WO2006000608A1 - Uso de bloqueantes del canal de katp (kcc), en especial sulfonilureas como la glibenclamida, para el tratamiento del daño agudo del sistema nervioso central causado por distintas enfermedades - Google Patents

Uso de bloqueantes del canal de katp (kcc), en especial sulfonilureas como la glibenclamida, para el tratamiento del daño agudo del sistema nervioso central causado por distintas enfermedades Download PDF

Info

Publication number
WO2006000608A1
WO2006000608A1 PCT/ES2005/000357 ES2005000357W WO2006000608A1 WO 2006000608 A1 WO2006000608 A1 WO 2006000608A1 ES 2005000357 W ES2005000357 W ES 2005000357W WO 2006000608 A1 WO2006000608 A1 WO 2006000608A1
Authority
WO
WIPO (PCT)
Prior art keywords
cns
damage
disease
caused
use according
Prior art date
Application number
PCT/ES2005/000357
Other languages
English (en)
French (fr)
Inventor
Josette-Nicole MAHY GÉHENNE
Manuel José RODRÍGUEZ ALLUÉ
Marco Pugliese
Original Assignee
Neurotec Pharma, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neurotec Pharma, S.L. filed Critical Neurotec Pharma, S.L.
Priority to CA002571718A priority Critical patent/CA2571718A1/en
Priority to AT05764495T priority patent/ATE480243T1/de
Priority to DE602005023489T priority patent/DE602005023489D1/de
Priority to EP05764495A priority patent/EP1782815B1/en
Priority to JP2007517311A priority patent/JP2008503549A/ja
Priority to AU2005256676A priority patent/AU2005256676A1/en
Priority to US11/630,420 priority patent/US20070203239A1/en
Publication of WO2006000608A1 publication Critical patent/WO2006000608A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/64Sulfonylureas, e.g. glibenclamide, tolbutamide, chlorpropamide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system

