WO2005123816A1 - Styrolpolymer-partikelschaumstoffe mit verringerter wärmeleitfähigkeit - Google Patents

Styrolpolymer-partikelschaumstoffe mit verringerter wärmeleitfähigkeit Download PDF

Info

Publication number
WO2005123816A1
WO2005123816A1 PCT/EP2005/006200 EP2005006200W WO2005123816A1 WO 2005123816 A1 WO2005123816 A1 WO 2005123816A1 EP 2005006200 W EP2005006200 W EP 2005006200W WO 2005123816 A1 WO2005123816 A1 WO 2005123816A1
Authority
WO
WIPO (PCT)
Prior art keywords
styrene polymer
styrene
polymer particle
particle foam
thermal conductivity
Prior art date
Application number
PCT/EP2005/006200
Other languages
English (en)
French (fr)
Inventor
Achim Datko
Klaus Hahn
Markus Allmendinger
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34970800&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005123816(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to DE502005009601T priority Critical patent/DE502005009601D1/de
Priority to MXPA06014440A priority patent/MXPA06014440A/es
Priority to AT05753572T priority patent/ATE468369T1/de
Priority to US11/629,776 priority patent/US8173714B2/en
Priority to PL05753572T priority patent/PL1758951T3/pl
Priority to JP2007515833A priority patent/JP5208501B2/ja
Priority to EP05753572A priority patent/EP1758951B1/de
Priority to KR1020077000975A priority patent/KR101256271B1/ko
Priority to BRPI0512006-3A priority patent/BRPI0512006A/pt
Publication of WO2005123816A1 publication Critical patent/WO2005123816A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/20Making expandable particles by suspension polymerisation in the presence of the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0812Aluminium

