WO2006000552A1 - Scannersystem und verfahren zur erfassung von oberflächen - Google Patents

Scannersystem und verfahren zur erfassung von oberflächen Download PDF

Info

Publication number
WO2006000552A1
WO2006000552A1 PCT/EP2005/052880 EP2005052880W WO2006000552A1 WO 2006000552 A1 WO2006000552 A1 WO 2006000552A1 EP 2005052880 W EP2005052880 W EP 2005052880W WO 2006000552 A1 WO2006000552 A1 WO 2006000552A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
scanner system
spectrometer
scanning
spectral
Prior art date
Application number
PCT/EP2005/052880
Other languages
English (en)
French (fr)
Other versions
WO2006000552A8 (de
Inventor
Bernhard Braunecker
Peter Stegmaier
Peter Kipfer
Original Assignee
Leica Geosystems Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leica Geosystems Ag filed Critical Leica Geosystems Ag
Priority to CN2005800208009A priority Critical patent/CN1973180B/zh
Priority to EP05756836A priority patent/EP1759172B1/de
Priority to US11/610,650 priority patent/US8379191B2/en
Priority to CA2571716A priority patent/CA2571716C/en
Priority to JP2007517288A priority patent/JP2008503741A/ja
Priority to AT05756836T priority patent/ATE512350T1/de
Publication of WO2006000552A1 publication Critical patent/WO2006000552A1/de
Publication of WO2006000552A8 publication Critical patent/WO2006000552A8/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/12Measuring arrangements characterised by the use of optical techniques for measuring diameters internal diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N21/3151Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using two sources of radiation of different wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/954Inspecting the inner surface of hollow bodies, e.g. bores
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content