Definitions

  • This invention is related to the field of human and animal medicine, and specifically with compounds for the treatment and diagnosis of diseases, in particular diseases related to acute central nervous system damage.
  • the microglia are distributed in non-overlapping territories through the central nervous system (CNS).
  • CNS central nervous system
  • the microglia represents the network of accessory immune cells in the brain, spinal cord and neurostructures of the eye, functioning as an intrinsic threat sensor.
  • the high sensitivity of microglial cells to changes in the CNS microenvironment enables them to function as sentinels (cf. G.W. Kreutzberg, Trends Neurosci. 1996, vol. 19, pp. 312-8).
  • the benefits derived from activated microglia remain controversial due to its dual role, protecting the CNS from damage as well as amplifying the effects of inflammatory and autoimmune responses and mediating cellular neurodegeneration (cf. WJ. Streit et al. , Prog. Neurobiol. 1999, vol. 57, pp. 563-81).
  • the damage to the CNS quickly changes the neuronal gene expression and stimulates the microglia that is nearby as support.
  • the activation of the microglia is sufficient to suppress new damage tissue.
  • the early activation microglial cells secrete anti-inflammatory cytokines (eg IL-10 and TGF-beta) and express the glutamate transporters to prevent an excitotoxic lesion.
  • KATP channels initially found in the heart (cf. A. Noma, Nature 1983, vol. 305, pp. 147-8) have been described in pancreas, skeletal muscle, smooth, pituitary muscle, tubular kidney cells, vascular cells and specific neurons of some areas of the brain.
  • KCCs KATP channel blockers
  • AMPA ⁇ -amino-3-hydroxy-5-methyl-soxazol-4 acid -propionic
  • CNS pathologies such as stroke, seizure, axonal injury, traumatic damage, neurodegeneration, spinal cord injury and autoimmune and infectious diseases.
  • the KCCs promote the elimination of synaptic glutamate and the secretion of anti-inflammatory cytokines by branched microglia in the early survival periods.
  • the present invention refers to the use of a KCC, or an isotopically modified species thereof, for the preparation of a prophylactic, therapeutic and / or diagnostic agent for acute CNS damage in a mammal, including a human.
  • the invention also provides a method of prophylaxis, therapy and / or diagnosis of a mammal, including a human, that suffers from or is susceptible to acute CNS damage, which comprises administering an effective amount of a KCC, or a species isotopically modified thereof, along with appropriate amounts of acceptable diluents and carriers.
  • KCCs are typically sulfonylureas. Examples of these are glibenclamide, tolbutamide, gliclazide, gliquidone, tolazamide, chlorpropamide, glipizide, glyburide, glimepiride and glisentide. In a particular embodiment of the invention, the KCC is glibenclamide.
  • the damage is caused by a CNS lesion, such as brain injury, spinal cord injury, global ischemia, focal ischemia, hypoxia, stroke, seizure, epilepsy, status epilepticus, the acute phase of a CNS vascular disease, neuro-ophthalmic disease (eg inflammatory optic neuropathy and retinitis) and trauma.
  • acute CNS damage is caused by a degenerative CNS disease. More particularly, the degenerative disease is amyotrophic lateral sclerosis, multiple sclerosis, encephalopathy and adrenoleukodystrophy.
  • acute CNS damage is caused by an infectious CNS disease, in particular, by encephalomyelitis and meningitis caused by a viral infection (eg AIDS with encephalitis), a parasitic infection (protozoan infections and metazoan), a bacterial infection (eg purulent leptomeningitis and brain abscess), a mycoplasma infection and a fungal infection.
  • acute CNS damage is caused by an autoimmune disease, particularly, by demyelinating diseases such as multiple sclerosis and phenylketonuria.
  • acute CNS damage is caused by a nutritional, metabolic or toxic disorder, particularly liver encephalopathy, lead poisoning and narcotic intoxication.
  • KCCs prevent the acute excitotoxic effects of the CNS and, therefore, can be useful in the treatment of the acute phase of CNS diseases.
  • treatment it is intended to include both prophylaxis and relief of early symptoms.
  • the words “early” and “acute”, as damage qualifiers, are used with the same meaning.
  • KCCs include glibenclamide, such as oral, oral, parenteral, rectal, delayed preparation ("depot”), or by inhalation or insufflation (both by mouth and by The nose). Oral and parenteral formulations are preferred. It is preferred that its administration be associated with a narrow therapeutic window after acute damage.
  • KCCs may have the form, for example, of tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients.
  • Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for reconstitution with water or other appropriate vehicle before use. Such liquid preparations can be prepared with conventional means with pharmaceutically acceptable additives. Preparations for oral administration can be formulated to give a controlled release of the active substance.
  • Liquid preparations for CNS perioperative surgery, including brain, spinal and neuroocular procedures can take the form of, for example, solutions or suspensions, or they can be presented as a dry product for direct application (eg powder, gel or impregnated on a solid support) or reconstituted with water or other suitable vehicle (eg sterile pyrogen-free water) before use.
  • Such liquid preparations can be prepared by conventional means with pharmaceutically acceptable additives such as emulsifying agents (eg lecithin or acacia), non-aqueous vehicles (eg almond oil, oily esters, ethyl alcohol or fractionated vegetable oils) and preservatives (e.g. methyl or propyl-p-hydroxybenzoates or sorbic acid).
  • the preparations may also contain buffer salts and optionally, multiple active agents (eg antibiotics) in an appropriate physiological carrier such as a saline or Ringer's solution.
  • an appropriate physiological carrier such as a saline or Ringer's solution.
  • the solution is applied by continuous irrigation of the wound during surgery and diagnostic procedures to favor the neuroprotection of the CNS.
  • KCCs can be formulated for parenteral administration by bolus injection or continuous infusion.
  • Formulations for injection may be presented in unit dose form (eg in ampoules or in multi-dose containers) with an added preservative.
  • the compositions may take forms such as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain agents such as stabilizers or dispersants.
  • the active ingredient may be in powder form for reconstitution with a suitable vehicle (eg sterile pyrogen-free water) before use.
  • KCCs can also be formulated for local administration, for example, by carotid injection, lumbar or intracisternal puncture, intracerebroventricular or tissue infusion, as solutions for administration by means of a suitable apparatus or alternatively as a powder mixture with a suitable carrier for administration by an appropriate release system.
  • KCCs can be formulated as rectal compositions as suppositories or retention enemas (eg containing conventional suppository bases such as cocoa butter or other glycerides).
  • KCCs can be formulated as solutions for administration by means of a calibrated or single dose device or alternatively as a powder mixture with a suitable carrier for administration by means of a suitable system.
  • the appropriate doses will be found routinely by an expert in the field.
  • the compounds can be used at appropriate doses for other conditions for which KCCs are useful. It may be necessary to make routine variations of the dosage, depending on the age and condition of the patient, and the precise dosage will ultimately be at the discretion of the doctor or veterinarian responsible.
  • the dosage will also vary with the route of administration and the particular compound selected.
  • a suitable dose range is for example 0.01 to 1000 mg / kg of weight per day, preferably 0.1 to 200 mg / kg, and more preferably 0.1 mg / kg to 10 mg / kg.
  • KCCs useful in the present invention can be administered in combination with other KCCs and / or in combination with other therapeutic agents and can be formulated for administration by any route conveniently.
  • the appropriate doses will be found routinely by those skilled in the art.
  • the invention also relates to the use of an isotopically modified KCC for the preparation of a diagnostic agent for acute CNS damage.
  • the person skilled in the art will properly choose the isotopes and the techniques to detect and follow the microglial reaction.
  • Functional brain imaging techniques such as positron emission tomography (PET), single photon emission computed tomography (SPECT) and nuclear magnetic resonance (" nuclear magnetic resonance ", NMR) can provide an image that represents the distribution in the CNS of the microglial reaction.
  • PET positron emission tomography
  • SPECT single photon emission computed tomography
  • NMR nuclear magnetic resonance
  • KCCs can be labeled, for example, with 11 C, 13 C 1 17 F, 31 P, 1 H or 17 O.
  • FIG. 1 shows the area of hippocampal microgliosis (A, in mm 2 ) induced by the stereotactic microinjection of PBS (sham, S), glibenciamide (Glib), AMPA and AMPA + glibenclamide (AMPA + Glib).
  • An asterisk means p ⁇ 0.01 different from sham and the symbol # means p ⁇ 0.01 different from AMPA (post-hoc LSD test).
  • FIG. 2 shows the area (A, in mm 2 ) of hippocampal lesion of CA1 induced by the stereotactic microinjection of PBS (sham, S), glibenclamide (Glib), AMPA or AMPA + glibenclamide (AMPA + Glib).
  • An asterisk means p ⁇ 0.01 different from sham and the symbol # means p ⁇ 0.01 different from AMPA (post-hoc LSD test).
  • Glibenclamide potentiates the microqlial reaction and prevents hypocampal excitotoxic damage in the AMPA-induced rat
  • This model is based on the acute stereotactic overactivation of the hippocampal glutamate receptors in the rat that results in a neurodegenerative process characterized by a neuronal death with astroglial and microglial reactions (cf. F. Bernal et al., Hippocampus 2000. vol. 10 , pp. 296-304; F. Bernal et al., Exp. Neurol. 2000, vol. 161, pp. 686-95).
  • the rats were anesthetized with equitesin (a mixture of doral hydrate and sodium pentobarbital; 0.3 ml / 100 g of body weight, ip) and placed in a Kopf stereotaxic apparatus with the bar of incisors at -3.3 mm.
  • Intracerebral injections directed to the dorsal hippocampus were performed at 3.3 mm flow rate at bregma, 2.2 mm lateral and 2.9 mm ventral from the hard mother (cf. G. Paxinos et al., "The rat brain in stereotaxic coordinates", Sydney: Academic Press 1986).
  • a volume of 0.5 ⁇ l was injected over a period of 5 min.
  • the rats were perfused transcardially with 300 ml of 0.1 M phosphate buffer (PB, pH 7.4) followed by 300 ml of ice-cold fixative (flow rate 20 ml / min).
  • the fixative consisted of 4% paraformaldehyde (w / v) in PB.
  • Brains were extracted, cryoprotected with 15% sucrose (w / v) in PB and then frozen with dry ice.
  • Cryostat sections (12 ⁇ m) were obtained at the level of the dorsal hippocampus (-3.3 mm at bregma).
  • the histochemistry of the solectin B4 (IB4) was performed to identify the microglial reaction (cf. CA. Colton et al., J. Histochem. Cvtochem. 1992, vol. 40, pp. 505-12). Hippocampal morphology was studied in sections stained with Cresilo violet.
  • the area of injury and the evaluation of the microgliosis were performed in sections stained with cresyl violet and positive to IB4 respectively. These parameters were analyzed using a computer-assisted image analysis system (OPTIMAS®, BioScan Inc., Washington, USA). The reactive microcytes stained with IB4 were counted at an x100 magnification using an eye grill mounted on a transmission light microscope (Axiolab, Zeiss, Gottingen, Germany). One-way ANOVA was used to compare differences between groups, followed by the post-hoc LSD test. The results were expressed as mean + SEM All analyzes were performed with the STATGRAPHICS computer program (STSC Inc., Rockville, MD, USA).
  • microglial reaction found in the sham and glibenclamide groups was similar, reaching an area of 0.17 ⁇ 0.04 mm 2 and 0.16 ⁇ 0.03 mm 2 respectively.
  • AMPA rats a strong microgliosis was evident with the ameboid microcytes spread across an area of 0.44 ⁇ 0.07 mm2.
  • the density of the reactive microcytes found was similar: 504 ⁇ 82 cells / mm 2 for sham, 614 + 91 cells / mm 2 for glibenclamide, 645 + 59 cells / mm 2 for AMPA and 568 ⁇ 56 cells / mm 2 for AMPA + Glib.
  • the 236% increase in the microglial reaction was associated with an absence of a significant hippocampal lesion.
  • glibenclamide potentiates microglial activation and prevents hypocampal excitotoxic damage.
  • An absence of hippocampal lesion was observed in animals treated with AMPA + glibenclamide compared to animals treated with AMPA.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Los bloqueantes del canal de KATP (KCCs) son útiles para el tratamiento terapéutico y/o profiláctico del daño agudo del SNC en un mamífero, incluido un humano, porque su administración, particularmente en el caso de la glibenclamida, potencia el efecto microglial neuroprotector. Por lo tanto, pueden ser útiles en el tratamiento de la fase aguda de enfermedades del SNC tales como ictus, convulsión, lesión axonal, daño traumático, neurodegeneración, lesión de la médula espinal y enfermedades autoinmunes e infecciosas del SNC. Los KCCs, modificados isotópicamente, son también útiles para la preparación de agentes diagnósticos para la detección y el seguimiento del daño agudo del SNC.

