, IH), 6.79 (s, IH), 6.34 (s, IH), 3.91 (br s, 2H); ESI-MS 166.0 m/z (MH+).
Figure imgf000133_0001
[00391] B-22; 5-Trifluoromethyl-lH-indol-6-ylamine 5-Trifluoromethyl-lH-indol-6-ylamine (B-22) was synthesized following the general scheme above starting from l-methyl-3-trifluorom ethyl-benzene. Overall yield (2 %). 1H NMR (DMSO-J6) 10.79 (br s, 1 H), 7.55 (s, 1 H), 7.12 (s, 1 H), 6.78 (s, 1 H), 6.27(s, 1 H), 4.92 (s, 2 H); ESI-MS 200.8 m/z (MH+).
[00392] Example 2:
Figure imgf000133_0002
B-23
[00393] l-Benzenesulfonyl-2,3-dihydro-lH-indole To a mixture of DMAP (1.5 g), benzenesulfonyl chloride (24 g, 136 mmol) and 2,3-dihydro-lH- indole (14.7 g, 124 mmol) in CH2Cl2 (200 mL) was added dropwise Et3N (19 g, 186 mmol) in an ice-water bath. After addition, the mixture was stirred at room temperature overnight, washed with water, dried over Na2SO4 and concentrated to dryness under reduced pressure to provide 1- benzenesulfonyl-2,3-dihydro-lH-indole (30.9 g, 96 %). [00394] l-(l-Benzenesulfonyl-2,3-dihydro-lH-indol-5-yl)-ethanone To a stirring suspension Of AlCl3 (144 g, 1.08 mol) in CH2Cl2 (1070 mL) was added acetic anhydride (54 mL). The mixture was stirred for 15 minutes. A solution of 1-benzenesulfonyl- 2,3-dihydro-lH-indole (46.9 g, 0.18 mol) in CH2Cl2 (1070 mL) was added dropwise. The mixture was stirred for 5 h and quenched by the slow addition of crushed ice. The organic layer was separated and the aqueous layer was extracted with CH2Cl2. The combined organic layers were washed with saturated aqueous NaHCO3 and brine, dried over Na2SO4 and concentrated under vacuum to yield l-(l-benzenesulfonyl-2,3-dihydro-lH-indol-5-yl)-ethanone (42.6 g, 79 %).
[00395] l-Benzenesulfonyl-5-ethyl-2,3-dihydro-lH-indole To magnetically stirred TFA (1600 mL) was added at 0 °C sodium borohydride (64 g, 1.69 mol) over 1 h. To this mixture was added dropwise a solution of l-(l-benzenesulfonyl-2,3-dihydro- lH-indol-5-yl)-ethanone (40 g, 0.13 mol) in TFA (700 mL) over 1 h. The mixture was stirred overnight at 25 0C, diluted with H2O (1600 ml), and basified with sodium hydroxide pellets at 0 °C. The organic layer was separated and the aqueous layer was extracted with CH2Cl2. The combined organic layers were washed with brine, dried over Na2SO4 and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give 1 - benzenesulfonyl-5-ethyl-2,3-dihydro-lH-indole (16.2 g, 43 %).
[00396] 5-Ethyl-2,3-dihydro-lH-indole A mixture of l-benzenesulfonyl-5-ethyl-2,3-dihydro-lH-indole (15 g, 0.05 mol) in HBr (48%, 162 mL) was heated at reflux for 6 h. The mixture was basified with sat. NaOH solution to pH 9 and extracted with ethyl acetate. The organic layer was washed with brine, dried over Na2SO4 and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give 5-ethyl-2,3-dihydro-lH-indole (2.5 g, 32 %).
[00397] 5-Ethyl-6-nitro-2,3-dihydro-lH-indole To a solution of 5-ethyl-2,3-dihydro-lH-indole (2.5 g, 17 mmol) in H2SO4 (98%, 20 mL) was slowly added KNO3 (1.7 g, 17 mmol) at 0 °C. After addition, the mixture was stirred at 0 - 10 0C for 10 min, carefully poured into ice, basified with NaOH solution to pH 9 and extracted with ethyl acetate. The combined extracts were washed with brine, dried over Na2SO4 and concentrated to dryness. The residue was purified by column chromatography on silica gel to give 5-ethyl-6-nitro-2,3-dihydro-lH-indole (1.9 g, 58 %).
[00398] 5-Ethyl-6-nitro-lH-indole To a solution of 5-ethyl-6-nitro-2,3-dihydro-lH-indole (1.9 g, 9.9 mmol) in CH2Cl2 (30 mL) was added MnO2 (4 g, 46 mmol). The mixture was stirred at room temperature for 8 h. The solid was filtered off and the filtrate was concentrated to dryness to give crude 5-ethyl-6-nitro-lH- indole (1.9 g, quant.).
[00399] B-23; 5-Ethyl-lH-indol-6-ylamine A suspension of 5-ethyl-6-nitro-lH-indole (1.9 g, 10 mmol) and Raney Ni (1 g) was stirred under H2 (1 atm) at room temperature for 2 h. The catalyst was filtered off and the filtrate was concentrated to dryness. The residue was purified by column chromatography on silica gel to give 5-ethyl-lH-indol-6-ylamine (B-23) (760 mg, 48 %). 1H NMR (CDCl3) δ 7.90 (br s, IH), 7.41 (s, IH), 7.00 (s, IH), 6.78 (s, 2H), 6.39 (s, IH), 3.39 (br s, 2H), 2.63 (q, J= 7.2 Hz, 2H), 1.29 (t, J= 6.9 Hz, 3H); ESI-MS 161.1 m/z (MH+).
[00400] Example 3:
Figure imgf000135_0001
B-24
[00401] 2-Bromo-4-te^-butyl-phenylamine To a solution of 4-tert-butyl-phenylamine (447 g, 3 mol) in DMF (500 mL) was added dropwise NBS (531 g, 3 mol) in DMF (500 mL) at room temperature. Upon completion, the reaction mixture was diluted with water and extracted with EtOAc. The organic layer was washed with water, brine, dried over Na2SO4 and concentrated. The crude product was directly used in the next step without further purification.
[00402] 2-Bromo-4-fer/-butyl-5-nitro-phenylamine 2-Bromo-4-fer£-butyl-phenylamine (162 g, 0.71 mol) was added dropwise to H2SO4 (410 mL) at room temperature to yield a clear solution. This clear solution was then cooled down to -5 to -10 0C. A solution of KNO3 (82.5 g, 0.82 mol) in H2SO4 (410 mL) was added dropwise while the temperature was maintained between -5 to -10 0C. Upon completion, the reaction mixture was poured into ice / water and extracted with EtOAc. The combined organic layers were washed with 5% Na2CO3 and brine, dried over Na2SO4 and concentrated. The residue was purified by a column chromatography (EtOAc / petroleum ether 1 / 10) to give 2-bromo-4-tert-butyl-5-nitro- phenylamine as a yellow solid (152 g, 78 %).
[00403] 4-ter^-Butyl-5-nitro-2-trimethylsilanylethynyl-phenylamine To a mixture of 2-bromo-4-tert-butyl-5-nitro-phenylamine (27.3 g, 100 mmol) in toluene (200 mL) and water (100 mL) was added Et3N (27.9 mL, 200 mmol), Pd(PPh3)2Cl2 (2.11 g, 3 mmol), CuI (950 mg, 0.5 mmol) and trimethylsilyl acetylene (21.2 mL, 150 mmol) under a nitrogen atmosphere. The reaction mixture was heated at 70 0C in a sealed pressure flask for 2.5 h., cooled down to room temperature and filtered through a short plug of Celite. The filter cake was washed with EtOAc The combined filtrate was washed with 5% NH4OH solution and water, dried over Na2SO4 and concentrated. The crude product was purified by column chromatography (0 - 10 % EtOAc / petroleum ether) to provide 4-tert-butyl-5-nitro-2- trimethylsilanylethynyl-phenylamine as a brown viscous liquid (25 g, 81 %).
[00404] 5-fer*-ButyI-6-nitro-lH-indole To a solution of 4-tert-butyl-5-nitro-2-trimethylsilanylethynyl-phenylamine (25 g, 86 mmol) in DMF (100 mL) was added CuI (8.2 g, 43 mmol) under a nitrogen atmosphere. The mixture was heated at 135 °C in a sealed pressure flask overnight, cooled down to room temperature and filtered through a short plug of Celite. The filter cake was washed with EtOAc. The combined filtrate was washed with water, dried over Na2SO4 and concentrated. The crude product was purified by column chromatography (10 - 20 % EtOAc / Hexane) to provide 5-te/t-butyl-6-nitro- lH-indole as a yellow solid (12.9 g, 69 %).
[00405] B-24; 5-te^-Butyl-lH-indol-6-ylamine Raney Ni (3 g) was added to 5-terZ-butyl-6-nitro-lH-indole (14.7 g, 67 mmol) in methanol (100 mL). The mixture was stirred under hydrogen (1 atm) at 30 °C for 3 h. The catalyst was filtered off. The filtrate was dried over Na2SO4 and concentrated. The crude dark brown viscous oil was purified by column chromatography (10 - 20 % EtOAc / petroleum ether) to give 5-tert-bvΛyl- lH-indol-6-ylamine (B-24) as a gray solid (11 g, 87 %). 1R NMR (300 MHz, DMSO-d6) δ 10.3 (br s, IH), 7.2 (s, IH), 6.9 (m, IH), 6.6 (s, IH), 6.1 (m, IH), 4.4 (br s, 2H), 1.3 (s, 9H).
[00406] Example 4:
Figure imgf000137_0001
[00407] 5-Methyl-2,4-dinitro-benzoic acid To a mixture Of HNO3 (95 %, 80 mL) and H2SO4 (98 %, 80 mL) was slowly added 3- methylbenzoic acid (50 g, 0.37 mol) at 0 0C. After addition, the mixture was stirred for 1.5 h while maintaining the temperature below 30 °C. The mixture was poured into ice-water and stirred for 15 min. The precipitate was collected via filtration and washed with water to give a mixture of 3-methyl-2,6-dinitro-benzoic acid and 5-methyl-2,4-dinitro-benzoic acid (70 g, 84 %). To a solution of this mixture in EtOH (150 mL) was added dropwise SOCl2 (53.5 g, 0.45 mol). The mixture was heated at reflux for 2 h and concentrated to dryness under reduced pressure. The residue was dissolved in EtOAc (100 mL) and extracted with 10% Na2CO3 solution (120 mL). The organic layer was found to contain 5-methyl-2,4-dinitro-benzoic acid ethyl ester while the aqueous layer contained 3-methyl-2,6-dinitro-benzoic acid. The organic layer was washed with brine (50 mL), dried over Na2SO4 and concentrated to dryness to provide 5-methyl-2,4- dinitro-benzoic acid ethyl ester (20 g, 20 %). [00408] 5-(2-Dimethylamino-vinyl)-2,4-dinitro-benzoic acid ethyl ester A mixture of 5-methyl-2,4-dinitro-benzoic acid ethyl ester (39 g, 0.15 mol) and dimethoxymethyl-dimethylamine (32 g, 0.27 mol) in DMF (200 mL) was heated at 100 0C for 5 h. The mixture was poured into ice water. The precipitate was collected via filtration and washed with water to afford 5-(2-dimethylamino-vinyl)-2,4-dinitro-benzoic acid ethyl ester (15 g, 28 %).
[00409] B-25; β-Amino-lH-indole-S-carboxylic acid ethyl ester A mixture of 5-(2-dimethylamino-vinyl)-2,4-dinitro-benzoic acid ethyl ester (15 g, 0.05 mol) and Raney Ni (5 g) in EtOH (500 mL) was stirred under H2 (50 psi) at room temperature for 2 h. The catalyst was filtered off and the filtrate was concentrated to dryness. The residue was purified by column chromatography on silica gel to give 6-amino-lH-indole-5-carboxylic acid ethyl ester (B-25) (3 g, 30 %). 1H NMR (DMSO-J6) δ 10.68 (s, 1 H), 7.99 (s, 1 H), 7.01-7.06 (m, 1 H), 6.62 (s, 1 H), 6.27-6.28 (m, 1 H), 6.16 (s, 2 H), 4.22 (q, J= 7.2 Hz, 2 H), 1.32-1.27 (t, J= 7.2Hz, 3 H).
[00410] Example 5:
Figure imgf000138_0001
DDQ H2, Raney Ni 1 ,4-dioxane EtOH
Figure imgf000138_0002
Figure imgf000138_0004
Figure imgf000138_0003
B-27
l-(2,3-Dihydro-indol-l-yl)-ethanone To a suspension OfNaHCO3 (504 g, 6.0 mol) and 2,3-dihydro-lH-indole (60 g, 0.5 mol) in CH2Cl2 (600 mL) cooled in an ice-water bath, was added dropwise acetyl chloride (78.5 g, 1.0 mol). The mixture was stirred at room temperature for 2 h. The solid was filtered off and the filtrate was concentrated to give l-(2,3-dihydro-indol-l-yl)-ethanone (82 g, 100 %).
[00411] l-(5-Bromo-2,3-dihydro-indoI-l-yl)-ethanone To a solution of l-(2,3-dihydro-indol-l-yl)-ethanone (58.0 g, 0.36 mol) in acetic acid (3000 mL) was added Br2 (87.0 g, 0.54 mol) at 10 °C. The mixture was stirred at room temperature for 4 h. The precipitate was collected via filtration to give crude l-(5-bromo-2,3-dihydro-indol-l-yl)- ethanone (100 g, 96 %), which was used directly in the next step.
[00412] 5-Bromo-2,3-dihydro-lH-indole A mixture of crude l-(5-bromo-2,3-dihydro-indol-l-yl)-ethanone (100 g, 0.34 mol) in HCl (20 %, 1200 mL) was heated at reflux for 6 h. The mixture was basified with Na2CO3 to pH 8.5-10 and then extracted with ethyl acetate. The combined organic layers were washed with brine, dried over Na2SO4 and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give 5-bromo-2,3-dihydro-lH-indole (37 g, 55 %).
[00413] 5-Bromo-6-nitro-2,3-dihydro-lH-indole To a solution of 5-bromo-2,3-dihydro-lH-indole (45 g, 0.227 mol) in H2SO4 (98 %, 200 mL) was slowly added KNO3 (23.5 g, 0.23 mol) at 0 °C. After addition, the mixture was stirred at 0 - 10 °C for 4 h, carefully poured into ice, basified with Na2CO3 to pH 8 and extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over Na2SO4 and concentrated to dryness. The residue was purified by column chromatography on silica gel to give 5-bromo-6-nitro-2,3-dihydro-lH-indole (42 g, 76 %).
[00414] 5-Bromo-6-nitro-lH-indole To a solution of 5-bromo-6-nitro-2,3-dihydro-lH-indole (20 g, 82.3 mmol) in 1,4-dioxane (400 mL) was added DDQ (30 g, 0.13 mol). The mixture was stirred at 80 °C for 2 h. The solid was filtered off and the filtrate was concentrated to dryness. The residue was purified by column chromatography on silica gel to afford 5-bromo-6-nitro-lH-indole (7.5 g, 38 %).
[00415] B-27; 5-Bromo-lH-indol-6-ylamine A mixture of 5-bromo-6-nitro-lH-indole (7.5 g, 31.1 mmol) and Raney Ni (1 g) in ethanol was stirred under H2 (1 atm) at room temperature for 2 h. The catalyst was filtered off and the filtrate was concentrated to dryness. The residue was purified by column chromatography on silica gel to give 5-bromo-lH-indol-6-ylamine (B-27) (2 g, 30 %). 1H NMR (DMSO-^6) δ 10.6 (s, 1 H), 7.49 (s, 1 H), 6.79-7.02 (m, 1 H), 6.79 (s, 1 H), 6.14-6.16 (m, 1 H), 4.81 (s, 2 H).
[00416] 7-Substituted 6-aminoindole
Figure imgf000140_0001
Figure imgf000140_0002
DMF
Figure imgf000140_0003
B-19
[00417] 3-Methyl-2,6-dinitro-benzoic acid To a mixture OfHNO3 (95 %, 80 mL) and H2SO4 (98 %, 80 mL) was slowly added 3- methylbenzoic acid (50 g, 0.37 mol) at 0 0C. After addition, the mixture was stirred for 1.5 h while maintaining the temperature below 30 0C. The mixture was poured into ice- water and stirred for 15 min. The precipitate was collected via filtration and washed with water to give a mixture of 3-methyl-2,6-dinitro-benzoic acid and 5-methyl-2,4-dinitro-benzoic acid (70 g, 84 %). To a solution of this mixture in EtOH (150 mL) was added dropwise SOCl2 (53.5 g, 0.45 mol). The mixture was heated to reflux for 2 h and concentrated to dryness under reduced pressure. The residue was dissolved in EtOAc (100 mL) and extracted with 10% Na2CO3 solution (120 mL). The organic layer was found to contain 5-methyl-2,4-dinitro-benzoic acid ethyl ester. The aqueous layer was acidified with HCl to pH 2 ~ 3 and the resulting precipitate was collected via filtration, washed with water and dried in air to give 3-methyl-2,6-dinitro-benzoic acid (39 g, 47 %). [00418] 3-Methyl-2,6-dinitro-benzoic acid ethyl ester A mixture of 3-methyl-2,6-dinitro-benzoic acid (39 g, 0.15 mol) and SOCl2 (80 mL) was heated at reflux for 4 h. The excess SOCl2 was removed under reduced pressure and the residue was added dropwise to a solution of EtOH (100 mL) and Et3N (50 mL). The mixture was stirred at 20 °C for 1 h and concentrated to dryness. The residue was dissolved in EtOAc (100 mL), washed with Na2CO3 (10 %, 40 mL x 2), water (50 mL x 2) and brine (50 mL), dried over Na2SO4 and concentrated to give 3-methyl-2,6-dinitro-benzoic acid ethyl ester (20 g, 53 %).
[00419] 3-(2-Dimethylamino-vinyI)-2,6-dinitro-benzoic acid ethyl ester A mixture of 3-methyl-2,6-dinitro-benzoic acid ethyl ester (35 g, 0.14 mol) and dimethoxymethyl-dimethylamine (32 g, 0.27 mol) in DMF (200 mL) was heated at 100 °C for 5 h. The mixture was poured into ice water and the precipitate was collected via filtration and washed with water to give 3-(2-dimethylamino-vinyl)-2,6-dinitro-benzoic acid ethyl ester (25 g, 58 %).
[00420] B-19; ό-Amino-lH-indole-T-carboxylic acid ethyl ester A mixture of 3-(2-dimethylarnino-vinyl)-2, 6-dinitro-benzoic acid ethyl ester (30 g, 0.097 mol) and Raney Ni (10 g) in EtOH (1000 mL) was stirred under H2 (50 psi) for 2 h. The catalyst was filtered off, and the filtrate was concentrated to dryness. The residue was purified by column chromatography on silica gel to give 6-amino-lH-indole-7-carboxylic acid ethyl ester (B-19) as an off-white solid (3.2 g, 16 %). 1H NMR (DMSO-^6) δ 10.38 (s, 1 H), 7.44-7.41 (d, J- 8.7 Hz, 1 H), 6.98 (t, 1 H), 6.65 (s, 2 H), 6.50-6.46 (m, 1 H), 6.27-6.26 (m, 1 H), 4.43-4.36 (q, J= 7.2 Hz, 2 H), 1.35 (t, J= 7.2 Hz, 3 H).
[00421] Phenols [00422] Example 1:
Figure imgf000141_0001
[00423] 2-fert-Butyl-5-nitroaniline To a cooled solution of sulfuric acid (90 %, 50 mL) was added dropwise 2-tert-bnty\- phenylamine (4.5 g, 30 mmol) at 0 0C. Potassium nitrate (4.5 g, 45 mmol) was added in portions at 0 0C. The reaction mixture was stirred at 0-5 0C for 5 min, poured into ice-water and then extracted with EtOAc three times. The combined organic layers were washed with brine and dried over Na2SO4. After removal of solvent, the residue was purified by recrystallization using 70 % EtOH - H2O to give 2-tert-butyl-5-nitroaniline (3.7 g, 64 %). 1H NMR (400 MHz, CDCl3) δ 7.56 (dd, J = 8.7, 2.4 Hz, IH), 7.48 (d, J = 2.4 Hz, IH), 7.36 (d, J = 8.7 Hz, IH), 4.17 (s, 2H), 1.46 (s, 9H); HPLC ret. time 3.27 min, 10-99 % CH3CN, 5 min run; ESI-MS 195.3 m/z (MH+).
[00424] C-l-a; 2-fert-Butyl-5-nitrophenoI To a mixture of 2-fer£-butyl-5-nitroaniline (1.94 g, 10 mmol) in 40 mL of 15 % H2SO4 was added dropwise a solution OfNaNO2 (763 mg, 11.0 mmol) in water (3 mL) at 0 0C. The resulting mixture was stirred at 0-5 0C for 5 min. Excess NaNO2 was neutralized with urea, then 5 mL OfH2SO4-H2O (v/v 1 :2) was added and the mixture was refluxed for 5 min. Three additional 5 mL aliquots OfH2SO4-H2O (v/v 1 :2) were added while heating at reflux. The reaction mixture was cooled to room temperature and extracted with EtOAc twice. The combined organic layers were washed with brine and dried over MgSO4. After removal of solvent, the residue was purified by column chromatography (0-10 % EtOAc - Hexane) to give 2-tert-butyl-5-nitrophenol (C-l-a) (1.2 g, 62 %). 1H NMR (400 MHz, CDCl3) δ 7.76 (dd, J = 8.6, 2.2 Hz, IH), 7.58 (d, J - 2.1 Hz, IH), 7.43 (d, J = 8.6 Hz, IH), 5.41 (s, IH), 1.45 (s, 9H); HPLC ret. time 3.46 min, 10-99 % CH3CN, 5 min run.
[00425] C-I; 2~fert-ButyI-5-aminophenol. To a refluxing solution of 2-tert-butyl- 5-nitrophenol (C-l-a) (196 mg, 1.0 mmol) in EtOH (10 mL) was added ammonium formate (200 mg, 3.1 mmol), followed by 140 mg of 10% Pd-C. The reaction mixture was refluxed for additional 30 min, cooled to room temperature and filtered through a plug of Celite. The filtrate was concentrated to dryness and purified by column chromatography (20-30% EtOAc-Hexane) to give 2-fert-butyl-5-aminophenol (C-I) (144 mg, 87 %). 1H NMR (400 MHz, DMSO-J6) δ 8.76 (s, IH), 6.74 (d, J = 8.3 Hz, IH), 6.04 (d, J = 2.3 Hz, IH), 5.93 (dd, J = 8.2, 2.3 Hz, IH), 4.67 (s, 2H), 1.26 (s, 9H); HPLC ret. time 2.26 min, 10-99 % CH3CN, 5 min run; ESI-MS 166.1 m/z (MH+).
[00426] Example 2:
[00427] General scheme:
Figure imgf000143_0001
a) RX (X - Br, I), K2CO3 or Cs2CO3, DMF; b) HCO2NH4 or HCO2K, Pd-C, EtOH
[00428] Specific example:
Figure imgf000143_0002
[00429] l-fert-Butyl-2-methoxy~4-nitrobenzene To a mixture of 2-tert-butyl-5-nitrophenol (C-1-a) (100 mg, 0.52 mmol) and K2CO3 (86 mg, 0.62 mmol) in DMF (2 mL) was added CH3I (40 uL, 0.62 mmol). The reaction mixture was stirred at room temperature for 2 h, diluted with water and extracted with EtOAc. The combined organic layers were washed with brine and dried over MgSO4. After filtration, the filtrate was evaporated to dryness to give l-tert-butyl-2-methoxy-4-nitrobenzene (82 mg, 76 %) that was used without further purification. 1H NMR (400 MHz, CDCl3) δ 7.77 (t, J = 4.3 Hz, IH), 7.70 (d, J = 2.3 Hz, IH), 7.40 (d, J = 8.6 Hz, IH), 3.94 (s, 3H), 1.39 (s, 9H).
[00430] C-2; 4-fert-Butyl-3-methoxyaniline To a refluxing solution of l-tert-butyl-2-methoxy-4-nitrobenzene (82 mg, 0.4 mmol) in EtOH (2 mL) was added potassium formate (300 mg, 3.6 mmol) in water (1 mL), followed by 10% Pd-C (15 mg). The reaction mixture was refluxed for additional 60 min, cooled to room temperature and filtered through Celite. The filtrate was concentrated to dryness to give 4-tert-butyl-3- methoxyaniline (C-2) (52 mg, 72 %) that was used without further purification. HPLC ret. time 2.29 min, 10-99 % CH3CN, 5 min run; ESI-MS 180.0 m/z (MH+).
[00431] Other examples:
Figure imgf000144_0001
[00432] C-3; 3-(2-Ethoxyethoxy)-4-tert-butylbenzenamine 3-(2-Ethoxyethoxy)-4-tert-butylbenzenamine (C-3) was synthesized following the general scheme above starting from 2-tert-butyl-5-nitrophenol (C-l-a) and l-bromo-2-ethoxyethane. 1H NMR (400 MHz, CDCl3) δ 6.97 (d, J = 7.9 Hz, IH), 6.17 (s, IH), 6.14 (d, J = 2.3 Hz, IH), 4.00 (t, J = 5.2 Hz, 2H), 3.76 (t, J = 5.2 Hz, 2H), 3.53 (q, J = 7.0 Hz, 2H), 1.27 (s, 9H), 1.16 (t, J = 7.0 Hz, 3H); HPLC ret. time 2.55 min, 10-99 % CH3CN, 5 min run; ESI-MS 238.3 m/z (MH+).
Figure imgf000144_0002
[00433] C-4; 2-(2-fer^Butyl-5-aminophenoxy)ethanoI 2-(2-tert-Butyl-5-ammophenoxy)ethanol (C-4) was synthesized following the general scheme above starting from 2-tert-butyl-5-nitrophenol (C-l-a) and 2-bromoethanol. HPLC ret. time 2.08 min, 10-99 % CH3CN, 5 min run; ESI-MS 210.3 m/z (MH+). [00434] Example 3:
Figure imgf000145_0001
[00435] N-(3-Hydroxy-phenyl)-acetamide and acetic acid 3-formylamino-phenyl ester To a well stirred suspension of 3-amino-phenol (50 g, 0.46 mol) and NaHCO3 (193.2 g, 2.3 mol) in chloroform (1 L) was added dropwise chloroacetyl chloride (46.9 g, 0.6 mol) over a period of 30 min at 0 0C. After the addition was complete, the reaction mixture was refluxed overnight and then cooled to room temperature. The excess NaHCO3 was removed via filtration. The filtrate was poured into water and extracted with EtOAc (300 x 3 mL). The combined organic layers were washed with brine (500 mL), dried over anhydrous Na2SO4 and concentrated under reduced pressure to give a mixture of N-(3-hydroxy-phenyl)-acetamide and acetic acid 3- formylamino-phenyl ester (35 g, 4:1 by NMR analysis). The mixture was used directly in the next step.
[00436] N-[3-(3-Methyl-but-3-enyloxy)-phenyl]-acetamide A suspension of the mixture of N-(3-hydroxy-phenyl)-acetamide and acetic acid 3-formylamino- phenyl ester (18.12 g, 0.12 mol), 3-methyl-but-3-en-l-ol (8.6 g, 0.1 mol), DEAD (87 g, 0.2 mol) and Ph3P (31.44 g, 0.12 mol) in benzene (250 mL) was heated at reflux overnight and then cooled to room temperature. The reaction mixture was poured into water and the organic layer was separated. The aqueous phase was extracted with EtOAc (300 x 3 mL). The combined organic layers were washed with brine, dried over anhydrous Na2SO4 and concentrated. The residue was purified by column chromatography to give N-[3-(3-methyl-but-3-enyloxy)-ρhenyl]- acetamide (1 1 g, 52 %).
[00437] N-(4,4-Dimethyl-chroman-7-yI)-acetamide A mixture of N-[3-(3-methyl-but-3-enyloxy)-phenyl]-acetamide (2.5 g, 11.4 mmol) and AlCl3 (4.52 g, 34.3 mmol) in fluoro-benzene (50 mL) was heated at reflux overnight. After cooling, the reaction mixture was poured into water. The organic layer was separated and the aqueous phase was extracted with EtOAc (40 x 3 mL). The combined organic layers were washed with brine, dried over anhydrous Na2SO4 and concentrated under vacuum. The residue was purified by column chromatography to give N-(4,4-dimethyl-cliroman-7-yl)-acetamide (1.35 g, 54 %).
[00438] C-5; 3,4-Dihydro-4,4-dimethyl-2H-chromen-7-amine A mixture of N-(4,4-dimethyl-chroman-7-yl)-acetamide (1.35 g, 6.2 mmol) in 20 % HCl solution (30 mL) was heated at reflux for 3 h and then cooled to room temperature. The reaction mixture was basified with 10 % aq. NaOH to pH 8 and extracted with EtOAc (30 x 3 mL). The combined organic layers were washed with brine, dried over anhydrous Na2SO4 and concentrated to give 3,4-dihydro-4,4-dimethyl-2H-chromen-7-amine (C-5) (1 g, 92 %). 1H NMR (DMSO-J6) δ 6.87 (d, J= 8.4 Hz, 1 H), 6.07 (dd, J= 8.4, 2.4 Hz, 1 H), 5.87 (d, J= 2.4 Hz, 1 H), 4.75 (s, 2 H), 3.99 (t, J= 5.4 Hz, 2 H), 1.64 (t, J= 5.1 Hz, 2 H), 1.15 (s, 6 H); ESI-MS 178.I nVz (MH+).
[00439] Example 4:
[00440] General scheme:
Figure imgf000147_0001
X = F, Cl; a) ROH, H2SO4 or MeSO3H, CH2Cl2; b) R5CO2Cl, Et3N, 1,4-dioxane or CHCl3; c) HNO3, H2SO4 or KNO3, H2SO4 or HNO3, AcOH; d) piperidine, CH2Cl2; e) HCO2NH4, Pd-C, EtOH or SnCl2.2H2O, EtOH or H2, Pd-C, MeOH.
[00441] Specific example
Figure imgf000147_0002
C-6-a [00442] 2-tert-Butyl-4-fluorophenol 4-Fluorophenol (5g, 45 mmol) and tert-bvtanol (5.9 mL, 63 mmol) were dissolved in CH2Cl2 (80 niL) and treated with concentrated sulfuric acid (98 %, 3 mL). The mixture was stirred at room temperature overnight. The organic layer was washed with water, neutralized with NaHCO3, dried over MgSO4 and concentrated. The residue was purified by column chromatography (5-15 % EtOAc - Hexane) to give 2-ter/-butyl-4-fluorophenol (3.12 g, 42 %). 1H NMR (400 MHz, DMSO-J6) δ 9.32 (s, IH), 6.89 (dd, J = 1 1.1, 3.1 Hz, IH), 6.84-6.79 (m, IH), 6.74 (dd, J = 8.7, 5.3 Hz, IH), 1.33 (s, 9H).
[00443] 2-tert-Butyl-4-fluorophenyl methyl carbonate To a solution of 2-fert-butyl-4-fluorophenol (2.63g, 15.7 mmol) and NEt3 (3.13 mL, 22.5 mmol) in dioxane (45 mL) was added methyl chloro formate (1.27 mL, 16.5 mmol). The mixture was stirred at room temperature for 1 h. The precipitate was removed via filtration. The filtrate was then diluted with water and extracted with ether. The ether extract was washed with water and dried over MgSO4. After removal of solvent, the residue was purified by column chromatography to give 2-tert-butyl-4-fluorophenyl methyl carbonate (2.08g, 59 %). 1H NMR (400 MHz, DMSO-J6) δ 7.24 (dd, J = 8.8, 5.4 Hz, IH), 7.17-7.10 (m, 2H), 3.86 (s, 3H), 1.29 (s, 9H).
[00444] 2-te/t-Butyl-4-fluoro-5-nitrophenyl methyl carbonate (C-7-a) and 2- fer/~butyl-4-fluoro-6-nitrophenyl methyl carbonate (C-6-a) To a solution of 2-tert-bntyl-4- fluorophenyl methyl carbonate (1.81g, 8 mmol) in H2SO4 (98 %, 1 mL) was added slowly a cooled mixture OfH2SO4 (1 mL) and HNO3 (1 mL) at 0 0C. The mixture was stirred for 2 h while warming to room temperature, poured into ice and extracted with diethyl ether. The ether extract was washed with brine, dried over MgSO4 and concentrated. The residue was purified by column chromatography (0-10 % EtOAc - Hexane) to give 2-tert- butyl-4-fluoro-5-nitrophenyl methyl carbonate (C-7-a) (1.2 g, 55 %) and 2-tert-butyl-4-fluoro-6- nitrophenyl methyl carbonate (C-6-a) (270 mg, 12 %). 2-tert-Butyl-4-fluoro-5-nitrophenyl methyl carbonate (C-7-a): 1H NMR (400 MHz, DMSO-J6) δ 8.24 (d, J = 7.1 Hz, IH), 7.55 (d, J = 13.4 Hz, IH), 3.90 (s, 3H), 1.32 (s, 9H). 2-tert-butyl-4-fluoro-6-nitroρhenyl methyl carbonate (C-6-a): 1H NMR. (400 MHz, DMSO-J6) δ 8.04 (dd, J = 7.6, 3.1 Hz, IH), 7.69 (dd, J = 10.1, 3.1 Hz, IH), 3.91 (s, 3H), 1.35 (s, 9H).
[00445] 2-fer/-Butyl-4-fluoro-5-nitrophenol To a solution of 2-tert-butyl-4-fluoro-5-nitrophenyl methyl carbonate (C-7-a) (1.08 g, 4 mmol) in CH2Cl2 (40 mL) was added piperidine (3.94 mL, 10 mmol). The mixture was stirred at room temperature for 1 h and extracted with IN NaOH (3x). The aqueous layer was acidified with IN HCl and extracted with diethyl ether. The ether extract was washed with brine, dried (MgSO4) and concentrated to give 2-tert-butyl-4-fluoro-5-nitrophenol (530 mg, 62 %). 1H NMR (400 MHz, DMSO-J6) δ 10.40 (s, IH), 7.49 (d, J = 6.8 Hz, IH), 7.25 (d, J = 13.7 Hz, IH), 1.36 (s, 9H).
[00446] C-7; 2-tert~Butyl-5-amino-4-fluorophenol To a refluxing solution of 2-tert-butyl-4-fluoro-5-nitrophenol (400 mg, 1.88 mmol) and ammonium formate (400 mg, 6.1 mmol) in EtOH (20 mL) was added 5 % Pd-C (260 mg). The mixture was refiuxed for additional 1 h, cooled and filtered through Celite. The solvent was removed by evaporation to give 2-te?t-butyl-5-amino-4-fluorophenol (C-7) (550 mg, 83 %). H NMR (400 MHz, DMSO-J6) δ 8.83 (br s, IH), 6.66 (d, J = 13.7 Hz, IH), 6.22 (d, J = 8.5 Hz, IH), 4.74 (br s, 2H), 1.26 (s, 9H); HPLC ret. time 2.58 min, 10-99 % CH3CN, 5 min run; ESI- MS l 84.0 m/z (MH+).
[00447] Other examples:
Figure imgf000149_0001
[00448] C-10; 2-ter/'-Butyl-5-amino-4-chlorophenol 2~tert-Butyl-5-amino-4-chlorophenol (C-10) was synthesized following the general scheme above starting from 4-chlorophenol and fert-butanol. Overall yield (6 %). HPLC ret. time 3.07 min, 10-99 % CH3CN, 5 min run; ESI-MS 200.2 m/z (MH4).
Figure imgf000150_0001
[00449] C-13; 5-Amino-4-fluoro-2-(l-methylcyclohexyl)phenol 5-Amino-4-fluoro-2-(l -methyl cyclohexyl)phenol (C-13) was synthesized following the general scheme above starting from 4-fluorophenol and 1-methylcyclohexanol. Overall yield (3 %). HPLC ret. time 3.00 min, 10-99 % CH3CN, 5 min run; ESI-MS 224.2 m/z (MH+).
Figure imgf000150_0002
[00450] C-19; 5-Amino-2-(3-ethylpentan-3-yl)-4-fluoro-phenol 5-Amino-2-(3-ethylpentan-3-yl)-4-fluoro-phenol (C-19) was synthesized following the general scheme above starting from 4-fluorophenol and 3-ethyl-3-pentanol. Overall yield (1 %).
Figure imgf000150_0003
[00451] C-20; 2-Admantyl-5-amino-4-fluoro-phenol 2-Admantyl-5-amino-4-fluoro-phenol (C-20) was synthesized following the general scheme above starting from 4-fluorophenol and adamantan-1-ol.
Figure imgf000150_0004
[00452] C-21; 5-Amino-4-fluoro-2-(l-methylcycloheptyl)phenol 5-Amino-4-fluoro-2-(l -methyl cycloheptyl)phenol (C-21) was synthesized following the general scheme above starting from 4-fluorophenol and 1 -methyl-cycloheptanol.
Figure imgf000151_0001
[00453] C-22; 5-Amino-4-fluoro-2-(l-methylcyclooctyl)phenol 5-Amino-4-fluoro-2-(l-methylcyclooctyl)phenol (C-22) was synthesized following the general scheme above starting from 4-fluorophenol and 1-methyl-cyclooctanol.
Figure imgf000151_0002
[00454] C-23; 5-Amino-2-(3-ethyl-2,2-dimethylpentan-3-yl)-4-fluoro-phenol 5-Amino-2-(3-ethyl-2,2-dimethylpentan-3-yl)-4-fluoro-phenol (C-23) was synthesized following the general scheme above starting from 4-fluorophenol and 3-ethyl-2,2-dimethyl-pentan-3-ol.
[00455] Example 5:
Figure imgf000151_0003
[00456] C-6; 2-ter*'-Butyl-4-fluoro-6-aminophenyl methyl carbonate To a refluxing solution of 2-fer£-butyl-4-fluoro-6-nitrophenyl methyl carbonate (250 mg, 0.92 mmol) and ammonium formate (250 mg, 4 mmol) in EtOH (10 mL) was added 5 % Pd-C (170 mg). The mixture was refluxed for additional 1 h, cooled and filtered through Celite. The solvent was removed by evaporation and the residue was purified by column chromatography (0-15 %, EtOAc - Hexane) to give 2-ter?-butyl-4-fluoiO-6-aminophenyl methyl carbonate (C-6) (60 mg, 27 %). HPLC ret. time 3.35 min, 10-99 % CH3CN, 5 min run; ESI-MS 242.0 m/z (MH+).
[00457] Example 6:
Figure imgf000152_0001
[00458] Carbonic acid 2,4-di-tør£-butyl-phenyl ester methyl ester Methyl chloroformate (58 mL, 750 mmol) was added dropwise to a solution of 2,4-di-tert-butyl- phenol (103.2g, 500 mmol), Et3N (139 mL, 1000 mmol) and DMAP (3.05g, 25 mmol) in dichloromethane (400 mL) cooled in an ice-water bath to 0 °C. The mixture was allowed to warm to room temperature while stirring overnight, then filtered through silica gel (approx. IL) using 10% ethyl acetate — hexanes (~ 4 L) as the eluent. The combined filtrates were concentrated to yield carbonic acid 2,4-di-tert-butyl-phenyl ester methyl ester as a yellow oil (132 g, quant.). 1H NMR (400 MHz, DMSO-J6) δ 7.35 (d, J = 2.4 Hz, IH), 7.29 (dd, J - 8.5, 2.4 Hz, IH), 7.06 (d, J = 8.4 Hz, IH), 3.85 (s, 3H), 1.30 (s, 9H), 1.29 (s, 9H). [00459] Carbonic acid 2,4-di-tert-butyl-5-nitro-phenyl ester methyl ester and Carbonic acid 2,4-di-fert-butyl-6-nitro-phenyl ester methyl ester To a stirring mixture of carbonic acid 2,4-di-fe/t-butyl-phenyl ester methyl ester (4.76 g, 18 mmol) in cone, sulfuric acid (2 mL), cooled in an ice-water bath, was added a cooled mixture of sulfuric acid (2 mL) and nitric acid (2 mL). The addition was done slowly so that the reaction temperature did not exceed 50 °C. The reaction was allowed to stir for 2 h while wanning to room temperature. The reaction mixture was then added to ice- water and extracted into diethyl ether. The ether layer was dried (MgSO4), concentrated and purified by column chromatography (0 - 10% ethyl acetate - hexanes) to yield a mixture of carbonic acid 2,4-di-tert-butyl~5-nitro- phenyl ester methyl ester and carbonic acid 2,4-di-tert-butyl-6-nitro-phenyl ester methyl ester as a pale yellow solid (4.28 g), which was used directly in the next step.
[00460] 2,4~Di-te/**-butyl-5-nitro-phenol and 2,4-Di-fert-butyl-6-nitro-phenol The mixture of carbonic acid 2,4-di-fert-butyl-5-nitro-phenyl ester methyl ester and carbonic acid 2,4-di~fer£-butyl-6-nitro-phenyl ester methyl ester (4.2 g, 12.9 mmol) was dissolved in MeOH (65 mL) and KOH (2.Og, 36 mmol) was added. The mixture was stirred at room temperature for 2 h. The reaction mixture was then made acidic (pH 2-3) by adding cone. HCl and partitioned between water and diethyl ether. The ether layer was dried (MgSO4), concentrated and purified by column chromatography (0 - 5 % ethyl acetate - hexanes) to provide 2,4-di-tert-butyl-5-nitro-phenol (1.31 g, 29 % over 2 steps) and 2,4-di-tert-butyl-6-nitro- phenol. 2,4-Di~fe/t-butyl-5-nitro-phenol: 1H NMR (400 MHz, DMSO-J6) δ 10.14 (s, IH, OH), 7.34 (s, IH), 6.83 (s, IH), 1.36 (s, 9H), 1.30 (s, 9H). 2,4-Di-tert-butyl-6-nitro-phenol: 1H NMR (400 MHz, CDCl3) δ 11.48 (s, IH), 7.98 (d, J = 2.5 Hz, IH), 7.66 (d, J = 2.4 Hz, IH), 1.47 (s, 9H), 1.34 (s, 9H).
[00461] C-9; 5-Anuno-2,4-di-fert-butyI-phenol To a reluxing solution of 2,4-di-tert-butyl-5-nitro-phenol (1.86 g, 7.4 mmol) and ammonium formate (1.86 g) in ethanol (75 mL) was added Pd-5% wt. on activated carbon (900 mg). The reaction mixture was stirred at reflux for 2 h, cooled to room temperature and filtered through Celite. The Celite was washed with methanol and the combined filtrates were concentrated to yield 5-amino-2,4-di-fert~butyl-phenol as a grey solid (1.66 g, quant.). 1H NMR (400 MHz, DMSO-Cf6) δ 8.64 (s, IH, OH), 6.84 (s, IH), 6.08 (s, IH), 4.39 (s, 2H, NH2), 1.27 (m, 18H); HPLC ret. time 2.72 min, 10-99 % CH3CN, 5 min run; ESI-MS 222.4 m/z (MH+).
[00462] C-8; 6-Amino-2,4-di-tert-butyl-phenoI A solution.of 2,4-di-tert-butyl-6-nitro-phenol (27 mg, 0.11 mmol) and SnCl2.2H2O (121 mg, 0.54 mmol) in EtOH (1.0 mL) was heated in microwave oven at 100 0C for 30 min. The mixture was diluted with EtOAc and water, basified with sat. NaHCO3 and filtered through Celite. The organic layer was separated and dried over Na2SO4. Solvent was removed by evaporation to provide 6-amino-2,4-di-fert-butyl-phenol (C-8), which was used without further purification. HPLC ret. time 2.74 min, 10-99 % CH3CN, 5 min run; ESI-MS 222.5 m/z (MH+).
[00463] Example 7:
Figure imgf000154_0001
[00464] 4~fert-butyl-2-chloro-phenol To a solution of 4-fert-butyl-phenol (40.0 g, 0.27 mol) and SO2Cl2 (37.5 g, 0.28 mol) in CH2Cl2 was added MeOH (9.0 g, 0.28 mol) at 0 °C. After addition was complete, the mixture was stirred overnight at room temperature and then water (200 mL) was added. The resulting solution was extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na2SO4, filtered and concentrated under vacuum. The residue was purified by column chromatography (Pet. Ether / EtOAc, 50:1) to give 4-tert-butyl-2-chloro-phenol (47.0 g, 95 %).
[00465] 4-fer^-ButyI-2-chlorophenyl methyl carbonate To a solution of 4-terf-butyl-2-chlorophenol (47.0 g, 0.25 mol) in dichloromethane (200 mL) was added Et3N (50.5 g, 0.50 mol), DMAP (1 g) and methyl chloroformate (35.4 g, 0.38 mol) at 0 0C. The reaction was allowed to warm to room temperature and stirred for additional 30 min. The reaction mixture was washed with H2O and the organic layer was dried over Na2SO4 and concentrated to give 4-fcr£-butyl-2-chlorophenyl methyl carbonate (56.6 g, 92 %), which was used directly in the next step.
[00466] 4-ført-Butyl-2-chloro-5-nitrophenyl methyl carbonate 4-ter£-Butyl-2-chlorophenyl methyl carbonate (36.0 g, 0.15 mol) was dissolved in cone. H2SO4 (100 mL) at 0 °C. KNO3 (0.53 g, 5.2 mmol) was added in portions over 25 min. The reaction was stirred for 1.5 h and poured into ice (200 g). The aqueous layer was extracted with dichloromethane. The combined organic layers were washed with aq. NaHCO3, dried over Na2SO4 and concentrated under vacuum to give 4-tert-butyl-2-chloro-5-nitrophenyl methyl carbonate (41.0 g), which was used without further purification.
[00467] 4-te/t-Butyl-2-chloro-5-nitro-phenol Potassium hydroxide (10.1 g, 181 mmol) was added to 4-fer£-butyl-2-chloro-5-nitrophenyl methyl carbonate (40.0 g, 139 mmol) in MeOH (100 mL). After 30 min, the reaction was acidified with IN HCl and extracted with dichloromethane. The combined organic layers were combined, dried over Na2SO4 and concentrated under vacuum. The crude residue was purified by column chromatography (Pet. Ether / EtOAc, 30:1) to give 4-ter£-butyl-2-chloro-5-nitro- phenol (23.0 g, 68 % over 2 steps).
[00468] C-Il; 4-te/^ButyI-2-chloro-5-amino~phenol To a solution of 4-fert-butyl-2-chloro-5-nitro-phenol (12.6 g, 54.9 mmol) in MeOH (50 mL) was added Ni (1.2 g). The reaction was shaken under H2 (1 arm) for 4 h. The reaction mixture was filtered and the filtrate was concentrated. The residue was purified by column chromatography (P.E. / EtOAc, 20:1) to give 4-tert-butyl-2-chloro-5-amino-phenol (C-Il) (8.5 g, 78 %). 1H NMR (DMSO-J6) δ 9.33 (s, 1 H), 6.80 (s, 1 H), 6.22 (s, 1 H), 4.76 (s, 1 H), L23 (s, 9 H); ESI- MS 200.1 m/z (MH+). [00469] Example 8:
Figure imgf000156_0001
Figure imgf000156_0002
C-12
2-Admantyl-4-methyl-phenyl ethyl carbonate Ethyl chloro formate (0.64 niL, 6.7 mmol) was added dropwise to a solution of 2-admantyl-4- methylphenol (1.09 g, 4.5 mmol), Et3N (1.25 mL, 9 mmol) and DMAP (catalytic amount) in dichloromethane (8 mL) cooled in an ice-water bath to 0 °C. The mixture was allowed to warm to room temperature while stirring overnight, then filtered and the filtrate was concentrated. The residue was purified by column chromatography (10-20 % ethyl acetate — hexanes) to yield 2- admantyl-4-methyl-phenyl ethyl carbonate as a yellow oil (1.32 g, 94 %).
[00470] 2-AdmantyI-4-methyl-5-nitrophenyl ethyl carbonate To a cooled solution of 2-admantyl-4-methyl-phenyl ethyl carbonate (1.32 g, 4.2 mmol) in H2SO4 (98 %, 10 mL) was added KNO3 (510 mg, 5.0 mmol) in small portions at 0 0C. The mixture was stirred for 3 h while warming to room temperature, poured into ice and then extracted with dichloromethane. The combined organic layers were washed with NaHCO3 and brine, dried over MgSO4 and concentrated to dryness. The residue was purified by column chromatography (0-10 % EtOAc - Hexane) to yield 2-admantyl-4-methyl-5-nitrophenyl ethyl carbonate (378 mg, 25 %).
[00471] 2-Admantyl-4-methyl-5-nitrophenol To a solution of 2-admantyl-4-methyl-5-nitrophenyl ethyl carbonate (378 mg, 1.05 mmol) in CH2Cl2 (5 mL) was added piperidine (1.0 mL). The solution was stirred at room temperature for 1 h, adsorbed onto silica gel under reduced pressure and purified by flash chromatography on silica gel (0-15 %, EtOAc - Hexanes) to provide 2-admantyl-4-methyl-5-nitrophenol (231 mg, 77 %).
[00472] C-12; 2-Admantyl-4-methyl-5-aminophenol To a solution of 2-admantyl-4-methyl-5-nitrophenol (231 mg, 1.6 mmol) in EtOH (2 mL) was added Pd- 5% wt on carbon (10 mg). The mixture was stirred under H2 (1 atm) overnight and then filtered through Celite. The filtrate was evaporated to dryness to provide 2-admantyl-4- methyl-5-aminophenol (C-12), which was used without further purification. HPLC ret. time 2.52 min, 10-99 % CH3CN, 5 min run; ESI-MS 258.3 m/z (MH+).
[00473] Example 9:
Figure imgf000157_0001
C-14
2-ή?r£-Butyl-4-bromophenol To a solution of 2-tert-butylρhenol (25Og, 1.67 mol) in CH3CN (1500 mL) was added NBS (300 g, 1.67 mol) at room temperature. After addition, the mixture was stirred at room temperature overnight and then the solvent was removed. Petroleum ether (1000 mL) was added, and the resulting white precipitate was filtered off. The filtrate was concentrated under reduced pressure to give the crude 2-tert-butyl-4-bromophenol (380 g), which was used without further purification.
[00474] Methyl (2-fer^-butyl-4-bromophenyl) carbonate To a solution of 2-£-butyl-4-bromophenol (380 g, 1.67 mol) in dichloromethane (1000 mL) was added Et3N (202 g, 2 mol) at room temperature. Methyl chloro formate (155 mL) was added dropwise to the above solution at 0 0C. After addition, the mixture was stirred at 0 0C for 2 h., quenched with saturated ammonium chloride solution and diluted with water. The organic layer was separated and washed with water and brine, dried over Na2SO4, and concentrated to provide the crude methyl (2-fert-butyl-4-bromophenyl) carbonate (470 g), which was used without further purification.
[00475] Methyl (2-tert-butyl-4-bromo-5-nitrophenyl) carbonate Methyl (2-fer£-butyl-4-bromophenyl) carbonate (470 g, 1.67 mol) was dissolved in cone. H2SO4 (1000 ml) at 0 0C. KNO3 (253 g, 2.5 mol) was added in portions over 90 min. The reaction mixture was stirred at 0 0C for 2 h and poured into ice-water (20 L). The resulting precipitate was collected via filtration and washed with water thoroughly, dried and recrystallized from ether to give methyl (2-tert-butyl-4-bromo-5-nitrophenyl) carbonate (332 g, 60 % over 3 steps).
[00476] C-14-a; 2-fert-Butyl-4-bromo-5-nitro-phenol To a solution of methyl (2-tert-butyl-4-bromo-5-nitrophenyl) carbonate (121.5 g, 0.366 mol) in methanol (1000 mL) was added potassium hydroxide (30.75 g, 0.549 mol ) in portions. After addition, the mixture was stirred at room temperature for 3 h and acidified with IN HCl to pH 7. Methanol was removed and water was added. The mixture was extracted with ethyl acetate and the organic layer was separated, dried over Na2SO4 and concentrated to give 2-tert-butyl-4- bromo-5-nitro-phenol (C-14-a) (100 g, 99 %).
[00477] l-terϊ-Butyl-2-(benzyloxy)-5-bromo-4-nitrobenzene To a mixture of 2-tert-butyl-4-bromo-5-nitrophenol (C-14-a) (1.1 g, 4 mmol) and Cs2CO3 (1.56 g, 4.8 mmol) in DMF (8 mL) was added benzyl bromide (500 μL, 4.2 mmol). The mixture was stirred at room temperature for 4 h, diluted with H2O and extracted twice with EtOAc. The combined organic layers were washed with brine and dried over MgSO4. After removal of solvent, the residue was purified by column chloromatography (0-5 % EtOAc - Hexane) to yield l-tert-butyl-2-(benzyloxy)-5-bromo-4-nitrobenzene (1.37 g, 94 %). 1H NMR (400 MHz, CDCl3) 7.62 (s, IH), 7.53 (s, IH), 7.43 (m, 5H), 5.22 (s, 2H), 1.42 (s, 9H).
[00478] l-tert-Butyl-2-(benzyloxy)-5-(trifluoromethyl)-4-nitrobenzene A mixture of l-fer^-butyl-2-(benzyloxy)-5-bromo-4-nitrobenzene (913 mg, 2.5 mmol), KF (291 mg, 5 mmol), KBr (595 mg, 5 mmol), CuI (570 mg, 3 mmol), methyl chlorodifluoroacetate (1.6 mL, 15 mmol) and DMF (5 mL) was stirred at 125 0C in a sealed tube overnight, cooled to room temperature, diluted with water and extracted three times with EtOAc. The combined organic layers were washed with brine and dried over anhydrous MgSO4. After removal of the solvent, the residue was purified by column chromatography (0-5 % EtOAc - Hexane) to yield \-tert- butyl-2-(benzyloxy)-5-(trifluoromethyl)-4-nitrobenzene (591 mg, 67 %). 1H NMR (400 MHz, CDCl3) 7.66 (s, IH), 7.37 (m, 5H), 7.19 (s, IH), 5.21 (s, 2H), 1.32 (s, 9H).
[00479] C-14; 5-Amino-2-tert-butyl-4-trifluoromethyl-phenol To a refluxing solution of l-tert-butyl-2-(benzyloxy)-5-(trifluoromethyl)-4-nitrobenzene (353 mg, 1.0 mmol) and ammonium formate (350 mg, 5.4 mmol) in EtOH (10 mL) was added 10% Pd-C (245 mg). The mixture was refluxed for additional 2 h, cooled to room temperature and filtered through Celite. After removal of solvent, the residue was purified by column chromatography to give 5-Amino-2-tert-butyl-4-trifluoromethyl-phenol (C-14) (120 mg, 52 %). 1H NMR (400 MHz, CDCl3) δ 7.21 (s, IH), 6.05 (s, IH), 1.28 (s, 9H); HPLC ret. time 3.46 min, 10-99 % CH3CN, 5 min run; ESI-MS 234.1 m/z (MH+).
[00480] Example 10:
[00481] General scheme:
Figure imgf000160_0001
C-14-a a) ArB(OH)2, K2CO3, Pd(PPh3)4, H2O, DMF Or ArB(OH)2, (dppf)PdCl2, K2CO3, EtOH; b) H2, Raney Ni, MeOH or HCO2NH4, Pd-C, EtOH or SnCl2.2H2O.
[00482] Specific example:
Figure imgf000160_0002
[00483] 2-fer^ButyI-4-(2-ethoxyphenyl)-5-nitrophenol To a solution of 2-tert-butyl-4-bromo-5-nitrophenol (C-14-a) (8.22 g, 30 mmol) in DMF (90 mL) was added 2-ethoxyphenyl boronic acid (5.48 g, 33 mmol), potassium carbonate (4.56 g, 33 mmol), water (10 ml) and Pd(PPh3)4 (1.73 g, 1.5 mmol). The mixture was heated at 90 0C for 3 h under nitrogen. The solvent was removed under reduced pressure. The residue was partitioned between water and ethyl acetate. The combined organic layers were washed with water and brine, dried and purified by column chromatography (petroleum ether - ethyl acetate, 10:1) to afford 2-tert-butyl-4-(2-ethoxyphenyl)-5-nitrophenol (9.2 g, 92 %). 1HNMR (DMSO-J6) δ 10.38 (s, 1 H), 7.36 (s, 1 H), 7.28 (m, 2 H), 7.08 (s, 1 H), 6.99 (t, 1 H, J= 7.35 Hz), 6.92 (d, 1 H, J= 8.1 Hz), 3.84 (q, 2 H, J= 6.6 Hz), 1.35 (s, 9 H), 1.09 (t, 3 H, J= 6.6 Hz); ESI-MS 314.3 m/z (MH+).
[00484] C-15; 2-fert-Butyl-4-(2-ethoxyphenyl)-5-aminophenol To a solution of 2-tert-butyl-4-(2-ethoxyphenyl)-5-nitrophenol (3.0 g, 9.5 mmol) in methanol (30 ml) was added Raney Ni (300 mg). The mixture was stirred under H2 (1 atm) at room temperature for 2 h. The catalyst was filtered off and the filtrate was concentrated. The residue was purified by column chromatography (petroleum ether- ethyl acetate, 6:1) to afford 2-tert- butyl-4-(2-ethoxyphenyl)-5-aminophenol (C-15) (2.35 g, 92 %). 1HNMR (DMSCM6) δ 8.89 (s, IH), 7.19 (t, IH, J- 4.2 Hz), 7.10 (d, IH5 J= 1.8 Hz), 7.08 (d, IH, J= 1.8 Hz), 6.94 (t, IH, J= 3.6 Hz), 6.67 (s, 1 H), 6.16 (s, 1 H), 4.25 (s, 1 H), 4.00 (q, 2H, J= 6.9 Hz), 1.26 (s, 9H), 1.21 (t, 3 H, J= 6.9 Hz); ESI-MS 286.0 m/z (MH+).
[00485] Other examples:
Figure imgf000161_0001
[00486] C-16; 2-fer*-Butyl-4-(3-ethoxyphenyl)-5-aminophenol 2-fert-Butyl-4-^3-ethoxyphenyl)-5-aminophenol (C-16) was synthesized following the general scheme above starting from 2~tert-butyl-4-bromo-5-nitrophenol (C-14-a) and 3-ethoxyphenyl boronic acid. HPLC ret. time 2.77 min, 10-99 % CH3CN, 5 min ran; ESI-MS 286.1 m/z (MH+).
Figure imgf000161_0002
[00487] C-17; 2-fer£-ButyI-4-(3-methoxycarbonyIphenyl)-5-aminophenol (C- 17) 2-fer£-Butyl-4-(3-methoxycarbonylphenyl)-5-aminophenol (C-17) was synthesized following the general scheme above starting from 2-tert-butyl-4-bromo-5-nitrophenol (C-14-a) and 3- (methoxycarbonyl)phenylboronic acid. HPLC ret. time 2.70 min, 10-99 % CH3CN, 5 min ran; ESI-MS 300.5 m/z (MH+).
[00488] Example 11;
Figure imgf000162_0001
C-18