Definitions

  • the invention relates to a scanner system for detecting surfaces according to the preamble of claim 1, a method for detecting surfaces according to the preamble of claim 15 and a geodetic device and a mobile scanning system.
  • a structure such as e.g. of a building, successive scanning and recording.
  • Such a topography represents a coherent sequence of points describing the surface or a corresponding model or description of the surface.
  • a common approach is the scanning by means of a laser scanner, which respectively detects the spatial position of a surface point by the laser Distance to the targeted surface point measured and this measurement are linked to the angle information of the laser emission. From this distance and angle information, the spatial position of the detected point can be determined and the surface can be measured continuously.
  • an image acquisition is also performed by a camera which, in addition to the overall visual view, also contains further information, e.g. regarding the surface texture.
  • WO 97/40342 describes an earth-based method which records a topography by stationary scanner systems.
  • a fixed installation point is chosen as the basis a scan caused by motors is used.
  • the three-dimensional location information of the respective surface point can be derived by the distance to the measured point, the angular position at the time of the measurement and the known location of the scanning device.
  • the scanner systems are specially designed for the task of topography detection and scan a surface by moving the scanner system or by changing the beam path.
  • scanning functions can be integrated into various other devices as additional functions.
  • a geodetic measuring device which emits a laser beam for distance measurement from its position within the detected area.
  • Such measuring devices can also be modified for the scanning detection of surfaces or operated without modification.
  • An example of this is motorized theodolites or total stations.
  • Other methods use mobile systems that scan a structure to be detected by a movement of the scanner system or support the sampling or supplement.
  • Such systems are particularly suitable for detecting linear or linearly drivable structures, such as track systems, roads, tunnel systems or airfields.
  • Such state-of-the-art detection processes provide images or topographical data, essentially information about the spatial distribution or relationship of surface points represent. If necessary, additionally recorded images allow the derivation of further information.
  • a disadvantage is the lack of qualitative information about the nature and condition of the surface, in particular with regard to the internal structure or composition. For example, images taken parallel to the scan usually allow the identification of different brightness values. Although these can be interpreted in terms of possible structures and compositions of the surface and the underlying processes, further information must be provided or strongly restrictive assumptions made.
  • a large image acquisition parallel to the surface which allows an analytical characterization of the surface beyond simple viewing of grayscale values, can not be achieved by prior art methods. It is an object of the present invention to provide a scanner system and method that enables at least one qualitative analysis of a surface parallel to the detection of the surface.
  • Another task is the verification or verification of qualitative parameters of the surfaces.
  • a further object is to provide a system which has increased functionality over pure surface detection, e.g. by allowing a warning function in case of a qualitative change of recorded structures.
  • the invention relates to a scanner system or a method for detecting a surface and to a geodetic measuring device or a mobile scanning system equipped with this system.
  • the surface is spectrally probed parallel to a scan, i. sampled so that it can be concluded from the spectral components of the received radiation on the composition or the state of the probed or detected surface.
  • the spectral sounding can be done for the entire surface topography, in particular continuously, or even for partial areas.
  • a spectrally separated emission or a spectral analysis after or during the reception of the radiation can take place. Equally, both approaches can be combined.
  • spectrally separated or separated emission for example, radiation in two separate or partially overlapping spectral ranges be sent synchronously or alternately.
  • its emitted radiation can be on the long side but also on the shortwave side of the laser conventionally used for distance measurement, wherein the shortwave option can also permit measurements in fluorescence, for example.
  • multispectral or white light sources can also be used.
  • the reception can take place, for example, with only one receiver, if it receives the reflection in the different spectral ranges in a time-dependent manner in the case of alternating emission.
  • two spectrally selective receivers can be used, from whose relative intensities the material underlying den reflection can be deduced.
  • a system for detecting rust on concrete surfaces can be designed to emit complementarily two red and blue radiations. Red, rust-containing surface areas will have an increased reflection in the red spectral range compared to only wet or dry concrete sections, so that in contrast to the pure light-dark evaluation, rust can be distinguished from wet spots with this method.
  • spectrometers are used to spectrally dissect or analyze the received radiation.
  • basically all types of spectrometers such as, for example, prism, grating, terahertz or Fourier transform spectrometers, can be used.
  • spectrometers that take a comparatively long period of time to analyze can only be used at the expense of disadvantages such as increased structural complexity through the use of multiple temporally overlapping spectrometers or a reduced scan speed.
  • spectrometers which are sufficiently fast in relation to the scanning speed or which effect a spatial demodulation.
  • An example of the last-mentioned spectrometers are Michelson-type Fourier spectrometers which have an inclined mirror, so that a path difference does not result from adjusting the mirror, but rather from location-dependent.
  • the resulting interference pattern is picked up by a suitable arrangement such as a photodiode array or a CCD / CMOS camera and subsequently subjected to a transformation or spectral decomposition.
  • a suitable arrangement such as a photodiode array or a CCD / CMOS camera and subsequently subjected to a transformation or spectral decomposition.
  • sufficiently fast transformations for harmonic decomposition are also available for the scanning process available, such as the discrete Fourier transform (DFT).
  • DFT discrete Fourier transform
  • the spectral separation can thus according to the invention by a spectrally selective emission, a spectral analysis after or during reception or by a combination of both approaches done, the chosen solution will also depend on the nature of the surface to be detected or analyzed and their composition.
  • terahertz sources which allow both a certain penetration depth and thus an analysis below the surface of materials or their topographies a * also improved analysis in specific areas.
  • Suitable terahertz technologies have already been implemented, for example, for the astronomical sector for quite some time, although in the meantime more compact systems that are fundamentally suitable for a scanner application are also available.
  • sources for example, mode-locked titanium: sapphire laser with photoconductive dipole antenna, femtosecond laser with electro-optical crystals and electronic Gunn / Bloch oscillators can be used, which together with a reflective optics allow a more compact arrangement.
  • compact terahertz spectrometers can be realized, for example, on the basis of Hilbert transform spectrometers.
  • a scanner system according to the invention and a method according to the invention are described in more detail below purely by way of example with reference to exemplary embodiments shown schematically in the drawing.
  • Figure 2 is a schematic representation of a prior art method of scanning the inner surface of a tunnel with a geodetic apparatus of the prior art
  • FIG. 3 shows the schematic representation of a method according to the invention for scanning the inner surface of a tunnel with a mobile scanning system according to the invention
  • FIG. 6 shows the scanning of the inner surface of a structure with a geodetic device according to the invention
  • 7 shows an example of a greyscale image of the inside of a tunnel with identifiable structures
  • FIG. 8 is a schematic representation of a first embodiment of a scanner system according to the invention.
  • FIG. 9 is a schematic representation of a second embodiment of a scanner system according to the invention.
  • FIG. 10 is a schematic representation of a third embodiment of a scanner system according to the invention.
  • FIG. 11 is a schematic representation of a fourth embodiment of a scanner system according to the invention.
  • 12 shows the schematic illustration of a fifth exemplary embodiment of a scanner system according to the invention and
  • FIG. 11 is a schematic representation of a fourth embodiment of a scanner system according to the invention.
  • FIG. 13 is a schematic representation of a sixth embodiment of a scanner system according to the invention with integration into a geodetic measuring device.
  • Fig.l the scanning of an outer surface 2 is explained with a geodetic device 1 of the prior art.
  • the geodetic device 1 is positioned at a sufficient distance from the outer surface 2 and scans the outer surface 2 in different angular positions, wherein electromagnetic radiation ES is emitted for distance measurement. From the distance measurements and the associated angular positions, the outer surface 2 can be reconstructed.
  • the desired resolution of the surface detection determines the subdivision of the detected area in angular positions. Parallel to the distance measurements, an image can also be taken by a camera in the geodetic device.
  • Fig. 2 shows a schematic representation of a prior art method for scanning the inner surface 2 'of a structure with a geodetic device 1 of the prior art.
  • inner surfaces 2 'of structures such as e.g. Tunnels, underpasses or interiors of buildings to be scanned with geodetic equipment 1.
  • the inner side 2 ' is scanned in the form of a spiral track 3 and thus detected. Due to the limited detection area at larger depths of the structure, the geodetic instrument 1 usually has to be subjected to frequent positional changes, e.g. in sweeping use, can be used.
  • Figure 3 shows the schematic representation of an inventive method for scanning the inner surface 2 'of the same tunnel with a mobile scanning system according to the invention 6.
  • the mobile scanning system 6 is moved linearly, the inner surface 2' by electromagnetic radiation ES continuously along a spiral - or zigzag track 3 'is scanned.
  • the emission direction is constantly going through Panning the transmitting and receiving unit 5 varies, with the position of the mobile scanning system 6 being determined by a fixedly positioned geodetic device 1 ', such as a motorized, target-tracking theodolite, which continuously angles and distances itself to one mounted on the mobile scanning system 6
  • Retroreflector 4 measures.
  • the radiation reflected from the inner surface 2 ' is registered by the transmitting and receiving unit 5 and analyzed spectrally, so that in addition to the topographic course of the surface, further information can be derived.
  • FIG. 4 shows the schematic representation of a mobile scanning system 6 according to the invention of the prior art.
  • the mobile scanning system 6 is based on a carriage-like body, which is mobile over rollers 8.
  • the pivotable about 180 ° transmitting and receiving unit 5 and the retroreflector 4 are arranged together with a computing and control unit 7.
  • the pivotable transmitting and Empfartgsech 5 moves at a speed which is chosen so that both a distance measurement and the spectral analysis can be performed for each angular and longitudinal position of the transmitting and receiving unit.
  • the electromagnetic radiation ES is emitted and received via the transmitting and receiving unit 5, it being possible for the radiation source and sensor to be arranged both in the pivotable transmitting and receiving unit 5 itself or else elsewhere, such as in the body of the mobile scanning system 6.
  • the radiation source and sensor By means of a mobile scanning system 6 according to the invention, in particular linear, drivable structures can be moved rapidly and in terms of shape and composition of their surface be detected and analyzed in a continuous process, wherein inner surfaces 2 'also bring the advantage of a low proportion of scattered light.
  • Figure 5 illustrates the scanning of the inner surface 2 "of a structure in cross-section with a geodetic device 1 of the prior art.
  • the electromagnetic radiation ES of the geodetic device 1 is used to scan the shape of the inner surface 2 "of a structure which is shown here by way of example as a non-shut tunnel.
  • the detection does not allow conclusions about structures located below the inner surface 2 "and changes or structures of the surfaces below the resolution of the distance measurement. If a camera is used for imaging in parallel, the analysis area is indeed extended, but in particular no analysis of the chemical composition or the spectral reflectivity of the inner surface 2 "can take place.
  • a geodetic device 1 " permits the scanning of the inner surface of the same structure shown schematically in FIG. 6 with an extended analysis capability.
  • the electromagnetic radiation ES emitted by the geodetic device 1 is returned by the surface as reflected radiation RS with spectral information and received again by the geodetic device 1 ".
  • reflected radiation RS with spectral information
  • structures under the surface can also be identified on the basis of the spectral distribution or the harmonic components.
  • the location and extent of a water-bearing layer 9 on the basis of the moisture in the Tunnel visible surface can be detected. Equally, leaking liquid 11 can be detected from a line 10.
  • rust can be detected and localized in reinforcing steel mesh embedded in reinforced concrete.
  • a leak detection can also be carried out by charging the line to be examined with the marking substance and locating the exit point by means of a scanner system.
  • FIG. 7 shows an example of a greyscale image of the inner surface 2 '"of a tunnel with identifiable structures.
  • the image corresponds to a photograph taken from an area near the tunnel floor to the tunnel ceiling with a detection area of almost 180 °.
  • the solid white line in the lower half of the picture represents the high-voltage wire of a catenary.
  • dark spots 12 in the grayscale recording can be interpreted as moist spots.
  • w may alternatively also be a region that flakes off surface area, so that an analysis beyond the gray level representation is advantageous.
  • FIGS. 8-13 The embodiments of the scanner system according to the invention shown in FIGS. 8-13 or of a geodetic device according to the invention are explained in an abstract manner with reference to their essential components. Details of the beam guidance, such as elements of transmitting and receiving optics, are not shown for illustrative purposes. Similarly, there is no detailed representation of the beam guidance or compensation by the scan generated effects or artifacts used scanner components. The individual embodiments are only exemplary possibilities of realizations using interchangeable components. In particular, the elements and their arrangements in the various Figures 8-13 can be combined
  • FIG. 8 shows a schematic representation of a first exemplary embodiment with a rotating prism spectrometer 17.
  • a laser diode arranged as a radiation source in a distance measuring device 20 emits electromagnetic radiation ES onto the surface to be scanned via a deflecting mirror 19 and a scanner wheel 13.
  • the scanner wheel 13 is shown here as representative of a known per se from the prior art scanning device.
  • the radiation is received again as reflected radiation RS and guided again via the scanner wheel 13 and the deflection mirror 19 to a distance measuring device arranged in the distance measuring device 20, which derives distance information from the reflected radiation RS, in particular according to the pulse transit time or phase measuring method.
  • a first beam splitter 16 which leads a portion of the reflected radiation RS to the prism spectrometer 17.
  • This has, for example, a rotatable equilateral prism or a star-shaped arrangement of prisms or prism surfaces. Due to the rotation of the prism, the geometric conditions are continuously changed and the spectral Shares successively passed to a downstream detector 18 so that it registers a spectrum of the reflected radiation RS and evaluates in a downstream electronics.
  • the scanner wheel 13 and the prism spectrometer 17 must be synchronized in their rotation such that a spectral analysis by the prism spectrometer 17 can be performed for each surface point to be detected.
  • a second beam splitter 14 is used to decouple a further portion of the reflected radiation RS, which is guided onto a camera 15, for example a CCD or CMOS camera chip, for image acquisition and processing.
  • a radiation source arranged in a distance measuring device 20 emits electromagnetic radiation ES onto the surface to be scanned via a deflecting mirror 19 and a mirror surface 24 which can be swiveled about an axis 26 by a piezo element 25 as scanning device 13 '.
  • the 'scanning pivotable mirror surface 24 is shown here as representative of a further known from the prior art scanning device. After the reflection at the surface to be detected, the radiation is received again as reflected radiation RS and guided again via the pivotable mirror surface 24 and the deflection mirror 19 to a distance measuring device arranged in the distance measuring device 20.
  • a first beam splitter 16 decouples light from the beam path to the grating spectrometer.
  • This has a pivotable about an axis 23 grid 21, which is operated in this embodiment - in particular as Blazed grating - in reflection.
  • a Piezo element 22 is used as adjusting is a Piezo element 22 is used.
  • a beam path for a camera 15 is formed parallel to the receiving device for the spectrometer and the distance measuring device. Depending on its sensitivity and intended use, the camera 15 can use the light from the radiation source of the distance measuring device, its own light source, for example an LED, or daylight.
  • other types of grating spectrometers may also be used, such as a lattice grating interferometer or a grating on a curved and adjustable mirror.
  • a radiation source arranged in a distance measuring device 20 emits electromagnetic radiation ES via a dichroic deflection mirror 19 'and a scanner wheel 13 onto the surface to be scanned. Parallel thereto, via the dichroic deflecting mirror 19 ', a coupling of further electromagnetic radiation into the same beam path takes place, wherein this radiation is generated by a second radiation source 27.
  • This second radiation source 27 may be formed, for example, as a laser diode, LED or as a thermal emitter.
  • a first Beam splitter 16 decouples light from the beam path to a first spectrally selective receiver, which in this case consists of the combination of detector 31 and pre-set spectral filter 30 by way of example.
  • the radiation in the infrared of the radiation source arranged in the distance measuring device 20 is supplemented by the emission of a blue laser diode as a second radiation source 27.
  • the two spectrally selective receivers are made sensitive by their associated filters in the blue and infrared ranges. Axially parallel to the receiving direction of the scanner wheel 13, a beam path is formed for a camera 15.
  • sensors instead of two detectors with associated filters, it is also possible to use sensors which already have spectrally narrowband sensitivities in the relevant range.
  • a single detector can be used, which is made spectrally selective by different, variable filters.
  • FIG. 11 shows the schematic illustration of a fourth exemplary embodiment of the scanner system according to the invention.
  • a laser diode arranged in a distance measuring device 20 emits electromagnetic radiation ES on a deflection mirror 19 and a scanner wheel 13 surface to be scanned, wherein after the reflection at the surface to be detected, the reception of the reflected radiation RS via the scanner wheel 13 and the deflection mirror 19 in a distance measuring device of the distance measuring device 20 takes place.
  • this beam path is a first beam splitter 16, which leads a portion of the reflected radiation RS to a Fourier spectrometer in Michelson arrangement.
  • a sensor 36 for example, a linear or planar array of photodiodes whose signals are spectrally decomposed in a downstream processing unit, for example by means of discrete Fourier transform.
  • the tilted mirror as a second interferometer mirror 34 can also find a rotatable Littrow grid use, the movement of which can be effected via a -Piezoelement or a high-precision stepper motor.
  • This arrangement with spatial modulation allows a temporally fast spectral decomposition, which also allows operation with fast scanner movements.
  • For parallel image recording takes place via a second beam splitter 14, the decoupling of a further portion of the reflected radiation RS from the beam path, which is on a camera 15, out.
  • FIG. 12 shows the schematic representation of a fifth exemplary embodiment which, in this example, matches the embodiment shown in FIG. 11, except for the special type of scanning Fourier spectrometer.
  • This fifth exemplary embodiment likewise uses a Michelson-type Fourier spectrometer with a lens 32 for collimating the reflected radiation RS and a divider plate 33.
  • the radiation is guided as a second interferometer mirror 38 onto a first interferometer mirror 35 and a mirror which can be moved by a piezoactuator or an electrostatic comb as a drive in the direction of the one arm of the interferometer.
  • Via the divider plate 33 the radiation is superimposed on a sensor 36, for example a linear or planar arrangement of photodiodes, the signals of which are analyzed for spectral decomposition in a downstream arithmetic unit 37.
  • FIG. 13 shows the schematic illustration of a sixth exemplary embodiment.
  • a distance measurement is carried out to surface points within the visual field of the theodolite.
  • the laser diode 39 emits electromagnetic radiation ES via a deflecting mirror element 40 on a first inclined surface of a double-sided deflecting mirror element 41, from which this radiation is emitted via an objective lens 42 with downstream mutually rotatable wedges 43 as a scanning device.
  • the radiation received again via the objective lens 42 after reflection is guided by a retro-reflecting mirror element 44 onto the second surface of the deflecting mirror element 41 and from there to the receiving device 46 positioned in a fixed position.
  • a first beam splitter 16 ' which decouples a portion of the radiation onto a Fourier spectrometer lens 32', splitter plate 33 'and a first interferometer mirror 35' and a second tilted interferometer mirror 34 '.
  • the light of the two arms of the interferometer is superimposed and projected onto a sensor 36 '.
  • a downstream arithmetic unit 37 ' is used for Fourier transformation.
  • the scanned scanning movement of the laser beam for scanning a surface by the mutually rotatable wedges of the alignment means 43 can be taken by a arranged in the beam path after the retroreflective mirror element 44 camera 15 'with upstream focusing element 45.
  • Fig. 11 and Fig. 13 While in Fig. 11 and Fig. 13 the - spatially variable - path difference in the Fourier spectrometer was generated by tilting a mirror, in Fig. 12 there was a longitudinal movement of a mirror, which also caused a retardation, now time-varying. According to the invention, however, other Fourier spectrometers can also be used, so a liquid crystal can also be used for the polarization-dependent generation of an optical path difference in transmission, in particular with upstream polarization separation from quarter wave plates and polarizer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Mathematical Physics (AREA)
  • Toxicology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Zur Erfassung von Oberflächen wird ein Scannersystem mit einer Strahlungsquelle zur Emission von elektromagnetischer Strahlung (ES), einer Scanvorrichtung zur abtastenden Führung der Strahlung über die Oberfläche und einer Empfängereinheit zum Empfang der von der Oberfläche reflektierten Strahlung (RS) eingesetzt, wobei eine spektrale Trennung der Strahlung zur Analyse der Oberflächeneigenschaften erfolgt und parallel aus der empfangenen Strahlung mit einer Entfernungsmeßeinrichtung Entfernungsinformationen abgeleitet werden.