Description

Compuestos para el tratamiento del daño agudo del sistema nervioso central
Esta invención está relacionada con el campo de Ia medicina humana y animal, y específicamente con compuestos para el tratamiento y Ia diagnosis de enfermedades, en particular enfermedades relacionadas con el daño agudo del sistema nervioso central.
ESTADO DE LA TÉCNICA ANTERIOR
La microglía se distribuye en territorios no solapados a través del sistema nervioso central (SNC). En términos funcionales, Ia microglía representa Ia red de células inmunes accesorias en el cerebro, Ia médula espinal y las neuroestructuras del ojo, funcionando como un sensor ¡ntrínsico de amenazas. La sensibilidad elevada de las células microgliales a los cambios del microambiente del SNC les capacita para funcionar como centinelas (cfr. G.W. Kreutzberg, Trends Neurosci. 1996, vol. 19, pp. 312-8). Los beneficios derivados de Ia microglía activada permanecen controvertidos debido a su rol dual, de protección del SNC del daño así como de amplificación de los efectos de las respuestas inflamatorias y autoimmunes y de mediación de Ia neurodegeneración celular (cfr. WJ. Streit et al., Prog. Neurobiol. 1999, vol. 57, pp. 563-81 ).
El daño al SNC cambia rápidamente Ia expresión génica neuronal y estimula Ia microglía que está cercana como soporte. La activación de Ia microglía, Ia primera etapa en Ia protección de Ia lesión del SNC (cfr. L. Minghetti et al., Prog. Neurobiol. 1998. vol. 54, pp. 99-125) es suficiente para reprimir un nuevo daño tisular. Después de Ia lesión, las células microgliales de activación temprana segregan citocinas antiinflamatorias (p.ej. IL-10 y TGF-beta) y expresan los transportadores del glutamato para prevenir una lesión excitotóxica.
Así, en esta fase aguda, Ia eliminación de glutamato por los astrocitos activos es ayudada por Ia expresión microglial de novo del transportador de glutamato (cfr. A. V. Vallat-Decouvelaere at al., J. Neuropathol. EXP. Neurol. 2003, vol. 62, pp. 475-85) para evitar el daño excitotóxico. En este evento temprano post-lesión, Ia expresión por Ia célula microglial ramificada de transportadores del glutamato EAAT1 , EAAT2 y EAAT3 evita Ia muerte neuronal excitotóxica mediada por el glutamato (cfr. F. Lopez-Redondo et al., Brain Res. Mol. Brain Res. 2000, vol. 76, pp. 429-35; F. Chretien et al., Neuropathol. APPI. Neurobiol. 2002, vol. 28, pp. 410-7).
Actualmente, se han propuesto muy pocos tratamientos en práctica clínica para prevenir el daño agudo del SNC. Están orientados a inhibir o prevenir Ia activación de mecanismos implicados en Ia muerte neuronal, pero su efectividad es limitada y a veces contradictoria. Se han propuesto algunos agentes, como el mesilato de tirilazad y el Ebselen (2-fenil-1 ,2-bencisoselenazol-3(2H)-ona) para neutralizar radicales libres y evitar su toxicidad; otros han sido propuestos para reducir Ia toxicidad del calcio intracelular (p.ej. nimodipino) o para interferir con Ia neurotransmisión GABAérgica (p.ej. clometiazol) o con Ia neurotransmisión por glutamato (p.ej. magnesio). Sin embargo, actualmente, no existe ningún tratamiento para evitar Ia lesión aguda del SNC que presente una buena eficacia y una seguridad elevada para el paciente.
En realidad, en Ia mayoría de los casos, después de un daño agudo, los pacientes quedan bajo observación clínica durante varios días en ausencia de un tratamiento específico, simplemente a Ia espera de una evolución beneficiosa. Por ello, es deseable proporcionar nuevos agentes terapéuticos para el tratamiento tenprano del daño agudo del SNC.
EXPLICACIÓN DE LA INVENCIÓN
Los inventores sorprendentemente han encontrado que Ia microglía activada humana y de roedores expresa un canal de KATP similar a los conocidos en los tejidos cardíaco y muscular, neuronas y células beta pancreáticas. Los canales de KATP, encontrados inicialmente en corazón (cfr. A. Noma, Nature 1983, vol. 305, pp. 147-8) se han descrito en páncreas, músculo esquelético, músculo liso, pituitaria, células tubulares del riñon, células vasculares y neuronas específicas de algunas áreas del cerebro.
El hecho de que Ia microglía activada exprese canales de KAτp, convierte a los bloqueantes del canal de KATP ("KATP channel closers", KCCs) incluyendo las sulfonilureas, en dianas terapéuticas para proteger del daño agudo del SNC. Los KCCs han sido utilizados hasta el momento para el tratamiento de Ia diabetes tipo 2. Los inventores han encontrado que los KCCs, y en particular Ia glibenclamida, potencian Ia reacción microglial aguda y evitan Ia excitotoxicidad de cerebro inducida por AMPA (ácido α-amino-3-hidroxi-5-metil¡soxazol-4-propiónico) en varias patologías del SNC tales como ictus, convulsión, lesión axonal, daño traumático, neurodegeneración, lesión de Ia médula espinal y enfermedades autoinmunes e infecciosas. Los KCCs promueven Ia eliminación del glutamato sináptico y Ia secreción de citocinas antiinflamatorias por Ia microglía ramificada en los periodos tempranos de supervivencia.
Así, Ia presente invención se refiere al uso de un KCC, o de una especie modificada isotópicamente del mismo, para Ia preparación de un agente profiláctico, terapéutico y/o diagnóstico para un daño agudo del SNC en un mamífero, incluido un humano. La invención también proporciona un método de profilaxis, terapia y/o diagnosis de un mamífero, incluido un humano, que sufre de o es susceptible al daño agudo del SNC, que comprende Ia administración de una cantidad efectiva de un KCC, o de una especie modificada isotópicamente del mismo, junto con cantidades apropiadas de diluyentes y portadores aceptables.
Los KCCs son típicamente sulfonilureas. Ejemplos de ellas son Ia glibenclamida, Ia tolbutamida, Ia gliclazida, Ia gliquidona, Ia tolazamida, Ia clorpropamida, Ia glipizida, Ia gliburida, Ia glimepirida y Ia glisentida. En una realización particular de Ia invención, el KCC es Ia glibenclamida.