Definitions

  • the invention relates to styrene polymer particle foams having a density below 25 g / l, which have a thermal conductivity ⁇ , determined at 10 ° C according to DIN 52612, below 32 mW / m * K, and to processes for their preparation.
  • Polystyrene particle foams have been known for a long time and have proven themselves in many fields. The production of such foams is carried out by foaming of polystyrene particles impregnated with blowing agents and the subsequent welding of the foam particles thus produced to form bodies. An essential field of application is thermal insulation in construction.
  • the foam sheets of polystyrene foam used for thermal insulation usually have densities of about 30 g / l, since at these densities, the thermal conductivity of the polystyrene foam has a minimum.
  • foam boards with lower densities in particular ⁇ 15 g / l, for heat insulation.
  • foam boards with lower density have a drastically deteriorated thermal insulation, so that they do not meet the requirements of the heat conductivity class 035 (DIN 18 164, Part 1).
  • the thermal conductivity of polystyrene foams is also influenced by the nature and quantity of the cell gas. For environmental reasons, halogen-containing propellants have been replaced by highly volatile hydrocarbon propellants. Since the latter, after foaming of the expandable polystyrenes (EPS), usually diffuses out of the foam within a short time, the thermal conductivity measured directly after foaming increases again slightly with the storage.
  • EPS expandable polystyrenes
  • the styrene polymer particle foams preferably also have a heat conductivity ⁇ , determined at 10 ° C. to DIN 52612, below 32 mW / m.sup.-3, even at densities in the range from 7 to 20 g / l, preferably in the range from 10 to 16 g / l , preferably in the range of 27 to 31, more preferably in the range of 28 to 30 mW / m * K on.
  • the styrene polymer particle foams preferably have 2 to 15 cells / mm.
  • the low thermal conductivities are achieved even when the blowing agent has substantially diffused out of the cells, i. H. the cells are filled with a gas which consists of at least 90% by volume, preferably 95 to 99% by volume, of an inorganic gas, in particular of air.
  • the styrene polymer particle foams preferably contain an organic bromine compound having a bromine content of at least 70% by weight. This self-extinguishing styrene polymer particle foams are available that meet the fire test B2 according to DIN 4102.
  • the styrene polymer particle foams according to the invention are obtainable by prefoaming and sintering the corresponding expandable styrene polymers (EPS).
  • EPS expandable styrene polymers
  • Expandable styrene polymers are understood as meaning blowing agents containing styrene polymers.
  • the expandable styrene polymers according to the invention contain, as polymer matrix, in particular homopolystyrene or styrene copolymers with up to 20% by weight, based on the weight of the polymers, of ethylenically unsaturated comonomers, in particular alkylstyrenes, divinylbenzene, acrylonitrile or ⁇ -methylstyrene.
  • Blends of polystyrene and other polymers, in particular with rubber and polyphenylene ether are possible.
  • the styrene polymers may contain the usual and known auxiliaries and additives, for example flame retardants, nucleating agents, UV stabilizers, chain transfer agents, blowing agents, plasticizers, pigments and antioxidants.
  • the expandable particles are coated with the customary and known coating agents, for example metal stearates, glycerol esters and finely divided silicates.
  • the EPS particle size is preferably in the range of 0.2 to 2 mm.
  • the amount of athermanous particles used depends on their type and effect.
  • the styrene polymer particle foam preferably contain 0.5 to 5 wt .-%, more preferably 1 to 4 wt .-% athermane particles.
  • Graphite, carbon black or aluminum having an average particle size in the range from 1 to 50 ⁇ m are preferred as athermanous particles.
  • the preferably used graphite preferably has an average particle size of 1 to 50 .mu.m, in particular from 2.5 to 12 .mu.m, a bulk density of 100 to 500 g / l and a specific surface area of 5 to 20 m 2 / g. It can be used natural graphite or ground synthetic graphite.
  • the graphite particles are contained in the styrene polymer preferably in amounts of 0.05 to 8 wt .-%, in particular from 0.1 to 5 wt .-%.
  • a problem with the use of graphite particles is the easy flammability of the graphite particles containing polystyrene particulate foams.
  • flame retardants are added to the expandable styrene polymers, in particular those based on organic bromine compounds having a bromine content of at least 70% by weight .
  • the bromine compound (without synergist) should be added in an amount of more than 3% by weight, based on the weight of the expandable styrene polymers.
  • this amount of flame retardants does not lead to any impairment of the mechanical properties of the polystyrene particle foams containing carbon black.
  • aliphatic, cycloaliphatic and aromatic bromine compounds such as hexabromocyclododecane, Pentabrommonochlorcyclohexan, Pen- tabromphenylallylether.
  • the effect of the bromine-containing flame retardants is considerably improved by the addition of CC or O-O-labile organic compounds.
  • suitable flame retardant synergists are dicumyl and dicumyl peroxide.
  • a preferred combination consists of 0.6 to 5% by weight of organic bromine compound and 0.1 to 1.0% by weight of the CC or OO-labile organic compound.
  • the preparation of the expandable styrene polymers (EPS) according to the invention can be carried out by different processes.
  • the athermanous particles and a nonionic surfactant are mixed with a melt of the styrene polymer, preferably in an extruder.
  • the blowing agent is added to the melt.
  • the athermanous particles into a melt of propellant-containing styrene polymer, expediently using segregated edge fractions of a bead spectrum of propellant-containing polystyrene beads formed in a suspension polymerization.
  • the blowing agent and athermanous particles containing polystyrene melt are squeezed out and comminuted to propellant-containing granules. Since the athermanous particles can have a strong nucleating effect, after pressing under pressure, they should be cooled rapidly in order to avoid foaming. It is therefore advisable to carry out underwater granulation under pressure in a closed system.
  • the propellant is also possible to add the propellant to the athermanous particle-containing styrene polymers in a separate process step.
  • the granules are then preferably impregnated in aqueous suspension with the blowing agent.
  • the athermanous particles can also be added to the melt in the form of a concentrate in polystyrene.
  • polystyrene granules and athermanous particles are preferably introduced together into an extruder, the polystyrene melted and mixed with the athermanous particles.
  • the athermanous particles and a nonionic surfactant in the suspension polymerization, provided they are sufficiently inert to the water used as a suspension medium in the rule. They may in this case be added to the monomeric styrene before suspension or may be added to the reaction batch during the course of the first half of the polymerization cycle, preferably during the first half of the polymerization cycle.
  • the blowing agent is preferably added in the course of the polymerization, but it may also be incorporated afterwards the styrene polymer.
  • edge fractions which, in the separation of the bead spectrum occurring during the production of expandable polystyrene, are designed as too large or too small beads. to be sieved.
  • edge fractions have diameters larger than 2.0 mm and smaller than 0.2 mm, respectively.
  • Polystyrene recyclate and foam polystyrene recyclate can also be used.
  • prepolymer is prepolymerized in substance to a conversion of 0.5 to 70% and the prepolymer is supendiert and polymerized together with the athermanen particles in the aqueous phase.
  • the blowing agent is added in the usual amounts of about 3 to 10% by weight, based on the weight of the polymer.
  • the blowing agents used are usually aliphatic hydrocarbons having 3 to 10, preferably 4 to 6 carbon atoms.
  • the expandable styrene polymers are particularly preferably prepared by polymerization of styrene and optionally copolymerizable monomers in aqueous suspension and impregnation with a blowing agent, wherein the polymerization in the presence of 0.1 to 5 wt .-% graphite particles, based on the styrene polymer, and a nonionic surfactant is performed.
  • maleic anhydride copolymer for example, are of maleic anhydride and C 20 to 24 -1-olefin, Polyisbutylen-succinic acid anhydride (PIBSA) or their reaction products with hydroxy-Polyethylengylkol- esters, diethylaminoethanol or amines such as tridecylamine , Octylamine or polyetheramine, tetraethylenepentaamine or mixtures thereof.
  • the molecular weights of the nonionic surfactant are preferably in the range of 500 to 3000 g / mol. They are generally used in amounts ranging from 0.01 to 2% by weight, based on styrene polymer.
  • the expandable, athermanous particle-containing styrene polymers according to the invention can be processed into polystyrene foams having densities of 5 to 35 g / l, preferably 810 to 25 g / l and especially 10 to 15 g / l.
  • the expandable particles are prefoamed. This is usually done by heating the particles with water vapor in so-called pre-expanders.
  • the pre-expanded particles are then welded into shaped bodies.
  • the prefoamed particles are brought into forms that do not close in a gas-tight manner and subjected to steam. After cooling, the moldings can be removed.
  • the foams produced from the expandable styrene polymers according to the invention are distinguished by outstanding thermal insulation. This effect is particularly evident at low densities.
  • the possibility of significantly reducing the density of the styrene polymer particle foams while maintaining the same thermal conductivity makes it possible to realize material savings. Since the same thermal insulation can be achieved with substantially lower bulk densities in comparison with conventional expandable styrene polymers, thinner foam boards can be used with the expandable polystyrene particles produced according to the invention, which enables a space saving.
  • the expandable styrene polymers according to the invention can be processed without any problems to give foams of low density.
  • the foams of the invention can be used for thermal insulation of buildings and parts of buildings, for the thermal insulation of machinery and household appliances as well as packaging materials.
  • Powdered graphite with a mean particle size of 4 - 5 ⁇ m (Grafittechnik Kropfmühl AG, UF 2 98),
  • Nonionic surfactant equimolar reaction product of Maleiklareanhydrid- C 20-24 1-OIefin copolymer (MSA) with tridecyl amine (TDA).
  • Emulsifier K30 (sodium alkanesulfonate, 1% solution in water, Bayer AG)
  • HBCD hexabromocyclododecane
  • EPS marginal fraction polystyrene
  • powdered graphite 4% by weight, based on the amount of styrene
  • the organic phase was placed in 24.68 liters of deionized water and 2.945 kg of magnesium sulfate / sodium pyrophosphate precipitate in a 50I pressure-resistant stirred tank.
  • the reaction mixture was heated to 95 ° C. with stirring for 1.5 hours.
  • the resulting beads were separated from the aqueous phase, dried by warm air and sieved to 1, 0 - 2.0 mm. By means of steam, the beads were prefoamed and then welded to form parts with densities between 10 and 20 g / l and stored to constant weight.
  • the thermal conductivity coefficients (WLF) determined according to DIN 52612 (Poensgen method) at 10 ° C are summarized in tabular form.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Styrolpolymer-Partikelschaumstoffe mit einer Dichte unter 25 g/l, die eine Wärmeleitfähigkeit ?, bestimmt bei 10°C nach DIN 52612, unter 32 mW/m*K aufweisen, sowie Verfahren zu deren Herstellung.