Description

Scannersystem und Verfahren zur Erfassung von Oberflächen
Die Erfindung betrifft ein Scannersystem zur Erfassung von Oberflächen nach dem Oberbegriff des Anspruchs 1, ein Verfahren zur Erfassung von Oberflächen nach dem Oberbegriff des Anspruchs 15 sowie ein Geodätisches Gerät und ein mobiles Abtastsystem.
Zur Erfassung von Oberflächen werden häufig Verfahren verwendet, welche die Topographie einer Struktur, wie z.B. eines Bauwerks, sukzessive abtasten und dabei aufnehmen. Eine solche Topographie stellt dabei eine zusammenhängende und die Oberfläche beschreibende Folge von Punkten oder aber ein entsprechendes Modell oder eine Beschreibung der Oberfläche dar. Ein gängiger Ansatz ist das Abtasten mittels eines Laserscanners, der jeweils die räumliche Position eines Oberflächenpunktes erfasst, indem durch den Laser die Entfernung zum angezielten Oberflächenpunkt gemessen und diese Messung mit den Winkelinformationen der Laseremission verknüpft werden. Aus diesen Entfernungs- und Winkelinformationen kann die räumliche Lage des erfassten Punktes bestimmt und die Oberfläche fortlaufend vermessen werden. In vielen Fällen wird parallel zu dieser rein geometrischen Erfassung der Oberfläche auch noch eine Bildaufnahme durch eine Kamera durchgeführt, welche neben der visuellen Gesamtansicht auch weitere Informationen, z.B. bzgl. der Oberflächentextur, bereitstellt.
So wird beispielsweise in der WO 97/40342 ein erdgestütztes Verfahren beschrieben, welches durch ortsfest aufgestellte Scannersysteme eine Topographie aufnimmt. Für diese Systeme wird ein fixer Aufstellungspunkt gewählt, der als Basis eines durch Motoren bewirkten Scanvorgangs dient. Die dreidimensionale Ortsinformation des jeweiligen Oberflächenpunktes ist über die Entfernung zum gemessenen Punkt, die Winkelstellung im Zeitpunkt der Messung und den bekannten Standort der scannenden Vorrichtung ableitbar. Dabei sind die Scannersysteme speziell für die Aufgabe der Topographieerfassung ausgelegt und tasten eine Oberfläche durch Bewegung des Scannersystems oder durch Veränderung des Strahlgangs ab.
Daneben können scannende Funktionen in verschiedene andere Geräte als Zusatzfunktionen integriert werden. Aus der WO 2004/036145 ist beispielsweise ein geodätisches Messgerät bekannt, das von seiner Position aus innerhalb des erfassten Bereichs einen Laserstrahl zur Entfernungsmessung emittiert. Solche Messgeräte können ebenfalls zur abtastenden Erfassung von Oberflächen modifiziert bzw. ohne Modifikation betrieben werden. Ein Beispiel hierfür stellen motorisierte Theodoliten oder Totalstationen dar.
Andere Verfahren verwenden mobile Systeme, die eine zu erfassende Struktur durch eine Bewegung des Scannersystems abtasten bzw. die Abtastung unterstützen oder ergänzen. Solche Systeme eignen sich besonders zur Erfassung von linearen oder linear befahrbaren Strukturen, wie beispielsweise Gleisanlagen, Strassen, Tunnelsysteme oder Flugfelder.
Durch solche Erfassungsvorgänge des Stands der Technik werden Bilder bzw. topographische Daten bereitgestellt, die im wesentlichen die Information über die räumliche Verteilung oder Anordnungsbeziehung von Oberflächenpunkten repräsentieren. Gegebenenfalls erlauben zusätzlich aufgenommene Bilder die Ableitung weiterer Informationen.
Damit sind die Struktur und der Verlauf der Oberfläche vergleichsweise gut rekonstruierbar. Nachteilig sind jedoch die fehlenden qualitativen Angaben über die Art und Beschaffenheit der Oberfläche, insbesondere in Hinblick auf die innere Struktur oder Zusammensetzung. So erlauben parallel zur Abtastung aufgenommene Bilder zumeist die Identifikation unterschiedlicher Helligkeitswerte. Diese können zwar hinsichtlich möglicher Strukturen und Zusammensetzungen der Oberfläche und der zugrundeliegenden Vorgänge interpretiert werden, allerdings müssen hierfür weitere Informationen bereit gestellt werden oder aber stark einschränkende Annahmen gemacht werden.
So können beispielsweise bei Aufnahmen von Tunnelsystemen in den parallel erzeugten Bildern dunkle Flecken erkannt werden, die als Wasserflecken interpretiert werden können. Ähnliches gilt für die Erkennung von sich ablösenden Farb¬ oder Deckschichten, die das Reflexionsverhalten der Oberfläche signifikant verändern. Diese stark vereinfachten Interpretationen setzen naturgemäss eine Einschränkung des Interpretationsspielraums voraus, die auf Vorinformationen - hier die Kenntnis von Wasseraustritten bzw. Fleckenbildungen - basiert.
Eine zur Erfassung der Oberfläche parallele Aufnahme einer Grosse, die eine analytische Charakterisierung der Oberfläche jenseits einer einfachen Betrachtung von Graustufenwerten erlaubt, kann mit Verfahren des Stands der Technik nicht geleistet werden. Eine Aufgabe der vorliegenden Erfindung besteht darin, ein Scannersystem und Verfahren bereitzustellen, das parallel zur Erfassung der Oberfläche zumindest eine qualitative Analyse einer Oberfläche ermöglicht.
Eine weitere Aufgabe ist die Überprüfung oder Verifizierung von qualitativen Parametern der Oberflächen.
Eine weitere Aufgabe ist die Bereitstellung eines Systems, das eine gegenüber der reinen Erfassung von Oberflächen erhöhte Funktionalität, z.B. durch Ermöglichung einer Warnfunktion bei einer qualitativen Veränderung von erfassten Strukturen, erlaubt.
Die Erfindung betrifft ein Scannersystem bzw. ein Verfahren zur Erfassung einer Oberfläche sowie ein mit diesem System ausgestattetes geodätisches Messgerät oder ein mobiles Abtastsystem.
Erfindungsgemäss wird die Oberfläche parallel zu einer Abtastung spektral sondiert, d.h. so abgetastet, dass aus den spektralen Komponenten der empfangenen Strahlung auf die Zusammensetzung oder den Zustand der sondierten bzw. erfassten Oberfläche geschlossen werden kann. Die spektrale Sondierung kann dabei für die gesamte Oberflächentopographie, insbesondere fortlaufend, oder auch für Teilbereiche erfolgen. Dabei können grundsätzlich eine spektrale getrennte Emission oder eine spektrale Analyse nach oder beim Empfang der Strahlung erfolgen. Gleichermassen können beide Ansätze kombiniert werden.
Zur spektral getrennten oder separierten Emission kann beispielsweise Strahlung in zwei voneinander getrennten oder auch teilweise überlappenden Spektralbereichen zeitsynchron oder alternierend ausgesandt werden. Hierfür genügt es bei herkömmlichen Scannersystemen des Stands der Technik in Ergänzung zum bereits zur Abtastung und Entfernungsmessung genutzten Laser-Strahlungsquelle einen zweiten Laser zu integrieren, dessen Emission über den gleichen Strahlgang geführt wird, so dass die Oberfläche in identischer Weise abgetastet wird. Dabei kann dessen emittierte Strahlung auf der lang- aber auch kurzwelligen Seite des herkömmlich zur Entfernungsmessung genutzten Lasers liegen, wobei die kurzwellige Option beispielsweise auch Messungen in Fluoreszenz erlauben kann. Parallel oder ergänzend können auch multispektrale oder Weisslichtquellen verwendet werden.
Der Empfang kann beispielsweise mit nur einem Empfänger erfolgen, wenn dieser bei alternierender Emission zeitabhängig die Reflektion in den unterschiedlichen Spektralbereichen empfängt. Bei gleichzeitiger Emission können z.B. zwei spektral selektive Empfänger genutzt werden, aus 'deren relativen Intensitäten auf das den- Reflektion zugrundeliegende Material geschlossen werden kann. Beispielsweise kann ein System zur Detektion von Rost auf Betonoberflächen ausgelegt werden und komplementär zwei Strahlungen im roten und blauen Bereich emittieren. Rote, rosthaltige Oberflächenbereiche werden gegenüber nur feuchten oder trockenen Betonabschnitten eine erhöhte- Reflektion im roten Spektralbereich aufweisen, so dass mit diesem Verfahren im Gegensatz zur reinen Hell-Dunkel- Auswertung Rost von nassen Stellen unterschieden werden kann. Ein solches einfaches Verfahren bzw. Scannersystem bietet sich für die Identifikation vorbekannter Muster an, wie sie z.B. bei der Bauwerksüberwachung auftreten. Einen erweiterten Anwendungsbereich erlauben Scannersysteme und Verfahren, die eine höhere spektrale Auflösung und somit umfangreichere Nutzungsmöglichkeiten bieten. Hierfür werden erfindungsgemäss Spektrometer eingesetzt, um die empfangene Strahlung spektral zu zerlegen bzw. zu analysieren. Dabei können erfindungsgemäss grundsätzlich alle Typen von Spektrometern, wie z.B. Prismen-, Gitter-, Terahertz- oder Fouriertransformspektrometer, verwendet werden. Allerdings erlauben die meisten oberflächenabtastenden Systeme nur eine kurze Zeitspanne zur Analyse, da die Ausrichtung des Strahlgangs auf einen zu erfassenden und zu vermessenden Punkt sehr kurz ist. Spektrometer, die eine vergleichsweise lange Zeitdauer zur Analyse benötigen, können nur unter Inkaufnahme von Nachteilen eingesetzt werden, wie z.B. einer erhöhten baulichen Komplexität durch die Verwendung mehrerer im Betrieb zeitlich überlappender Spektrometer oder einer herabgesetzten Scangeschwindigkeit.
Vorteilhaft verwendbar sind somit Spektrometer, die bezogen auf die Abtastgeschwindigkeit hinreichend schnell sind oder aber eine räumliche Demodulation bewirken. Ein Beispiel für letztgenannte Spektrometer stellen Fourierspektrometer nach dem Michelson-Prinzip dar, die über einen geneigten Spiegel verfügen, so dass ein Gangunterschied nicht durch Verstellen des Spiegels sondern in Ortsabhängigkeit resultiert. Das resultierende Interferenzmuster wird von einer geeigneten Anordnung wie z.B. einem Photodiodenarray oder einer CCD/CMOS-Kamera, aufgenommen und nachfolgend einer Transformation bzw. spektralen Zerlegung unterworfen. Hierfür stehen auch für den Scanvorgang hinreichend schnelle Transformationen zur harmonischen Dekomposition zur Verfügung, wie z.B. die diskrete Fouriertransformation (DFT) .
Geeignete Bauformen und Herstellungsweisen für miniaturisierte Fourier-Spektrometer können der Dissertation „Micro-sized Fourier Spectrometers" von Omar Manzardo, Universität Neuchatel, Schweiz, Januar 2002, entnommen werden.
Die spektrale Trennung kann somit erfindungsgemäss durch eine spektral selektive Emission, eine spektrale Analyse nach oder beim Empfang oder durch eine Kombination von beiden Ansätzen erfolgen, wobei die gewählte Lösung auch von der Art der zu detektierenden oder analysierenden Oberfläche und deren Zusammensetzung abhängen wird.