[00489] l-tot-Butyl-2-methoxy-5-bromo-4-nitrobenzene To a mixture of 2-fer£-butyl-4-bromo-5-nitrophenol (C-14-a) (1.5 g, 5.5 mmol) and Cs2CO3 (2.2 g, 6.6 mmol) in DMF (6 mL) was added methyl iodide (5150 μL, 8.3 mmol). The mixture was stirred at room temperature for 4 h, diluted with H2O and extracted twice with EtOAc. The combined organic layers were washed with brine and dried over MgSO4. After removal of solvent, the residue was washed with hexane to yield l-fert-butyl-2-methoxy-5-bromo-4- nitrobenzene (1.1 g, 69 %). 1H NMR (400 MHz, CDCl3) δ 7.58 (s, IH), 7.44 (s, IH), 3.92 (s, 3H), 1.39 (s, 9H).
[00490] l-terr-Butyl-2-methoxy-5-(trifluoromethyl)-4-nitrobenzene A mixture of l-tert-butyl-2-methoxy-5-bromo-4-nitrobenzene (867 mg, 3.0 mmol), KF (348 mg, 6 mmol), KBr (714 mg, 6 mmol), CuI (684 mg, 3.6 mmol), methyl chlorodifluoroacetate (2.2 mL, 21.0 mmol) in DMF (5 mL) was stirred at 125 0C in a sealed tube overnight, cooled to room temperature, diluted with water and extracted three times with EtOAc. The combined organic layers were washed with brine and dried over anhydrous MgSO4. After removal of the solvent, the residue was purified by column chromatography (0-5 % EtOAc - Hexane) to yield l-tert- butyl-2-methoxy-5-(trifluoromethyl)-4-nitrobenzene (512 mg, 61 %). 1H NMR (400 MHz, CDCl3) δ 7.60 (s, IH), 7.29 (s, IH), 3.90 (s, 3H), 1.33 (s, 9H).
[00491] C-18; l-te/Y-ButyI-2-methoxy-5-(trifluoromethyl)-4-aminobenzene To a refluxing solution of l-/1er/'-butyl-2-methoxy-5-(trifluoromethyl)-4-nitrobenzene (473 mg, 1.7 mmol) and ammonium formate (473 mg, 7.3 mmol) in EtOH (10 mL) was added 10% Pd-C (200 mg). The mixture was refluxed for 1 h, cooled and filtered through Celite. The solvent was removed by evaporation to give l-te/t-butyl-2-methoxy-5-(trifluoromethyl)-4-aminobenzene (C- 18) (403 mg, 95 %). 1H NMR (400 MHz, CDCl3) δ 7.19 (s, IH), 6.14 (s, IH), 4.02 (bs, 2H), 3.74 (s, 3H), 1.24 (s, 9H).
[00492] Example 12:
Figure imgf000163_0001
C-14-a C-27
[00493] C-27; 2-fert-Butyl-4-bromo-5-amino-phenol To a solution of 2-fert-butyl-4-bromo-5-nitrophenol (C-14-a) (12 g, 43.8 mmol) in MeOH (90 mL) was added Ni (2.4 g). The reaction mixture was stirred under H2 (1 arm) for 4 h. The mixture was filtered and the filtrate was concentrated. The crude product was recrystallized from ethyl acetate and petroleum ether to give 2-tert-butyl-4-bromo-5-amino-phenol (C-27) (7.2 g, 70 %). 1H NMR (DMSO-J6) δ 9.15 (s, 1 H), 6.91 (s, 1 H), 6.24 (s, 1 H), 4.90 (br s, 2 H), 1.22 (s, 9 H); ESI-MS 244.0 m/z (MH+).
[00494] Example 13:
Figure imgf000163_0002
[00495] C-24; 2,4-Di-fer^butyl-6-(N-methylamino)phenol A mixture of 2,4-di-fert-butyl-6-amino-phenol (C-9) (5.08 g, 23 mmol), NaBH3CN (4.41 g, 70 mmol) and paraformaldehyde (2.1 g, 70 mmol) in methanol (50 mL) was stirred at reflux for 3 h. After removal of the solvent, the residue was purified by column chromatography (petroleum ether - EtOAc, 30: 1) to give 2,4-di-fe/t-butyl-6-(N-methylamino)phenol (C-24) (800 mg, 15 %). 1HNMR (DMSO-J6) δ 8.67 (s, 1 H), 6.84 (s, 1 H), 5.99 (s, 1 H), 4.36 (q, J= 4.8 Hz, IH), 2.65 (d, J= 4.8 Hz, 3 H), 1.23 (s, 18 H); ESI-MS 236.2 m/z (MH+).
[00496] Example 14:
Figure imgf000164_0001
C-25
[00497] 2-Methyl-2-phenyl-propan-l-ol To a solution of 2-methyl-2 -phenyl- propionic acid (82 g, 0.5 mol) in THF (200 mL) was added dropwise borane-dimethyl sulfide (2M, 100 mL) at 0-5 °C. The mixture was stirred at this temperature for 30 min and then heated at reflux for 1 h. After cooling, methanol (150 mL) and water (50 mL) were added. The mixture was extracted with EtOAc (100 mL x 3), and the combined organic layers were washed with water and brine, dried over Na2SO4 and concentrated to give 2-methyl-2-phenyl-propan-l-ol as an oil (70 g, 77 %).
[00498] 2-(2-Methoxy-ethoxy)-l,l-dimethyl-ethyl]-benzene To a suspension of NaH (29 g, 0.75 mol) in THF (200 mL) was added dropwise a solution of 2- methyl-2-phenyl-propan-l-ol (75 g, 0.5 mol) in THF (50 mL) at 0 0C. The mixture was stirred at 20 °C for 30 min and then a solution of l-bromo-2-methoxy-ethane (104 g, 0.75 mol) in THF (100 mL) was added dropwise at 0 °C. The mixture was stirred at 20 °C overnight, poured into water (200 mL) and extracted with EtOAc (100 mL x 3). The combined organic layers were washed with water and brine, dried over Na2SO4, and concentrated. The residue was purified by column chromatography (silica gel, petroleum ether) to give 2-(2-Methoxy-ethoxy)-l,l- dimethyl-ethyl] -benzene as an oil (28 g, 27 %).
[00499] l-[2-(2-Methoxy-ethoxy)-l,l-dimethyI-ethyl]-4-nitro-benzene To a solution of 2-(2-methoxy-ethoxy)-l,l-dimethyl-ethyl]-benzene (52 g, 0.25 mol) in CHCl3 (200 mL) was added BCNO3 (50.5 g, 0.5 mol) and TMSCl (54 g, 0.5 mol). The mixture was stirred at 20 °C for 30 min and then AlCl3 (95 g, 0.7 mol) was added. The reaction mixture was stirred at 20 °C for 1 h and poured into ice-water. The organic layer was separated and the aqueous layer was extracted with CHCl3 (50 mL x 3). The combined organic layers were washed with water and brine, dried over Na2SO4, and concentrated. The residue was purified by column chromatography (silica gel, petroleum ether) to obtain l-[2-(2-methoxy-ethoxy)-l,l- dimethyl-ethyl]-4-nitro-benzene (6 g, 10 %).
[00500] 4-[2-(2-Methoxy-ethoxy)-l,l-dimethyl-ethyl]-phenylamine A suspension of l-[2-(2-methoxy-ethoxy)-l,l-dimethyl-ethyl]-4-nitro-benzene (8.1 g, 32 mmol) and Raney Ni (1 g) in MeOH (50 mL) was stirred under H2 (1 atm) at room temperature for 1 h. The catalyst was filtered off and the filtrate was concentrated to obtain 4-[2-(2-methoxy-ethoxy)- l,l-dimethyl-ethyl]-ρhenylamine (5.5 g, 77 %).
[00501] 4-[2-(2-Methoxy-ethoxy)-l,l-dimethyl-ethyl]-3-nitro-phenyIamine To a solution of 4-[2-(2-memoxy-ethoxy)-l J-dimethyl-ethyl]-phenylamine (5.8 g, 26 mmol) in H2SO4 (20 mL) was added KNO3 (2.63 g, 26 mmol) at 0 0C. After addition was complete, the mixture was stirred at this temperature for 20 min and then poured into ice- water. The mixture was extracted with EtOAc (50 mL x 3). The combined organic layers were washed with water and brine, dried over Na2SO4, and concentrated. The residue was purified by column chromatography (petroleum ether - EtOAc, 100:1) to give 4-[2-(2-methoxy-emoxy)-l,l- dimethyl-ethyl]-3-nitro-phenylamine (5 g, 71 %).
[00502] N-{4-[2-(2-Methoxy-ethoxy)-l,l-dimethyl-ethyI]-3-nitro-phenyl}- acetamide To a suspension Of NaHCO3 (10 g, 0.1 mol) in dichloromethane (50 mL) was added 4-[2-(2- metho xy-ethoxy)- 1,1 -dimethyl-ethyl] -3 -nitro-phenylamine (5 g, 30 mmol) and acetyl chloride (3 mL, 20 mmol) at 0-5 0C. The mixture was stirred overnight at 15 °C and then poured into water (200 mL). The organic layer was separated and the aqueous layer was extracted with dichloromethane (50 mL x 2). The combined organic layers were washed with water and brine, dried over Na2SO4, and concentrated to dryness to give N-{4-[2-(2-methoxy-ethoxy)-l,l- dimethyl-ethyl]-3-nitro-phenyl}-acetamide (5.0 g, 87 %).
[00503] N-{3-Amino-4-[2-(2-methoxy-ethoxy)-l,l-dimethyl-ethyl]-phenyl}- acetamide A mixture ofN-{4-[2-(2-methoxy-ethoxy)-l,l-dimethyl-ethyl]-3-nitro-phenyl}-acetamide (5 g, 16 mmol) and Raney Ni (1 g) in MeOH (50 mL) was stirred under H2 (1 atm) at room temperature 1 h. The catalyst was filtered off and the filtrate was concentrated. The residue was purified by column chromatography (petroleum ether- EtOAc, 100:1) to give N-{3-ammo-4-[2- (2-methoxy-ethoxy)-l,l-dimethyl-ethyl]-phenyl}-acetamide (1.6 g, 35 %).
[00504] N-{3-Hydroxy-4-[2-(2-methoxy-ethoxy)-l,l-dimethyl-ethyl]-phenyl}- acetamide To a solution of N-{3-amino-4-[2- (2-methoxy- ethoxy)-l,l-dimethyl-ethyl]-phenyl}- acetamide (1.6 g, 5.7 mmol) in H2SO4 (15 %, 6 mL) was added NaNO2 at 0-5 0C. The mixture was stirred at this temperature for 20 min and then poured into ice water. The mixture was extracted with EtOAc (30 mL x 3). The combined organic layers were washed with water and brine, dried over Na2SO4 and concentrated. The residue was purified by column chromatography (petroleum ether - EtOAc, 100:1) to give N-{3-hydroxy-4-[2-(2-methoxy-ethoxy)-l,l-dimethyl-ethyl]- phenyl}- acetamide (0.7 g, 38 %).
[00505] C-25; 2-(l-(2-Methoxyethoxy)-2-methylpropan-2-yl)-5-aminophenol A mixture of N-{3-hydroxy-4-[2-(2-methoxy-ethoxy)-l,l-dimethyl-ethyl]-phenyl}- acetamide (1 g, 3.5 mmol) and HCl (5 mL) was heated at reflux for 1 h. The mixture was basified with Na2CO3 solution to pH 9 and then extracted with EtOAc (20 mL x 3). The combined organic layers were washed with water and brine, dried over Na2SO4 and concentrated to dryness.- The residue was purified by column chromatography (petroleum ether - EtOAc, 100:1) to obtain 2- (l-(2-methoxyethoxy)-2-methylρropan-2-yl)-5-aminophenol (C-25) (61 mg, 6 %). 1HNMR (CDCl3) δ 9.11 (br s, 1 H), 6.96-6.98 (d, J= 8 Hz, 1 H), 6.26-6.27 (d, J= 4 Hz, 1 H), 6.17-6.19 (m, 1 H), 3.68-3.69 (m, 2 H), 3.56-3.59 (m, 4 H), 3.39 (s, 3 H), 1.37 (s, 6 H); ESI-MS 239.9 m/z (MH+).
[00506] Example 15:
Figure imgf000167_0001
[00508] 4,6-di-fø/^-ButyI-3-nitrocycIohexa-3,5-diene-l,2-dione To a solution of 3,5-di-tert-butylcyclohexa-3,5-diene-l,2-dione (4.20 g, 19.1 mmol) in acetic acid (115 mL) was slowly added HNO3 (15 mL). The mixture was heated at 60 °C for 40 min before it was poured into H2O (50 mL). The mixture was allowed to stand at room temperature for 2 h, then was placed in an ice bath for 1 h. The solid was collected and washed with water to provide 4,6-di-tert-butyl-3-nitrocyclohexa-3,5-diene-l,2-dione (1.2 g, 24 %). 1H NMR (400 MHz, DMSO-J6) δ 6.89 (s, IH), 1.27 (s, 9H), 1.24 (s, 9H).
[0001] 4,6-Di-ter?-butyl-3-nitrobenzene-l,2-diol In a separatory funnel was placed THF/H2O (1 :1, 400 mL), 4,6-di-fer£-butyl-3-nitrocyclohexa- 3,5-diene-l,2-dione (4.59 g, 17.3 mmol) and Na2S2O4 (3 g, 17.3 mmol). The separatory funnel was stoppered and was shaken for 2 min. The mixture was diluted with EtOAc (20 mL). The layers were separated and the organic layer was washed with brine, dried over MgSO4 and concentrated to provide 4,6-di-fert-butyl-3 -nitrobenzene- 1,2-diol (3.4 g, 74 %), which was used without further purification. 1H NMR (400 MHz, DMSO-J6) δ 9.24 (s, IH), 8.76 (s, IH), 6.87 (s, IH), 1.35 (s, 9H), 1.25 (s, 9H). [0002] C-26; 4,6-Di-tert-butyl-3-aminobenzene-l,2-diol To a solution of 4,6-di-te/t-butyl-3-nitrobenzene-l,2-diol (1.92 g, 7.2 mmol) in EtOH (70 mL) was added Pd-5% wt. on carbon (200 mg). The mixture was stirred under H2 (1 atm) for 2 h. The reaction was recharged with Pd-5% wt. on carbon (200 mg) and stirred under H2 (1 atm) for another 2 h. The mixture was filtered through Celite and the filtrate was concentrated and purified by column chromatography (10-40 % ethyl acetate - hexanes) to give 4,6-di-tert-butyi- 3-aminobenzene-l,2-diol (C-26) (560 mg, 33 %). 1HNMR (400 MHz, CDCl3) δ 7.28 (s, IH), 1.42 (s, 9H), 1.38 (s, 9H).
[0003] Anilines
[0004] Example 1:
[0005] General scheme
Figure imgf000168_0001
X = NO2 or NH2 [00509] Specific example:
Figure imgf000169_0001
D-1
[00510] D-I; 4-Chloro-benzene-l,3-diamine
A mixture of l-chloro-2,4-dinitro-benzene (100 mg, 0.5 mmol) and SnCl2-2H2O (1.12 g, 5 mmol) in ethanol (2.5 mL) was stirred at room temperature overnight. Water was added and then the mixture was basified to pH 7-8 with saturated NaHCO3 solution. The solution was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over Na2SO4, filtered and concentrated to yield 4-chloro-benzene- 1,3 -diamine (D-I) (79 mg, quant.). HPLC ret. time 0.38 min, 10-99 % CH3CN, 5 min run; ESI-MS 143.1 m/z (MH+)
[00511] Other examples:
Figure imgf000169_0002
[00512] D-2; 4,6-Dichloro-benzene-l,3-diamine 4,6-Dichloro-benzene-l,3-diamine (D-2) was synthesized following the general scheme above starting from l,5-dichloro-2,4-dinitro-benzene. Yield (95 %). HPLC ret. time 1.88 min, 10-99 % CH3CN, 5 min run; ESI-MS 177.1 m/z (MH+).
Figure imgf000169_0003
[00513] D-3; 4-Methoxy-benzene-l,3-diamine 4-Methoxy-benzene- 1,3 -diamine (D-3) was synthesized following the general scheme above starting from l-methoxy-2,4-dinitro-benzene. Yield (quant.). HPLC ret. time 0.31 min, 10-99 % CH3CN, 5 min run.
Figure imgf000170_0001
[00514] D-4; 4-Trifluoromethoxy-benzene-l,3-diamine 4-Trifiuoromethoxy-benzene- 1,3 -diamine (D-4) was synthesized following the general scheme above starting from 2,4-dinitro-l-trifluoromethoxy-benzene. Yield (89 %). HPLC ret. time 0.91 min, 10-99 % CH3CN, 5 min run; ESI-MS 193.3 m/z (MH+).
Figure imgf000170_0002
[00515] D-5; 4-Propoxybenzene-l,3-diamine 4-Propoxybenzene- 1,3 -diamine (D-5) was synthesized following the general scheme above starting from 5-nitro-2-propoxy-phenylamine. Yield (79 %). HPLC ret. time 0.54 min, 10-99 % CH3CN, 5 min run; ESI-MS 167.5 m/z (MH+).
[00516] Example 2:
[00517] General scheme
Figure imgf000170_0003
a) HNO3, H2SO4; b) SnCl2-2H2O, EtOH or H2, Pd-C, MeOH
[00518] Specific example:
Figure imgf000171_0001
D-6
[00519] 2,4-Dinitro-propylbenzene A solution of propylbenzene (10 g, 83 mmol) in cone. H2SO4 (50 mL) was cooled at 0 0C for 30 min, and a solution of cone. H2SO4 (50 mL) and fuming HNO3 (25 mL), previously cooled to 0 °C, was added in portions over 15 min. The mixture was stirred at 0 °C for additional 30 min, and then allowed to warm to room temperature. The mixture was poured into ice (200 g) - water (100 mL) and extracted with ether (2 x 100 mL). The combined extracts were washed with H2O (100 mL) and brine (100 mL), dried over MgSO4, filtered and concentrated to afford 2,4-dinitroτ propylbenzene (15.6 g, 89 %). 1H NMR (CDCl3, 300 MHz) δ 8.73 (d, J= 2.2 Hz, IH), 8.38 (dd, J= 8.3, J= 2.2, IH), 7.6 (d, J= 8.5 Hz, IH), 2.96 (dd, 2H), 1.73 (m, 2H), 1.06 (t, J = 7.4 Hz, 3H).
[00520] D-6; 4-PropyI-benzene-l,3-diamine To a solution of 2,4-dinitro-propylbenzene (2.02 g, 9.6 mmol) in ethanol (100 mL) was added SnCl2 (9.9 g, 52 mmol) followed by cone. HCl (10 mL). The mixture was refluxed for 2 h, poured into ice- water (100 mL), and neutralized with solid sodium bicarbonate. The solution was further basified with 10% NaOH solution to pH ~ 10 and extracted with ether (2 x 100 mL). The combined organic layers were washed with brine (100 mL), dried over MgSO4, filtered, and concentrated to provide 4-propyl-benzene- 1,3 -diamine (D-6) (1.2 g, 83 %). No further purification was necessary for use in the next step; however, the product was not stable for an extended period of time. 1H NMR (CDCl3, 300 MHz) δ 6.82 (d, J= 7.9 Hz, IH), 6.11 (dd, J= 7.5, J= 2.2 Hz, IH), 6.06 (d, J- 2.2 Hz, IH), 3.49 (br s, 4H, NH2), 2.38 (t, J= 7.4 Hz, 2H), 1.58 (m, 2H), 0.98 (t, J= 7.2 Hz, 3H); ESI-MS 151.5 m/z (MH+).
[00521] Other examples:
Figure imgf000172_0001
[00522] D-7; 4-Ethylbenzene-l,3-diamine 4-Ethylbenzene- 1,3 -diamine (D-7) was synthesized following the general scheme above starting from ethylbenezene. Overall yield (76 %).
Figure imgf000172_0002
[00523] D-8; 4-Isopropylbenzene-l,3-diamine 4-Isopropylbenzene-l,3-diamine (D-8) was synthesized following the general scheme above starting from isopropylbenezene. Overall yield (78 %).
Figure imgf000172_0003
[00524] D-9; 4-fert~Butylbenzene-l,3-diamine 4-fert-Butylbenzene- 1,3 -diamine (D-9) was synthesized following the general scheme above starting from tert-butylbenzene. Overall yield (48 %). 1H NMR (400 MHz, CDCl3) δ 7.01 (d, J = 8.3 Hz, IH), 6.10 (dd, J= 2.4, 8.3 Hz, IH), 6.01 (d, J= 2.4 Hz, IH), 3.59 (br, 4H), 1.37 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 145.5, 145.3, 127.6, 124.9, 105.9, 104.5, 33.6, 30.1; ESI-MS 164.9 m/z (MH+).
[00525] Example 3:
[00526] General scheme
Figure imgf000173_0001
a) KNO3, H2SO4; b) (i) HNO3, H2SO4; (ii) Na2S, S, H2O; c) BoC2O, NaOH, THF; d) H2, Pd-C, MeOH
[00527] Specific example:
Figure imgf000173_0002
[00528] 4-ter^-Butyl-3-nitro-phenylamine To a mixture of 4-fert-butyl-phenylamine (10.0 g, 67.01 mmol) dissolved in H2SO4 (98 %, 60 mL) was slowly added KNO3 (8.1 g, 80.41 mmol) at 0 °C. After addition, the reaction was allowed to warm to room temperature and stirred overnight. The mixture was then poured into ice- water and basified with sat. NaHCO3 solution to pH 8. The mixture was extracted several times with CH2Cl2. The combined organic layers were washed with brine, dried over Na2SO4 and concentrated. The residue was purified by column chromatography (petroleum ether - EtOAc, 10:1) to give 4-tert-butyl-3-nitro-phenylamine (10 g, 77 %).
[00529] (4-ter^-ButyI-3-nitro-phenyl)-carbamic acid tert-butyl ester A mixture of 4-tert-butyl-3-nitro-phenylamine (4.0 g, 20.6 mmol) and BoC2O (4.72 g, 21.6 mmol) in NaOH (2N, 20 mL) and THF (20 mL) was stirred at room temperature overnight. THF was removed under reduced pressure. The residue was dissolved in water and extracted with CH2Cl2. The organic layer was washed with NaHCO3 and brine, dried over Na2SO4 and concentrated to afford (4-tert-butyl-3-nitro-phenyl)-carbamic acid tert-butyl ester (4.5 g, 74 %). [00530] D-IO; (3-Amino-4-tert-butyI-phenyl)-carbamic acid tert-butyl ester A suspension of (4-fer/'-butyl-3-nitro-phenyl)-carbamic acid tert-butyl ester (3.0 g, 10.19 mol) and 10% Pd-C (1 g) in MeOH (40 niL) was stirred under H2 (1 atm) at room temperature overnight. After filtration, the filtrate was concentrated and the residue was purified by column chromatograph (petroleum ether - EtOAc, 5: 1) to give (3-amino-4-fer£-butyl-phenyl)-carbamic acid tert-butyl ester (D-IO) as a brown oil (2.5 g, 93 %). 1H NMR (CDCl3) δ 7.10 (d, J= 8.4 Hz, 1 H), 6.92 (s, 1 H), 6.50-6.53 (m, 1 H), 6.36 (s, 1 H), 3.62 (br s, 2 H), 1.50 (s, 9 H), 1.38 (s, 9 H); ESI-MS 528.9 m/z (2M+H+).
[00531] Other examples:
Figure imgf000174_0001
[00532] D-Il; (3-Amino-4-isopropyl-phenyl)-carbamic acid tert-butyl ester (3-Amino-4-isopropyl-phenyl)-carbamic acid tert-butyl ester (D-Il) was synthesized following the general scheme above starting from isopropylbenezene. Overall yield (56 %).
Figure imgf000174_0002
[00533] D-12; (3-Amino-4-ethyl-phenyl)-carbamic acid tert-butyl ester (3-Amino-4-ethyl-phenyl)-carbamic acid tert-butyl ester (D-12) was synthesized following the general scheme above starting from ethylbenezene. Overall yield (64 %). 1H NMR (CD3OD, 300 MHz) δ 6.87 (d, J= 8.0 Hz, IH), 6.81 (d, J- 2.2 Hz, IH), 6.63 (dd, J= 8.1, J= 2.2, IH), 2.47 (q, J= 7.4 Hz, 2H), 1.50 (s, 9H), 1.19 (t, J= 7.4 Hz, 3H); ESI-MS 237.1 m/z (MH+).
Figure imgf000175_0001
[00534] D-13; (3-Amino-4-propyl-phenyl)-carbamic acid tert-butyl ester (3-Amino-4-propyl-phenyl)-carbamic acid tert-buty\ ester (D-13) was synthesized following the general scheme above starting from propylbenezene. Overall yield (48 %).
[00535] Example 4:
Figure imgf000175_0002
H2, Pd-C LiAIH4, THF MeOH reflux
Figure imgf000175_0004
Figure imgf000175_0003
D-14 [00536] (3-Amino-4-fert-butyl-phenyl)-carbamic acid benzyl ester A solution of 4-tert-butylbenzene- 1,3 -diamine (D-9) (657 mg, 4 mmol) and pyridine (0.39 mL, 4.8 mmol) in CH2Cl2 / MeOH (12 / 1, 8 mL) was cooled to 0 0C, and a solution of benzyl chloro formate (0.51 mL, 3.6 mmol) in CH2Cl2 (8 mL) was added dropwise over 10 min. The mixture was stirred at 0 0C for 15 min, then warmed to room temperature. After 1 h, the mixture was washed with IM citric acid (2 x 20 mL), saturated aqueous sodium bicarbonate (20 mL), dried (Na2SO4), filtered and concentrated in vacuo to afford the crude (3-amino-4-te;t-butyl- phenyl)-carbamic acid benzyl ester as a brown viscous gum (0.97 g), which was used without further purification. 1H NMR (400 MHz, CDCl3) δ 7.41-7.32 (m, 6H5), 7.12 (d, J= 8.5 Hz, IH), 6.89 (br s, IH), 6.57 (dd, J= 2.3, 8.5 Hz, IH), 5.17 (s, 2H), 3.85 (br s, 2H), 1.38 (s, 9H); 13C NMR (100 MHz, CDCl3, rotameric) δ 153.3 (br), 145.3, 136.56, 136.18, 129.2, 128.73, 128.59, 128.29, 128.25, 127.14, 108.63 (br), 107.61 (br), 66.86, 33.9, 29.7; ESI-MS 299.1 m/z (MH+). [00537] (4-tert-ButyI-3-formylamino-phenyl)-carbamic acid benzyl ester A solution of (3-amino-4-te/t-butyl-phenyl)-carbamic acid benzyl ester (0.97 g, 3.25 mmol) and pyridine (0.43 mL, 5.25 mmol) in CH2Cl2 (7.5 mL) was cooled to 0 0C, and a solution of formic- acetic anhydride (3.5 mmol, prepared by mixing formic acid (158 μL, 4.2 mmol, 1.3 equiv) and acetic anhydride (0.32 mL, 3.5 mmol, 1.1 eq.) neat and ageing for 1 hour) in CH2Cl2 (2.5 mL) was added dropwise over 2 min. After the addition was complete, the mixture was allowed to warm to room temperature, whereupon it deposited a precipitate, and the resulting slurry was stirred overnight. The mixture was washed with 1 M citric acid (2 x 20 mL), saturated aqueous sodium bicarbonate (20 mL), dried (Na2SO4), and filtered. The cloudy mixture deposited a thin bed of solid above the drying agent, HPLC analysis showed this to be the desired formamide. The filtrate was concentrated to approximately 5 mL, and diluted with hexane (15 mL) to precipitate further formamide. The drying agent (Na2SO4) was slurried with methanol (50 mL), filtered, and the filtrate combined with material from the CH2Cl2 / hexane recrystallisation. The resultant mixture was concentrated to afford (4-tert-butyl-3-formylamino-phenyl)-carbamic acid benzyl ester as an off-white solid (650 mg, 50 % over 2 steps). 1H and 13C NMR (CD3OD) show the product as a rotameric mixture. 1H NMR (400 MHz, CD3OD, rotameric) δ 8.27 (s, lH-a), 8.17 (s, lH-b), 7.42-7.26 (m, 8H), 5.17 (s, lH-a), 5.15 (s, lH-b), 4.86 (s, 2H), 1.37 (s, 9H-a), 1.36 (s, 9H-b); 13C NMR (100 MHz, CD3OD, rotameric) δ 1636.9, 163.5, 155.8, 141.40, 141.32, 139.37, 138.88, 138.22, 138.14, 136.4, 135.3, 129.68, 129.65, 129.31, 129.24, 129.19, 129.13, 128.94, 128.50, 121.4 (br), 118.7 (br), 67.80, 67.67, 35.78, 35.52, 31.65, 31.34; ESI-MS 327.5 m/z (MH+).
[00538] iV-(5-Amino-2-te^-butyl-phenyl)-formamide A 100 mL flask was charged with (4-tert-butyl-3-formylamino-phenyl)-carbamic acid benzyl ester (650 mg, 1.99 mmol), methanol (30 mL) and 10% Pd-C (50 mg), and stirred under H2 (1 atm) for 20 h. CH2Cl2 (5 mL) was added to quench the catalyst, and the mixture then filtered through Celite, and concentrated to afford iV-(5-amino-2-tert-butyl-phenyl)-formamide as an off- white solid (366 mg, 96 %). Rotameric by 1H and 13C NMR (DMSO-d6). 1H NMR (400 MHz, DMSO-J6, rotameric) δ 9.24 (d, J- 10.4 Hz, IH), 9.15 (s, IH), 8.23 (d, J= 1.5 Hz, IH), 8.06 (d, J= 10.4 Hz, IH), 7.06 (d, J= 8.5 Hz, IH), 7.02 (d, J= 8.5 Hz, IH), 6.51 (d, J= 2.5 Hz, IH), 6.46 (dd, J= 2.5, 8.5 Hz, IH), 6.39 (dd, J= 2.5, 8.5 Hz, IH), 6.29 (d, J= 2.5Hz, IH), 5.05 (s, 2H), 4.93 (s, 2H), 1.27 (s, 9H); 13C NMR (100 MHz, DMSO-^6, rotameric) δ 164.0, 160.4, 147.37, 146.74, 135.38, 135.72, 132.48, 131.59, 127.31, 126.69, 115.15, 1 15.01, 112.43, 1 12.00, 33.92, 33.57, 31.33, 30.92; ESI-MS 193.1 m/z (MH+).
[00539] D-14; 4-tert-butyl-NJ-methyl-benzene-l,3-diamine A 100 mL flask was charged with N-(5-amino-2-tert-butyl-phenyl)-formamide (340 mg, 1.77 mmol) and purged with nitrogen. THF (10 mL) was added, and the solution was cooled to 0 0C. A solution of lithium aluminum hydride in THF (4.4 mL, IM solution) was added over 2 min. The mixture was then allowed to warm to room temperature. After refluxing for 15 h, the yellow suspension was cooled to 0 0C, quenched with water (170 μL), 15 % aqueous NaOH (170 μL), and water (510 μL) which were added sequentially and stirred at room temperature for 30 min. The mixture was filtered through Celite, and the filter cake washed with methanol (50 mL). The combined filtrates were concentrated in vacuo to give a gray-brown solid, which was partitioned between chloroform (75 mL) and water (50 mL). The organic layer was separated, washed with water (50 mL), dried (Na2SO4), filtered, and concentrated to afford 4-tert-butyl-N3 -methyl- benzene- 1,3 -diamine (D-14) as abrown oil which solidified on standing (313 mg, 98 %). 1H NMR (400 MHz, CDCl3) δ 7.01 (d, J= 8.1 Hz, IH), 6.05 (dd, J- 2.4, 8.1 Hz, IH), 6.03 (d, J= 2.4 Hz, IH), 3.91 (br s, IH), 3.52 (br s, 2H), 2.86 (s, 3H), 1.36 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 148.4, 145.7, 127.0, 124.3, 103.6, 98.9, 33.5, 31.15, 30.31; ESI-MS 179.1 m/z (MH+).
[00540] Example 5:
[00541] General scheme:
Figure imgf000177_0001
[00542] Specific example:
Figure imgf000178_0001
[00543] 2,4-Dinitro-propylbenzene A solution of propylbenzene (10 g, 83 mmol) in cone. H2SO4 (50 niL) was cooled at 0 0C for 30 mins, and a solution of cone. H2SO4 (50 mL) and fuming HNO3 (25 niL), previously cooled to 0 °C, was added in portions over 15 min. The mixture was stirred at 0 °C for additional 30 min. and then allowed to warm to room temperature. The mixture was poured into ice (200 g) -water (100 mL) and extracted with ether (2 x 100 mL). The combined extracts were washed with H2O (100 mL) and brine (100 mL), dried over MgSO4, filtered and concentrated to afford 2,4-dinitro- propylbenzene (15.6 g, 89 %). 1H NMR (CDCl3, 300 MHz) δ 8.73 (d, J= 2.2 Hz, IH), 8.38 (dd, J= 8.3, 2.2 Hz, IH), 7.6 (d, J= 8.5 Hz, IH), 2.96 (m, 2H), 1.73 (m, 2H), 1.06 (t, J = 7.4 Hz, 3H).
[00544] 4-Propyl-3-nitroaniline A suspension of 2,4-dinitro-propylbenzene (2 g, 9.5 mmol) in H2O (100 mL) was heated near reflux and stirred vigorously. A clear orange-red solution of polysulfide (300 mL (10 eq.), previously prepared by heating sodium sulfide nanohydrate (10.0 g), sulfur powder (2.60 g) and H2O (400 mL), was added dropwise over 45 mins. The red-brown solution was heated at reflux for 1.5 h. The mixture was cooled to 0 °C and then extracted with ether (2 x 200 mL). The combined organic extracts were dried over MgSO4, filtered, and concentrated under reduced pressure to afford 4-propyl-3-nitro aniline (1.6 g, 93 %), which was used without further purification.
[00545] (3-Nitro-4-propyl-phenyl)-carbamic acid tert-butyl ester 4-Propyl-3-nitroaniline (1.69 g, 9.4 mmol) was dissolved in pyridine (30 mL) with stirring. Boc anhydride (2.05 g, 9.4 mmol) was added. The mixture was stirred and heated at reflux for 1 h before the solvent was removed in vacuo. The oil obtained was re-dissolved in CH2Cl2 (300 mL) and washed with water (300 mL) and brine (300 mL), dried over Na2SO4, filtered, and concentrated. The crude oil that contained both mono- and όώ-acylated nitro products was purified by column chromatography (0-10 % CH2Cl2 - MeOH) to afford (3-nitro-4-propyl- phenyl)-carbamic acid tert-butyl ester (2.3 g, 87 %).
[00546] Methyl-(3-nitro-4-propyl-phenyI)-carbamic acid fert-butyl ester To a solution of (3-nitro-4-propyl-phenyl)-carbamic acid tert-butyl ester (200 mg, 0.71 mmol) in DMF (5 mL) was added Ag2O (1.0 g, 6.0 mmol) followed by methyl iodide (0.20 mL, 3.2 mmol). The resulting suspension was stirred at room temperature for 18 h and filtered through a pad of Celite. The filter cake was washed with CH2Cl2 (10 mL). The filtrate was concentrated in vacuo. The crude oil was purified by column chromatography (0-10 % CH2Cl2 - MeOH) to afford methyl-(3-nitro-4-propyl-phenyl)-carbamic acid tert-butyl ester as a yellow oil (110 mg, 52 %). 1H NMR (CDCl3, 300 MHz) δ 7.78 (d, J= 2.2 Hz, IH), 7.42 (dd, J= 8.2, 2.2 Hz, IH), 7.26 (d, J= 8.2 Hz, IH), 3.27 (s, 3H), 2.81 (t, J= 7.7 Hz, 2H), 1.66 (m, 2H), 1.61 (s, 9H), 0.97 (t, J= 7.4 Hz, 3H).
[00547] D-15; (3-Amino-4-propyl-phenyl)-methyI-carbamic acid
Figure imgf000179_0001
ester To a solution of methyl-(3-nitro-4-propyl-phenyl)-carbamic acid tert-butyl ester (110 mg, 0.37 mmol) in EtOAc (10 ml) was added 10% Pd-C (100 mg). The resulting suspension was stirred at room temperature under H2 (1 atm) for 2 days. The progress of the reaction was monitored by TLC. Upon completion, the reaction mixture was filtered through a pad of Celite. The filtrate was concentrated in vacuo to afford (3-Amino-4-propyl-phenyl)-methyl-carbamic acid tert-butyl ester (D-15) as a colorless crystalline compound (80 mg, 81 %). ESI-MS 265.3 m/z (MH+).
[00548] Other examples:
Figure imgf000180_0001
[00549] D-16; (3-Amino-4-ethyl-phenyl)-methyl-carbamic acid tert-bxityl ester (3-Amino-4-ethyl-phenyl)-methyl-carbamic acid tert-buty\ ester (D-16) was synthesized following the general scheme above starting from ethylbenezene. Overall yield (57 %).
Figure imgf000180_0002
[00550] D-17; (3-Amino-4-isopropyl-phenyl)-methyl-carbamic acid tert-butyl ester (3-Ariiino-4-isopropyl-phenyl)-methyl-carbamic acid tert-butyl ester (D-17) was synthesized following the general scheme above starting from isopropylbenezene. Overall yield (38 %).
[00551] Example 6:
Figure imgf000180_0003
D-18
[00552] 2'-Ethoxy-2,4-dinitro-biphenyl A pressure flask was charged with 2-ethoxyphenylboronic acid (0.66 g, 4.0 mmol), KF (0.77 g, 13 mmol), Pd2(dba)3 (16 mg, 0.02 mmol), and 2,4-dinitro-bromobenzene (0.99 g, 4.0 mmol) in THF (5 mL). The vessel was purged with argon for 1 min followed by the addition oftή-tert- butylphosphine (0.15 ml, 0.48 mmol, 10 % solution in hexanes). The reaction vessel was purged with argon for additional 1 min., sealed and heated at 80 0C overnight. After cooling to room temperature, the solution was filtered through a plug of Celite. The filter cake was rinsed with CH2Cl2 (10 mL), and the combined organic extracts were concentrated under reduced pressure to provide the crude product 2'-ethoxy-2,4-dinitro-biphenyl (0.95 g, 82%). No further purification was performed. 1H NMR (300 MHz, CDCl3) δ 8.75 (s, IH), 8.43 (d, J= 8.7 Hz, IH), 7.60 (d, J = 8.4 Hz, IH), 7.40 (t, J = 7.8 Hz, IH), 7.31 (d, J= 7.5 Hz, IH), 7.08 (t, J= 7.5 Hz, IH), 6.88 (d, J= 8.4 Hz, IH), 3.44 (q, J= 6.6 Hz, 2H), 1.24 (t, J= 6.6 Hz, 3H); HPLC ret. time 3.14 min, 10- 100 % CH3CN, 5 min gradient.
[00553] 2'-Ethoxy-2-nitrobiphenyl-4-yl amine A clear orange-red solution of polysulfide (120 ml, 7.5 eq.), previously prepared by heating sodium sulfide monohydrate (10 g), sulfur (1.04 g) and water (160 ml), was added dropwise at 90 0C over 45 minutes to a suspension of 2'-ethoxy-2,4-dinitro-biphenyl (1.2 g, 4.0 mmol) in water (40 ml). The red-brown solution was heated at reflux for 1.5 h. The mixture was cooled to room temperature, and solid NaCl (5 g) was added. The solution was extracted with CH2Cl2 (3 x 50 mL), and the combined organic extracts was concentrated to provide 2'-ethoxy-2- nitrobiphenyl-4-yl amine (0.98 g, 95 %) that was used in the next step without further purification. 1H NMR (300 MHz, CDCl3) δ 7.26 (m, 2H), 7.17 (d, J= 2.7 Hz, IH), 7.11 (d, J= 7.8 Hz, IH), 7.00 (t, J= 6.9 Hz, IH), 6.83 (m, 2H), 3.91 (q, J= 6.9 Hz, 2H), 1.23 (t, J= 7.2 Hz, 3H); HPLC ret. time 2.81 min, 10-100 % CH3CN, 5 min gradient; ESI-MS 259.1 m/z (MH+).
[00554] (2'-Ethoxy-2-nitrobiphenyl-4-yl)-carbamic acid tert-butyl ester A mixture of 2'-ethoxy-2-nitrobipenyl-4-yl amine (0.98 g, 4.0 mmol) and BoC2O (2.6g, 12 mmol) was heated with a heat gun. Upon the consumption of the starting material as indicated by TLC, the crude mixture was purified by flash chromatography (silica gel, CH2Cl2) to provide (2'-ethoxy-2-nitrobiphenyl-4-yl)-carbamic acid tert-butyl ester (1.5 g, 83 %). 1H NMR (300 MHz, CDCl3) δ 7.99 (s, IH), 7.55 (d, J= 8.4 Hz, IH), 7.25 (m, 3H), 6.99 (t, J= 7.5 Hz, IH), 6.82 (m, 2H), 3.88 (q, J= 6.9 Hz, 2H), 1.50 (s, 9 H), 1.18 (t, J= 6.9 Hz, 3H); HPLC ret. time 3.30 min, 10-100 % CH3CN, 5 rain gradient.
[00555] D-18; (2'-ethoxy-2-aminobiphenyl-4-yl)-carbamic acid tert-butyl ester To a soloution of NiCl2.6H2O (0.26 g, 1.1 mmol) in EtOH (5 mL) was added NaBH4 (40 rag, 1.1 mmol) at -10 °C. Gas evolution was observed and a black precipitate was formed. After stirring for 5 min, a solution of 2'-ethoxy-2-nitrobiphenyl-4-yl)carbamic acid tert-butyl ester (0.50 g, 1.1 mmol) in EtOH (2 mL) was added. Additional NaBH4 (80 mg, 60 mmol) was added in 3 portions over 20 min. The reaction was stirred at 0 0C for 20 min followed by the addition OfNH4OH (4 mL, 25% aq. solution). The resulting solution was stirred for 20 min. The crude mixture was filtered through a short plug of silica. The silica cake was flushed with 5% MeOH in CH2Cl2 (10 mL), and the combined organic extracts was concentrated under reduced pressure to provide (2'- ethoxy-2-aminobiphenyl-4-yl)-carbamic acid tert-butyl ester (D-18) (0.36 g, quant.), which was used without further purification. HPLC ret. time 2.41 min, 10-100 % CH3CN, 5 min gradient; ESI-MS 329.3 m/z (MH+).
[00556] Example 7:
Figure imgf000182_0001
D-19
[00557] D-19; N-(3-Amino-5-trifluoromethyl-phenyl)-methanesulfonamide A solution of 5-trifluoromethyl-benzene-l,3-diamine (250 mg, 1.42 mmol) in pyridine (0.52 mL) and CH2Cl2 (6.5 mL) was cooled to 0 °C. Methanesulfonyl chloride (171 mg, 1.49 mmol) was slowly added at such a rate that the temperature of the solution remained below 10 0C. The mixture was stirred at ~ 8 °C and then allowed to warm to room temperature after 30 min. After stiring at room temperature for 4 h, reaction was almost complete as indicated by LCMS analysis. The reaction mixture was quenched with sat. aq. NH4Cl (10 mL) solution, extracted with CH2Cl2 (4 x 10 mL), dried over Na2SO4, filtered, and concentrated to yield N-(3-amino-5- trifluoromethyl-phenyl)-methanesulfonamide (D-19) as a reddish semisolid (0.35 g, 97 %), which was used without further purification. 1H-NMR (CDCl3, 300 MHz) δ 6.76 (m, IH), 6.70 (m, IH), 6.66 (s, IH), 3.02 (s, 3H); ESI-MS 255.3 m/z (MH+).
[00558] Cyclic amines
[00559] Example 1:
Figure imgf000183_0001
DC-1
[00560] 7-Nitro-l,2,3,4-tetrahydro-quinoline To a mixture of 1,2,3,4-tetrahydro-quinoline (20.0 g, 0.15 mol) dissolved in H2SO4 (98 %, 150 mL), KNO3 (18.2 g, 0.18 mol) was slowly added at 0 °C. The reaction was allowed to warm to room temperature and stirred over night. The mixture was then poured into ice- water and basified with sat. NaHCO3 solution to pH 8. After extraction with CH2C12> the combined organic layers were washed with brine, dried over Na2SO4 and concentrated. The residue was purified by column chromatography (petroleum ether- EtOAc, 10:1) to give 7-nitro- 1,2,3,4-tetrahydro- quinoline (6.6 g, 25 %).
[00561] 7-Nitro-3,4-dmydro-2H-quinoline-l-carboxyIic acid tert-bntyl ester A mixture of 7-nitro- 1,2,3,4-tetrahydro-quinoline (4.0 g, 5.61 mmol), Boc2O (1.29 g, 5.89 mmol) and DMAP (0.4 g) in CH2Cl2 was stirred at room temperature overnight. After diluted with water, the mixture was extracted with CH2Cl2. The combined organic layers were washed with NaHCO3 and brine, dried over Na2SO4 and concentrated to provide crude 7-nitro-3,4-dihydro- 2H-quinoline-l-carboxylic acid tert-butyl ester that was used in the next step without further purification.
[00562] DC-I; tert-Butyl 7-amino-3,4-dihydroquinoline-l(2H)-carboxylate A suspension of the crude 7-nitro-3,4-dihydro-2H-quinoline-l-carboxylic acid tert-butyl ester (4.5 g, 16.2 mol) and 10% Pd-C (0.45 g) in MeOH (40 mL) was stirred under H2 (1 atm) at room temperature overnight. After filtration, the filtrate was concentrated and the residue was purified by column chromatography (petroleum ether - EtOAc, 5:1) to give tert-butyl 7-amino-3,4- dihydroquinoline-l(2H)-carboxylate (DC-I) as a brown solid (1.2 g, 22 % over 2 steps). 1H NMR (CDCl3) δ 7.15 (d, J= 2 Hz, 1 H), 6.84 (d, J= 8 Hz, 1 H), 6.36-6.38 (m, 1 H), 3.65-3.68 (m, 2 H), 3.10 (br s, 2 H), 2.66 (t, J= 6.4 Hz, 2 H), 1.84-1.90 (m, 2 H), 1.52 (s, 9 H); ESI-MS 496.8 m/z (2M+H+).
[00563] Example 2:
Figure imgf000184_0001
[00564] 3-(2-Hydroxy-ethyl)-l,3-dihydro-indol-2-one A stirring mixture of oxindole (5.7 g, 43 mmol) and Raney nickel (10 g) in ethane- 1,2-diol (100 mL) was heated in an autoclave. After the reaction was complete, the mixture was filtered and the excess of diol was removed under vacuum. The residual oil was triturated with hexane to give 3-(2-hydroxy-ethyl)-l,3-dihydro-indol-2-one as a colorless crystalline solid (4.6 g, 70 %).
[00565] l,2-Dihydro-3-spiro-l'-cyclopropyl-lH-indoIe-2-one To a solution of 3-(2-hydroxy-ethyl)-l,3-dihydro-indol-2-one (4.6 g, 26 mmol) and triethylamine (10 mL) in CH2Cl2 (100 mL) was added MsCl (3.4 g, 30 mmol) dropwise at -20 °C. The mixture was then allowed to warm up to room temperature and stirred overnight. The mixture was filtered and the filtrate was concentrated under vacuum. The residue was purified by column chromatography to give crude l,2-dihydro-3-spiro-r-cyclopropyl-lH-indole-2-one as a yellow solid (2.5 g), which was used directly in the next step.
[00566] l^-Dihydro-S-spiro-l'-cyclopropyl-lH-indole To a solution of l,2-dihydro-3-spiro-l '-cyclopropyl-lH-indole-2-one (2.5 g crude) in TΗF (50 mL) was added LiAlH4 (2 g, 52 mmol) portionwise. After heating the mixture to reflux, it was poured into crushed ice, basified with aqueous ammonia to pH 8 and extracted with EtOAc. The combined organic layers were washed with brine, dried over Na2SO4 and concentrated to give the crude l,2-dihydro-3-spiro-l '-cyclopropyl-lH-indole as a yellow solid (about 2 g), which was used directly in the next step.
[00567] ό-Nitro-l^-dihydro-S-spiro-l'-cyclopropyl-lH-indole To a cooled solution (-5 °C to -10 0C) OfNaNO3 (1.3 g, 15.3 mmol) in H2SO4 (98 %, 30 mL) was added 1,2-dihydro- 3-spiro-l'-cyclopropyl-lH-indole (2 g, crude) dropwise over a period of 20 min. After addition, the reaction mixture was stirred for another 40 min and poured over crashed ice (20 g). The cooled mixture was then basified with NH4OH and extracted with EtOAc. The organic layer was washed with brine, dried over Na2SO4, and concentrated under reduced pressure to yield ό-nitro-l^-dihydro-S-spiro-l'-cyclopropyl- lH-indole as a dark gray solid (1.3 g)
[00568] l-Acetyl-ό-nitro-l^-dihydro-S-spiro-l'-cyclopropyl-lJET-indole NaHCO3 (5 g) was suspended in a solution of 6-nitro-l,2-dihydro-3-spiro-r-cyclopropyl-lH- indole (1.3 g, crude) in CH2Cl2 (50 mL). While stirring vigorously, acetyl chloride (720 mg) was added dropwise. The mixture was stirred for 1 h and filtered. The filtrate was concentrated under vacuum. The residue was purified by flash column chromatography on silica gel to give 1- acetyl-ό-nitiO-l^-dihydro-S-spiro-r-cyclopropyl-lH-indole (0.9 g, 15 % over 4 steps).
[00569] DC-2; l-Acetyl-ό-amino-l^-dihydro-S-spiro-l'-cyclopropyl-lH-indole A mixture of -l-acetyl-o-nitro-l^-diliydro-S-spiro-l'-cyclopropyl- lH-indole (383 mg, 2 mmol) and Pd-C (10 %, 100 mg) in EtOH (50 mL) was stirred at room temperature under H2 (1 atm) for 1.5 h. The catalyst was filtered off and the filtrate was concentrated under reduced pressure. The residue was treated with HCl / MeOH to give l-acetyl-6-amino-l,2-dihydro-3-spiro-l'- cyclopropyl-lH-indole (DC-2) (300 mg, 90 %) as a hydrochloride salt.
[00570] Example 3:
Figure imgf000186_0001
DC-3
[00571] 3-Methyl-but-2-enoic acid phenylamide A mixture of 3-methyl-but-2- enoic acid (100 g, 1 mol) and SOCl2 (119 g, 1 mol) was heated at reflux for 3 h. The excess SOCl2 was removed under reduced pressure. CH2Cl2 (200 mL) was added followed by the addition of aniline (93 g, 1.0 mol) in Et3N (101 g, 1 mol) at 0 °C. The mixture was stirred at room temperature for 1 h and quenched with HCl (5%, 150 mL). The aqueous layer was separated and extracted with CH2Cl2. The combined organic layers were washed with water (2x100 niL) and brine (100 mL), dried over Na2SO4 and concentrated to give 3 -methyl -but-2-enoic acid phenylamide (12O g, 80 %).
[00572] 4,4-Dimethyl-3,4-dihydro-lH-quinolin-2-one AlCl3 (500 g, 3.8 mol) was carefully added to a suspension of 3 -methyl -but-2-enoic acid phenylamide (105 g, 0.6 mol) in benzene (1000 mL). The reaction mixture was stirred at 80 °C overnight and poured into ice-water. The organic layer was separated and the aqueous layer was extracted with ethyl acetate (250 mL x 3). The combined organic layers were washed with water (200 mL x 2) and brine (200 mL), dried over Na2SO4 and concentrated to give 4,4-dimethyl-3,4~ dihydro-lH-quinolin-2-one (90 g, 86 %).
[00573] 4,4-Dimethyl-l,2,3,4-tetrahydro-quinoline A solution of 4,4-dimethyl-3,4-dihydro-lH-quinolin-2-one (35 g, 0.2 mol) in THF (100 mL) was added dropwise to a suspension Of LiAlH4 (18 g, 0.47 mol) in THF (200 mL) at 0 0C. After addition, the mixture was stirred at room temperature for 30 min and then slowly heated to reflux for 1 h. The mixture was then cooled to 0 0C. Water (18 mL) and NaOH solution (10 %, 100 mL) were carefully added to quench the reaction. The solid was filtered off and the filtrate was concentrated to give 4,4-dimethyl-l,2,3,4-tetrahydro-quinoline.
[00574] 4,4-Dimethyl-7-nitro-l,2,3,4-tetrahydro-quinoline To a mixture of 4,4-dimethyl- 1,2,3, 4-tetrahydro-quinoline (33 g, 0.2 mol) in H2SO4 (120 mL) was slowly added KNO3 (20.7 g, 0.2 mol) at 0 °C. After addition, the mixture was stirred at room temperature for 2 h, carefully poured into ice water and basified with Na2CO3 to pH 8. The mixture was extracted with ethyl acetate (3 x 200 mL). The combined extracts were washed with water and brine, dried over Na2SO4 and concentrated to give 4, 4-dimethyl-7-nitro-l, 2, 3, 4- tetrahydro-quinoline (21 g, 50 %).
[00575] 4,4-Dimethyl-7-nitro-3,4-dihydro-2H-quinoIine-l-carboxylic acid tert- butyl ester A mixture of 4,4-dimethyl-7-nitro- 1,2,3, 4-tetrahydro-quinoline (25 g, 0.12 mol) and Boc2O (55 g, 0.25 mol) was stirred at 80 0C for 2 days. The mixture was purified by silica gel chromatography to give 4,4-dimethyl-7-nitro-3,4-dihydro-2H-quinoline-l-carboxylic acid tert- butyl ester(8 g, 22 %).
[00576] DC-3; fe/t-Butyl 7-amino-3,4-dihydro-4,4-dimethylquinoline-l(2H)- carboxylate A mixture of 4,4-dimethyl-7-nitro-3,4-dihydro-2H-quinoline-l carboxylic acid tert-buty\ ester (8.3 g, 0.03 mol) and Pd-C (0.5 g) in methanol (100 mL) was stirred under H2 (1 atm) at room temperature overnight. The catalyst was filtered off and the filtrate was concentrated. The residue was washed with petroleum ether to give tert-butyl 7-amino-3,4-dihydro-4,4- dimethylquinoline-l(2H)-carboxylate (DC-3) (7.2 g, 95 %). 1H NMR (CDCl3) δ 7.11-7.04 (m, 2 H), 6.45-6.38 (m, 1 H), 3.71-3.67 (m, 2 H), 3.50-3.28 (m, 2 H), 1.71-1.67 (m, 2 H), 1.51 (s, 9 H), 1.24 (s, 6 H).
[00577] Example 4:
Figure imgf000188_0001
[00578] l-Chloro-4-methylpentan-3-one Ethylene was passed through a solution of isobutyryl chloride (50 g, 0.5 mol) and AlCl3 (68.8 g, 0.52 mol) in anhydrous CH2Cl2 (700 mL) at 5 0C. After 4 h, the absorption of ethylene ceased, and the mixture was stirred at room temperature overnight. The mixture was poured into cold diluted HCl solution and extracted with CH2Cl2. The combined organic phases were washed with brine, dried over Na2SO4, filtered and concentrated to give the crude l-chloro-4- methylpentan-3-one, which was used directly in the next step without further purification.
[00579] 4-Methyl-l-(phenylamino)-pentan-3-one A suspension of the crude l-chloro-4-methylpentan-3-one (about 60 g), aniline (69.8 g, 0.75 mol) and NaHCO3 (210 g, 2.5 mol) in CH3CN (1000 mL) was heated at reflux overnight. After cooling, the insoluble salt was filtered off and the filtrate was concentrated. The residue was diluted with CH2Cl2, washed with 10% HCl solution (100 mL) and brine, dried over Na2SO4, filtered and concentrated to give the crude 4-methyl-l -(phenyl amino)-pentan-3 -one.
[00580] 4-Methyl-l-(phenylamino)-pentan-3-ol At -10 °C, NaBH4 (56.7 g, 1.5 mol) was gradually added to a mixture of the crude 4-methyl-l- (phenylamino)-pentan-3-one (about 80 g) in MeOH (500 mL). After addition, the reaction mixture was allowed to warm to room temperature and stirred for 20 min. The solvent was removed and the residue was repartitioned between water and CH2Cl2. The organic phase was separated, washed with brine, dried over Na2SO4, filtered and concentrated. The resulting gum was triturated with ether to give 4-methyl-l -(phenylamino)-pentan-3-ol as a white solid (22 g, 23 %).
[00581] 5,5-DimethyI-2,3,4,5-tetrahydro-lH~benzo[b]azepine A mixture of 4-methyl-l -(phenylamino)-pentan-3-ol (22 g, 0.11 mol) in 98% H2SO4 (250 mL) was stirred at 50 °C for 30 min. The reaction mixture was poured into ice-water basified with sat. NaOH solution to pH 8 and extracted with CH2Cl2. The combined organic phases were washed with brine, dried over Na2SO4, filtered and concentrated. The residue was purified by column chromatography (petroleum ether) to afford 5,5-dimethyl- 2,3,4,5-tetrahydro-lH- benzo[b]azepine as a brown oil (1.5 g, 8 %).
[00582] 5,5-DimethyI-8-nitro-2,3,4,5-tetrahydro-lH-benzo [b] azepine At 0 °C, KNO3 (0.76 g, 7.54 mmol) was added portionwise to a solution of 5,5-dimethyl-2,3,4,5- tetrahydro-lH-benzo[b]azepine (1.1 g, 6.28 mmol) in H2SO4 (15 mL). After stirring 15 min at this temperature, the mixture was poured into ice water, basified with sat. NaHCO3 to pH 8 and extracted with EtOAc. The organic layer was washed with brine, dried over Na2SO4 and concentrated to give crude 5,5-dimethyl-8-nitro-2,3,4,5-tetrahydro-lH-benzo[b]azepine (1.2 g), which was used directly in the next step without further purification.
[00583] l-(5,5-dimethyl-8-nitro-2,3,4,5-tetrahydrobenzo[b]azepin-l- yl)ethanone Acetyl chloride (0.77 mL, 11 mmol) was added to a suspension of crude 5,5-dimethyl-8-nitro- 2,3,4,5-tetrahydro-lH-benzo[b]azepine (1.2 g, 5.45 mmol) and NaHCO3 (1.37 g, 16.3 mmol) in CH2Cl2 (20 mL). The mixture was heated at reflux for 1 h. After cooling, the mixture was poured into water and extracted with CH2Cl2. The organic layer was washed with brine, dried over Na2SO4 and concentrated. The residue was purified by column chromatography to afford 1- (5,5-dimethyl-8-nitro-2,3,4,5-tetrahydrobenzo[b]azepin-l-yl)ethanone (1.05 g, 64 % over two steps).
[00584] DC-4; l-(8-Amino-2,3,4,5-tetrahydro-5,5-dimethylbenzo[b]azepin-l- yl)ethanone A suspension of l-(5,5-dimethyl-8-nitro-2,3,4,5-tetraliydrobenzo[b]azepin-l-yl)ethanone (1.05 g, 40 mmol) and 10% Pd-C (0.2 g) in MeOH (20 mL) was stirred under H2 (1 atm) at room temperature for 4 h. After filtration, the filtrate was concentrated to give l-(8-amino-2,3,4,5- tetrahydro-5,5-dimethylbenzo[b]azepin-l-yl)ethanone as a white solid (DC-4) (880 mg, 94 %). 1H NMR (CDCl3) δ 7.06 (d, J= 8.0 Hz, 1 H), 6.59 (dd, J= 8.4, 2.4 Hz, 1 H), 6.50 (br s, IH), 4.18-4.05 (m, IH), 3.46-3.36 (m, IH), 2.23 (s, 3H), 1.92-1.85 (m, IH), 1.61-1.51 (m, 3H), 1.21 (s, 3H), 0.73 (t, J= 7.2 Hz, 3 H); ESI-MS 233.0 m/z (MH+).