Description

Styrolpolymer-Partikelschaumstoffe mit verringerter Wärmeleitfähigkeit
Beschreibung
Die Erfindung betrifft Styrolpolymer-Partikelschaumstoffe mit einer Dichte unter 25 g/1, die eine Wärmeleitfähigkeit λ, bestimmt bei 10°C nach DIN 52612, unter 32 mW/m*K aufweisen, sowie Verfahren zu deren Herstellung.
Polystyrolpartikelschaumstoffe sind seit langer Zeit bekannt und haben sich auf vielen Gebieten bewährt. Die Herstellung derartiger Schaumstoffe erfolgt durch Aufschäumen von mit Treibmitteln imprägnierten Polystyrolpartikeln und das nachfolgende Verschweißen der so hergestellten Schaumpartikel zu Formkörpern. Ein wesentliches Einsatzgebiet ist die Wärmedämmung im Bauwesen.
Die zur Wärmedämmung eingesetzten Schaumstoffplatten aus Polystyrolpartikelschaum haben zumeist Dichten von etwa 30 g/l, da bei diesen Dichten die Wärmeleitfähigkeit des Polystyrolpartikelschaums ein Minimum aufweist. Aus Gründen der Materialeinsparung wäre es wünschenswert, Schaumstoffplatten mit geringeren Dichten, insbesondere < 15 g/l, zur Wärmeisolation einzusetzen. Derartige Schaumstoffplatten mit geringerer Dichte weisen jedoch eine drastisch verschlechterte Wärmedämmfähigkeit auf, so dass sie die Anforderungen der Wärmeleitklasse 035 (DIN 18 164, Teil 1) nicht erfüllen.
Zur Verringerung der Wärmeleitfähigkeit von Polystyrolschaumstoffen wurden diesen auf verschiedene Art und Weise athermane Materialien wie Ruß (EP-A 372 343, EP- A 620246), Graphit (EP-A 981 574 und EP-A 981 575) oder Aluminiumblättchen (WO 00/043442) zugegeben. Hierbei werden je nach Art und Einarbeitung hohe Mengen der athermanen Materialien benötigt, die aufgrund der nukleierenden Wirkung zu Problemen bei der homogenen Einarbeitung führen können. Des weiteren können die mechanischen Eigenschaften der daraus hergestellten Schaumstoffe und dessen Brandverhalten negativ beeinflusst werden.
Die Wärmeleitfähigkeit von Polystyrolschaumstoffen wird auch durch die Art und Menge des Zellgases beeinflusst. Aus Umweltgründen wurden halogenhaltige Treibmittel durch leichtflüchtige Treibmittel aus Kohlenwasserstoffen ersetzt. Da letztere nach dem Verschäumen der expandierbaren Polystyrole (EPS) in der Regel innerhalb kurzer Zeit aus dem Schaumstoff herausdiffundieren, steigt die direkt nach dem Verschäumen gemessene Wärmeleitfähigkeit mit der Lagerung wieder leicht an.
Aufgabe der vorliegenden Erfindung war es daher, den genannten Nachteilen abzuhelfen und Styrolpolymer-Partikelschaumstoffe mit verbesserter Wärmleitfähigkeit bereitzustellen, die gute mechanische Eigenschaften und insbesondere gute Brandschutzeigenschaften aufweisen. Des weiteren sollte ein Verfahren zur Herstellung von treibmit- telhaltigen, expandierbaren Styrolpolymeren (EPS) gefunden werden, die sich zu den Styrolpolymer-Partikelschaumstoffen mit verbesserter Wärmeleitfähigkeit verschäumen und versintern lassen.
Demgemäß wurden die oben genannten Styrolpolymer-Partikelschaumstoffe gefunden.
Bevorzugt weisen die Styrolpolymer-Partikelschaumstoffe auch bei Dichten im Bereich von 7 bis 20 g/l, bevorzugt im Bereich von 10 bis 16 g/l, eine Wärmeleitfähigkeit λ, bestimmt bei 10°C nach DIN 52612, unter 32 mW/m*K, bevorzugt im Bereich von 27 bis 31 , besonders bevorzugt im Bereich von 28 bis 30 mW/m*K auf.
Die Styrolpolymer-Partikelschaumstoffe weisen bevorzugt 2 bis 15 Zellen/mm auf.
In der Regel werden die niedrigen Wärmeleitfähigkeiten auch dann erreicht, wenn das Treibmittel im wesentlichen aus den Zellen diffundiert ist, d. h. die Zellen mit einem Gas gefüllt sind, das zu mindestens 90 Vol.-%, bevorzugt zu 95 bis 99 Vol.-% aus einem anorganischen Gas, insbesondere aus Luft, besteht.
Bevorzugt enthalten die Styrolpolymer-Partikelschaumstoffe eine organische Brom- Verbindung mit einem Bromgehalt von mindestens 70 Gew.-%. Dadurch sind selbstverlöschende Styrolpolymer-Partikelschaumstoffe erhältlich, die den Brandtest B2 nach DIN 4102 erfüllen.
Die erfindungsgemäßen Styrolpolymer-Partikelschaumstoffe sind durch Vorschäumen und Versintern der entsprechenden, expandierbaren Styrolpolymeren (EPS) erhältlich.
Unter expandierbaren Styrolpolymerisaten (EPS) werden Treibmittel enthaltende Styrolpolymerisate verstanden.
Die erfindungsgemäßen expandierbaren Styrolpolymerisate enthalten als Polymermatrix insbesondere Homopolystyrol oder Styrolcopolymerisate mit bis zu 20 Gew.-%, bezogen auf das Gewicht der Polymeren, an ethylenisch ungesättigten Comonomeren, insbesondere Alkylstyrole, Divinylbenzol, Acrylnitril oder a-Methylstyrol. Auch Blends aus Polystyrol und anderen Polymeren, insbesondere mit Kautschuk und Polypheny- lenether sind möglich.
Die Styrolpolymerisate können die üblichen und bekannten Hilfsmittel und Zusatzstoffe enthalten, beispielsweise Flammschutzmittel, Keimbildner, UV-Stabilisatoren, Kettenüberträger, Treibmittel, Weichmacher, Pigmente und Antioxidantien. Die expandierbaren Partikel werden mit den üblichen und bekannten Beschichtungs- mitteln beschichtet, beispielsweise Metallstearaten, Glycerinestern und feinteiligen Silikaten.
Die EPS-Partikelgröße liegt bevorzugt im Bereich von 0,2 - 2 mm.