Eine weitere Möglichkeit ist die Sondierung mittels Terahertzquellen, die sowohl eine gewisse Eindringtiefe und damit eine Analyse bis unter die Oberfläche von Materialien bzw. deren Topographien a*is auch eine verbesserte Analytik in speziellen Bereichen ermöglichen. Geeignete Terahertz- Technologien wurden z.B. für den astronomischen Bereich bereits seit längerem realisiert, wobei mittlerweile auch kompaktere und grundsätzlich für eine Scanneranwendung geeignete Systeme zur Verfügung stehen. Als Quellen können beispielsweise modengekoppelte Titan:Saphir-Laser mit photoleitender Dipolantenne, Femtosekundenlaser mit elektrooptischen Kristallen sowie elektronische Gunn- /Bloch-Oszillatoren zum Einsatz kommen, die zusammen mit einer reflektiven Optik eine kompaktere Anordnung erlauben. Auf der Empfängerseite lassen sich kompakte Terahertzspektrometer beispielsweise auf der Basis von Hilbert-Transform-Spektrometern realisieren. Ein erfindungsgemässes Scannersystem und ein erfindungsgemässes Verfahren werden nachfolgend anhand von in der Zeichnung schematisch dargestellten Ausführungsbeispielen rein beispielhaft näher beschrieben.
Im einzelnen zeigen
Fig.l die Abtastung einer Aussenflache mit einem geodätischen Gerät des Stands der Technik;
Fig.2 die schematische Darstellung eines Verfahrens des Stands der Technik zur Abtastung der Innenfläche eines Tunnels mit einem geodätischen Gerät des Stands der Technik;
Fig.3 die schematische Darstellung eines erfindungsgemässen Verfahrens zur Abtastung der Innenfläche eines Tunnels mit einem 'V erfindungsgemässen mobilen Abtastsystera;
Fig.4 die schematische Darstellung eines erfindungsgemässen mobilen Abtastsystems des Stands der Technik;
Fig.5 die Abtastung der Innenfläche einer Struktur im Querschnitt mit einem geodätischen Gerät des Stands der Technik;
Fig.6 die Abtastung der Innenfläche einer Struktur mit einem erfindungsgemässen geodätischen Gerät; Fig.7 eine Beispiel für eine Graustufenaufnahme der Innenseite eines Tunnels mit identifizierbaren Strukturen;
Fig.8 die schematische Darstellung eines ersten Ausführungsbeispiels eines erfindungsgemässen Scannersystems;
Fig.9 die schematische Darstellung eines zweiten Ausführungsbeispiels eines erfindungsgemässen Scannersystems;
Fig.10 die schematische Darstellung eines dritten Ausführungsbeispiels eines erfindungsgemässen Scannersystems;
Fig.11 die schematische Darstellung eines vierten Ausführungsbeispiels eines erfindungsgemässen Scannersystems; •'!» π* Fig.12 die schematische Darstellung eines fünften Ausführungsbeispiels eines erfindungsgemässen Scannersystems und
Fig.13 die schematische Darstellung eines sechsten Ausführungsbeispiels eines erfindungsgemässen Scannersystems mit einer Integration in ein geodätisches Messgerät.
In Fig.l wird exemplarisch die Abtastung einer Aussenfläche 2 mit einem geodätischen Gerät 1 des Stands der Technik erläutert. Das geodätische Gerät 1 wird in einem hinreichend Abstand von der Aussenfläche 2 positioniert und tastet in unterschiedlichen Winkelpositionen die Aussenfläche 2 ab, wobei elektromagnetische Strahlung ES zur Distanzmessung emittiert wird. Aus den Entfernungsmessungen und den zugeordneten Winkelpositionen kann die Aussenfläche 2 rekonstruiert werden. Die gewünschte Auflösung der Oberflächenerfassung bestimmt dabei die Unterteilung des erfassten Bereichs in Winkelpositionen. Parallel zu den Entfernungsmessungen kann auch eine Bildaufnahme durch eine Kamera im geodätischen Gerät erfolgen.
Fig.2 zeigt die schematische Darstellung eines Verfahrens des Stands der Technik zur Abtastung der Innenfläche 2' einer Struktur mit einem geodätischen Gerät 1 des Stands der Technik. In einer zum Vorgehen aus Fig.l ähnlichen Weise können auch Innenflächen 2' von Strukturen, wie z.B. Tunnels, Unterführungen oder Innenräumen von Gebäuden, mit geodätischen Geräten 1 abgetastet werden. Mit der elektromagnetischen Strahlung ES wird die Innenseite 2' in Form einer spiralförmigen Spur 3 abgetastet und somit erfasst. Aufgrund des bei grosseren Tiefen der Struktur eingeengten Erfassungsbereichs muss das geodätische Gerät 1 zumeist mit häufigen Positionsveränderungen, z.B. im überschlagenden Einsatz, verwendet werden.
Demgegenüber zeigt Fig.3 die schematische Darstellung eines erfindungsgemässen Verfahrens zur Abtastung der Innenfläche 2' desselben Tunnels mit einem erfindungsgemässen mobilen Abtastsystem 6. Innerhalb des Tunnels wird das mobile Abtastsystem 6 linear bewegt, wobei die Innenfläche 2' durch elektromagnetische Strahlung ES kontinuierlich entlang einer spiral- oder zickzackförmigen Spur 3' abgetastet wird. Die Emissionsrichtung wird ständig durch Schwenken der Sende- und Empfangseinheit 5 variiert, wobei die Position des mobilen Abtastsystems 6 durch ein fix positioniertes geodätisches Gerät 1', wie z.B. einem motorisierten Theodoliten mit automatischer Zielverfolgung, bestimmt wird, das kontinuierlich Winkel und Distanz zu einem auf dem mobilen Abtastsystems 6 angebrachten Retroreflektor 4 misst. Die von der Innenfläche 2' reflektierte Strahlung wird von der Sende- und Empfangseinheit 5 registriert und spektral analysiert, so dass neben dem topographischen Verlauf der Oberfläche auch weitere Informationen abgeleitet werden können.
In Fig.4 erfolgt die die schematische Darstellung eines erfindungsgemässen mobilen Abtastsystems 6 des Stands der Technik. Das mobile Abtastsystem 6 basiert auf einem wagenartigen Körper, der über Rollen 8 fahrbar ist. Auf dem Körper sind die um ca. 180° schwenkbare Sende- und Empfangseinheit 5 und der Retroreflektor 4 zusammen mit einer Rechen- und Steuereinheit 7 angeordnet. Die schwenkbare Sende- und Empfartgseinheit 5 bewegt sich mit einer Geschwindigkeit die so gewählt ist, dass für jede Winkel- und Längsposition der Sende- und Empfangseinheit 5 sowohl eine Entfernungsmessung als auch die spektrale Analyse durchgeführt werden kann. Die elektromagnetische Strahlung ES wird hierbei über die Sende- und Empfangseinheit 5 emittiert und empfangen, wobei Strahlungsquelle und Sensor sowohl in der schwenkbaren Sende- und Empfangseinheit 5 selbst oder aber auch an anderer Stelle, wie z.B. im Körper des mobilen AbtastSystems 6 angeordnet sein kann. Durch ein erfindungsgemässes mobiles Abtastsystem 6 können, insbesondere linear, befahrbare Strukturen hinsichtlich Gestalt und Zusammensetzung ihrer Oberfläche schnell und in einem fortlaufenden Prozess erfasst und analysiert werden, wobei Innenflächen 2' zudem den Vorteil eines geringen Streulichtanteils mit sich bringen.
Fig.5 erläutert die Abtastung der Innenfläche 2'' einer Struktur im Querschnitt mit einem geodätischen Gerät 1 des Stands der Technik. Durch die elektromagnetische Strahlung ES des geodätischen Geräts 1 erfolgt eine Abtastung der Gestalt der Innenfläche 2'' einer Struktur, die hier beispielhaft als nicht ausgeschalter Tunnel dargestellt ist. Die Erfassung erlaubt keine Rückschlüsse auf unter der Innenfläche 2'' befindliche Strukturen und Veränderungen oder Strukturen der Oberflächen unterhalb der Auflösung der Distanzmessung. Wird parallel eine Kamera zur Bildaufnahme verwendet, so ist der Analysebereich zwar erweitert, dennoch kann insbesondere keine Analyse der chemische Zusammensetzung oder des spektralen Reflexionsvermögens der Innenfläche 2'' erfolgen.
Demgegenüber erlaubt ein erfindungsgemässes geodätisches Gerät 1' ' die in Fig.6 schematisch dargestellte Abtastung der Innenfläche der gleichen Struktur mit einer erweiterten Analysemöglichkeit. Die vom geodätischen Gerät 1 emittierte elektromagnetische Strahlung ES wird von der Oberfläche als reflektierte Strahlung RS mit spektraler Information zurückgesandt und vom geodätischen Gerät 1' ' wieder empfangen. Je nach Zusammensetzung der Oberfläche erfolgt eine Veränderung des Spektrums der reflektierten Strahlung RS im Vergleich zur Emission. So können anhand der spektralen Verteilung bzw. der harmonischen Komponenten auch Strukturen unter der Oberfläche identifiziert werden. In diesem Beispiel kann Lage und Ausdehnung einer wasserführenden Schicht 9 anhand der Durchfeuchtung der im Tunnel sichtbaren Oberfläche erkannt werden. Gleichermassen kann aus einer Leitung 10 austretende Flüssigkeit 11 erkannt werden. In ähnlicher Weise kann aber Rost bei in Stahlbeton eingebetteten Baustahlmatten erkannt und lokalisiert werden. In Kombination mit Markierungssubstanzen, die spektral besonders auffällig sind, kann erfindungsgemäss auch eine Lecksuche durchgeführt werden, indem die zu untersuchende Leitung mit der Markierungssubstanz beschickt und die Austrittsstelle mittels Scannersystem lokalisiert werden.
Fig.7 zeigt ein Beispiel für eine Graustufenaufnahme der Innenfläche 2''' eines Tunnels mit identifizierbaren Strukturen. Das Bild entspricht einer Aufnahme von einem Bereich nahe der Tunnelsohle zur Tunneldecke mit einem Erfassungsbereich von fast 180°. Die durchgehend weisse Linie in der unteren Bildhälfte stellt den Hochspannungsdraht einer Oberleitung dar. Dunkle Flecken 12 in der Graustufenaufnahme können beispielsweise als feuchte Stellen interpretiert werden. Jedoch kann es sich w alternativ auch um Bereich abblätternden Oberflächenbelags handeln, so dass eine über die Graustufendarstellung hinausgehende Analyse vorteilhaft ist.
Die in den folgenden Fig.8-13 dargestellten Ausführungsformen des erfindungsgemässen Scannersystems • bzw. eines erfindungsgemässen geodätischen Geräts werden abstrahiert anhand ihrer wesentlichen Komponenten erläutert. Details der Strahlführung, wie z.B. Elemente von Sende- und Empfangsoptik, werden aus Veranschaulichungsgründen nicht dargestellt. Gleichermassen erfolgt keine detaillierte Darstellung von zur Strahlführung oder zum Ausgleich von durch den Scanvorgang erzeugten Effekten bzw. Artefakten genutzten Scannerkomponenten. Dabei sind die einzelnen Ausführungsbeispiele nur exemplarische Möglichkeiten der Realisierungen unter Nutzung von austauschbaren Komponenten. Insbesondere können die Elemente und deren Anordnungen in den verschiedenen Fig.8-13 miteinander kombiniert werden
In Fig.8 erfolgt die schematische Darstellung eines ersten Ausführungsbeispiels mit einem rotierenden Prismen- Spektrometer 17. Eine in einer Entfernungsmesseinrichtung 20 angeordnete Laserdiode als Strahlungsquelle emittiert über einen Umlenkspiegel 19 und ein Scannerrad 13 elektromagnetische Strahlung ES auf die abzutastende Oberfläche. Das Scannerrad 13 wird hier stellvertretend für eine an sich aus dem Stand der Technik bekannte Scanvorrichtung dargestellt. Nach der Reflektion an der zu erfassenden Oberfläche wird die Strahlung als reflektierte Strahlung RS wieder empfangen und über das Scannerrad 13 und den Umlenkspiegel 19 wieder auf eine in der Entfernungsmesseinrichtung 20 angeordnete Entfernungs¬ meßeinrichtung geführt, welche aus der reflektierten Strahlung RS eine Entfernungsinformation ableitet, insbesondere nach dem Pulslaufzeit- oder Phasenmeßverfahren.