En una realización particular de Ia invención, el daño es causado por una lesión del SNC, como lesión cerebral, lesión de Ia médula espinal, isquemia global, isquemia focal, hipoxia, ictus, convulsión, epilepsia, status epilepticus, Ia fase aguda de una enfermedad vascular del SNC, enfermedad neurooftalmológica (p.ej. neuropatía óptica inflamatoria y retinitis) y trauma. En otra realización particular, el daño agudo del SNC es causado por una enfermedad degenerativa del SNC. Más particularmente, Ia enfermedad degenerativa es esclerosis lateral amiotrófica, esclerosis múltiple, encefalopatía y adrenoleucodistrofia. En otra realización, el daño agudo del SNC es causado por una enfermedad infecciosa del SNC, en particular, por encefalomielitis y por meningitis causadas por una infección viral (p.ej. SIDA con encefalitis), una infección parasitaria (infecciones de protozoo y metazoo), una infección bacteriana (p.ej. leptomeningitis purulenta y absceso de cerebro), una infección por micoplasma y una infección fúngica. En otra realización, el daño agudo del SNC es causado por una enfermedad autoinmune, particularmente, por enfermedades desmielinizant.es como Ia esclerosis múltiple y Ia fenilcetonuria. En otra realización, el daño agudo del SNC es causado por un desorden nutricional, metabólico o tóxico, en particular por encepalopatía hepática, intoxicación por plomo e intoxicación por estupefacientes.
De acuerdo con Ia presente invención, los KCCs previenen los efectos excitotóxicos agudos del SNC y, por consiguiente, pueden ser de utilidad en el tratamiento de Ia fase aguda de enfermedades del SNC.
Se entenderá que al refererirse a "tratamiento" se pretende incluir tanto Ia profilaxis como el alivio de los síntomas tempranos. En esta descripción, las palabras "temprano" y "agudo", como calificadores de daño, se utilizan con el mismo significado.
Un experto en Ia materia seleccionará una vía de administración adecuada para los KCCs, incluyendo Ia glibenclamida, como Ia oral, bucal, parenteral, rectal, de preparación retardada ("depot"), o por inhalación o insuflación (tanto por Ia boca como por Ia nariz). Son preferidas las formulaciones orales y parenterales. Se prefiere que su administración se asocie con una ventana terapéutica estrecha después del daño agudo.
Para Ia administración oral, los KCCs pueden tener Ia forma, por ejemplo, de tabletas o cápsulas preparadas por medios convencionales con excipientes farmacéuticamente aceptables. Las preparaciones líquidas para Ia administración oral pueden tomar Ia forma de, por ejemplo, soluciones, jarabes o suspensiones, o pueden presentarse como un producto seco para su reconstitución con agua u otro vehículo apropiado antes de uso. Tales preparaciones líquidas pueden prepararse con medios convencionales con aditivos farmacéuticamente aceptables. Las preparaciones para Ia administración oral pueden formularse para dar una liberación controlada del principio activo.
Las preparaciones líquidas para cirugía perioperatoria del SNC, incluyendo los procedimientos cerebrales, medulares y neurooculares pueden tomar Ia forma de, por ejemplo, soluciones o suspensiones, o pueden presentarse como un producto seco para su aplicación directa (p.ej. polvo, gel o impregnado sobre un soporte sólido) o reconstituido con agua u otro vehículo adecuado (p.ej. agua estéril libre de pirógenos) antes de su uso. Tales preparaciones líquidas pueden prepararse por medios convencionales con aditivos farmacéuticamente aceptables tales como agentes emulsionantes (p.ej. lecitina o acacia), vehículos no acuosos (p.ej. aceite de almendra, esteres oleosos, alcohol etílico o aceites vegetales fraccionados) y conservantes (p.ej.metil o propil-p-hidroxibenzoatos o ácido sórbico). Las preparaciones pueden contener también sales tampón y de forma opcional, múltiples agentes activos (p.ej. antibióticos) en un transportador fisiológico apropiado como una solución salina o de Ringer. La solución se aplica por irrigación continua de Ia herida durante los procedimientos de cirugía y de diagnóstico para favorecer Ia neuroprotección del SNC.
Los KCCs pueden formularse para Ia administración parenteral por inyección de bolus o infusión continua. Las formulaciones para inyección pueden presentarse en forma de dosis por unidades (p.ej. en ampollas o en contenedores multidosis) con un conservante añadido. Las composiciones pueden tomar formas tales como suspensiones, soluciones o emulsiones en vehículos oleosos o acuosos, y pueden contener agentes como estabilizantes o dispersantes. Alternativamente, el ingrediente activo puede estar en forma de polvo para su reconstitución con un vehículo adecuado (p.ej. agua estéril libre de pirógenos) antes de su uso.
Los KCCs pueden también formularse para su administración local, por ejemplo, por inyección carotidea, punción lumbar o intracisternal, infusión ¡ntracerebroventricular o tisular, como soluciones para su administración mediante un aparato adecuado o alternativamente como una mezcla en polvo con un transportador adecuado para su administración mediante un sistema de liberación adecuado.
Los KCCs pueden formularse como composiciones rectales como supositorios o enemas de retención (p.ej. conteniendo bases convencionales de supositorios como Ia manteca de cacao u otros glicéridos). Para Ia administración intranasal y ocular, los KCCs pueden formularse como soluciones para su administración mediante un aparato calibrado o de dosis única o alternativamente como una mezcla en polvo con un portador adecuado para su administración mediante un sistema adecuado.
Las dosis adecuadas se encontrarán de forma rutinaria por un experto en Ia materia. Así, para un uso en las condiciones referidas a Ia presente invención, los compuestos pueden usarse a las dosis apropiadas para otras condiciones para las cuales los KCCs sean útiles. Puede ser necesario hacer variaciones rutinarias de Ia dosificación, dependiendo de Ia edad y del estado del paciente, y Ia dosificación precisa quedara en último término a discreción del médico o del veterinario responsable. La dosificación variará también con Ia vía de administración y del compuesto particular seleccionado. Un intervalo de dosis adecuada es por ejemplo 0.01 a 1000 mg/kg de peso por día, preferentemente de 0.1 a 200 mg/kg, y más preferentemente de 0.1 mg/kg a 10 mg/kg.
Los KCCs útiles en Ia presente invención pueden administrarse en combinación con otros KCCs y/o en combinación con otros agentes terapéuticos y pueden ser formulados para su administración por cualquier ruta de forma conveniente. Las dosis apropiadas se encontraran de manera rutinaria por aquéllos expertos en Ia materia.