Die Menge der eingesetzten athermanen Partikel richtet sich nach deren Art und Wirkung. Die Styrolpolymer -Partikelschaumstoff enthalten bevorzugt 0,5 bis 5 Gew.-%, besonders bevorzugt 1 bis 4 Gew.-% athermane Partikel. Bevorzugt werden als ather- mane Partikel Graphit, Ruß oder Aluminium mit einer mittleren Teilchengröße im Bereich von 1 bis 50 μm.
Der bevorzugt eingesetzte Graphit hat vorzugsweise eine mittlere Partikelgröße von 1 bis 50 μm, insbesondere von 2,5 bis 12 μm, ein Schüttgewicht von 100 bis 500 g/l und eine spezifische Oberfläche von 5 bis 20 m2/g. Es kann Naturgraphit oder gemahlener synthetischer Graphit eingesetzt werden. Die Graphitpartikel sind im Styrolpolymerisat vorzugsweise in Mengen von 0,05 bis 8 Gew.-%, insbesondere von 0,1 bis 5 Gew.-% enthalten.
Ein Problem bei der Verwendung von Graphitpartikeln besteht in der leichten Brennbarkeit der Graphitpartikel enthaltenden Polystyrolpartikelschaumstoffe. Um die für den Einsatz im Bauwesen notwendigen Brandtests (B1 und B2 nach DIN 4102) zu bestehen, werden in einer bevorzugten Ausführungsform der Erfindung den expandierbaren Styrolpolymerisaten Flammschutzmittel, insbesondere solche auf Basis organischer Bromverbindungen mit einem Bromgehalt von mindestens 70 Gew.-%, zugesetzt. Der Zusatz der Bromverbindung (ohne Synergist) sollte in einer Menge von mehr als 3 Gew.-%, bezogen auf das Gewicht der expandierbaren Styrolpolymerisate, erfolgen.
Überraschenderweise führt diese Menge an Flammschutzmitteln zu keinerlei Beein- trächtigung der mechanischen Kennwerte der Ruß enthaltenden Polystyrolpartikelschaumstoffe.
Insbesondere geeignet sind aliphatische, cycloaliphatische und aromatische Bromverbindungen, wie Hexabromcyclododecan, Pentabrommonochlorcyclohexan, Pen- tabromphenylallylether.
Die Wirkung der bromhaltigen Flammschutzmittel wird durch Zusatz von C-C- oder O- O-Iabilen organischen Verbindungen erheblich verbessert. Beispiele geeigneter Flammschutzsynergisten sind Dicumyl und Dicumylperoxid. Eine bevorzugte Kombina- tion besteht aus 0,6 bis 5 Gew.-% organischer Bromverbindung und 0,1 bis 1,0 Gew.-% der C-C- oder O-O-Iabilen organischen Verbindung. Die Herstellung der erfindungsgemäßen expandierbaren Styrolpolymerisate (EPS) kann nach unterschiedlichen Verfahren erfolgen.
Bei einer Ausführungsform vermischt man die athermanen Partikel und ein nichtioni- sches Tensid mit einer Schmelze des Styrolpolymerisates zu, vorzugsweise in einem Extruder. Dabei wird gleichzeitig das Treibmittel in die Schmelze zudosiert. Man kann die athermanen Partikel auch in eine Schmelze von treibmittelhaltigem Styrolpolymeri- sat einarbeiten, wobei zweckmäßigerweise ausgesiebte Randfraktionen eines Perlspektrums von bei einer Suspensionspolymerisation entstandenen treibmittelhaltigen Polystyrolperlen eingesetzt werden. Die Treibmittel und athermanen Partikel enthaltende Polystyrolschmelze werden ausgepresst und zu treibmittelhaltigem Granulat zerkleinert. Da die athermanen Partikel stark nukleierend wirken können, sollte nach dem Auspressen unter Druck rasch abgekühlt werden, um ein Aufschäumen zu vermeiden. Man führt daher zweckmäßigerweise eine Unterwassergranulierung unter Druck in einem geschlossenen System durch.
Es ist auch möglich, den athermane Partikel enthaltenden Styrolpolymerisaten das Treibmittel in einem gesonderten Verfahrenschritt zuzusetzen. Hierbei werden die Granulate dann vorzugsweise in wässriger Suspension mit dem Treibmittel imprägniert.
In allen drei Fällen kann man die feinteiligen athermanen Partikel und das nichtionische Tensid direkt deiner Polystyrolschmelze zusetzen. Man kann die athermanen Partikel aber auch in Form eines Konzentrats in Polystyrol der Schmelze zusetzen. Bevorzugt werden aber Polystyrolgranulat und athermane Partikel zusammen in einen Extruder eingegeben, das Polystyrol aufgeschmolzen und mit den athermanen Partikeln vermischt.
Es ist grundsätzlich auch möglich, die athermanen Partikel und ein nichtionisches Tensid bei der Suspensionspolymerisation zu inkorporieren, sofern sie ausreichend inert gegenüber dem in der Regel verwendeten Wasser als Suspensionsmedium sind. Sie können hierbei vor der Suspendierung dem monomeren Styrol zugesetzt oder im Verlaufe, bevorzugt während der ersten Hälfte des Polymerisationszyklus, dem Reaktionsansatz zugefügt werden. Das Treibmittel wird bevorzugt im Verlaufe der Polymerisation zugegeben, es kann jedoch auch hinterher dem Styrolpolymerisat einverleibt werden. Dabei hat es sich gezeigt, dass es für die Stabilität der Suspension günstig ist, wenn bei Beginn der Suspensionspolymerisation eine Lösung von Polystyrol (bzw. einem entsprechenden Styrolcopolymerisat) in Styrol (bzw. der Mischung von Styrol mit Comonomeren) vorliegt. Bevorzugt geht man dabei von einer 0,5 bis 30, insbesondere 5 bis 20 gew.-%igen Lösung von Polystyrol in Styrol aus. Man kann dabei frisches Polystyrol in Monomeren auflösen, zweckmäßigerweise setzt man aber sogenannte Randfraktionen ein, die bei der Auftrennung des bei der Herstellung von expandierbarem Polystyrol anfallenden Perlspektrums als zu große oder zu kleine Perlen ausge- siebt werden. In der Praxis haben derartige nicht verwertbare Randfraktionen Durchmesser von größer als 2,0 mm bzw. kleiner als 0,2 mm. Auch Polystyrol-Recyclat und Schaumpolystyrol-Recyclat können eingesetzt werden. Eine andere Möglichkeit besteht darin, dass man Styrol in Substanz bis zu einem Umsatz von 0,5 bis 70 % vorpo- lymerisiert und das Vorpolymerisat zusammen mit den athermanen Partikeln in der wässrigen Phase supendiert und auspolymerisiert.