[00585] Example 5:
Figure imgf000191_0001
[00586] Spiro[lH-indene-l,4'-piperidin]-3(2H)-one, l'-benzyl A mixture of spiro[lH-indene-l,4'-piperidine]-l'-carboxylic acid, 2,3-dihydro-3-oxo-, 1,1- dimethylethyl ester (9.50 g, 31.50 mmol) in saturated HCl/MeOH (50 mL) was stirred at 25 0C overnight. The solvent was removed under reduced pressure to yield an off-white solid (7.50 g). To a solution of this solid in dry CH3CN (30 mL) was added anhydrous K2CO3 (7.85 g, 56.80 mmol). The suspension was stirred for 5 min, and benzyl bromide (5.93 g, 34.65 mmol) was added dropwise at room temperature. The mixture was stirred for 2 h, poured into cracked ice and extracted with CH2Cl2. The combined organic layers were dried over Na2SO4 and concentrated under vacuum to give crude spiro[lH-indene-l,4l-piperidin]-3(2H)-one, l'-benzyl (7.93 g, 87 %), which was used without further purification.
[00587] Spiro[lH-indene-l,4'-piperidin]-3(2H)-one, l'-benzyl, oxime To a solution of spiro[lH-indene-l,4'-piperidin]-3(2H)-one, l'-benzyl (7.93 g, 27.25 mmol) in EtOH (50 mL) were added hydroxylamine hydrochloride (3.79 g, 54.50 mmol) and anhydrous sodium acetate (4.02 g, 49.01 mmol) in one portion. The mixture was refluxed for 1 h, and then cooled to room temperature. The solvent was removed under reduced pressure and 200 mL of water was added. The mixture was extracted with CH2Cl?. The combined organic layers were dried over Na2SO4 and concentrated to yield spiro[lH-indene-l,4'-piperidin]-3(2H)-one, 1'- benzyl, oxime (7.57 g, 91 %), which was used without further purification.
[00588] l,2,3,4-Tetrahydroquinolin-4-spiro-4'-(N'-benzyl-piperidine) To a solution of spiro[lH-indene-l,4'-piperidin]-3(2H)-one, l'-benzyl, oxime (7.57 g, 24.74 mmol) in dry CH2Cl2 (150 niL) was added dropwise DIBAL-H (135.7 mL, IM in toluene) at 0 °C. The mixture was stirred at 0 0C for 3 h, diluted with CH2Cl2 (100 mL), and quenched with NaF (20.78 g, 495 mmol) and water (6.7 g, 372 mmol). The resulting suspension was stirred vigorously at 0 °C for 30 min. After filtration, the residue was washed with CH2Cl2. The combined filtrates were concentrated under vacuum to give an off-brown oil that was purified by column chromatography on silica gel (CH2Cl2 - MeOH, 30:1) to afford 1,2,3,4- tetrahydroquinolin~4-spiro-4'-(N'-benzyl-piperidine) (2.72 g, 38 %).
[00589] l,2,3,4-Tetrahydroquinolin-4-spiro-4'-piperidine A suspension of l,2,3,4-Tetrahydroquinolin-4-spiro-4'-(N'-benzyl-piperidine) (300 mg, 1.03 mmol) and Pd(OH)2-C (30 mg) in MeOH (3 mL) was stirred under H2 (55 psi) at 50 0C over night. After cooling, the catalyst was filtered off and washed with MeOH. The combined filtrates were concentrated under reduced pressure to yield l,2,3,4-tetrahydroquinolin-4-spiro-4'- piperidine as a white solid (176 mg, 85 %), which was used without further purification.
[00590] 7'-Nitro-spiro [piperidine-4,41 (1 Η)-quinoline] , 2',3 '-dihydro-
carboxylic acid tert-butyl ester
KNO3 (69.97 mg, 0.69 mmol) was added portion-wise to a suspension of 1,2,3,4- tetrahydroquinolin-4-spiro-4'-piperidine (133 mg, 0.66 mmol) in 98% H2SO4 (2 mL) at 00C. After the addition was complete, the reaction mixture was allowed to warm to room temperature and stirred for additional 2 h. The mixture was then poured into cracked ice and basified with 10% NaOH to pH~ 8. BoC2O (172 mg, 0.79 mmol) was added dropwise and the mixture was stirred at room temperature for 1 h. The mixture was then extracted with EtOAc and the combined organic layers were dried over Na2SO4, filtered and concentrated to yield crude T- nitro-spiro[piperidine-4,4'(l'H)-quinoline], 2',3'-dihydro- carboxylic acid tert-butyl ester (230 mg), which was used in the next step without further purification.
[00591] 7'-nitro-spiro[piperidine-4,4'(lΗ)-l-acetyl-quinoIine], 2',3'-dihydro- carboxylic acid tert-butyl ester Acetyl chloride (260 mg, 3.30 mmol) was added dropwise to a suspension of V-nitro- spiro[piperidine-4,4'(l'H)-quinoline], 2',3'-dihydro- carboxylic acid tert-butyl ester (230 mg) and NaHCO3 (1.11 g, 13.17 mmol) in MeCN (5 mL) at room temperature. The reaction mixture was refluxed for 4 h. After cooling, the suspension was filtered and the filtrate was concentrated. The residue was purified by column chromatography (petroleum ether- EtOAc, 10:1) to provide 7'-nitro-spiro[piperidine-4,4'(l'H)-l-acetyl-quinoline], 2',3'-dihydro- carboxylic acid tert-butyl ester (150 mg, 58 % over 2 steps)
[00592] DC-5; 7'-Amino-spiro[piperidine-4,4'(l'H)-l-acetyl-quinoline], 2',3'- dihydro- carboxylic acid tert-butyl ester A suspension of 7'-nitro-spiro[piperidine-4,4'(lΗ)-l-acetyl-quinoline], 2',3'-dihydro- carboxylic acid tert-butyl ester (150 mg, 0.39 mmol) and Raney Ni (15 mg) in MeOH (2 mL) was stirred under H2 (1 atm) at 25 °C overnight. The catalyst was removed via filtration and washed with MeOH. The combined filtrates were dried over Na2SO4, filtered, and concentrated to yield T- amino-spiro[piperidine-4,4'(lΗ)-l-acetyl-quinoline], 2',3'-dihydro- carboxylic acid tert-butyl ester (DC-5) (133 mg, 96 %).
[00593] Example 7:
Figure imgf000193_0001
[00594] 2-(2,4-Dinitrophenylthio)-acetic acid Et3N (1.5 g, 15 mmol) and mercapto-acetic acid (1 g, 11 mmol) were added to a solution of 1 - chloro-2,4-dinitrobenzene (2.26 g, 10 mmol) in 1,4-dioxane (50 mL) at room temperature. After stirring at room temperature for 5 h, H2O (100 mL) was added. The resulting suspension was extracted with ethyl acetate (100 mL x 3). The ethyl acetate extract was washed with water and brine, dried over Na2SO4 and concentrated to give 2-(2,4-dinitrophenylthio)-acetic acid (2.3 g, 74 %), which was used without further purification.
[00595] DC-7; 6-Amino-2H-benzo[b][l,4]thiazin-3(4H)-one A solution of 2-(2,4-dinitrophenylthio)-acetic acid (2.3 g, 9 mmol) and tin (II) chloride dihydrate (22.6 g, 0.1 mol) in ethanol (30 mL) was refluxed overnight. After removal of the solvent under reduced pressure, the residual slurry was diluted with water (100 mL) and basified with 10 % Na2CO3 solution to pH 8. The resulting suspension was extracted with ethyl acetate (3 x 100 mL). The ethyl acetate extract was washed with water and brine, dried over Na2SO4, and concentrated. The residue was washed with CH2Cl2 to yield 6-amino-2H-benzo[b][l,4]thiazin- 3(4H)-one (DC-7) as a yellow powder (1 g, 52 %). 1H NMR (DMSO-J6) δ 10.24 (s. 1 H), 6.88 (d, 1 H, J= 6 Hz), 6.19-6.21 (m, 2H), 5.15 (s, 2 H), 3.28 (s, 2 H); ESI-MS 181.1 m/z (MH+).
[00596] Example 7:
Figure imgf000194_0001
DC-8
[00597] N-(2-Bromo-5-nitrophenyl)acetamide Acetic anhydride (1.4 mL, 13.8 mmol) was added dropwise to a stirring solution of 2-bromo-5- nitroaniline (3 g, 13.8 mmol) in glacial acetic acid (30 mL) at 25 0C. The reaction mixture was stirred at room temperature overnight, and then poured into water. The precipitate was collected via filtration, washed with water and dried under vacuum to provide N-(2-bromo-5- nitrophenyl)acetamide as an off white solid (3.6 g, 90 %).
[00598] N-(2-Bromo-5-nitrophenyl)-N-(2-methylprop-2-enyI)acetamide At 25 0C, a solution of 3-bromo-2-methylpropene (3.4 g, 55.6 mmol) in anhydrous DMF (30 mL) was added dropwise to a solution of N-(2-bromo-5-nitropheny)acetamide (3.6 g, 13.9 mmol) and potassium carbonate (3.9 g, 27.8 mmol) in anhydrous DMF (50 mL). The reaction mixture was stirred at 25 °C overnight. The reaction mixture was then filtered and the filtrate was treated with sat. Na2CO3 solution. The organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic extracts were washed with water and brine, dried over MgSO4, filtered and concentrated under vacuum to provide N-(2-bromo-5- nitrophenyl)-N-(2-methylprop-2-enyl)acetamide as a golden solid (3.1 g, 85 %). ESI-MS 313 m/z (MH+).
[00599] l-(3,3-Dimethyl-6-nitroindolin-l-yl)ethanone A solution of N-(2-bromo-5-nitrophenyl)-N-(2-methylprop-2-enyl)acetamide (3.1 g, 10.2 mmol), tetraethylammonium chloride hydrate (2.4 g, 149 mmol), sodium formate (1.08 g, lδmmol), sodium acetate (2.76 g, 34.2 mmol) and palladium acetate (0.32 g, 13.2 mmol) in anhydrous DMF (50 mL) was stirred at 80 °C for 15 h under N2 atmosphere. After cooling, the mixture was filtered through Celite. The Celite was washed with EtOAc and the combined filtrates were washed with sat. NaHCO3. The separated organic layer was washed with water and brine, dried over MgSO4, filtered and concentrated under reduced pressure to provide l-(3,3-dimethyl-6- nitroindolin-l-yl)ethanone as a brown solid (2.1 g, 88%).
[00600] DC-8; l-(6-Amino-3,3-dimethyl-2,3-dihydro-indol-l-yl)-ethanone 10% Pd-C (0.2 g) was added to a suspension of l-(3,3-dimethyl-6-nitroindolin-l-yl)ethanone (2.1g, 9 mmol) in MeOH (20 mL). The reaction was stirred under H2 (40 psi) at room temperature overnight. Pd-C was filtered off and the filtrate was concentrated under vacuum to give a crude product, which was purified by column chromatography to yield l-(6-amino-3,3- dimethyl-2,3-dihydro-indol-l-yl)-ethanone (DC-8) (1.3 g, 61 %). [00601] Example 8:
Figure imgf000196_0001
[00602] 2,3,4,5-Tetrahydro-lH-benzo[b]azepine DIBAL (90 mL, 90 mmol) was added dropwise to a solution of 4-dihydro-2H-naphthalen-l-one oxime (3 g, 18 mmol) in dichloromethane (50 mL) at 0 0C. The mixture was stirred at this temperature for 2 h. The reaction was quenched with dichloromethane (30 mL), followed by treatment with NaF (2 g. 0.36 mol) and H2O (5 mL, 0.27 mol). Vigorous stirring of the resulting suspension was continued at 0 °C for 30 min. After filtration, the filtrate was concentrated. The residue was purified by flash column chromatography to give 2,3,4,5-tetrahydro-lH- benzo[b]azepine as a colorless oil (1.9 g, 70 %).
[00603] 8-Nitro-2,3,4,5-tetrahydro-lH-benzo[b]azepine At -IO °C, 2,3,4,5-tetrahydro-lH-benzo[b]azepine (1.9 g, 13 mmol) was added dropwise to a solution OfKLNO3 (3 g, 30 mmol) in H2SO4 (50 mL). The mixture was stirred for 40 min, poured over crushed ice, basified with aq. ammonia to pH 13, and extracted with EtOAc. The combined organic phases were washed with brine, dried over Na2SO4 and concentrated to give 8- nitro-2,3,4,5-tetrahydro-lH-benzo[b]azepine as a black solid (1.3 g, 51 %), which was used without further purification.
[00604] l-(8-Nitro-2,3,4,5-tetrahydro-benzo[b]azepin-l-yl)-ethanone Acetyl chloride (1 g, 13 mmol) was added dropwise to a mixture of 8-nitro-2,3,4,5-tetrahydro- lH-benzo[b]azeρine (1.3 g, 6.8 mmol) and NaHCO3 (1 g, 12 mmol) in CH2Cl2 (50 mL). After stirring for 1 h, the mixture was filtered and the filtrate was concentrated. The residue was dissolved in CH2Cl2, washed with brine, dried over Na2SO4 and concentrated. The residue was purified by column chromatography to give l-(8-nitro-2,3,4,5-tetrahydro-benzo[b]azepin-l-yl)- ethanone as a yellow solid (1.3 g, 80 %).
[00605] DC-9; l-(8-Amino-2,3,4,5-tetrahydro-benzo[b]azepin-l-yI)-ethanone A mixture of l-(8-nitro-2,3,4,5-tetrahydro-benzo[b]azepin-l-yl)- ethanone (1.3 g, 5.4 mmol) and Pd-C (10 %, 100 mg) in EtOH (200 mL) was stirred under H2 (1 atm) at room temperature for 1.5 h. The mixture was filtered through a layer of Celite and the filtrate was concentrated to give l-(8-amino-2,3,4,5-tetrahydro-benzo[b]azepin-l-yl)-ethanone (DC-9) as a white-solid (1 g, 90 %). 1H NMR (CDCl3) δ 7.01 (d, J= 6.0 Hz, 1 H), 6.56 (dd, J= 6.0, 1.8 Hz, 1 H), 6.50 (d, J= 1.8 Hz, 1 H), 4.66-4.61 (m, 1 H), 3.50 (br s, 2 H), 2.64-2.55 (m, 3 H), 1.94-1.91 (m, 5 H), 1.77- 1.72 (m, 1 H), 1.32-1.30 (m, 1 H); ESI-MS 204.1 m/z (MH+).
[00606] Example 9:
Figure imgf000197_0001
[00607] 6-Nitro-4H-benzo [1,4] oxazin-3-one At 0 0C, chloroacetyl chloride (8.75 mL, 0.11 mol) was added dropwise to a mixture of 4-nitro- 2-aminophenol (15.4 g, 0.1 mol), benzyltrimethylammonium chloride (18.6 g, 0.1 mol ) and NaHCO3 (42 g, 0.5 mol) in chloroform (350 ml) over a period of 30 min. After addition, the reaction mixture was stirred at 0 °C for 1 h, then at 50 0C overnight. The solvent was removed under reduced pressure and the residue was treated with water (50 ml). The solid was collected via filtration, washed with water and recrystallized from ethanol to provide 6-nitro-4H- benzo[l,4]oxazin-3-one as a pale yellow solid (8 g, 41 %).
[00608J 6-Nitro-3,4-dihydro-2H-benzo[l,4]oxazine A solution OfBH3-Me2S in THF (2 M, 7.75 rnL, 15.5 mmol) was added dropwise to a suspension of 6-nitro-4H-benzo[l,4]oxazin-3-one (0.6 g, 3.1 mmol) in THF (10 mL). The mixture was stirred at room temperature overnight. The reaction was quenched with MeOH (5 mL) at 0 °C and then water (20 mL) was added. The mixture was extracted with Et2O and the combined organic layers were washed with brine, dried over Na2SO4 and concentrated to give 6-nitro-3,4- dihydro-2H-benzo[l,4]oxazine as a red solid (0.5 g, 89 %), which was used without further purification.
[00609] 4-AcetyI-6-nitro-3,4-dihydro-2H-benzo[l,4]oxazine Under vigorous stirring at room temperature, acetyl chloride (1.02 g, 13 mmol) was added dropwise to a mixture of 6-nitro-3,4-dihydro-2H-benzo[l,4]oxazine (1.8 g, 10 mmol) and NaHCO3 (7.14 g, 85 mmol) in CH2Cl2 (50 mL). After addition, the reaction was stirred for 1 h at this temperature. The mixture was filtered and the filtrate was concentrated under vacuum. The residue was treated with Et2O: hexane (1 :2, 50 mL) under stirring for 30 min and then filtered to give 4-acetyl-6-nitro-3,4-dihydro-2H-benzo[l,4]oxazine as a pale yellow solid (2 g, 90 %).
[00610] DC-IO; 4-Acetyl-6-amino-3,4-dihydro-2H-benzo[l,4]oxazine A mixture of 4-acetyl-6-nitro-3,4-dihydro-2H-benzo[l,4]oxazine (1.5 g, 67.6 mmol) and Pd-C (10 %, 100 mg) in EtOH (30 mL) was stirred under H2 (1 atm) overnight. The catalyst was filtered off and the filtrate was concentrated. The residue was treated with HCl / MeOH to give 4-acetyl-6-amino-3,4-dihydro-2H-benzo[l,4]oxazine hydrochloride (DC-IO) as an off-white solid (U g, 85 %). 1H NMR (DMSO-J6) δ 10.12 (br s, 2H), 8.08 (br s, IH), 6.90-7.03 (m, 2 H), 4.24 (t, J= 4.8 Hz, 2 H), 3.83 (t, J= 4.8 Hz, 2H), 2.23 (s, 3 H); ESI-MS 192.1 m/z (MH+). [006111 Example 10:
Figure imgf000199_0001
[00612] l,2,3,4-Tetrahydro-7-nitroisoquinoline hydrochloride 1,2,3,4-Tetrahydroisoquinoline (6.3 mL, 50.0 mmol) was added dropwise to a stirred ice-cold solution of concentrated H2SO4 (25 mL). KNO3 (5.6 g, 55.0 mmol) was added portionwise while maintaining the temperature below 5 °C. The mixture was stirred at room temperature overnight, carefully poured into an ice-cold solution of concentrated NH4OH, and then extracted three times with CHCl3. The combined organic layers were washed with brine, dried over Na2SO4 and concentrated. The resulting dark brown oil was taken up into EtOH, cooled in an ice bath and treated with concentrated HCl. The yellow precipitate was collected via filtration and recrystallized from methanol to give l,2,3,4-tetrahydro-7-nitroisoquinoline hydrochloride as yellow solid (2.5 g, 23 %). 1H NMR (400 MHz, DMSO-d6) δ 9.86 (s, 2H), 8.22 (d, J= 1.6 Hz, IH), 8.11 (dd, J= 8.5, 2.2 Hz, IH), 7.53 (d, J= 8.5 Hz5IH), 4.38 (s, 2H), 3.38 (s, 2H), 3.17-3.14 (m, 2H); HPLC ret. time 0.51 min, 10-99 % CH3CN, 5 min run; ESI-MS 179.0 m/z (MH+).
[00613] tø*^ButyI 3,4-dihydro-7-nitroisoquinoline-2(lH)-carboxylate A mixture of 1,2,3, 4-Tetrahydro-7-nitroisoquinoline (2.5 g, 11.6 mmol), 1,4-dioxane (24 mL), H2O (12 mL) and IN NaOH (12 mL) was cooled in an ice-bath, and BoC2O (2.8 g, 12.8 mmol) was added. The mixture was stirred at room temperature for 2.5 h, acidified with a 5% KHSO4 solution to pH 2-3, and then extracted with EtOAc. The organic layer was dried over MgSO4 and concentrated to give tert-butyl 3,4-dihydro-7-nitroisoquinoline-2(lH)-carboxylate (3.3 g, quant.), which was used without further purification. 1H NMR (400 MHz, DMSO-d6) δ 8.13 (d, J= 2.3 Hz, IH), 8.03 (dd, J= 8.4, 2.5 Hz, IH), 7.45 (d, J= 8.5 Hz, IH), 4.63 (s, 2H), 3.60-3.57 (m, 2H), 2.90 (t, J= 5.9 Hz, 2H), 1.44 (s, 9H); HPLC ret. time 3.51 min, 10-99 % CH3CN, 5 min run; ESI-MS 279.2 m/z (MH+).
[00614] DC-6; tert-Butyl 7-amino-3,4-dihydroisoquinoline-2(lH)-carboxylate Pd(OH)2 (330.0 mg) was added to a stirring solution of tert-butyl 3,4-dihydro-7- nitroisoquinoline-2(lH)-carboxylate (3.3 g, 12.0 mmol) in MeOH (56 mL) under N2 atmosphere. The reaction mixture was stirred under H2 (1 atm) at room temerpature for 72 h. The solid was removed by filtration through Celite. The filtrate was concentrated and purified by column chromatography (15-35 % EtOAc - Hexanes) to provide ter^-butyl 7-amino-3,4- dihydroisoquinoline-2(lH)-carboxylate (DC-6) as a pink oil (2.0 g, 69 %). 1H NMR (400 MHz, DMSO-d6) δ 6.79 (d, J= 8.1 Hz, IH), 6.40 (dd, J= 8.1, 2.3 Hz, IH), 6.31 (s, IH), 4.88 (s, 2H), 4.33 (s, 2H), 3.48 (t, J= 5.9 Hz, 2H), 2.58 (t, J= 5.9 Hz, 2H), 1.42 (s, 9H); HPLC ret. time 2.13 min, 10-99 % CH3CN, 5 min run; ESI-MS 249.0 m/z (MH+).
[00615] Other amines [00616] Example 1:
Figure imgf000200_0001
E-1 [00617] 4-Bromo-3-nitrobenzonitrile To a solution of 4-bromobenzonitrile (4.0 g, 22 mmol) in cone. H2SO4 (10 mL) was added dropwise at 0 0C nitric acid (6 mL). The reaction mixture was stirred at 0 °C for 30 min, and then at room temperature for 2.5 h. The resulting solution was poured into ice-water. The white precipitate was collected via filtration and washed with water until the washings were neutral. The solid was recrystallized from an ethanol/water mixture (1 :1, 20 mL) twice to afford A- bromo-3-nitrobenzonitrile as a white crystalline solid (2.8 g, 56 %). 1H NMR (300 MHz, DMSO- d6) δ 8.54 (s, IH), 8.06 (d, J= 8.4 Hz, IH), 7.99 (d, J= 8.4 Hz, IH); 13C NMR (75 MHz, DMSO-4) δ 150.4, 137.4, 136.6, 129.6, 119.6, 117.0, 112.6; HPLC ret. time 1.96 min, 10-100 % CH3CN, 5 min gradient; ESI-MS 227.1 m/z (MH+).
[00618] 2'-Ethoxy-2-nitrobiphenyl-4-carbonitrile A 50 mL round-bottom flask was charged with 4-bromo-3-nitrobenzonitrile (1.0 g 4.4 mmol), 2- ethoxyphenylboronic acid (731 mg, 4.4 mmol), Pd2(dba)3 (18 mg, 0.022 mmol) and potassium fluoride (786 mg, 13.5 mmol). The reaction vessel was evacuated and filled with argon. Dry THF (300 mL) was added followed by the addition of P(^-Bu)3 (0.11 mL, 10% wt. in hexane). The reaction mixture was stirred at room temperature for 30 min., and then heated at 80 °C for 16 h. After cooling to room temperature, the resulting mixture was filtered through a Celite pad and concentrated. 2'-Ethoxy-2-nitrobiphenyl-4-carbonitrile was isolated as a yellow solid (1.12 g, 95%). 1H NMR (300 MHz, DMSO-^) δ 8.51 (s, IH), 8.20 (d, J= 8.1 Hz, IH), 7.68 (d, J= 8.4 Hz, IH), 7.41 (t, J= 8.4 Hz, IH), 7.37 (d, J= 7.5 Hz, IH), 7.08 (t, J= 7.5 Hz, IH), 7.03 (d, J= 8.1 Hz, IH), 3.91 (q, J= 7.2 Hz, 2H), 1.12 (t, J= 7.2 Hz, 3H); 13C NMR (75 MHz, DMSO-^) δ 154.9, 149.7, 137.3, 137.2, 134.4, 131.5, 130.4, 128.4, 125.4, 121.8, 117.6, 112.3, 111.9, 64.1, 14.7; HPLC ret. time 2.43 min, 10-100 % CH3CN, 5 min gradient; ESI-MS 269.3 m/z (MH+).
[00619] 4-Aminomethyl-2'-ethoxy-biphenyl-2-ylamine To a solution of 2'-ethoxy-2-nitrobiphenyl-4-carbonitrile (500 mg, 1.86 mmol) in THF (80 mL) was added a solution of BH3-THF (5.6 mL, 10% wt. in THF, 5.6 mmol) at 0 0C over 30 min. The reaction mixture was stirred at 0 °C for 3 h and then at room temperature for 15 h. The reaction solution was chilled to 0 °C, and a H2O/THF mixture (3 mL) was added. After being agitated at room temperature for 6 h, the volatiles were removed under reduced pressure. The residue was dissolved in EtOAc (100 mL) and extracted with IN HCl (2 x 100 mL). The aqueous phase was basified with IN NaOH solution to pH land extracted with EtOAc (3 x 50 mL). The combined organic layers were washed with water (50 mL), dried over Na2SO4, filtered, and evaporated. After drying under vacuum, 4-aminomethyl-2'-ethoxy-biphenyl-2-ylamine was isolated as a brown oil (370 mg, 82 %). 1H NMR (300 MHz, DMSO-cfc) 6 7.28 (dt, J- 7.2 Hz, J= 1.8 Hz, IH), 7.09 (dd, J= 7.2 Hz, J= 1.8 Hz, IH), 7.05 (d, J= 7.5 Hz, IH), 6.96 (dt, J= 7.2 Hz, J= 0.9 Hz, IH), 6.83 (d, J= 7.5 Hz, IH), 6.66 (d, J= 1.2 Hz, IH), 6.57 (dd, J= 7.5 Hz, J= 1.5 Hz, IH), 4.29 (s, 2H), 4.02 (q, J= 6.9 Hz, 2H), 3.60 (s, 2H), 1.21 (t, J= 6.9 Hz, 3H); HPLC ret. time 1.54 min, 10-100 % CH3CN, 5 min gradient; ESI-MS 243.3 m/z (MH+).
[00620] E-I; (2-Amino-2'-ethoxy-biphenyl-4-ylmethyl)carbamic acid tert-butyl ester A solution of BoC2O (123 mg, 0.565 mmol) in 1,4-dioxane (10 mL) was added over a period of 30 min. to a solution of 4-aminomethyl-2'-ethoxy-biphenyl-2-ylamine (274 mg, 1.13 mmol) in 1,4-dioxane (10 mL). The reaction mixture was stirred at room temperature for 16 h. The volatiles were removed on a rotary evaporator. The residue was purified by flash chromatography (silica gel, EtOAc - CH2Cl2, 1:4) to afford (2-Amino-2'-ethoxy-biphenyl-4- ylmethyl)carbamic acid tert-butyl ester (E-I) as a pale yellow oil (119 mg, 31 %). 1H NMR (300 MHz, OMSO-d6) δ 7.27 (m, 2H), 7.07 (dd, J= 7.2 Hz, J= 1.8 Hz, IH), 7.03 (d, J= 7.8 Hz, IH), 6.95 (dt, J= 7.2 Hz, J= 0.9 Hz, IH), 6.81 (d, J= 7.5 Hz, IH), 6.55 (s, IH), 6.45 (dd, J= 7.8 Hz, J= 1.5 Hz, IH), 4.47 (s, 2H), 4.00 (q, J= 7.2 Hz, 2H), 1.38 (s, 9H), 1.20 (t, J= 7.2 Hz, 3H); HPLC ret. time 2.34 min, 10-100 % CH3CN, 5 min gradient; ESI-MS 343.1 m/z (MH+).
[00621] Example 2:
Figure imgf000202_0001
E-2
[00622] 2-Bromo-l-fer£-butyI-4-nitrobenzene To a solution of l-ferf-butyl-4-nitrobenzene (8.95 g, 50 mmol) and silver sulfate (10 g, 32 mmol) in 50 mL of 90% sulfuric acid was added dropwise bromine (7.95 g, 50 mmol). Stiring was continued at room temperature overnight, and then the mixture was poured into dilute sodium hydrogen sulfite solution and was extracted with EtOAc three times. The combined organic layers were washed with brine and dried over MgSO4. After filtration, the filtrate was concentrated to give 2-bromo-l-tert-butyl-4-nitrobenzene (12.7 g, 98 %), which was used without further purification. 1H NMR (400 MHz, CDCl3) δ 8.47 (d, J = 2.5 Hz, IH), 8.11 (dd, J - 8.8, 2.5 Hz, IH), 7.63 (d, J = 8.8 Hz, IH), 1.57 (s, 9H); HPLC ret. time 4.05 min, 10-100 % CH3CN, 5 min gradient.
[00623] 2~fert-Butyl-5-nitrobenzonitrile To a solution of 2-bromo-l-fert-butyl-4-nitrobenzene (2.13 g, 8.2 mmol) and Zn(CN)2 (770 mg, 6.56 mmol) in DMF (10 mL) was added Pd(PPli3)4 (474 mg, 0.41 mmol) under a nitrogen atmosphere. The mixture was heated in a sealed vessel at 205 0C for 5 h. After cooling to room temperature, the mixture was diluted with water and extracted with EtOAc twice. The combined organic layers were washed with brine and dried over MgSO4. After removal of solvent, the residue was purified by column chromatography (0-10 % EtOAc-Hexane) to give 2-tert-butyl-5- nitrobenzonitrile (1,33 g, 80 %). 1H NMR (400 MHz, CDCl3) δ 8.55 (d, J = 2.3 Hz, IH), 8.36 (dd, J = 8.8, 2.2 Hz, IH), 7.73 (d, J = 8.9 Hz, IH), 1.60 (s, 9H); HPLC ret. time 3.42 min, 10-100 % CH3CN, 5 min gradient.
[00624] E-2; 2-tert-Butyl-5-aminobenzonitrile To a refluxing solution of 2-tert-butyl-5-nitrobenzonitrile (816 mg, 4.0 mmol) in EtOH (20 mL ) was added ammonium formate (816 mg, 12.6 mmol), followed by 10% Pd-C (570 mg). The reaction mixture was refluxed for additional 90 min, cooled to room temperature and filtered through Celite. The filtrate was concentrated to give 2-fert-butyl-5-aminobenzonitrile (E-2) (630 mg, 91 %), which was used without further purification. HPLC ret. time 2.66 min, 10-99 % CH3CN, 5 min run; ESI-MS 175.2 m/z (MH+).
[00625] Example 3:
Figure imgf000204_0001
[00626] (2-fer*-Butyl-5-nitrophenyl)metIianamine To a solution of 2-fer/'-butyl-5-nitrobenzonitrile (612 mg, 3.0 mmol) in THF (10 mL) was added a solution Of BH3THF (12 mL, IM in THF, 12.0 mmol) under nitrogen. The reaction mixture was stirred at 70 0C overnight and cooled to 0 0C. Methanol (2 mL) was added followed by the addition of IN HCl (2 mL). After refluxing for 30 min, the solution was diluted with water and extracted with EtOAc. The aqueous layer was basified with IN NaOH and extracted with EtOAc twice. The combined organic layers were washed with brine and dried over Mg2SO4. After removal of solvent, the residue was purified by column chromatography (0-10 % MeOH - CH2Cl2) to give (2-tert-butyl-5-nitroρhenyl)methanamine (268 mg, 43 %). 1H NMR (400 MHz, DMSO-J6) δ 8.54 (d, J = 2.7 Hz, IH), 7.99 (dd, J = 8.8, 2.8 Hz, IH), 7.58 (d, J = 8.8 Hz, IH), 4.03 (s, 2H), 2.00 (t, J = 2.1 Hz, 2H), 1.40 (s, 9H); HPLC ret. time 2.05 min, 10-100 % CH3CN, 5 min gradient; ESI-MS 209.3 m/z (MH+).
[00627] tert-Butyl 2-terf-butyl-5-nitrobenzylcarbamate A solution of (2-tert-butyl-5-nitrophenyl)methanamine (208 mg, 1 mmol) and BoC2O (229 mg, 1.05 mmol) in THF (5mL) was refluxed for 30 min. After cooling to room temperature, the solution was diluted with water and extracted with EtOAc. The combined organic layers were washed with brine and dried over MgSO4. After filtration, the filtrate was concentrated to give tert-butyl 2-tert-butyl-5-nitrobenzylcarbamate (240 mg, 78 %), which was used without further purification. 1H NMR (400 MHz, DMSO-J6) δ 8.26 (d, J - 2.3 Hz, IH), 8.09 (dd, J = 8.8, 2.5 Hz, IH), 7.79 (t, J = 5.9 Hz, IH), 7.68 (d, J = 8.8 Hz, IH), 4.52 (d, J = 6.0 Hz, 2H), 1.48 (s, 18H); HPLC ret. time 3.72 min, 10-100 % CH3CN, 5 min gradient.
[00628] E-4; tert-Butyl 2-tørt-butyl-5-aminobenzylcarbamate To a solution of tert-butyl 2-fert-butyl-5-nitrobenzylcarbamate (20 mg, 0.065 mmol) in 5% AcOH-MeOH (1 mL) was added 10% Pd-C (14 mg) under nitrogen atmosphere. The mixture was stirred under H2 (1 atm) at room temperature for 1 h. The catalyst was removed via filtration through Celite, and the filtrate was concentrated to give tert-butyl 2-te/-t-butyl-5- aminobenzyl carbamate (E-4), which was used without further purification. 1H NMR (400 MHz, CDCl3) δ 7.09 (d, J = 8.5 Hz, IH), 6.62 (d, J = 2.6 Hz, IH), 6.47 (dd, J = 8.5, 2.6 Hz, IH), 4.61 (br s, IH), 4.40 (d, J = 5.1 Hz, 2H), 4.15 (br s, 2H), 1.39 (s, 9H), 1.29 (s, 9H); HPLC ret. time 2.47 min, 10-100 % CH3CN, 5 min gradient; ESI-MS 279.3 m/z (MH+).
[00629] Example 4:
Figure imgf000205_0001
[00630] 2-fe/M$utyl-5-nitrobenzoic acid A solution of 2-fert-butyl-5-nitrobenzonitrile (204 mg, 1 mmol) in 5 mL of 75% H2SO4 was micro waved at 200 0C for 30 min. The reaction mixture was poured into ice, extracted with EtOAc, washed with brine and dried over MgSO4. After filtration, the filtrate was concentrated to give 2-tert-butyl-5-nitrobenzoic acid (200 mg, 90 %), which was used without further purification. 1H NMR (400 MHz, CDCl3) δ 8.36 (d, J = 2.6 Hz, IH), 8.24 (dd, J = 8.9, 2.6 Hz, IH), 7.72 (d, J = 8.9 Hz, IH) 1.51 (s, 9H); HPLC ret. time 2.97 min, 10-100 % CH3CN, 5 min gradient.
[00631] Methyl 2-fert-butyl-5-nitrobenzoate To a mixture of 2-tert-butyl-5-nitrobenzoic acid (120 mg, 0.53 mmol) and K2CO3 (147 mg, 1.1 mmol) in DMF (5.0 mL) was added CH3I (40 μL, 0.64 mmol). The reaction mixture was stirred at room temperature for 10 min, diluted with water and extracted with EtOAc. The combined organic layers were washed with brine and dried over MgSO4. After filtration, the filtrate was concentrated to give methyl 2-fert-butyl-5-nitrobenzoate, which was used without further purification. 1H NMR (400 MHz, CDCl3) δ 8.20 (d, J = 2.6 Hz, IH), 8.17 (t, J = 1.8 Hz, IH), 7.66 (d, J = 8.6 Hz, IH), 4.11 (s, 3H), 1.43 (s, 9H). [00632] E-6; Methyl 2-tert-butyl-5-aminobenzoate To a refluxing solution of 2-tert-butyl-5-nitrobenzoate (90 mg, 0.38 mmol) in EtOH (2.0 mL) was added potassium formate (400 mg, 4.76 mmol) in water (1 mL),' followed by the addition of 20 mg of 10% Pd-C. The reaction mixture was refluxed for additional 40 min, cooled to room temperature and filtered through Celite. The filtrate was concentrated to give methyl 2-tert- butyl-5-aminobenzoate (E-6) (76 mg, 95 %), which was used without further purification. 1H NMR (400 MHz, CDCl3) δ 7.24 (d, J = 8.6 Hz, IH), 6.67 (dd, J = 8.6, 2.7 Hz, IH), 6.60 (d, J = 2.7 Hz, IH), 3.86 (s, 3H), 1.34 (s, 9H); HPLC ret. time 2.19 min, 10-99 % CH3CN, 5 min run; ESI-MS 208.2 m/z (MH+).
[00633] Example 5:
HCI
Figure imgf000206_0001
Figure imgf000206_0002
Figure imgf000206_0003
E-7
[00634] 2-te/^-Butyl-5-nitrobenzene-l-sulfonyl chloride A suspension of 2-fert-butyl-5-nitrobenzenamine (0.971 g, 5 mmol) in cone. HCl (5 mL) was cooled to 5-10 0C and a solution OfNaNO2 (0.433g, 6.3 mmol) in H2O (0.83 mL) was added dropwise. Stirring was continued for 0.5 h, after which the mixture was vacuum filtered. The filtrate was added, simultaneously with a solution OfNa2SO3 (1.57 g, 12.4 mmol) in H2O (2.7 mL), to a stirred solution Of CuSO4 (0.190 g, 0.76 mmol) and Na2SO3 (1.57 g, 12.4 mmol) in HCl (11.7 mL) and H2O (2.7 mL) at 3-5 0C. Stirring was continued for 0.5 h and the resulting precipitate was filtered off, washed with water and dried to give 2~fert-butyl-5-nitrobenzene-l- sulfonyϊ chloride (0.235 g, 17 %). 1H NMR (400 MHz, DMSOd6) δ 9.13 (d, J = 2.5 Hz, IH), 8.36 (dd, J = 8.9, 2.5 Hz, IH), 7.88 (d, J = 8.9 Hz, IH), 1.59 (s, 9H).
[00635] 2-tert-Butyl-5-nitrobenzene-l-sulfonamide To a solution of 2-tert-butyl-5-nitrobenzene-l-sulfonyl chloride (100 mg, 0.36 mmol) in ether (2 mL) was added aqueous NH4OH (128 μL, 3.6 mmol) at 0 0C. The mixture was stirred at room temperature overnight, diluted with water and extracted with ether. The combined ether extracts were washed with brine and dried over Na2SO4. After removal of solvent, the residue was purified by column chromatography (0-50 % EtOAc-Hexane) to give 2-tert-buty\-5- nitrobenzene-1 -sulfonamide (31.6 mg, 34 %).
[00636] E-7; 2-toT-Butyl-5-aminobenzene-l-sulfonamide A solution of 2-ter£-butyl-5-nitrobenzene-l -sulfonamide (32 mg, 0.12 mmol) and SnCl2-2H2O (138 mg, 0.61 mmol) in EtOH (1.5 mL) was heated in microwave oven at 100 0C for 30 min. The mixture was diluted with EtOAc and water, basified with sat. NaHCO3 and filtered through Celite. The organic layer was separated from water and dried over Na2SO4. Solvent was removed by evaporation to provide 2-tert-butyl-5-aminobenzene-l -sulfonamide (E-7) (28 mg, 100 %), which was used without further purification. HPLC ret. time 1.99 min, 10-99 % CH3CN, 5 min run; ESI-MS 229.3 m/z (MH+).
[00637] Example 6:
Figure imgf000207_0001
[00638] E-8; (2-fer^Butyl-5-aminophenyl)methanol To a solution of methyl 2-fer£-butyl-5-aminobenzoate (159 mg, 0.72 mmol) in THF (5 mL) was added dropwise LiAlH4 (1.4 mL, IM in THF, 1.4 mmol) at 0 0C. The reaction mixture was refluxed for 2 h, diluted with H2O and extracted with EtOAc. The combined organic layers were washed with brine and dried over MgSO4. After filtration, the filtrate was concentrated to give (2~fer/-butyl-5-aminophenyl)methanol (E-8) (25 mg, 20 %), which was used without further purification. 1H NMR (400 MHz, CDCl3) δ 7.17 (d, J = 8.5 Hz, IH), 6.87 (d, J = 2.6 Hz, IH), 6.56 (dd, J = 8.4, 2.7 Hz, IH), 4.83 (s, 2H), 1.36 (s, 9H).
[00639] Example 7:
Figure imgf000208_0001
[00640] 1-Methyl-pyridinium monomethyl sulfuric acid salt Methyl sulfate (30 mL, 39.8 g, 0.315 mol) was added dropwise to dry pyridine (25.0 g, 0.316 mol) added dropwise. The mixture was stirred at room temperature for 10 min, then at 100 °C for 2 h. The mixture was cooled to room temperature to give crude 1-methyl-pyridinium monomethyl sulfuric acid salt (64.7 g, quant.), which was used without further purification.
[00641] l-Methyl-2-pyridone A solution of 1-methyl-pyridinium monomethyl sulfuric acid salt (50 g, 0.243 mol) in water (54 mL) was cooled to 0 0C. Separate solutions of potassium ferricyanide (160 g, 0.486 mol) in water (320 mL) and sodium hydroxide (40 g, 1.000 mol) in water (67 mL) were prepared and added dropwise from two separatory funnels to the well-stirred solution of 1-methyl-pyridinium monomethyl sulfuric acid salt, at such a rate that the temperature of reaction mixture did not rise above 10 0C. The rate of addition of these two solutions was regulated so that all the sodium hydroxide solution had been introduced into the reaction mixture when one-half of the potassium Ferric Cyanide solution had been added. After addition was complete, the reaction mixture was allowed to warm to room temperature and stirred overnight. Dry sodium carbonate (91.6 g) was added, and the mixture was stirred for 10 min. The organic layer was separated, and the aqueous layer was extracted with CH2Cl2 (100 mL x 3). The combined organic layers were dried and concentrated to yield l-methyl-2-pyridone (25.0 g, 94 %), which was used without further purification.
[00642] l-Methyl-3,5-dinitro-2-pyridone l-Methyl-2-pyridone (25.0 g, 0.229 mol) was added to sulfuric acid (500 mL) at 0 0C. After stirring for 5 min., nitric acid (200 mL) was added dropwise at 0 0C. After addition, the reaction temperature was slowly raised to 100 0C, and then maintained for 5 h. The reaction mixture was poured into ice, basified with potassium carbonate to pH 8 and extracted with CH2Cl2 (100 mL x 3). The combined organic layers were dried over Na2SO4 and concentrated to yield 1-methyl- 3,5-dinitro-2-pyridone (12.5 g, 28 %), which was used without further purification.
[00643] 2-Isopropyl-5-nitro-pyridine To a solution of l-methyl-3,5-dinitro-2-pyridone (8.0 g, 40 mmol) in methyl alcohol (20 mL) was added dropwise 3-methyl-2-butanone (5.1 mL, 48 mmol), followed by ammonia solution in methyl alcohol (10.0 g, 17%, 100 mmol). The reaction mixture was heated at 70 °C for 2.5 h under atmospheric pressure. The solvent was removed under vacuum and the residual oil was dissolved in CH2Cl2, and then filtered. The filtrate was dried over Na2SO4 and concentrated to afford 2-isopropyl-5-nitro-pyridine (1.88 g, 28 %).
[00644] E-9; 2-Isopropyl-5-amino-pyridine 2-Isopropyl-5-nitro-pyridine (1.30 g, 7.82 mmol) was dissolved in methyl alcohol (20 mL), and Raney Ni (0.25 g) was added. The mixture was stirred under H2 (1 arm) at room temperature for 2 h. The catalyst was filtered off, and the filtrate was concentrated under vaccum to give 2- isopropyl-5-amino-pyridine (E-9) (0.55 g, 52 %). 1H NMR (CDCl3) δ 8.05 (s, 1 H), 6.93-6.99 (m, 2 H), 3.47 (br s, 2 H), 2.92-3.02 (m, 1 H), 1.24-1.26 (m, 6 H). ESI-MS 137.2 m/z (MH+).
[00645] Example 8:
Figure imgf000210_0001
[00646] Phosphoric acid 2,4-di-ferf-butyl-phenyl ester diethyl ester To a suspension of NaH (60% in mineral oil, 6.99 g, 174.7 mmol) in THF (350 mL) was added dropwise a solution of 2,4-di-tert-butylρhenol (35 g, 169.6 mmol) in THF (150 mL) at 0 0C. The mixture was stirred at 0 0C for 15 min and then phosphorochloridic acid diethyl ester (30.15 g, 174.7 mmol) was added dropwise at 0 °C. After addition, the mixture was stirred at this temperature for 15 min. The reaction was quenched with sat. NH4Cl (300 mL). The organic layer was separated and the aqueous phase was extracted with Et2O (350 mL x 2). The combined organic layers were washed with brine, dried over anhydrous Na2SO4 and concentrated under vacuum to give crude phosphoric acid 2,4-di-tert-butyl-phenyl ester diethyl ester as a yellow oil (51 g, contaminated with some mineral oil), which was used directly in the next step. [00647] l,3-Di-ter/-butyl-benzene To NH3 (liquid, 250 mL) was added a solution of phosphoric acid 2,4-di-tert-butyl-phenyl ester diethyl ester (51 g, crude from last step, about 0.2 mol) in Et2O (anhydrous, 150 mL) at -78 0C under N2 atmosphere. Lithium metal was added to the solution in small pieces until a blue color persisted. The reaction mixture was stirred at -78 0C for 15 min and then quenched with sat. NH4Cl solution until the mixture turned colorless. Liquid NH3 was evaporated and the residue was dissolved in water, extracted with Et2O (300 mL x 2). The combined organic phases were dried over Na2SO4 and concentrated to give crude 1,3-di-ter^-butyl-benzene as a yellow oil (30.4 g, 94 % over 2 steps, contaminated with some mineral oil), which was used directly in next step.
[00648] 2,4-Di-fert-butyI-benzaldehyde and 3,5-di-tert-butyl-benzaldehyde To a stirred solution of
Figure imgf000211_0001
(30 g, 157.6 mmol) in dry CH2Cl2 (700 mL) was added TiCl4 (37.5 g, 197 mmol) at 0 °C, and followed by dropwise addition OfMeOCHCl2 (27.3 g, 236.4 mmol). The reaction was allowed to warm to room temperature and stirred for 1 h. The mixture was poured into ice-water and extracted with CH2Cl2. The combined organic phases were washed with NaHCO3 and brine, dried over Na2SO4 and concentrated. The residue was purified by column chromatography (petroleum ether) to give a mixture of 2,4-di-fert-butyl- benzaldehyde and 3,5-di-tert-butyl-benzaldehyde (21 g, 61 %).
[00649] 2,4-Di-fcτ*-butyl-5-nitro-benzaldehyde and 3,5-di-tørf-butyl-2-nitro- benzaldehyde To a mixture of 2,4-di-tert-butyl-benzaldehyde and 3,5-di-fert-butyl-benzaldehyde in H2SO4 (250 mL) was added KNO3 (7.64 g, 75.6 mmol) in portions at 0 0C. The reaction mixture was stirred at this temperature for 20 min and then poured into crushed ice. The mixture was basified with NaOH solution to pH 8 and extracted with Et2O (10 mL x 3). The combined organic layers were washed with water and brine and concentrated. The residue was purified by column chromatography (petroleum ether) to give a mixture of 2,4-di-tert-butyl-5-nitro-benzaldehyde and 3,5-di-tert-butyl-2-nitro-benzaldehyde (2:1 by NMR) as a yellow solid (14.7 g, 82 %). After further purification by column chromatography (petroleum ether), 2,4-di-tert-butyl-5-nitro- benzaldehyde (2.5 g, contains 10% 3,5-di-tøt-butyl-2-nitro-benzaldehyde) was isolated. [00650] l,5-Di-ter^-butyl-2-difluoromethyl-4-nitro-benzene and 1,5-Di-tert- butyl-3-difluoromethyl-2-nitro-benzene 2,4-Di-te/t-butyl-5-nitro-benzaldehyde (2.4 g, 9.1 1 mmol, contaminated with 10% 3,5-di-tert- butyl-2-nitro-benzaldehyde) in neat deoxofluor solution was stirred at room temperature for 5 h. The reaction mixture was poured into cooled sat. NaHCO3 solution and extracted with dichloromethane. The combined organics were dried over Na2SO4, concentrated and purified by column chromatography (petroleum ether) to give l,5-di-/ert-butyl-2-difluoiOmethyl-4-nitro- benzene (1.5 g) and a mixture of l,5-di-terf-butyl-2-difluoromethyl-4-nitro-benzene and 1,5-di- te/t-butyl-3-difluoromethyl-2-nitro-benzene (0.75 g, contains 28 % l,5-di-fer?-butyl-3- difluoromethyl-2-nitro-benzene).
[00651] E-10; l,5-Di-tert-butyl-2-difluoromethyl-4-amino-benzene To a suspension of iron powder (5.1 g, 91.1 mmol) in 50% acetic acid (25 ml) was added 1,5-di- tert-butyl-2-difluoromethyl-4-nitro-benzene (1.3 g, 4.56 mmol). The reaction mixture was heated at 115 0C for 15 min. Solid was filtered off was washed with acetic acid and CH2Cl2. The combined filtrate was concentrated and treated with HCl/MeOH. The precipitate was collected via filtration, washed with MeOH and dried to give l,5-Di-tert-butyl-2-difluoromethyl-4-ammo- benzene HCl salt (E-IO) as a white solid (1.20 g, 90 %). 1H NMR (DMSO-J6) δ 7.35-7.70 (t, J= 53.7 Hz, 1 H), 7.56 (s, 1 H), 7.41 (s, 1 H), 1.33-1.36 (d, J= 8.1 Hz, IH); ESI-MS 256.3 m/z (MH+).
[00652] Example 9 [00653] General scheme:
Figure imgf000212_0001
A) Pd(PPh3)4, K2CO3, H2O, THF; B) Pd2(dba)3, P(^Bu)3, KF, THF
[00654] Method A In a 2-dram vial, 2-bromoaniline (100 mg, 0.58 mmol) and the corresponding aryl boronic acid (0.82 mmol) were dissolved in THF (1 mL). H2O (500 μL) was added followed by K2CO3 (200 mg, 1.0 mmol) and Pd(PPh3)4 (100 mg, 0.1 mmol). The vial was purged with argon and sealed. The vial was then heated at 75 °C for 18 h. The crude sample was diluted in EtOAc and filtered through a silica gel plug. The organics were concentrated via Savant Speed-vac. The crude amine was used without further purification.
[00655] Method B In a 2-dram vial, the corresponding aryl boronic acid (0.58 mmol) was added followed by KF (110 mg, 1.9 mmol). The solids were suspended in THF (2 mL), and then 2-bromoaniline (70 μL, 0.58 mmol) was added. The vial was purged with argon for 1 min. P(1Bu)3 (100 μL, 10% sol. in hexanes) was added followed by Pd2(dba)3 (900 μL, 0.005 M in THF). The vial was purged again with argon and sealed. The vial was agitated on an orbital shaker at room temperature for 30 min and heated in a heating block at 80 0C for 16 h. The vial was then cooled to 20 °C and the suspension was passed through a pad of Celite. The pad was washed with EtOAc (5 mL). The organics were combined and concentrated under vacuum to give a crude amine that was used without further purification.
[00656] The table below includes the amines made following the general scheme above.
Figure imgf000213_0001
Figure imgf000214_0001
Figure imgf000215_0001
[00657] Example 10:
Figure imgf000216_0001
G-1 [00658] Ethyl 2-(4-nitrophenyl)-2-methylpropanoate Sodium t-butoxide (466 mg, 4.85 πunol) was added to DMF (20 mL) at 0 0C. The cloudy solution was re-cooled to 5 0C. Ethyl 4-nitrophenylacetate (1.0 g, 4.78 mmol) was added. The purple slurry was cooled to 5 0C and methyl iodide (0.688 mL, 4.85 mmol) was added over 40 min. The mixture was stirred at 5-10 0C for 20 min, and then re-charged with sodium t-butoxide (466 mg, 4.85 mmol) and methyl iodide (0.699 mL, 4.85 mmol). The mixture was stirred at 5-10 0C for 20 min and a third charge of sodium t-butoxide (47 mg, 0.48 mmol) was added followed by methyl iodide (0.057 mL, 0.9 mmol). Ethyl acetate (100 mL) and HCl (0.1 N, 50 mL) were added. The organic layer was separated, washed with brine and dried over Na2SO4. After filtration, the filtrate was concentrated to provide ethyl 2-(4-nitrophenyl)-2-methylpropanoate (900 mg, 80 %), which was used without further purification.
[00659] G-I; Ethyl 2-(4-aminophenyl)-2-methylpropanoate A solution of ethyl 2-(4-nitrophenyl)-2-methylpropanoate (900 mg, 3.8 mmol) in EtOH (10 mL) was treated with 10% Pd-C (80 mg) and heated to 45 °C. A solution of potassium formate (4.10 g, 48.8 mmol) in H2O (11 mL) was added over a period of 15 min. The reaction mixture was stirred at 65 0C for 2 h and then treated with additional 300 mg of Pd/C. The reaction was stirred for 1.5 h and then filtered through Celite. The solvent volume was reduced by approximately 50 % under reduced pressure and extracted with EtOAc. The organic layers were dried over Na2SO4 and the solvent was removed under reduced pressure to yield ethyl 2-(4-aminophenyl)-2- methylpropanoate (G-I) (670 mg, 85 %). 1H NMR (400 MHz, CDCl3) δ 7.14 (d, J = 8.5 Hz, 2H), 6.65 (d, J - 8.6 Hz, 2H), 4.10 (q, J - 7.1 Hz, 2H), 1.53 (s, 6H), 1.18 (t, J = 7.1 Hz, 3H). [00660] Example 11:
Figure imgf000217_0001
[00661] G-2; 2-(4-AminophenyI)-2-methylpropan-l-oI A solution of ethyl 2-(4-aminophenyl)-2-methylpropanoate (30 mg, 0.145 mmol) in THF (1 mL) was treated with LiAlH4 (IM solution in THF, 0.226 mL, 0.226 mmol) at 0 °C and stirred for 15 min. The reaction was treated with 0. IN NaOH, extracted with EtOAc and the organic layers were dried over Na2SO4. The solvent was removed under reduced pressure to yield 2-(4- aminophenyl)-2-methylpropan-l-ol (G-2), which was used withoutfurther purification: 1H NMR (400 MHz, CDCl3) δ 7.17 (d, J = 8.5 Hz, 2H), 6.67 (d, J = 8.5 Hz, 2H), 3.53 (s, 2H), 1.28 (s, 6H).
[00662] Example 12:
Figure imgf000217_0002
[00663] 2-methyl-2-(4-nitrophenyl)propanenitrile A suspension of sodium tert-butoxide (662 mg, 6.47 mmol) in DMF (20 mL) at 0 °C was treated with 4-nitrophenylacetonitrile (1000 mg, 6.18 mmol) and stirred for 10 min. Methyl iodide (400 μL, 6.47 mmol) was added dropwise over 15 min. The solution was stirred at 0-10 0C for 15 min and then at room temperature for additional 15 min. To this purple solution was added sodium fert-butoxide (662 mg, 6.47 mmol) and the solution was stirred for 15 min. Methyl iodide (400 μL, 6.47 mmol) was added dropwise over 15 min and the solution was stirred overnight. Sodium tert-butoxide (192 mg, 1.94 mmol) was added and the reaction was stirred at 0 0C for 10 minutes. Methyl iodide (186 μL, 2.98 mmol) was added and the reaction was stirred for Ih. The reaction mixture was then partitioned between IN HCl (50 mL) and EtOAc (75 mL). The organic layer was washed with 1 N HCl and brine, dried over Na2SO4 and concentrated to yield 2-methyl-2-(4-nitrophenyl)propanenitrile as a green waxy solid (1.25 g, 99 %). 1H NMR (400 MHz, CDCl3) δ 8.24 (d, J = 8.9 Hz, 2H), 7.66 (d, J = 8.9 Hz, 2H), 1.77 (s, 6H).
[00664J 2-Methyl-2-(4-nitrophenyI)propan-l-amine To a cooled solution of 2-methyl-2-(4-nitrophenyl)propanenitrile (670 mg, 3.5 mmol) in THF (15 mL) was added BH3 (IM in THF, 14 mL, 14 mmol) dropwise at 0 °C. The mixture was warmed to room temperature and heated at 70 °C for 2 h. IN HCl solution (2 mL) was added, followed by the addition of NaOH until pH > 7. The mixture was extracted with ether and ether extract was concentrated to give 2-methyl-2-(4-nitrophenyl)propan-l -amine (610 mg, 90 %), which was used without further purification. 1H NMR (400 MHz, CDCl3) δ 8.20 (d, J = 9.0 Hz, 2H), 7.54 (d, J = 9.0 Hz, 2H), 2.89 (s, 2H), 1.38 (s, 6H).
[00665] tert-Butyl 2-methyl-2-(4-nitrophenyl)propyIcarbamate To a cooled solution of 2-methyl-2-(4-nitrophenyl)propan-l -amine (600 mg, 3.1 mmol) and IN NaOH (3 mL, 3 mmol) in 1,4-dioxane (6 mL) and water (3 mL) was added Boc2O (742 mg, 3.4 mmol) at 0 °C. The reaction was allowed to warm to room temperature and stirred overnight. The reaction was made acidic with 5% KHSO4 solution and then extracted with ethyl acetate. The organic layer was dried over MgSO4 and concentrated to give tert-butyl 2-methyl-2-(4- nitrophenyl)propylcarbamate (725 mg, 80 %), which was used without further purification. 1H NMR (400 MHz, CDCl3) δ 8.11 (d, J = 8.9 Hz, 2H), 7.46 (d, J = 8.8 Hz, 2H), 3.63 (s, 2H), 1.31- 1.29 (m, 15H).