La invención también se refiere al uso de un KCC modificado isotópicamente para Ia preparación de un agente diagnóstico para el daño agudo del SNC. El experto en Ia materia escogerá apropiadamente los isótopos y las técnicas para detectar y seguir Ia reacción microglial. Las técnicas funcionales de imagen cerebral como Ia tomografía de emisión de positrones ("positrón emission tomography", PET), Ia tomografía computerizada de emisión de fotón único ("single-photon emission computed tomography", SPECT) y Ia resonancia magnética nuclear ("nuclear magnetic resonance", NMR) pueden proporcionar una imagen que representa Ia distribución en el SNC de Ia reacción microglial. En el proceso de Ia enfermedad, Ia microglía, una vez activada, presenta una participación territorial altamente restringida. Ello Ie confiere valor diagnóstico para Ia localización espacial detallada de cualquier proceso activo de enfermedad. Los KCCs pueden marcarse por ejemplo con 11C, 13C1 17F, 31P, 1H o 17O. A Io largo de Ia descripción y las reivindicaciones Ia palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. El resumen de Ia presente solicitud se incorpora aquí como referencia. Para los expertos en Ia materia, otros objetos, ventajas y características de Ia invención se desprenderán en parte de Ia descripción y en parte de Ia práctica de Ia invención. El siguiente ejemplo y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de Ia presente invención.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
La FIG. 1 muestra el área de microgliosis hipocampal (A, en mm2) inducida por Ia microinyección estereotáxica de PBS (sham, S), glibenciamida (Glib), AMPA y AMPA+glibenclamida (AMPA+Glib). Un asterisco significa p<0.01 diferente de sham y el símbolo # significa p<0.01 diferente de AMPA (test LSD post-hoc).
La FIG. 2 muestra el área (A, en mm2) de lesión hipocampal de Ia CA1 inducida por Ia microinyección estereotáxica de PBS (sham, S), glibenclamida (Glib), AMPA o AMPA+glibenclamida (AMPA+Glib). Un asterisco significa p<0.01 diferente de sham y el símbolo # significa p<0.01 diferente de AMPA (test LSD post-hoc).
EXPOSICIÓN DETALLADA DE UN MODO DE REALIZACIÓN
La glibenclamida potencia Ia reacción microqlial y evita el daño excitotóxico hipocampal en Ia rata inducido por AMPA
Este modelo se basa en Ia sobreactivación estereotáxica aguda de los receptores hipocampales del glutamato en Ia rata que resulta en un proceso neurodegenerativo caracterizado por una muerte neuronal con reacciones astroglial y microglial (cfr. F. Bernal et al., Hippocampus 2000. vol. 10, pp. 296-304; F. Bernal et al., Exp. Neurol. 2000, vol. 161 , pp. 686-95). En este modelo neurodegenerativo las ratas se anestesiaron con equitesina (una mezcla de hidrato de doral y pentobarbital sódico; 0.3 ml/100 g de peso corporal, i.p.) y se colocaron en un aparato estereotáxico Kopf con Ia barra de incisivos a -3.3 mm. Las inyecciones intracerebrales dirigidas al hipocampo dorsal se realizaron a 3.3 mm de caudal a bregma, 2.2 mm lateral y 2.9 mm ventral desde Ia dura madre (cfr. G. Paxinos et al., "The rat brain in stereotaxic coordinates", Sydney: Academic Press 1986). Un volumen de 0.5 μl se inyectó en un periodo de 5 min.
Cuatro grupos diferentes de ratas recibieron dos inyecciones en un intervalo de 2 horas como sigue: a) las ratas sham (n = 4) recibieron dos inyecciones de PBS; b) las ratas AMPA (n = 4) recibieron Ia primera inyección de 5.4 mM de AMPA y Ia segunda de PBS; c) las ratas glibenclamida (n = 4) recibieron dos inyecciones de 20 μM de glibenclamida; d) las ratas AMPA+glibenclamida (n = 4) recibieron 5.4 mM de AMPA + 20 μM de glibenclamida en Ia primera inyección y 20 μM de glibenclamida en Ia segunda inyección. Todas las ratas fueron sacrificadas 24 horas después de Ia lesión.
Las ratas fueron perfundidas transcardialmente con 300 mi de tampón fosfato 0.1 M (PB, pH 7.4) seguido de 300 mi de fijador enfriado en hielo (tasa de flujo 20 ml/min). El fijador consistía en paraformaldehído 4% (p/v) en PB. Los cerebros fueron extraídos, crioprotegidos con sacarosa al 15% (p/v) en PB y después, congelados con hielo seco. Se obtuvieron secciones de criostato (12 μm) a nivel del hipocampo dorsal (-3.3 mm a bregma). La histoquímica de Ia ¡solectina B4 (IB4) se realizó para identificar Ia reacción microglial (cfr. CA. Colton et al., J. Histochem. Cvtochem. 1992, vol. 40, pp. 505-12). La morfología hipocampal fue estudiada en secciones teñidas con violeta de Cresilo.
El área de lesión y Ia evaluación de Ia microgliosis se realizaron en secciones teñidas con violeta de cresilo y positivas a Ia IB4 respectivamente. Estos parámetros fueron analizados utilizando un sistema de análisis de imágenes asistido por ordenador (ÓPTIMAS®, BioScan Inc., Washington, EEUU). Los microcitos reactivos teñidos con IB4 fueron contados a una magnificación x100 utilizando una reja ocular montada en un microscopio de luz de transmisión (Axiolab, Zeiss, Góttingen, Alemania). La ANOVA de una vía fue usada para comparar las diferencias entre grupos, seguidos por el test LSD post-hoc. Los resultados fueron expresados como media + S. E. M. Todos los análisis fueron realizados con el programa de ordenador STATGRAPHICS (STSC Inc., Rockville, MD, EE.UU).
La reacción microglial encontrada en los grupos sham y glibenclamida era similar, alcanzando una área de 0.17 ± 0.04 mm2 y 0.16 ± 0.03 mm2 respectivamente. En las ratas AMPA, se evidenció una fuerte microgliosis con los microcitos ameboides extendidos a través de un área de 0.44 ± 0.07 mm2. En el grupo AMPA+Glib esta área de microgliosis se incrementó hasta un área de 1.04 + 0.11 mm2 (236% del grupo AMPA) (resultado del test ANOVA de una vía: F3.12 = 31.81 ; p = 0.0001 ) (cfr. FIG. 1 ).
En todos los cuatro grupos Ia densidad de los microcitos reactivos encontrada fue similar: 504 ± 82 células/mm2 para el sham, 614 + 91 células/mm2 para el glibenclamida, 645 + 59 células/mm2 para el AMPA y 568 ± 56 células/mm2 para el AMPA+Glib. Como se ilustra en Ia FIG. 2 con Ia cuantificación de Ia capa piramidal CA1 , rica en células neuronales, en este último grupo, el aumento del 236% de Ia reacción microglial estaba asociado con una ausencia de una lesión hipocampal significativa. En esta capa, los 0.130 + 0.015 mm2 de lesión observados en las ratas AMPA disminuyeron hasta 0.015 ± 0.0016 mm2 en el grupo AMPA+Glib, similar a las áreas de 0.009 ± 0.0015 mm2 y 0.012 + 0.0017 mm2 encontradas en los grupos sham y glibenclamida respectivamente (resultado del test ANOVA de una vía: F3i11 = 52.14; p = 0.00001 ).
De estos resultados queda claro que Ia glibenclamida potencia Ia activación microglial y evita el daño excitotóxico hipocampal. Se observó una ausencia de lesión hipocampal en animales tratados con AMPA+glibenclamida en comparación con los animales tratados con AMPA.