Das Treibmittel wird in den üblichen Mengen von etwa 3 - 10 Gew.-%, bezogen auf das Gewicht des Polymeren, zugesetzt. Als Treibmittel eingesetzt werden üblicherweise aliphatische Kohlenwasserstoffe mit 3 bis 10, vorzugsweise 4 bis 6 Kohlenstoffatomen.
Besonders bevorzugt werden die expandierbaren Styrolpolymerisaten (EPS) durch Polymerisation von Styrol und gegebenenfalls copolymerisierbaren Monomeren in wässriger Suspension und Imprägnierung mit einem Treibmittel hergestellt, wobei die Polymerisation in Gegenwart von 0,1 bis 5 Gew.-% Graphitpartikeln, bezogen auf das Styrolpolymer, und einem nichtionischen Tensid durchgeführt wird.
Als nichtionisches Tensid eignen sich beispielsweise Maleinsäureanhydrid-Copolymere (MSA), z.B. aus Maleinsäureanhydrid und C20-24-1-olefin, Polyisbutylen-Bemsteinsäure- anhydride (PIBSA) oder deren Umsetzungsprodukte mit Hydroxy-Polyethylengylkol- Ester, Diethylaminoethanol oder Aminen, wie Tridecylamin, Octylamin oder Polyether- amin, Tetraethylenpentaamin oder Mischungen davon. Die Molekulargewichte des nichtionischen Tensids liegen bevorzugt im Bereich von 500 bis 3000 g/mol. Sie werden in der Regel in Mengen im Bereich von 0,01 bis 2 Gew.-%, bezogen auf Styrolpo- lymer, eingesetzt.
Die erfindungsgemäßen expandierbaren, athermane Partikel enthaltenden Styrolpolymerisate können zu Polystyrolschaumstoffen mit Dichten von 5 - 35 g/l, bevorzugt von 810 bis 25 g/l und insbesondere von 10 - 15 g/l, verarbeitet werden.
Hierzu werden die expandierbaren Partikel vorgeschäumt. Dies geschieht zumeist durch Erwärmen der Partikel mit Wasserdampf in sogenannten Vorschäumern.
Die so vorgeschäumten Partikel werden danach zu Formkörpern verschweißt. Hierzu werden die vorgeschäumten Partikel in nicht gasdicht schließende Formen gebracht und mit Wasserdampf beaufschlagt. Nach Abkühlen können die Formteile entnommen werden.
Die aus den erfindungsgemäßen expandierbaren Styrolpolymerisaten hergestellten Schaumstoffe zeichnen sich durch eine hervorragende Wärmeisolierung aus. Dieser Effekt zeigt sich besonders deutlich bei niedrigen Dichten. Durch die Möglichkeit, bei gleicher Wärmeleitfähigkeit die Dichte der Styrolpolymerpar- tikel-Schaumstoffe deutlich zu verringern, lassen sich Materialeinsparungen realisieren. Da im Vergleich mit herkömmlichen expandierbaren Styrolpolymerisaten die gleiche Wärmedämmung mit wesentlich geringeren Schüttdichten erreicht werden kann, kön- nen mit dem erfindungsgemäß hergestellten expandierbaren Polystyrolpartikeln dünnere Schaumstoffplatten eingesetzt werden, was eine Raumeinsparung ermöglicht.
Überraschenderweise lassen sich die erfindungsgemäßen expandierbaren Styrolpolymerisate völlig problemlos zu Schaumstoffen geringer Dichte verarbeiten.
Die erfindungsgemäßen Schaumstoffe können zur Wärmedämmung von Gebäuden und Gebäudeteilen, zur thermischen Isolierung von Maschinen und Haushaltsgeräten sowie als Verpackungsmaterialien verwendet werden.
Die Erfindung soll an nachstehenden Beispielen näher erläutert werden. Die genannten Teile und Prozente beziehen sich auf das Gewicht.
Beispiele:
Einsatzstoffe:
Pulverförmiges Grafit mit einer mittleren Partikelgröße von 4 - 5 μm (Grafitwerk Kropfmühl AG, UF 2 98),
Nichtionisches Tensid: äquimolares Umsetzungsprodukt aus Maleisäureanhydrid- C20-241-OIefin-Copolymer (MSA) mit Tridecylamin (TDA).
Anionsches Tensid: Emulgator K30, (Natriumalkansulfonat, 1%ige Lösung in Wasser, Bayer AG)
Dicetylperoxodicarbonat (Perkadox® 24 der Akzo-Nobel)
Beispiele 1 und 2:
In 14,20 kg Styrol wurden 156,2 g Hexabromcyclododecan (HBCD), 2,13 kg EPS- Randfraktion (Polystyrol) gelöst und 568 g pulverförmiges Grafit (4 Gew.-% bezogen auf die Styrolmenge) homogen suspendiert unter Beimischung von 80,9 g Dicumylper- oxid, 14,2 g tert.-Butylperoxy-2-ethylhexanoat, 14,2 g Dicetylperoxodicarbonat und 14,2 g nichtionisches Tensid (MSA + TDA). Die organische Phase wurde in 24,68 I vollentsalztes Wasser und 2,945 kg Magnesiumsulfat/Natriumpyrophosphat-Fällung in einem druckfesten 50I-Rührkessel eingebracht. Das Reaktionsgemisch wurde unter Rühren innerhalb 1 ,5 Stunden auf 95°C erhitzt. Anschließend wurde innerhalb von 4,0 Stunden auf 130°C erhitzt, wobei 115 min nach Erreichen von 80°C 322,1g Emulgator K30 (1%ig), nach 190 min nach Erreichen von 80°C über eine Dauer von 30 min 1,06 kg Pentan und nach 225 min nach Erreichen von 80°C 156,2g Armostat 2%ig zugegeben werden. Schließlich wird 2 Stunden bei 130°C auspolymerisiert.
Die erhaltenen Perlen wurden von der wässrigen Phase abgetrennt, durch Warmluft getrocknet und auf 1 ,0 - 2,0 mm ausgesiebt. Mittels Wasserdampf wurden die Perlen vorgeschäumt und anschließend zu Formteilen mit Dichten zwischen 10 und 20 g/l verschweißt und bis zur Gewichtskonstanz gelagert. Die nach DIN 52612 (Poensgen- Methode) bei 10°C ermittelten Wärmeleitzahlen (WLF) sind in Tabellel zusammengestellt.
Vergleichsversuche V1 und V2 Die Beispiele 1 und 2 wurden ohne Zugabe von anionischem Tensid wiederholt.
Tabelle 1 :
Figure imgf000008_0001