[00666] G-3; tert-Butyl 2-methyl-2-(4-aminophenyl)propylcarbamate To a refluxing solution of tert-butyl 2-methyl-2-(4-nitrophenyl)propylcarbamate (725 mg, 2.5 mmol) and ammonium formate (700 mg, 10.9 mmol) in EtOH (25 mL) was added Pd-5%wt on carbon (400 mg). The mixture was refmxed for 1 h, cooled and filtered through Celite. The filtrate was concentrated to give tert-butyl 2-methyl-2-(4-aminophenyl)propylcarbamate (G-3) (550 mg, 83 %), which was used without further purification. 1H NMR (400 MHz, DMSO-^6) δ 6.99 (d, J = 8.5 Hz, 2H), 6.49 (d, J = 8.6 Hz, 2H), 4.85 (s, 2H), 3.01 (d, J = 6.3 Hz, 2H), 1.36 (s, 9H), 1.12 (s, 6H); HPLC ret. time 2.02 min, 10-99 % CH3CN, 5 min run; ESI-MS 265.2 m/z (MH+).
[00667] Example 13:
Figure imgf000219_0001
H-1
[00668] 7-Nitro-l,2,3,4-tetrahydro-naphthalen-l-ol 7-Nitro-3,4-dihydro-2H-naphthalen-l-one (200 mg, 1.05 mmol) was dissolved in methanol (5 mL) and NaBH4 ((78 mg, 2.05 mmol) was added in portions. The reaction was stirred at room temperature for 20 min and then concentrated and purified by column chromatography (10-50 % ethyl acetate - hexanes) to yield 7-nitro-l,2,3,4-tetrahydro-naphthalen-l-ol (163 mg, 80 %). H NMR (400 MHz, CD3CN) δ 8.30 (d, J = 2.3 Hz, IH), 8.02 (dd, J = 8.5, 2.5 Hz, IH), 7.33 (d, J = 8.5 Hz, IH), 4.76 (t, J = 5.5 Hz, IH), 2.96-2.80 (m, 2H), 2.10-1.99 (m, 2H), 1.86-1.77 (m, 2H); HPLC ret. time 2.32 min, 10-99 % CH3CN, 5 min run.
[00669] H-I; 7-Amino-l,2,3,4-tetrahydro-naphthalen-l-ol 7-nitro-l,2,3,4-tetrahydro-naphthalen-l-ol (142 mg, 0.73 mmol) was dissolved in methanol (10 mL) and the flask was flushed with N2 (g). 10% Pd-C (10 mg) was added and the reaction was stirred under H2 (1 atm) at room temperature overnight. The reaction was filtered and the filtrate concentrated to yield 7-amino-l,2,3,4-tetrahydro-naphthalen-l-ol (H-I) (113 mg, 95 %). HPLC ret. time 0.58 min, 10-99 % CH3CN, 5 min run; ESI-MS 164.5 m/z (MH+).
[00670] Examplel4:
Figure imgf000220_0001
Figure imgf000220_0003
Figure imgf000220_0002
[00671] 7-Nitro-3,4-dihydro-2H-naphthalen-l-one oxime To a solution of 7-nitro-3,4-dihydro-2H-naphthalen-l-one (500 mg, 2.62 ramol) in pyridine (2 mL) was added hydroxylamine solution (1 mL, -50% solution in water). The reaction was stirred at room temperature for 1 h, then concentrated and purified by column chromatography (10-50 % ethyl acetate - hexanes) to yield 7-nitro-3,4-dihydro-2H-naphthalen-l-one oxime (471 mg, 88 %). HPLC ret. time 2.67 min, 10-99 % CH3CN, 5 min run; ESI-MS 207.1 m/z (MH+).
[00672] l,2,3,4-Tetrahydro-naphthalene-l,7-diamine 7-Nitro-3,4-dihydro-2H-naphthalen-l-one oxime (274 mg, 1.33 mmol) was dissolved in methanol (10 mL) and the flask was flushed with N2 (g). 10 % Pd-C (50 mg) was added and the reaction was stirred under H2 (1 arm) at room temperature overnight. The reaction was filtered and the filtrate was concentrated to yield l,2,3,4-tetrahydro-naphthalene-l,7-diamine (207 mg, 96 %). 1H NMR (400 MHz, DMSO-4) δ 6.61-6.57 (m, 2H), 6.28 (dd, J = 8.0, 2.4 Hz, IH), 4.62 (s, 2H), 3.58 (m, IH), 2.48-2.44 (m, 2H), 1.78-1.70 (m, 2H), 1.53-1.37 (m, 2H).
[00673] H-2; (7-Amino-l,2,3,4-tetrahydro-naphthalen-l-yl)-carbamic acid tert-butyl ester To a solution of 1,2,3, 4-tetrahydro-naphthalene-l,7-diamine (154 mg, 0.95 mmol) and triethylamine (139 μL, 1.0 mmol) in methanol (2 mL) cooled to 0 °C was added di-fert-butyl dicarbonate (207 mg, 0.95 mmol). The reaction was stirred at 0 °C and then concentrated and purified by column chromatography (5-50 % methanol - dichloromethane) to yield (7-amino- l,2,3,4-tetrahydro-naphthalen-l-yl)-carbamic acid tert-butyl ester (H-2) (327 mg, quant.). HPLC ret. time 1.95 min, 10-99 % CH3CN, 5 min run; ESI-MS 263.1 m/z (MH+).
[00674] Example 15:
Figure imgf000221_0001
1-1
[00675] N-(2-Bromo-benzyl)-2,2,2-trifluoro-acetamide To a solution of 2-bromobenzylamine (1.3 mL, 10.8 mmol) in methanol (5 mL) was added ethyl trifluoro acetate (1.54 mL, 21.6 mmol) and triethylamine (1.4 mL, 10.8 mmol) under a nitrogen atmosphere. The reaction was stirred at room temperature for 1 h. The reaction mixture was then concentrated under vacuum to yield N-(2-bromo-benzyl)-2,2,2-trifluoro-acetamide (3.15g, quant.). HPLC ret. time 2.86 min, 10-99 % CH3CN, 5 min run; ESI-MS 283.9 m/z (MH+).
[00676] I-l; N-(4'-Amino-biphenyl-2-ylmethyl)-2,2,2-trifluoro-acetamide A mixture of N-(2-bromo-benzyl)-2,2,2-trifluoro-acetamide (282 mg, 1.0 mmol), 4-(4,4,5,5- tetramethyl-l,3,2-dioxaborolan-2-yl)aniline (284 mg, 1.3 mmol), Pd(OAc)2 (20 mg, 0.09 mmol) and PS-PPh3 (40 mg, 3 mmol / g, 0.12 mmol) was dissolved in DMF (5 mL) and 4M K2CO3 solution (0.5 mL) was added. The reaction was heated at 80 0C overnight. The mixture was filtered, concentrated and purified by column chromatography (0-50 % ethyl acetate - hexanes) to yield N-(4'-amino-biρhenyl-2-ylmethyl)-2,2,2-trifluoro-acetamide (1-1) (143 mg, 49 %). HPLC ret. time 1.90 min, 10-99 % CH3CN, 5 min run; ESI-MS 295.5 m/z (MH+).
[00677] Commercially available amines
Figure imgf000222_0001
Figure imgf000223_0001
Figure imgf000224_0001
Figure imgf000225_0001
Figure imgf000226_0001
Figure imgf000227_0001
Figure imgf000228_0001
Figure imgf000229_0001
Figure imgf000230_0003
[00678] Amides (Compounds of formula I)
[00679] General scheme:
Figure imgf000230_0001
a) AriR7NH, coupling reagent, base, solvent. Examples of conditions used: HATU, DIEA, DMF; BOP, DIEA, DMF; HBTU, Et3N, CH2Cl2; PFP-TFA, pyridine
[00680] Specific example:
Figure imgf000230_0002
[00681] 215; 4-Oxo-N-phenyl-lH-quinoline-3-carboxamide To a solution of 4-hydroxy-quinoline-3-carboxylic acid (A-I) (19 mg, 0.1 mmol), HATU (38 mg, O.lmmol) and DIEA (34.9 μL, 0.2mmol) in DMF (1 mL) was added aniline (18.2 μL, 0.2 mmol) and the reaction mixture was stirred at room temperature for 3 h. The resulting solution was filtered and purified by HPLC (10-99 % CH3CN / H2O) to yield 4-oxo-N-phenyl-lH- quinoline-3-carboxamide (215) (12 mg, 45 %). 1H NMR (400 MHz, DMSO-J6) δ 12.97 (s, IH), 12.50 (s, IH), 8.89 (s, IH), 8.34 (dd, J = 8.1, 1.1 Hz, IH), 7.83 (t, J = 8.3 Hz, IH), 7.75 (m, 3H), 7.55 (t, J = 8.1 Hz, IH), 7.37 (t, J = 7.9 Hz, 2H), 7.10 (t, J = 6.8 Hz, IH); HPLC ret. time 3.02 min, 10-99 % CH3CN, 5 min run; ESI-MS 265.1 m/z (MH+). [00682] The table below lists other examples synthesized by the general scheme above.
Figure imgf000231_0001
Figure imgf000232_0001
Figure imgf000233_0001
Figure imgf000234_0001
Figure imgf000235_0001
Figure imgf000236_0001
Figure imgf000237_0001
Figure imgf000238_0001
Figure imgf000239_0001
Figure imgf000240_0001
Figure imgf000241_0001
Figure imgf000242_0001
[00683] Indoles [00684] Example 1: [00685] General Scheme:
Figure imgf000243_0001
188 188-1
[00686] Specific example:
Figure imgf000243_0002
188 188-1 343
[00687] 188-1; 6-[(4-Oxo-lH-quinolin-3-yl)carbonylamino]-lH-indole-5- carboxylic acid A mixture of 6-[(4-oxo-lH-quinolin-3-yl)carbonylaminoJ-lH-indole-5-carboxylic acid ethyl ester (188) (450 mg, 1.2 mmol) and IN NaOH solution (5 mL) in THF (10 mL) was heated at 85 0C overnight. The reaction mixture was partitioned between EtOAc and water. The aqueous layer was acidified with IN HCl solution to pH 5, and the precipitate was filtered, washed with water and air dried to yield 6-[(4-oxo-lH-quinolin-3-yl)carbonylamino]-lH-indole-5-carboxylic acid (188-1) (386 mg, 93 %). 1H-NMR (400 MHz, DMSO-J6) δ 12.92-12.75 (m, 2H), 11.33 (s, IH), 8.84 (s, IH), 8.71 (s, IH), 8.30 (dd, J = 8.1, 0.9 Hz, IH), 8.22 (s, IH), 7.80-7.72 (m, 2H), 7.49 (t, J = 8.0 Hz, IH), 7.41 (t, J = 2.7 Hz, IH), 6.51 (m, IH); HPLC ret. time 2.95 min, 10-99 % CH3CN, 5 min run; ESI-MS 376.2 m/z (MH+).
[00688] 343; N-[5-(Isobutylcarbamoyl)-lH-indol-6-yl]-4-oxo-lH-quinoline-3- carboxamide To a solution of 6-[(4-oxo-lH-quinolin-3-yl)carbonylamino]-lH-indole-5-carboxylic acid (188- I) (26 mg, 0.08 mmol), HATU (38 mg, 0.1 mmol) and DIEA (35 μL, 0.2 mmol) in DMF (1 mL) was added isobutylamine (7 mg, 0.1 mmol) and the reaction mixture was stirred at 65 0C overnight. The resulting solution was filtered and purified by HPLC (10-99 % CH3CN / H2O) to yield the product, N-[5-(isobutylcarbamoyl)-lH-indol-6-yl]-4-oxo-lH-quinoline-3-carboxamide (343) (20 mg, 66 %). 1H-NMR (400 MHz, DMSCW6) § 12.66 (d, J = 7.4 Hz5 IH), 12.42 (s, IH), 11.21 (s, IH), 8.81 (d, J = 6.6 Hz, IH), 8.47 (s, IH), 8.36 (t, J = 5.6 Hz, IH), 8.30 (d, J = 8.4 Hz, IH), 7.79 (t, J = 7.9 Hz, IH), 7.72-7.71 (m, 2H), 7.51 (t, J = 7.2 Hz, IH), 7.38 (m, IH), 6.48 (m, IH), 3.10 (t, J = 6.2 Hz, 2H), 1.88 (m, IH), 0.92 (d, J = 6.7 Hz, 6H); HPLC ret. time 2.73 min, 10-99 % CH3CN, 5 min run; ESI-MS 403.3 m/z (MH+).
[00689] Another example:
Figure imgf000244_0001
[00690] 148; 4-Oxo-N-[5-(l-piperidylcarbonyl)-lH-indol-6-yl]-lH-quinoline-3- carboxamide 4-Oxo-N-[5-(l -piperidylcarbonyl)- 1 H-indol-6-yl]- 1 H-quinoline-3-carboxamide (148) was synthesized following the general scheme above, coupling the acid (188-1) with piperidine. Overall yield (12 %). HPLC ret. time 2.79 min, 10-99 % CH3CN, 5 min run; ESI-MS 415.5 m/z (MH+).
[00691] Example 2:
[00692] General scheme:
Figure imgf000244_0002
B-27-1 [00693] Specific example:
Figure imgf000245_0001
B-27-1 158
[00694] 158; 4-Oxo-N-(5-phenyl-lH-indol-6-yl)-lH-quinoline-3-carboxamide A mixture of N-(5-bromo-lH-indol-6-yl)-4-oxo-lH-quinoline-3-carboxamide (B-27-1) (38 mg, 0.1 mol), phenyl boronic acid (18 mg, 0.15 mmol), (dppf)PdCl2 (cat.), and K2CO3 (100 μL, 2M solution) in DMF (1 mL) was heated in the microwave at 180 0C for 10 min. The reaction was filtered and purified by HPLC (10-99 % CH3CN / H2O) to yield the product, 4-oxo-N-(5-ρhenyl- lH-indol-6-yl)-lH-quinoline-3-carboxamide (158) (5 mg, 13 %). HPLC ret. time 3.05 min, 10- 99 % CH3CN, 5 min run; ESI-MS 380.2 m/z (MH+).
[00695] The table below lists other examples synthesized following the general scheme above.
Figure imgf000245_0002
[00696] Example 3:
Figure imgf000246_0001
[00697] ITj N-tl-tl-tMethyl-Cl-methylaminoacety^-aminolacetyll-lH-indoI-ό- yl]-4-oxo-lH-quinoline-3-carboxamide To a solution of methyl- {[methyl-(2-oxo-2- {6- [(4-oxo-l, 4-dihydro-quinoline-3-carbonyl)- amino]-indol-l-yl}-ethyl)-carbamoyl]-methyl}-carbamic acid tert-butyl ester (B-26-I) (2.0 g, 3.7 mmol) dissolved in a mixture Of CH2Cl2 (50 mL) and methanol (15 niL) was added HCl solution (60 mL, 1.25 M in methanol). The reaction was stirred at room temperature for 64 h. The precipitated product was collected via filtration, washed with diethyl ether and dried under high vacuum to provide the HCl salt of the product, N-[l-[2-[methyl-(2-methylaminoacetyl)- amino] acetyl] -lH-indol-6-yl]-4-oxo-lH-quinoline-3-carboxamide (27) as a greyish white solid (1.25 g, 70 %). 1H-NMR (400 MHz, DMSO-d6) δ 13.20 (d, J = 6.7 Hz, IH), 12.68 (s, IH), 8.96- 8.85 (m, IH), 8.35 (d, J = 7.9 Hz, IH), 7.91-7.77 (m, 3H), 7.64-7.54 (m, 3H), 6.82 (m, IH), 5.05 (s, 0.7H), 4.96 (s, 1.3H), 4.25 (t, J = 5.6 Hz, 1.3H), 4.00 (t, J = 5.7 Hz, 0.7H), 3.14 (s, 2H), 3.02 (s, IH), 2.62 (t, J = 5.2 Hz, 2H), 2.54 (t, J = 5.4 Hz, IH); HPLC ret. time 2.36 min, 10-99 % CH3CN, 5 min run; ESI-MS 446.5 m/z (MH+).
[00698] Phenols
[00699] Example 1:
[00700] General scheme:
Figure imgf000247_0001
428
[00701] Specific example:
Figure imgf000247_0002
428 275
[00702] 275; 4-Benzyloxy-N-(3-hydroxy-4-teff-butyl-phenyl)-quinoline-3- carboxamide To a mixture of N-(3-hydroxy-4-te7-if-butyl-phenyl)-4-oxo-lH-quinoline-3-carboxamide (428) (6.7 mg, 0.02 mmol) and Cs2CO3 (13 mg, 0.04 mmol) in DMF (0.2 mL ) was added BnBr (10 uL, 0.08 mmol). The reaction mixture was stirred at room temperature for 3 h. The reaction mixture was filtered and purified using HPLC to give 4-benzyloxy-N-(3-hydroxy-4-tert-butyl- phenyl)-quinoline-3-carboxamide (275). 1H NMR (400 MHz, DMSO-J6) δ 12.23 (s, IH), 9.47 (s, IH), 9.20 (s, IH), 8.43 (d, J = 7.9 Hz, IH), 7.79 (t, J = 2.0 Hz, 2H), 7.56 (m, IH), 7.38-7.26 (m, 6H), 7.11 (d, J = 8.4 Hz, IH), 6.99 (dd, J = 8.4, 2.1 Hz, IH), 5.85 (s, 2H), 1.35 (s, 9H). HPLC ret. time 3.93 min, 10-99 % CH3CN, 5 min run; ESI-MS 427.1 m/z (MH+).
[00703] Another example:
Figure imgf000248_0001
[00704] 415; N-(3-Hydroxy-4-te/^-butyl-phenyI)-4-methoxy-quinoline-3- carboxamide N-(3-Hydroxy-4-ter^-butyl-phenyl)-4-methoxy-quinoline-3-carboxamide (415) was synthesized following the general scheme above reacting N-(3-hydroxy-4-tert-butyl-phenyl)-4-oxo-lH- quinoline-3-carboxamide (428) with methyl iodide. 1H NMR (400 MHz, DMSO-J6) δ 12.26 (s, IH), 9.46 (s, IH), 8.99 (s, IH), 8.42 (t, J = 4.2 Hz, IH), 7.95-7.88 (m, 2H), 7.61-7.69 (m, IH), 7.38 (d, J = 2.1 Hz, IH), 7.10 (d, J = 8.4 Hz, IH), 6.96 (dd, J = 8.4, 2.1 Hz, IH), 4.08 (s, 3H), 1.35 (s, 9H); HPLC ret. time 3.46 min, 10-99 % CH3CN, 5 min run; ESI-MS 351.5 m/z (MH+).
[00705] Example 2:
Figure imgf000248_0002
C-27-1 476
[00706] 476; N-(4-tert-Butyl-2-cyano-5-hydroxyphenyl)-l,4-dihydro-4- oxoquinoline-3-carboxamide To a suspension of N-(4-tert-butyl-2-bromo-5-hydroxyphenyl)-l,4-dihydro-4-oxoquinoline-3- carboxamide (C-27-1) (84 mg, 0.2 rnmol), Zn(CN)2 (14 mg, 0.12 mmol) in NMP (1 mL) was added Pd(PPh3)4 (16 mg, 0.014 mmol) under nitrogen. The mixture was heated in a microwave oven at 200 0C for 1 h, filtered and purified using prepative HPLC to give N-(4-tert-butyl-2- cyano-5-hydroxyphenyl)-l,4-dihydro-4-oxoquinoline-3-carboxamide (476). 1H NMR (400 MHz, DMSO-J6) δ 13.00 (d, J =6.4 Hz, IH)3 12.91 (s, IH), 10.72 (s, IH), 8.89 (d, J =6.8Hz, IH), 8.34 (d, J =8.2Hz, IH), 8.16 (s, IH), 7.85-7.75 (m, 2H), 7.56-7.54 (m, IH), 7.44 (s, IH), 1.35 (s, 9H); HPLC ret. time 3.42 min, 10-100 % CH3CN, 5 min gradient; ESI-MS 362.1 m/z (MH+).
[00707] Anilines [00708] Example 1:
[00709] General scheme:
Figure imgf000249_0001
[00710] Specific example:
Figure imgf000249_0002
[00711] 260; N-(5-Amino-2-terf-butyl-phenyl)-4-oxo-lH-quinoline-3- carboxamide A mixture of [3-[(4-oxo-lH-quinolin-3-yl)carbonylamino]-4-tert-butyl-phenyl]aminoformic acid tert-butyl ester (353) (33 mg, 0.08 mmol), TFA (1 mL) and CH2Cl2 (1 mL) was stirred at room temperature overnight. The solution was concentrated and the residue was dissolved in DMSO (1 mL) and purified by HPLC (10-99 % CH3CN / H2O) to yield the product, N-(5-amino-2-tert- butyl-phenyl)-4-oxo-lH-quinoline-3-carboxamide (260) (15 mg, 56 %). 1H NMR (400 MHz, DMSO-J6) δ 13.23 (d, J = 6.6 Hz, IH), 12.20 (s, IH), 10.22 (br s, 2H), 8.88 (d, J = 6.8 Hz, IH), 8.34 (d, J = 7.8 Hz, IH), 7.86-7.80 (m, 3H), 7.56-7.52 (m, 2H), 7.15 (dd, J = 8.5, 2.4 Hz, IH), 1.46 (s, 9H); HPLC ret. time 2.33 min, 10-99 % CH3CN, 5 min run; ESI-MS 336.3 m/z (MH+). [00712] The table below lists other examples synthesized following the general scheme above.
Figure imgf000250_0002
[00713] Example 2: [00714] General Scheme:
Figure imgf000250_0001
[00715] Specific example:
Figure imgf000251_0001
[00716] 485; N-(3-Dimethylamino-4-terf-butyI-phenyl)-4-oxo-lH-quinoIine-3- carboxamide To a suspension of N-(3-amino-4-te/t-butyl-phenyl)-4-oxo-lH-quinoline-3-carboxamide (271) (600 mg, 1.8 mmol) in CH2Cl2 (15 mL) and methanol (5 mL) were added acetic acid (250 μL) and formaldehyde (268 μL, 3.6 mmol, 37 wt % in water). After 10 min, sodium cyanoborohydride (407 mg, 6.5 mmol) was added in one portion. Additional formaldehyde (135 μL, 1.8 mmol, 37 wt% in water) was added at 1.5 and 4.2 h. After 4.7 h, the mixture was diluted with ether (40 mL), washed with water (25 mL) and brine (25 mL), dried (Na2SO4), filtered, and concentrated. The resulting red-brown foam was purified by preparative HPLC to afford N-(3- dimethylamino-4-ter^butyl-phenyl)-4-oxo-lH-quinoline-3-carboxamide (485) (108 mg, 17 %). 1H NMR (300 MHz, CDCl3) δ 13.13 (br s, IH), 12.78 (s, IH), 8.91 (br s, IH), 8.42 (br s, IH), 8.37 (d, J= 8.1 Hz, IH), 7.72-7.58 (m, 2H), 7.47-7.31 (m, 3H), 3.34 (s, 6H), 1.46 (s, 9H); HPLC ret. time 2.15 min, 10-100 % CH3CN, 5 min run; ESI-MS 364.3 m/z (MH+).
[00717] The table below lists other examples synthesized following the general scheme above.
Figure imgf000251_0002
[00718] Example 3:
Figure imgf000252_0001
Figure imgf000252_0002
[00721] 94; N-(5-Amino-2-methyl-phenyl)-4-oxo-lH-quinoline-3-carboxamide To a solution of 4-hydroxy-quinoline-3-carboxylic acid (A-I) (50 mg, 0.26 mmol), HBTU (99 mg, 0.26 mmol) and DIEA (138 μL, 0.79 mmol) in THF (2.6 mL) was added 2-methyl-5-nitro- phenylamine (40 mg, 0.26 mmol). The mixture was heated at 150 0C in the microwave for 20 min and the resulting solution was concentrated. The residue was dissolved in EtOH (2 mL) and SnCl2-2H2O (293 mg, 1.3 mmol) was added. The reaction was stirred at room temperature overnight. The reaction mixture was basified with sat. NaHCO3 solution to pH 7-8 and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over Na2SO4, filtered and concentrated. The residue was dissolved in DMSO and purified by HPLC (10-99 % CH3CN / H2O) to yield the product, N-(5-amino-2-methyl-phenyl)-4-oxo-lH-quinoline-3- carboxamide (94) (6 mg, 8 %). HPLC ret. time 2.06 min, 10-99 % CH3CN, 5 min run; ESI-MS 294.2 m/z (MH+).
[00722] Another example:
Figure imgf000253_0001
[00723] 17; N-(5-Amino-2-propoxy-phenyl)-4-oxo-lH-quinoline-3-carboxamide N-(5-Amino-2-propoxy-phenyl)-4-oxo-lH-quinoline-3-carboxamide (17) was made following the general scheme above starting from 4-hydroxy-quinoline-3-carboxylic acid (A-I) and 5- nitro-2-propoxy-phenylamine. Yield (9 %). HPLC ret. time 3.74 min, 10-99 % CH3CN, 5 min run; ESI-MS 338.3 m/z (MH+).
[00724] Example 4:
[00725] General Scheme:
Figure imgf000253_0002
X= CO, CO2, SO2: a) R2XC1, DIEA, THF or R2XC1, NMM, 1,4-dioxane or R2XC1, Et3N, CH2Cl2, DMF.
[00726] Specific example:
Figure imgf000253_0003
167 248
[00727] 248; N-(3-Acetylamino-4-methyl-phenyl)-4-oxo-lH-quinoline-3- carboxamide To a solution of N-(3-amino-4-methyl-phenyl)-4-oxo-lH-quinoline-3-carboxamide (167) (33mg, 0.11 mmol) and DIEA (49 μL, 0.28 mmol) in THF (1 mL) was added acetyl chloride (16 μL, 0.22 mmol). The reaction was stiiτed at room temperature for 30 min. LCMS analysis indicated that diacylation had occurred. A solution of piperidine (81 μL, 0.82mmol) in CH2Cl2 (2 mL) was added and the reaction stirred for a further 30 min at which time only the desired product was detected by LCMS. The reaction solution was concentrated and the residue was dissolved in DMSO and purified by HPLC (10-99 % CH3CN / H2O) to yield the product, N-(3-acetylamino- 4-methyl-phenyl)-4-oxo-lH-quinoline-3-carboxamide (248) (4 mg, 11 %). 1H NMR (400 MHz, DMSO-J6) δ 12.95 (d, J = 6.6 Hz, IH), 12.42 (s, IH), 9.30 (s, IH), 8.86 (d, J = 6.8 Hz, IH), 8.33 (dd, J = 8.1, 1.3 Hz, IH), 7.85-7.81 (m, 2H), 7.76 (d, J = 7.8 Hz, IH), 7.55 (t, J = 8.1 Hz, IH), 7.49 (dd, J = 8.2, 2.2 Hz, IH), 7.18 (d, J = 8.3 Hz, IH), 2.18 (s, 3H), 2.08 (s, 3H); HPLC ret. time 2.46 min, 10-99 % CH3CN, 5 min run; ESI-MS 336.3 m/z (MH+).
[00728] The table below lists other examples synthesized following the general scheme above.
Figure imgf000254_0001
Figure imgf000255_0003
[00729] Example 5:
[00730] General Scheme:
Figure imgf000255_0001
[00731] Specific example:
Figure imgf000255_0002
[00732] 4-Oxo-7V-[3-(trifluoromethyl)-5-(vinyIsulfonamido)phenyl]-l,4- dihydroquinoline-3-carboxamide To a suspension of N-[3-amino-5-(trifluoromethyl)phenyl]-4-oxo-lH-quinoline-3-carboxamide (429) (500 mg 1.4 mmol) in 1,4-dioxane (4 niL) was added NMM (0.4 niL, 3.6 mmol). β- Chloroethylsulfonyl chloride (0.16 mL, 1.51 mmol) was added under an argon atmosphere. The mixture was stirred at room temperature for 6 1A h, after which TLC (CH2Cl2 - EtOAc, 8:2) showed a new spot with a very similar Rf to the starting material. Another 0.5 eq. of NMM was added, and the mixture was stirred at room temperature overnight. LCMS analysis of the crude mixture showed >85% conversion to the desired product. The mixture was concentrated, treated with IM HCl (5 mL), and extracted with EtOAc (3 x 10 mL) and CH2Cl2 (3 x 10 mL). The combined organic extracts were dried over Na2SO4, filtered, and concentrated to yield 4-oxo-iV- [3-(tnfluoromethyl)-5-(vinylsulfonamido)phenyl]- 1 ,4-dihydroquinohne-3-carboxamide as an orange foam (0.495 g, 79 %), which was used in the next step without further purification. 1H- NMR (J6-Acetone, 300 MHz) δ 8.92 (s, IH), 8.41-8.38 (m, IH), 7.94 (m, 2H), 7.78 (br s, 2H), 7.53-7.47 (m, IH), 7.30 (s, IH), 6.87-6.79 (dd, J= 9.9 Hz, IH), 6.28 (d, J= 16.5 Hz, IH), 6.09 (d, J= 9.9 Hz, IH); ESI-MS 436.4 m/z (MH")
[00733] 318; 4-Oxo-N-[3-[2-(l-piperidyl)ethylsulfonylamino]-5- (trifluoromethyl)phenyl]-lH-quinoline-3-carboxamide A mixture of 4-oxo-N-[3-(trifluoromethyl)-5-(vinylsulfonamido)phenyl]-l,4-dihydroquinoline-3- carboxamide (50 mg, 0.11 mmol), pipendine (18 μL, 1.6 eq) and LiClO4 (20 mg, 1.7 eq) was suspended in a 1:1 solution Of CH2Cl2: isopropanol (1.5 mL). The mixture was refluxed at 75 0C for 18 h. After this time, LCMS analysis showed >95% conversion to the desired product. The crude mixture was purified by reverse-phase HPLC to provide 4-oxo-N-[3-[2-(l- piperidyl)ethylsulfonylamino]-5-(trifluoromethyl)phenyl]-lH-quinoline-3-carboxamide (318) as a yellowish solid (15 mg, 25 %). 1H-NMR (</6-Acetone, 300 MHz) δ 8.92 (br s, IH), 8.4 (d, J= 8.1 Hz, IH)3 8.05 (br s, IH), 7.94 (br s, IH), 7.78 (br s, 2H), 7.53-751 (m, IH), 7.36 (br s, IH), 3.97 (t, J= 7.2 Hz, 2H), 3.66 (t, J= 8 Hz, 2H), 3.31-3.24 (m, 6H), 1.36-1.31 (m, 4H); ESI-MS 489.1 m/z (MH+).
[00734] The table below lists other examples synthesized following the general scheme above.
Figure imgf000256_0001
Figure imgf000257_0003
[00735] Example 6:
[00736] General Scheme:
Figure imgf000257_0001
[00737] Specific example:
Figure imgf000257_0002
[00738] 258; N-Indolin-6-yl-4-oxo-lH-quinoline-3-carboxamide A mixture of N-(l-acetylindolin-6-yl)-4-oxo-lH-quinoline-3-carboxamide (233) (43mg, 0.12 mmol), IN NaOH solution (0.5 mL) and ethanol (0.5 mL) was heated to reflux for 48 h. The solution was concentrated and the residue was dissolved in DMSO (1 mL) and purified by HPLC (10-99 % CH3CN - H2O) to yield the product, N-indolin-6-yl-4-oxo-lH-quinoline-3- carboxamide (258) (10 mg, 20 %). HPLC ret. time 2.05 min, 10-99 % CH3CN, 5 min run; ESI- MS 306.3 m/z (MH+).
[00739] The table below lists other examples synthesized following the general scheme above.
Figure imgf000258_0003
[00740] Example 2: [00741] General Scheme:
[00742] Specific example:
Figure imgf000258_0002
[00743] 299; 4-Oxo-N-(l,2,3,4-tetrahydroquinolin-7-yl)-lH-quinoline-3- carboxamide A mixture of 7-[(4-oxo- 1 H-quinolin-3 -yl)carbonylamino]- 1 ,2,3 ,4-tetrahydroquinoline- 1 - carboxylic acid tert-butyl ester (183) (23 mg, 0.05 mmol), TFA (1 mL) and CH2Cl2 (1 mL) was stirred at room temperature overnight. The solution was concentrated and the residue was dissolved in DMSO (1 mL) and purified by HPLC (10-99 % CH3CN - H2O) to yield the product, 4-oxo-N-(l, 2,3,4-tetrahydroquinolin-7-yl)-lH-quinoline-3-carboxamide (299) (7 mg, 32 %). HPLC ret. time 2.18 min, 10-99 % CH3CN, 5 min run; ESI-MS 320.3 m/z (MH+).
[00744] Another example:
Figure imgf000259_0001
[00745] 300; N-(4,4-Dimethyl-l,2,3,4-tetrahydroquinoIin-7-yl)-4-oxo-lH- quinoline-3-carboxamide N-(4,4-Dimethyl- 1 ,2,3 ,4-tetrahydroquinolin-7-yl)-4-oxo- 1 H-quinoline-3 -carboxamide (300) was synthesized following the general scheme above starting from 4,4-dimethyl-7-[(4-oxo-lH- quinolin-3-yl)carbonylamino]-l, 2,3, 4-tetrahydroquino line- 1-carboxylic acid tert-butyl ester (108). Yield (33 %). 1H NMR (400 MHz, DMSO-J6) δ 13.23 (d, J = 6.6 Hz, IH), 12.59 (s, IH), 8.87 (d, J = 6.8 Hz, IH), 8.33 (d, J = 7.7 Hz, IH), 7.86-7.79 (m, 3H), 7.58-7.42 (m, 3H), 3.38 (m, 2H), 1.88 (m, 2H), 1.30 (s, 6H); HPLC ret. time 2.40 min, 10-99 % CH3CN, 5 min run; ESI-MS 348.2 m/z (MH+).
[00746] Other [00747] Example 1:
[00748] General scheme
Figure imgf000259_0002
[00749] Specific example:
Figure imgf000260_0001
[00750] 163; 4-Oxo-l,4-dihydro-quinoline-3-carboxylic acid (4-aminomethyl- 2'-ethoxy-biphenyl-2-yl)-amide {2'-Ethoxy-2-[(4-oxo-l,4-dihydroquinoline-3-carbonyl)-amino]-biphenyl-4-ylmethyl}-carbamic acid tot-butyl ester (304) (40 mg, 0.078 mmol) was stirred in a CH2Cl2 / TFA mixture (3:1, 20 mL) at room temperature for 1 h. The volatiles were removed on a rotary evaporator. The crude product was purified by preparative HPLC to afford 4-oxo-l,4-dihydroquinoline-3-carboxylix acid (4-aminomethyl-2'-ethoxybiphenyl-2-yl)amine (163) as a tan solid (14 mg. 43 %). 1H NMR (300 MHz, OMSO-d6) δ 12.87 (d, J= 6.3 Hz, IH), 11.83 (s, IH), 8.76 (d, J= 6.3 Hz, IH), 8.40 (s, IH), 8.26 (br s, 2H), 8.01 (dd, J= 8.4 Hz3 J= 1.5 Hz, IH), 7.75 (dt, J= 8.1 Hz, J= 1.2 Hz, IH), 7.67 (d, J= 7.8 Hz, IH), 7.47-7.37 (m, 2H), 7.24 (s, 2H), 7.15 (dd, J= 7.5 Hz, J= 1.8 Hz, IH), 7.10 (d, J= 8.1 Hz, IH), 7.02 (dt, J= 7.5 Hz, J= 0.9 Hz, IH), 4.09 (m, 2H), 4.04 (q, J= 6.9 Hz, 2H), 1.09 (t, J= 6.9 Hz, 3H); HPLC ret. time 1.71 min, 10-100 % CH3CN, 5 min gradient; ESI-MS 414.1 m/z (MH+).
[00751] Another example:
Figure imgf000260_0002
[00752] 390; N-[3-(AmmomethyI)-4-fe/^butyl-phenyl]-4-oxo-lH-quinoline-3- carboxamide N-[3-(Aminomethyl)-4-tert-butyl-phenyl]-4-oxo-lH-quinoline-3-carboxamide (390) was synthesized following the general scheme above starting from [5-[(4-oxo-lH-quinolin-3- yl)carbonylamino]-2-fer^butyl-phenyl]methylaminofoπnic acid tert-butyl ester (465). HPLC ret. time 2.44 min, 10-99 % CH3CN, 5 min gradient; ESI-MS m/z 350.3 (M + H)+.
[00753] Example 2:
[00754] General scheme:
Figure imgf000261_0001
[00755] Specific example:
Figure imgf000261_0002
[00756] 3-(2-(4-(l-Amino-2-methylpropan-2-yl)phenyl)acetyl)quinolin-4(lH)- one (2-Methyl-2-{4-[2-oxo-2-(4-oxo-l,4-dihydro-quinolin-3-yl)-ethyl]-phenyl}-propyl)-carbamic acid tert-butyl ester (88) (0.50 g, 1.15 mmol), TFA (5 mL) and CH2Cl2 (5 rnL) were combined and stirred at room temerpature overnight. The reaction mixture was then neutralized with IN NaOH. The precipitate was collected via filtration to yield the product 3-(2-(4-(l-amino-2- methylpropan-2-yl)phenyl)acetyl)quinolin-4(lH)-one as a brown solid (651 mg, 91 %). HPLC ret. time 2.26 min, 10-99 % CH3CN, 5 min run; ESI-MS 336.5 m/z (MH+).
[00757] 323; [2-Methyl-2-[4-[(4-oxo-lH-quinolin-3-yl)carbonylamino]phenyl]- propyl]aminoformic acid methyl ester Methyl chloroformate (0.012 g, 0.150 mmol) was added to a solution of 3-(2-(4-(l-amino-2- methylproρan-2-yl)phenyl)acetyl)quinolin-4(lH)-one (0.025 g, 0.075 mmol), TEA (0.150 mmol, 0.021 niL) and DMF (1 mL) and stirred at room temperature for 1 h. Then piperidine (0.074 ml, 0.750 rnmol) was added and the reaction was stirred for another 30 min. The reaction mixture was filtered and purified by preparative HPLC (10-99 % CH3CN-H2O) to yield the product [2- methyl-2-[4-[(4-oxo-lH-quinolin-3-yl)carbonylamino]phenyl]-propyl]aminoformic acid methyl ester (323). 1H NMR (400 MHz, DMSO-d6) δ 12.94 (br s, IH), 12.44 (s, IH), 8.89 (s, IH), 8.33 (dd, J= 8.2, 1.1 Hz, IH), 7.82 (t, J= 8.3 Hz, IH), 7.76 (d, J= 7.7 Hz, IH), 7.67 (d, J= 8.8 Hz, 2H), 7.54 (t, J= 8.1 Hz, IH), 7.35 (d, J= 8.7 Hz, 2H), 7.02 (t, J= 6.3 Hz, IH), 3.50 (s, 3H), 3.17 (d, J= 6.2 Hz, 2H), 1.23 (s, 6H); HPLC ret. time 2.93 min, 10-99 % CH3CN, 5 min run; ESI-MS 394.0 m/z (MH+).
[00758] The table below lists other examples synthesized following the general scheme above.
Figure imgf000262_0002
[00759] Example 3:
[00760] General Scheme:
Figure imgf000262_0001
[00761] Specific example:
Figure imgf000263_0001
273 273-1 15β [00762] 273-1; N-(l-Aminotetralin-7-yl)-4-oxo-lH-quinoIine-3-carboxamide To a solution of [7-[(4-oxo-lH-quinolin-3-yl)carbonylamino]tetralin-l-yl]aminoformic acid tert- butyl ester (273) (250 mg, 0.6 mmol) in dichloromethane (2 mL) was added TFA (2 mL). The reaction was stirred at room temperature for 30 min. More dichloromethane (10 mL) was added to the reaction mixture and the solution was washed with sat. NaHCO3 solution (5 mL). A precipitate began to form in the organic layer so the combined organic layers were concentrated to yield N-(I -amino tetralin-7-yl)-4-oxo-lH-quinoline-3-carboxamide (273-1) (185 mg, 93 %). HPLC ret. time 1.94 min, 10-99 % CH3CN, 5 min run; ESI-MS 334.5 m/z (MH+).
[00763] 159; [7-[(4-Oxo-lH-quinolin-3-yl)carbonylamino]tetralin-l- yl]aminoformic acid methyl ester To a solution of N-(l-aminotetralin-7-yl)-4-oxo-lH-quinoline-3-carboxamide (273-1) (65 mg, 0.20 mmol) and DIEA (52 μL, 0.29 mmol) in methanol (1 mL) was added methyl chloroformate (22 μL, 0.29 mmol). The reaction was stirred at room temperature for 1 h. LCMS analysis of the reaction mixture showed peaks corresponding to both the single and bis addition products. Piperidine (2 mL) was added and the reaction was stirred overnight after which only the single addition product was observed. The resulting solution was filtered and purified by HPLC (10-99 % CH3CN - H2O) to yield the product, [7-[(4-oxo-lH-quinolin-3-yl)carbonylamino]tetralin-l- yl]ammoformic acid methyl ester (159) (27 mg, 35 %). HPLC ret. time 2.68 min, 10-99 % CH3CN, 5 min run; ESI-MS 392.3 m/z (MH+).
[00764] Another example:
Figure imgf000264_0001
[00765] 482; [7-[(4-Oxo-lH-quinolin-3-yI)carbonylamino]tetralin-l- yljaminoformic acid ethyl ester [7-[(4-Oxo-lH-quinolin-3-yl)carbonylamino]tetralin-l-yl]amino formic acid ethyl ester (482) was synthesized following the general scheme above, from amine (273-1) and ethyl chloroformate. Overall yield (18 %). HPLC ret. time 2.84 min, 10-99 % CH3CN, 5 min run; ESI-MS 406.5 m/z (MH+). [00766] Set forth below is the characterizing data for compounds of the present invention prepared according to the above Examples. [00767] Table 2
Figure imgf000264_0002
Figure imgf000265_0001
Figure imgf000265_0002
Figure imgf000265_0003
Figure imgf000266_0001
Figure imgf000266_0002
Figure imgf000266_0003
Figure imgf000267_0001
Figure imgf000267_0002
Figure imgf000267_0003
Figure imgf000268_0003
Figure imgf000268_0001
Figure imgf000268_0002
NMR data for selected compounds is shown below in Table 2- A:
Figure imgf000268_0004
Figure imgf000269_0001
Figure imgf000270_0001
Figure imgf000271_0001
Figure imgf000272_0001
Figure imgf000273_0001
Figure imgf000274_0001
Figure imgf000275_0001
Figure imgf000276_0001
Figure imgf000277_0001
Figure imgf000278_0001
Figure imgf000279_0001
[00768] B) Assays for Detecting and Measuring ΔF508-CFTR Correction Properties of Compounds [00769] I) Membrane potential optical methods for assaying ΔF508-CFTR modulation properties of compounds [00770] The optical membrane potential assay utilized voltage-sensitive FRET sensors described by Gonzalez and Tsien (See, Gonzalez, J. E. and R. Y. Tsien (1995) "Voltage sensing by fluorescence resonance energy transfer in single cells" Biophys J 69(4): 1272-80, and Gonzalez, J. E. and R. Y. Tsien (1997) "Improved indicators of cell membrane potential that use fluorescence resonance energy transfer" Chem Biol 4(4): 269-77) in combination with instrumentation for measuring fluorescence changes such as the Voltage/Ion Probe Reader (VIPR) (See, Gonzalez, J. E., K. Oades, et al. (1999) "Cell-based assays and instrumentation for screening ion-channel targets" Drug Discov Today 4(9): 431-439). [00771] These voltage sensitive assays are based on the change in fluorescence resonant energy transfer (FRET) between the membrane-soluble, voltage-sensitive dye, DiSBAC2(3), and a fluorescent phospholipid, CC2-DMPE, which is attached to the outer leaflet of the plasma membrane and acts as a FRET donor. Changes in membrane potential (Vm) cause the negatively charged DiSBAC2(3) to redistribute across the plasma membrane and the amount of energy transfer from CC2-DMPE changes accordingly. The changes in fluorescence emission were monitored using VIPR™ II, which is an integrated liquid handler and fluorescent detector designed to conduct cell-based screens in 96- or 384-well microtiter plates. [00772] Identification of Correction Compounds [00773] To identify small molecules that correct the trafficking defect associated with ΔF508-CFTR; a single-addition HTS assay format was developed. The cells were incubated in serum-free medium for 16 hrs at 37 0C in the presence or absence (negative control) of test compound. As a positive control, cells plated in 384-well plates were incubated for 16 hrs at 27 °C to "temperature-correct" ΔF508-CFTR. The cells were subsequently rinsed 3X with Krebs Ringers solution and loaded with the voltage-sensitive dyes. To activate ΔF508-CFTR, 10 μM forskolin and the CFTR potentiator, genistein (20 μM), were added along with Cr-free medium to each well. The addition of CF-free medium promoted CF efflux in response to ΔF508-CFTR activation and the resulting membrane depolarization was optically monitored using the FRET-based voltage-sensor dyes. [00774] Identification of Potentiator Compounds [00775] To identify potentiators of ΔF508-CFTR, a double-addition HTS assay format was developed. During the first addition, a CF-free medium with or without test compound was added to each well. After 22 sec, a second addition of CF-free medium containing 2 - 10 μM forskolin was added to activate ΔF508-CFTR. The extracellular CF concentration following both additions was 28 raM, which promoted CF efflux in response to ΔF508-CFTR activation and the resulting membrane depolarization was optically monitored using the FRET-based voltage-sensor dyes. Solutions Bath Solution #1 : (in mM) NaCl 160, KCl 4.5, CaCl2 2, MgCl2 1, HEPES 10, pH 7.4 with NaOH. Chloride- free bath solution: Chloride salts in Bath Solution #1 are substituted with gluconate salts. CC2-DMPE: Prepared as a 10 mM stock solution in DMSO and stored at -20°C. DiSBAC2(3): Prepared as a 10 mM stock in DMSO and stored at -20°C.
[00776] Cell Culture [00777] NIH3T3 mouse fibroblasts stably expressing ΔF5O8-CFTR are used for optical measurements of membrane potential. The cells are maintained at 37 0C in 5% CO2 and 90 % humidity in Dulbecco's modified Eagle's medium supplemented with 2 mM glutamine, 10 % fetal bovine serum, 1 X NEAA, β-ME, 1 X pen/strep, and 25 mM HEPES in 175 cm2 culture flasks. For all optical assays, the cells were seeded at 30,000/well in 384- well matrigel-coated plates and cultured for 2 hrs at 37 0C before culturing at 27 0C for 24 hrs. for the potentiator assay. For the correction assays, the cells are cultured at 27 0C or 37 0C with and without compounds for 16 - 24 hoursB) Electrophysiological Assays for assaying ΔF508-CFTR modulation properties of compounds [00779] 1.Ussing Chamber Assay [00780] Ussing chamber experiments were performed on polarized epithelial cells expressing ΔF508-CFTR to further characterize the ΔF508-CFTR modulators identified in the optical assays. FRJΔF508-CFΓR epithelial cells grown on Costar Snapwell cell culture inserts were mounted in an Ussing chamber (Physiologic Instruments, Inc., San Diego, CA), and the monolayers were continuously short-circuited using a Voltage-clamp System (Department of Bioengineering, University of Iowa, IA, and, Physiologic Instruments, Inc., San Diego, CA). Transepithelial resistance was measured by applying a 2-mV pulse. Under these conditions, the FRT epithelia demonstrated resistances of 4 KΩ/ cm2 or more. The solutions were maintained at 27 0C and bubbled with air. The electrode offset potential and fluid resistance were corrected using a cell-free insert. Under these conditions, the current reflects the flow of Cl" through ΔF508-CFTR expressed in the apical membrane. The Isc was digitally acquired using an MPlOOA-CE interface and AcqKnowledge software (v3.2.6; BIOPAC Systems, Santa Barbara, CA). [00781] Identification of Correction Compounds [00782] Typical protocol utilized a basolateral to apical membrane Cl" concentration gradient. To set up this gradient, normal ringer was used on the basolateral membrane, whereas apical NaCl was replaced by equimolar sodium gluconate (titrated to pH 7.4 with NaOH) to give a large Cl" concentration gradient across the epithelium. All experiments were performed with intact monolayers. To fully activate ΔF508-CFTR, forskolin (10 μM) and the PDE inhibitor, IBMX (100 μM), were applied followed by the addition of the CFTR potentiator, genistein (50 μM). [00783] As observed in other cell types, incubation at low temperatures of FRT cells stably expressing ΔF508-CFTR increases the functional density of CFTR in the plasma membrane. To determine the activity of correction compounds, the cells were incubated with 10 μM of the test compound for 24 hours at 370C and were subsequently washed 3X prior to recording. The cAMP- and genistein-mediated Isc in compound-treated cells was normalized to the 27°C and 37°C controls and expressed as percentage activity. Preincubation of the cells with the correction compound significantly increased the cAMP- and genistein-mediated Isc compared to the 37°C controls. [00784] Identification of Potentiator Compounds [00785] Typical protocol utilized a basolateral to apical membrane Cl" concentration gradient. To set up this gradient, normal ringers was used on the basolateral membrane and was permeabilized with nystatin (360 μg/ml), whereas apical NaCl was replaced by equimolar sodium gluconate (titrated to pH 7.4 with NaOH) to give a large Cl" concentration gradient across the epithelium. All experiments were performed 30 min after nystatin permeabilization. Forskolin (10 μM) and all test compounds were added to both sides of the cell culture inserts. The efficacy of the putative ΔF508-CFTR potentiators was compared to that of the known potentiator, genistein. [00786] Solutions Basolateral solution (in mM): NaCl (135), CaCl2 (1.2), MgCl2 (1.2), K2HPO4 (2.4), KHPO4 (0.6), N-2-hydroxyethylpiperazine-N'-2- ethanesulfonic acid (HEPES) (10), and dextrose (10). The solution was titrated to pH 7.4 with NaOH. Apical solution (in mM): Same as basolateral solution with NaCl replaced with Na Gluconate (135). [00787] Cell Culture [00788] Fisher rat epithelial (FRT) cells expressing ΔF508-CFTR (FRTΔF508"CFTR) were used for Ussing chamber experiments for the putative ΔF5O8-CFTR modulators identified from our optical assays. The cells were cultured on Costar Snapwell cell culture inserts and cultured for five days at 37 °C and 5% CO2 in Coon's modified Ham's F-12 medium supplemented with 5% fetal calf serum, 100 U/ml penicillin, and 100 μg/ml streptomycin. Prior to use for characterizing the potentiator activity of compounds, the cells were incubated at 27 0C for 16 - 48 hrs to correct for the ΔF508-CFTR. To determine the activity of corrections compounds, the cells were incubated at 27 0C or 37 0C with and without the compounds for 24 hours. [00789] 2. Whole-cell recordings [00790] The macroscopic ΔF508-CFTR current (IΔFSOS) in temperature- and test compound-corrected NIH3T3 cells stably expressing ΔF508-CFTR were monitored using the perforated-patch, whole-cell recording. Briefly, voltage-clamp recordings of IΛFSQS were performed at room temperature using an Axopatch 200B patch-clamp amplifier (Axon Instruments Inc., Foster City, CA). All recordings were acquired at a sampling frequency of 10 kHz and low-pass filtered at 1 kHz. Pipettes had a resistance of 5 - 6 MΩ when filled with the intracellular solution. Under these recording conditions, the calculated reversal potential for Cl" (Eci) at room temperature was -28 mV. All recordings had a seal resistance > 20 GΩ and a series resistance < 15 MΩ. Pulse generation, data acquisition, and analysis were performed using a PC equipped with a Digidata 1320 A/D interface in conjunction with Clampex 8 (Axon Instruments Inc.). The bath contained < 250 μl of saline and was continuously perifused at a rate of 2 ml/min using a gravity-driven perfusion system. [00791] Identification of Correction Compounds [00792] To determine the activity of correction compounds for increasing the density of functional ΔF508-CFTR in the plasma membrane, we used the above-described perforated-patch-recording techniques to measure the current density following 24-hr treatment with the correction compounds. To fully activate ΔF508-CFTR, 10 μM forskolin and 20 μM genistein were added to the cells. Under our recording conditions, the current density following 24-hr incubation at 27°C was higher than that observed following 24-hr incubation at 37 °C. These results are consistent with the known effects of low-temperature incubation on the density of ΔF508-CFTR in the plasma membrane. To determine the effects of correction compounds on CFTR current density, the cells were incubated with 10 μM of the test compound for 24 hours at 37°C and the current density was compared to the 27°C and 37°C controls (% activity). Prior to recording, the cells were washed 3 X with extracellular recording medium to remove any remaining test compound. Preincubation with 10 μM of correction compounds significantly increased the cAMP- and genistein-dependent current compared to the 37°C controls. [00793] Identification of Potentiator Compounds [00794] The ability of ΔF508-CFTR potentiators to increase the macroscopic ΔF508-CFTR Cl" current (IΔFSOS) in NIH3T3 cells stably expressing ΔF508-CFTR was also investigated using perforated-patch-recording techniques. The potentiators identified from the optical assays evoked a dose-dependent increase in IΔFSOS with similar potency and efficacy observed in the optical assays. In all cells examined, the reversal potential before and during potentiator application was around -30 mV, which is the calculated EQ (-28 mV). [00795] Solutions Intracellular solution (in mM): Cs-aspartate (90), CsCl (50), MgCl2 (1), HEPES (10), and 240 μg/ml amphotericin-B (pH adjusted to 7.35 with CsOH). Extracellular solution (in mM): iV-methyl-D-glucamine (NMDG)-Cl (150), MgCl2 (2), CaCl2 (2), HEPES (10) (pH adjusted to 7.35 with HCl).
[00796] Cell Culture [00797] NIH3T3 mouse fibroblasts stably expressing ΔF508-CFTR are used for whole-cell recordings. The cells are maintained at 37 0C in 5% CO2 and 90 % humidity in Dulbecco's modified Eagle's medium supplemented with 2 mM glutamine, 10 % fetal bovine serum, 1 X NEAA, β-ME, 1 X pen/strep, and 25 mM HEPES in 175 cm2 culture flasks. For whole-cell recordings, 2,500 - 5,000 cells were seeded on poly-L-lysine-coated glass coverslips and cultured for 24 - 48 hrs at 27 °C before use to test the activity of potentiators; and incubated with or without the correction compound at 37 °C for measuring the activity of correctors. [00798] 3. Single-channel recordings [00799] The single-channel activities of temperature-corrected ΔF508-CFTR stably expressed in NIH3T3 cells and activities of potentiator compounds were observed using excised inside-out membrane patch. Briefly, voltage-clamp recordings of single-channel activity were performed at room temperature with an Axopatch 200B patch-clamp amplifier (Axon Instruments Inc.). All recordings were acquired at a sampling frequency of 10 kHz and low-pass filtered at 400 Hz. Patch pipettes were fabricated from Coming Kovar Sealing #7052 glass (World Precision Instruments, Inc., Sarasota, FL) and had a resistance of 5 - 8 MΩ when filled with the extracellular solution. The ΔF508-CFTR was activated after excision, by adding 1 mM Mg-ATP, and 75 nM of the cAMP-dependent protein kinase, catalytic subunit (PKA; Promega Corp. Madison, WI). After channel activity stabilized, the patch was perifused using a gravity- driven microperfusion system. The inflow was placed adjacent to the patch, resulting in complete solution exchange within 1 - 2 sec. To maintain ΔF508-CFTR activity during the rapid perifusion, the nonspecific phosphatase inhibitor F" (10 mM NaF) was added to the bath solution. Under these recording conditions, channel activity remained constant throughout the duration of the patch recording (up to 60 min). Currents produced by positive charge moving from the intra- to extracellular solutions (anions moving in the opposite direction) are shown as positive currents. The pipette potential (Vp) was maintained at 80 mV. [00800] Channel activity was analyzed from membrane patches containing < 2 active channels. The maximum number of simultaneous openings determined the number of active channels during the course of an experiment. To determine the single-channel current amplitude, the data recorded from 120 sec of ΔF508-CFTR activity was filtered "off-line" at 100 Hz and then used to construct all-point amplitude histograms that were fitted with multigaussian functions using Bio-Patch Analysis software (Bio-Logic Comp. France). The total microscopic current and open probability (P0) were determined from 120 sec of channel activity. The P0 was determined using the Bio-Patch software or from the relationship P0 = I/i(N), where I = mean current, i = single-channel current amplitude, and N = number of active channels in patch.
[00801] Solutions Extracellular solution (in mM): NMDG (150), aspartic acid (150), CaCl2 (5), MgCl2 (2), and HEPES (10) (pH adjusted to 7.35 with Tris base). Intracellular solution (in mM): NMDG-Cl (150), MgCl2 (2), EGTA (5), TES (10), and Tris base (14) (pH adjusted to 7.35 with HCl).
[00802] CeU Culture [00803] NIH3T3 mouse fibroblasts stably expressing ΔF508-CFTR are used for excised-membrane patch-clamp recordings. The cells are maintained at 37 0C in 5% CO2 and 90 % humidity in Dulbecco's modified Eagle's medium supplemented with 2 mM glutamine, 10 % fetal bovine serum, 1 X NEAA, β-ME, 1 X pen/strep, and 25 mM HEPES in 175 cm2 culture flasks. For single channel recordings, 2,500 - 5,000 cells were seeded on poly-L-lysine-coated glass coverslips and cultured for 24 - 48 hrs at 27 0C before use.
[00804] Compounds of the invention are useful as modulators of ATP binding cassette transporters. Table 3 below illustrates the EC50 and relative efficacy of certain embodiments in Table 1. [00805] In Table 3 below, the following meanings apply: EC50: "+++" means <10 uM; "++" means between lOuM to 25 uM; "+" means between 25 uM to 6OuM. % Efficacy: "+" means < 25%; "++" means between 25% to 100%; "+++" means > 100%. Table3
Figure imgf000286_0001
Figure imgf000286_0002
Figure imgf000286_0003
Figure imgf000287_0001
Figure imgf000287_0002
Figure imgf000287_0003
Figure imgf000288_0001
Figure imgf000288_0002
Figure imgf000288_0003
Figure imgf000289_0001
Figure imgf000289_0002
Figure imgf000289_0003
Figure imgf000290_0003
Figure imgf000290_0001
Figure imgf000290_0002