Claims

REIVINDICACIONES
1. Uso de un bloqueante del canal de KATP (KCC), o de una especie modificada isotópicamente del mismo, para Ia preparación de un agente profiláctico, terapéutico y/o diagnóstico para un daño agudo del SNC en un mamífero, incluido un humano.
2. Uso según Ia reivindicación 1 , donde el bloqueante del canal de KATP es una sulfonilurea.
3. Uso según Ia reivindicación 2, donde el daño es causado por una lesión del SNC.
4. Uso según Ia reivindicación 3, donde Ia lesión del SNC se selecciona del grupo que consiste en lesión cerebral, lesión de Ia médula espinal, isquemia global, isquemia focal, hipoxia, ictus, convulsión, epilepsia, status epilepticus, enfermedad vascular del SNC, enfermedad neuroocular y trauma.
5. Uso según Ia reivindicación 2, donde el daño es causado por una enfermedad degenerativa del SNC.
6. Uso según Ia reivindicación 5, donde Ia enfermedad degenerativa del SNC se selecciona del grupo que consiste en esclerosis lateral amiotrófica, esclerosis múltiple, encefalopatía y adrenoleucodistrofia.
7. Uso según Ia reivindicación 2, donde el daño es causado por una enfermedad infecciosa del SNC.
8. Uso según Ia reivindicación 7, donde Ia enfermedad infecciosa del SNC se selecciona del grupo que consiste en una infección viral, una infección parasitaria, una infección bacteriana, una infección por micoplasma y una infección fúngica.
9. Uso según Ia reivindicación 2, donde el daño es causado por una enfermedad autoinmune.
10. Uso según Ia reivindicación 9, donde Ia enfermedad autoinmune se selecciona del grupo que consiste en esclerosis mútliple y fenilcetonuria.
11. Uso según Ia reivindicación 2, donde el daño es causado por un desorden nutricional, metabólico o tóxico.
12. Uso según Ia reivindicación 11 , donde el desorden se selecciona del grupo que consiste en encepalopatía hepática, intoxicación por plomo e intoxicación por estupefacientes.
13. Uso según cualquiera de las reivindicaciones anteriores, donde el bloqueante del canal de KATP es Ia glibenclamida.
14. Método de profilaxis, terapia y/o diagnosis de un mamífero, incluido un humano, que sufre de o es susceptible al daño agudo del SNC, que comprende Ia administración de una cantidad efectiva de un bloqueante del canal de KATP (KCC), O de una especie modificada isotópicamente del mismo, junto con cantidades apropiadas de diluyentes y portadores aceptables.
15. Método según Ia reivindicación 14, donde el bloqueante del canal de KATP es una sulfonilurea.
16. Método según Ia reivindicación 15, donde el daño es causado por una lesión del SNC.
17. Método según Ia reivindicación 16, donde Ia lesión del SNC se selecciona del grupo que consiste en lesión cerebral, lesión de Ia médula espinal, isquemia global, isquemia focal, hipoxia, ictus, convulsión, epilepsia, status epilepticus, enfermedad vascular del SNC, enfermedad neuroocular y trauma.
18. Método según Ia reivindicación 15, donde el daño es causado por una enfermedad degenerativa del SNC.
19. Método según Ia reivindicación 18, donde Ia enfermedad degenerativa del SNC se selecciona del grupo que consiste en esclerosis lateral amiotrófica, esclerosis múltiple, encefalopatía y adrenoleucodistrofia.
20. Método según Ia reivindicación 15, donde el daño es causado por una enfermedad infecciosa del SNC.
21. Método según Ia reivindicación 20, donde Ia enfermedad infecciosa del SNC se selecciona del grupo que consiste en una infección viral, una infección parasitaria, una infección bacteriana, una infección por micoplasma y una infección fúngica.
22. Método según Ia reivindicación 15, donde el daño es causado por una enfermedad autoinmune.
23. Método según Ia reivindicación 22, donde Ia enfermedad autoinmune se selecciona del grupo que consiste en esclerosis mútliple y fenilcetonuria.
24. Método según Ia reivindicación 15, donde el daño es causado por un desorden nutricional, metabólico o tóxico.
25. Método según Ia reivindicación 24, donde el desorden se selecciona del grupo que consiste en encepalopatía hepática, intoxicación por plomo e intoxicación por estupefacientes.
26. Método según cualquiera de las reivindicaciones 14-25, donde el bloqueante del canal de KATP es Ia glibenclamida.
PCT/ES2005/000357 2004-06-23 2005-06-23 Uso de bloqueantes del canal de katp (kcc), en especial sulfonilureas como la glibenclamida, para el tratamiento del daño agudo del sistema nervioso central causado por distintas enfermedades WO2006000608A1 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA002571718A CA2571718A1 (en) 2004-06-23 2005-06-23 Compounds for the treatment of an acute injury to the central nervous system
AT05764495T ATE480243T1 (de) 2004-06-23 2005-06-23 Zusammensetzung zur verwendung bei diagnose der akuten verletzungen des zentralen nervensystems
DE602005023489T DE602005023489D1 (de) 2004-06-23 2005-06-23 Zusammensetzung zur verwendung bei diagnose der akuten verletzungen des zentralen nervensystems
EP05764495A EP1782815B1 (en) 2004-06-23 2005-06-23 Compound for use in the diagnosis of cns acute damage
JP2007517311A JP2008503549A (ja) 2004-06-23 2005-06-23 中枢神経系の急性障害の治療のための化合物
AU2005256676A AU2005256676A1 (en) 2004-06-23 2005-06-23 Compounds for the treatment of an acute injury to the central nervous system
US11/630,420 US20070203239A1 (en) 2004-06-23 2005-06-23 Compounds For The Treatment Of An Acute Injury To The Central Nervous System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200401628 2004-06-23
ES200401628 2004-06-23