Claims

Patentansprüche
1. Styrolpolymer-Partikelschaumstoff mit einer Dichte unter 25 g/l, dadurch gekennzeichnet, dass die Wärmeleitfähigkeit λ des Polystyrol-Partikelschaumstoffes, be- stimmt bei 10°C nach DIN 52612, unter 32 mW/m*K liegt.
2. Styrolpolymer-Partikelschaumstoff nach Anspruch 1 , dadurch gekennzeichnet, dass die Dichte im Bereich von 7 bis 20 g/l beträgt.
3. Styrolpolymer-Partikelschaumstoff nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Wärmeleitfähigkeit λ, bestimmt bei 10°C nach DIN 52612, im Bereich von 27 bis 31 mW/m*K liegt.
4. Styrolpolymer-Partikelschaumstoff nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Styrolpolymer-Partikelschaumstoff 2 bis 15 Zellen/mm aufweist.
5. Styrolpolymer-Partikelschaumstoff nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Zellen mit einem Gas gefüllt sind, das zu mindestens 90 VoI.-% aus einem anorganischen Gas besteht.
6. Styrolpolymer-Partikelschaumstoff nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass er 0,5 bis 5 Gew.-% athermane Partikel enthält.
7. Styrolpolymer-Partikelschaumstoff nach Anspruch 6, dadurch gekennzeichnet, dass er 1 bis 4 Gew.-% Graphit, Ruß oder Aluminium mit einer mittleren Teilchengröße im Bereich 1 bis 50 μm enthält.
8. Styrolpolymer-Partikelschaumstoff nach einem der Ansprüche 1 bis 7, dadurch ge- kennzeichnet, dass er eine organische Bromverbindung mit einem Bromgehalt von mindestens 70 Gew.-% enthält und den Brandtest B2 nach DIN 4102 erfüllt.
9. Expandierbares Styrolpolymer (EPS), aus welchem durch Vorschäumen und Versintern Styrolpolymer-Partikelschaumstoffe gemäß den Ansprüchen 1 bis 8 erhältlich sind.
10. Verfahren zur Herstellung von expandierbaren Styrolpolymerisaten (EPS) durch Polymerisation von Styrol und gegebenenfalls copolymerisierbaren Monomeren in wässriger Suspension und Imprägnierung mit einem Treibmittel, dadurch gekenn- zeichnet, dass die Polymerisation in Gegenwart von 0,1 bis 5 Gew.-% Graphitpartikeln, bezogen auf das Styrolpolymer, und einem nichtionischen Tensid durchgeführt wird.
11. Verfahren zur Herstellung von expandierbaren Styrolpolymerisaten (EPS) durch Extrusion und Unterwassergranulation einer treibmittelhaltigen Styrolpolymer- schmelze, dadurch gekennzeichnet, dass in die Styrolpolymerschmelze 0,1 bis 5 Gew.-%, bezogen auf das Styrolpolymer, Graphitpartikeln und ein nichtionischen Tensid eingemischt werden.
12. Verfahren nach den Ansprüchen 10 oder 11 , dadurch gekennzeichnet, dass als nichtionisches Tensid ein Maleinsäureanhydrid-Copolymer (MSA), Polyisbutylen- Säureanhydrid (PIBSA) oder deren Umsetzungsprodukte mit Hydroxy- Polyethylengylkol-Ester oder Aminen in Mengen im Bereich von 0,01 bis 1 Gew.-%, bezogen auf Styrolpolymer, eingesetzt wird.
PCT/EP2005/006200 2004-06-16 2005-06-09 Styrolpolymer-partikelschaumstoffe mit verringerter wärmeleitfähigkeit WO2005123816A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE502005009601T DE502005009601D1 (de) 2004-06-16 2005-06-09 Styrolpolymer-partikelschaumstoffe mit verringerter wärmeleitfähigkeit
MXPA06014440A MXPA06014440A (es) 2004-06-16 2005-06-09 Materiales de espuma de particula de polimero de estireno teniendo una conductividad termica reducida.
AT05753572T ATE468369T1 (de) 2004-06-16 2005-06-09 Styrolpolymer-partikelschaumstoffe mit verringerter wärmeleitfähigkeit
US11/629,776 US8173714B2 (en) 2004-06-16 2005-06-09 Expanded styrene polymers having a reduced thermal conductivity
PL05753572T PL1758951T3 (pl) 2004-06-16 2005-06-09 Tworzywa piankowe z cząstek polimeru styrenowego, o zmniejszonej przewodności cieplnej
JP2007515833A JP5208501B2 (ja) 2004-06-16 2005-06-09 低い熱伝導性を有するスチレンポリマー−粒子フォーム
EP05753572A EP1758951B1 (de) 2004-06-16 2005-06-09 Styrolpolymer-partikelschaumstoffe mit verringerter wärmeleitfähigkeit
KR1020077000975A KR101256271B1 (ko) 2004-06-16 2005-06-09 감소된 열전도율을 갖는 스티렌 중합체 입자 발포 물질
BRPI0512006-3A BRPI0512006A (pt) 2004-06-16 2005-06-09 material de espuma de partìcula de polìmero de estireno, processo para a preparação de polìmeros de estireno expansìveis, e, polìmero de estireno expansìvel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004028768.6 2004-06-16
DE102004028768A DE102004028768A1 (de) 2004-06-16 2004-06-16 Styrolpolymer-Partikelschaumstoffe mit verringerter Wärmeleitfähigkeit

Publications (1)

Publication Number Publication Date
WO2005123816A1 true WO2005123816A1 (de) 2005-12-29

Family

ID=34970800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/006200 WO2005123816A1 (de) 2004-06-16 2005-06-09 Styrolpolymer-partikelschaumstoffe mit verringerter wärmeleitfähigkeit

Country Status (12)

Country Link
US (1) US8173714B2 (de)
EP (1) EP1758951B1 (de)
JP (1) JP5208501B2 (de)
KR (1) KR101256271B1 (de)
CN (1) CN100586993C (de)
AT (1) ATE468369T1 (de)
BR (1) BRPI0512006A (de)
DE (2) DE102004028768A1 (de)
ES (1) ES2344211T3 (de)
MX (1) MXPA06014440A (de)
PL (1) PL1758951T3 (de)
WO (1) WO2005123816A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010066331A1 (en) * 2008-12-12 2010-06-17 Jackon Gmbh Process for the preparation of an expandable polymer composition in the form of beads
WO2010066454A3 (en) * 2008-12-12 2010-08-05 Jackon Gmbh Process for the preparation of an expandable polymer composition in the form of beads
JP2010527391A (ja) * 2007-05-18 2010-08-12 ポリメリ ユーロパ ソシエタ ペル アチオニ 改良された断熱性を有するビニル芳香族ポリマーをベースとする複合材料およびその調製方法
WO2012052423A1 (en) * 2010-10-18 2012-04-26 Total Petrochemicals Research Feluy Expandable vinyl aromatic polymers
WO2015101621A1 (en) 2013-12-30 2015-07-09 Averis As Process for the preparation of solid particulate vinyl aromatic polymer compositions
WO2018015502A1 (en) 2016-07-20 2018-01-25 Synthos S.A. Use of geopolymeric additive in combination with non-brominated flame retardant in polymer foams
EP3495335A1 (de) 2015-01-14 2019-06-12 Synthos S.A. Verfahren zur herstellung eines geopolymer-verbundstoffs
US10639829B2 (en) 2015-01-14 2020-05-05 Synthos S.A. Process for the production of expandable vinyl aromatic polymer granulate having decreased thermal conductivity
US10808093B2 (en) 2015-01-14 2020-10-20 Synthos S.A. Combination of silica and graphite and its use for decreasing the thermal conductivity of vinyl aromatic polymer foam
US11440843B2 (en) 2016-07-20 2022-09-13 Synthos S.A. Modified geopolymer and modified geopolymer composite and process for the production thereof
US11859066B2 (en) 2015-01-14 2024-01-02 Synthos S.A. Use of a mineral having perovskite structure in vinyl aromatic polymer foam
US12122720B2 (en) 2016-07-20 2024-10-22 Synthos S.A. Process for the production of geopolymer or geopolymer composite