In diesem Strahlgang befindet sich ein erster Strahlteiler 16, der einen Anteil der reflektierten Strahlung RS auf das Prismen-Spektrometer 17 führt. Dieses weist beispielsweise ein rotierbares gleichseitiges Prisma oder eine sternförmige Anordnung von Prismen bzw. Prismenflächen auf. Durch die Rotation des Prismas werden die geometrischen Bedingungen kontinuierlich verändert und die spektralen Anteile nacheinander auf einen nachgelagerten Detektor 18 geleitet, so dass dieser ein Spektrum der reflektierten Strahlung RS registriert und in einer nachgeschalteten Elektronik auswertet. Hierbei müssen Scannerrad 13 und Prismen-Spektrometer 17 so in ihrer Rotation synchronisiert werden, dass für jeden zu erfassenden Oberflächenpunkt eine Spektralanalyse durch das Prismen-Spektrometer 17 erfolgen kann. Über einen zweiten Strahlteiler 14 erfolgt die Auskopplung eines weiteren Anteils der reflektierten Strahlung RS, der zur Bilderfassung und -Verarbeitung auf eine Kamera 15, z.B. einen CCD- oder CMOS-Kamerachip, geführt wird.
Fig.9 zeigt die schematische Darstellung eines zweiten Ausführungsbeispiels mit einem Gitter-Spektrometer. Eine in einer Entfernungsmesseinrichtung 20 angeordnete Strahlungsquelle emittiert über einen Umlenkspiegel 19 und ein durch ein Piezoelement 25 um eine Achse 26 schwenkbare Spiegelfläche 24 als Scanvorrichtung 13' elektromagnetische Strahlung ES auf die abzutastende Oberfläche. Die 'scannend schwenkbare Spiegelfläche 24 wird hier stellvertretend für eine weitere aus dem Stand der Technik bekannte Scaneinrichtung dargestellt. Nach der Reflektion an der zu erfassenden Oberfläche wird die Strahlung als reflektierte Strahlung RS wieder empfangen und über die schwenkbare Spiegelfläche 24 und den Umlenkspiegel 19 wieder auf eine in der Entfernungsmesseinrichtung 20 angeordnete Entfernungs-meßeinrichtung geführt. Ein erster Strahlteiler 16 koppelt aus dem Strahlgang Licht auf das Gitter- Spektrometer aus. Dieses weist ein um eine Achse 23 schwenkbares Gitter 21 auf, welches in diesem Ausführungsbeispiel - insbesondere als Blazed-Gitter - in Reflexion betrieben wird. Als Verstellvorrichtung wird ein Piezoelement 22 verwendet. Durch die Bewegung des schwenkbaren Gitters 21 werden nacheinander die Extrema der verschiedenen Ordnung auf einen Detektor 18 projiziert, so dass eine spektrale Analyse durchgeführt werden kann. Achsparallel zur Empfangseinrichtung für das Spektrometer und die Entfernungsmesseinrichtung ist ein Strahlgang für eine Kamera 15 ausgebildet. Die Kamera 15 kann je nach Empfindlichkeit und Einsatzzweck zur Aufnahme das Licht der Strahlungsquelle der Entfernungsmesseinrichtung, eine eigene Lichtquelle, z.B. eine LED, oder Tageslicht verwenden. Erfindungsgemäss können auch andere Typen von Gitter-Spektrometern zur Anwendung kommen, so z.B. ein lamellares Gitter-Inferometer oder ein Gitter auf einem gekrümmten und verstellbaren Spiegel.
Fig.10 erläutert ein drittes Ausführungsbeispiel eines erfindungsgemässen Scannersystems anhand einer schematischen Darstellung. Eine in einer Entfernungsmesseinrichtung 20 angeordnete Strahlungsquelle emittiert über einen dichroitischen Umlenkspiegel 19' und ein Scannerrad 13 elektromagnetische Strahlung ES auf die abzutastende Oberfläche. Parallel hierzu erfolgt über den dichroitischen Umlenkspiegel 19' eine Einkopplung von weiterer elektromagnetischer Strahlung in den gleichen Strahlgang, wobei diese Strahlung durch eine zweite Strahlungsquelle 27 erzeugt wird. Diese zweite Strahlungsquelle 27 kann beispielsweise als Laserdiode, LED oder auch als thermischer Emitter ausgebildet sein. Nach der Reflektion an der zu erfassenden Oberfläche wird die Strahlung als reflektierte Strahlung RS wieder empfangen und das Scannerrad 13 und den dichroitischen Umlenkspiegel 19' wieder auf eine in der Entfernungsmesseinrichtung 20 angeordnete Entfernungsmeßeinrichtung geführt. Ein erster Strahlteiler 16 koppelt aus dem Strahlgang Licht auf einen ersten spektral selektiven Empfänger aus, der hier exemplarisch aus der Kombination von Detektor 31 und vorgesetztem spektralen Filter 30 besteht. In analoger Weise koppelt ein zweiter Strahlteiler 14' Licht auf einen zweiten spektral selektiven Empfänger aus, der hier ebenfalls aus Detektor 29 und vorgesetztem spektralen Filter 28 besteht. Beide spektral selektiven Empfänger werden so ausgelegt, dass unterschiedliche Wellenlängenbereiche erfasst werden. Aus dem Verhältnis der registrierten Intensitäten können Abschätzungen oder einfache Identifikationen von Oberflächenmerkmalen abgeleitet werden. In diesem Ausführungsbeispiel wird die im Infraroten liegende Strahlung der in der Entfernungsmesseinrichtung 20 angeordneten Strahlungsquelle durch die Emission einer blauen Laserdiode als zweiter Strahlungsquelle 27 ergänzt. Die beiden spektral selektiven Empfänger werden durch ihre zugeordneten Filter im blauen und infraroten Bereich empfindlich gestaltet. Achsparallel zur-'tfEmpfangsrichtung des Scannerrads 13 ist einπ?Strahlgang für eine Kamera 15 ausgebildet. Alternativ können statt zwei Detektoren mit zugeordneten Filtern auch Sensoren verwendet werden, die bereits spektral schmalbandige Empfindlichkeiten im relevanten Bereich aufweisen. Ebenso kann ein einziger Detektor verwendet werden, der durch unterschiedliche, variable Filter spektral selektiv gestaltet wird.
Fig.11 zeigt die schematische Darstellung eines vierten Ausführungsbeispiels des erfindungsgemässen Scannersystems. Eine in einer Entfernungsmesseinrichtung 20 angeordnete Laserdiode emittiert über einen Umlenkspiegel.19 und ein Scannerrad 13 elektromagnetische Strahlung ES auf die abzutastende Oberfläche, wobei nach der Reflektion an der zu erfassenden Oberfläche der Empfang der reflektierten Strahlung RS über das Scannerrad 13 und den Umlenkspiegel 19 in einer Entfernungsmeßeinrichtung der Entfernungsmesseinrichtung 20 erfolgt. In diesem Strahlgang befindet sich ein erster Strahlteiler 16, der einen Anteil der reflektierten Strahlung RS auf ein Fourier-Spektrometer in Michelson-Anordnung führt. Dieses weist eine' Linse 32 zur Kollimierung der reflektierten Strahlung RS und eine Teilerplatte 33 auf, welche die Strahlung auf einen ersten Interferometerspiegel 35 und einen verkippten Spiegel als zweiten Interferometerspiegel 34 führt. Über die Teilerplatte 33 wird die Strahlung unter Superposition auf einem Sensor 36, z.B. eine lineare oder flächenhafte Anordnung von Photodioden geführt, dessen Signale in einer nachgeschalteten Recheneinheit spektral zerlegt werden, z.B. mittels diskreter Fourier-Transformation. Anstelle des verkippten Spiegels als zweiten Interferometerspiegel 34 kann auch ein verdrehbares Littrow-Gitter Verwendung finde, dessen Bewegung über ein -Piezoelement oder einen hochpräzisen Steppermotor bewirkt werden kann. Diese Anordnung mit räumlicher Modulation erlaubt eine zeitlich schnelle spektrale Zerlegung, welche auch den Betrieb mit schnellen Scannerbewegungen erlaubt. Zur parallelen Bildaufnahme erfolgt über einen zweiten Strahlteiler 14 die Auskopplung eines weiteren Anteils der reflektierten Strahlung RS aus dem Strahlgang, der auf eine Kamera 15, geführt wird.
Fig.12 zeigt die schematische Darstellung eines fünften Ausführungsbeispiels, das in diesem Beispiel bis auf den speziellen Typ des scannenden Fourier-Spektrometers mit dem in Fig.11 gezeigten Ausführungsbeispiel übereinstimmt. In diesem fünften Ausführungsbeispiel wird ebenfalls ein Fourier-Spektrometer in Michelson-Anordnung mit einer Linse 32 zur Kollimierung der reflektierten Strahlung RS und einer Teilerplatte 33 verwendet. Die Strahlung wird auf einen ersten Interferometerspiegel 35 und einen durch einen Piezoaktuator oder einen elektrostatischen Kamm als Antrieb in Richtung des einen Arms des Interferometers bewegbaren Spiegel als zweiten Interferometerspiegel 38 geführt. Über die Teilerplatte 33 wird die Strahlung unter Superposition auf einen Sensor 36, z.B. eine lineare oder flächenhafte Anordnung von Photodioden gelenkt, wobei deren Signale zur spektralen Zerlegung in einer nachgeschalteten Recheneinheit 37 analysiert werden.
Als ein Beispiel für die Integration eines erfindungsgemässen Scannersystems in ein geodätisches Messgerät zeigt Fig.13 die schematische Darstellung eines sechsten Ausführungsbeispiels. In einem Theodolit mit Scanvorrichtung wird durch fix positionierte Laserdiode 39 und Empfangsvorrichtung Φ6 eine Entfernungsmessung zu Oberflächenpunkten innerhalb des Gesichtsfeldes des Theodoliten durchgeführt. Die Laserdiode 39 emittiert elektromagnetische Strahlung ES über ein Umlenkspiegelelement 40 auf eine erste geneigte Fläche eines doppelseitigen Umlenkspiegelelementes 41, von dem diese Strahlung über eine Objektivlinse 42 mit nachgelagertem gegeneinander verdrehbaren Keilen 43 als Scanvorrichtung ausgesandt wird. Die nach einer Reflektion wieder über die Objektivlinse 42 empfangene Strahlung wird von einem rückreflektierenden Spiegelelement 44 auf die zweite Fläche des Umlenkspiegelelementes 41 und von dort zur fix positionierten Empfangsvorrichtung 46 geführt. Im Strahlgang zur Empfangsvorrichtung 46 befindet sich ein erster Strahlteiler 16' der einen Anteil der Strahlung auf ein Fourier-Spektrometer aus Linse 32' , Teilerplatte 33' und einem ersten Interferometerspiegel 35' und einem zweiten verkippten Interferometerspiegel 34' auskoppelt. In einer zur Anordnung in Fig.11 analogen Arbeitsweise wird das Licht der beiden Arme des Interferometers überlagert und auf einen Sensor 36' projiziert. Eine nachgelagerte Recheneinheit 37' dient zur Fourier-Transformation. In diesem Ausführungsbeispiel erfolgt die scannend abtastende Bewegung des Laserstrahls zur Abtastung einer Oberfläche durch die gegeneinander verdrehbaren Keile des Ausrichtmittels 43. Die Aufnahme eines Bildes kann durch eine im Strahlgang nach dem rückreflektierenden Spiegelelement 44 angeordnete Kamera 15' mit vorgeschaltetem Fokussierglied 45 erfolgen.
Während in Fig.11 und Fig.13 der - räumlich variable - Gangunterschied im Fourier-Spektrometer durch ein Verkippen eines Spiegels erzeugt wurde, erfolgte in Fig.12 eine lofrgitudinale Bewegung eines Spiegels, welche ebenfalls einen - nun zeitlich variierenden - Gangunterschied bewirkte. Erfindungsgemäss können jedoch auch weitere Fourier-Spektrometer eingesetzt werden, so kann auch ein Flüssigkristall zur polarisationsabhängigen Erzeugung eines optischen Gangunterschieds in Transmission verwendet werden, insbesondere mit vorgeschalteter Polarisationstrennung aus Viertelwellenlängenplättchen und Polarisator.