Publications (1)

Publication Number Publication Date
WO2006000608A1 true WO2006000608A1 (es) 2006-01-05

Family

ID=35781576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/000357 WO2006000608A1 (es) 2004-06-23 2005-06-23 Uso de bloqueantes del canal de katp (kcc), en especial sulfonilureas como la glibenclamida, para el tratamiento del daño agudo del sistema nervioso central causado por distintas enfermedades

Country Status (9)

Country Link
US (1) US20070203239A1 (es)
EP (1) EP1782815B1 (es)
JP (1) JP2008503549A (es)
AT (1) ATE480243T1 (es)
AU (1) AU2005256676A1 (es)
CA (1) CA2571718A1 (es)
DE (1) DE602005023489D1 (es)
ES (1) ES2352203T3 (es)
WO (1) WO2006000608A1 (es)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1993562A2 (en) * 2006-02-22 2008-11-26 University of Maryland, Baltimore A novel non-selective cation channel in neuronal cells and methods for treating brain swelling
US7872048B2 (en) 2004-09-18 2011-01-18 University Of Maryland, Baltimore Methods for treating spinal cord injury with a compound that inhibits a NCCa-ATP channel
US8318810B2 (en) 2002-03-20 2012-11-27 University Of Maryland, Baltimore Methods for treating neural cell swelling
US9375438B2 (en) 2007-06-22 2016-06-28 University Of Maryland, Baltimore Inhibitors of NCCa-ATP channels for therapy
US9511075B2 (en) 2007-01-12 2016-12-06 The University Of Maryland, Baltimore Targeting NCCA-ATP channel for organ protection following ischemic episode
US10583094B2 (en) 2004-09-18 2020-03-10 University Of Maryland Therapeutic methods that target the NCCA-ATP channel

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1884244A1 (en) 2006-08-02 2008-02-06 Assistance Publique - Hopitaux de Paris Potassium channel ligands for treating diabetes and neuropsychological dysfunction
CA2618099C (en) * 2007-02-09 2016-09-20 University Of Maryland, Baltimore Antagonists of a non-selective cation channel in neural cells
US9662347B2 (en) 2010-05-11 2017-05-30 Gachon University Of Industry-Academic Cooperation Foundation Method for inhibiting the induction of cell death by inhibiting the synthesis or secretion of age-albumin in cells of the mononuclear phagocyte system
EP2609914A1 (en) * 2011-12-29 2013-07-03 Universitätsklinikum Hamburg-Eppendorf Novel methods for treating or preventing neurodegeneration
US10058542B1 (en) 2014-09-12 2018-08-28 Thioredoxin Systems Ab Composition comprising selenazol or thiazolone derivatives and silver and method of treatment therewith

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147087A (en) * 1994-12-16 2000-11-14 Bayer Aktiengesellschaft Use of 1,2-Bridged 1,4-dihydropyridines as medicaments
WO2004093896A1 (en) * 2003-04-22 2004-11-04 Pharmacia Corporation Compositions of a cyclooxygenase-2 selective inhibitor and a potassium ion channel modulator for the treatment of central nervous system damage

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147098A (en) * 1998-05-11 2000-11-14 Novo Nordisk A/S Substituted guanidines and diaminonitroethenes, their preparation and use
US20030045449A1 (en) * 2001-08-15 2003-03-06 Pfizer, Inc. Pharmaceutical combinations for the treatment of neurodegenerative diseases
US8980952B2 (en) * 2002-03-20 2015-03-17 University Of Maryland, Baltimore Methods for treating brain swelling with a compound that blocks a non-selective cation channel
WO2003079987A2 (en) * 2002-03-20 2003-10-02 University Of Maryland Baltimore A non-selective cation channel in neural cells and methods for treating brain swelling
WO2004093816A2 (en) * 2003-04-22 2004-11-04 Pharmacia Corporation Compositions comprising a selective cox-2 inhibitor and a calcium modulating agent
US20040224940A1 (en) * 2003-04-22 2004-11-11 Pharmacia Corporation Compositions of a cyclooxygenase-2 selective inhibitor and a sodium ion channel blocker for the treatment of central nervous system damage
US20050089473A1 (en) * 2003-09-10 2005-04-28 Cedars-Sinai Medical Center Potassium channel mediated delivery of agents through the blood-brain barrier
JP5085326B2 (ja) * 2004-09-18 2012-11-28 ユニバーシティ オブ メリーランド,ボルチモア NCCa−ATPチャネルを標的とする処置剤およびその使用方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147087A (en) * 1994-12-16 2000-11-14 Bayer Aktiengesellschaft Use of 1,2-Bridged 1,4-dihydropyridines as medicaments
WO2004093896A1 (en) * 2003-04-22 2004-11-04 Pharmacia Corporation Compositions of a cyclooxygenase-2 selective inhibitor and a potassium ion channel modulator for the treatment of central nervous system damage