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5220428B2 (ja) * 2008-02-01 2013-06-26 株式会社フジミインコーポレーテッド 研磨用組成物を用いた研磨方法
CN102076746B (zh) * 2008-05-02 2014-05-14 巴斯夫欧洲公司 低金属含量ps泡沫
DE202008012675U1 (de) * 2008-09-24 2009-01-02 SCHWENK DÄMMTECHNIK GMBH & Co KG Dämmelement und Verwendung eines Dämmelementes
IT1393962B1 (it) * 2009-05-05 2012-05-17 Polimeri Europa Spa Articoli espansi con ottima resistenza allo irraggiamento solare e ottime proprieta' termoisolanti e meccaniche
CN103298867B (zh) * 2010-12-30 2015-01-07 第一毛织株式会社 泡沫聚苯乙烯基珠粒及其制造方法
JP5885294B2 (ja) * 2011-11-30 2016-03-15 株式会社ジェイエスピー ポリスチレン系樹脂押出発泡板
EP2794673A1 (de) * 2011-12-21 2014-10-29 Basf Se Verfahren zur herstellung von expandierbaren, partikelförmige additive enthaltenden styrolpolymeren
JP6216506B2 (ja) * 2012-12-14 2017-10-18 株式会社カネカ 発泡性スチレン系樹脂粒子とその製造方法、スチレン系樹脂発泡成形体
CA2901124A1 (en) 2013-02-26 2014-09-04 Dow Global Technologies Llc Thermoplastic polymeric foam pipe insulation
EP2918388A1 (de) 2014-03-10 2015-09-16 Sulzer Chemtech AG Verfahren zur Wiederverwertung von expandierbaren Kunststoffmaterialien und sowie damit herstellbares expandierfähiges oder expandiertes Kunststoffmaterial
CN104292680B (zh) * 2014-09-15 2017-02-15 刘崴崴 一种聚苯乙烯泡沫保温材料及其制备方法
CN105860305A (zh) * 2015-01-23 2016-08-17 江苏业达鑫化工有限公司 一种功能性石墨母粒的制备方法及其应用
CN104844954A (zh) * 2015-04-24 2015-08-19 天津市天德橡塑机械有限公司 一种低导热聚苯乙烯保温材料
EP3348612A4 (de) 2015-09-09 2019-04-17 Kaneka Corporation Expandierbare styrolharzpartikel, vorexpandierte styrolharzpartikel, styrolharzschaumformkörper und verfahren zur herstellung von expandierbaren harzpartikeln
CN105566670B (zh) * 2015-12-18 2018-05-18 武汉轻工大学 基于废聚苯乙烯材料制备梯度阻燃可发泡聚苯乙烯珠粒的水相悬浮造粒法及其产品
KR20190039400A (ko) 2016-07-20 2019-04-11 신도스 에스.에이. 지오폴리머 또는 지오폴리머 복합체의 제조방법
CN106749791B (zh) * 2016-12-07 2018-10-23 河海大学 一种低密度聚苯乙烯微球及其制备方法
FR3080850B1 (fr) 2018-05-04 2022-08-12 Saint Gobain Isover Materiau d’isolation thermique
CN112079610B (zh) * 2019-06-14 2022-09-09 上海圣奎塑业有限公司 一种发泡保温板的制作工艺
CN113248771A (zh) * 2021-06-22 2021-08-13 富思特新材料科技发展股份有限公司 一种用于保温板的可发泡聚苯乙烯及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0372343A1 (de) 1988-11-25 1990-06-13 The Dow Chemical Company Russenthaltender Polystyrolschaum
EP0620246A1 (de) 1993-04-13 1994-10-19 ALGOSTAT GmbH &amp; CO. KG Formkörper aus Polystyrol-Hartschaum
WO1997045477A1 (de) * 1996-05-28 1997-12-04 Basf Aktiengesellschaft Russpartikel enthaltende expandierbare styrolpolymerisate
WO1998051735A1 (de) * 1997-05-14 1998-11-19 Basf Aktiengesellschaft Graphitpartikel enthaltende expandierbare styrolpolymerisate
EP0981575A1 (de) 1997-05-14 2000-03-01 Basf Aktiengesellschaft Verfahren zur herstellung graphitpartikel enthaltender expandierbarer styrolpolymerisate
WO2000043442A1 (de) 1999-01-25 2000-07-27 Sunpor Kunststoff Ges.Mbh Teilchenförmige, expandierbare styrolpolymerisate und verfahren zu ihrer herstellung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2649983B1 (fr) * 1989-07-19 1993-01-08 Norsolor Sa Procede de preparation de perles de polymere expansibles et materiaux en derivant
JP2832467B2 (ja) * 1989-11-22 1998-12-09 鐘淵化学工業株式会社 発泡性熱可塑性重合体粒子の製造方法
US6230713B1 (en) 1998-01-29 2001-05-15 Margaret R. Dalesandro Determining a treatment plan for patients undergoing thrombotic event by monitoring P-selectin
KR100573636B1 (ko) * 1998-07-27 2006-04-26 바스프 악티엔게젤샤프트 팽창된 흑연 입자를 함유하는 발포성 스티렌 중합체의 제조 방법
KR20010112557A (ko) * 2000-06-09 2001-12-20 방대신 검색사이트의 복권제공 시스템 및 방법
DE10101432A1 (de) * 2001-01-13 2002-07-18 Basf Ag Kohlenstoffpartikel enthaltende expandierbare Styrolpolymerisate
JP4316305B2 (ja) * 2003-06-13 2009-08-19 株式会社ジェイエスピー 黒鉛粉を含有するスチレン系樹脂発泡体の製造方法
DE10358786A1 (de) * 2003-12-12 2005-07-14 Basf Ag Partikelschaumformteile aus expandierbaren, Füllstoff enthaltenden Polymergranulaten

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0372343A1 (de) 1988-11-25 1990-06-13 The Dow Chemical Company Russenthaltender Polystyrolschaum
EP0620246A1 (de) 1993-04-13 1994-10-19 ALGOSTAT GmbH &amp; CO. KG Formkörper aus Polystyrol-Hartschaum
WO1997045477A1 (de) * 1996-05-28 1997-12-04 Basf Aktiengesellschaft Russpartikel enthaltende expandierbare styrolpolymerisate
WO1998051735A1 (de) * 1997-05-14 1998-11-19 Basf Aktiengesellschaft Graphitpartikel enthaltende expandierbare styrolpolymerisate
EP0981575A1 (de) 1997-05-14 2000-03-01 Basf Aktiengesellschaft Verfahren zur herstellung graphitpartikel enthaltender expandierbarer styrolpolymerisate
EP0981574A1 (de) 1997-05-14 2000-03-01 Basf Aktiengesellschaft Graphitpartikel enthaltende expandierbare styrolpolymerisate
WO2000043442A1 (de) 1999-01-25 2000-07-27 Sunpor Kunststoff Ges.Mbh Teilchenförmige, expandierbare styrolpolymerisate und verfahren zu ihrer herstellung