Claims

Patentansprüche
1. Scannersystem zur Erfassung und Vermessung von Oberflächentopographien (2',2''), mit wenigstens • einer Strahlungsquelle zur Emission von elektromagnetischer Strahlung, insbesondere von Laserlicht oder Weisslicht, • einer Scanvorrichtung (13,13', 43) zur abtastenden Führung der Strahlung über die Oberfläche (2',2"), • einer Empfängereinheit zum Empfang der von der Oberfläche (2',2") reflektierten Strahlung, mit einer Entfernungsmeßeinrichtung (20) nach dem Pulslaufzeit- oder Phasenmeßverfahren zur Ableitung von Entfernungsinformationen aus der empfangenen Strahlung, dadurch gekennzeichnet:, dass Strahlungsquelle und Empfängereinheit so ausgebildet und aufeinander abgestimmt sind, dass eine spektrale .'Ii tγ. Trennung der Strahlung erfolgt.
2. Scannersystem nach Anspruch 1, dadurch gekennzeichnet, dass die Strahlungsquelle in wenigstens zwei getrennten Wellenlängenbereichen emittiert, insbesondere durch wenigstens - zwei Laseremitter mit unterschiedlichen Wellenlängen, - einen Laseremitter und einen Terahertz-Emitter, z.B. einen modengekoppelter Titan:Saphir-Laser mit photoleitender Dipolantenne, - zwei spektral breitbandige Quellen mit einem nicht überlappenden Wellenlängenbereich oder - einen Laser und eine spektral breitbandige Quelle, z.B. eine Weisslichtquelle.
3. Scannersystem nach Anspruch 1 oder 2, dadurch gekennzeichnet:, dass die Empfängereinheit einen spektral trennenden Sensor aufweist, insbesondere ein Spektrometer oder einen variablen Filter.
4. Scannersystem nach Anspruch 3, dadurch gekennzeichnet:, dass die Empfängereinheit einen ersten Strahlteiler (16) aufweist, welcher die empfangene Strahlung zur Nutzung durch die Entfernungsmeßeinrichtung (20) und den Sensor aufteilt.
5. Scannersystem nach Anspruch 3 oder 4, dadurch gekennzeichnet:, dass das Spektrometer als ein • Prismenspektrometer, I!J1 • Terahertzspektrometer, • Gitterspektrometer oder • Fourierspektrometer ausgebildet ist.
6. Scannersystem nach Anspruch 5, dadurch gekennzeichnet:, dass das Fourierspektrometer vom Michelson-Typ ist und - als scannendes Interferometer, insbesondere mit einem Piezo-Aktuator oder einem elektrostatischen Kamm als Antrieb, oder - als räumlich modulierendes Interferometer, insbesondere mit einem verkippten Spiegel (34,34') oder einem verdrehbaren Littrow-Gitter, ausgebildet ist.
7. Scannersystem nach Anspruch 6, dadurch gekennzeichnet:, dass das räumlich modulierende Interferometer - ein lineares oder flächiges Photodioden-Array, - eine CCD-Kamera oder - eine CMOS-Kamera aufweist.
8. Scannersystem nach Anspruch 5, dadurch gekennzeichnet:, dass das Fourierspektrometer einen Flüssigkristall zur polarisationsabhängigen Erzeugung eines optischen Gangunterschieds in Transmission aufweist, insbesondere mit vorgeschalteter Polarisationstrennung aus Viertelwellenlängenplättchen und Polarisator. -T?
9. Scannersystem nach Anspruch 5, dadurch gekennzeichnet:, dass das Gitterspektrometer zeitlich scannend ausgebildet ist, insbesondere in Reflexion als - Lamellares Gitter-Spektrometer, - Gitter auf einem gekrümmten und verstellbaren Spiegel.
10. Scannersystem nach Anspruch 5, dadurch gekennzeichnet:, dass das Prismenspektrometer zeitlich scannend ausgebildet ist, insbesondere mit einem rotierenden Prisma (17) oder einer rotierenden Prismenanordnung.
11. Scannersystem nach einem der vorangehenden Ansprüche, gekennzeichnet durch eine Kamera (15) zur Bildaufnahme und/oder Bildverarbeitung, insbesondere in Kombination mit einem zweiten Strahlteiler (14) in der Empfängereinheit, welcher einen Teil der empfangenen Strahlung auf die Kamera (15) führt.
12. Scannersystem nach einem der vorangehenden Ansprüche, gekennzeichnet: durch eine Streulicht-Unterdrückung.
13. Geodätisches Gerät (1/), insbesondere Theodolit, mit einem Scannersystem nach einem der Ansprüche 1 bis 12.
14. Mobiles Abtastsystem (6) zur '(Erfassung und/oder Überwachung von Bauwerken mit einem Scannersystem nach einem der Ansprüche 1 bis 12.
15. Verfahren zur Erfassung von Oberflächen (2',2''), insbesondere vermittels eines Scannersystems nach einem der Ansprüche 1 bis 12, mit den Schritten - Aussenden von elektromagnetischer Strahlung, - Empfangen der Strahlung nach Reflexion an der Oberfläche (2',2"), - Analysieren der empfangenen Strahlung, wobei • die Schritte oberflächenabtastend mehrfach wiederholt werden, und • beim Analysieren der Strahlung eine Entfernungsinformation abgeleitet wird, dadurch gekennzeichnet, dass das Analysieren der Strahlung mit einer spektralen Trennung der Strahlung erfolgt.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass die Strahlung beim Empfang spektral zerlegt wird und/oder die Strahlung beim Aussenden spektral selektiv emittiert wird.
17. Verfahren nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass die Strahlung beim Empfang interferometrisch spektral zerlegt wird.
18. Verfahren nach Anspruch 15, 16 oder 17, dadurch gekennzeichnet, dass aus de"r spektralen Trennung auf eine Eigenschaft de'r Oberfläche (2',2''), z.B. deren chemische Zusammensetzung oder Feuchtigkeit, geschlossen wird.
PCT/EP2005/052880 2004-06-23 2005-06-21 Scannersystem und verfahren zur erfassung von oberflächen WO2006000552A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2005800208009A CN1973180B (zh) 2004-06-23 2005-06-21 检测表面的扫描仪系统和方法
EP05756836A EP1759172B1 (de) 2004-06-23 2005-06-21 Scannersystem und verfahren zur erfassung von oberflächen
US11/610,650 US8379191B2 (en) 2004-06-23 2005-06-21 Scanner system and method for registering surfaces
CA2571716A CA2571716C (en) 2004-06-23 2005-06-21 Scanner system and method for registering surfaces
JP2007517288A JP2008503741A (ja) 2004-06-23 2005-06-21 スキャナシステム及び表面登録方法
AT05756836T ATE512350T1 (de) 2004-06-23 2005-06-21 Scannersystem und verfahren zur erfassung von oberflächen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04014704A EP1610091A1 (de) 2004-06-23 2004-06-23 Scannersystem und Verfahren zur Erfassung von Oberflächen
EP04014704.3 2004-06-23