Claims

What is claimed is: 1. A compound of formula I:
Figure imgf000291_0001
I or a pharmaceutically acceptable salt thereof, wherein: Ar1 is a 5-6 membered aromatic monocyclic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein said ring is optionally fused to a 5-12 membered monocyclic or bicyclic, aromatic, partially unsaturated, or saturated ring, wherein each ring contains 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein Ar1 has m substituents each independently selected from — WRW; W is a bond or is an optionally substituted C1-C6 alkylidene chain wherein up to two methylene units of W are optionally and independently replaced by -CO-, -CS-, -COCO-, - CONR'-, -CONR'NR'-, -CO2-, -OCO-, -NR7CO2-, -O-, -NR'CONR'-, -OCONR'-, -NR'NR', - NR'NR'CO-, -NR'CO-, -S-, -SO, -SO2-, -NR'-, -SO2NR'-, NR5SO2-, -NR5SO2NR'-; Rw is independently R5, halo, NO2, CN, CF3, or OCF3; m is 0-5; each of R1, R2, R3, R4, and R5 is independently -X-Rx; X is a bond or is an optionally substituted C1-C6 alkylidene chain wherein up to two methylene units of X are optionally and independently replaced by -CO-, -CS-, -COCO-, - CONR5-, -CONR5NR'-, -CO2-, -OCO-, -NR5CO2-, -0-, -NR5CONR'-, -OCONR'-, -NR5NR5, - NR5NR5CO-, -NR5CO-, -S-, -SO, -SO2-, -NR5-, -SO2NR5-, NR5SO2-, or -NR5SO2NR'-; Rxis independently R', halo, NO2, CN, CF3, or OCF3; R6 is hydrogen, CF3, -OR5, -SR5, or an optionally substituted C1-8 aliphatic group; R is hydrogen or a C1-6 aliphatic group optionally substituted with -X-R ; R5 is independently selected from hydrogen or an optionally substituted group selected from a C1-C8 aliphatic group, a 3-8-membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur; or two occurrences of R are taken together with the atom(s) to which they are bound to form an optionally substituted 3-12 membered saturated, partially unsaturated, or fully unsaturated monocyclic or bicyclic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; provided that: i) when R1, R2, R3, R4, R5, R6 and R7 are hydrogen, then Ar1 is not phenyl, 2- methoxyphenyl, 4-methoxyphenyl, 2-methylphenyl, 2,6-dichlorophenyl, 2,4-dichlorophenyl, 2- bromophenyl, 4-bromophenyl, 4-hydroxyphenyl, 2,4-dinitrophenyl, 3,5-dicarboxylic acid phenyl, 2,4-dimethylphenyl, 2,6-dimethylphenyl, 2-ethylphenyl, 3-nitro-4-methylphenyl, 3- carboxylic-acid phenyl, 2-fluorophenyl, 3 -fluorophenyl, 3-trifluoromethylphenyl, 3- ethoxyphenyl, 4-chlorophenyl, 3-methoxyphenyl, 4-dimethylaminophenyl, 3,4-dimethylphenyl, 2-ethylphenyl, or 4-ethoxycarbonylphenyl; ii) when R1, R2, R3, R5, R6 and R7 are hydrogen, and R4 is methoxy, then Ar1 is not 2- fiuorophenyl or 3 -fluorophenyl; iii) when R1, R3, R4, R5, R6 and R7 are hydrogen, R2 is 1,2,3,4-tetrahydroisoquinolin-l-yl- sulfonyl, then Ar1 is not 3-trifluoromethylphenyl; iv) when R1, R2, R3, R4, R5 and R7 are hydrogen, R6 is methyl, then Ar1 is not phenyl; v) when R1, R4, R5, R6 and R7 are hydrogen, R2 and R3, taken together, are methylenedioxy, then Ar1 is not 4-chlorophenyl, 4-bromophenyl, 4-nitrophenyl, A- carboethoxyphenyl, 6-ethoxy-benzothiazol-2-yl, 6-carboethoxy-benzothiazol-2-yl, 6-halo- benzothiazol-2-yl, 6-nitro-benzothiazol-2-yl, or 6-thiocyano-benzothiazol-2-yl. vi) when R1, R4, R5, R6 and R7 are hydrogen, R2 and R3, taken together, are methylenedioxy, then Ar1 is not 4-substituted phenyl wherein said substituent is -SO2NHRXX, wherein Rxx is 2-pyridinyl, 4-methyl-2-pyrimidinyl, 3,4-dimethyl-5-isoxazolyl; vii) when R1, R2, R3, R4, R5, R6, and R7 are hydrogen, then Ar1 is not thiazόl-2-yl, IH- l,2,4-triazol-3-yl, or lH-l,3,4-triazol-2-yl; viii) when R1, R2, R3, R5, R6, and R7 are hydrogen, and R4 is CF3, OMe, chloro, SCF3, or OCF3, then Ar1 is not 5-methyl-l,2-oxazol-3-yl, thiazol-2-yl, 4-fluorophenyl, pyrimidin-2-yl, 1- methyl-l,2-(7H)-pyrazol-5-yl, pyridine-2-yl, phenyl, N-methyl-imidazol-2-yl, imidazol-2-yl, 5- methyl-imidazol-2-yl, l,3-oxazol-2-yl, or l,3,5-(7H)-triazol-2-yl; ix) when R1, R2, R3, R4, R5, R6, and R7 each is hydrogen, then Ar1 is not pyrimidin-2-yl, 4,6-dimethyl-pyrimidin-2-yl, 4-methoxy-6-methyl- 1 ,3 ,5-triazin-2-yl; 5-bromo-pyridin-2-yl, pyridin-2-yl, or 3,5-dichloro-pyridin-2-yl; x) when R1, R2, R3, R4, R5 and R7 each is hydrogen, R6 is hydroxy, then Ar1 is not 2,6- dichloro-4-aminosulfonyl-phenyl; xi) when R or R is an optionally substituted N-piperazyl, N-piperidyl, or N- morpholinyl, then Ar1 is not an optionally substituted ring selected from thiazol-2-yl, pyridyl, phenyl, thiadiazolyl, benzothiazol-2-yl, or indazolyl; xii) when R2 is optionally substituted cyclohexylamino, then ArI is not optionally substituted phenyl, pyridyl, or thiadiazolyl; xiii) Ar1 is not optionally substituted tetrazolyl; xiv) when R2, R4, R5, R6, and R7 each is hydrogen, and R1 and R3 both are simultaneously CF3, chloro, methyl, or methoxy, then Ar1 is not 4,5-dihydro- 1,3 -thiazol-2-yl, thiazol-2-yl, or [3,5-bis(trifluoromethyl)-7i/-pyrazol-l-yl]phenyl; xv) when R1, R4, R5, R6, and R7 each is hydrogen, and Ar1 is thiazol-2-yl, then neither R2 nor R3 is isopropyl, chloro, or CF3; xvi) when Ar1 is 4-methoxyphenyl, 4-trifluoromethylphenyl, 2-fluorophenyl, phenyl, or 3-chlorophenyl, then: a) when R1, R2, R , R5, R6, and R7 each is hydrogen, then R3 is not methoxy; or b) when R1, R3, R , R5, R6, and R7 each is hydrogen, then R2 is not chloro; or c) when R1, R2, R3, R5, R6, and R7 each is hydrogen, then R4 is not methoxy; or d) when when R1, R3, R4, R6, and R7 each is hydrogen, and R5 is ethyl, then R2 is not chloro; e) when R1, R2, R4, R5, R6, and R7 each is hydrogen, then R3 is not chloro; xvi) when R1, R3, R4, R5, R6, and R7 each is hydrogen, and R2 is CF3 or OCF3, then Ar1 is not [3,5-bis(trifluoromethyl)-iH-pyrazol-l-yl]phenyl; xvii) when R1, R2, R4, R5, R6, and R7 each is hydrogen, and R3 is hydrogen or CF3, then ArI is not a phenyl substituted with -OCH2CH2Ph, -OCH2CH2(2-trifluoromethyl-ρhenyl), - OCH2CH2-(6,7-dimethoxy-l,2,3,4-tetrahydroisoquinolin-2-yl), or substituted lH"-ρyrazol-3-yl; and xviii) the following two compounds are excluded:
Figure imgf000294_0001
and
2. The compound according to claim 1, wherein Ar is selected from:
Figure imgf000294_0002
a-i a-ii; wherein ring A1 5-6 membered aromatic monocyclic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; or A1 and A2, together, is an 8-14 aromatic, bicyclic or tricyclic aryl ring, wherein each ring contains 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
3. The compound according to claim 2, wherein A1 is an optionally substituted 6 membered aromatic ring having 0-4 heteroatoms, wherein said heteroatom is nitrogen.
4. The compound according to claim 2, wherein A1 is an optionally substituted phenyl.
5. The compound according to claim 2, wherein A2 is an optionally substituted 6 membered aromatic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
6. The compound according to claim 2, wherein A2 is an optionally substituted 5- membered aromatic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
7. The compound according to claim 2, wherein A2 is a 5-membered aromatic ring having 1-2 nitrogen atoms.
8. The compound according to claim 2, wherein A2 is selected from:
Figure imgf000295_0001
u in IV
Figure imgf000295_0002
Vl VU VlU
Figure imgf000295_0003
IX Xl XU
Figure imgf000295_0004
XUl XlV XV xvi
Figure imgf000295_0005
XVU XVlU XlX
Figure imgf000296_0001
XX XXI XXIl XXIII
Figure imgf000296_0002
xxiv XXV XXVl xxviii
Figure imgf000296_0003
xxix xxx xxxi xxxii; wherein ring A2 is fused to ring A1 through two adjacent ring atoms.
9. The compound according to claim 1, wherein R5 and R6 is hydrogen.
10. The compound according to claim 9, wherein R3 and R4 are simultaneously hydrogen; R is hydrogen or -OH; and R is hydrogen or fluoro.
11. The compound according to claim 10, R7 is hydrogen.
12. The compound according to claim 1, wherein each occurrence of WRW is independently -C 1-C3 alkyl, C1-C3 perhaloalkyl, -O(C1-C3 alkyl), -CF3, -OCF3, -SCF3, -F, -Cl, -Br, or -COOR', -COR', -O(CH2)2N(R')(R'), -O(CH2)N(R')(R'), -C0N(R')(R'), -(CH2)2OR', - (CH2)OR', optionally substituted monocyclic or bicyclic aromatic ring, optionally substituted arylsulfone, optionally substituted 5-membered heteroaryl ring, -N(R')(R'), -(CH2)2N(R')(R'), or -(CH2)N(RO(R').
13. The compound according to claim 12, wherein each occurrence of WR w is selected from halo, cyano, CF3, CHF2, OCHF2, Me, Et, CH(Me)2, CHMeEt, n-propyl, t-butyl, OMe, OEt, OPh, O-fluorophenyl, O-difluorophenyl, O-methoxyphenyl, O-tolyl, O-benzyl, SMe, SCF3, SCHF2, SEt, CH2CN, NH2, NHMe, N(Me)2, NHEt, N(Et)2, C(O)CH3, C(O)Ph, C(O)NH2, SPh, SO2-(amino-pyridyl), SO2NH2, SO2Ph, SO2NHPh, S02-N-morpholino, SO2-N-pyrrolidyl, N- pyrrolyl, N-morpholino, 1-piperidyl, phenyl, benzyl, (cyclohexyl-methylamino)methyl, A- Methyl-2,4-dihydro-pyrazol-3-one-2-yl, benzimidazol-2yl, furan-2-yl, 4-methyl-4H- [l,2,4]triazol-3-yl, 3-(4'-chlorophenyl)-[l,2,4]oxadiazol-5-yl, NHC(O)Me, NHC(O)Et, NHC(O)Ph, NHSO2Me, 2-indolyl, 5-indolyl, -CH2CH2OH, -OCF3, O-(2,3-dimethylphenyl), 5- methylfuryl, -SO2-N-piperidyl, 2-tolyl, 3-tolyl, 4-tolyl, O-butyl, NHCO2C(Me)3, CO2C(Me)3, isopropenyl, n-butyl, O-(2,4-dichlorophenyl), NHSO2PhMe, O-(3-chloro-5-trifluoromethyl-2- pyridyl), phenylhydroxymethyl, 2,5-dimethylpyiτolyl, NHCOCH2C(Me)3, O-{2-tert- butyl)phenyl, 2,3-dimethylphenyl, 3,4-dimethylphenyl, 4-hydroxymethyl phenyl, 4- dimethylaminophenyl, 2-trifluoromethylphenyl, 3- trifluoromethylphenyl, A- trifluoromethylphenyl, 4-cyanomethylphenyl, 4-isobutylphenyl, 3-pyridyl, 4-pyridyl, A- isopropylphenyl, 3-isopropylphenyl, 2-methoxyphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 3,4-methylenedioxyphenyl, 2-ethoxyphenyl, 3-ethoxyphenyl, 4-ethoxyphenyl, 2- methylthiophenyl, 4-methylthiophenyl, 2,4-dimethoxyphenyl, 2,5-dimethoxyphenyl, 2,6- dimethoxyphenyl, 3,4-dimethoxyphenyl, 5-chloro-2-methoxyphenyl, 2-OCF3-phenyl, 3- trifluoromethoxy-phenyl, 4-trifluoromethoxyphenyl, 2-phenoxyphenyl, 4-phenoxyphenyl, 2- fluoro-3-methoxy-phenyl, 2,4-dimethoxy-5-pyrimidyl, 5-isopropyl-2-methoxyphenyl, 2- fluorophenyl, 3 -fluorophenyl, 4-fluorophenyl, 3-cyanophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,3-difluorophenyl, 2,4-difluorophenyl, 2,5-difluorophenyl, 3,4-difluorophenyl, 3,5- difluorophenyl, 3-chloro-4-fluoro-phenyl, 3,5-dichlorophenyl, 2,5-dichlorophenyl, 2,3- dichlorophenyl, 3,4-dichlorophenyl, 2,4-dichlorophenyl, 3-methoxycarbonylphenyl, A- methoxycarbonyl phenyl, 3-isopropyloxycarbonylphenyl, 3-acetamidophenyl, 4-fluoro-3- methylphenyl, 4-methanesulfinyl-phenyl, 4-methanesulfonyl-phenyl, 4-N-(2-N,N- dimethylaminoethyl)carbamoylρhenyl, 5-acetyl-2-thienyl, 2-benzothienyl, 3-benzothienyl, furan- 3-yl, 4-methyl-2-thienyl, 5-cyano-2-thienyl, N'-phenylcarbonyl-N-piperazinyl, -NHCO2Et, - NHCO2Me, N-pyrrolidinyl, -NHSO2(CH2)2 N-ρiρeridine, -NHSO2(CH2)2 N-morpholine, - NHSO2(CH2)2N(Me)2, COCH2N(Me)COCH2NHMe, -CO2Et, O-propyl, - CH2CH2NHCO2C(Me)3, hydroxy, aminomethyl, pentyl, adamantyl, cyclopentyl, ethoxyethyl, C(Me)2CH2OH, C(Me)2CO2Et, -CHOHMe, CH2CO2Et, -C(Me)2CH2NHCO2C(Me)3, O(CH2)2OEt, O(CH2)2OH, CO2Me, hydroxymethyl, , 1 -methyl- 1-cyclohexyl, 1 -methyl- 1- cyclooctyl, 1 -methyl- 1 -cycloheptyl, C(Et)2C(Me)3, C(Et)3, CONHCH2CH(Me)2, 2-aminomethyl- phenyl, ethenyl, 1-piperidinylcarbonyl, ethynyl, cyclohexyl, 4-methylpiperidinyl, -OCO2Me, - C(Me)2CH2NHCO2CH2CH(Me)2, -C(Me)2CH2NHCO2CH2CH2CH3, .C(Me)2CH2NHCO2Et, - C(Me)2CH2NHCO2Me, -C(Me)2CH2NHCO2CH2C(Me)3, -CH2NHCOCF3, -CH2NHCO2C(Me)3, -C(Me)2CH2NHCO2(CH2)3CH3, C(Me)2CH2NHCO2(CH2)2OMe, C(OH) (CF3)2, - C(Me)2CH2NHCO2CH2-tetrahydroftιran-3-yl, C(Me)2CH2O(CH2)2OMe, or 3-ethyl-2,6- dioxopiperidin-3-yl.
14. The compound according to claim 2, wherein said compound has formula HA or formula HB:
Figure imgf000298_0001
HA HB.
15. The compound according to claim 2, wherein said compound has formula HIA, formula IIIB, formula IHC, formula HID, or formula HIE:
Figure imgf000298_0002
HIA
Figure imgf000298_0003
IHB IIIC
Figure imgf000299_0001
HID HIE wherein: each of Xi, X2, X3, X4, and X5 is independently selected from CH or N; and X6 is O, S, or NR'.
16. The compound according to claim 15, wherein X1, X2, X3, X4, and X5, taken together with WRW and m, is optionally substituted phenyl.
17. The compounds according to claim 15, wherein X1, X2, X3, X4, and X5 taken together in compound of formula IHA is an optionally substituted ring selected from:
Figure imgf000299_0002
a-i a-u a-iii a-iv a-v
Figure imgf000299_0003
a-vi a-vu a-vui a-ix a-x
Figure imgf000299_0004
a-xl a-xu a-xiu a-xiv a-xv a-xvi
Figure imgf000299_0005
a-xvii a-xviii a-xix a-xx a-xxi
Figure imgf000300_0001
a-xxii a-xxHi a-xxiv a-xxv
18. The compound according to claim 15, wherein X1, X2, X3, X4, X5, or X6, taken together with ring A2 in compounds of formula HIB, formula IHC, formula IHD, or formula IHE, is an optionally substituted ring selected from:
Figure imgf000300_0002
b-i b-ii b-iii b-iv b-v
Figure imgf000300_0003
Figure imgf000300_0004
b-xvi b-xvii -XVlIl b-xix b-xx
Figure imgf000300_0005
Figure imgf000300_0006
b-xxiv b-xxv
Figure imgf000301_0001
bxxxi b-xxxii b-xxxiii b-xxxiv
Figure imgf000301_0002
b-xxxv b-xxxvi b-xxxvii
Figure imgf000301_0003
b-xxxviii b-xL b-xLi b-xLϋ
Figure imgf000301_0004
Figure imgf000301_0005
b-xLviϋ b-xLviii b-xLix b-L
Figure imgf000302_0001
Figure imgf000302_0002
b-Lv b-Lvi b-Lvii b-Lviii
Figure imgf000302_0003
b-Lix b-Lx b-Lxi b-Lxii
Figure imgf000302_0004
b-Lxvii b-Lxvϋi b-Lxix b-Lxx
Figure imgf000303_0001
b-Lxxi b-Lxxii b-Lxxiii b-Lxxiv
Figure imgf000303_0002
b-Lxxv b-Lxxvi b-Lxxvii b-Lxxviii
Figure imgf000303_0003
b-Lxxix b-Lxxx b-Lxxxi b-Lxxxii
Figure imgf000303_0004
b-Lxxxv b-Lxxxvi
Figure imgf000303_0005
Figure imgf000303_0006
b-Lxxxviii b-Lxxxix
Figure imgf000303_0007
b-xCi
Figure imgf000304_0001
b-xCi b-xCii b-xCiii b-xCiv
Figure imgf000304_0002
Figure imgf000304_0003
b-xCv b-xCvi
Figure imgf000304_0004
b-xCviii
Figure imgf000304_0005
b-xCix b-C b-Ci b-Cii.
19. The compound according to claim 15, wherein said compound has formula IVA, formula IVB, or formula IVC:
Figure imgf000304_0006
IVA
Figure imgf000304_0007
IVB IVC.
20. The compound according to claim 19, wherein ring A2 is an optionally substituted, saturated, unsaturated, or aromatic 5-7 membered ring with 0-3 heteroatoms selected from O, S, or N.
21. The compound according to claim 19, wherein said compound has formula VA-I:
Figure imgf000305_0001
VA-I wherein each of WRW2 and WR W4 is independently selected from hydrogen, CN, CF3, halo, C1-C6 straight or branched alkyl, 3-12 membered cycloaliphatic, phenyl, C5-C10 heteroaryl or C3-C7 heterocyclic, wherein said heteroaryl or heterocyclic has up to 3 heteroatoms selected from O, S, or N, wherein said WRW2 and WRW4 is independently and optionally substituted with up to three substituents selected from -OR', -CF3, -OCF3, SR', S(O)R', SO2R', -SCF3, halo, CN, -COOR', -COR', -O(CH2)2N(R')(R'), -O(CH2)N(R')(R'), - CON(R'XR'), -(CH2)2OR', -(CH2)OR', CH2CN, optionally substituted phenyl or phenoxy, - N(R')(R'), -NR'C(O)OR\ -NR5C(O)R', -(CH2)2N(R')(R'), or -(CH2)N(R')(R'); and WRW5 is selected from hydrogen, -OH, NH2, CN, CHF2, NHR', N(R')2, -NHC(O)R', -NHC(O)OR', NHSO2R', -OR', CH2OH, CH2N(R')2, C(O)OR', SO2NHR', SO2N(R')2, or CH2NHC(O)OR'. Or, WRW4 and WRW5 taken together form a 5-7 membered ring containing 0-3 three heteroatoms selected from N, O, or S, wherein said ring is optionally substituted with up to three WRW substituents.
22. The compound according to claim 21, wherein: each of WRW2 and WRW4 is independently selected from hydrogen, CN, CF3, halo, C1-C6 straight or branched alkyl, 3-12 membered cycloaliphatic, or phenyl, wherein said WRW2 and WRW4 is independently and optionally substituted with up to three substituents selected from -OR', -CF3, -OCF3, -SCF3, halo, -COOR', -COR', -O(CH2)2N(R')(R'), - O(CH2)N(R')(R')5 -C0N(R!)(R'), -(CH2)2OR', -(CH2)OR', optionally substituted phenyl, - N(R1XR'), -NC(O)OR', -NC(O)R', -(CH2)2N(R')(R!), or -(CH2)N(RO(R'); and WRW5 is selected from hydrogen, -OH, NH2, CN, NHR', N(IT)2, -NHC(O)R', - NHC(O)OR', NHSO2R', -OR', CH2OH, C(O)OR', SO2NHR', or CH2NHC(O)O-(R').
23. The compound according to claim 22, wherein: WR 2 is a phenyl ring optionally substituted with up to three substituents selected from - OR', -CF3, -OCF3, SR', S(O)R', SO2R', -SCF3, halo, CN, -COOR', -COR', - O(CH2)2N(R')(R'), -0(CH2)N(R')(R'), -C0N(R')(R'), -(CHa)2OR', -(CH2)OR', CH2CN, optionally substituted phenyl or phenoxy, -N(R')(R'), -NR5C(O)OR', -NR5C(O)R', - (CH2)2N(R')(R'), or -(CH2)N(R')(R'); WRW4 is C 1 -C6 straight or branched alkyl; and WRW5 is OH.
24. The compound according to claim 22, wherein each of WRW2 and WRW4 is independently selected from CF3, halo, CN, or C1-C6 straight or branched alkyl.
25. The compound according claim 24, wherein each of WR and WRw is independently selected from optionally substituted n-propyl, isopropyl, n-butyl, sec-butyl, t- butyl, l,l-dimethyl-2-hydroxyethyl, l,l-dimethyl-2-(ethoxycarbonyl)-ethyl, l,l-dimethyl-3-(t- butoxycarbonyl-amino) propyl, or n-pentyl.
26. The compound according claim 25, wherein each of WRW2 and WRW4 is C1-C6 straight or branched alkyl.
27. The compound according to claim 21, wherein WRW5 is selected from hydrogen, CHF2, NH2, CN, NHR', N(R')2, CH2N(R')2, -NHC(O)R', -NHC(O)OR', -OR', C(O)OR', or SO2NHR'.
28. The compound according to claim 21, wherein WRW5 is selected from hydrogen, NH2, CN, CHF2, NH(Cl-Co alkyl), N(C1-C6 alkyl)2, -NHC(O)(Cl-CO alkyl), -CH2NHC(O)O(C1-C6 alkyl), -NHC(O)O(Cl-Co alkyl), -OH, -O(C1-C6 alkyl), C(O)O(C1-C6 alkyl), CH2O(Cl-Co alkyl), or SO2NH2.
29. The compound according to claim 28, wherein WRW5 is selected from -OH, OMe, NH2, -NHMe, -N(Me)2, -CH2NH2, CH2OH, NHC(O)OMe, NHC(O)OEt, CN, CHF2, - CH2NHC(O)O(t-butyl), -O-(ethoxyethyl), -O-(hydroxyethyl), -C(O)OMe, Or -SO2NH2.
30. The compound according to claim 21, wherein said compound has one, preferably more, or more preferably all, of the following features: a. WRW2 is hydrogen; b. WRW4 is C1-C6 straight or branched alkyl or monocyclic or bicyclic aliphatic; and c. WRW5 is selected from hydrogen, CN, CHF2, NH2, NH(Cl-Co alkyl), N(C1-C6 alkyl)2, -NHC(O)(Cl-CO alkyl), -NHC(O)O(Cl-Co alkyl), -CH2C(O)O(Cl-CO alkyl), -OH, -O(C1-C6 alkyl), C(O)O(Cl-CO alkyl), or SO2NH2.
31. The compound according to claim 21 , wherein said compound has one, preferably more, or more preferably all, of the following features: a. WRW2 is halo, C1-C6 alkyl, CF3, CN, or phenyl optionally substituted with up to 3 substituents selected from C1-C4 alkyl, -O(C1-C4 alkyl), or halo; b. WRW4 is CF3, halo, C1-C6 alkyl, or C6-C10 cycloaliphatic; and c. WRWS is OH, NH2, NH(C1-C6 alkyl), or N(Cl-CO alkyl).
32. The compound according to claim 19, wherein said compound has formula V-A-2:
Figure imgf000307_0001
V-A-2 wherein: Y is CH2, C(O)O, C(O), or S(O)2; and m is 0-4.
33. The compound according to claim 19, wherein said compound has formula V-A-3:
Figure imgf000308_0001
V-A-3 wherein: Q is W; RQ is Rw; m is 0-4; and n is 0-4.
34. The compound according to claim 19, wherein said compound has formula V-A-4:
Figure imgf000308_0002
V-A-4.
35. The compound according to claim 19, wherein said compound has formula V-A-5:
Figure imgf000308_0003
V-A-5 wherein: m is 0-4.
36. The compound according to claim 19, wherein said compound has formula V-A-6:
Figure imgf000309_0001
V-A-6 wherein: ring B is a 5-7 membered monocyclic or bicyclic, heterocyclic or heteroaryl ring optionally substituted with up to n occurrences of -Q-R , Q is W; RQ is Rw; m is 0-4; and n is 0-4.
37. The compound according to claim 36, wherein ring B is a 5-7 membered monocyclic, heterocyclic ring having up to 2 heteroatoms selected from O, S, or N, optionally substituted with up to n occurrences of -Q-R .
38. The compound according to claim 36, wherein ring B is a 5-6 membered monocyclic, heteroaryl ring having up to 2 heteroatoms selected from O, S, or N, optionally substituted with up to n occurrences of -Q-RQ.
39. ÷The compound according to claim 36, wherein ring B is selected from N-morpholinyl, N-piperidinyl, 4-benzoyl-piperazin-l-yl, pyrrolidin-1-yl, or 4-methyl-piperidin-l-yl, benzimidazol-2-yl, 5-methyl-furan-2-yl, 2,5-dimethyl-pyrrol-l-yl, pyridine-4-yl, indol-5-yl, indol-2-yl, 2,4-dimethoxy-pyrimidin-5-yl, furan-2-yl, furan-3-yl, 2-acyl-thien-2-yl, benzothiophen-2-yl, 4-methyl-thien-2-yl, 5-cyano-thien-2-yl, 3-chloro-5-trifluoromethyl-pyridin- 2-yl.
40. The compound according to claim 19, wherein said compound has formula V-B-I:
Figure imgf000310_0001
V-B-I wherein: one of Qi and Q3 is N(WR , W' ) and the other of Qi and Q3 is selected from O, S, or N(WRW); Q2 is C(O), CH2-C(O), C(O)-CH2, CH2, CH2-CH2, CF2, or CF2-CF2; and m is 0-3.
41. The compound according to claim 40, wherein Q3 is N(WR w), wherein WRW is hydrogen, C1-C6 aliphatic, C(O)Cl-Co aliphatic, or C(O)OC 1-C6 aliphatic.
42. The compound according to claim 41, wherein Q2 is C(O), CH2, CH2-CH2, and Qi is O.
43. The compound according to claim 19, wherein said compound has formula V-B-2:
Figure imgf000310_0002
V-B-2 wherein: RW1 is hydrogen or C1-C6 aliphatic; each of RW3 is hydrogen or C1-C6 aliphatic; or both RW3 taken together form a C3-C6 cycloalkyl or heterocyclic ring having up to two heteroatoms selected from O, S, or NR', wherein said ring is optionally substituted with up to two WRW substituents; and m is 0-4.
44. The compound according to claim 43, wherein WRWI is hydrogen, C1-C6 aliphatic, C(O)C 1 -C6 aliphatic, or C(O)OC 1 -C6 aliphatic.
45. The compound according to claim 43, wherein each RW3 is hydrogen, C1-C4 alkyl; or both RW3 taken together form a C3-C6 cycloaliphatic ring or 5-7 membered heterocyclic ring having up to two heteroatoms selected from O, S, or N, wherein said cycloaliphatic or heterocyclic ring is optionally substituted with up to three substitutents selected from WR W l
.
46. The compound according to claim 19, wherein said compound has formula V-B-3:
Figure imgf000311_0001
V-B-3 wherein: Q4 is a bond, C(O), C(O)O, or S(O)2; RW1 is hydrogen or C1-C6 aliphatic; and m is 0-4.
47. The compound according to claim 19, wherein said compound has formula V-B-4:
Figure imgf000311_0002
V-B-4 wherein: m is 0-4.
48. The compound according to claim 19, wherein said compound has formula V-B-5:
Figure imgf000312_0001
V-B-5 wherein: ring A2 is a phenyl or a 5-6 membered heteroaryl ring, wherein ring A2 and the phenyl ring fused thereto together have up 4 substituents independently selected from WRW; and m is 0-4.
49. The compound according to claim 48, wherein ring A2 is selected from:
Figure imgf000312_0002
aa bb cc dd
ee ff gg; wherein said ring is optionally substituted.
50. The compound according to claim 19, wherein said compound has formula V-B-5-a:
Figure imgf000312_0004
V-B-5-a wherein: G4 is hydrogen, halo, CN, CF3, CHF2, CH2F, optionally substituted C1-C6 aliphatic, aryl-Cl-C6 alkyl, or a phenyl, wherein G4 is optionally substituted with up to 4 WRW substituents; wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with -CO-, -CONR'-, -CO2-, -OCO-, -NR5CO2-, -0-, -NR'CONR'-, -OCONR'-, -NR'CO-, -S-, -NR'-, -SO2NR'-, NR3SO2-, or -NR5SO2NR'-. ; G5 is hydrogen or an optionally substituted C1-C6 aliphatic; wherein said indole ring system is further optionally substituted with up to 3 substituents independently selected from WRW,
51. The compound according to claim 50, wherein G4 is hydrogen, and G5 is C1-C6 aliphatic, wherein said aliphatic is optionally substituted with C1-C6 alkyl, halo, cyano, or CF3, and wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with -CO-, -CONR'-, -CO2-, -OCO-, -NR5CO2-, -O-, -NR'CONR'-, -OCONR'-, -NR'CO-, -S-, -NR'-, -SO2NR'-, NR5SO2-, or -NR5SO2NR'-.
52. The compound according to claim 50, wherein G4 is hydrogen, and G5 is cyano, methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, t-butyl, cyanomethyl, methoxyethyl, CH2C(O)OMe, (CH2)2-NHC(O)O-terf-But, or cyclopentyl.
53. The compound according to claim 50, wherein G5 is hydrogen, and G4 is halo, C1-C6 aliphatic or phenyl, wherein said aliphatic or phenyl is optionally substituted with C1-C6 alkyl, halo, cyano, or CF3, wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with -CO-, -CONR'-, -CO2-, -OCO-, -NR5CO2-, -0-, -NR'CONR5-, -OCONR5-, -NR'CO-, -S-, -NR'-, -SO2NR'-, NR5SO2-, or -NR5SO2NR'-.
54. The compound according to claim 50, wherein G5 is hydrogen, and G4 is halo, ethoxycarbonyl, t-butyl, 2-methoxyρhenyl, 2-ethoxyphenyl, (4-C(O)NH(CH2)2-NMe2)-phenyl, 2-methoxy-4-chloro-phenyl, pyridine-3-yl, 4-isoρropylphenyl, 2,6-dimethoxyphenyl, sec- butylaminocarbonyl, ethyl, t-butyl, orpiperidin-1-ylcarbonyl.
55. The compound according to claim 1 , wherein said compound is selected from Table 1.
56. A compound having formula A-I:
Figure imgf000314_0001
A-I; or a salt thereof; wherein: Gi is hydrogen, R', C(O)R', C(S)R', S(O)R', S(O)2R', Si(CH3)2R\ P(O)(OR')3, P(S)(OR')3, or B(OR')2; G2 is halo, CN, CF3, isopropyl, or phenyl wherein said isopropyl or phenyl is optionally substituted with up to 3 substituents independently selected from WR , wherein W and Rw are as defined above for formula I and embodiments thereof; G3 is an isopropyl or a C3 -C 10 cycloaliphatic ring, wherein said G3 is optionally substituted with up to 3 substituents independently selected from WRW, wherein W and Rw are as defined above for formula I and embodiments thereof; provided that when Gi is methoxy, G3 is tert-butyl, then G2 is not 2-amino-4-methoxy-5-tert- butyl-phenyl.
57. The compound according to claim 56, wherein: G1 is hydrogen; G2 is halo or isopropyl, wherein said isopropyl is optionally substituted with up to 3 substituents independently selected from R'; and G3 is an isopropyl or a C3-C10 cycloaliphatic ring, wherein said G3 is optionally substituted with up to 3 substituents independently selected from R'.
58. The compound according to claim 57, wherein: Gi is hydrogen; G2 is halo, preferably fluoro; and G3 is a C3 -C 10 cycloaliphatic ring, wherein said G3 is optionally substituted with up to 3 substituents independently selected from methyl, ethyl, propyl, or butyl.
59. The compound according to claim 56, wherein: Gi is hydrogen; G2 is CN, halo, or CF3; and G3 is an isopropyl or a C3-C10 cycloaliphatic ring, wherein said G3 is optionally substituted with up to 3 substituents independently selected from R'.
60. The compound according to claim 56, wherein: Gi is hydrogen; G2 is phenyl is optionally substituted with up to 3 substituents independently selected from -OC1-C4 alkyl, CF3, halo, or CN; and G3 is an isopropyl or a C3 -C 10 cycloaliphatic ring, wherein said G3 is optionally substituted with up to 3 substituents independently selected from R'.
61. The compound according to claim 56, wherein G3 is selected from optionally substituted cyclopentyl, cyclohexyl, cycloheptyl, or adamantyl.
62. The compound according to claim 56, wherein G3 is C3-C8 branched aliphatic chain.
63. A compound having formula A-II:
Figure imgf000315_0001
A-II; or a salt thereof, wherein: G4 is hydrogen, halo, CN, CF3, CHF2, CH2F, optionally substituted C1-C6 aliphatic, aralkyl, or a phenyl ring optionally substituted with up to 4 WRW substituents; G5 is hydrogen or an optionally substituted C1-C6 aliphatic; provided that both, G4 and G5, are not simultaneously hydrogen; wherein said indole ring system is further optionally substituted with up to 3 substituents independently selected from WRW.
64. The compound according to claim 63, wherein G4 is hydrogen, and G5 is C1-C6 aliphatic, wherein said aliphatic is optionally substituted with C1-C6 alkyl, halo, cyano, or CF3, and wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with -CO-, -CONR'-, -CO2-, -OCO-, -NR7CO2-, -0-, -NR'CONR'-, -OCONR'-, -NR' CO-, -S-, -NR'-, -SO2NR'-, NR5SO2-, or -NR3SO2NR'-.
65. The compound according to claim 63, wherein G4 is hydrogen, and G5 is cyano, methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, t-butyl, cyanomethyl, methoxyethyl, CH2C(O)OMe, (CH2)2-NHC(O)O-fert-But, or cyclopentyl.
66. The compound according to claim 63, wherein G5 is hydrogen, and G4 is halo, C1-C6 aliphatic or phenyl, wherein said aliphatic or phenyl is optionally substituted with C1-C6 alkyl, halo, cyano, or CF3, wherein up to two methylene units of said C1-C6 aliphatic or C1-C6 alkyl is optionally replaced with -CO-, -CONR'-, -CO2-, -OCO-, -NR5CO2-, -0-, -NR'CONR'-, -OCONR'-, -NR'CO-, -S-, -NR'-, -SO2NR'-, NR1SO2-, or -NR5SO2NR'-.
67. The compound according to claim 63, wherein G5 is hydrogen, and G4 is halo, CF3, ethoxycarbonyl, t-butyl, 2-methoxyphenyl, 2-ethoxyphenyl, 4-C(O)NH(CH2)2-NMe2, 2- methoxy-4-chloro-phenyl, pyridine-3-yl, 4-isopropylphenyl, 2,6-dimethoxyphenyl, sec- butylaminocarbonyl, ethyl, t-butyl, or piperidin-1-ylcarbonyl.
68. A pharmaceutical composition comprising a compound of formula I according to claim 1 and a pharmaceutically acceptable carrier or adjuvant.
69. The composition according to claim 68, wherein said composition comprises an additional agent selected from a mucolytic agent, bronchodialator, an anti-biotic, an anti- infective agent, an anti-inflammatory agent, CFTR modulator, or a nutritional agent.
70. A method of modulating ABC transporter activity comprising the step of contacting said ABC transporter with a compound of formula (I):
Figure imgf000317_0001
I or a pharmaceutically acceptable salt thereof, wherein: Ar1 is a 5-6 membered aromatic monocyclic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein said ring is optionally fused to a 5-12 membered monocyclic or bicyclic, aromatic, partially unsaturated, or saturated ring, wherein each ring contains 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein Ar1 has m substituents each independently selected from -WRW; W is a bond or is an optionally substituted Ci-C6 alkylidene chain wherein up to two methylene units of W are optionally and independently replaced by -CO-, -CS-, -COCO-, - CONR'-, -CONR'NR'-, -CO2-, -OCO-, -NR5CO2-, -O-, -NR'CONR'-, -OCONR'-, -NR'NR', - NR'NR'CO-, -NR5CO-, -S-, -SO, -SO2-, -NR'-, -SO2NR'-, NR5SO2-, -NR5SO2NR'-; Rw is independently R', halo, NO2, CN, CF3, or OCF3; m is 0-5; each of R1, R2, R3, R4, and R5 is independently -X-Rx; X is a bond or is an optionally substituted Ci-C6 alkylidene chain wherein up to two methylene units of X are optionally and independently replaced by -CO-, -CS-, -COCO-, - CONR'-, -CONR'NR5-, -CO2-, -OCO-, -NR5CO2-, -O-, -NR'CONR5-, -OCONR'-, -NR5NR', - NR'NR'CO-, -NR'CO-, -S-, -SO, -SO2-, -NR'-, -SO2NR'-, NR1SO2-, or -NR5SO2NR'-; Rxis independently R', halo, NO2, CN, CF3, or OCF3; R6 is hydrogen, CF3, -OR', -SR', or an optionally substituted Ci-8 aliphatic group; R7 is hydrogen or a C1-6 aliphatic group optionally substituted with -X-Rx; R' is independently selected from hydrogen or an optionally substituted group selected from a C1-C8 aliphatic group, a 3-8-membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur; or two occurrences of R are taken together with the atom(s) to which they are bound to form an optionally substituted 3-12 membered saturated, partially unsaturated, or fully unsaturated monocyclic or bicyclic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
71. The method according to claim 70, wherein said ABC transporter is CFTR.
72. A method of treating or lessening the severity of a disease in a patient, wherein said disease is selected from cystic fibrosis, hereditary emphysema, hereditary hemochromatosis, coagulation-fibrinolysis deficiencies, such as protein C deficiency, Type 1 hereditary angioedema, lipid processing deficiencies, such as familial hypercholesterolemia, Type 1 chylomicronemia, abetalipoproteinemia, lysosomal storage diseases, such as I-cell disease/pseudo-Hurler, mucopolysaccharidoses, Sandhof/Tay-Sachs, Crigler-Najjar type II, polyendocrinopathy/hyperinsulemia, Diabetes mellitus, Laron dwarfism, myleoperoxidase deficiency, primary hypoparathyroidism, melanoma, glycanosis CDG type 1, congenital hyperthyroidism, osteogenesis imperfecta, hereditary hypofibrinogenemia, ACT deficiency, Diabetes insipidus (DI), neurophyseal DI, neprogenic DI, Charcot-Marie Tooth syndrome, Perlizaeus-Merzbacher disease, neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, progressive supranuclear plasy, Pick's disease, several polyglutamine neurological disorders asuch as Huntington, spinocerebullar ataxia type I, spinal and bulbar muscular atrophy, dentatorubal pallidoluysian, and myotonic dystrophy, as well as spongiform encephalopathies, such as hereditary Creutzfeldt-Jakob disease (due to prion protein processing defect), Fabry disease, Straussler-Scheinker syndrome, COPD, dry-eye disease, or Sjogren's disease, said method comprising the step of administering to said patient an effective amount of a compound of formula I according to claim 70.
73. A kit for use in measuring the activity of a ABC transporter or a fragment thereof in a biological sample in vitro or in vivo, comprising: (i) a composition comprising a compound of formula (I) according to claim 70; (ii) instructions for: a) contacting the composition with the biological sample; b) measuring activity of said ABC transporter or a fragment thereof.
74. The kit of claim 73, further comprising instructions for a) contacting an additional composition with the biological sample; b) measuring the activity of said ABC transporter or a fragment thereof in the presence of said additional compound, and c) comparing the activity of the ABC transporter in the presence of the additional compound with the density of the ABC transporter in the presence of a composition of formula (I).
75. The kit of claim 74, wherein the kit is used to measure the density of CFTR.
PCT/US2005/022768 2004-06-24 2005-06-24 Modulators of atp-binding cassette transporters WO2006002421A2 (en)