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527391A (ja) * 2007-05-18 2010-08-12 ポリメリ ユーロパ ソシエタ ペル アチオニ 改良された断熱性を有するビニル芳香族ポリマーをベースとする複合材料およびその調製方法
WO2010066454A3 (en) * 2008-12-12 2010-08-05 Jackon Gmbh Process for the preparation of an expandable polymer composition in the form of beads
WO2010066331A1 (en) * 2008-12-12 2010-06-17 Jackon Gmbh Process for the preparation of an expandable polymer composition in the form of beads
WO2012052423A1 (en) * 2010-10-18 2012-04-26 Total Petrochemicals Research Feluy Expandable vinyl aromatic polymers
US9976006B2 (en) 2013-12-30 2018-05-22 Averis As Process for the preparation of solid particulate vinyl aromatic polymer compositions
WO2015101621A1 (en) 2013-12-30 2015-07-09 Averis As Process for the preparation of solid particulate vinyl aromatic polymer compositions
US10639829B2 (en) 2015-01-14 2020-05-05 Synthos S.A. Process for the production of expandable vinyl aromatic polymer granulate having decreased thermal conductivity
EP3495335A1 (de) 2015-01-14 2019-06-12 Synthos S.A. Verfahren zur herstellung eines geopolymer-verbundstoffs
US10808093B2 (en) 2015-01-14 2020-10-20 Synthos S.A. Combination of silica and graphite and its use for decreasing the thermal conductivity of vinyl aromatic polymer foam
US10961154B2 (en) 2015-01-14 2021-03-30 Synthos S.A. Geopolymer composite and expandable vinyl aromatic polymer granulate and expanded vinyl aromatic polymer foam comprising the same
US11267170B2 (en) 2015-01-14 2022-03-08 Synthos S.A. Process for the production of expandable vinyl aromatic polymer granulate having decreased thermal conductivity
US11447614B2 (en) 2015-01-14 2022-09-20 Synthos S.A. Combination of silica and graphite and its use for decreasing the thermal conductivity of vinyl aromatic polymer foam
US11708306B2 (en) 2015-01-14 2023-07-25 Synthos S.A. Geopolymer composite and expandable vinyl aromatic polymer granulate and expanded vinyl aromatic polymer foam comprising the same
US11859066B2 (en) 2015-01-14 2024-01-02 Synthos S.A. Use of a mineral having perovskite structure in vinyl aromatic polymer foam
WO2018015502A1 (en) 2016-07-20 2018-01-25 Synthos S.A. Use of geopolymeric additive in combination with non-brominated flame retardant in polymer foams
US11440843B2 (en) 2016-07-20 2022-09-13 Synthos S.A. Modified geopolymer and modified geopolymer composite and process for the production thereof
US12122720B2 (en) 2016-07-20 2024-10-22 Synthos S.A. Process for the production of geopolymer or geopolymer composite

Also Published As

Publication number Publication date
KR20070034587A (ko) 2007-03-28
US20070142488A1 (en) 2007-06-21
EP1758951B1 (de) 2010-05-19
CN1968997A (zh) 2007-05-23
ES2344211T3 (es) 2010-08-20
JP5208501B2 (ja) 2013-06-12
KR101256271B1 (ko) 2013-04-18
JP2008502750A (ja) 2008-01-31
BRPI0512006A (pt) 2008-02-06
MXPA06014440A (es) 2007-03-21
ATE468369T1 (de) 2010-06-15
DE102004028768A1 (de) 2005-12-29
CN100586993C (zh) 2010-02-03
US8173714B2 (en) 2012-05-08
EP1758951A1 (de) 2007-03-07
PL1758951T3 (pl) 2010-10-29
DE502005009601D1 (de) 2010-07-01

Similar Documents

Publication Publication Date Title
EP1758951B1 (de) Styrolpolymer-partikelschaumstoffe mit verringerter wärmeleitfähigkeit
EP1366110B1 (de) Kohlenstoffpartikel enthaltende expandierbare styrolpolymerisate
EP0981574B1 (de) Graphitpartikel enthaltende expandierbare styrolpolymerisate
EP0981575B1 (de) Verfahren zur herstellung graphitpartikel enthaltender expandierbarer styrolpolymerisate
EP0542066B1 (de) Expandierbare Styrolpolymerisate, enthaltend als Treibmittel Kohlendioxid
EP2513209A1 (de) Flammgeschützte polymerschaumstoffe
EP1102807B1 (de) Verfahren zur herstellung blähgraphitpartikel enthaltender expandierbarer styrolpolymerisate
WO1997045477A1 (de) Russpartikel enthaltende expandierbare styrolpolymerisate
EP2526143B1 (de) Verfahren zur herstellung von expandierbaren styrolpolymerisatpartikeln mit verringerter wärmeleitfähigkeit
EP2274369B1 (de) Ps-schaumstoffe mit geringem metallgehalt
EP1661939A1 (de) Schaumstoffplatten mit verminderter Wärmeleitfähigkeit
EP0915127B1 (de) Athermane Partikel enthaltende expandierbare Styrolpolymerisate
EP1031600B1 (de) Schaumstoffplatten mit verminderter Wärmeleitfähigkeit
EP2121832B1 (de) Expandierbare styrolpolymerisate und schaumstoffe mit verringerter wasseraufnahme
EP0711800A1 (de) Recyclat enthaltende, expandierbare Styrolpolymerisate
EP0732357A1 (de) Verfahren zur Herstellung von flammgeschützen, Polystyrolschaum-Recyclat enthaltenden Polystyrol-Partikelschaumstoffen
EP1385902B1 (de) Verfahren zur herstellung von schaumstoffplatten
EP1846486A1 (de) Flammgeschützte, expandierbare styrolpolymer (eps)-granulate mit flammschutzsynergist in der beschichtung
EP1142942B1 (de) Verfahren zur Herstellung Aluminiumpulver enthaltender expandierbarer Styrolpolymerisate
EP1994085B1 (de) Verfahren zur herstellung von expandierbaren styrolpolymerisaten
DE4240109A1 (de) Feinteilige, expandierbare Styrolpolymerisate, insbesondere für das Recycling von Polystyrol-Partikelschaumstoffen
DE19843327A1 (de) Teilchenförmige, expandierbare Styrolpolymerisate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005753572

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/014440

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2007142488

Country of ref document: US

Ref document number: 2007515833

Country of ref document: JP

Ref document number: 11629776

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580020105.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077000975

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005753572

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020077000975

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11629776

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0512006

Country of ref document: BR