Publications (2)

Publication Number Publication Date
WO2006000552A1 true WO2006000552A1 (de) 2006-01-05
WO2006000552A8 WO2006000552A8 (de) 2006-02-16

Family

ID=34925454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/052880 WO2006000552A1 (de) 2004-06-23 2005-06-21 Scannersystem und verfahren zur erfassung von oberflächen

Country Status (8)

Country Link
US (1) US8379191B2 (de)
EP (2) EP1610091A1 (de)
JP (1) JP2008503741A (de)
CN (1) CN1973180B (de)
AT (1) ATE512350T1 (de)
AU (1) AU2005256622A1 (de)
CA (1) CA2571716C (de)
WO (1) WO2006000552A1 (de)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120800A1 (ja) 2007-04-03 2008-10-09 Shikoku Chemicals Corporation 2-ハロイミダゾール化合物の製造方法
DE102010033561B3 (de) * 2010-07-29 2011-12-15 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
US8384914B2 (en) 2009-07-22 2013-02-26 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8625106B2 (en) 2009-07-22 2014-01-07 Faro Technologies, Inc. Method for optically scanning and measuring an object
US8699007B2 (en) 2010-07-26 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705016B2 (en) 2009-11-20 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705012B2 (en) 2010-07-26 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8719474B2 (en) 2009-02-13 2014-05-06 Faro Technologies, Inc. Interface for communication between internal and external devices
US8730477B2 (en) 2010-07-26 2014-05-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8830485B2 (en) 2012-08-17 2014-09-09 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8896819B2 (en) 2009-11-20 2014-11-25 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9009000B2 (en) 2010-01-20 2015-04-14 Faro Technologies, Inc. Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
DE102014203918B4 (de) * 2014-03-04 2016-09-15 Jürgen Marx Verfahren und Vorrichtungen zur Erfassung der Oberflächenstruktur und Beschaffenheit einer Probe
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
WO2017036498A1 (de) * 2015-08-28 2017-03-09 Marx Jürgen Verfahren und vorrichtung zur erfassung der oberflächenstruktur und beschaffenheit einer probe
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9658059B2 (en) 2012-01-30 2017-05-23 Hexagon Technology Center Gmbh Measuring device having a scanning functionality and a single-point measurement mode
US10060722B2 (en) 2010-01-20 2018-08-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
DE102017107245A1 (de) * 2017-04-04 2018-10-04 Prüftechnik Dieter Busch AG Vorrichtung und Verfahren zur Vermessung von Hohlräumen sowie Verwendung der Vorrichtung zur Bestimmung von Walzenausrichtungen
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4817826B2 (ja) * 2005-11-09 2011-11-16 国立大学法人東北大学 検査システム
DE102006031114B4 (de) * 2006-06-29 2008-07-03 Kst Gmbh Kamera & System Technik 3D Kombinationsmessgerät aus digitaler Kamera und Laserscanner
CN101652628B (zh) 2007-01-26 2012-07-04 特里伯耶拿有限公司 用于获得距离和图像信息的光学仪器和方法
DE112007003284T5 (de) 2007-01-26 2009-12-24 Trimble Jena Gmbh Optisches Instrument und Verfahren zum Erhalten von Abstands- und Bildinformation
US9163922B2 (en) 2010-01-20 2015-10-20 Faro Technologies, Inc. Coordinate measurement machine with distance meter and camera to determine dimensions within camera images
US9772394B2 (en) 2010-04-21 2017-09-26 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
EP2405237A1 (de) 2010-07-07 2012-01-11 Leica Geosystems AG Zielpunkterkennungsverfahren und Landvermessungsinstrument
DE102010032724A1 (de) * 2010-07-26 2012-01-26 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
US8923359B1 (en) * 2010-08-06 2014-12-30 Lockheed Martin Corporation Long cavity laser sensor for large FOV auto-tracking
JP5623227B2 (ja) * 2010-09-30 2014-11-12 株式会社トプコン 測定方法及び測定装置
US9168654B2 (en) 2010-11-16 2015-10-27 Faro Technologies, Inc. Coordinate measuring machines with dual layer arm
US9686532B2 (en) 2011-04-15 2017-06-20 Faro Technologies, Inc. System and method of acquiring three-dimensional coordinates using multiple coordinate measurement devices
JP2014516409A (ja) 2011-04-15 2014-07-10 ファロ テクノロジーズ インコーポレーテッド レーザトラッカの改良位置検出器
US9222771B2 (en) 2011-10-17 2015-12-29 Kla-Tencor Corp. Acquisition of information for a construction site
US9891320B2 (en) 2012-01-30 2018-02-13 Hexagon Technology Center Gmbh Measurement system with a measuring device and a scanning module
EP2620745A1 (de) 2012-01-30 2013-07-31 Hexagon Technology Center GmbH Vermessungssystem mit einem Vermessungsgerät und einem Scanmodul
AT512168B1 (de) 2012-01-30 2013-06-15 Sola Messwerkzeuge Gmbh Markierungsprojektor
CN102721365B (zh) * 2012-06-01 2015-04-15 北京交通大学 隧道断面高速精确测量方法及装置
US8997362B2 (en) 2012-07-17 2015-04-07 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with optical communications bus
KR101908304B1 (ko) * 2012-08-10 2018-12-18 엘지전자 주식회사 거리 검출 장치, 및 이를 구비하는 영상처리장치
DE102012217800A1 (de) * 2012-09-28 2014-04-03 Carl Zeiss Smt Gmbh Diffraktives optisches Element sowie Messverfahren
US9041914B2 (en) 2013-03-15 2015-05-26 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
CN104330074B (zh) * 2014-11-03 2017-01-18 广州欧科信息技术股份有限公司 一种智能测绘平台及其实现方法
JP6465345B2 (ja) * 2014-12-26 2019-02-06 株式会社荏原製作所 研磨パッドの表面性状測定方法および装置
CN105698749A (zh) * 2015-02-13 2016-06-22 北京雷动云合智能技术有限公司 一种激光测距传感器
WO2017117320A1 (en) * 2015-12-30 2017-07-06 Empire Technology Development Llc Apparatus for analysis of irregular surface using electromagnetic energy
CN105973211A (zh) * 2016-06-15 2016-09-28 常州华达科捷光电仪器有限公司 一种激光扫描放样装置
DE102017201362A1 (de) * 2017-01-27 2018-08-02 Jürgen Marx Verfahren und Vorrichtung zur Erfassung der Oberflächenstruktur und Beschaffenheit einer Probe
JP6778148B2 (ja) * 2017-06-01 2020-10-28 鹿島建設株式会社 評価方法及び評価システム
JP7084705B2 (ja) * 2017-09-13 2022-06-15 株式会社トプコン 測量装置
JP7037860B2 (ja) * 2017-11-17 2022-03-17 株式会社トプコン 測量装置及び測量装置システム
CN108693141A (zh) * 2018-01-25 2018-10-23 上海大学 激光与红外复合的无损检测设备及方法
WO2020031054A1 (en) 2018-08-06 2020-02-13 The State Of Israel, Ministry Of Agriculture & Rural Development, Agricultural Research Org.The State Of Israel, Ministry Of Agriculture & Rural Development, Agricultural Research Organization (Aro) (Volcani Center). Hyperspectral scanner
JP7418782B2 (ja) * 2019-09-03 2024-01-22 国立研究開発法人産業技術総合研究所 測定分析システム
DE102019219942A1 (de) 2019-12-18 2021-06-24 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Ermitteln eines Spektrums von einer Probe und optische Analysevorrichtung
CN111964590A (zh) * 2020-08-24 2020-11-20 湖南致力工程科技有限公司 一种在隧道自动化监测预警过程中激光扫描仪的安装方法
CN112345512B (zh) * 2020-09-30 2023-10-13 钢研纳克检测技术股份有限公司 一种超大尺寸管棒状金属材料全域成分分析装置及方法
US11874223B1 (en) 2022-08-30 2024-01-16 The Goodyear Tire & Rubber Company Terahertz characterization of a multi-layered tire tread