Priority Applications (40)

Application Number Priority Date Filing Date Title
DK05791060.6T DK1773816T3 (en) 2004-06-24 2005-06-24 Modulators of ATP-binding cassette transporters
AU2005258320A AU2005258320B2 (en) 2004-06-24 2005-06-24 Modulators of ATP-Binding Cassette transporters
ES05791060.6T ES2534606T3 (en) 2004-06-24 2005-06-24 Conveyor modulators of the ATP binding cassette
RU2007102578A RU2382779C3 (en) 2005-06-24 MODULATORS OF ATP-BINDING CASSETTE TRANSPORTERS
MX2011005317A MX341797B (en) 2004-06-24 2005-06-24 Modulators of atp-binding cassette transporters.
NZ552543A NZ552543A (en) 2004-06-24 2005-06-24 N-( 5-Hydroxy-2,4-ditert-butyl-phenyl)-4-oxo-1H-quinoline-3-caboxamide
EP20155771.7A EP3705477A1 (en) 2004-06-24 2005-06-24 Modulators of atp-binding cassette transporters
EP17164829.8A EP3216787B1 (en) 2004-06-24 2005-06-24 Intermediates for the preparation of modulators of atp-binding cassette transporters
MEP-2015-33A ME02156B (en) 2004-06-24 2005-06-24 Modulators of atp-binding cassette transporters
PL05791060T PL1773816T3 (en) 2004-06-24 2005-06-24 Modulators of ATP-binding cassette transporters
SI200531953T SI1773816T1 (en) 2004-06-24 2005-06-24 Modulators of ATP-binding cassette transporters
RS20150171A RS53895B1 (en) 2004-06-24 2005-06-24 Modulators of atp-binding cassette transporters
CN2005800280552A CN101006076B (en) 2004-06-24 2005-06-24 Modulators of ATP-binding cassette transporters
EP05791060.6A EP1773816B1 (en) 2004-06-24 2005-06-24 Modulators of ATP-binding cassette transporters
JP2007518350A JP4947658B2 (en) 2004-06-24 2005-06-24 ATP-binding cassette transporter modulator
MX2016011108A MX365890B (en) 2004-06-24 2005-06-24 Modulators of atp-binding cassette transporters.
MX2007000095A MX2007000095A (en) 2004-06-24 2005-06-24 Modulators of atp-binding cassette transporters.
BR122018075478A BR122018075478B8 (en) 2004-06-24 2005-06-24 atp link cassette carrier modulators
BRPI0511321A BRPI0511321B8 (en) 2004-06-24 2005-06-24 atp binding cassette carrier modulators, pharmaceutical composition and their uses
CA2571949A CA2571949C (en) 2004-06-24 2005-06-24 Modulators of atp-binding cassette transporters
IL180224A IL180224A (en) 2004-06-24 2006-12-21 Modulators of atp-binding cassette transporters and pharmaceutical compositions containing the same
ZA200700600A ZA200700601B (en) 2004-06-24 2007-01-22 Modulators of atp-binding cassete transporters
HK07111298.9A HK1105970A1 (en) 2004-06-24 2007-10-18 Modulators of atp-binding cassette transporters atp-
AU2010249302A AU2010249302B2 (en) 2004-06-24 2010-12-13 Modulators of ATP-Binding Cassette Transporters
AU2010251787A AU2010251787B2 (en) 2004-06-24 2010-12-14 Modulators of ATP-Binding Cassette Transporters
AU2010251789A AU2010251789C1 (en) 2004-06-24 2010-12-14 Modulators of ATP-Binding Cassette Transporters
IL213158A IL213158A (en) 2004-06-24 2011-05-26 Processes for the preparation of modulators of atp-binding cassette transporters
IL213155A IL213155B (en) 2004-06-24 2011-05-26 Modulators of atp-binding cassette transporters and processes for the preparation of the same
IL221828A IL221828B (en) 2004-06-24 2012-09-06 Modulators of atp-binding cassette transporters and pharmaceutical compositions containing the same
IL221827A IL221827A0 (en) 2004-06-24 2012-09-06 Modulators of atp-binding cassette transporters and pharmaceutical compositions containing the same
IL221826A IL221826A0 (en) 2004-06-24 2012-09-06 Modulators of atp-binding cassette transporters and pharmaceutical compositions containing the same
HRP20150277TT HRP20150277T1 (en) 2004-06-24 2015-03-11 Modulators of atp-binding cassette transporters
LU92761C LU92761I2 (en) 2004-06-24 2015-07-02 N-(5-hydroxy-2,4-diert-butyl-phenyl)-4oxo-1h-quinoline-3-carboxamide or a pharmaceutically acceptable salt thereof
HUS1500035C HUS1500035I1 (en) 2004-06-24 2015-07-02 Modulators of ATP-binding cassette transporters
LTPA2015028C LTC1773816I2 (en) 2004-06-24 2015-07-03 ATF Binding Cartridge Conveyor Modulators
NL300748C NL300748I2 (en) 2004-06-24 2015-07-06
CY2015026C CY2015026I1 (en) 2004-06-24 2015-07-06 CONNECTION CASSETTE TRANSPORT MODULATORS WITH ATR
IL245365A IL245365A0 (en) 2004-06-24 2016-05-01 Modulators of atp-binding cassette transporters, pharmaceutical compositions containing the same and uses thereof
IL257540A IL257540B (en) 2004-06-24 2018-02-14 Modulator compound of atp-binding cassette transporters and salts of same
IL273332A IL273332A (en) 2004-06-24 2020-03-16 Modulators of atp-binding cassette transporters and pharmaceutical compositions containing the same

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US58267604P 2004-06-24 2004-06-24
US60/582,676 2004-06-24
US63012704P 2004-11-22 2004-11-22
US60/630,127 2004-11-22
US63567404P 2004-12-13 2004-12-13
US60/635,674 2004-12-13
US65821905P 2005-03-03 2005-03-03
US60/658,219 2005-03-03
US66131105P 2005-03-11 2005-03-11
US60/661,311 2005-03-11

Publications (2)

Publication Number Publication Date
WO2006002421A2 true WO2006002421A2 (en) 2006-01-05
WO2006002421A3 WO2006002421A3 (en) 2006-09-21

Family

ID=35429349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/022768 WO2006002421A2 (en) 2004-06-24 2005-06-24 Modulators of atp-binding cassette transporters

Country Status (26)

Country Link
US (14) US7495103B2 (en)
EP (6) EP2489659B1 (en)
JP (8) JP4947658B2 (en)
CN (6) CN104788328B (en)
AU (4) AU2005258320B2 (en)
BR (2) BR122018075478B8 (en)
CA (3) CA2571949C (en)
CY (4) CY1116116T1 (en)
DK (3) DK2502911T3 (en)
ES (4) ES2628026T3 (en)
HK (4) HK1105970A1 (en)
HR (3) HRP20150277T1 (en)
HU (3) HUE036512T2 (en)
IL (9) IL180224A (en)
LT (3) LT2502911T (en)
LU (1) LU92761I2 (en)
ME (3) ME02970B (en)
MX (3) MX2007000095A (en)
NL (1) NL300748I2 (en)
NZ (6) NZ598393A (en)
PL (3) PL1773816T3 (en)
PT (3) PT2489659T (en)
RS (3) RS53895B1 (en)
SI (1) SI2489659T1 (en)
WO (1) WO2006002421A2 (en)
ZA (1) ZA200700601B (en)

Cited By (154)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007075946A1 (en) * 2005-12-27 2007-07-05 Vertex Pharmaceuticals Incorporated Compounds useful in cftr assays and methods therewith
WO2008053764A1 (en) * 2006-10-30 2008-05-08 Nagoya City University Anti-prion active compound, anti-prion active agent, and method for inhibition of the production of abnormal prion protein
EP1993360A2 (en) * 2005-12-28 2008-11-26 Vertex Pharmaceuticals Incorporated Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
WO2009023509A2 (en) * 2007-08-09 2009-02-19 Vertex Pharmaceuticals Incorporated Therapeutic combinations useful in treating cftr related diseases
WO2009036412A1 (en) * 2007-09-14 2009-03-19 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2009076593A1 (en) * 2007-12-13 2009-06-18 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
JP2009533351A (en) * 2006-04-07 2009-09-17 バーテックス ファーマシューティカルズ インコーポレイテッド Modulator of ATP-binding cassette transporter
WO2010048573A1 (en) * 2008-10-23 2010-04-29 Vertex Pharmaceuticals Incorporated Solid forms of n-(4-(7-azabicyclo[2.2.1]heptan-7-yl)-2-(trifluoromethyl)phenyl)-4-oxo-5-(trifluoromethyl)-1,4-dihydroquinoline-3-carboxamide
WO2010048564A1 (en) * 2008-10-23 2010-04-29 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2010078103A1 (en) * 2008-12-30 2010-07-08 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
JP2010528050A (en) * 2007-05-25 2010-08-19 バーテックス ファーマシューティカルズ インコーポレイテッド Regulators of cystic fibrosis transmembrane conductance regulator
WO2009038683A3 (en) * 2007-09-14 2010-08-26 Vertex Pharmaceuticals Incorporated Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
WO2010048526A3 (en) * 2008-10-23 2010-09-16 Vertex Pharmaceuticals, Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2010108155A1 (en) * 2009-03-20 2010-09-23 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2010108162A1 (en) * 2009-03-20 2010-09-23 Vertex Pharmaceuticals Incorporated Process for making modulators of cystic fibrosis transmembrane conductance regulator
JP2010536863A (en) * 2007-08-24 2010-12-02 バーテックス ファーマシューティカルズ インコーポレイテッド Isothiazolopyridinone useful for the treatment of (especially) cystic fibrosis
JP2011500699A (en) * 2007-10-19 2011-01-06 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ Amide bond regulator of γ-secretase
WO2011050325A1 (en) 2009-10-22 2011-04-28 Vertex Pharmaceuticals Incorporated Compositions for treatment of cystic fibrosis and other chronic diseases
WO2011050215A1 (en) * 2009-10-23 2011-04-28 Vertex Pharmaceuticals Incorporated Process for preparing modulators of cystic fibrosis transmembrane conductance regulator
WO2011050220A1 (en) * 2009-10-23 2011-04-28 Vertex Pharmaceuticals Incorporated Solid forms of n-(4-(7-azabicyclo[2.2.1]heptan-7-yl)-2-trifluoromethyl)phenyl)-4-oxo-5-(trifluoromethyl)-1,4-dihydroquinoline-3-carboxamide
WO2011072241A1 (en) * 2009-12-11 2011-06-16 Vertex Pharmaceuticals Incorporated 4 -oxo- ih -quinoline- 3 - carboxamides as modulators of atp -binding cassette transporters
WO2011133951A1 (en) 2010-04-22 2011-10-27 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions and administrations thereof
WO2011133953A1 (en) 2010-04-22 2011-10-27 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions and administrations thereof
WO2011133956A1 (en) 2010-04-22 2011-10-27 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions and administrations thereof
WO2011146901A1 (en) 2010-05-20 2011-11-24 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions and administrations thereof
US8110687B2 (en) 2005-12-08 2012-02-07 Millennium Pharmaceuticals, Inc. Bicyclic compounds with kinase inhibitory activity
WO2012036573A3 (en) * 2010-09-14 2012-08-16 Instytut Biochemii I Biofizyki Pan Compounds as modulators of a mutant cftr protein and their use for treating diseases associated with cftr protein malfunction
WO2012158885A1 (en) * 2011-05-18 2012-11-22 Concert Pharmaceuticals Inc. Deuterated derivatives of ivacaftor
US8404849B2 (en) 2010-05-20 2013-03-26 Vertex Pharmaceuticals Processes for producing modulators of cystic fibrosis transmembrane conductance regulator
EP2578571A1 (en) 2007-11-16 2013-04-10 Vertex Pharmaceuticals Incorporated Isoquinoline modulators of ATP-binding cassette transporters
WO2013067410A1 (en) 2011-11-02 2013-05-10 Vertex Pharmaceuticals Incorporated Use of (n- [2, 4 -bis (1, 1 -dimethylethyl) - 5 - hydroxyphenyl] - 1, 4 - dihydro - 4 - oxoquinoline - 3 - ca rboxamide) for treating cftr mediated diseases
US8471029B2 (en) 2010-03-19 2013-06-25 Vertex Pharmaceutical Incorporated Solid forms of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
EP2615085A1 (en) 2008-03-31 2013-07-17 Vertex Pharmaceuticals Incorporated Pyridyl derivatives as CFTR modulators
WO2013158121A1 (en) 2012-04-20 2013-10-24 Vertex Pharmaceuticals Incorporated Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
WO2013185112A1 (en) 2012-06-08 2013-12-12 Vertex Pharmaceuticals Incorporated Pharmaceuticl compositions for the treatment of cftr -mediated disorders
WO2014071122A1 (en) 2012-11-02 2014-05-08 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions for the treatment of cftr mediated diseases
WO2014078842A1 (en) 2012-11-19 2014-05-22 Concert Pharmaceuticals, Inc. Deuterated cftr potentiators
JP2014097964A (en) * 2012-11-16 2014-05-29 Concert Pharmaceuticals Inc Deuterated cftr potentiator
WO2014141064A1 (en) 2013-03-13 2014-09-18 Novartis Ag Notch2 binding molecules for treating respiratory diseases
EP2815749A1 (en) 2013-06-20 2014-12-24 IP Gesellschaft für Management mbH Solid form of 4-amino-2-(2,6-dioxopiperidine-3-yl)isoindoline-1,3-dione having specified X-ray diffraction pattern
US8937178B2 (en) 2013-03-13 2015-01-20 Flatley Discovery Lab Phthalazinone compounds and methods for the treatment of cystic fibrosis
US9049878B2 (en) 2010-04-02 2015-06-09 Senomyx, Inc. Sweet flavor modifier
EP2932966A1 (en) 2014-04-16 2015-10-21 Novartis AG Gamma secretase inhibitors for treating respiratory diseases
WO2016069891A1 (en) 2014-10-31 2016-05-06 Abbvie Inc. Substituted tetrahydropyrans and method of use
AU2013201426B2 (en) * 2005-12-28 2016-06-02 Vertex Pharmaceuticals Incorporated Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
AU2015201410B2 (en) * 2010-09-14 2016-11-03 Instytut Biochemii I Biofizyki Pan Compounds as modulators of a mutant CFTR protein and their use for treating diseases associated with CFTR protein malfunction
WO2016193812A1 (en) 2015-06-02 2016-12-08 Abbvie S.A.R.L. Substituted pyridines and method of use
US9540349B2 (en) 2014-07-16 2017-01-10 Gruenenthal Gmbh Substituted pyrimidine compounds
WO2017009804A1 (en) 2015-07-16 2017-01-19 Abbvie S.Á.R.L. Substituted tricyclics and method of use
WO2017060874A1 (en) 2015-10-09 2017-04-13 Abbvie S.Á.R.L N-sulfonylated pyrazolo[3,4-b]pyridin-6-carboxamides and method of use
WO2017060873A1 (en) 2015-10-09 2017-04-13 AbbVie S.à.r.l. Substituted pyrazolo[3,4-b]pyridin-6-carboxylic acids and their use
WO2017060879A1 (en) 2015-10-09 2017-04-13 AbbVie S.à.r.l. Novel compounds for treatment of cystic fibrosis
EP3170818A1 (en) 2007-12-07 2017-05-24 Vertex Pharmaceuticals Incorporated Solid forms of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl) benzoic acid
JP2017105824A (en) * 2017-02-10 2017-06-15 コンサート ファーマシューティカルズ インコーポレイテッド Deuterated cftr enhancement material
EP3049393A4 (en) * 2013-09-25 2017-06-21 Valorisation-Recherche, Limited Partnership Inhibitors of polynucleotide repeat-associated rna foci and uses thereof
US9701639B2 (en) 2014-10-07 2017-07-11 Vertex Pharmaceuticals Incorporated Co-crystals of modulators of cystic fibrosis transmembrane conductance regulator
US9725440B2 (en) 2007-05-09 2017-08-08 Vertex Pharmaceuticals Incorporated Modulators of CFTR
US9732080B2 (en) 2006-11-03 2017-08-15 Vertex Pharmaceuticals Incorporated Azaindole derivatives as CFTR modulators
WO2017141116A1 (en) * 2016-02-19 2017-08-24 Phoenix Molecular Designs Carboxamide derivatives useful as rsk inhibitors
US9751890B2 (en) 2008-02-28 2017-09-05 Vertex Pharmaceuticals Incorporated Heteroaryl derivatives as CFTR modulators
US9776968B2 (en) 2007-12-07 2017-10-03 Vertex Pharmaceuticals Incorporated Processes for producing cycloalkylcarboxamido-pyridine benzoic acids
WO2017187321A1 (en) 2016-04-26 2017-11-02 AbbVie S.à.r.l. Modulators of cystic fibrosis transmembrane conductance regulator protein
US9834544B2 (en) 2010-04-02 2017-12-05 Senomyx, Inc. Sweet flavor modifier
WO2017208115A1 (en) 2016-06-03 2017-12-07 AbbVie S.à.r.l. Heteroaryl substituted pyridines and methods of use
AU2016219571B2 (en) * 2005-12-28 2018-03-15 Vertex Pharmaceuticals Incorporated Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
WO2018065962A1 (en) 2016-10-07 2018-04-12 AbbVie S.à.r.l. Substituted pyrrolidines and their use in the treatment of cystic fiibrosis
WO2018065921A1 (en) 2016-10-07 2018-04-12 Abbvie S.Á.R.L. Substituted pyrrolidines as cftr modulators
US9974781B2 (en) 2006-04-07 2018-05-22 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
WO2018116185A1 (en) 2016-12-20 2018-06-28 AbbVie S.à.r.l. Deuterated cftr modulators and methods of use
US10022352B2 (en) 2006-04-07 2018-07-17 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US10047053B2 (en) 2011-05-18 2018-08-14 Vertex Pharmaceuticals (Europe) Limited Deuterated CFTR potentiators
US10058546B2 (en) 2012-07-16 2018-08-28 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions of (R)-1-(2,2-difluorobenzo[D][1,3]dioxo1-5-y1)-N-(1-(2,3-dihydroxypropy1)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-y1)-1H-indol-5-y1) cyclopropanecarbox-amide and administration thereof
WO2018154493A1 (en) 2017-02-24 2018-08-30 AbbVie S.à.r.l. Modulators of the cystic fibrosis transmembrane conductance regulator protein and methods of use
US10071979B2 (en) 2010-04-22 2018-09-11 Vertex Pharmaceuticals Incorporated Process of producing cycloalkylcarboxamido-indole compounds
US10076513B2 (en) 2010-04-07 2018-09-18 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions of 3-(6-(1-(2,2-difluorobenzo[D][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl) benzoic acid and administration thereof
US10081621B2 (en) 2010-03-25 2018-09-25 Vertex Pharmaceuticals Incorporated Solid forms of (R)-1(2,2-difluorobenzo[D][1,3]dioxol-5-yl)-N-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1H-indol-5-yl)cyclopropanecarboxamide
CN108623561A (en) * 2017-03-24 2018-10-09 中国海洋大学 A method of preparing piperazine Nino acid compound
US10092574B2 (en) 2012-09-26 2018-10-09 Valorisation-Recherche, Limited Partnership Inhibitors of polynucleotide repeat-associated RNA foci and uses thereof
JP2018188474A (en) * 2018-08-13 2018-11-29 コンサート ファーマシューティカルズ インコーポレイテッド Deuterated cftr potentiator
US10206877B2 (en) 2014-04-15 2019-02-19 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions for the treatment of cystic fibrosis transmembrane conductance regulator mediated diseases
CN109364075A (en) * 2012-11-21 2019-02-22 顶点制药(欧洲)有限公司 Deuterate CFTR synergist
US10231932B2 (en) 2013-11-12 2019-03-19 Vertex Pharmaceuticals Incorporated Process of preparing pharmaceutical compositions for the treatment of CFTR mediated diseases
WO2019053634A1 (en) 2017-09-14 2019-03-21 AbbVie S.à.r.l. Modulators of the cystic fibrosis transmembrane conductance regulator protein and methods of use
US10239830B2 (en) 2015-02-11 2019-03-26 Icahn School Of Medicine At Mount Sinai Benzenesulfonamide upregulators of NPC1 for Neimann-Pick disease and other lysosomal storage disorders
US10272046B2 (en) 2012-02-27 2019-04-30 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
US10302602B2 (en) 2014-11-18 2019-05-28 Vertex Pharmaceuticals Incorporated Process of conducting high throughput testing high performance liquid chromatography
US10391099B2 (en) 2014-07-16 2019-08-27 Gruenenthal Gmbh Method of treating psoriatic arthritis, psoriasis, and chronic obstructive pulmonary disease with a novel 2,5-substituted pyrimidines
WO2019193062A1 (en) 2018-04-03 2019-10-10 Abbvie S.Á.R.L Substituted pyrrolidines and their use
US10626111B2 (en) 2004-01-30 2020-04-21 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US10646481B2 (en) 2008-08-13 2020-05-12 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
US10662192B2 (en) 2004-06-24 2020-05-26 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US10751363B2 (en) 2015-03-23 2020-08-25 Algipharma As Use of aliginate oligomers and CFTR modulators in treatment of conditions associated with CFTR dysfunction
US10758534B2 (en) 2014-10-06 2020-09-01 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US10759721B2 (en) 2015-09-25 2020-09-01 Vertex Pharmaceuticals (Europe) Limited Deuterated CFTR potentiators
US10793547B2 (en) 2016-12-09 2020-10-06 Vertex Pharmaceuticals Incorporated Modulator of the cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator
WO2020214921A1 (en) 2019-04-17 2020-10-22 Vertex Pharmaceuticals Incorporated Solid forms of modulators of cftr
EP3747882A1 (en) 2019-06-03 2020-12-09 AbbVie Overseas S.à r.l. Prodrug modulators of the cystic fibrosis transmembrane conductance regulator protein and methods of use
WO2021030556A1 (en) 2019-08-14 2021-02-18 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2021030555A1 (en) 2019-08-14 2021-02-18 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2021030552A1 (en) 2019-08-14 2021-02-18 Vertex Pharmaceuticals Incorporated Crystalline forms of cftr modulators
WO2021097054A1 (en) 2019-11-12 2021-05-20 Genzyme Corporation 6-membered heteroarylaminosulfonamides for treating diseases and conditions mediated by deficient cftr activity
WO2021113806A1 (en) 2019-12-05 2021-06-10 Genzyme Corporation Arylamides and methods of use thereof
WO2021113809A1 (en) 2019-12-05 2021-06-10 Genzyme Corporation Arylamides and methods of use thereof
EP3664822A4 (en) * 2017-08-04 2021-07-07 Axial Therapeutics, Inc. Inhibitors of microbially induced amyloid
US11066417B2 (en) 2018-02-15 2021-07-20 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulators
US11155533B2 (en) 2017-10-19 2021-10-26 Vertex Pharmaceuticals Incorporated Crystalline forms and compositions of CFTR modulators
US11179367B2 (en) 2018-02-05 2021-11-23 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions for treating cystic fibrosis
US11186566B2 (en) 2016-09-30 2021-11-30 Vertex Pharmaceuticals Incorporated Modulator of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator
CZ309045B6 (en) * 2019-04-08 2021-12-22 Univerzita Palackého v Olomouci Method for preparing 6-amino-2,3-difluorobenzonitrile
WO2022013360A1 (en) 2020-07-17 2022-01-20 Synthon B.V. Pharmaceutical composition comprising ivacaftor
US11236067B2 (en) 2019-07-12 2022-02-01 Orphomed, Inc. Compound for treating cystic fibrosis
WO2022032068A1 (en) 2020-08-07 2022-02-10 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2022036060A1 (en) 2020-08-13 2022-02-17 Vertex Pharmaceuticals Incorporated Crystalline forms of cftr modulators
US11253509B2 (en) 2017-06-08 2022-02-22 Vertex Pharmaceuticals Incorporated Methods of treatment for cystic fibrosis
EP3970718A1 (en) 2020-09-18 2022-03-23 Charité - Universitätsmedizin Berlin New medical use of cystic fibrosis transmembrane conductance regulator (cftr) modulators
WO2022076627A1 (en) 2020-10-07 2022-04-14 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2022076625A1 (en) 2020-10-07 2022-04-14 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2022076622A2 (en) 2020-10-07 2022-04-14 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2022076621A1 (en) 2020-10-07 2022-04-14 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2022076626A1 (en) 2020-10-07 2022-04-14 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2022076624A1 (en) 2020-10-07 2022-04-14 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2022076629A1 (en) 2020-10-07 2022-04-14 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2022076620A1 (en) 2020-10-07 2022-04-14 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2022076618A1 (en) 2020-10-07 2022-04-14 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2022076628A1 (en) 2020-10-07 2022-04-14 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US11339128B2 (en) 2014-11-07 2022-05-24 Firmenich Incorporated Substituted 4-amino-5-(cyclohexyloxy)quinoline-3-carboxylic acids as sweet flavor modifiers
WO2022150174A1 (en) 2021-01-06 2022-07-14 AbbVie Global Enterprises Ltd. Modulators of the cystic fibrosis transmembrane conductance regulator protein and methods of use
WO2022150173A1 (en) 2021-01-06 2022-07-14 AbbVie Global Enterprises Ltd. Modulators of the cystic fibrosis transmembrane conductance regulator protein and methods of use
US11414439B2 (en) 2018-04-13 2022-08-16 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator
US11413306B2 (en) 2015-10-06 2022-08-16 Algipharma As Alginate oligomers for the treatment or prevention of microbial overgrowth in the intestinal tract
US11434201B2 (en) 2017-08-02 2022-09-06 Vertex Pharmaceuticals Incorporated Processes for preparing pyrrolidine compounds
US11465985B2 (en) 2017-12-08 2022-10-11 Vertex Pharmaceuticals Incorporated Processes for making modulators of cystic fibrosis transmembrane conductance regulator
US11517564B2 (en) 2017-07-17 2022-12-06 Vertex Pharmaceuticals Incorporated Methods of treatment for cystic fibrosis
US11584761B2 (en) 2019-08-14 2023-02-21 Vertex Pharmaceuticals Incorporated Process of making CFTR modulators
WO2023034946A1 (en) 2021-09-03 2023-03-09 Genzyme Corporation Indole compounds and uses thereof in the treatement of cystic fibrosis
WO2023034992A1 (en) 2021-09-03 2023-03-09 Genzyme Corporation Indole compounds and methods of use
WO2023044556A1 (en) * 2021-09-24 2023-03-30 Enveric Biosciences Canada Inc. Aminated psilocybin derivatives and methods of using
US11708331B2 (en) 2017-12-01 2023-07-25 Vertex Pharmaceuticals Incorporated Processes for making modulators of cystic fibrosis transmembrane conductance regulator
WO2023150237A1 (en) 2022-02-03 2023-08-10 Vertex Pharmaceuticals Incorporated Methods of treatment for cystic fibrosis
WO2023150236A1 (en) 2022-02-03 2023-08-10 Vertex Pharmaceuticals Incorporated Methods of preparing and crystalline forms of (6a,12a)-17-amino-12-methyl-6,15-bis(trifluoromethyl)-13,19-dioxa-3,4,18-triazatricyclo[ 12.3.1.12,5]nonadeca-1(18),2,4,14,16-pentaen-6-ol
WO2023154291A1 (en) 2022-02-08 2023-08-17 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2023154519A1 (en) * 2022-02-14 2023-08-17 Accent Therapeutics, Inc. Inhibitors of rna helicase dhx9 and uses thereof
WO2023196429A1 (en) 2022-04-06 2023-10-12 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2023224931A1 (en) 2022-05-16 2023-11-23 Vertex Pharmaceuticals Incorporated Methods of treatment for cystic fibrosis
WO2023224924A1 (en) 2022-05-16 2023-11-23 Vertex Pharmaceuticals Incorporated Solid forms of a macrocyclic compounds as cftr modulators and their preparation
WO2024031081A1 (en) 2022-08-04 2024-02-08 Vertex Pharmaceuticals Incorporated Compositions for the treatment of cftr-mediated diseases
EP4335434A1 (en) 2022-08-17 2024-03-13 Sanovel Ilac Sanayi Ve Ticaret A.S. Pharmaceutical compositions comprising ivacaftor
WO2024054845A1 (en) 2022-09-07 2024-03-14 Sionna Therapeutics Macrocycic compounds, compositions, and methods of using thereof
WO2024054851A1 (en) 2022-09-07 2024-03-14 Sionna Therapeutics Macrocyclic compounds, compositions and methods of using thereof
WO2024054840A1 (en) 2022-09-07 2024-03-14 Sionna Therapeutics Macrocyclic compounds, compositions, and methods of using thereof
WO2024056791A1 (en) 2022-09-15 2024-03-21 Idorsia Pharmaceuticals Ltd Combination of macrocyclic cftr modulators with cftr correctors and / or cftr potentiators
WO2024056798A1 (en) 2022-09-15 2024-03-21 Idorsia Pharmaceuticals Ltd Macrocyclic cftr modulators
US11992553B2 (en) 2014-08-29 2024-05-28 Algipharma As Inhalable powder formulations of alginate oligomers
US12122788B2 (en) 2023-01-04 2024-10-22 Vertex Pharmaceuticals Incorporated Process of making CFTR modulators

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2006111093A (en) 2003-09-06 2007-10-27 Вертекс Фармасьютикалз Инкорпорейтед (Us) MODULATORS OF ATR-BINDING CASSETTE TRANSPORTERS
NZ547220A (en) * 2003-11-14 2009-12-24 Vertex Pharma Thiazoles and oxazoles useful as modulators of ATP-binding cassette transporters
US7977322B2 (en) 2004-08-20 2011-07-12 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US20140343098A1 (en) * 2004-06-24 2014-11-20 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
DK1910384T3 (en) * 2005-08-04 2012-12-17 Sirtris Pharmaceuticals Inc IMIDAZO [2,1-B] THIAZOL DERIVATIVES AS SIRTUINE MODULATING COMPOUNDS
US8088928B2 (en) * 2005-08-04 2012-01-03 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US8093401B2 (en) * 2005-08-04 2012-01-10 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
US7855289B2 (en) * 2005-08-04 2010-12-21 Sirtris Pharmaceuticals, Inc. Sirtuin modulating compounds
JP5143738B2 (en) * 2005-08-11 2013-02-13 バーテックス ファーマシューティカルズ インコーポレイテッド Modulator of cystic fibrosis membrane conductance regulator
US20090105272A1 (en) * 2005-12-24 2009-04-23 Grootenhuis Peter D J Prodrugs of modulators of ABC transporters
US7671221B2 (en) * 2005-12-28 2010-03-02 Vertex Pharmaceuticals Incorporated Modulators of ATP-Binding Cassette transporters
CA2856037C (en) * 2005-12-28 2017-03-07 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
AU2007249269A1 (en) * 2006-05-12 2007-11-22 Vertex Pharmaceuticals Incorporated Compositions of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl)-1,4-dihydro-4-oxoquinoline-3-carboxamide
US8283351B2 (en) * 2007-04-02 2012-10-09 Institute For Oneworld Health Cyclic and acyclic hydrazine derivatives compositions including them and uses thereof
US20110009351A1 (en) * 2007-05-09 2011-01-13 Traffick Therepeutics Inc. Screening assay to identify correctors of protein trafficking defects
US8003692B2 (en) * 2007-06-15 2011-08-23 Board Of Regents, The University Of Texas System Methods and compositions to inhibit edema factor and adenylyl cyclase
CL2008001822A1 (en) * 2007-06-20 2009-03-13 Sirtris Pharmaceuticals Inc Compounds derived from thiazolo [5,4-b] pyridine; pharmaceutical composition comprising said compounds; and use of the compound in the treatment of insulin resistance, metabolic syndrome, diabetes, among others.
JP2011502984A (en) * 2007-11-01 2011-01-27 サートリス ファーマシューティカルズ, インコーポレイテッド Amide derivatives as sirtuin modulators
US20110009381A1 (en) * 2007-11-08 2011-01-13 Sirtis Pharmaceuticals, Inc. Solubilized thiazolopyridines
US20100036130A1 (en) 2007-12-07 2010-02-11 Vertex Pharmaceuticals Incorporated Processes for producing cycloalkylcarboxamido-pyridine benzoic acids
WO2009076141A2 (en) * 2007-12-07 2009-06-18 Vertex Pharmaceuticals Incorporated Formulations of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cycklopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid
US20100099677A1 (en) * 2008-04-21 2010-04-22 Institute For Oneworld Health Compounds, Compositions and Methods Comprising Thiazole Derivatives
WO2009131954A2 (en) * 2008-04-21 2009-10-29 Institute For Oneworld Health Compounds, compositions and methods comprising oxadiazole derivatives
WO2009131956A1 (en) * 2008-04-21 2009-10-29 Institute For Oneworld Health Compounds, compositions and methods comprising triazole derivatives
WO2009131947A2 (en) * 2008-04-21 2009-10-29 Institute For Oneworld Health Compounds, compositions and methods comprising pyridazine derivatives
WO2009131957A2 (en) 2008-04-21 2009-10-29 Institute For Oneworld Health Compounds, compositions and methods comprising oxadiazole derivatives
WO2009131958A2 (en) * 2008-04-21 2009-10-29 Institute For Oneworld Health Compounds, compositions and methods comprising triazine derivatives
US20090263853A1 (en) * 2008-04-21 2009-10-22 Institute For Oneworld Health High-Throughput Cell-Based CFTR Assay
US8236838B2 (en) * 2008-04-21 2012-08-07 Institute For Oneworld Health Compounds, compositions and methods comprising isoxazole derivatives
WO2010033626A1 (en) * 2008-09-19 2010-03-25 Institute For Oneworld Health Compounds, compositions and methods comprising imidazole and triazole derivatives
US20100256184A1 (en) * 2008-08-13 2010-10-07 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
CN102164587A (en) * 2008-09-29 2011-08-24 沃泰克斯药物股份有限公司 Dosage units of 3-(6-(1-(2,2-difluorobenzo [D] [1,3] dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid
UA121188C2 (en) 2008-11-06 2020-04-27 Вертекс Фармасьютікалз Інкорпорейтед ATV-CONNECTING CASSETTE CONVEYOR MODULATORS
UA104876C2 (en) * 2008-11-06 2014-03-25 Вертекс Фармасьютікалз Інкорпорейтед Modulators of atp-binding cassette transporters
EP2376502B1 (en) 2008-12-19 2015-06-17 GlaxoSmithKline LLC Thiazolopyridine sirtuin modulating compounds
TWI461197B (en) * 2009-03-12 2014-11-21 2-mercaptoquinoline-3-carboxamide as a KCNQ2 / 3 modifier
US8511216B2 (en) * 2009-03-30 2013-08-20 Kanzaki Kokyukoki Mfg. Co., Ltd. Hydraulic actuator unit
US8343976B2 (en) * 2009-04-20 2013-01-01 Institute For Oneworld Health Compounds, compositions and methods comprising pyrazole derivatives
US8703808B2 (en) 2009-06-23 2014-04-22 Centre National De La Recherche Scientifique Use of derivatives of indoles for the treatment of cancer
EP2266562A1 (en) * 2009-06-23 2010-12-29 Centre National de la Recherche Scientifique Use of derivatives of indoles for the treatment of cancer
KR20120083416A (en) 2009-09-17 2012-07-25 버텍스 파마슈티칼스 인코포레이티드 Process for preparing azabicyclic compounds
WO2011069298A1 (en) * 2009-12-11 2011-06-16 F. Hoffmann-La Roche Ag Novel cyclopropane indolinone derivatives
BR112012026257A2 (en) 2010-04-07 2017-03-14 Vertex Pharma solid forms of 3- (6- (1- (2-, 2-difluorbenzo [d] [1,3] dioxol-5-yl) cyclopropanecarboxamido) -3-methylpyridin-2-yl) benzoic acid
US8563593B2 (en) 2010-06-08 2013-10-22 Vertex Pharmaceuticals Incorporated Formulations of (R)-1-(2,2-difluorobenzo[D] [1,3] dioxol-5-yl)-N-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1H-indol-5-yl)cyclopropanecarboxamide
JP5525612B2 (en) * 2010-07-23 2014-06-18 国立大学法人 東京大学 Nitrogen-containing heterocyclic derivatives
US8802700B2 (en) * 2010-12-10 2014-08-12 Vertex Pharmaceuticals Incorporated Modulators of ATP-Binding Cassette transporters
CN102816175B (en) * 2011-06-09 2015-12-16 上海汇伦生命科技有限公司 A kind of heterocycle pyridine compounds, its intermediate, preparation method and purposes
ME02650B (en) 2011-11-08 2017-06-20 Vertex Pharma Modulators of atp-binding cassette transporters
US8674108B2 (en) 2012-04-20 2014-03-18 Vertex Pharmaceuticals Incorporated Solid forms of N-[2,4-bis(1,1-dimethylethy)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
CN103044263A (en) * 2013-01-14 2013-04-17 中国药科大学 Preparing method for medicament midbody for treating cystic fibrosis
EP2951158B1 (en) 2013-01-31 2019-05-29 Glenmark Pharmaceuticals Limited Process for the preparation of ivacaftor and solvates thereof
US9573902B2 (en) 2013-02-15 2017-02-21 Laurus Labs Private Ltd. Process for the preparation of Ivacaftor and its intermediates
GB2516138C (en) * 2013-04-09 2015-12-09 Cresset Biomolecular Discovery Ltd The treatment of inflammatory disorders
JP6410819B2 (en) * 2013-07-23 2018-10-24 バイエル ファーマ アクチエンゲゼルシャフト Substituted oxopyridine derivatives and their use as factor XIa / plasma
CA2927661A1 (en) 2013-11-13 2015-05-21 Apotex Inc. Solid forms of ivacaftor and processes for the preparation thereof
WO2015128882A2 (en) * 2014-02-27 2015-09-03 Msn Laboratories Private Limited Crystalline forms of n-(2,4-di-tert-butyl-5-hydroxyphenyl)-1,4-dihydro-4-oxoquinoline-3-carboxamide and process for the preparation thereof
PL3142701T3 (en) 2014-05-12 2018-11-30 Verona Pharma Plc New treatment
US10775304B2 (en) 2014-05-23 2020-09-15 UNIVERSITé LAVAL Fluorescent nanosensors and uses thereof
PE20170086A1 (en) * 2014-06-03 2017-03-17 Novartis Ag DERIVATIVES OF NAPHTHYRIDINADIONA
AR101704A1 (en) * 2014-08-28 2017-01-04 Otsuka Pharma Co Ltd FUSED HETEROCYCLIC COMPOUNDS
US10336703B2 (en) 2015-05-12 2019-07-02 Council Of Scientific And Industrial Research Process for the synthesis of ivacaftor and related compounds
EP3302466A4 (en) 2015-05-29 2018-12-26 Emory University 3-(phenyl)-n-(4-phenoxybenzyl)-1,2,4-oxadiazole-5-carboxamide compounds for the management of cftr protein mediated diseases
EP3804706B1 (en) 2015-05-29 2023-08-23 Emory University 2-amino-n'-benzylideneacetohydrazides and derivatives for the management of cftr protein mediated diseases
CN105130872B (en) * 2015-08-25 2018-01-30 江西师范大学 Preparation method of 3-trifluoromethyl substituted indole
ES2839299T3 (en) 2015-09-02 2021-07-05 Laurus Labs Ltd Procedures for the preparation of ivacaftor
WO2017060779A1 (en) 2015-10-06 2017-04-13 Optimus Drugs (P) Limited Industrial process for making an ivacaftor and its intermediates
US10206915B2 (en) 2016-04-25 2019-02-19 Druggability Technologies Ip Holdco Limited Complexes of Ivacaftor and its salts and derivatives, process for the preparation thereof and pharmaceutical compositions containing them
HUP1600269A2 (en) 2016-04-25 2017-10-30 Druggability Tech Ip Holdco Ltd Complexes of lumacaftor and its salts and derivatives, process for the preparation thereof and pharmaceutical compositions containing them
HUP1600271A2 (en) 2016-04-25 2017-10-30 Druggability Tech Ip Holdco Ltd Pharmaceutical composition comprising complex formulations of ivacaftor and lumacaftor and their salts and derivatives, process for their preparation thereof and pharmaceutical compositions containing them
US10383865B2 (en) 2016-04-25 2019-08-20 Druggability Technologies Ip Holdco Limited Pharmaceutical combination composition comprising complex formulations of Ivacaftor and Lumacaftor and their salts and derivatives, process for their preparation thereof and pharmaceutical compositions containing them
HUP1600270A2 (en) 2016-04-25 2017-10-30 Druggability Tech Ip Holdco Ltd Complexes of ivacaftor and its salts and derivatives, process for the preparation thereof and pharmaceutical compositions containing them
US10376501B2 (en) 2016-04-25 2019-08-13 Druggability Technologies Ip Holdco Limited Complexes of lumacaftor and its salts and derivatives, process for the preparation thereof and pharmaceutical compositions containing them
WO2017208253A2 (en) 2016-05-30 2017-12-07 Council Of Scientific & Industrial Research An improved process for the synthesis of ivacaftor
CN105884628B (en) * 2016-06-06 2018-06-29 上海工程技术大学 The preparation method of 2,4- di-t-butyl -5- amino phenols
CN106046376B (en) * 2016-06-16 2019-02-22 上海交通大学 The B of the B ' containing tert-butyl2Type Triamine monomer and its super-branched polyimide and preparation method
JOP20190086A1 (en) 2016-10-21 2019-04-18 Novartis Ag Naphthyridinone derivatives and their use in the treatment of arrhythmia
WO2018183367A1 (en) 2017-03-28 2018-10-04 Van Goor Fredrick F Methods of treating cystic fibrosis in patients with residual function mutations
WO2019071078A1 (en) * 2017-10-06 2019-04-11 Proteostasis Therapeutics, Inc. Compounds, compositions and methods for increasing cftr activity
AU2018383675A1 (en) 2017-12-13 2020-07-09 Altos Labs, Inc. Inhibitors of integrated stress response pathway
WO2019136314A1 (en) 2018-01-05 2019-07-11 The Curators Of The University Of Missouri Compounds and methods for treatment of cystic fibrosis
WO2019148195A2 (en) 2018-01-29 2019-08-01 Ohio State Innovation Foundation Cyclic peptidyl inhibitors of cal-pdz binding domain
SG11202011014VA (en) 2018-06-05 2020-12-30 Praxis Biotech LLC Inhibitors of integrated stress response pathway
CN111056950A (en) * 2018-10-16 2020-04-24 广东石油化工学院 Method for preparing 3', 4' -dichloro-2-aminobiphenyl
WO2020158870A1 (en) * 2019-01-30 2020-08-06 学校法人慶應義塾 Parkinson's disease therapeutic
US20220160698A1 (en) * 2019-04-18 2022-05-26 Kinedexe UK Limited Pharmaceutical oral liquid solution of ivacaftor
EP3982965A4 (en) * 2019-06-12 2023-01-25 Praxis Biotech LLC Modulators of integrated stress response pathway
CN111012782B (en) * 2019-12-27 2023-08-04 郑州大学第一附属医院 GPR84 inhibitor of G protein coupled receptor and application thereof
AU2021329507A1 (en) 2020-08-20 2023-03-09 The Board Of Trustees Of The Leland Stanford Junior University Methods for treating respiratory diseases characterized by mucus hypersecretion
CN113149881B (en) * 2021-03-04 2022-07-19 宁波大学 Chiral derivatization reagent and preparation method and application thereof
CN113461612B (en) * 2021-07-20 2022-10-14 上海应用技术大学 Quinolone tankyrase 2 inhibitor and preparation method and application thereof
CN113683590B (en) * 2021-08-23 2023-05-09 南京大学 Coupling reagent with azafedone structure and application thereof in preparation of polypeptide and protein conjugate
EP4321162A1 (en) 2022-08-08 2024-02-14 Consejo Superior de Investigaciones Científicas (CSIC) Antiviral agents for the treatment of infections by coronaviruses
CN115353478B (en) * 2022-08-17 2023-10-27 南京工业大学 Preparation method of indole compound
CN115961298B (en) * 2022-12-31 2024-10-01 广西师范大学 Electrochemical-mediated synthesis of 2, 3-dialkoxyl substituted indoline compound from vinylaniline and alcohol, synthesis method and application
CN116082163B (en) * 2023-01-06 2023-10-13 河北凡克新材料有限公司 Preparation method of 3',4' -difluoro-2 ' -aminobiphenyl

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005035514A2 (en) 2003-10-08 2005-04-21 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters containing cycloalkyl or pyranyl groups