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BINGHAM E. ET AL: "The effects of KATP channel modulators on counterregulatory responses and cognitive function during acute controlled hypoglycaemia in healthy men: a pilot study", DIABETIC MEDICINE, vol. 20, no. 3, 2003, pages 231 - 237, XP003009243 *
STEIN J.: "Fampridine may help patients with spinal cord injury:", 15 October 2002 (2002-10-15), XP003009244, Retrieved from the Internet <URL:http://www.pslgroup.com/dg/22068A.htm> *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9107932B2 (en) 2002-03-20 2015-08-18 University Of Maryland, Baltimore Methods for treating neural cell swelling
US8318810B2 (en) 2002-03-20 2012-11-27 University Of Maryland, Baltimore Methods for treating neural cell swelling
US8980952B2 (en) 2002-03-20 2015-03-17 University Of Maryland, Baltimore Methods for treating brain swelling with a compound that blocks a non-selective cation channel
US10533988B2 (en) 2002-03-20 2020-01-14 University Of Maryland, Baltimore Methods for treating central or peripheral nervous system damage
US7872048B2 (en) 2004-09-18 2011-01-18 University Of Maryland, Baltimore Methods for treating spinal cord injury with a compound that inhibits a NCCa-ATP channel
US8569377B2 (en) 2004-09-18 2013-10-29 The United States Of America As Represented By The Department Of Veteran Affairs Methods for treating spinal cord injury with a compound that inhibits a NCCA-ATP channel
US10583094B2 (en) 2004-09-18 2020-03-10 University Of Maryland Therapeutic methods that target the NCCA-ATP channel
EP1993562A4 (en) * 2006-02-22 2012-07-18 Univ Maryland NEW NON-SELECTIVE CATION CHANNEL IN NEURONAL CELLS AND METHOD FOR THE TREATMENT OF BRAIN SCREENING
EP1993562A2 (en) * 2006-02-22 2008-11-26 University of Maryland, Baltimore A novel non-selective cation channel in neuronal cells and methods for treating brain swelling
US9511075B2 (en) 2007-01-12 2016-12-06 The University Of Maryland, Baltimore Targeting NCCA-ATP channel for organ protection following ischemic episode
US10166244B2 (en) 2007-01-12 2019-01-01 University Of Maryland, Baltimore Targeting NCCA-ATP channel for organ protection following ischemic episode
US10898496B2 (en) 2007-01-12 2021-01-26 University Of Maryland, Baltimore Targeting NCCa-ATP channel for organ protection following ischemic episode
US9375438B2 (en) 2007-06-22 2016-06-28 University Of Maryland, Baltimore Inhibitors of NCCa-ATP channels for therapy

Also Published As

Publication number Publication date
US20070203239A1 (en) 2007-08-30
EP1782815A1 (en) 2007-05-09
ES2352203T3 (es) 2011-02-16
AU2005256676A1 (en) 2006-01-05
DE602005023489D1 (de) 2010-10-21
JP2008503549A (ja) 2008-02-07
CA2571718A1 (en) 2006-01-05
EP1782815B1 (en) 2010-09-08
ATE480243T1 (de) 2010-09-15

Similar Documents

Publication Publication Date Title
WO2006000608A1 (es) Uso de bloqueantes del canal de katp (kcc), en especial sulfonilureas como la glibenclamida, para el tratamiento del daño agudo del sistema nervioso central causado por distintas enfermedades
Steinberg et al. Dextromethorphan protects against cerebral injury following transient focal ischemia in rabbits.
Steinberg et al. Protective effect of N-methyl-D-aspartate antagonists after focal cerebral ischemia in rabbits.
ES2285743T3 (es) Uso de un farmaco anticancerigeno no encapsulado para la preparacion de una formulacion para tratar neoplasias mediante inhlacion.
Mohazab et al. Possible involvement of PPAR-gamma receptor and nitric oxide pathway in the anticonvulsant effect of acute pioglitazone on pentylenetetrazole-induced seizures in mice
Kim et al. P2X7 receptor differentially modulates astroglial apoptosis and clasmatodendrosis in the rat brain following status epilepticus
EP2161995A1 (en) A drug demonstrating anxiolytic effect based on hydrogenated pyrido (4, 3-b) indoles, its pharmacological compound and application method
ES2266512T3 (es) Composiciones para inhibir angiogenesis.
Kuo et al. Neuroprotective effect of curcumin in an experimental rat model of subarachnoid hemorrhage
JP2008530100A5 (es)
Goyagi et al. Post-treatment with selective beta1 adrenoceptor antagonists provides neuroprotection against transient focal ischemia in rats
ES2284845T3 (es) Uso de un compuesto de carbamato para la prevencion y el tratamiento de enfermedades neurodegenerativas.
BRPI0818118B1 (pt) Composição farmacêutica na forma de uma suspensão aquosa estabilizada de carisbamato e seu processo de formação
JP7001599B2 (ja) 急性骨髄性白血病の処置のためのダクチノマイシン組成物および方法
WO2006000607A1 (es) Uso de activadores de los canales de katp (kco), en particular el diazóxido, en el tratamiento de la inflamación crónica de snc asociada a algunas efermedades
Ikonomidou et al. Prevention of trauma-induced neurodegeneration in infant and adult rat brain: glutamate antagonists
CA3034875C (en) Combination therapies for the treatment of hepatocellular carcinoma
ES2750839T3 (es) Composición farmacéutica para la prevención, tratamiento o retraso de la enfermedad de Alzheimer o demencia que contiene agente receptor acoplado a proteína G 19 como ingrediente activo
PT792160E (pt) Factor neurotrofico derivado das celulas gliais utilizado como agente neuroprotector
KR101903713B1 (ko) 만성 외상성 뇌병증-ii를 예방 및/또는 치료하는 방법
Durham et al. Estradiol protects against hippocampal damage and impairments in fear conditioning resulting from transient global ischemia in mice
AU2016416524B2 (en) Radioactive phospholipid metal chelates for cancer imaging and therapy
US20200038349A1 (en) Use of n-acetylcysteine amide in the treatment of penetrating head injury
ES2262322T3 (es) Tratamiento de la degenaracion espinocereberal y comoposiciones utiles para el tratamiento de degeneracion espinocerebelar.
JP2549480B2 (ja) 排尿障害改善剤

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2571718

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005256676

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007517311

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005764495

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2005256676

Country of ref document: AU

Date of ref document: 20050623

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005256676

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 11630420

Country of ref document: US

Ref document number: 2007203239

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005764495

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11630420

Country of ref document: US