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296702A (en) * 1992-07-28 1994-03-22 Patchen California Structure and method for differentiating one object from another object
WO1997040342A2 (en) * 1996-04-24 1997-10-30 Cyra Technologies, Inc. Integrated system for imaging and modeling three-dimensional objects
US5837997A (en) * 1992-07-28 1998-11-17 Patchen, Inc. Structure and method for detecting plants in a field using a light pipe
WO2003031910A1 (en) * 2001-10-05 2003-04-17 Autech Research Pty Limited Measurement device

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4627734A (en) * 1983-06-30 1986-12-09 Canadian Patents And Development Limited Three dimensional imaging method and device
US4645347A (en) * 1985-04-30 1987-02-24 Canadian Patents And Development Limited-Societe Canadienne Des Brevets Et D'exploitation Limitee Three dimensional imaging device
US4800271A (en) * 1987-06-23 1989-01-24 Canadian Patents & Development Ltd. Galvanometric optical scanning system having synchronization photodetectors
CA1316590C (en) * 1989-04-17 1993-04-20 Marc Rioux Three-dimensional imaging device
CA1332633C (en) 1989-07-14 1994-10-18 Marc Rioux Three-dimensional image reproduction
CA1319188C (en) * 1989-08-24 1993-06-15 Marc Rioux Three dimensional imaging device
CA2017518A1 (en) * 1990-05-24 1991-11-24 Her Majesty The Queen, In Right Of Canada, As Represented By The Ministe R Of The National Research Council Of Canada Colour-range imaging
US7202776B2 (en) * 1997-10-22 2007-04-10 Intelligent Technologies International, Inc. Method and system for detecting objects external to a vehicle
US5701173A (en) * 1996-02-20 1997-12-23 National Research Council Of Canada Method and apparatus for reducing the unwanted effects of noise present in a three dimensional color imaging system
US5708498A (en) * 1996-03-04 1998-01-13 National Research Council Of Canada Three dimensional color imaging
US6009359A (en) * 1996-09-18 1999-12-28 National Research Council Of Canada Mobile system for indoor 3-D mapping and creating virtual environments
US5946645A (en) * 1997-04-09 1999-08-31 National Research Council Of Canada Three dimensional imaging method and device
US6043506A (en) * 1997-08-13 2000-03-28 Bio-Rad Laboratories, Inc. Multi parameter scanner
US6271918B2 (en) * 1999-02-04 2001-08-07 National Research Council Of Canada Virtual multiple aperture 3-D range sensor
US6297488B1 (en) * 1999-04-29 2001-10-02 National Research Council Of Canada Position sensitive light spot detector
US6507036B1 (en) * 1999-06-01 2003-01-14 National Research Council Of Canada Three dimensional optical scanning
DE10150542B4 (de) * 2001-10-12 2007-03-29 Leica Microsystems Cms Gmbh Verfahren zur Fluoreszenzmikroskopie
US6759979B2 (en) * 2002-01-22 2004-07-06 E-Businesscontrols Corp. GPS-enhanced system and method for automatically capturing and co-registering virtual models of a site
WO2004036145A1 (de) 2002-10-12 2004-04-29 Leica Geosystems Ag Elektronische anzeige- und steuervorrichtung für ein messgerät
JP2004340880A (ja) * 2003-05-19 2004-12-02 Soatec Inc レーザ測定装置
US7012615B2 (en) * 2004-02-12 2006-03-14 Pixar Using polynomial texture maps for micro-scale occlusions
WO2006028512A2 (en) * 2004-04-06 2006-03-16 Bae Systems Information And Electronic Systems Integration Inc. Polyspectral rangefinder for close-in target ranging and identification of incoming threats
US20080319321A1 (en) * 2006-05-24 2008-12-25 Gunter Goldbach Terahertz imaging

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296702A (en) * 1992-07-28 1994-03-22 Patchen California Structure and method for differentiating one object from another object
US5837997A (en) * 1992-07-28 1998-11-17 Patchen, Inc. Structure and method for detecting plants in a field using a light pipe
WO1997040342A2 (en) * 1996-04-24 1997-10-30 Cyra Technologies, Inc. Integrated system for imaging and modeling three-dimensional objects
WO2003031910A1 (en) * 2001-10-05 2003-04-17 Autech Research Pty Limited Measurement device

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
WO2008120800A1 (ja) 2007-04-03 2008-10-09 Shikoku Chemicals Corporation 2-ハロイミダゾール化合物の製造方法
US8719474B2 (en) 2009-02-13 2014-05-06 Faro Technologies, Inc. Interface for communication between internal and external devices
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
US8625106B2 (en) 2009-07-22 2014-01-07 Faro Technologies, Inc. Method for optically scanning and measuring an object
US8384914B2 (en) 2009-07-22 2013-02-26 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705016B2 (en) 2009-11-20 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
US8896819B2 (en) 2009-11-20 2014-11-25 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US10060722B2 (en) 2010-01-20 2018-08-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9009000B2 (en) 2010-01-20 2015-04-14 Faro Technologies, Inc. Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9684078B2 (en) 2010-05-10 2017-06-20 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US8705012B2 (en) 2010-07-26 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8730477B2 (en) 2010-07-26 2014-05-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8699007B2 (en) 2010-07-26 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
DE102010033561B3 (de) * 2010-07-29 2011-12-15 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
US8699036B2 (en) 2010-07-29 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9658059B2 (en) 2012-01-30 2017-05-23 Hexagon Technology Center Gmbh Measuring device having a scanning functionality and a single-point measurement mode
US8830485B2 (en) 2012-08-17 2014-09-09 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9618620B2 (en) 2012-10-05 2017-04-11 Faro Technologies, Inc. Using depth-camera images to speed registration of three-dimensional scans
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US11815600B2 (en) 2012-10-05 2023-11-14 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US9739886B2 (en) 2012-10-05 2017-08-22 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9746559B2 (en) 2012-10-05 2017-08-29 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
US11112501B2 (en) 2012-10-05 2021-09-07 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US10203413B2 (en) 2012-10-05 2019-02-12 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10739458B2 (en) 2012-10-05 2020-08-11 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
DE102014203918B4 (de) * 2014-03-04 2016-09-15 Jürgen Marx Verfahren und Vorrichtungen zur Erfassung der Oberflächenstruktur und Beschaffenheit einer Probe
US9826918B2 (en) 2015-08-28 2017-11-28 Juergen Marx Method and device for detecting the surface structure and properties of a probe
WO2017036498A1 (de) * 2015-08-28 2017-03-09 Marx Jürgen Verfahren und vorrichtung zur erfassung der oberflächenstruktur und beschaffenheit einer probe
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack
US10508905B2 (en) 2017-04-04 2019-12-17 Prüftechnik Dieter Busch AG Device and method for measuring cavities and use of the device for determining roller alignments
DE102017107245A1 (de) * 2017-04-04 2018-10-04 Prüftechnik Dieter Busch AG Vorrichtung und Verfahren zur Vermessung von Hohlräumen sowie Verwendung der Vorrichtung zur Bestimmung von Walzenausrichtungen
DE102017107245B4 (de) 2017-04-04 2024-07-25 Prüftechnik Dieter Busch GmbH Vorrichtung und Verfahren zur Vermessung von Hohlräumen sowie Verwendung der Vorrichtung zur Bestimmung von Walzenausrichtungen

Also Published As

Publication number Publication date
CA2571716A1 (en) 2006-01-05
EP1759172A1 (de) 2007-03-07
US8379191B2 (en) 2013-02-19
CN1973180A (zh) 2007-05-30
CN1973180B (zh) 2010-09-01
AU2005256622A1 (en) 2006-01-05
CA2571716C (en) 2014-04-22
EP1610091A1 (de) 2005-12-28
WO2006000552A8 (de) 2006-02-16
EP1759172B1 (de) 2011-06-08
US20110032507A1 (en) 2011-02-10
JP2008503741A (ja) 2008-02-07
ATE512350T1 (de) 2011-06-15

Similar Documents

Publication Publication Date Title
EP1759172B1 (de) Scannersystem und verfahren zur erfassung von oberflächen
EP3324203B1 (de) Laserdistanzmessmodul mit polarisationsanalyse
EP2167948B1 (de) Verfahren und vorrichtung zum optischen inspizieren einer oberfläche an einem gegenstand
DE4310209C2 (de) Optische stationäre Bildgebung in stark streuenden Medien
DE102009035336B3 (de) Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
EP2137488B1 (de) Verfahren und anordnung zur optischen abbildung mit tiefendiskriminierung
DE112019002028T5 (de) Lidar-erfassungsanordnungen
EP3538926A2 (de) Laserscanner
DE102004037137A1 (de) Verfahren und Vorrichtung zur Entfernungsmessung
DE102014210227A1 (de) System und Verfahren zur effizienten Abtastung von Gegenständen
EP2863167B1 (de) Verfahren und Vorrichtung zur Messung der Ablenkung von Lichtstrahlen durch eine Objektstruktur oder ein Medium
DE10018305C2 (de) Verfahren und Vorrichtung zur Analyse von Strömungen
DE102006019840B4 (de) Zeilenkamera für spektrale Bilderfassung
DE19929406A1 (de) Zeilen-OCT als optischer Sensor für die Meß- und Medizintechnik
EP3612789B1 (de) Oct-bilderfassungsvorrichtung
DE102010062842B9 (de) Verfahren und Vorrichtung zur Bestimmung der absoluten Position eines Objekts
DE69514379T2 (de) Verfahren zum bewerten von nichteuclidischen effekten in einem mit einem luft-radar erzeugtem bild, und sattelit zu dessen durchführung
DE102004026193A1 (de) Messverfahren zur Formmessung
DE102015122844A1 (de) 3D-Messvorrichtung mit Batteriepack
DE102009040990A1 (de) Vorrichtung und Verfahren zum Vermessen einer Oberfläche
EP0966694B1 (de) Vorrichtung und verfahren zur bestimmung der bidirektionalen reflektanzverteilung
DE2163200A1 (de) Einrichtung zur beruehrungslosen messung
DE102016125451A1 (de) Vorrichtung und Verfahren zur interferometrischen Bestimmung einer Oberflächentopographie eines Messobjekts
DE102008053881A1 (de) Reflexionsschranke mit Vermessungs- und / oder Lokalisierungsfunktion
DE10131684C1 (de) Vorrichtung und Verfahren zur ortsaufgelösten Messung einer Schichtdicke

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WR Later publication of a revised version of an international search report
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005756836

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005256622

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007517288

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2571716

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200580020800.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2005256622

Country of ref document: AU

Date of ref document: 20050621

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005256622

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2005756836

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11610650

Country of ref document: US