Family Cites Families (332)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US574471A (en) * 1897-01-05 Corn-harvester
DE279887C (en)
FR960299A (en) 1950-04-15
US3830797A (en) * 1964-11-05 1974-08-20 Pennwalt Corp Tertiary-aliphatic-alpha-(peracyl)azo compounds
US5874424A (en) 1995-12-20 1999-02-23 Vertex Pharmaceuticals Incorporated Inhibitors of interleukin-1β converting enzyme
US3524858A (en) * 1967-05-18 1970-08-18 Warner Lambert Pharmaceutical 1,4 - dihydro-1-substituted alkyl-6,7-methylenedioxy - 4 - oxoquinoline-3-carboxylic acid
US3751406A (en) * 1967-07-24 1973-08-07 Polaroid Corp Azo compounds useful in photographic processes
DE1908548A1 (en) 1968-02-29 1970-11-05 Warner Lambert Co Quinoline derivatives
BE757639A (en) * 1969-10-17 1971-04-16 Roussel Uclaf NEW CEPHALOSPORIN DERIVATIVES AND PREPARATION PROCESS
AT308173B (en) * 1970-02-03 1973-06-25 Maurer Friedrich Soehne Bridging device for expansion joints in bridges or the like.
JPS5146719B2 (en) * 1972-06-29 1976-12-10
US4110355A (en) * 1972-12-26 1978-08-29 Polaroid Corporation Anthraquinone compounds useful in photographic processes
US3931145A (en) 1972-12-27 1976-01-06 Gaf Corporation Keto-amido containing phenylazophenyl dyestuffs
GB1433774A (en) * 1973-02-26 1976-04-28 Allen & Hanburys Ltd Heterocyclic compounds apparatus for conveying articles
GB1433151A (en) * 1973-04-05 1976-04-22 Allen & Hanburys Ltd Benzo-ij-quinolizines
FR2281761A1 (en) 1974-08-13 1976-03-12 Roussel Uclaf NEW DERIVATIVES OF 3-QUINOLEINE CARBOXYLIC ACID, THEIR METHOD OF PREPARATION AND THEIR APPLICATION AS A MEDICINAL PRODUCT
FR2324304A2 (en) 1975-09-22 1977-04-15 Roussel Uclaf Analgesic (4)-hydroxy-quinoline-(3)-amides - prepd. from a quinoline-(3)-carboxyl chloride and an amine
FR2340092A2 (en) 1976-02-09 1977-09-02 Roussel Uclaf Analgesic (N)-thiazolyl-quinoline carboxamides - prepd. from the corresp. quinoline carboxylic acid and (2)-amino-thiazole
FR2340735A1 (en) 1976-02-11 1977-09-09 Roussel Uclaf NEW DERIVATIVES OF 3-QUINOLEINE CARBOXYLIC ACID, THEIR METHOD OF PREPARATION AND THEIR APPLICATION AS A MEDICINAL PRODUCT
JPS5441319A (en) 1977-06-28 1979-04-02 Uni Sutorasukuraido Za Pharmaceutical composition for treating tropic desease
DE2808070A1 (en) * 1978-02-24 1979-08-30 Bayer Ag PROCESS FOR THE PRODUCTION OF 4-PYRIDONE-3-CARBONIC ACIDS AND / OR DERIVATIVES
FR2443467A1 (en) * 1978-12-08 1980-07-04 Roussel Uclaf NOVEL 3-QUINOLEINE CARBOXYLIC ACID DERIVATIVES, PROCESS FOR THEIR PREPARATION AND THEIR APPLICATION AS MEDICAMENT
US4312870A (en) 1979-06-21 1982-01-26 Ciba-Geigy Corporation Pyrazoloquinolines
JPS56110612A (en) 1980-02-08 1981-09-01 Yamanouchi Pharmaceut Co Ltd Readily disintegrable and absorbable compression molded article of slightly soluble drug
US4390541A (en) * 1980-12-19 1983-06-28 Lilly Industries Limited Quinolone derivatives and their use in a method of controlling an immediate hypersensitivity disease
HU190796B (en) 1981-06-12 1986-11-28 Roussel Uclaf,Fr Process for producing n-dihydrothiazolyl-3-quinoline-carboxamide derivatives
FR2509728A1 (en) * 1981-07-17 1983-01-21 Roussel Uclaf NOVEL QUINOLINE DERIVATIVES, THEIR SALTS, PREPARATION METHOD, MEDICAMENT APPLICATION AND COMPOSITIONS COMPRISING THE SAME
US4638067A (en) 1982-09-09 1987-01-20 Warner-Lambert Co. Antibacterial agents
US5281612A (en) 1982-09-09 1994-01-25 Warner-Lambert Company Naphthyridine antibacterial agents
FR2537140B1 (en) 1982-12-07 1986-07-18 Roussel Uclaf NOVEL 4-HYDROXY-3-QUINOLEINE CARBOXAMIDE DERIVATIVES, SALTS THEREOF, PROCESS FOR THEIR PREPARATION, APPLICATION AS MEDICAMENTS, AND COMPOSITIONS CONTAINING THEM
SU1360584A3 (en) 1983-08-12 1987-12-15 Варнер-Ламберт Компани (Фирма) Method of producing naphthyrydine quinoline- or benzoxazine carbolic acids or their pharmaceutically acceptable salts of acid addition
US4845105A (en) 1984-10-30 1989-07-04 Roussel Uclaf 4-OH-quinoline carboxylic acid amides having analgesic and anti-inflammatory activity
EP0180548B1 (en) * 1984-11-01 1989-06-28 Ciba-Geigy Ag Coatings stabilized against the action of light
JPH0620877B2 (en) * 1986-04-23 1994-03-23 トヨタ自動車株式会社 Vehicle acceleration slip control method
US4687539A (en) 1986-10-29 1987-08-18 International Business Machines Corp. End point detection and control of laser induced dry chemical etching
DE3702393A1 (en) 1987-01-28 1988-08-11 Bayer Ag 8-CYANO-1-CYCLOPROPYL-1,4-DIHYDRO-4-OXO- 3-CHINOLINE CARBONIC ACIDS, METHOD FOR THEIR PRODUCTION AND ANTIBACTERIAL AGENTS CONTAINING THEM
DD279887A1 (en) 1987-07-03 1990-06-20 Inst Pharmakologische Forschun METHOD OF PREPARING D-ALPHA- (4 (1H) -1,5-NAPHTHYRIDONE-3-CARBOXAMIDO) -BENZYLPENICILLIN AND OTHER BETA LACTAMANTIBIOTICS
US4777252A (en) 1987-08-13 1988-10-11 E. R. Squibb & Sons, Inc. 2-oxo-1-[[(substituted sulfonyl)amino]-carbonyl]azetidines
DE3827253A1 (en) 1987-08-20 1989-03-02 Sandoz Ag Esters and amides of cyclic carboxylic acids and cyclic alcohols and amines, processes for their preparation and therapeutic compositions containing them
DE3731516A1 (en) 1987-09-18 1989-03-30 Bayer Ag N-ARYL NITROGEN HETEROCYCLES
DE3811341A1 (en) 1987-10-09 1989-04-27 Bayer Ag 7-POSITION C-LINKED CHINOLONIC AND 1,8-NAPHTHYRIDINE-4-ON-CARBONIC ACID AND A METHOD FOR THE PRODUCTION THEREOF
JPH01116431A (en) 1987-10-30 1989-05-09 Saginomiya Seisakusho Inc Correction of mutual interference in composite force tester
US4786644A (en) * 1987-11-27 1988-11-22 Hoechst-Roussel Pharmaceuticals Inc. 1-aryl-3-quinolinecarboxamide
DE3808118A1 (en) 1988-03-11 1989-09-21 Bayer Ag METHOD FOR PRODUCING 1-CYCLOPROPYL-QUINOLON CARBONIC ACIDS AND THEIR DERIVATIVES
DE3808117A1 (en) 1988-03-11 1989-09-21 Bayer Ag N-CYCLOPROPYLANILINE AND THE USE THEREOF IN METHOD FOR THE PRODUCTION OF 1-CYCLOPROPYL-CHINOLONIC CARBONIC ACIDS AND THEIR DERIVATIVES
DE3816119A1 (en) 1988-05-11 1989-11-23 Bayer Ag 7-SUBSTITUTED CHINOLON AND NAPHTHYRIDONE CARBONIC ACID DERIVATIVES
JPH01287066A (en) 1988-05-13 1989-11-17 Fujimoto Seiyaku Kk Novel anthranilic acid derivative
JPH01168920U (en) 1988-05-18 1989-11-29
DK273689A (en) 1988-06-06 1989-12-07 Sanofi Sa 4-AMINO-3-CARBOXYQUINOLINES AND -NAPHTHYRIDINES, PROCEDURES FOR THEIR PREPARATION AND USE OF THEM IN PHARMACEUTICALS
DE3827221A1 (en) 1988-08-11 1990-02-15 Bayer Ag SUBSTITUTED N-PHENYL NITROGEN OR NITROGEN-SULFUR HETEROCYCLES, METHODS AND CORRESPONDING HETEROCYCLIC PHENOL DERIVATIVES, PHENYLISO (THIO) CYANATES AND CARBAMATES AS INTERMEDIATE PRODUCTS FOR THEIR PRODUCTION, THEIR USE IN PLANTING PLANT
US5491139A (en) 1988-10-24 1996-02-13 The Procter & Gamble Company Antimicrobial quinolonyl lactams
DE3903799A1 (en) * 1989-02-09 1990-08-16 Bayer Ag N-ARYL NITROGEN HETEROCYCLES
JPH0334977A (en) 1989-06-29 1991-02-14 Yoshitomi Pharmaceut Ind Ltd Imidazolylbenzolactam compound
DE3924052A1 (en) * 1989-07-21 1991-01-24 Bayer Ag N- (INDOL-6-YL) HETEROCYCLEN
GB2236751B (en) 1989-10-14 1993-04-28 Wyeth John & Brother Ltd Heterocyclic compounds
FR2659552B2 (en) * 1989-10-20 1994-11-04 Oreal PROCESS FOR DYEING KERATINIC FIBERS WITH AMINOINDOLES, COMPOSITION AND DEVICE FOR IMPLEMENTING SAME.
US5254135A (en) * 1989-10-20 1993-10-19 L'oreal Methods for dyeing keratinous fibres with aminoindoles, compositions and devices for use
LU87611A1 (en) * 1989-10-20 1991-05-07 Oreal TINCTORIAL COMPOSITION FOR KERATINIC FIBERS CONTAINING OXIDATION DYE PRECURSORS AND AMINO INDOLIC COUPLERS, DYEING METHODS USING SAID COMPOSITIONS AND COMPOUNDS
US5304121A (en) 1990-12-28 1994-04-19 Boston Scientific Corporation Drug delivery system making use of a hydrogel polymer coating
FR2662713B1 (en) * 1990-05-29 1994-04-08 Oreal PROCESS FOR DYEING KERATINIC FIBERS WITH AN AMINOINDOLE ASSOCIATED WITH A QUINON DERIVATIVE.
US5409503A (en) 1990-05-31 1995-04-25 Wella Aktiengesellschaft Oxidation hair dye with a content of 5-aminophenyl derivatives, process for oxidative dyeing of hair and new 5-aminophenol derivatives
DE4017516A1 (en) * 1990-05-31 1991-12-05 Wella Ag OXIDATION HAIR COLORING AGENT CONTAINING 3-AMINOPHENOL DERIVATIVES, METHOD FOR THE OXIDATIVE COLORING OF HAIR AND NEW 3-AMINOPHENOL DERIVATIVES
DE4026530A1 (en) 1990-08-22 1992-02-27 Basf Ag SYNERGISTIC AGENTS FOR REGULATING PLANT GROWTH
US5175151A (en) 1990-09-07 1992-12-29 Schering Corporation Antiviral compounds and antihypertensive compounds
AU8448491A (en) 1990-09-07 1992-03-30 Schering Corporation Antiviral compounds and antihypertensive compounds
CA2091172C (en) 1990-09-07 1997-05-20 Adriano Afonso Antiviral compounds and antihypertensive compounds
JPH04171521A (en) 1990-11-05 1992-06-18 Fujitsu Ltd Touch panel
IL100917A0 (en) 1991-02-16 1992-11-15 Fisons Plc Pyridinone and pyrimidinone derivatives,their preparation and pharmaceutical compositions containing them
CA2065106A1 (en) 1991-04-04 1992-10-05 Junichi Fukawa Silver halide photographic light-sensitive material and photographic product for film-making process
FR2675380A1 (en) * 1991-04-18 1992-10-23 Oreal PROCESS FOR DYING KERATIN FIBERS WITH AMINOINDOLES, BASIC PH, COMPOSITIONS IMPLEMENTED AND NOVEL COMPOUNDS.
US5938792A (en) * 1991-04-18 1999-08-17 L'oreal Process for dyeing keratinous fibers with aminoindoles and oxidation dye precursors at basic Ph's and dyeing agents
GB9108547D0 (en) 1991-04-22 1991-06-05 Fujisawa Pharmaceutical Co Quinoline derivatives
CA2075154A1 (en) 1991-08-06 1993-02-07 Neelakantan Balasubramanian Peptide aldehydes as antithrombotic agents
JPH05345780A (en) 1991-12-24 1993-12-27 Kumiai Chem Ind Co Ltd Pyrimidine or triazine derivative and herbicide
JPH05184185A (en) 1991-12-27 1993-07-23 Copal Electron Co Ltd Speed control method for dc brushless motor
JPH05231760A (en) 1992-02-24 1993-09-07 Sanyo Electric Co Ltd Temperature control device for refrigerator
EP0641204B1 (en) 1992-05-20 2000-08-16 Merck & Co. Inc. 17-ethers and thioethers of 4-aza-steroids
DE69329856D1 (en) 1992-05-20 2001-02-15 Merck & Co Inc ESTER DERIVATIVES OF 4-AZA STEROIDS
JPH0672979A (en) 1992-06-08 1994-03-15 Hiroyoshi Hidaka Aminobenzyl derivative
US5352690A (en) 1992-07-01 1994-10-04 Eli Lilly And Company 1,2,4-trioxygenated benzene derivatives useful as leukotriene antagonists
AU4567193A (en) 1992-07-10 1994-01-31 Laboratoires Glaxo S.A. Anilide derivatives
US5322847A (en) 1992-11-05 1994-06-21 Pfizer Inc. Azabenzimidazoles in the treatment of asthma, arthritis and related diseases
JPH06171521A (en) 1992-12-07 1994-06-21 Mitsubishi Motors Corp Hydraulic power steering device
WO1994014797A1 (en) 1992-12-23 1994-07-07 Smithkline Beecham Corporation Quinoline compounds and the treatment of leucotriene related diseases therewith
JPH06278180A (en) 1993-03-26 1994-10-04 Mitsubishi Heavy Ind Ltd Stopper device for mold opening limit
US5750754A (en) 1993-03-29 1998-05-12 Zeneca Limited Heterocyclic compounds
JP3760474B2 (en) 1993-04-22 2006-03-29 ダイキン工業株式会社 Method and apparatus for generating electric energy, and compound having NF bond used therefor
US5716981A (en) 1993-07-19 1998-02-10 Angiogenesis Technologies, Inc. Anti-angiogenic compositions and methods of use
JPH0733729A (en) 1993-07-26 1995-02-03 Kirin Brewery Co Ltd Production of n-cyano-n'-substituted-arylcarboxyimidamide compound
JPH0782498A (en) 1993-09-17 1995-03-28 Fuji Photo Film Co Ltd Bisazo compound
IL111266A (en) 1993-10-22 2002-03-10 Zeneca Ltd 2-HETEROARYL OR 2-ARYLPYRIDAZINO [4,5-b] QUINOLINE - 1, 10 - DIONES, THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
JP3319838B2 (en) 1993-11-12 2002-09-03 本田技研工業株式会社 Vehicle traction control device
JPH07179407A (en) 1993-11-12 1995-07-18 Green Cross Corp:The New condensed cyclic compound or its salt and its medicinal use
EP0746561B1 (en) 1994-02-25 1999-04-28 Laboratorios Aranda, S.A. De C.V. (Mx/Mx) Quinolonylcarboxamidocephalosporin derivatives and pharmaceutical compositions containing them
FR2720397B1 (en) 1994-05-24 1996-08-23 Laphal Laboratoires Sa New oxathiolanes, process for their preparation and pharmaceutical compositions containing them.
ATE246677T1 (en) 1994-05-27 2003-08-15 Smithkline Beecham Farma QUINOLINE DERIVATIVES AS TACHYKININ NK3 RECEPTOR ANTAGONISTS
ITMI941099A1 (en) 1994-05-27 1995-11-27 Smithkline Beecham Farma KINOLINIC DERIVATIVES
EP0705835A1 (en) 1994-09-01 1996-04-10 Ciba-Geigy Ag Quinoxalic-2,3-diones with an oxa or thiaheterocyclic fused ring
WO1996015099A1 (en) 1994-11-09 1996-05-23 Novo Nordisk A/S Heterocyclic compounds, their preparation and use
JP3556982B2 (en) 1994-12-15 2004-08-25 小島プレス工業株式会社 Luggage tray
AU4314196A (en) 1994-12-21 1996-07-10 Yamanouchi Pharmaceutical Co., Ltd. Solid composition with improved solubility and absorbability
GB9501567D0 (en) 1995-01-26 1995-03-15 Pharmacia Spa Hydrosoluble 3-arylidene-2-oxindole derivatives as tyrosine kinase inhibitors
US6099562A (en) 1996-06-13 2000-08-08 Schneider (Usa) Inc. Drug coating with topcoat
JPH08301849A (en) 1995-05-01 1996-11-19 Takeda Chem Ind Ltd Heteroring compound and its production
JPH0971534A (en) 1995-06-26 1997-03-18 Tanabe Seiyaku Co Ltd Pharmaceutical composition
DE19601142A1 (en) 1995-07-13 1997-01-16 Agfa Gevaert Ag Colour photographic process and material using masked developer - combining high colour densities with decreased fogging and sensitivity to process variations, also allowing use of developer free baths
ATE258437T1 (en) 1995-08-02 2004-02-15 Darwin Discovery Ltd QUINOLONES AND THEIR THERAPEUTIC USE
EP0841929B1 (en) * 1995-08-02 2003-05-07 Darwin Discovery Limited Quinolones and their therapeutic use
US5721474A (en) 1995-08-11 1998-02-24 Samsung Electronics Co., Ltd. Method and apparatus for preventing excessive current flow in a motor
DE19532235A1 (en) 1995-08-31 1997-03-06 Keppler Bernhard K Priv Doz Dr New antibacterial contg. osteotropic mol. fragments
DE69623655T2 (en) 1995-10-19 2003-04-24 Takeda Chemical Industries, Ltd. CHINOLINE DERIVATIVES AS GNRH ANTAGONISTS
NZ325248A (en) * 1995-12-23 1999-09-29 Pfizer Res & Dev Quinoline and quinazoline compounds useful in therapy
WO1997030999A1 (en) * 1996-02-21 1997-08-28 Darwin Discovery Limited Quinolones and their therapeutic use
US6215016B1 (en) 1996-03-27 2001-04-10 Toray Industries, Inc. Ketone derivatives and medical application thereof
DE19615262A1 (en) 1996-04-18 1997-10-23 Bayer Ag Hetero-linked phenylglycinolamides
BR9709105A (en) 1996-05-20 1999-08-03 Darwin Discovery Ltd Quinoline sulfonamides as tnf inhibitors and as pde-iv inhibitors
PL329922A1 (en) 1996-05-20 1999-04-26 Darwin Discovery Ltd Quinoline carboxamides as inhibitors of the tumour necrosis factor and of phosphodiesterase
CA2258822A1 (en) 1996-06-20 1997-12-24 Sean Kerwin Compounds and methods for providing pharmacologically active preparations and uses thereof
AU3671897A (en) 1996-07-23 1998-02-10 Neurogen Corporation Certain amido- and amino-substituted benzylamine derivatives; a new class of neuropeptite y1 specific ligands
GB9717576D0 (en) 1997-08-19 1997-10-22 Xenova Ltd Pharmaceutical compounds
US6069151A (en) 1996-11-06 2000-05-30 Darwin Discovery, Ltd. Quinolines and their therapeutic use
DE19651099A1 (en) 1996-12-09 1998-06-10 Consortium Elektrochem Ind Multi-component system for changing, breaking down or bleaching lignin, lignin-containing materials or similar substances as well as methods for their use
DE19654147A1 (en) * 1996-12-23 1998-06-25 Basf Ag Use of aminoisothiazoles as microbicides
AU6209098A (en) 1997-01-15 1998-08-07 Novartis Ag Herbicidal agent
US5948814A (en) 1997-02-20 1999-09-07 The Curators Of The University Of Missouri Genistein for the treatment of cystic fibrosis
ZA986594B (en) 1997-07-25 1999-01-27 Abbott Lab Urokinase inhibitors
US6258822B1 (en) 1997-08-06 2001-07-10 Abbott Laboratories Urokinase inhibitors
EP0901786B1 (en) 1997-08-11 2007-06-13 Pfizer Products Inc. Solid pharmaceutical dispersions with enhanced bioavailability
IL133420A (en) 1997-08-26 2004-07-25 Aventis Pharma Inc Pharmaceutical composition in form of tablet comprising combination of antihistaminic piperidinoalkanol with decongestant sympathomimetic drug
US6429207B1 (en) 1997-11-21 2002-08-06 Nps Pharmaceuticals, Inc. Metabotropic glutamate receptor antagonists and their use for treating central nervous system diseases
TR200002616T2 (en) 1997-12-22 2000-11-21 Bayer Corporation Inhibition of raf kinase using symmetric and asymmetrically substituted diphenyl ureas
CN1300279A (en) * 1998-03-12 2001-06-20 诺沃挪第克公司 Modulators of protein tyrosine phosphatases
ATE308546T1 (en) * 1998-03-12 2005-11-15 Novo Nordisk As MODULATORS OF PROTEIN TYROSINE PHOSPHATASE (PTPASES)
WO1999046267A1 (en) 1998-03-12 1999-09-16 Novo Nordisk A/S Modulators of protein tyrosine phosphatases (ptpases)
WO1999046237A1 (en) 1998-03-12 1999-09-16 Novo Nordisk A/S Modulators of protein tyrosine phosphatases
DE19818614A1 (en) 1998-04-20 1999-10-21 Basf Ag New benzamide derivatives useful as cysteine protease inhibitors for treating neurodegenerative diseases, neuronal damage, stroke, cranial trauma, Alzheimer's disease, etc.
JP2000016982A (en) 1998-06-30 2000-01-18 Kumiai Chem Ind Co Ltd Quinoline derivative and weedkiller containing the same as active component
US6133285A (en) 1998-07-15 2000-10-17 Active Biotech Ab Quinoline derivatives
WO2000006549A1 (en) 1998-07-28 2000-02-10 Nihon Nohyaku Co., Ltd. Fused-heterocycle dicarboxylic diamide derivatives or salts thereof, herbicides and usage thereof
TR200100286T2 (en) 1998-08-03 2001-07-23 Applied Research Systems Ars Holding N.V. Process for the synthesis of (1H) -Benzo [C] quinolizine-3-one derivatives.
US7001770B1 (en) 1998-10-15 2006-02-21 Canji, Inc. Calpain inhibitors and their applications
FR2786483B1 (en) 1998-12-01 2001-02-16 Rhodia Chimie Sa PROCESS FOR THE PREPARATION OF 4-HYDROXYQUINOLEINS AND / OR TAUTOMERIC FORMS
US6248736B1 (en) 1999-01-08 2001-06-19 Pharmacia & Upjohn Company 4-oxo-1,4-dihydro-3-quinolinecarboxamides as antiviral agents
US6248739B1 (en) 1999-01-08 2001-06-19 Pharmacia & Upjohn Company Quinolinecarboxamides as antiviral agents
DK1033364T3 (en) 1999-03-01 2005-06-06 Pfizer Prod Inc Cyanic oxamic acids and derivatives as thyroid receptor ligands
JP2000256358A (en) * 1999-03-10 2000-09-19 Yamanouchi Pharmaceut Co Ltd Pyrazole derivative
CA2371472A1 (en) 1999-05-06 2000-11-16 Neurogen Corporation Substituted 4-oxo-quinoline-3-carboxamides: gaba brain receptor ligands
AR028299A1 (en) 1999-09-17 2003-05-07 Novartis Ag A PHARMACEUTICAL COMPOSITION THAT INCLUDES NATEGLINIDA, A PROCESS FOR ITS PREPARATION AND THE USE OF SUCH COMPOSITION FOR THE PREPARATION OF A MEDICINAL PRODUCT FOR THE TREATMENT OF METABOLIC DISORDERS, ESPECIALLY DIABETES, OR A DISEASE OR CONDITION ASSOCIATED WITH DIABETY.
SE0002320D0 (en) 1999-10-25 2000-06-21 Active Biotech Ab Malignant tumors
RS51019B (en) 1999-10-25 2010-10-31 Active Biotech Ab. Drugs for the treatment of malignant tumours
DE19951671A1 (en) 1999-10-27 2001-05-03 Basf Ag 2- (4,6-Dimethyl-pyrimidin-2-yloxy) -3- (2- (3,4-dimethoxyphenyl) ethoxy) -3,3-diphenylpropionic acid sodium salt and its use as an endothelin antagonist
WO2001030757A1 (en) * 1999-10-28 2001-05-03 Microcide Pharmaceuticals, Inc. Drug discharge pump inhibitors
JP2001199965A (en) * 1999-11-08 2001-07-24 Sankyo Co Ltd Nitrogen-containing heterocyclic derivative
WO2001034570A1 (en) * 1999-11-08 2001-05-17 Sankyo Company, Limited Nitrogenous heterocycle derivatives
UA75055C2 (en) 1999-11-30 2006-03-15 Пфайзер Продактс Інк. Benzoimidazole derivatives being used as antiproliferative agent, pharmaceutical composition based thereon
GT200000203A (en) 1999-12-01 2002-05-24 COMPOUNDS, COMPOSITIONS AND METHODS TO STIMULATE THE GROWTH AND ELONGATION OF NEURONS.
US20030181449A1 (en) * 1999-12-23 2003-09-25 Urbanek Rebecca Ann Methods and compositions for the treatment of pain
JP2001233859A (en) 2000-02-23 2001-08-28 Yamanouchi Pharmaceut Co Ltd New method for producing anti-helicobacter pylori compound and its intermediate
WO2001070742A1 (en) * 2000-03-21 2001-09-27 Pharmacia & Upjohn Company 4-hydroxy-1,8-naphthyridine-3-carboxamides as antiviral agents
GB0011409D0 (en) 2000-05-11 2000-06-28 Smithkline Beecham Plc Novel compounds
CA2405972C (en) 2000-05-17 2010-03-23 Gottfried Seifert Process for the preparation of aniline compounds
US6800297B2 (en) 2000-06-15 2004-10-05 Acusphere, Inc. Porous COX-2 inhibitor matrices and methods of manufacture thereof
AU2001268691A1 (en) * 2000-06-29 2002-01-21 Clairol Incorporated Iodo-containing organic couplers for use in oxidative hair dyeing
CN1441794A (en) 2000-07-13 2003-09-10 武田药品工业株式会社 Lipid-rich plague inhibitors
WO2002012189A1 (en) 2000-08-09 2002-02-14 Mitsubishi Pharma Corporation Fused bicyclic amide compounds and medicinal use thereof
WO2002038126A2 (en) 2000-11-08 2002-05-16 Aeromatic-Fielder Ag A process for production of particles for pharmaceutical compositions having increased bioavailability
JP2002212179A (en) 2001-01-15 2002-07-31 Wakunaga Pharmaceut Co Ltd New anilide derivative or salt thereof and medicine containing the same
GB2372986A (en) 2001-01-17 2002-09-11 Xenova Ltd 2-oxo, 4-hydroxy pyrroles and quinolines
GB0102687D0 (en) * 2001-02-02 2001-03-21 Pharmacia & Upjohn Spa Oxazolyl-pyrazole derivatives active as kinase inhibitors,process for their preparation and pharmaceutical compositions comprising them
US20100074949A1 (en) 2008-08-13 2010-03-25 William Rowe Pharmaceutical composition and administration thereof
TWI243164B (en) 2001-02-13 2005-11-11 Aventis Pharma Gmbh Acylated indanyl amines and their use as pharmaceuticals
DE10108271A1 (en) 2001-02-21 2002-08-22 Schering Ag New oxo substituted quinoline, isoquinoline and phthalazine derivatives useful as GnRH antagonists in male fertility control, female infertility and contraception and tumor control
US6515001B2 (en) 2001-03-05 2003-02-04 Chemokine Therapeutic Corporation IL-8 receptor ligands-drugs for inflammatory and autoimmune diseases
DE10110750A1 (en) 2001-03-07 2002-09-12 Bayer Ag Novel aminodicarboxylic acid derivatives with pharmaceutical properties
DK1379239T3 (en) * 2001-03-29 2008-01-07 Lilly Co Eli N (2-aryl-ethyl) -benzylamines as antagonists of the HT6 receptor
US6878713B2 (en) 2001-04-25 2005-04-12 Wockhardt Limited Generation triple-targeting, chiral, broad-spectrum antimicrobial 7-substituted piperidino-quinolone carboxylic acid derivatives, their preparation, compositions and use as medicaments
JP2002322054A (en) 2001-04-26 2002-11-08 Dai Ichi Seiyaku Co Ltd Drug discharging pump inhibitor
JP2002322154A (en) 2001-04-27 2002-11-08 Dai Ichi Seiyaku Co Ltd Antifungal compound
JP2002326935A (en) * 2001-05-07 2002-11-15 Sankyo Co Ltd Medicine containing nitrogen-containing heterocyclic derivative
CA2448076A1 (en) 2001-05-24 2002-11-28 Masahiko Hayakawa 3-quinoline-2-(1h)-ylideneindolin-2-one derivatives
JP2003012667A (en) 2001-06-26 2003-01-15 Rrf Kenkyusho:Kk Antimicrobial agent having quinolin carboxamide skelton
JP4047658B2 (en) 2001-09-18 2008-02-13 株式会社リコー Single layer type electrophotographic photosensitive member, electrophotographic method, electrophotographic apparatus, and process cartridge for electrophotographic apparatus
WO2003024409A2 (en) 2001-09-21 2003-03-27 Case Western Reserve University Q4n2neg2 enhances cftr activity
CA2462442A1 (en) 2001-10-12 2003-04-24 Warner-Lambert Company Llc Alkyne matrix metalloproteinase inhibitors
TW200300349A (en) * 2001-11-19 2003-06-01 Sankyo Co A 4-oxoqinoline derivative
US7084156B2 (en) 2001-11-27 2006-08-01 Merck & Co., Inc. 2-Aminoquinoline compounds
MXPA04005427A (en) 2001-12-10 2005-04-19 Amgen Inc Vanilloid receptor ligands and their use in treatments.
EP1469830A2 (en) 2002-02-01 2004-10-27 Pfizer Products Inc. Method for making homogeneous spray-dried solid amorphous drug dispersions using pressure nozzles
JP2003238413A (en) 2002-02-14 2003-08-27 Kyowa Hakko Kogyo Co Ltd Steroid sulfatase inhibitor
DE20221945U1 (en) 2002-03-15 2009-10-15 Wella Aktiengesellschaft Quinolinium salt-containing colorants
US6930131B2 (en) 2002-04-10 2005-08-16 Wyeth Aryl substituted 3-ethoxy phenyl trifluoromethane sulfonamides for the treatment of non-insulin dependent diabetes mellitus (NIDDM)
EP1500652A4 (en) 2002-04-26 2006-05-03 Nippon Shinyaku Co Ltd Quinazoline derivative and medicine
US7037913B2 (en) 2002-05-01 2006-05-02 Bristol-Myers Squibb Company Bicyclo 4.4.0 antiviral derivatives
ES2319176T3 (en) 2002-05-14 2009-05-05 The Regents Of The University Of California QUINOLONA-CARBOXILIC ACIDS SUBSTITUTED, ITS DERIVATIVES, SITE OF ACTION AND USE OF THE SAME.
WO2003095447A1 (en) 2002-05-14 2003-11-20 Xenova Limited Process for the preparation of a hydrate of an anthranilic acid derivative
DE10222968A1 (en) * 2002-05-23 2003-12-04 Basf Ag Process for the preparation of isocyanates
SE0201669D0 (en) 2002-06-03 2002-06-03 Pharmacia Ab New formulation and use thereof
KR20050029209A (en) 2002-07-15 2005-03-24 미리어드 제네틱스, 인크. Compounds, compositions, and methods employing same
US20040033959A1 (en) 2002-07-19 2004-02-19 Boehringer Ingelheim Pharmaceuticals, Inc. Pharmaceutical compositions for hepatitis C viral protease inhibitors
JP2006503008A (en) 2002-08-13 2006-01-26 ワーナー−ランバート カンパニー リミティド ライアビリティー カンパニー 4-Hydroxyquinoline derivatives as matrix metalloproteinase inhibitors
TWI314041B (en) 2002-10-21 2009-09-01 Sankyo Agro Co Ltd Quinolyl-3-carboxamide compound
AR042206A1 (en) * 2002-11-26 2005-06-15 Novartis Ag PHENYLACETIC ACIDS AND DERIVATIVES
JP2004189738A (en) * 2002-11-29 2004-07-08 Nippon Nohyaku Co Ltd Substituted anilide derivative, its intermediate, agricultural horticultural chemical and usage of the same
WO2004080972A1 (en) 2003-03-12 2004-09-23 Vertex Pharmaceuticals Incorporated Pirazole modulators of atp-binding cassette transporters
WO2004105779A2 (en) 2003-05-27 2004-12-09 Cesare Montecucco Green tea and oplyphenol inhibitors of bacterial proteases
DE602004022819D1 (en) 2003-06-06 2009-10-08 Vertex Pharma TRANSPORTER OF ATP-BINDING CASSETTE
CA2530352A1 (en) 2003-07-24 2005-02-03 Astellas Pharma Inc. Quinolone derivative or salt thereof
CN1191252C (en) 2003-08-11 2005-03-02 中国药科大学 3-position substituted quinolone derivativers and its use in pharmacy
RU2006111093A (en) 2003-09-06 2007-10-27 Вертекс Фармасьютикалз Инкорпорейтед (Us) MODULATORS OF ATR-BINDING CASSETTE TRANSPORTERS
US20050059035A1 (en) 2003-09-09 2005-03-17 Quest Diagnostics Incorporated Methods and compositions for the amplification of mutations in the diagnosis of cystic fibrosis
DK1663182T4 (en) 2003-09-12 2020-02-17 Amgen Inc Fast dissolving formulation of cinacalcet HCl
US7223759B2 (en) 2003-09-15 2007-05-29 Anadys Pharmaceuticals, Inc. Antibacterial 3,5-diaminopiperidine-substituted aromatic and heteroaromatic compounds
CN100563658C (en) 2003-11-14 2009-12-02 味之素株式会社 The solid dispersion of phenylalanine derivative or solid dispersion pharmaceutical preparation
NZ547220A (en) 2003-11-14 2009-12-24 Vertex Pharma Thiazoles and oxazoles useful as modulators of ATP-binding cassette transporters
US20050208095A1 (en) 2003-11-20 2005-09-22 Angiotech International Ag Polymer compositions and methods for their use
JP2007516259A (en) 2003-12-09 2007-06-21 メッドクリスタルフォームズ、エルエルシー Method for preparing mixed phase co-crystal with activator
BRPI0507278A (en) 2004-01-30 2007-06-26 Vertex Pharma modulators of atp-binding cassette transporters
JP2007519756A (en) 2004-01-30 2007-07-19 アンジオテック インターナショナル アーゲー Compositions and methods for treating contracture
US7977322B2 (en) 2004-08-20 2011-07-12 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
SE0400235D0 (en) 2004-02-06 2004-02-06 Active Biotech Ab New composition containing quinoline compounds
WO2005094805A1 (en) * 2004-04-01 2005-10-13 Institute Of Medicinal Molecular Design. Inc. Imine derivative and amide derivative
JP2006206612A (en) 2004-05-27 2006-08-10 Ono Pharmaceut Co Ltd Composition for solid preparation
EP1765347A4 (en) 2004-06-04 2008-10-01 Univ California Compounds having activity in increasing ion transport by mutant-cftr and uses thereof
BR122018075478B8 (en) * 2004-06-24 2023-10-31 Vertex Pharma atp link cassette carrier modulators
US20140343098A1 (en) 2004-06-24 2014-11-20 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
US8354427B2 (en) * 2004-06-24 2013-01-15 Vertex Pharmaceutical Incorporated Modulators of ATP-binding cassette transporters
WO2006014427A1 (en) 2004-07-02 2006-02-09 Advancis Pharmaceutical Corporation Tablet for pulsed delivery
AU2005286719B2 (en) 2004-09-21 2011-03-24 Bone Solutions, Inc. Multi-purpose bio-material composition
WO2006099256A2 (en) 2005-03-11 2006-09-21 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
RU2007138584A (en) 2005-03-18 2009-04-27 Дзе Риджентс Оф Дзе Юниверсити Оф Калифорния (Us) ACTIVITY COMPOUNDS FOR CORRECTION OF MUTANT CFTR PROCESSING, AND THEIR APPLICATION
WO2006118017A1 (en) 2005-04-28 2006-11-09 Eisai R & D Management Co., Ltd. Stabilized composition
ATE533749T1 (en) 2005-05-24 2011-12-15 Vertex Pharma MODULATORS OF ATP-BINDING CASSETTE TRANSPORTERS
ES2367844T3 (en) 2005-08-11 2011-11-10 Vertex Pharmaceuticals, Inc. MODULATORS OF THE REGULATOR OF THE TRANSMEMBRANE CONDUCTANCE OF THE CHYSICAL FIBROSIS.
JP5143738B2 (en) 2005-08-11 2013-02-13 バーテックス ファーマシューティカルズ インコーポレイテッド Modulator of cystic fibrosis membrane conductance regulator
AU2006302371A1 (en) 2005-10-06 2007-04-19 Vertex Pharmaceuticals Incorporated Modulators of ATP-Binding cassette transporters
ES2439736T3 (en) 2005-11-08 2014-01-24 Vertex Pharmaceuticals Incorporated Heterocyclic modulators of ATP binding cassette transporters
US20120232059A1 (en) 2005-11-08 2012-09-13 Vertex Pharmaceuticals Incorporated Modulators of ATP-Binding Cassette Transporters
US20080057047A1 (en) 2005-11-29 2008-03-06 Benedikt Sas Use of bacillus amyloliquefaciens PB6 for the prophylaxis or treatment of gastrointestinal and immuno-related diseases
WO2007067559A2 (en) 2005-12-06 2007-06-14 Regents Of The University Of Minnesota Antibacterial agents
US20090105272A1 (en) 2005-12-24 2009-04-23 Grootenhuis Peter D J Prodrugs of modulators of ABC transporters
BRPI0620578A2 (en) 2005-12-27 2011-12-06 Jubilant Organosys Ltd pharmaceutical composition that dissolves in the mouth and process for the preparation thereof
CA2635214A1 (en) 2005-12-27 2007-07-05 Vertex Pharmaceuticals Incorporated Compounds useful in cftr assays and methods therewith
HUE049976T2 (en) 2005-12-28 2020-11-30 Vertex Pharma Pharmaceutical compositions of the amorphous form of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US7671221B2 (en) 2005-12-28 2010-03-02 Vertex Pharmaceuticals Incorporated Modulators of ATP-Binding Cassette transporters
CA2856037C (en) 2005-12-28 2017-03-07 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
CN101443314B (en) 2006-03-13 2014-04-09 杏林制药株式会社 Aminoquinolones as GSK-3 inhibitors
WO2007106957A1 (en) 2006-03-21 2007-09-27 Laboratoires Smb S.A. Multiple units controlled-release floating dosage forms
US10022352B2 (en) 2006-04-07 2018-07-17 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US7645789B2 (en) 2006-04-07 2010-01-12 Vertex Pharmaceuticals Incorporated Indole derivatives as CFTR modulators
RU2451018C2 (en) 2006-04-07 2012-05-20 Вертекс Фармасьютикалз Инкорпорейтед Modulators of atp-binding cassette transporters
NZ572201A (en) 2006-04-20 2011-09-30 Janssen Pharmaceutica Nv Inhibitors of c-fms kinase
AU2007249269A1 (en) * 2006-05-12 2007-11-22 Vertex Pharmaceuticals Incorporated Compositions of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl)-1,4-dihydro-4-oxoquinoline-3-carboxamide
US20090285887A1 (en) 2006-09-12 2009-11-19 Omar Abdelfattah Abu-Baker Pharmaceutical Composition Comprising A Plurality of Mini-Tablets Comprising A Factor XA Inhibitor
US8563573B2 (en) 2007-11-02 2013-10-22 Vertex Pharmaceuticals Incorporated Azaindole derivatives as CFTR modulators
EP2118103B1 (en) 2006-11-03 2014-04-23 Vertex Pharmaceuticals Inc. Azaindole derivatives as cftr modulators
US7754739B2 (en) 2007-05-09 2010-07-13 Vertex Pharmaceuticals Incorporated Modulators of CFTR
WO2008083130A2 (en) 2006-12-26 2008-07-10 Dr. Reddy's Laboratories Limited Amorphous and crystalline form a of carvedilol phosphate
CN104447716A (en) 2007-05-09 2015-03-25 沃泰克斯药物股份有限公司 Modulators of CFTR
ES2548292T3 (en) 2007-05-25 2015-10-15 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US20110177999A1 (en) 2007-08-09 2011-07-21 Vertex Pharmaceuticals Incorporated Therapeutic Combinations Useful in Treating CFTR Related Diseases
WO2009038913A2 (en) 2007-08-24 2009-03-26 Vertex Pharmaceuticals Incorporated Isothiazolopyridinones useful for the treatment of (inter alia) cystic fibrosis
CN101821266B (en) 2007-09-14 2014-03-12 沃泰克斯药物股份有限公司 Modulators of cystic fibrosis transmembrane conductance regulator
NZ600865A (en) * 2007-09-14 2014-01-31 Vertex Pharma Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
CA2705562C (en) 2007-11-16 2016-05-17 Vertex Pharmaceuticals Incorporated Isoquinoline modulators of atp-binding cassette transporters
WO2009076141A2 (en) 2007-12-07 2009-06-18 Vertex Pharmaceuticals Incorporated Formulations of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cycklopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid
CN101910156B (en) 2007-12-07 2013-12-04 沃泰克斯药物股份有限公司 Solid forms of 3-(6-(1-(2,2-difluorobenzo[d][1,3] dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl) benzoic acid
US20100036130A1 (en) 2007-12-07 2010-02-11 Vertex Pharmaceuticals Incorporated Processes for producing cycloalkylcarboxamido-pyridine benzoic acids
CA2989620C (en) 2007-12-07 2022-05-03 Vertex Pharmaceuticals Incorporated Processes for producing cycloalkylcarboxamido-pyridine benzoic acids
JP5637859B2 (en) 2007-12-13 2014-12-10 バーテックス ファーマシューティカルズ インコーポレイテッドVertex Pharmaceuticals Incorporated Modulator of cystic fibrosis membrane conductance regulator
EP2271622B1 (en) 2008-02-28 2017-10-04 Vertex Pharmaceuticals Incorporated Heteroaryl derivatives as CFTR Modulators
PT2615085E (en) 2008-03-31 2015-10-09 Vertex Pharma Pyridyl derivatives as cftr modulators
JP5575768B2 (en) 2008-08-13 2014-08-20 バーテックス ファーマシューティカルズ インコーポレイテッド Pharmaceutical composition and its administration
US20100256184A1 (en) * 2008-08-13 2010-10-07 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
WO2010025126A1 (en) 2008-08-26 2010-03-04 Cystic Fibrosis Foundation Therapeutics, Inc. Rapidly disintegrating tablets comprising lipase, amylase, and protease
CN102164587A (en) 2008-09-29 2011-08-24 沃泰克斯药物股份有限公司 Dosage units of 3-(6-(1-(2,2-difluorobenzo [D] [1,3] dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid
EA018891B1 (en) 2008-10-23 2013-11-29 Вертекс Фармасьютикалз, Инкорпорейтед Modulators of cystic fibrosis transmembrane conductance regulator
JP5645834B2 (en) 2008-10-23 2014-12-24 バーテックス ファーマシューティカルズ インコーポレイテッドVertex Pharmaceuticals Incorporated Modulator of cystic fibrosis membrane conductance regulator
JP5645835B2 (en) 2008-10-23 2014-12-24 バーテックス ファーマシューティカルズ インコーポレイテッドVertex Pharmaceuticals Incorporated N- (4- (7-azabicyclo [2.2.1] heptane-7-yl) -2- (trifluoromethyl) phenyl) -4-oxo-5- (trifluoromethyl) -1,4-dihydro Solid form of quinoline-3-carboxamide
US20110257223A1 (en) 2008-10-23 2011-10-20 Vertex Pharmaceuticals Incorporated Modulators of Cystic Fibrosis Transmembrane Conductance Regulator
UA104876C2 (en) 2008-11-06 2014-03-25 Вертекс Фармасьютікалз Інкорпорейтед Modulators of atp-binding cassette transporters
UA121188C2 (en) 2008-11-06 2020-04-27 Вертекс Фармасьютікалз Інкорпорейтед ATV-CONNECTING CASSETTE CONVEYOR MODULATORS
US8321242B1 (en) * 2008-12-02 2012-11-27 Fox Chase Bank Personalized time release messaging
EP2382197B1 (en) 2008-12-30 2016-10-05 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
SG10201504084QA (en) 2009-03-20 2015-06-29 Vertex Pharma Process for making modulators of cystic fibrosis transmembrane conductance regulator
CA2755969C (en) 2009-03-20 2018-05-08 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
KR20120083416A (en) 2009-09-17 2012-07-25 버텍스 파마슈티칼스 인코포레이티드 Process for preparing azabicyclic compounds
EP2490687A1 (en) 2009-10-22 2012-08-29 Vertex Pharmaceuticals Incorporated Compositions for treatment of cystic fibrosis and other chronic diseases
CA2778493A1 (en) 2009-10-23 2011-04-28 Vertex Pharmaceuticals Incorporated Solid forms of n-(4-(7-azabicyclo[2.2.1]heptan-7-yl)-2-trifluoromethyl)phenyl)-4-oxo-5-(trifluoromethyl)-1,4-dihydroquinoline-3-carboxamide
CN102648182A (en) 2009-10-23 2012-08-22 沃泰克斯药物股份有限公司 Process for preparing modulators of cystic fibrosis transmembrane conductance regulator
CN103180298A (en) 2010-03-19 2013-06-26 沃泰克斯药物股份有限公司 Solid form of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydr o-4-oxoquinoline-3-carboxamide
US8802868B2 (en) 2010-03-25 2014-08-12 Vertex Pharmaceuticals Incorporated Solid forms of (R)-1(2,2-difluorobenzo[D][1,3]dioxo1-5-yl)-N-(1-(2,3-dihydroxypropyl-6-fluoro-2-(1-hydroxy-2-methylpropan2-yl)-1H-Indol-5-yl)-Cyclopropanecarboxamide
PT2826776T (en) 2010-03-25 2021-02-01 Vertex Pharma Solid amorphous form of (r)-1(2,2-difluorobenzo(d)(1,3)dioxol-5-yl)-n-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1h-indol-5-yl)-cyclopropanecarboxamide
DK3150198T3 (en) 2010-04-07 2021-11-01 Vertex Pharma PHARMACEUTICAL COMPOSITIONS OF 3- (6- (1- (2,2-DIFLUOROBENZO [D] [1,3] DIOXOL-5-YL) -CYCLOPROPANCARBOXAMIDO) -3-METHYLPYRIODIN-2-YL) BENZOIC ACID AND ADMINISTRATION
BR112012026257A2 (en) 2010-04-07 2017-03-14 Vertex Pharma solid forms of 3- (6- (1- (2-, 2-difluorbenzo [d] [1,3] dioxol-5-yl) cyclopropanecarboxamido) -3-methylpyridin-2-yl) benzoic acid
NZ603043A (en) * 2010-04-22 2015-02-27 Vertex Pharma Pharmaceutical compositions comprising cftr modulators and administrations thereof
EP2560651A1 (en) 2010-04-22 2013-02-27 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions and administrations thereof
EP2560649A1 (en) * 2010-04-22 2013-02-27 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions and administrations thereof
MX2012012204A (en) 2010-04-22 2012-12-05 Vertex Pharma Process of producing cycloalkylcarboxamido-indole compounds.
AU2011255237A1 (en) 2010-05-20 2012-11-29 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions and administrations thereof
US8404849B2 (en) 2010-05-20 2013-03-26 Vertex Pharmaceuticals Processes for producing modulators of cystic fibrosis transmembrane conductance regulator
US8563593B2 (en) 2010-06-08 2013-10-22 Vertex Pharmaceuticals Incorporated Formulations of (R)-1-(2,2-difluorobenzo[D] [1,3] dioxol-5-yl)-N-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1H-indol-5-yl)cyclopropanecarboxamide
FR2961171B1 (en) 2010-06-10 2013-03-08 Messier Bugatti AIRCRAFT EQUIPPED WITH AN AUTONOMOUS DISPLACEMENT DEVICE.
WO2011163614A2 (en) 2010-06-24 2011-12-29 Meritage Pharma, Inc. Methods of treatment for esophageal inflammation
MX2013002035A (en) 2010-08-23 2013-03-25 Vertex Pharma Pharmaceutical composition of (r)-1-(2,2-difluorobenzo[d][1,3]dio xol-5-yl)-n-(1-(2,3-dihydroxy propyl)-6-fluoro-2-(1-hydroxy-2-met hylpropan-2-yl)-1h-indol-5-yl) cyclopropanecarboxamide and administration therof.
RU2013113627A (en) 2010-08-27 2014-10-10 Вертекс Фармасьютикалз Инкорпорейтед PHARMACEUTICAL COMPOSITION AND ITS INTRODUCTION
CN102487499B (en) * 2010-12-01 2015-05-27 华为技术有限公司 Method for re-directing tunnel and interworking function entity
US8802700B2 (en) * 2010-12-10 2014-08-12 Vertex Pharmaceuticals Incorporated Modulators of ATP-Binding Cassette transporters
AR086745A1 (en) 2011-06-27 2014-01-22 Parion Sciences Inc 3,5-DIAMINO-6-CHLORINE-N- (N- (4- (4- (2- (HEXIL (2,3,4,5,6-PENTAHYDROXIHEXIL)) AMINO) ETOXI) PHENYL) BUTIL) CARBAMIMIDOIL) PIRAZINA -2-CARBOXAMIDE
AU2012332225A1 (en) 2011-11-02 2014-05-15 Vertex Pharmaceuticals Incorporated Use of (N- [2, 4 -bis (1, 1 -dimethylethyl) - 5 - hydroxyphenyl] - 1, 4 - dihydro - 4 - oxoquinoline - 3 - ca rboxamide) for treating CFTR mediated diseases
US20140127901A1 (en) 2012-11-08 2014-05-08 Taiwan Semiconductor Manufacturing Company, Ltd. Low-k damage free integration scheme for copper interconnects
ME02650B (en) 2011-11-08 2017-06-20 Vertex Pharma Modulators of atp-binding cassette transporters
CA2862859C (en) 2012-01-25 2022-08-02 Vertex Pharmaceuticals Incorporated Formulations of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid
CN109966264A (en) 2012-02-27 2019-07-05 沃泰克斯药物股份有限公司 Pharmaceutical composition and its application
US8674108B2 (en) 2012-04-20 2014-03-18 Vertex Pharmaceuticals Incorporated Solid forms of N-[2,4-bis(1,1-dimethylethy)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
AU2013270681A1 (en) 2012-06-08 2014-12-18 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions for the treatment of CFTR -mediated disorders
AR092857A1 (en) 2012-07-16 2015-05-06 Vertex Pharma PHARMACEUTICAL COMPOSITIONS OF (R) -1- (2,2-DIFLUOROBENZO [D] [1,3] DIOXOL-5-IL) -N- (1- (2,3-DIHYDROXIPROPIL) -6-FLUORO-2- ( 1-HYDROXI-2-METHYLPROPAN-2-IL) -1H-INDOL-5-IL) CYCLOPROPANCARBOXAMIDE AND ADMINISTRATION OF THE SAME
IL283276B2 (en) 2012-11-02 2024-05-01 Vertex Pharma Compositions comprising 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid and n-(5-hydroxy-2,4-ditert-butyl-phenyl)-4-oxo-1h-quinoline-3-carboxamide and uses thereof
US20140221424A1 (en) 2013-01-30 2014-08-07 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions for use in the treatment of cystic fibrosis
US10231932B2 (en) 2013-11-12 2019-03-19 Vertex Pharmaceuticals Incorporated Process of preparing pharmaceutical compositions for the treatment of CFTR mediated diseases
ES2957761T3 (en) 2014-04-15 2024-01-25 Vertex Pharma Pharmaceutical compositions for the treatment of diseases mediated by the cystic fibrosis transmembrane conductance regulator
CN107250113B (en) 2014-10-07 2019-03-29 弗特克斯药品有限公司 Co-crystals of modulators of cystic fibrosis transmembrane conductance regulator
JP6494757B2 (en) 2014-11-18 2019-04-03 バーテックス ファーマシューティカルズ インコーポレイテッドVertex Pharmaceuticals Incorporated Process for high-throughput high performance liquid chromatography
MA41031A (en) 2014-11-26 2017-10-03 Catabasis Pharmaceuticals Inc CYSTEAMINE-FATTY ACID CONJUGATES AND THEIR USE AS AUTOPHAGIC ACTIVATORS
WO2016086136A1 (en) 2014-11-26 2016-06-02 Catabasis Pharmaceuticals, Inc. Fatty acid cysteamine conjugates of cftr modulators and their use in treating medical disorders
CA2969587A1 (en) 2014-12-05 2016-06-09 Centre National De La Recherche Scientifique (Cnrs) Compounds for treating cystic fibrosis
US9957234B2 (en) 2014-12-09 2018-05-01 Laurus Labs Limited Polymorphs of Ivacaftor, process for its preparation and pharmaceutical composition thereof
CA2981495C (en) 2015-03-31 2023-09-26 Vertex Pharmaceuticals (Europe) Limited Deuterated vx-661
GB201507926D0 (en) 2015-05-08 2015-06-24 Proqr Therapeutics N V Improved treatments using oligonucleotides
US10336703B2 (en) 2015-05-12 2019-07-02 Council Of Scientific And Industrial Research Process for the synthesis of ivacaftor and related compounds
UY36680A (en) 2015-05-19 2016-12-30 Glaxosmithkline Ip Dev Ltd HETEROCYCLIC AMIDES AS QUINASA INHIBITORS
CA3021752A1 (en) 2015-06-11 2016-12-15 Aizant Drug Research Solutions Private Limited Nanoparticulate ivacaftor formulations
WO2018183367A1 (en) 2017-03-28 2018-10-04 Van Goor Fredrick F Methods of treating cystic fibrosis in patients with residual function mutations

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005035514A2 (en) 2003-10-08 2005-04-21 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters containing cycloalkyl or pyranyl groups

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"Handbook of Chemistry and Physics"
"March's Advanced Organic Chemistry", 2001, JOHN WILEY & SONS
GONZALEZ, J. E.; K. OADES ET AL.: "Cell-based assays and instrumentation for screening ion-channel targets", DRUG DISCOV TODAY, vol. 4, no. 9, 1999, pages 431 - 439
GONZALEZ, J. E.; R. Y. TSIEN: "Improved indicators of cell membrane potential that use fluorescence resonance energy transfer", CHEM BIOL, vol. 4, no. 4, 1997, pages 269 - 77
GONZALEZ, J. E.; R. Y. TSIEN: "Voltage sensing by fluorescence resonance energy transfer in single cells", BIOPHYS J, vol. 69, no. 4, 1995, pages 1272 - 80
HWANG, T. C. ET AL., J. GEN. PHYSIOL., vol. 111, no. 3, 1998, pages 477 - 90
J. BIOL. CHEM., vol. 277, 2002, pages 37235 - 37241
S. M. BERGE ET AL., J. PHARMACEUTICAL SCIENCES, vol. 66, 1977, pages 1 - 19
THOMAS SORRELL: "Organic Chemistry", 1999, UNIVERSITY SCIENCE BOOKS

Cited By (304)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10626111B2 (en) 2004-01-30 2020-04-21 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US10662192B2 (en) 2004-06-24 2020-05-26 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US11084804B2 (en) 2005-11-08 2021-08-10 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US8110687B2 (en) 2005-12-08 2012-02-07 Millennium Pharmaceuticals, Inc. Bicyclic compounds with kinase inhibitory activity
WO2007075946A1 (en) * 2005-12-27 2007-07-05 Vertex Pharmaceuticals Incorporated Compounds useful in cftr assays and methods therewith
EP3708564A1 (en) * 2005-12-28 2020-09-16 Vertex Pharmaceuticals Incorporated A solid form of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
EP1993360B1 (en) 2005-12-28 2017-02-08 Vertex Pharmaceuticals Incorporated Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US9931334B2 (en) 2005-12-28 2018-04-03 Vertex Pharmaceuticals Incorporated Solid forms of N[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US11291662B2 (en) 2005-12-28 2022-04-05 Vertex Pharmaceuticals Incorporated Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
AU2013201426B2 (en) * 2005-12-28 2016-06-02 Vertex Pharmaceuticals Incorporated Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
JP2009522278A (en) * 2005-12-28 2009-06-11 バーテックス ファーマシューティカルズ インコーポレイテッド Solid form of N- [2,4-bis (1,1-dimethylethyl) -5-hydroxyphenyl] -1,4-dihydro-4-oxoquinoline-3-carboxamide
JP2014012701A (en) * 2005-12-28 2014-01-23 Vertex Pharmaceuticals Inc Solid form of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US9670163B2 (en) 2005-12-28 2017-06-06 Vertex Pharmaceuticals Incorporated Solid forms of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US10537565B2 (en) 2005-12-28 2020-01-21 Vertex Pharmaceuticals Incorporated Solid forms of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
AU2020201314B2 (en) * 2005-12-28 2022-02-03 Vertex Pharmaceuticals Incorporated Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
AU2018204203B2 (en) * 2005-12-28 2020-03-12 Vertex Pharmaceuticals Incorporated Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
JP2015096539A (en) * 2005-12-28 2015-05-21 バーテックス ファーマシューティカルズ インコーポレイテッドVertex Pharmaceuticals Incorporated Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
EP1993360A4 (en) * 2005-12-28 2010-12-01 Vertex Pharma Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
AU2016219571B2 (en) * 2005-12-28 2018-03-15 Vertex Pharmaceuticals Incorporated Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
EP1993360A2 (en) * 2005-12-28 2008-11-26 Vertex Pharmaceuticals Incorporated Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
EP3219705A1 (en) * 2005-12-28 2017-09-20 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions of the amorphous form of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
AU2006332726B2 (en) * 2005-12-28 2012-12-13 Vertex Pharmaceuticals Incorporated. Solid forms of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
JP2015120762A (en) * 2006-04-07 2015-07-02 バーテックス ファーマシューティカルズ インコーポレイテッドVertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
US10239867B2 (en) 2006-04-07 2019-03-26 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US9758510B2 (en) 2006-04-07 2017-09-12 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US11639347B2 (en) 2006-04-07 2023-05-02 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US10022352B2 (en) 2006-04-07 2018-07-17 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US10975061B2 (en) 2006-04-07 2021-04-13 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
JP2009533351A (en) * 2006-04-07 2009-09-17 バーテックス ファーマシューティカルズ インコーポレイテッド Modulator of ATP-binding cassette transporter
US9974781B2 (en) 2006-04-07 2018-05-22 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
JP2014031384A (en) * 2006-04-07 2014-02-20 Vertex Pharmaceuticals Inc Modulators of atp-binding cassette transporters
US10987348B2 (en) 2006-04-07 2021-04-27 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
WO2008053764A1 (en) * 2006-10-30 2008-05-08 Nagoya City University Anti-prion active compound, anti-prion active agent, and method for inhibition of the production of abnormal prion protein
US9732080B2 (en) 2006-11-03 2017-08-15 Vertex Pharmaceuticals Incorporated Azaindole derivatives as CFTR modulators
US9725440B2 (en) 2007-05-09 2017-08-08 Vertex Pharmaceuticals Incorporated Modulators of CFTR
JP2010528050A (en) * 2007-05-25 2010-08-19 バーテックス ファーマシューティカルズ インコーポレイテッド Regulators of cystic fibrosis transmembrane conductance regulator
WO2009023509A3 (en) * 2007-08-09 2009-07-09 Vertex Pharma Therapeutic combinations useful in treating cftr related diseases
WO2009023509A2 (en) * 2007-08-09 2009-02-19 Vertex Pharmaceuticals Incorporated Therapeutic combinations useful in treating cftr related diseases
JP2010536863A (en) * 2007-08-24 2010-12-02 バーテックス ファーマシューティカルズ インコーポレイテッド Isothiazolopyridinone useful for the treatment of (especially) cystic fibrosis
AU2008301907B2 (en) * 2007-09-14 2014-02-20 Vertex Pharmaceuticals Incorporated Solid forms of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US8748612B2 (en) 2007-09-14 2014-06-10 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US8163772B2 (en) 2007-09-14 2012-04-24 Vertex Pharmaceuticals Incorporated Solid forms of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxypheny1]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US8623894B2 (en) 2007-09-14 2014-01-07 Vertex Pharmaceuticals Incorporated Solid forms of N-[2,4-Bis(1,1-dimethyethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquioline-3-carboxamide
US8188283B2 (en) 2007-09-14 2012-05-29 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
JP2010540417A (en) * 2007-09-14 2010-12-24 バーテックス ファーマシューティカルズ インコーポレイテッド Solid form of N- [2,4-bis (1,1-dimethylethyl) -5-hydroxyphenyl] -1,4-dihydro-4-oxoquinoline-3-carboxamide
US8362253B2 (en) 2007-09-14 2013-01-29 Vertex Pharmaceutical Incorporated Solid forms of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
WO2009036412A1 (en) * 2007-09-14 2009-03-19 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
JP2010539185A (en) * 2007-09-14 2010-12-16 バーテックス ファーマシューティカルズ インコーポレイテッド Regulators of cystic fibrosis membrane conductance regulator
US8410132B2 (en) 2007-09-14 2013-04-02 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2009038683A3 (en) * 2007-09-14 2010-08-26 Vertex Pharmaceuticals Incorporated Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
JP2011500699A (en) * 2007-10-19 2011-01-06 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ Amide bond regulator of γ-secretase
EP3012250A1 (en) 2007-11-16 2016-04-27 Vertex Pharmaceuticals Incorporated Isoquinoline modulators of atp-binding cassette transporters
EP2578571A1 (en) 2007-11-16 2013-04-10 Vertex Pharmaceuticals Incorporated Isoquinoline modulators of ATP-binding cassette transporters
US9840499B2 (en) 2007-12-07 2017-12-12 Vertex Pharmaceuticals Incorporated Solid forms of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl) benzoic acid
EP3170818A1 (en) 2007-12-07 2017-05-24 Vertex Pharmaceuticals Incorporated Solid forms of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl) benzoic acid
EP3683218A1 (en) 2007-12-07 2020-07-22 Vertex Pharmaceuticals Incorporated Solid forms of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl) benzoic acid
US10597384B2 (en) 2007-12-07 2020-03-24 Vertex Pharmaceuticals Incorporated Solid forms of 3-(6-(1-(2,2-difluorobenzo[D][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl) benzoic acid
US9776968B2 (en) 2007-12-07 2017-10-03 Vertex Pharmaceuticals Incorporated Processes for producing cycloalkylcarboxamido-pyridine benzoic acids
US12065432B2 (en) 2007-12-07 2024-08-20 Vertex Pharmaceuticals Incorporated Solid forms of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl) benzoic acid
JP2011506474A (en) * 2007-12-13 2011-03-03 バーテックス ファーマシューティカルズ インコーポレイテッド Modulator of cystic fibrosis membrane conductance regulator
US8552006B2 (en) 2007-12-13 2013-10-08 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
AU2008335031B2 (en) * 2007-12-13 2013-11-28 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2009076593A1 (en) * 2007-12-13 2009-06-18 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
CN101925603B (en) * 2007-12-13 2013-12-04 沃泰克斯药物股份有限公司 Modulators of cystic fibrosis transmembrane conductance regulator
US9051324B2 (en) 2007-12-13 2015-06-09 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US9751890B2 (en) 2008-02-28 2017-09-05 Vertex Pharmaceuticals Incorporated Heteroaryl derivatives as CFTR modulators
EP2980077A1 (en) 2008-03-31 2016-02-03 Vertex Pharmaceuticals Incorporated Pyridyl derivatives as cftr modulators
EP2615085A1 (en) 2008-03-31 2013-07-17 Vertex Pharmaceuticals Incorporated Pyridyl derivatives as CFTR modulators
US11564916B2 (en) 2008-08-13 2023-01-31 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
US10646481B2 (en) 2008-08-13 2020-05-12 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
AU2009308284B2 (en) * 2008-10-23 2016-02-04 Vertex Pharmaceuticals, Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US8436014B2 (en) 2008-10-23 2013-05-07 Vertex Pharmaceutical Incorporated Solid forms of N-(4-(7-azabicyclo[2.2.1]heptan-7-yl)-2-(trifluorormethyl)phenyl)-4-oxo-5-(trifluoromethyl)-1,4-dihyroquinoline-3-carboxamide
US8604203B2 (en) 2008-10-23 2013-12-10 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US8598205B2 (en) 2008-10-23 2013-12-03 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
AU2009308232B2 (en) * 2008-10-23 2016-02-04 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
EA018891B1 (en) * 2008-10-23 2013-11-29 Вертекс Фармасьютикалз, Инкорпорейтед Modulators of cystic fibrosis transmembrane conductance regulator
WO2010048564A1 (en) * 2008-10-23 2010-04-29 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2010048573A1 (en) * 2008-10-23 2010-04-29 Vertex Pharmaceuticals Incorporated Solid forms of n-(4-(7-azabicyclo[2.2.1]heptan-7-yl)-2-(trifluoromethyl)phenyl)-4-oxo-5-(trifluoromethyl)-1,4-dihydroquinoline-3-carboxamide
US8513282B2 (en) 2008-10-23 2013-08-20 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US8969382B2 (en) 2008-10-23 2015-03-03 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
AU2009308241B2 (en) * 2008-10-23 2016-01-07 Vertex Pharmaceuticals Incorporated Solid forms of N-(4-(7-azabicyclo[2.2.1]heptan-7-yl)-2-(trifluoromethyl) phenyl)-4-oxo-5-(trifluoromethyl)-1,4-dihydroquinoline-3-carboxamide
US8785640B2 (en) 2008-10-23 2014-07-22 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2010048526A3 (en) * 2008-10-23 2010-09-16 Vertex Pharmaceuticals, Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
CN102224141A (en) * 2008-10-23 2011-10-19 沃泰克斯药物股份有限公司 Solid forms of n-(4-(7-azabicyclo[2.2.1]heptan-7-yl)-2-(trifluoromethyl)phenyl)-4-oxo-5-(trifluoromethyl)-1,4-dihydroquinoline-3-carboxamide
US8314239B2 (en) 2008-10-23 2012-11-20 Vertex Pharmaceutical Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2010078103A1 (en) * 2008-12-30 2010-07-08 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US8999976B2 (en) 2008-12-30 2015-04-07 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US8367660B2 (en) 2008-12-30 2013-02-05 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US8633189B2 (en) 2008-12-30 2014-01-21 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US9751839B2 (en) 2009-03-20 2017-09-05 Vertex Pharmaceuticals Incorporated Process for making modulators of cystic fibrosis transmembrane conductance regulator
WO2010108155A1 (en) * 2009-03-20 2010-09-23 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US8614325B2 (en) 2009-03-20 2013-12-24 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
RU2543714C2 (en) * 2009-03-20 2015-03-10 Вертекс Фармасьютикалз Инкорпорейтед Method of obtaining modulators of cystic fibrousis transmembrane conductance regulator
US20160221952A1 (en) * 2009-03-20 2016-08-04 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
CN102361856A (en) * 2009-03-20 2012-02-22 沃泰克斯药物股份有限公司 Modulators of cystic fibrosis transmembrane conductance regulator
US8835639B2 (en) 2009-03-20 2014-09-16 Vertex Pharmaceuticals Incorporated Process for making modulators of cystic fibrosis transmembrane conductance regulator
US9371287B2 (en) 2009-03-20 2016-06-21 Vertex Pharmaceuticals Incorporated Process for making modulators of cystic fibrosis transmembrane conductance regulator
EP3330255A1 (en) * 2009-03-20 2018-06-06 Vertex Pharmaceuticals Incorporated Process for making modulators of cystic fibrosis transmembrane conductance regulator
WO2010108162A1 (en) * 2009-03-20 2010-09-23 Vertex Pharmaceuticals Incorporated Process for making modulators of cystic fibrosis transmembrane conductance regulator
CN102361855B (en) * 2009-03-20 2015-09-02 沃泰克斯药物股份有限公司 The preparation method of the conditioning agent of cystic fibrosis transmembrane conductance regulator
CN102361855A (en) * 2009-03-20 2012-02-22 沃泰克斯药物股份有限公司 Process for making modulators of cystic fibrosis transmembrane conductance regulator
US8796308B2 (en) 2009-03-20 2014-08-05 Vertex Pharamaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
AU2010226393B2 (en) * 2009-03-20 2016-08-11 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US8765957B2 (en) 2009-03-20 2014-07-01 Vertex Pharmaceuticals Incorporated Process for making modulators of cystic fibrosis transmembrane conductance regulator
US8476442B2 (en) 2009-03-20 2013-07-02 Vertex Pharmaceutical Incorporated Process for making modulators of cystic fibrosis transmembrane conductance regulator
AU2016244296B2 (en) * 2009-03-20 2018-04-19 Vertex Pharmaceuticals Incorporated Process for Making Modulators of Cystic Fibrosis Transmembrane Conductance Regulator
JP2013508414A (en) * 2009-10-22 2013-03-07 バーテックス ファーマシューティカルズ インコーポレイテッド Compositions for the treatment of cystic fibrosis and other chronic diseases
WO2011050325A1 (en) 2009-10-22 2011-04-28 Vertex Pharmaceuticals Incorporated Compositions for treatment of cystic fibrosis and other chronic diseases
EP2813227A1 (en) 2009-10-22 2014-12-17 Vertex Pharmaceuticals Incorporated Compositions for treatment of cystic fibrosis and other chronic diseases
CN102665715A (en) * 2009-10-22 2012-09-12 沃泰克斯药物股份有限公司 Compositions for treatment of cystic fibrosis and other chronic diseases
US8741922B2 (en) 2009-10-23 2014-06-03 Vertex Pharmaceuticals Incorporated Solid forms of N-(4-(7-azabicyclo[2.2,1]heptan-7-yl)-2-trifluoromethyl)phenyl)-4-oxo-5-(trifluoromethyl)-1,4-dihydroquinoline-3-carboxamide
US8389727B2 (en) 2009-10-23 2013-03-05 Vertex Pharmaceuticals Incorporated Solid forms of N-(4-(7-Azabicyclo[2.2.1]Heptan-7-yl)-2-Trifluoromethyl)Phenyl)-4-Oxo-5-(Trifluoromethyl)-1,4-Dihydroquinoline-3-Carboxamide
TWI475023B (en) * 2009-10-23 2015-03-01 Vertex Pharma Process for preparing modulators of cystic fibrosis transmembrane conductance regulator
WO2011050220A1 (en) * 2009-10-23 2011-04-28 Vertex Pharmaceuticals Incorporated Solid forms of n-(4-(7-azabicyclo[2.2.1]heptan-7-yl)-2-trifluoromethyl)phenyl)-4-oxo-5-(trifluoromethyl)-1,4-dihydroquinoline-3-carboxamide
US8754222B2 (en) 2009-10-23 2014-06-17 Vertex Pharmaceuticals Incorporated Process for preparing modulators of cystic fibrosis transmembrane conductance regulator
WO2011050215A1 (en) * 2009-10-23 2011-04-28 Vertex Pharmaceuticals Incorporated Process for preparing modulators of cystic fibrosis transmembrane conductance regulator
US8344147B2 (en) 2009-10-23 2013-01-01 Vertex Pharmaceutical Incorporated Process for preparing modulators of cystic fibrosis transmembrane conductance regulator
CN102648182A (en) * 2009-10-23 2012-08-22 沃泰克斯药物股份有限公司 Process for preparing modulators of cystic fibrosis transmembrane conductance regulator
US8884018B2 (en) 2009-10-23 2014-11-11 Vertex Pharmaceuticals Incorporated Process for preparing modulators of cystic fibrosis transmembrane conductance regulator
TWI507409B (en) * 2009-10-23 2015-11-11 Vertex Pharma Solid forms of n-(4-(7-azabicyclo(2.2.1)heptan-7-yl)-2-(trifluoromethyl)phenyl)-4-oxo-5-(trifluoromethyl)-1,4-dihydroquino line-3-carboxamide
CN102666546A (en) * 2009-10-23 2012-09-12 沃泰克斯药物股份有限公司 Solid forms of N-(4-(7-azabicyclo[2.2.1]heptan-7-yl)-2-trifluoromethyl)phenyl)-4-oxo-5-(trifluoromethyl)-1,4-dihydroquinoline-3-carboxamide
RU2552353C2 (en) * 2009-12-11 2015-06-10 Вертекс Фармасьютикалз Инкорпорейтед Modulators of atp-binding transporters
WO2011072241A1 (en) * 2009-12-11 2011-06-16 Vertex Pharmaceuticals Incorporated 4 -oxo- ih -quinoline- 3 - carboxamides as modulators of atp -binding cassette transporters
US8785476B2 (en) 2010-03-19 2014-07-22 Vertex Pharmaceuticals Incorporated Solid forms of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
CN103180298A (en) * 2010-03-19 2013-06-26 沃泰克斯药物股份有限公司 Solid form of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydr o-4-oxoquinoline-3-carboxamide
US8471029B2 (en) 2010-03-19 2013-06-25 Vertex Pharmaceutical Incorporated Solid forms of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
US11578062B2 (en) 2010-03-25 2023-02-14 Vertex Pharmaceuticals Incorporated Solid forms of (R)-1(2,2-difluorobenzo[d][1,3]dioxol-5-yl)-N-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1H-indol-5-yl)cyclopropanecarboxamide
US10906891B2 (en) 2010-03-25 2021-02-02 Vertex Pharmaceuticals Incoporated Solid forms of (R)-1(2,2-difluorobenzo[d][1,3]dioxol-5-yl)-N-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1H-indol-5-yl)cyclopropanecarboxamide
US10081621B2 (en) 2010-03-25 2018-09-25 Vertex Pharmaceuticals Incorporated Solid forms of (R)-1(2,2-difluorobenzo[D][1,3]dioxol-5-yl)-N-(1-(2,3-dihydroxypropyl)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-yl)-1H-indol-5-yl)cyclopropanecarboxamide
AU2011235069B2 (en) * 2010-04-02 2016-03-17 Senomyx, Inc. Sweet flavor modifier
US9049878B2 (en) 2010-04-02 2015-06-09 Senomyx, Inc. Sweet flavor modifier
US9834544B2 (en) 2010-04-02 2017-12-05 Senomyx, Inc. Sweet flavor modifier
US9902737B2 (en) 2010-04-02 2018-02-27 Senomyx, Inc. Sweet flavor modifier
US10076513B2 (en) 2010-04-07 2018-09-18 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions of 3-(6-(1-(2,2-difluorobenzo[D][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl) benzoic acid and administration thereof
US11052075B2 (en) 2010-04-07 2021-07-06 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl) cyclopropanecarboxamido)-3-methylpyridin-2-yl) benzoic acid and administration thereof
WO2011133951A1 (en) 2010-04-22 2011-10-27 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions and administrations thereof
WO2011133953A1 (en) 2010-04-22 2011-10-27 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions and administrations thereof
EP3138563A1 (en) 2010-04-22 2017-03-08 Vertex Pharmaceuticals Inc. Pharmaceutical compositions and administrations thereof
WO2011133956A1 (en) 2010-04-22 2011-10-27 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions and administrations thereof
US10071979B2 (en) 2010-04-22 2018-09-11 Vertex Pharmaceuticals Incorporated Process of producing cycloalkylcarboxamido-indole compounds
US8404849B2 (en) 2010-05-20 2013-03-26 Vertex Pharmaceuticals Processes for producing modulators of cystic fibrosis transmembrane conductance regulator
WO2011146901A1 (en) 2010-05-20 2011-11-24 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions and administrations thereof
WO2012036573A3 (en) * 2010-09-14 2012-08-16 Instytut Biochemii I Biofizyki Pan Compounds as modulators of a mutant cftr protein and their use for treating diseases associated with cftr protein malfunction
AU2015201409B2 (en) * 2010-09-14 2016-11-03 Instytut Biochemii I Biofizyki Pan Compounds as modulators of a mutant CFTR protein and their use for treating diseases associated with CFTR protein malfunction
AU2011302715B2 (en) * 2010-09-14 2016-08-04 Instytut Biochemii I Biofizyki Pan Compounds as modulators of a mutant CFTR protein and their use for treating diseases associated with CFTR protein malfunction
AU2015201410B2 (en) * 2010-09-14 2016-11-03 Instytut Biochemii I Biofizyki Pan Compounds as modulators of a mutant CFTR protein and their use for treating diseases associated with CFTR protein malfunction
EP2826771A3 (en) * 2010-09-14 2015-02-18 Instytut Biochemii I Biofizyki Polskiej Akademii Nauk Compounds as modulators of a mutant CFTR protein and their use for treating diseases associated with CFTR protein malfunction
AU2012255711B2 (en) * 2011-05-18 2017-05-04 Vertex Pharmaceuticals (Europe) Limited Deuterated derivatives of ivacaftor
AU2021203786B2 (en) * 2011-05-18 2023-03-16 Vertex Pharmaceuticals (Europe) Limited Deuterated derivatives of ivacaftor
EA028378B1 (en) * 2011-05-18 2017-11-30 Консерт Фармасъютиклс Инк. Deuterated derivatives of ivacaftor
AU2021200970B2 (en) * 2011-05-18 2022-07-14 Vertex Pharmaceuticals (Europe) Limited Deuterated derivatives of ivacaftor
EP3235812A1 (en) 2011-05-18 2017-10-25 Concert Pharmaceuticals Inc. Deuterated derivatives of ivacaftor
WO2012158885A1 (en) * 2011-05-18 2012-11-22 Concert Pharmaceuticals Inc. Deuterated derivatives of ivacaftor
US10047053B2 (en) 2011-05-18 2018-08-14 Vertex Pharmaceuticals (Europe) Limited Deuterated CFTR potentiators
US10479766B2 (en) 2011-05-18 2019-11-19 Verex Pharmaceuticals (Europe) Limited Deuterated CFTR potentiators
US10894773B2 (en) 2011-05-18 2021-01-19 Vertex Pharmaceuticals (Europe) Limited Deuterated CFTR potentiators
AU2019222862B2 (en) * 2011-05-18 2021-03-11 Vertex Pharmaceuticals (Europe) Limited Deuterated derivatives of ivacaftor
WO2013067410A1 (en) 2011-11-02 2013-05-10 Vertex Pharmaceuticals Incorporated Use of (n- [2, 4 -bis (1, 1 -dimethylethyl) - 5 - hydroxyphenyl] - 1, 4 - dihydro - 4 - oxoquinoline - 3 - ca rboxamide) for treating cftr mediated diseases
US11752106B2 (en) 2012-02-27 2023-09-12 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
US10272046B2 (en) 2012-02-27 2019-04-30 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
US11147770B2 (en) 2012-02-27 2021-10-19 Vertex Pharmaceuticals Incorporated Pharmaceutical composition and administrations thereof
WO2013158121A1 (en) 2012-04-20 2013-10-24 Vertex Pharmaceuticals Incorporated Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide
WO2013185112A1 (en) 2012-06-08 2013-12-12 Vertex Pharmaceuticals Incorporated Pharmaceuticl compositions for the treatment of cftr -mediated disorders
US10058546B2 (en) 2012-07-16 2018-08-28 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions of (R)-1-(2,2-difluorobenzo[D][1,3]dioxo1-5-y1)-N-(1-(2,3-dihydroxypropy1)-6-fluoro-2-(1-hydroxy-2-methylpropan-2-y1)-1H-indol-5-y1) cyclopropanecarbox-amide and administration thereof
US10092574B2 (en) 2012-09-26 2018-10-09 Valorisation-Recherche, Limited Partnership Inhibitors of polynucleotide repeat-associated RNA foci and uses thereof
WO2014071122A1 (en) 2012-11-02 2014-05-08 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions for the treatment of cftr mediated diseases
EP3470063A1 (en) 2012-11-02 2019-04-17 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions for the treatment of cftr mediated diseases
JP2014097964A (en) * 2012-11-16 2014-05-29 Concert Pharmaceuticals Inc Deuterated cftr potentiator
WO2014078842A1 (en) 2012-11-19 2014-05-22 Concert Pharmaceuticals, Inc. Deuterated cftr potentiators
CN109364075B (en) * 2012-11-21 2021-10-29 顶点制药(欧洲)有限公司 Deuterated CFTR potentiators
CN109364075A (en) * 2012-11-21 2019-02-22 顶点制药(欧洲)有限公司 Deuterate CFTR synergist
US8937178B2 (en) 2013-03-13 2015-01-20 Flatley Discovery Lab Phthalazinone compounds and methods for the treatment of cystic fibrosis
US9790215B2 (en) 2013-03-13 2017-10-17 Flatley Discovery Lab, Llc Pyridazinone compounds and methods for the treatment of cystic fibrosis
WO2014141064A1 (en) 2013-03-13 2014-09-18 Novartis Ag Notch2 binding molecules for treating respiratory diseases
US9783529B2 (en) 2013-03-13 2017-10-10 Flatley Discovery Lab, Llc Pyridazinone compounds and methods for the treatment of cystic fibrosis
EP2815749A1 (en) 2013-06-20 2014-12-24 IP Gesellschaft für Management mbH Solid form of 4-amino-2-(2,6-dioxopiperidine-3-yl)isoindoline-1,3-dione having specified X-ray diffraction pattern
EP3049393A4 (en) * 2013-09-25 2017-06-21 Valorisation-Recherche, Limited Partnership Inhibitors of polynucleotide repeat-associated rna foci and uses thereof
US10231932B2 (en) 2013-11-12 2019-03-19 Vertex Pharmaceuticals Incorporated Process of preparing pharmaceutical compositions for the treatment of CFTR mediated diseases
US11951212B2 (en) 2014-04-15 2024-04-09 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions for the treatment of cystic fibrosis transmembrane conductance regulator mediated diseases
US10206877B2 (en) 2014-04-15 2019-02-19 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions for the treatment of cystic fibrosis transmembrane conductance regulator mediated diseases
US10980746B2 (en) 2014-04-15 2021-04-20 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions for the treatment of cystic fibrosis transmembrane conductance regulator mediated diseases
EP2932966A1 (en) 2014-04-16 2015-10-21 Novartis AG Gamma secretase inhibitors for treating respiratory diseases
US9540349B2 (en) 2014-07-16 2017-01-10 Gruenenthal Gmbh Substituted pyrimidine compounds
US10189854B2 (en) 2014-07-16 2019-01-29 Gruenenthal Gmbh Substituted pyrimidine compounds
EP3527561A1 (en) 2014-07-16 2019-08-21 Grünenthal GmbH Novel substituted pyrimidine compounds
US10391099B2 (en) 2014-07-16 2019-08-27 Gruenenthal Gmbh Method of treating psoriatic arthritis, psoriasis, and chronic obstructive pulmonary disease with a novel 2,5-substituted pyrimidines
US11992553B2 (en) 2014-08-29 2024-05-28 Algipharma As Inhalable powder formulations of alginate oligomers
US10758534B2 (en) 2014-10-06 2020-09-01 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US11426407B2 (en) 2014-10-06 2022-08-30 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US9701639B2 (en) 2014-10-07 2017-07-11 Vertex Pharmaceuticals Incorporated Co-crystals of modulators of cystic fibrosis transmembrane conductance regulator
WO2016069891A1 (en) 2014-10-31 2016-05-06 Abbvie Inc. Substituted tetrahydropyrans and method of use
US11339128B2 (en) 2014-11-07 2022-05-24 Firmenich Incorporated Substituted 4-amino-5-(cyclohexyloxy)quinoline-3-carboxylic acids as sweet flavor modifiers
US10302602B2 (en) 2014-11-18 2019-05-28 Vertex Pharmaceuticals Incorporated Process of conducting high throughput testing high performance liquid chromatography
US10239830B2 (en) 2015-02-11 2019-03-26 Icahn School Of Medicine At Mount Sinai Benzenesulfonamide upregulators of NPC1 for Neimann-Pick disease and other lysosomal storage disorders
US10751363B2 (en) 2015-03-23 2020-08-25 Algipharma As Use of aliginate oligomers and CFTR modulators in treatment of conditions associated with CFTR dysfunction
WO2016193812A1 (en) 2015-06-02 2016-12-08 Abbvie S.A.R.L. Substituted pyridines and method of use
US9840513B2 (en) 2015-07-16 2017-12-12 Abbvie S.Á.R.L. Substituted tricyclics and method of use
WO2017009804A1 (en) 2015-07-16 2017-01-19 Abbvie S.Á.R.L. Substituted tricyclics and method of use
US10759721B2 (en) 2015-09-25 2020-09-01 Vertex Pharmaceuticals (Europe) Limited Deuterated CFTR potentiators
US11413306B2 (en) 2015-10-06 2022-08-16 Algipharma As Alginate oligomers for the treatment or prevention of microbial overgrowth in the intestinal tract
US9796711B2 (en) 2015-10-09 2017-10-24 Abbvie S.Á.R.L. Substituted pyrazolo[3,4-b]pyridin-6-carboxylic acids and method of use
WO2017060874A1 (en) 2015-10-09 2017-04-13 Abbvie S.Á.R.L N-sulfonylated pyrazolo[3,4-b]pyridin-6-carboxamides and method of use
WO2017060873A1 (en) 2015-10-09 2017-04-13 AbbVie S.à.r.l. Substituted pyrazolo[3,4-b]pyridin-6-carboxylic acids and their use
WO2017060879A1 (en) 2015-10-09 2017-04-13 AbbVie S.à.r.l. Novel compounds for treatment of cystic fibrosis
US10259810B2 (en) 2015-10-09 2019-04-16 AbbVie S.à.r.l. N-sulfonylated pyrazolo[3,4-b]pyridin-6-carboxamides and method of use
US10130622B2 (en) 2015-10-09 2018-11-20 Abbvie S.Á.R.L. Compounds for treatment of cystic fibrosis
US10647717B2 (en) 2015-10-09 2020-05-12 Abbvie S.Á.R.L. N-sulfonylated-pyrazolo[3,4-b]pyridin-6-carboxamides and method of use
US9890158B2 (en) 2015-10-09 2018-02-13 Abbvie S.Á.R.L. N-sulfonylated pyrazolo[3,4-b]pyridin-6-carboxamides and method of use
US10081632B2 (en) 2016-02-19 2018-09-25 Phoenix Molecular Designs Substituted tetrahydropyrido[3′,2′:4,5]pyrrolo[1,2-α]pyrazine-2-carboxamides as RSK inhibitors
US10758530B2 (en) 2016-02-19 2020-09-01 Phoenix Molecular Designs Carboxamide derivatives useful as rsk inhibitors
WO2017141116A1 (en) * 2016-02-19 2017-08-24 Phoenix Molecular Designs Carboxamide derivatives useful as rsk inhibitors
US9771366B2 (en) 2016-02-19 2017-09-26 Phoenix Molecular Design Substituted tetrahydropyrido[3′,2′:4,5]pyrrolo[1,2-a]pyrazine-2-carboxamides as RSK inhibitors
WO2017187321A1 (en) 2016-04-26 2017-11-02 AbbVie S.à.r.l. Modulators of cystic fibrosis transmembrane conductance regulator protein
US10118916B2 (en) 2016-04-26 2018-11-06 Abbvie S.Á.R.L. Modulators of cystic fibrosis transmembrane conductance regulator protein
US10604515B2 (en) 2016-06-03 2020-03-31 Abbvie S.Á.R.L. Heteroaryl substituted pyridines and methods of use
US10138227B2 (en) 2016-06-03 2018-11-27 Abbvie S.Á.R.L. Heteroaryl substituted pyridines and methods of use
WO2017208115A1 (en) 2016-06-03 2017-12-07 AbbVie S.à.r.l. Heteroaryl substituted pyridines and methods of use
US11186566B2 (en) 2016-09-30 2021-11-30 Vertex Pharmaceuticals Incorporated Modulator of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator
WO2018065921A1 (en) 2016-10-07 2018-04-12 Abbvie S.Á.R.L. Substituted pyrrolidines as cftr modulators
US9981910B2 (en) 2016-10-07 2018-05-29 Abbvie S.Á.R.L. Substituted pyrrolidines and methods of use
US10399940B2 (en) 2016-10-07 2019-09-03 Abbvie S.Á.R.L. Substituted pyrrolidines and methods of use
WO2018065962A1 (en) 2016-10-07 2018-04-12 AbbVie S.à.r.l. Substituted pyrrolidines and their use in the treatment of cystic fiibrosis
US11453655B2 (en) 2016-12-09 2022-09-27 Vertex Pharmaceuticals Incorporated Modulator of the cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator
US10793547B2 (en) 2016-12-09 2020-10-06 Vertex Pharmaceuticals Incorporated Modulator of the cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator
WO2018116185A1 (en) 2016-12-20 2018-06-28 AbbVie S.à.r.l. Deuterated cftr modulators and methods of use
JP2017105824A (en) * 2017-02-10 2017-06-15 コンサート ファーマシューティカルズ インコーポレイテッド Deuterated cftr enhancement material
US10428017B2 (en) 2017-02-24 2019-10-01 Abbvie S.Á.R.L. Modulators of the cystic fibrosis transmembrane conductance regulator protein and methods of use
WO2018154493A1 (en) 2017-02-24 2018-08-30 AbbVie S.à.r.l. Modulators of the cystic fibrosis transmembrane conductance regulator protein and methods of use
WO2018154519A1 (en) 2017-02-24 2018-08-30 AbbVie S.à.r.l. Modulators of the cystic fibrosis transmembrane conductance regulator protein and methods of use
CN108623561A (en) * 2017-03-24 2018-10-09 中国海洋大学 A method of preparing piperazine Nino acid compound
US11253509B2 (en) 2017-06-08 2022-02-22 Vertex Pharmaceuticals Incorporated Methods of treatment for cystic fibrosis
US11517564B2 (en) 2017-07-17 2022-12-06 Vertex Pharmaceuticals Incorporated Methods of treatment for cystic fibrosis
US11434201B2 (en) 2017-08-02 2022-09-06 Vertex Pharmaceuticals Incorporated Processes for preparing pyrrolidine compounds
EP3664822A4 (en) * 2017-08-04 2021-07-07 Axial Therapeutics, Inc. Inhibitors of microbially induced amyloid
US11505528B2 (en) 2017-08-04 2022-11-22 Axial Therapeutics, Inc. Inhibitors of microbially induced amyloid
US10829473B2 (en) 2017-09-14 2020-11-10 Abbvie Overseas S.À.R.L. Modulators of the cystic fibrosis transmembrane conductance regulator protein and methods of use
US10981890B2 (en) 2017-09-14 2021-04-20 Abbvie Overseas S.À.R.L. Modulators of the cystic fibrosis transmembrane conductance regulator protein and methods of use
WO2019053634A1 (en) 2017-09-14 2019-03-21 AbbVie S.à.r.l. Modulators of the cystic fibrosis transmembrane conductance regulator protein and methods of use
US10844041B2 (en) 2017-09-14 2020-11-24 Abbvie Overseas S.À.R.L. Modulators of the cystic fibrosis transmembrane conductance regulator protein and methods of use
US10844042B2 (en) 2017-09-14 2020-11-24 Abbvie Overseas S.À.R.L. Modulators of the cystic fibrosis transmembrane conductance regulator protein and methods of use
EP3736270A1 (en) 2017-09-14 2020-11-11 AbbVie Overseas S.à r.l. Modulators of the cystic fibrosis transmembrane conductance regulator protein and methods of use
EP3865474A1 (en) 2017-09-14 2021-08-18 AbbVie Overseas S.à r.l. Modulators of the cystic fibrosis transmembrane conductance regulator protein and methods of use
EP3736267A1 (en) 2017-09-14 2020-11-11 AbbVie Overseas S.à r.l. Modulators of the cystic fibrosis transmembrane conductance regulator protein and methods of use
US10988454B2 (en) 2017-09-14 2021-04-27 Abbvie Overseas S.À.R.L. Modulators of the cystic fibrosis transmembrane conductance regulator protein and methods of use
US11155533B2 (en) 2017-10-19 2021-10-26 Vertex Pharmaceuticals Incorporated Crystalline forms and compositions of CFTR modulators
US12024491B2 (en) 2017-12-01 2024-07-02 Vertex Pharmaceuticals Incorporated Processes for making modulators of cystic fibrosis transmembrane conductance regulator
US11708331B2 (en) 2017-12-01 2023-07-25 Vertex Pharmaceuticals Incorporated Processes for making modulators of cystic fibrosis transmembrane conductance regulator
US11465985B2 (en) 2017-12-08 2022-10-11 Vertex Pharmaceuticals Incorporated Processes for making modulators of cystic fibrosis transmembrane conductance regulator
US11179367B2 (en) 2018-02-05 2021-11-23 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions for treating cystic fibrosis
US11066417B2 (en) 2018-02-15 2021-07-20 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulators
US11866450B2 (en) 2018-02-15 2024-01-09 Vertex Pharmaceuticals Incorporated Modulators of Cystic Fibrosis Transmembrane Conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulators
WO2019193062A1 (en) 2018-04-03 2019-10-10 Abbvie S.Á.R.L Substituted pyrrolidines and their use
US11414439B2 (en) 2018-04-13 2022-08-16 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator, pharmaceutical compositions, methods of treatment, and process for making the modulator
JP2018188474A (en) * 2018-08-13 2018-11-29 コンサート ファーマシューティカルズ インコーポレイテッド Deuterated cftr potentiator
CZ309045B6 (en) * 2019-04-08 2021-12-22 Univerzita Palackého v Olomouci Method for preparing 6-amino-2,3-difluorobenzonitrile
WO2020214921A1 (en) 2019-04-17 2020-10-22 Vertex Pharmaceuticals Incorporated Solid forms of modulators of cftr
US11345691B2 (en) 2019-06-03 2022-05-31 AbbVie Global Enterprises Ltd. Prodrug modulators of the cystic fibrosis transmembrane conductance regulator protein and methods of use
EP3747882A1 (en) 2019-06-03 2020-12-09 AbbVie Overseas S.à r.l. Prodrug modulators of the cystic fibrosis transmembrane conductance regulator protein and methods of use
US11236067B2 (en) 2019-07-12 2022-02-01 Orphomed, Inc. Compound for treating cystic fibrosis
US11584761B2 (en) 2019-08-14 2023-02-21 Vertex Pharmaceuticals Incorporated Process of making CFTR modulators
WO2021030552A1 (en) 2019-08-14 2021-02-18 Vertex Pharmaceuticals Incorporated Crystalline forms of cftr modulators
US11591350B2 (en) 2019-08-14 2023-02-28 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2021030556A1 (en) 2019-08-14 2021-02-18 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
US11873300B2 (en) 2019-08-14 2024-01-16 Vertex Pharmaceuticals Incorporated Crystalline forms of CFTR modulators
WO2021030555A1 (en) 2019-08-14 2021-02-18 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2021097054A1 (en) 2019-11-12 2021-05-20 Genzyme Corporation 6-membered heteroarylaminosulfonamides for treating diseases and conditions mediated by deficient cftr activity
WO2021113806A1 (en) 2019-12-05 2021-06-10 Genzyme Corporation Arylamides and methods of use thereof
WO2021113809A1 (en) 2019-12-05 2021-06-10 Genzyme Corporation Arylamides and methods of use thereof
WO2022013360A1 (en) 2020-07-17 2022-01-20 Synthon B.V. Pharmaceutical composition comprising ivacaftor
WO2022032068A1 (en) 2020-08-07 2022-02-10 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2022036060A1 (en) 2020-08-13 2022-02-17 Vertex Pharmaceuticals Incorporated Crystalline forms of cftr modulators
EP3970718A1 (en) 2020-09-18 2022-03-23 Charité - Universitätsmedizin Berlin New medical use of cystic fibrosis transmembrane conductance regulator (cftr) modulators
WO2022058503A1 (en) 2020-09-18 2022-03-24 Charité - Universitätsmedizin Berlin New medical use of cystic fibrosis transmembrane conductance regulator (cftr) modulators
WO2022076624A1 (en) 2020-10-07 2022-04-14 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2022076629A1 (en) 2020-10-07 2022-04-14 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2022076620A1 (en) 2020-10-07 2022-04-14 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2022076621A1 (en) 2020-10-07 2022-04-14 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2022076627A1 (en) 2020-10-07 2022-04-14 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2022076622A2 (en) 2020-10-07 2022-04-14 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2022076628A1 (en) 2020-10-07 2022-04-14 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2022076618A1 (en) 2020-10-07 2022-04-14 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2022076625A1 (en) 2020-10-07 2022-04-14 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2022076626A1 (en) 2020-10-07 2022-04-14 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2022150174A1 (en) 2021-01-06 2022-07-14 AbbVie Global Enterprises Ltd. Modulators of the cystic fibrosis transmembrane conductance regulator protein and methods of use
WO2022150173A1 (en) 2021-01-06 2022-07-14 AbbVie Global Enterprises Ltd. Modulators of the cystic fibrosis transmembrane conductance regulator protein and methods of use
WO2023034992A1 (en) 2021-09-03 2023-03-09 Genzyme Corporation Indole compounds and methods of use
WO2023034946A1 (en) 2021-09-03 2023-03-09 Genzyme Corporation Indole compounds and uses thereof in the treatement of cystic fibrosis
US11858895B2 (en) 2021-09-24 2024-01-02 Enveric Biosciences Canada Inc. Aminated psilocybin derivatives and methods of using
WO2023044556A1 (en) * 2021-09-24 2023-03-30 Enveric Biosciences Canada Inc. Aminated psilocybin derivatives and methods of using
WO2023150236A1 (en) 2022-02-03 2023-08-10 Vertex Pharmaceuticals Incorporated Methods of preparing and crystalline forms of (6a,12a)-17-amino-12-methyl-6,15-bis(trifluoromethyl)-13,19-dioxa-3,4,18-triazatricyclo[ 12.3.1.12,5]nonadeca-1(18),2,4,14,16-pentaen-6-ol
WO2023150237A1 (en) 2022-02-03 2023-08-10 Vertex Pharmaceuticals Incorporated Methods of treatment for cystic fibrosis
WO2023154291A1 (en) 2022-02-08 2023-08-17 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2023154519A1 (en) * 2022-02-14 2023-08-17 Accent Therapeutics, Inc. Inhibitors of rna helicase dhx9 and uses thereof
WO2023196429A1 (en) 2022-04-06 2023-10-12 Vertex Pharmaceuticals Incorporated Modulators of cystic fibrosis transmembrane conductance regulator
WO2023224924A1 (en) 2022-05-16 2023-11-23 Vertex Pharmaceuticals Incorporated Solid forms of a macrocyclic compounds as cftr modulators and their preparation
WO2023224931A1 (en) 2022-05-16 2023-11-23 Vertex Pharmaceuticals Incorporated Methods of treatment for cystic fibrosis
WO2024031081A1 (en) 2022-08-04 2024-02-08 Vertex Pharmaceuticals Incorporated Compositions for the treatment of cftr-mediated diseases
EP4335434A1 (en) 2022-08-17 2024-03-13 Sanovel Ilac Sanayi Ve Ticaret A.S. Pharmaceutical compositions comprising ivacaftor
WO2024054851A1 (en) 2022-09-07 2024-03-14 Sionna Therapeutics Macrocyclic compounds, compositions and methods of using thereof
WO2024054840A1 (en) 2022-09-07 2024-03-14 Sionna Therapeutics Macrocyclic compounds, compositions, and methods of using thereof
WO2024054845A1 (en) 2022-09-07 2024-03-14 Sionna Therapeutics Macrocycic compounds, compositions, and methods of using thereof
WO2024056791A1 (en) 2022-09-15 2024-03-21 Idorsia Pharmaceuticals Ltd Combination of macrocyclic cftr modulators with cftr correctors and / or cftr potentiators
WO2024056798A1 (en) 2022-09-15 2024-03-21 Idorsia Pharmaceuticals Ltd Macrocyclic cftr modulators
US12122788B2 (en) 2023-01-04 2024-10-22 Vertex Pharmaceuticals Incorporated Process of making CFTR modulators

Also Published As

Publication number Publication date
US20130035327A1 (en) 2013-02-07
CN103641765A (en) 2014-03-19
US20140051724A1 (en) 2014-02-20
AU2010249302A1 (en) 2011-01-06
HRP20180300T1 (en) 2018-04-20
BR122018075478B1 (en) 2019-05-28
CA2810655A1 (en) 2006-01-05
DK2489659T3 (en) 2018-02-12
ES2786563T3 (en) 2020-10-13
IL245365A0 (en) 2016-06-30
IL213155A0 (en) 2011-07-31
IL221827A0 (en) 2012-10-31
CN101891680B (en) 2014-10-29
US10662192B2 (en) 2020-05-26
EP2502902A3 (en) 2013-11-20
IL221828A0 (en) 2012-10-31
IL180224A0 (en) 2007-07-04
US8324242B2 (en) 2012-12-04
AU2010249302B2 (en) 2013-01-17
EP2522659A2 (en) 2012-11-14
US8741925B2 (en) 2014-06-03
EP2522659A3 (en) 2013-11-27
CN107501099B (en) 2021-03-19
HK1212672A1 (en) 2016-06-17
US20140343315A1 (en) 2014-11-20
US20140163011A1 (en) 2014-06-12
HUE032540T2 (en) 2017-09-28
US8829204B2 (en) 2014-09-09
JP2008504291A (en) 2008-02-14
AU2005258320A1 (en) 2006-01-05
US20190144450A1 (en) 2019-05-16
NZ587547A (en) 2012-09-28
IL257540B (en) 2020-04-30
NZ598393A (en) 2014-05-30
EP2502902A2 (en) 2012-09-26
DK2502911T3 (en) 2017-06-06
IL273332A (en) 2020-04-30
LU92761I2 (en) 2016-07-02
US20140187770A9 (en) 2014-07-03
CA2571949A1 (en) 2006-01-05
CA2571949C (en) 2015-05-12
IL180224A (en) 2012-10-31
JP5712117B2 (en) 2015-05-07
JP2017061565A (en) 2017-03-30
JP4947658B2 (en) 2012-06-06
JP2012056963A (en) 2012-03-22
US20090227797A1 (en) 2009-09-10
CA2810655C (en) 2013-12-10
CN101935301B (en) 2013-10-16
CN101935301A (en) 2011-01-05
US20150065487A1 (en) 2015-03-05
US20150031722A1 (en) 2015-01-29
ME02156B (en) 2015-10-20
EP2532650A2 (en) 2012-12-12
JP5654979B2 (en) 2015-01-14
ES2628026T3 (en) 2017-08-01
US8629162B2 (en) 2014-01-14
IL213155B (en) 2018-02-28
EP2489659B1 (en) 2017-12-13
HK1152707A1 (en) 2012-03-09
PL1773816T3 (en) 2015-06-30
HK1150602A1 (en) 2012-01-06
IL257540A (en) 2018-04-30
US20160318931A1 (en) 2016-11-03
IL213158A (en) 2016-05-31
AU2010251787B2 (en) 2012-08-16
CY1119963T1 (en) 2018-12-12
CN107501099A (en) 2017-12-22
JP2012062319A (en) 2012-03-29
LT2502911T (en) 2017-09-11
ES2656017T3 (en) 2018-02-22
IL213158A0 (en) 2011-07-31
LTC1773816I2 (en) 2017-06-26
LTPA2015028I1 (en) 2015-08-25
PL2489659T3 (en) 2018-06-29
BRPI0511321A (en) 2007-07-31
CN104788328A (en) 2015-07-22
HUS1500035I1 (en) 2017-10-30
SI2489659T1 (en) 2018-04-30
AU2010251789C1 (en) 2013-05-23
RS56873B1 (en) 2018-04-30
ME02799B (en) 2018-01-20
PT2489659T (en) 2018-03-07
AU2010251789B2 (en) 2012-11-15
BR122018075478B8 (en) 2023-10-31
JP2012056962A (en) 2012-03-22
EP1773816A2 (en) 2007-04-18
HK1105970A1 (en) 2008-02-29
ES2534606T3 (en) 2015-04-24
NL300748I1 (en) 2016-01-12
CY1119100T1 (en) 2018-02-14
JP2012107069A (en) 2012-06-07
NZ587549A (en) 2012-10-26
HUE036512T2 (en) 2018-07-30
CY2015026I2 (en) 2017-04-05
IL221828B (en) 2018-08-30
PT1773816E (en) 2015-04-29
US20130331567A1 (en) 2013-12-12
PL2502911T3 (en) 2017-09-29
US9090619B2 (en) 2015-07-28
PT2502911T (en) 2017-07-10
AU2010251789A1 (en) 2011-01-06
BRPI0511321B1 (en) 2019-03-26
US20150315186A2 (en) 2015-11-05
ZA200700601B (en) 2008-11-26
CN101006076B (en) 2010-09-29
MX341797B (en) 2016-09-02
JP5762940B2 (en) 2015-08-12
AU2005258320B2 (en) 2010-09-16
RS56037B1 (en) 2017-09-29
HRP20150277T1 (en) 2015-04-10
DK1773816T3 (en) 2015-01-26
CN103641765B (en) 2016-08-17
NZ552543A (en) 2010-09-30
JP2015172087A (en) 2015-10-01
CN101891680A (en) 2010-11-24
CN104788328B (en) 2017-09-12
JP2014156468A (en) 2014-08-28
NZ587551A (en) 2012-01-12
RU2382779C2 (en) 2010-02-27
RU2007102578A (en) 2008-07-27
US20060074075A1 (en) 2006-04-06
US7495103B2 (en) 2009-02-24
RS53895B1 (en) 2015-08-31
CY1116116T1 (en) 2017-02-08
EP2532650A3 (en) 2013-11-06
US20080071095A1 (en) 2008-03-20
EP2530075A3 (en) 2014-12-24
MX2007000095A (en) 2007-03-21
CY2015026I1 (en) 2017-04-05
JP6285004B2 (en) 2018-02-28
EP1773816B1 (en) 2015-01-07
IL221826A0 (en) 2012-10-31
US8101767B2 (en) 2012-01-24
LT2489659T (en) 2018-03-26
HRP20170847T1 (en) 2017-08-25
ME02970B (en) 2018-07-20
CA2881078A1 (en) 2006-01-05
NL300748I2 (en) 2016-01-12
US20140155431A1 (en) 2014-06-05
CA2881078C (en) 2018-10-02
BRPI0511321B8 (en) 2021-05-25
AU2010251787A1 (en) 2011-01-06
MX365890B (en) 2019-06-19
CN101006076A (en) 2007-07-25
US20090298876A1 (en) 2009-12-03
EP2530075A2 (en) 2012-12-05
NZ587548A (en) 2012-05-25
EP2489659A1 (en) 2012-08-22
WO2006002421A3 (en) 2006-09-21

Similar Documents

Publication Publication Date Title
IL257540A (en) Modulator compound of atp-binding cassette transporters and salts of same
WO2011072241A9 (en) 4-oxo-1h-quinoline-3-carboxamides as modulators of atp-binding cassette transporters
EP1974212A1 (en) Compounds useful in cftr assays and methods therewith
EP2502911B1 (en) Modulators of ATP-binding cassette transporters
AU2013204751A1 (en) Modulators of ATP-Binding Cassette Transporters

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2571949

Country of ref document: CA

Ref document number: 180224

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2007518350

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3938/KOLNP/2006

Country of ref document: IN

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005791060

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/000095

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2005258320

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 552543

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 200700601

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2007102578

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2005258320

Country of ref document: AU

Date of ref document: 20050624

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005258320

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200580028055.2

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005791060

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0511321

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 213155

Country of ref document: IL

Ref document number: 213158

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 221827

Country of ref document: IL

Ref document number: 221828

Country of ref document: IL

Ref document number: 221826

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: P-2015/0171

Country of ref document: RS

WWE Wipo information: entry into national phase

Ref document number: 245365

Country of ref document: IL